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ABSTRACT

Using Social Media to Combat Opioid Epidemic

Yiming Zhang

Opioid addiction has become one of the largest and deadliest epidemics in the United
States. To combat such deadly epidemic, there is an urgent need for novel tools and
methodologies to gain new insights into the behavioral processes of opioid abuse and
addiction. The role of social media in biomedical knowledge mining has turned into
increasingly significant in recent years. The data from social media may contribute
information beyond the knowledge of domain professionals (e.g., psychiatrists and epi-
demics researchers) and could potentially assist in sharpening our understanding toward
the behavioral process of opioid addiction and treatment.

In this thesis, we propose a novel framework to automate the analysis of social media
(i.e., Twitter) for the detection of the opioid users. To model the Twitter users and posted
tweets as well as their rich relationships, we constructed a structured heterogeneous in-
formation network (HIN) for representation. We then introduce a meta-path-based ap-
proach to characterize the semantic relatedness over users. As different meta-paths de-
pict the relatedness over users at different views, we used Laplacian scores to aggregate
different similarities formulated by different meta-paths and then a transductive classifi-
cation model was built to make predictions. We conduct a comprehensive experimental
study based on the real sample collections from Twitter to validate the effectiveness of
our proposed approach. To improve the performance of automatic opioid user detec-
tion, we presented a meta-structure-based method to depict relatedness and integrate
content-based similarity to formulate a similarity measure over users. We then aggre-
gate different similarities using multi-kernel learning for opioid user detection. Com-
prehensive experimental results on real sample collections from Twitter demonstrate the
effectiveness of our proposed learning models.
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Chapter 1

Introduction

1.1 Background and Motivation

Opioids are a group of drugs which include the illegal drug heroin and powerful pain

relievers by legal prescription, such as morphine and oxycodone. Opioid addiction has

become one of the largest and deadliest epidemics in the United States [1]. Americans

are more likely to die of a drug overdose than in a motor vehicle accident and overdose

deaths have increased every subsequent year [2]. In 2016, 11.8 million Americans age

12 and up were reported current non-medical use of prescription opioids [3]. There was

a skyrocketing increase of opioid related death in the past decade: according to National

Institute on Drug Abuse (NIDA), in 2017, 49,068 Americans died involving opioid over-

dose and 15,958 people died from heroin overdose, both reflecting significant increase

from 2001 [4]. Opioid addiction has also turned into a serious global concern because

of its negative health, social and economic impacts (e.g., family breakdown, domestic

violence, child abuse). Opioid addiction is a chronic mental illness that requires long-

term treatment and care [5]. It is a psychiatric challenge because of high relapse and

drop-out rates. Although Medication Assisted Treatment (MAT) using methadone or

buprenorphine has been proven to provide best outcomes for opioid addiction recovery,

stigma (i.e., bias) associated with MAT has limited its utilization [6]. Therefore, there

is an imminent need for novel tools and methodologies to gain new insights into the

behavioral processes of opioid addiction and treatment.

In recent years, the role of social media in biomedical knowledge mining, such as

drug pharmacology [7] and interactive healthcare [8], has become increasingly impor-
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tant. Due to the growing use of the Internet, never-ending growth of data are generated

from the social media offering opportunities for the users to freely share opinions and

experiences in online communities. For example, Twitter, as one of the most popular

social media platforms, has more than 140 million active users posting over 500 million

140 character tweets every day [9]. A large-scale Twitter users are willing to share their

experiences of using opioids (e.g., “I have a crippling heroin addiction and it’s destroy-

ing my life”), and perceptions toward MAT (e.g., “heroin; I think this model of treatment

(methadone) needs to be made available in the US, as it’s the most effective treatment for

opioid.”). Therefore, the data from social media may contribute information beyond the

knowledge of domain professionals (e.g., psychiatrists and epidemics researchers) and

could potentially assist in sharpening our understanding toward the behavioral process

of opioid addiction and treatment.

1.2 Research Objective

To achieve the goal, in this thesis, we propose a novel framework named AutoDOU

to automate the detection of opioid users from Twitter, where meta-path [10] based

on heterogeneous information network (HIN) are used to characterize the relatedness

over users. As the moral says “man is known by the company he keeps”, to detect if

a user is an opioid user, we not only analyze the posted tweets but also his/her social

network. For example, a user posted a tweet “I’ll bring some heroin”, which might not

be sufficient to determine if he/she is an opioid user. However, with the information that

one of his/her tweeps (i.e., Twitter people that follow each other) @ him/her in the tweet

“Let’s shoot heroin tonight hahahah. where’s the needles at?”, we can conclude that

the user is highly possible an opioid user. To model the users and posted tweets as well

as their rich semantic relationships, a structured heterogeneous information network

(HIN) [11], which is capable to be composed of different types of entities and relations,

is first introduced. Then we use meta-path [10] to incorporate higher-level semantics to

build up the relatedness of users. In this way, a similarity between two users can not

only capture whether they are posting similar tweets but also capture whether they have

strong social relations, such as post tweets discuss the same topic, post tweets mention

the same user. Since there can be multiple meta-paths to define different similarities, we

incorporate all useful meta-paths with their weights computed by Laplacian scores [12].
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To reduce the cost of acquiring labeled samples for supervised learning, we construct a

transductive classification model [13] to detect the opioid users based on HIN and the

combined meta-path.

Although meta-path has been shown to be useful for relatedness measure between

users [10, 14], it fails to capture a more complex relationship, e.g., two users have posted

tweets discussed the same topic and have also talked publicly to (i.e., mentioned) the

same person. To improve the performance of automatic opioid user detection, in this

thesis, we propose another framework named AutoOPU, a multi-kernel learning model

based on meta-structures over heterogeneous information network (HIN), to automati-

cally detect the opioid users from Twitter. In AutoOPU, to capture the complex relation-

ship (e.g., two users are relevant if they have posted tweets which are talked publicly to

the same person, and have also discussed the same topic), we use a meta-structure [15]

based approach to characterize the semantic relatedness over users. Then, we further in-

tegrate content-based similarity (i.e., similarity of users’ posted tweets) and relatedness

depicted by each meta-structure to formulate a similarity measure over users. Later,

we aggregate different similarities using multi-kernel learning [16], each of which is

automatically weighted by the learning algorithm to make predictions.

1.3 Major Contributions

The major contributions of our work can be summerized as follows:

• This is a pioneer work to automatically detect opioid users from Twitter for the

study of opioid epidemic; the proposed frameworks are also extendable to the

surveillance analysis through social media for other drugs of interests.

• We propose novel feature representation and user relatedness characterization to

describe Twitter users. Based on different kinds of relationships (i.e., user-user,

user-tweet, tweet-tweet, tweet-topic relations) through different types of entities

(i.e., user, tweet, topic), the users will be represented by a HIN, and the meta-

path/meta-structure based approach will be used to characterize the relatedness

between users. To utilize both content- and relation-based information, we inte-

grate similarity of users’ posted tweets and relatedness depicted by each meta-

path/meta-structure to formulate a similarity measure over users. The proposed
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solution provides a more convenient way to express the complex relationships in

social network than traditional approaches.

• We present a a transductive classification model in HIN for opioid user detec-

tion. Inductive classification has been applied in HIN to predict the unlabeled

entities. However, it usually requires large number of labeled data to achieve bet-

ter accuracy. In other words, when training data decreases, its detection accuracy

may greatly compromise. In our application, obtaining the labeled data (either

opioid users or non-opioid users) from Twitter is both time-consuming and cost-

expensive. To overcome this challenge, we present a transductive classification

model in HIN to reduce the cost of acquiring labeled samples for opioid user de-

tection.

• We present a multi-kernel learner to aggregate different similarities defined by

different meta-structures combined with content-based information. This is a very

natural way to aggregate different similarities formulated by meta-structures but

to our best knowledge is a first attempt.

• We develop two practical systems AutoDOU and AutoOPU integrated with the

proposed method for automatic opioid user detection, based on a large-scale data

collection from Twitter and manually constructed ground-truth labels. Compre-

hensive experimental studies are conducted to validate the effectiveness of our

developed systems in comparisons with traditional machine learning approaches.

1.4 Organization of the Thesis

The remainder of this paper is organized as follows. Chapter 2 discusses the related

work. Chapter 3 presents our proposed method in detail. Chapter 4 introduces our

system architecture. In Chapter 5, based on the real sample collections and annota-

tions from Twitter, we systematically evaluate the performance of our methods. Finally,

Chapter 6 concludes.
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Chapter 2

Related Work

In recent years, the role of social media in biomedical knowledge mining, such as in-

teractive healthcare and drug pharmacology, has become increasingly important. For

example, based on users’ posted tweets, a machine learning-based concept extraction

system ADRMine was introduced for adverse drug reactions (ADRs) analysis [17]; Sup-

port Vector Machine (SVM) classifiers based on the content of twitter messages were

built to find drug users as well as the potential adverse events [18]. Unfortunately, the

application of social media data analytics into drug-addiction domain has been scarce

in the literature with few exceptions: Cameron et al. [19] developed a novel semantic

web platform called PREDOSE (Prescription Drug Abuse Online Surveillance and Epi-

demiology) to facilitate the epidemiologic study of prescription and related drug abuse

practices using social media; Sarker et al. [20] designed an automatic supervised clas-

sification technique to distinguish posts containing signals of medication abuse. How-

ever, most of these studies merely used content-based features (e.g., posted tweets or

messages) for their applications. Actually, the relations among users and the generated

contents are also very important for target user detection. Different from the exist-

ing works in drug-addition domain, in this paper, we propose to not only utilize users’

posted tweets but also the relationships among users and tweets (i.e., user-user, user-

tweet, tweet-tweet, tweet-topic relations) for opioid user detection from Twitter. Based

on the extracted features, the users are represented by a structured heterogeneous infor-

mation network (HIN), meta-path and meta-structure based approaches are used to link

the users.
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Heterogeneous information network (HIN) has been intensively studied in recent

years. Typically, HIN is used to model different types of entities and relations [11]. It

has been applied to various applications, such as scientific publication network analysis

[21, 10] and document analysis based on knowledge graph [22]. Different from tradi-

tional graph similarities, such as shortest path, the similarity defined on HIN, i.e., Path-

Sim [10], is more likely a natural extension to dot product. Different from the simple dot

product, the similarity defined over HIN considers the semantics of the network meta-

data. In our work, to measure the similarities over users, we develop a similarity based

on multiple meta-paths using an unsupervised meta-path weighting mechanism [22].

To solve the classification problem in HIN, compared with inductive methods [23, 24],

transductive classification [25, 26, 27, 14] was proposed to reduce the cost of acquir-

ing labeled samples in supervised learning. However, it has yet applied in biomedical

knowledge mining. In this paper, we explore how to construct an effective transduc-

tive classification model in HIN for opioid user detection from Twitter. To address the

problem that simple path structure (i.e., meta-path) fails to capture a more complex rela-

tionship between two entities., Huang et al. [15] proposed to use meta-structure, which

is a directed acyclic graph of entity and relation types to measure the proximity be-

tween two entities. However, their work only considered one particular meta-structure

to capture the relatedness over entities. Different from their works, we consider different

meta-structures which characterize the relatedness over users at different views, and fur-

ther propose a multi-kernel learning method to aggregate different similarities based on

different meta-structures, which is a the first attempt in biomedical knowledge mining.
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Chapter 3

Proposed Method

In this section, we introduce the detailed approaches of how we represent Twitter users,

and how we solve the problem of opioid user detection based on this representation.

3.1 Heterogeneous Information Network Construction

As the above discussion, to detect opioid users from Twitter, we not only utilized users’

posted tweets but also the rich semantic relationships among the users and posted tweets.

To characterize the relatedness of two users, we consider various kinds of relationships

which include the followings.

• R1: To describe the relation of a user and his/her posted tweet, we generate the

user-post-tweet matrix P where each element pi,j ∈ {0, 1} denotes if user i posts

tweet j.

• R2: To denote the relation that a user likes a tweet, we generate the user-like-tweet
matrix L where each element li,j ∈ {0, 1} means if user i likes tweet j.

• R3: If two users follow each other (i.e., called tweeps), it could imply that they

might be friends or have similar interests. To represent such user-user relation-

ship, we generate the user-follow-user matrix F where each element fi,j ∈ {0, 1}
denotes if user i and user j follow each other.

• R4: Like in the physical world, users can talk publicly to another in Twitter: if a

tweet includes the symbol of @ followed by a user name, it means that the user
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is mentioned and talked publicly in this tweet. To describe this type of tweet-

user relationship, we build the tweet-mention-user matrix A where each element

ai,j ∈ {0, 1} indicates if tweet i mentions user j.

• R5: A tweet can be a repost of another tweet. To represent such relationship

between two tweets, we build the tweet-RT-tweet matrix X where element xi,j ∈
{0, 1} denotes if tweet i or tweet j is a repost of the other.

• R6: To represent the relation that a tweet contains a specific topic, we generate the

tweet-contain-topic matrix C where each element ci,j ∈ {0, 1} indicates if tweet

i contains topic j. In our application, we use Latent Dirichlet allocation [28] for

the topic extraction from the posted tweets.

In order to depict users, tweets, topics and the rich relationships among them, it is

important to model them in a proper way so that different kinds of relations can be better

and easier handled. We introduce how to use HIN, which is capable to be composed

of different types of entities and relations, to represent the users by using the features

described above. We first present some concepts related to HIN.

Definition 1. Heterogeneous information network (HIN) [29]. A HIN is defined as a

graph G = (V , E) with an entity type mapping φ: V → A and a relation type mapping

ψ: E → R, where V denotes the entity set and E is the relation set, A denotes the entity

type set and R is the relation type set, and the number of entity types |A| > 1 or the

number of relation types |R| > 1.

Figure 3.1: Network schema.

Definition 2. Network schema [10]. The network schema for a HIN G, denoted as

TG = (A,R), is a graph with nodes as entity types from A and edges as relation types

fromR.
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HIN not only provides the network structure of data associations, but also a high-

level abstraction of the categorical association. Based on the definitions above, the

network schema for HIN in our application is shown in Figure 3.1.

3.2 Meta-path and Meta-structure Based Similarities

The different types of entities and different relations between them motivate us to use

a machine-readable representation to enrich the semantics of similarities among users.

Meta-path [10] is used in the concept of HIN to formulate the semantics of higher-order

relationships among entities. Here we follow this concept and extend it for the detection

of opioid users.

Definition 3. Meta-path [10] . A meta-path P is a path defined on the graph of network

schema TG = (A,R), and is denoted in the form of A1
R1−→ A2

R2−→ ...
Rl−→ AL+1, which

defines a composite relation R = R1 ·R2 · . . . ·RL between types A1 and AL+1, where ·
denotes relation composition operator, and L is the length of P .

Figure 3.2: Meta-paths and meta-structures.

In our case, based on the HIN schema displayed in Figure 3.1, we generate eight

meaningful meta-paths to characterize the relatedness over users (i.e., PID1–PID8 shown

9



in Figure 3.2: left). For example, PID1 depicts that two users are related if they have

posted tweets discussed same topics; while PID2 denotes that two users are related by

their posted tweets mentioning same users. To compute entity similarities using a par-

ticular meta-path, we use the following commuting matrix [10] to give a general form.

Definition 4. Commuting matrix [10]. Given a network G = (V , E) and its network

schema TG , a commuting matrix MP for a meta-path P = (A1A2...AL+1) is defined as

MP = GA1A2GA2A3 ...GAlAL+1
, where GAiAj

is the adjacency matrix between types Ai
and Aj . MP(i, j) represents the number of path instances between entity xi ∈ A1 and

entity yi ∈ AL+1 under meta-path P .

For the former example, the adjacently matrix between users and tweets is Guser,tweet.

Then the commuting matrix of users computed using the meta-path user
post−−→ tweet

contain−−−−→
topic

contain−1

−−−−−→ tweet
post−1

−−−→ user, which is PCCTPT whose element denotes the

number of tweets pairs posted by this pair of users that discuss the same topics. Given

a network schema with different types of entities and relations, we can enumerate a lot

of meta-paths. In our works, based on the collected data, resting on the six different

kinds of relationships, we construct eight meaningful meta-paths as listed in Table 3.1

for similarity measures over users.

Table 3.1: The description of each meta-path.

PID Matrix M Description of each element mij in M

1 PCCTPT # of tweet pairs posted by user i and j that contain same topics
2 PAATPT # of tweet pairs posted by user i and j that mention same people
3 PXXTPT # of tweet pairs posted by user i and j that contain repost same tweets
4 LCCTLT # of tweet pairs liked by user i and j that contain same topics
5 LAATLT # of tweet pairs liked by user i and j that mention same people
6 LXXTLT # of tweet pairs liked by user i and j that repost same tweets
7 FLLTFT # of tweep pairs of user i and j who like same tweets
8 FATAFT # of tweep pairs of user i and j who are mentioned in same tweets

Although meta-path has been shown to be useful for relatedness measure between

users [10, 14], it fails to capture a more complex relationship, e.g., two users have posted

tweets discussed the same topic and have also talked publicly to (i.e., mentioned) the

same person. This calls for a better characterization to handle such complex relationship.

Meta-structure [15] is proposed to use a directed acyclic graph of entity and relation
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types to capture more complex relationship between two HIN entities. The concept of

meta-structure is given as following [15]:

Definition 5. Meta-structure [15]. A meta-structure S is a directed acyclic graph with

a single source node ns and a single target node nt, defined on a HIN schema TG =

(A,R). Formally, S = (N,M, ns, nt), where N is a set of nodes and M is a set of edges.

For any node x ∈ N, x ∈ A; for any link (x, y) ∈M, (x, y) ∈ R.

Table 3.2: The description of each meta-structure.

SID Commuting matrix M Description of each element mij in M

1 P[(CCT ) ◦ (AAT )]PT # of tweet pairs posted by user i and j that contain
same topics and mention same people

2 P[(CCT ) ◦ (XXT )]PT # of tweet pairs posted by user i and j that contain
same topics and repost same tweets

3 L[(CCT ) ◦ (AAT )]LT # of tweet pairs liked by user i and j that contain same
topics and mention same people

4 L[(CCT ) ◦ (XXT )]LT # of tweet pairs liked by user i and j that contain same
topics and repost same tweets

5 F[(LLT ) ◦ (ATA)]FT # of tweep pairs of user i and j who like same tweets
and are mentioned in same tweets

Based on the HIN schema displayed in Figure 3.1, we generate five meaningful

meta-structures to characterize the relatedness over users (i.e., SID1–SID5 shown in

Figure 3.2: right). For example, SID1 depicts that two users are related if they have

posted tweets discussed same topics and have also talked publicly to (i.e., mentioned)

same people; while SID4 describes that two users are connected if the tweets they like

have discussed same topics and have also reposted same tweets from other people. Actu-

ally, a meta-path is a special case of a meta-structure (e.g., PID1 and PID2 are particular

cases of SID1). In Figure 3.2, the meta-paths of PID1–PID8 (left) are the special cases

of the constructed meta-structures SID1–SID5 (right). But meta-structure is capable to

express more complex relationship in a convenient way.

To measure the relatedness over users using a particular meta-structure designed

above, we use commuting matrix to compute the counting-based similarity matrix for a

meta-structure. Take SID1 as an example, the commuting matrix of users computed us-

ing SID1 is P[(CCT )◦(AAT )]PT , where P, C, A are the adjacency matrices between two

11



corresponding entity types, ◦ denotes the Hadamard product of two matrices. Whose el-

ement MS1(i, j) denotes the number of tweet pairs posted by user i and user j which

contain same topics and also mention same people. Table 3.2 shows the commuting

matrix of each meta-structure and the description of its element.

After characterizing the relatedness of users, we utilize both content- and relation-

based information to measure the similarity over users: we integrate similarity of users’

posted tweets and relatedness depicted by meta-path or meta-structure to form a similar-

ity measure matrix over users. The similarity matrix over users is denoted as Q, whose

element is the combination of content-based similarity and relation based similarity. We

define similarity matrix Q based on MPk
or MSk as:

QPk
(i, j) = [1 + log(MPk

(i, j) + 1)]× tSim(i, j), (3.1)

QSk(i, j) = [1 + log(MSk(i, j) + 1)]× tSim(i, j), (3.2)

where MPk
(i, j) is the relatedness between user i and j under meta-path Pk, MSk(i, j) is

the relatedness between user i and j under meta-structure Sk, tSim(i, j) is the similarity

between two users’ posted tweets. A user may post multiple tweets including opioid-

related keywords. Thus, for each user, we convert his/her posted tweet(s) into a bag-of-

words feature vector and use cosine similarity measure [30] to estimate the closeness of

two users’ posted content. A

3.3 Transductive Classification Built on Meta-path Based

Similarities

Different meta-paths measure the similarities between two users at different views. In-

stead of using a single meta-path for similarity measure over two users, we propose

to combine different meta-paths and weight each of them for user classification (i.e.,

whether he/she is an opioid user). Suppose there are K meta-paths Pk with their cor-

responding commuting matrices MPk
, k = 1, 2, ..., K, we use Eq.(3.1) to compute the

similarity matrix QPk
(k = 1, 2, ..., K) based on MPk

. Following [22], after the nor-

malization of each similarity matrix, we combine different meta-paths to form a new
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similarity measure:

Q′(i, j) =
2×

∑K
k=1wkQPk

(i, j)∑K
k=1wkQPk

(i, i) +
∑K

k=1wkQPk
(j, j)

, (3.3)

where w = [w1, w2, ..., wK ] is the weighted vector of the meta-paths. In our works, we

use Laplacian score [12] to learn the weight of each meta-path, since it can be computed

to reflect the locality preserving power of each feature.

Compared with inductive classification methods [23, 24] which only use objects with

known labels for training, transductive classification models [13, 31] can also utilize the

relatedness between objects to propagate labels and thus reduce the cost of acquiring la-

beled data for training. In recent years, transductive classification algorithms have been

devised in HIN [26] for the applications such as classifying the bibliographic data into

research communities [25]. In our case, since it is time-consuming and cost-expensive

to obtain the labeled data (either opioid users or non-opioid users) from Twitter, we

propose to use transductive classification in HIN for opioid user detection. We first

introduce the concept of transductive classification in HIN as follow.

Definition 6. Transductive classification in HIN [25]. Given an HIN G = (V , E) with

m types of entities V =
⋃m
i=1 Vi, where Vi ∈ Ai (i = 1, ...,m). Suppose V ′ is a subset of

V which is with class labels of C = {C1, ..., Cc}, where c is the number of classes. The

classification task is to predict the labels for all the unlabeled entities V − V ′.

In transductive classification model, there are two assumptions of consistency: As-

sumption (1) – entities with tight relationship tend to have a high possibility being in the

same class; and Assumption (2) – the classification results should consist with the prela-

beled information. Following these two assumptions, learning with local and global

consistency algorithm (LLGC) in homogeneous information network was proposed in

[13] for classification. In our application, we further extend the LLGC framework to

classify the entities in heterogeneous information network for opioid user detection,

whose cost function can be denoted as follow:

Q(F) =
1

2
(

n∑
i,j=0

Q′(i,j) ‖
Fi√
Dii

− Fj√
Djj

‖2 +µ
n∑
i=1

‖ Fi − Yi ‖2), (3.4)

where n is the number of entities (i.e., Twitter users) in HIN, M′ is the similarity matrix
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combing different meta-paths, F is a n ∗ c (c is the number of classes) matrix whose ele-

ment F (i, j) represents the possibility of user i belonging to class j, Y is also a n∗ c ma-

trix containing the prelabeled information, D is a diagonal matrix whose (i, i)-element

is equal to the sum of the i-th row of Q′, and µ > 0 is the regularization parameter. The

first term of the right-hand side in Eq.(3.4) is called smoothness constraint satisfying

Assumption (1), which means a good classifying function should not change too much

between nearby points; the second term is fitting constraint following Assumption (2),

which indicates a good classifying function should not change too much from the initial

label assignment. The parameter µ captures the trade-off between these two competing

constraints. Note that the fitting constraint contains both labeled and unlabeled data. In

our application, to initialize the matrix Y [32], a classier is trained (i.e., SVM) resting

on the content-based features (i.e., tweets posted by labeled users) to assign an initial

label for each unlabeled entity (i.e., user) in HIN.

Based on Eq.(3.4), the classifying function can be defined as

F∗ = argminQ(F). (3.5)

To obtain the optimal F, we differentiate Q(F) with respect to F and then have

∂Q

∂F
= F∗ − SF∗ + µ(F∗ − Y), (3.6)

where S = D−1/2M′D−1/2. Eq.(3.6) can be further transformed into [13]

F∗ = β(I− αS)−1Y, (3.7)

where α =
1

1 + µ
, β =

µ

1 + µ
.

3.4 Multi-kernel Learning Built on Meta-structure Based

Similarities

Different meta-structures capture the relatedness over users at different views, i.e., SID1–

SID5. Since HIN can naturally provide us different relatedness with different semantics,

instead of using a single meta-structure to depict the relatedness between users, we
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propose to use a multi-kernel learning algorithm to automatically incorporate different

similarities based on different meta-structures and weight each of them for user classifi-

cation.

Supposed that there are K meta-structures Sk (k = 1, 2, ..., K), we can calculate

their corresponding commuting matrices MSk (k = 1, 2, ..., K). Then, we use Eq.(3.2)

to compute the similarity matrix QSk (k = 1, 2, ..., K) based on MSk . We treat each

similarity matrix QSk as a kernel in multi-kernel learning model. If the matrix QSk is

not a kernel (not a positive semi-definite matrix), we simply use the trick to remove

the negative eigenvalues. A new kernel is formed using the linear combination of the

computed kernels, which can be defined as [16, 33]:

Q′ =
K∑
k=1

γkQSk , (3.8)

where the weights γk ≥ 0 and satisfy
∑K

k=1 γk = 1.

To learn the weight of each kernel, we assume we have a set of labeled data {xi, yi}Ni=1,

where xi is the i-th user, yi ∈ {+1,−1} is the corresponding label (+1 denotes opioid

user while -1 means non-opioid user). Then we use the p-norm multi-kernel learning

framework [16] with following objective function for parameter learning:

min
w>0,ξi,γi≥0

1

2

∑
k

‖wk‖2/γk + C
∑
i

ξi +
λ

2
(
∑
k

γpk)
2
p ,

s.t. yi(
∑
k

wT
kϕk(xi) + b) ≥ 1− ξi, (3.9)

where wk is a weight vector associated with each kernel. For each data {xi, yi}, the

slack parameter ξi is introduced to allow mis-classification. ϕk(xi) is a nonlinear map-

ping function of features in the Hilbert space that defines the kernel, where QSk(i, j) =

ϕk(xi)
Tϕk(xi). Then by applying the representation theorem, we have wk =

∑
i αiϕk(xi).

αi can be solved using the dual formulation, and non-zero αi’s lead to the support vec-

tors. For another set of parameters γk, the p-norm (
∑

k γ
p
k)

2
p is used for regularization.

Empirically, 2-norm performs best in our application and is thus applied to our problem

throughout the paper. After the optimization, the weights γk’s are obtained to reveal the
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importance of different similarities based on different meta-structures. For a user x,

∑
k

wkϕk(x) + b, (3.10)

is used to predict whether he/she is an opioid user. The opioid user detection procedure

is given in Algorithm 1.

Algorithm 1 Automatic Opioid User Detection Algorithm
Input: Training dataset Tr, testing dataset Te
Output: Labels of users in Te

1: Generate matrix P, L, F, A, X and C for Tr;
2: Define meta-structure set SS = {S1,S2, ...,S5} based on the six matrices above;
3: for each meta-structure Sk (k = 1, 2, ..., 5) in SS do
4: Compute MSk based on Definition 5;
5: Compute QSk using Eq.(3.1);
6: end for
7: Let each QSk be a kernel in the multi-kernel learning model, and compute the weight

vector wk for each kernel by optimizing Eq.(3.9);
8: for each user x in Te do
9: Predict its label using Eq.(3.10);

10: end for
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Chapter 4

System Architecture

Figure 4.1 shows the system architecture of our proposed framework including two sys-

tems AutoDOA and AutoOPU for automatic opioid user detection from Twitter, which

consists of the following major components.

Figure 4.1: System architecture of our proposed framework.

1. Data Collector and Preprocessor. We first develop the web crawling tools to col-

lect the tweets including opioid-related keywords (e.g. heroin, morphine, street

names or slangs like black tar) as well as users’ profiles from Twitter. To protect

the users’ privacy, we use UserID to represent each individual user whose infor-

mation is kept anonymous. For the collected tweets, the preprocessor will further

remove all the links, punctuation and stopwords, and conduct lemmatization using

Stanford CoreNLP [34].

2. Feature Extractor and HIN Constructor. A bag-of-words [35] feature vector

will be extracted to represent each user’s posted tweet(s). Besides, the relation-
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ships among users, tweets and topics will be further analyzed, such as, i) user-

follow-user, ii) user-like-tweet, iii) tweet-mention-user, iv) tweet-RT-tweet, and

v) tweet-contain-topic. Based on the extracted features, a structural HIN is then

constructed to represent users. (See Section 3.1 for details.)

3. System-1: AutoDOA. The AutoDOA consists of two major sub-components, meta-

path builder and transductive classifier.

• Meta-path Builder. In this module, different meta-paths associated with

their corresponding commuting matrices are generated from HIN to measure

the similarities between users. Laplacian scores are further computed to

weight the importance of different meta-paths. Given the weighted meta-

paths, the different commuting matrices is combined to formulate a more

powerful similarity measure over users. (See Section 3.2 for details.)

• Transductive Classifier. To reduce the cost of acquiring labeled samples for

supervised learning, a transductive classification model in HIN is built to

automatically detect the opioid users. (See Section 3.3 for details.)

4. System-2: AutoOPU. Different from AutoDOA, the AutoOPU is composed of

meta-structure builder and multi-kernel Learner.

• Meta-structure Builder. In this module, different meta-structures are first

built from HIN to capture the relatedness between users. Then, we integrate

similarity of users’ posted tweets and relatedness depicted by each meta-

structure to formulate a set of similarity measures over users. (See Section

3.2 for details.)

• Multi-kernel Learner. Given the similarity matrices over users defined by

different meta-structures combined with content-based information constructed

by the previous component, a multi-kernel learner which treats each matrix

as a kernel, is used to weight the importance of each similarity. Then, a more

powerful kernel is generated through the aggregation of these similarities for

automatic opioid user detection. (See Section 3.4 for details.)

5. Opioid User Detector. For each unlabeled user, his/her posted tweets and the

above-mentioned relationships will be extracted; using the constructed classifica-

tion model, the user will then be labeled as either opioid user or not.
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Chapter 5

Experimental Results And Analysis

In this section, we show three sets of experimental studies using real sample collections

from Twitter to fully evaluate the performance of our developed system AutoDOA and

AutoOPU for automatic detection of opioid users: (1) in the first set of experiments,

we evaluate the effectiveness of meta-path and meta-structure based similarities; (2) in

the second set of experiments, we evaluate the proposed methods by comparisons with

traditional classification methods; and (3) in the third set of experiments, we evaluate

the scalability and stability of our developed systems for opioid user detection. Table

5.1 shows the measures for evaluation of different methods.

Table 5.1: Performance indices of opioid user detection.

Indices Description

TP # correctly classified as opioid users
TN # correctly classified as non-opioid users
FP # mistakenly classified as opioid users
FN # mistakenly classified as non-opioid users

Precision TP/(TP + FP )
Recall TP/(TP + FN)
ACC (TP + TN)/(TP + TN + FP + FN)
F1 2 ∗ Precision ∗Recall/(Precision+Recall)
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5.1 Data Collection and Annotation

To obtain the data from Twitter, we develop web crawling tools to collect the tweets

including keywords of opioids (e.g., heroin, morphine) and the common street or slang

names (e.g., black tar, RMS, subutex), as well as users’ profiles in a period of time. By

the date, we have collected over 4,447,507 opioid-related tweets from nearly 4,051,423
users through March 2007 to January 2017.

As heroin addiction occupies the majority of today’s opioid addiction, in this paper,

we first study the heroin-related tweets and their related users. To obtain the prelabeled

data for training, based on the collected data (including the posted tweets, users’ pro-

files and their social relations, etc.), five groups of annotators (i.e., 18 persons) with

knowledge from domain professional (i.e., psychiatrist) spent three months to label
whether they are opioid users or not by cross-validations. The mutual agreement is

above 95%, and only the ones with agreements are retained. The annotated dataset (de-

noted as DBa) consists of 2,510 users (1,208 are labeled as opioid users and 1,302 are

non-opioid users) related to 20,780 tweets (11,139 are posted by opioid users and 9,641

are posted by non-opioid users) .

5.2 Evaluation of Meta-path and Meta-structure Based

Similarities

In this set of experiments, based on the annotated dataset DBa and the HIN schema

(described in Section 3.1), we fully evaluate the effectiveness of meta-path and meta-

structure based similarities in opioid user detection. In the set of experiments, we ran-

domly select 90% of the data for training, while the remaining 10% is used for testing.

We first construct eight meta-paths (i.e., PID1–PID8 shown in Figure 3.2: left) and

five meta-structures (i.e., SID1–SID5 shown in Figure 3.2: right). To measure the simi-

larities over users, as described in Section 3.2, we integrate similarities of users’ posted

tweets and relatedness depicted by each meta-path or meta-structure to form a similarity

measure matrix. We evaluate their performances for opioid user detection using Support

Vector Machine (SVM). For each meta-path or meta-structure, the generated similarity

measure matrix is used as the kernel fed to SVM. For SVM, we use LibSVM in our

experiments and the penalty is empirically set to be 10.
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Table 5.2: Evaluation of meta-path and meta-structure based similarities.

ID Kernel Commuting Matrix ACC F1

PID1 QP1 PCCTPT 0.806 0.792
PID2 QP2 PAATPT 0.773 0.768
PID3 QP3 PXXTPT 0.755 0.754
PID4 QP4 LCCTLT 0.800 0.788
PID5 QP5 LAATLT 0.753 0.752
PID6 QP6 LXXTLT 0.774 0.770
PID7 QP7 FLLTFT 0.777 0.768
PID8 QP8 FATAFT 0.782 0.778

ID9 Combined-kernel (8) / 0.836 0.827

SID1 QS1 P[(CCT ) ◦ (AAT )]PT 0.843 0.837
SID2 QS2 P[(CCT ) ◦ (XXT )]PT 0.832 0.823
SID3 QS3 L[(CCT ) ◦ (AAT )]LT 0.837 0.829
SID4 QS4 L[(CCT ) ◦ (XXT )]LT 0.854 0.848
SID5 QS5 F[(LLT ) ◦ (ATA)]FT 0.820 0.812

ID15 Combined-kernel (5) / 0.862 0.856

The results in Table 5.2 show that each meta-structure does perform better than its

corresponding meta-paths. For example, meta-paths of PID1 and PID2 are special cases

of meta-structure SID1; but SID1 works better than PID1 and PID2 in the problem of

opioid user detection. The reason behind this is that meta-structure is more expressive

to characterize a complex relatedness over users than meta-path. This also demonstrates

that we can use meta-structure with subtle differences to significantly improve the qual-

ity of relation-based features and better express different relatedness over users in our

application.

We also evaluate the combined similarity [22] of all the constructed meta-paths

(i.e., PID1–PID8) and meta-structures (i.e., SID1–SID5) using Laplacian scores as their

weights [12] to form two new kernel (i.e., ID9 and ID14) fed to SVM. From the re-

sults shown in Table 5.2, we can observe that Laplacian score indeed helps us select

some important similarities, and the “Combined-kernel (8)” and “Combined-kernel (5)”

for test set are with 83.6% and 86.2% detection accuracy which works better than their

related single similarity. This shows that combining different similarities depicted by

different meta-paths or meta-structures using Laplacian score can further improve the

21



performance, since it not only utilizes content-based features but also diverse relation-

based features which include rich semantic information in opioid user detection.

5.3 Comparisons with Traditional Machine Learning

Methods
In this section, based on the dataset DBa, we randomly select a portion of the labeled

data (range from 90% to 50%) to simulate the experiments. We compare our developed

systems AutoDOA and AutoOPU with three typical classifiers i.e., Naive Bayes (NB),

Decision Tree (DT) and Support Vector Machine (SVM). For comparisons, we combine

content-based information (i.e., user’s posted tweet(s) represented by a bag-of-words

vector) and all HIN-related relations (i.e., R1–R6 in Section 3.1) as features for different

classification methods to learn.

Table 5.3: Comparisons with traditional machine learning methods

With different sizes of training samples
90% 80% 70% 60% 50%

NB
ACC 0.7245 0.6963 0.6687 0.6448 0.6115
F1 0.7103 0.6884 0.6636 0.6319 0.6068

DT
ACC 0.7569 0.7245 0.7060 0.6674 0.6387
F1 0.7206 0.7013 0.6740 0.6478 0.6118

SVM
ACC 0.8336 0.8167 0.7752 0.7426 0.7021
F1 0.8215 0.8002 0.7536 0.7241 0.6956

AutoDOA
ACC 0.8578 0.8454 0.8297 0.8087 0.8016
F1 0.8448 0.8369 0.8242 0.8015 0.7967

AutoOPU
ACC 0.8816 0.8586 0.8299 0.7971 0.7687
F1 0.8776 0.8513 0.8240 0.7943 0.7619

The experimental results are illustrated in Table 5.3. From Table 5.3, we can see

when training data decreases (from 90% to 50%), AutoDOA using transductive classi-

fication model over HIN and combined meta-path based similarities works better than

other methods in automatic opioid user detection, since the detection performances of

AutoDOA (based on transductive classification model) don’t change too much (i.e., both

ACC and F1 drop less than 5%); while the detection performances of AutoOPU, NB,

DT and SVM (based on inductive classification model) were greatly compromised as
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training samples decrease (i.e., both ACC and F1 drop more than 10%). This is because

that AutoDOA not only uses the information from training data for prediction but also

utilizes the relatedness among training samples and testing objects to propagate labels.

However, when there are a larger proportion of training data (i.e., 90% or 80%), Au-

toOPU significantly outperforms other methods including AutoDOA and three baseline

methods in automatic opioid user detection. The reason behind this is that, in AutoOPU,

we use multi-kernel leaning model built on HIN and combine different meta-structure

based similarities which have more expressive representation for the data, and build the

connection between the higher-level semantics of the data and the final results.

5.4 Scalability and Stability Evaluations
Based on the dataset DBa, we systematically evaluate the performance of our developed

systems AutoDOA and AutoOPU, including the detection scalability and stability.

We first evaluate the training time of AutoDOA and AutoOPU with different sizes

of the training data sets. Figure 5.1 shows the scalability of our proposed methods.

It is illustrated that the running time is quadratic to the number of training samples.

When dealing with more data, approximation or parallel algorithms should be devel-

oped. However, as shown in Figure 5.2, for such automatic opioid user detection prob-

lem, the need of more labels is not as important as the need of more expressive rep-

resentations of data. The reason behind this is our methods using HIN representation,

meta-path and meta-structure based approaches for relatedness measure over users well

describes the rich semantic relationships. Therefore, for practical use, our approaches

are feasible for real application in automatic opioid user detection.

Figure 5.1: Scalability evaluation. Figure 5.2: Stability evaluation.
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5.5 Case Studies

In this section, after the automatic detection of opioid users from Twitter using our pro-

posed framework, to better understand opioid addiction epidemic and public perceptions

toward Medication-Assisted Treatment (MAT), we further analyze the data and conduct

some case studies based on the detected opioid users.

Figure 5.3: Distribution of heroin users on Twitter.

• Case study 1: epidemic surveillance of opioid abuse and addiction in the
U.S. To better understand the distribution and opioid addiction epidemic, a se-

ries of spatio-temporal statistics such as geo-location distribution analysis asso-

ciated with different timelines are performed based on our detected opioid users.

By making use of the profile data of Tweeter users which indicates their related

geo-locations, Figure 5.3 shows the distribution of the detected opioid users (i.e.,

1,132 newly detected heroin users) in different states of the U.S. from Feb. 2016

to Feb. 2017 (the darker color the more severe epidemic the state has). Simi-

lar to the statistics of heroin-related overdose from Centers for Disease Control

and Prevention [36]: Ohio, New York, Illinois, West Virginia and Maryland have

larger numbers of heroin users than the others in the U.S. Though in some rural

areas Twitter is not the primary platform for social communication and may have
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its biases, this case study still clearly reflects the actual status of opioid addiction

epidemic in the U.S., which demonstrates that using social media for epidemic

surveillance of opioid abuse and addiction is practical and feasible.

• Case study 2: deep understanding of public perceptions toward MAT. To

further assess the public perceptions and stigmas of MAT, we randomly sample

30% of our detected opioid users (i.e. 356 heroin users) to further analyze and

categorize their posted tweets. Table 5.4 shows different categories of the posted

tweets as well as two cases of public perceptions toward MAT. The study reveals

that (1) some users show appreciations of MAT (e.g., “Methadone is an effective

treatment which needs to be made more available in the U.S.”), while (2) some of

them still have significant stigmas toward MAT who mistakenly think of MAT as

“one drug replaced by another”. It also shows that there is a remarkable treatment

gap suggesting the majority of people who need behavioral health treatment but

have not received it due to various reasons (e.g., public stigma, financial burden).

Table 5.4: Deep understanding of detected heroin users.

Categories of the posted tweets # tweets Percentage

Need heroin 130 36.52%
Shoot heroin 103 28.92%
Love heroin 82 23.03%
Bought heroin 13 3.65%
Reasons of heroin addiction 11 3.09%
Attitude toward heroin addiction 8 2.25%
Perceptions toward MATs 5 1.40%
Consequences of heroin addiction 3 0.84%
Seek for help 1 0.28%

Examples of perceptions toward MAT

1. Appreciation for MAT: “heroin; I think this model of treatment
(methadone) needs to be made available in the US, as it’s the most
effective treatment for opioid.”
2. Stigma toward MAT: “heroin mat is utterly fraudulent but expen-
sive. You can treat all you want, the addicts will go right back to it.”

• Case study 3: identification of the influential users to advertise the best prac-
tice of MAT. To promote the perception of MAT, we believe it is best to first
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locate the group of users with apparent stigmas toward MAT and then use social

network analysis to identify the most likely authoritative users that could influ-

ence the group of interests. In this study, the assumption is further validated. For

the users who post their perceptions of MAT, we further analyze their social net-

works (e.g., their tweeps and people who like/repost/reply their tweets) and find

that they actively interact with their virtual friends on Twitter, which indicates that

they could be the influential users who have the power of authoritative sources in

the linked environment and thus can help promote the perception of MAT. Figure

5.4 shows two examples of potential influential users who can help advertise the

best practice of MAT.

Figure 5.4: Identification of the influential users

The above case studies based on the automatically detected opioid users using our

developed systems demonstrate that knowledge from daily-life social media data mining

could support a better practice of opioid addiction prevention and treatment.
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Chapter 6

Conclusion and Future Work

In this paper, we propose two frameworks called AutoDOA and AutoOPU to automati-

cally detect opioid users from Twitter. In AutoDOA, we first construct a heterogeneous

information network (HIN) to leverage the information of users and tweets as well as the

rich relationships among them, which gives the user a higher-level semantic represen-

tation. Then, Laplacian scores are computed to weight different generated meta-paths

and a combined meta-path is used for similarity measure over users. To reduce the cost

of acquiring labeled samples, a transductive classification model in HIN is then built for

opioid users detection. In AutoOPU, the meta-structure based approach is used to char-

acterize the semantic relatedness over users. Afterwards, we integrate content-based

similarity and the relatedness depicted by each meta-structure to formulate a similarity

measure over users. We then aggregate different similarities using multi-kernel learning

for opioid user detection. The promising experimental results on the real data collections

from Twitter demonstrate that our frameworks outperform other alternate methods. The

case studies also show that knowledge from daily-life social media data mining could

support a better practice of opioid addiction prevention and treatment.

In our future work, we will continue to improve our system to automate analysis

in other social media (e.g., Facebook, Instagram, Reddit, etc) for biomedical knowl-

edge mining. On the other hand, the study such as computational cost and incremental

learning over heterogeneous information networks is still worth exploring.

27



Publications

1. Yujie Fan, Yiming Zhang, Yanfang Ye, Xin Li. “Automatic Opioid User Detec-
tion from Twitter: Transductive Ensemble Built on Different Meta-graph Based
Similarities over Heterogeneous Information Network.” In IJCAI, 2018. (20.5%
acceptance rate)

2. Yujie Fan, Shifu Hou, Yiming Zhang, Yanfang Ye, Melih Abdulhayoglu. “Gotcha
- Sly Malware! Scorpion: A Metagraph2vec Based Malware Detection System”,
In ACM SIGKDD, 2018. (22.5% acceptance rate)

3. Yujie Fan, Yiming Zhang, Yanfang Ye, and Wanhong Zheng. “Social Media for
Opioid Addiction Epidemiology: Automatic Detection of Opioid Addicts from
Twitter and Case Studies.” In CIKM, 2017. ( 20% acceptance rate)

4. Yiming Zhang, Yujie Fan, Yanfang Ye, Xin Li, Erin L. Winstanley “Utilizing
Social Media to Combat Opioid Addiction Epidemic: Automatic Detection of
Opioid Users from Twitter.” In AAAIW, 2017.

5. Yiming Zhang, Yujie Fan, Yanfang Ye, Liang Zhao, Jiabin Wang, Qi Xiong, and
Fudong Shao. “KADetector: Automatic Identification of Key Actors in Online
Hack Forums Based on Structured Heterogeneous Information Network.” In
ICBK, 2018.

6. Yiming Zhang, Yujie Fan, Shifu Hou, Jian Liu, Yanfang Ye, and Thirimachos
Bourlai. “iDetector: Automate Underground Forum Analysis Based on Heteroge-
neous Information Network.” In ASONAM, 2018.

7. Yiming Zhang, Yujie Fan, Yanfang Ye, Xin Li, and Wanhong Zheng. “Detecting
Opioid Users from Twitter and Understanding Their Perceptions Toward MAT.”
In ICDMW, 2017.

8. Liyaning Tang, Yiming Zhang, Fei Dai, Yoojung Yoon, Yangqiu Song. “What
Construction Topics Do They Discuss in Social Media? A Case Study of Weibo
in China.” In Construction Research Congress, 2018.

9. LiYaning Tang, Yiming Zhang, Fei Dai, Yoojung Yoon, Yangqiu Song, and Rad-
hey S. Sharma. “Social Media Data Analytics for the US Construction Industry:
Preliminary Study on Twitter.” In Journal of Management in Engineering, 2017.

10. Liyaning Tang, Yiming Zhang, Fei Dai, Yoojung Yoon, Yangqiu Song. “Senti-
ment Analysis for the Construction Industry: A Case Study of Weibo in China.”
In Computing in Civil Engineering, 2017.

28



Bibliography

[1] MURTHY, V. H. (2016) “Ending the Opioid EpidemicłA Call to Action,” New
England Journal of Medicine, 375(25), pp. 2413–2415.

[2] U.S.DEA (2015) 2015 National Drug Threat Assessment Summary.

[3] SAMHSA (2015) Behavioral Health Trends in the United States:
Results from the 2014 National Survey on Drug Use and Health,
https://www.samhsa.gov/data/sites/default/files/
NSDUH-FRR1-2014/NSDUH-FRR1-2014.pdf.

[4] NIDA (2017) Overdose Death Rates, https://www.drugabuse.gov/
related-topics/trends-statistics/overdose-death-rates.

[5] MCLELLAN, A. T., D. C. LEWIS, C. P. O’BRIEN, and H. D. KLEBER (2000)
“Drug dependence, a chronic medical illness: implications for treatment, insur-
ance, and outcomes evaluation,” Jama, 284(13), pp. 1689–1695.

[6] SALONER, B. and S. KARTHIKEYAN (2015) “Changes in substance abuse treat-
ment use among individuals with opioid use disorders in the United States, 2004-
2013,” The Journal of the American Medical Association, 314(14), pp. 1515–1517.

[7] ALKHATEEB, F. M., K. A. CLAUSON, and D. A. LATIF (2011) “Pharmacist use
of social media,” International Journal of Pharmacy Practice, 19(2), pp. 140–142.

[8] HAWN, C. (2009) “Take two aspirin and tweet me in the morning: how Twitter,
Facebook, and other social media are reshaping health care,” in Health affairs, pp.
361–368.

[9] STATS, I. L. (2013) Twitter Usage Statistics, http://www.
internetlivestats.com/twitter-statistics/.

[10] SUN, Y., J. HAN, X. YAN, P. S. YU, and T. WU (2011) “Pathsim: Meta path-
based top-k similarity search in heterogeneous information networks,” VLDB,
4(11), pp. 992–1003.

[11] SHI, C., Y. LI, J. ZHANG, Y. SUN, and S. Y. PHILIP (2017) “A survey of hetero-
geneous information network analysis,” TKDE, 29(1), pp. 17–37.

29



[12] HE, X., D. CAI, and P. NIYOGI (2006) “Laplacian score for feature selection,” in
NIPS, pp. 507–514.

[13] ZHOU, D., O. BOUSQUET, T. N. LAL, J. WESTON, and B. SCHÖLKOPF (2003)
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