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ABSTRACT 
 

Machine Vision Applications in UAVs for Autonomous Aerial Refueling 
and Runway Detection 

 
Larry W. Rowe II 

 
 This research focuses on the application of Machine Vision (MV) techniques and 

algorithms to the problems of Autonomous Aerial Refueling (AAR) and Runway 

Detection.  In particular, real laboratory based hardware was used in a simulated 

environment to emulate real-life conditions for AAR.  It was shown that the K-Means 

Clustering Algorithm solution to the Marker Detection problem could be executed at a 

frame rate of 30 Hz and it averaged a tracking error of less than one pixel while utilizing 

only 0.16% of the image.  It was also shown that the solution to the Runway Detection 

problem could be executed at a frame rate of 20 Hz which is acceptable for use in an 

UAV performing reconnaissance work.  Data from these tests suggest that both software 

schemes are suitable for applications in moving vehicles and that the accuracy of the 

measurements produced by the schemes make them suitable for UAV applications. 
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Chapter 1 

Introduction 

 
1.1 What is Machine Vision? 

Machine vision (MV) is the application of computer vision for several industry, 

manufacturing, and military purposes.  While computer vision is primarily focused on 

machine-based image processing, MV encompasses and almost always requires digital 

input/output devices, computer networks, and/or software to control other equipment1.  

The term MV dates back to 1954 when Jerome Lemelson used computers to analyze 

digitized images from a video camera2.  This was the beginning of several decades of 

research to develop various theories and computer algorithms to perform certain 

functions on images.  Theoretical advances that form the basis of modern MV are now 

more than 20 years old and one needs only to review the contents of A. Rosenfield and A. 

Kak, Digital Picture Processing, Academic Press, vol. 1-2, 1982 to confirm this 

assertion3.  Thus, a MV system is simply a computer-based system that is capable of 

capturing or grabbing an image and performing some sort of analysis on it.  So, this 

would lead one to believe that the recent history of MV is essentially the adaptation of 

evolving computer technology to the commercialization of image processing for 

automation3. 

 

In the 1970s, mainframe computers were first coupled with image capture devices 

and external display peripherals.  With the advent of the desktop PC in the 1980s, having 

a computer dedicated to MV was no longer so difficult and special purpose hardware 

designed to accelerate image processing was readily available.  During the 1990s, MV 

followed trends set by current computing platforms such as Windows  and Linux .  High 

performance microprocessors were available at a fraction of the previous cost and the 

ability to perform many tasks previously performed by digital signal processors (DSP) 

was now shifted primarily to software and this made special purpose DSP MV hardware 

virtually obsolete. 
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In recent years, MV has evolved into a highly integrated field involving many 

disciplines of engineering such as computer science, optics, mechanical and/or aerospace 

engineering, and automation.  This further enhances the diversity of the applications of 

MV to include a number of engineering topics.  Within these topics, MV is used to help 

solve problems or perform tasks which, otherwise, would be too expensive, unreliable, or 

dangerous for human involvement. 

 

1.2 Problem Definition 

This research effort is divided into two distinct phases.  The first phase deals with 

the detection and tracking of multiple markers or light markers attributed to a tanker 

aircraft in the field of view (FOV) and is referred to as the Marker Detection and 

Tracking phase.  The purpose of this phase of the research effort is to address the Marker 

Detection and Tracking problem, and to develop and evaluate hardware and the 

appropriate software tools and approaches.  This includes the research, acquisition, and 

evaluation of commercial off the shelf (COTS) hardware that can facilitate MV 

laboratory experiments.  The problem further involves the development and evaluation of 

software that can detect light sources or markers on an aircraft using live video and track 

the object as it moves in the FOV.  This phase of this research effort was funded in part 

by Dr. Majid Jaraiedi and the NASA West Virginia Space Grant Consortium. 

 

The second phase of this research effort deals with the detection of a road, 

pipeline, or, in this case, a runway, thus, referred to as the Runway Detection phase.  The 

purpose of developing a MV Runway Detection algorithm was to investigate the 

feasibility of such a solution and determine its real-time applicability to unmanned aerial 

vehicle (UAV) technology.  The goal of this research is to develop software that can 

detect a runway, road, or pipeline in a video stream.  The research effort focused mainly 

on software and on some hardware related issues and items.  Specifically, the research 

performed earlier on laboratory MV hardware was not necessary for this software 

development. 
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1.2.1 Marker Detection and Tracking 

Marker Detection and Tracking is only a small part of a much larger set of 

problems leading to the mutual goal of Autonomous Aerial Refueling (AAR). Initially, 

the Marker Detection and Tracking problem became a topic for discussion, due to the 

need to examine a number light emitting markers attached to an aircraft in various places 

through MV.  This was coupled with needs defined by a current research project focusing 

on AAR at West Virginia University (WVU).  The idea is that if the markers could be 

reliably detected and tracked by an UAV, then the position information of the markers 

could be used to estimate the position of the UAV relative to the tanker aircraft.  This 

problem is known in the technical literature as the pose estimation problem.  This 

information would then be used to drive a control system whose goal would be to guide 

the UAV to the refueling position behind the tanker. 

 

Several methods have been researched for performing guidance for the AAR 

problem.  The first method that was researched was the ‘GPS Only’ method.  This 

method used the global positioning system (GPS) to attempt to guide the UAV into 

refueling position with the tanker.  Several problems arose from this method.  One 

problem was that the accuracy of GPS was not high enough to enable to UAV to dock 

with the tanker.  The second problem was that the tanker would sometimes block the 

UAV’s view of the satellites above, thus causing it to lose even more accuracy by using a 

reduced number of satellites for a position fix.  The second method that was researched 

was the ‘MV Only’ method.  This method used machine vision only to guide the UAV 

into refueling position.  This method did not work well at large distances due to the size 

that the tanker would appear to the UAV’s camera.  The third method that was researched 

was the ‘GPS + MV Sensor Fusion’ method.  This method uses GPS for large distances 

where the MV does not work well.  It then uses a combination of GPS and MV for the 

intermediate distances.  Finally, it uses MV only at close distances to complete the 

docking process.  This is the methodology that has continued to be researched today and 

it has been shown to work very well.  An illustration of the ‘GPS + MV Sensor Fusion’ 

method can be seen on the following page in Figure 1.1. 
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Figure 1.1:  ‘GPS+MV’ Approach with a Single Set of Optical Markers 

 

This problem could be called Marker Detection only, but the goal was not limited 

exclusively to finding these markers.  Finding the markers in the fastest possible manner 

was key to the operation due to the desired real-time applicability.  Tracking the markers 

once they were located was found to be a much faster method for performing this task. 

Therefore, this is where tracking the marker plays an important role.  Originally, the 

markers were found by constantly scanning the current image for them.  It was then 

thought that if the markers could be found by scanning the entire image only three times 

initially, that some inertial information about the movement of the markers could be 

derived and the next position could be estimated.  From this estimated position, the 

search area could be reduced from the entire image area to a small area around the 

estimated position, thus tracking the marker locations and enhancing the speed of 

operation. 

 

As with any problem, there are certain design constraints that should be 

addressed.  For this problem, there are three factors that had to be considered.  First, a 

decision must be made during the design phase to determine if the software should be 
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made real-time capable or to have it executed as an external process on a ground-based 

computer.  The reasoning behind the necessity for this decision is that if the software 

could not be made in a compact enough form to allow its use in an on-board computer 

(OBC) in a UAV, then it could be executed on a ground based computer and the 

input/output information relayed via radio frequency (RF) transmissions.  The second 

decision deals with the issue of the number of markers there are to find. Obviously, if the 

number of markers increase, the computer workload will also increase and the 

computation time will be increased and vice-versa.  The pose estimation algorithm may 

also have constraints with respect to the minimum number of markers required to obtain 

an accurate pose estimate.  Lastly and probably the most important thing to consider is 

the physical constraints that should be in effect to ensure robust operation of the software.  

This depends mostly on the initial conditions of the software and the attitude of the 

aircraft in question when the software is executed and there are certain situations that 

should be avoided which will be discussed in Chapter 4. 

 

Although these decisions present themselves to the designer fairly obviously, 

there are some other things that have to be considered such as what exact mathematical 

approach should be taken to solve this problem.  Up until recent years, a considerable 

amount of research has been directed towards developing methodologies to cut through 

the medium level processing to reach a point where it is sufficient to extract features from 

an image based solely on a thresholding process.  The result of this is that the 

complexities of some cluster detecting algorithms have been reduced, making them more 

attractive.  Despite these efforts, most current cluster detecting algorithms can be 

characterized as a fairly unorganized collection of concepts.  Since researchers have been 

tailoring the algorithms to their specific applications, there has been no consensus on a 

generic cluster-detecting algorithm. 

 

While tailoring algorithms for a specific application is practical and has produced 

many useful problem-solving hints, the lack of a general concept on cluster detection has 

made the interpretation and extension of the algorithms difficult.  As a result of this, most 

cluster detection problems still remain to be done manually and it is more efficient on 
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many levels to perform brute force detection and tracking for each individual purpose as 

it presents itself. 

 

1.2.2 Runway Detection 

The problem of road, pipeline, or, in this case, runway detection is a topic which 

has spurred much interest since heightened security in the United States (US) and around 

the world has been a major concern.  The availability of an UAV that could 

autonomously fly above these critical parts of infrastructure for the purpose of monitoring 

their condition could be very useful to many security agencies such as the U.S. 

Department of Homeland Security and the U.S. Border Patrol.  This type of technology 

could be used in UAVs to allow them to be used to monitor these points of infrastructure 

without spending massive amounts of money required to operate a manned 

reconnaissance type aircraft.  Therefore, this phase of the research effort was inspired by 

the this interest in this subject. 

 

In essence, this is a problem of image segmentation.  The image can be segmented 

into two sections:  that is the runway and everything else.  In order to do this, one must 

look at what features can be extracted from the runway image.  The most striking feature 

of a runway is the straight lines.  Based on this defining feature of runways, line-

detecting algorithms and methods will be researched for use in solving this problem.  The 

aim of this research effort combines an actual hardware setup and a software based 

method with the ability to test algorithms that could reliably detect a runway in a video 

sequence in a near real-time manner.  The trajectory of the straight lines could further be 

used as an input to a guidance system in a UAV to allow it to follow the straight-line 

object of interest.  Based on the desire to use these methods on an UAV, the pre-

processing stage is one area that is examined closely since the pre-processing sequence 

commonly demands more time with a frame than the main processing algorithm does.  In 

an effort to make the computation time and computer workload as small as possible for 

use in an UAV, it is vital to the operation that the pre-processing sequence be as efficient 

as possible.  Therefore, it is important to find the correct sequence of filters to yield the 

smallest processing time, yet, still yield acceptable results. 
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Before a line-detecting algorithm can be decided upon, however, the design 

constraints should once again be addressed.  For this particular problem, the design 

constraints are difficult to narrow down, but two things immediately stand out as 

potential problems in this research.  The first involves the desire to make this algorithm 

perform in real-time or in near real-time fashion.  This fact greatly influences the decision 

of the software environment, the algorithms used, and the complexity of the filtering 

process in order to achieve the goal.  Often, it is not the main algorithm that uses most of 

the processing time; the pre-processing stage might be main bottleneck instead.  The 

second problem is also clear and that is that there may be other things in the image that 

have prominent straight lines.  The immediate things that come to mind are roads, rivers, 

and the horizon.  These are all things that could skew the results while using any 

candidate line-detection algorithm.  Therefore, it seems that equal emphasis should be 

placed on the algorithm, as well as the pre-processing sequence. 

 

The pre-processing sequence must be responsible for filtering out these other 

straight line ‘artifacts’ that are not the runway.  It has to be able to present the line-

detecting algorithm with an image that is free of anomalies and free of artifacts that could 

be mistaken for a runway.  As a result of this, the pre-processing sequence has the most 

important function in the entire scheme in that it must be able to execute in a timely 

fashion and it has to assuredly filter out all unwanted things from the image.  The 

importance of the pre-processing task can be reduced slightly, however, by having a line-

detecting algorithm that is robust to runway imposters.  In order to achieve this, an error 

correcting feedback loop will be needed. 

 

1.3 Research Objectives 

The following research objectives are intended to address the development and 

evaluation of MV hardware, as well as to develop and apply MV algorithms to the 

problems of Marker Detection and Tracking and Runway Detection. 

 

Task #1. Select and integrate a set of MV hardware capable of testing MV 

algorithms in a lab environment. 
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Task #2. Develop and test MV software using the Matlab  programming 

environment, which can detect light sources on a tanker style aircraft.  

This software development shall coincide with ongoing AAR research at 

WVU.  This task involves the development of different approaches to the 

problem of the detection of light sources.  Possible experiments used to 

validate this task include aircraft roll angle measurement and validation, 

repeatability analysis, and timing profiles. 

Task #3. Develop and test MV software using the Matlab  programming 

environment, which can detect and track light sources on a tanker style 

aircraft.  Possible experiments used to validate this task include aircraft 

roll angle measurement and validation, repeatability analysis, and timing 

profiles. 

Task #4. Compare the results of Task #2 and Task #3 in the accuracy of the aircraft 

roll angle measurement, the statistic profiles of the repeatability analysis, 

and the timing profiles. 

Task #5. Develop a MV software scheme using the Simulink  programming 

environment, capable of detecting things such as roads, runways, and 

pipelines.  This software development coincides with current interest 

shown by security agencies in using UAVs to monitor critical parts of 

infrastructure.. 

Task #6. Evaluate MV software scheme in Task #5.  This is accomplished by 

utilizing videos acquired via a hardware platform to be developed that 

facilitates video acquisition from an existing WVU UAV.  Possible 

experiments used to analyze the performance of this scheme include 

comparing calculated attitude parameters to parameter data recorded by an 

OBC on a WVU UAV. 

 

1.4 Overview of Thesis 

This thesis is organized as follows.  Chapter 2 presents work by other researchers 

in the area of image segmentation methods ranging from the most simple to the more 

complex, as well as their application to the aerospace industry. 
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In Chapter 3, the theory behind the pre-processing algorithms and the main 

solution to each problem is presented and discussed.  In particular, the algorithms used to 

find and track the markers and the line-detecting algorithms are covered here. 

 

Chapter 4 is dedicated to the experimental setup of the solution arrived at by this 

research effort.  This includes the description of the pre-processing steps used in each 

problem as well as the description of the implementation of the main algorithms in 

software.  The setup of the hardware required for obtaining results from laboratory 

experiments is also covered here. 

  

Chapter 5 presents the results obtained from laboratory experiments involving 

both the Marker Detection and Tracking algorithm and the Runway Detection scheme.  

These results include comparisons in performance and robustness as well as statistical 

information regarding repeatability of results. 

 

Chapter 6 contains the conclusions drawn from this research on these problems 

and also the recommendations for future work involving the research presented here. 
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Chapter 2 

Literature Review 

 
2.1 General 

MV has traditionally been applied to industrial or manufacturing settings because 

of the size and weight of the equipment required.  But, in the last decade, MV has gained 

a promising outlook as to its feasibility of use in aerospace applications requiring real-

time solutions.  This new outlook for MV is not a realization of new MV techniques or 

theory, but a realization of the advancement of semiconductor technology resulting in the 

ability to manufacture faster, lighter, more efficient machines which can handle the heavy 

loads of MV applications.   

 

In general, the next step for MV technology is of course going to involve smaller, 

faster, and more efficient technology.  This technology will most likely focus on total 

integration of the entire MV system into a single sensor.  This vision sensor would be 

required to be network ready and contain integrated DSP to ensure at minimum, 

performance that matches current MV systems.  It would also require the ease-of-use of 

the current generation of MV systems, but at a lower cost.  Distributed computing 

techniques will most likely be involved, making the vision sensor a self-sufficient 

network resource.  Point-to-point dedicated user interfaces would become obsolete and 

vision sensors would be able to cooperate in peer-to-peer groups; able to perform multi-

camera, multi-angle processes which currently are very bulky to consider.  In the coming 

years, expect to see the clear emergence of the vision sensor paradigm in, what is 

conceivably, the ultimate step in the evolution of conventional MV hardware3.   

 

2.2 Image Segmentation Methods 

Image segmentation has a very broad research base, which varies greatly 

depending on the application.  Applications of MV have been researched in many fields 

including medical, biology, agriculture, and aerospace engineering.  Most of the research 

in image segmentation has been done in the medical field.  With respect to the aerospace 
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field, image segmentation has been used for quite a while but in very specific 

applications with automated rendezvous and docking (AR&D) being the main topic.  In 

the last decade, however, image segmentation has become a more prominent topic in the 

aerospace industry.  With the realization of new technology that enables computers to be 

placed into smaller and lighter packages while maintaining the speed and reliability seen 

in the past, image segmentation and MV in general has been applied to many more things 

than it could have years ago.  This technology has allowed a more complex MV system 

to be incorporated into a lighter and smaller area allowing it to be used in many 

applications where space is at a premium and this is especially true with the major push 

in the field of UAVs that is being seen today.  Since there is more interest in image 

segmentation due to the availability of technology, this has caused the research base to 

evolve to include many more techniques than would have previously been addressed 

when talking about image segmentation. 

 

The main topic, segmentation, can be defined as distinguishing objects from the 

background.  For intensity images, which are those images being represented by point-

wise intensity levels, the four popular approaches are:  pixel-based methods, edge-based 

methods, region-based methods, and connectivity-preserving relaxation methods4.  These 

methods will be described in detail in Section 2.2.1 through Section 2.2.4, respectively. 

 

2.2.1 Pixel Based Methods 

Threshold techniques, which make decisions based on local pixel information, are 

effective when the intensity levels of the objects fall squarely outside the range of levels 

in the background4.  Therefore, any image that contains objects that have a blurred 

boundary with respect to the background, will be difficult to detect with this method.  

This downfall makes this technique difficult to apply reliably by itself, but it is possible 

that it would be much more effective when applied in conjunction with a more advanced 

segmentation method.  Pixel based methods of image segmentation can be further broken 

down into two parts.  The first part mainly deals with a low-level segmentation method 

called thresholding.  The second part deals with a few of the more advanced pixel-based 
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segmentation methods.  Both aspects of pixel-based methods will be fully explored 

below. 

 

Image segmentation performed by thresholding is the simplest form of 

segmentation.  Because of this, there are a wide number of variations on the use of 

thresholding for image segmentation purposes and many of them are only precursors to a 

more advanced segmentation method.  An example of thresholding being used as a 

stepping-stone to a more advanced segmentation technique can be found in recent 

research performed by Deshmukh and Shinde5.  This research investigates the possible 

methods that could be used to perform color-based image segmentation such as region 

growing, neural network based, and fuzzy based techniques.  In each of the methods, 

thresholding is either used as a low-level technique or as the main technique acted on by 

the adaptive nature of neural networks or fuzzy logic.   

 

Clustering falls in the group of more advanced pixel based methods and is defined 

as the process for grouping data points with similar feature vectors together in a single 

cluster6.  A feature vector may consist of the gray values, contrast values, and local 

texture values or measurements for each pixel in the image.  This type of clustering 

frequently produces disjoint regions where there may be holes or disconnections in 

regions that are supposed to be connected.  Therefore, post processing of some type that 

will allow the disjoint regions to reconnect as one region is usually necessary. 

 

There is one main clustering algorithm with two variations used throughout image 

processing.  These three variations are all based on the K-Means Clustering algorithm.  

The use of the K-Means algorithm alone is the most common, accounting for 

approximately 70% of the use in clustering problems.  The other two variations account 

for the other 30% of use and they are the FUZZY C-Means Clustering Algorithm and the 

Adaptive FUZZY C-Means Algorithm.  These two methods are slightly more advanced 

than the stand alone K-Means algorithm due to their adaptive nature.  Most industry use 

of K-Means occurs with the stand-alone algorithm with the two variations currently being 

used only in the high-level research environment.  These two variations are fairly new 
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concepts and as such, they have not been applied to industry in any significant numbers.  

As a result, the focus of the review of clustering methods will be on the stand alone K-

Means Clustering Algorithm. 

 

The major drawback to the K-Means Clustering Algorithm is that a priori 

knowledge of the number of clusters is needed to accurately make the algorithm work.  

Many researchers are addressing these issues by using a hybrid, spectral clustering7,8, 

neural networks5,9, a hybrid of the stand-alone K-Means10, and a hybrid of the Adaptive 

FUZZY C-Means Algorithm5,11,12 mentioned earlier.  A few more places where the K-

Means Clustering Algorithm can be found is in vision systems used by robots13 and in the 

IT sector, where researchers have tried to improve the speed of image search engines by 

clustering similar images14.  These experimental methods are sure to move to the 

forefront of technology when they are perfected enough to be reliable when used in an 

everyday environment. 

 

2.2.2 Edge Based Methods 

Edge-based methods center around contour detection and their weakness is also a 

blurred boundary.  This causes a weakness in their ability to connect together broken 

segments of a single contour line.  This, in turn, will cause the software to detect several 

contours instead of a single one.  Ultimately, this weakness propagates into increased 

computational workload because each contour must now be assessed rather than dealing 

with one big contour line.  Like thresholding, these methods are also likely to be much 

more reliable when used in conjunction with a more advanced segmentation method.  

Edge-based segmentations rely on edges found in an image by edge detecting operators – 

these edges mark image locations of discontinuities in grey level, color, context, and 

etc15.  There are many different edge-detecting operators such as Sobel, Canny and 

Roberts, but the image resulting from the use of these operators cannot be used as a 

segmentation result.  Other processing steps must follow to combine edges into contours 

that correspond better with borders in the image15.  Discussion will follow for the two 

main methods of edge-based segmentation and a common higher-level method. 
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In an edge image, small edge values correspond to insignificant grey level 

changes resulting from quantization noise or small lighting irregularities15.  Sometimes, 

thresholding of an edge image can be used to remove the small edge values.  

Thresholding an edge image simply filters out the more faint edges or noise, whatever 

they may be.  If the original image has high contrast, this method will work, but if the 

image is noisy, this will result in errors.  Graph searching is another method of edge-

based segmentation.  The simplest, and also the least effective method of grouping edges 

is to use heuristic search15.  This means the algorithm would start on a boundary pixel 

and try to join neighboring pixels based on their edge strength and direction.  After this is 

complete, some thinning such as the use of a skeleton algorithm would have to be used to 

remove pixels at places where the edge line is more than one pixel thick.  Also, Brejl and 

Sonka present an automated model based image segmentation algorithm whose basis is 

the edge-based segmentation method16.  By adding additional algorithms to automate the 

edge detection process, the two major edge based segmentation problems mentioned 

previously are addressed. 

 

These edge-based segmentation algorithms are very effective when used with 

clean images.  But, the most common problems of edge-based segmentation, caused by 

image noise or unsuitable information in an image, are an edge presence in locations 

where there is no border, and no edge presence where a real border exists17.  Hence, they 

can suffer from inadequate sensitivity and specificity because the image in the gradient 

space must be thresholded or otherwise classified according to edge or non-edge 

membership18.  Also, the problem of tracking an edge that bifurcates into two or more 

edges is one that cannot be adequately resolved using these low-level image operators 

alone18. 

 

There exists a considerably more complex edge-based segmentation method 

known as the Hough transform.  The Hough Transform was named after Paul Hough who 

patented it in 1962 as a highly effective method of utilizing mathematics to describe 

boundary curves in images19.  The original Hough transform was designed to detect 

straight lines and curves and this original method can be used if analytic equations of 
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object borderlines are known -- no prior knowledge of region position is necessary20.  

This is an extremely desirable trait of segmentation algorithms because it allows much 

more flexibility in initial conditions or changing conditions.  The greatest advantage of 

this method is the robustness of the segmentation results; that is, segmentation is not too 

sensitive to imperfect data or noise20.  Since the Hough Transform has been around 

almost as long as the term MV has (1954), one would expect there to be many sources for 

information and there are.  This review of the Hough transform focuses on the most 

recent uses in industry and in research. 

 

2.2.3 Region Based Methods 

A region-based technique can be considered to be a more advanced segmentation 

method.  A region-based method usually proceeds by partitioning the image into 

connected regions by grouping neighboring pixels of similar intensity levels.  Adjacent 

regions are then merged under some criterion involving perhaps homogeneity, sharpness, 

or region boundaries.  The downfalls of this method are that over-stringent criteria can 

cause fragmentation and criteria that are too lenient will overlook object boundaries and 

can cause many objects to be grouped as one. 

 

Region-based image segmentation is a technique whose purpose is to separate the 

image into meaningful, non-overlapping regions, which would be used for further 

analysis21.  Since the 60’s, a variety of techniques have been proposed for segmenting 

images by identifying regions of some common property22.  These can be classified into 

two main classes.  The first is merging algorithms in which neighboring regions are 

compared and merged if they are close enough in some property22.  The second is 

splitting algorithms in which large non-uniform regions are broken up into smaller areas, 

which may be uniform22. 

 

Merging must start from a uniform seed region.  One method of determining a 

suitable seed region is to divide the image into 4 or 16 pieces and check each one for 

similarities.  Another approach is to divide the image into strips, horizontally or 

vertically, and check each strip against each other for similarities.  The worst case would 
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be when the seed is a single pixel.  Once a seed is found, each similar neighboring region 

is merged until no more similar regions can be found.  As one might imagine, there is a 

major drawback to this method.  This process is inherently sequential, and if fine detail is 

required in the segmentation, then the computing time will be long22. 

 

The splitting algorithms begin from the whole image and divide it up until each 

sub region is uniform.  The usual criterion for stopping the splitting process is when the 

properties of a newly split pair do not differ from those of their original region by more 

than a threshold22. 

 

Given the explanation of these two main methods, one can immediately assess the 

problems that would be encountered in trying to apply these methods in a real-time 

situation.  Computation time, human interaction to select the seed, and uncertain results 

all come into play when assessing the feasibility of using these methods.  Kothe23 has 

evaluated the use of these methods in a post-processing manner.  In this environment, 

these methods work fairly well, except that they require some smoothing operations, 

which always remove some details.  It is evidenced in this paper that the computation 

time and the reduction of detail make these algorithms usable only in a one-time use type 

of way.  It is evident that with all of these problems, these methods can be overlooked as 

a feasible solution to their use in this research. 

 

2.2.4 Connectivity Preserving Relaxation Methods 

The connectivity preserving relaxation based segmentation method, usually 

referred to as the active contour model, was proposed recently4.  This method starts with 

some initial boundary shape that is represented by splines and iterative modifications are 

made to that shape using various shrink/expansion operations according to an energy 

minimizing cost function4.  Given the inherent complexity of splines and the added 

complexity of a constantly evolving set of them, this method can most definitely be 

categorized as computational intensive.  Therefore, due to the required computational 

effort, this method would probably not be a feasible solution in a real-time environment.  

Since this method has just been recently proposed and is computational intensive, this is 
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the least researched method of the four methods discussed.  Given these circumstances, 

this method is probably not applicable to the aim of the research described here and will 

not be discussed further. 

 

2.3 Image Segmentation Applications 

Applications of image segmentation and especially the four methods previously 

described have been researched extensively.  The information gathered from the research 

on their application to scientific problems is presented below in Sections 2.3.1 through 

Section 2.3.6.  These sections have been broken down into their respective scientific 

areas and the applications of all of the methods to these areas are included. 

 

2.3.1 Aerospace Related Image Segmentation Applications 

As previously mentioned, MV has a promising outlook for applications within the 

aerospace industry.  Currently, many government agencies and universities are 

performing research involving MV.  Most research involves the replacement of a human 

with MV technology to eliminate having to put a human in harm’s way.  Research in the 

aerospace industry has began to involve UAVs, which inherently do not carry humans.  

Therefore, to extend the capabilities of an UAV to approximate that of a manned aircraft, 

MV is one possible solution that is being investigated. 

 

The trend of increasing use of UAVs in order to eliminate the human risk factor 

involved in the Suppression of Enemy Air Defenses (SEAD), general reconissance, 

and/or high risk, high value missions will certainly continue.  These UAVs are very 

attractive in that they eliminate risk to the human crew while performing these dangerous 

missions, the aircraft have potential for greater survivability, they have greater endurance 

to perform a mission as opposed to crew fatigue, the cooperative nature gives a greater 

probability of successful outcome, and finally cost is reduced24.  Given this information, 

the ability for a UAV to detect objects on the ground and in the air will be vital to their 

functionality and survivability.  The ability to detect threats on the ground or to be able to 

refuel itself to endure longer flight times are major objectives that can be met by the use 
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of MV.  In this review, a many applications of image segmentation were found that 

directly relate to research in the aerospace industry.  These applications will be 

highlighted below. 

 

AAR has been an extensively researched topic for the last several years.  Many 

universities such as Texas A&M25,26 and WVU27,28,29,30,31 as well as the United Stated Air 

Force (USAF)32 has ongoing research in this area.  The most recent research effort at 

WVU involves semi-AAR in a real-time system28 and using feature extraction29 and 

corner detection31 to determine the pose of the tanker with respect to an UAV.   Research 

in this area has focused on enabling an UAV to refuel without human intervention.  

Previous research27,30 has taken many paths including active marker based vision where 

the tanker would have light emitting ‘markers’ placed in an array on the underbelly and 

tips of its empennage.  The idea is that the UAV would then be able to sense the 

‘markers’ and by the use of labeling techniques and feature matching algorithms the 

markers would be labeled as to their actual location on the tanker.  Then, pose estimation 

such as the Gaussian Least Squares Differential Correction27 (GLSDC) or the Lu, Hager 

and Mjolsness27 (LHM) algorithm would enable to UAV to determine its ‘pose’ with 

respect to the tanker and the UAV would then orient itself correctly with the tanker using 

a control system and move into refueling position.   

 

This research has now been focused in another direction in which the tanker 

would have no light emitting markers in the visible spectrum due to the risk presented in 

revealing an aircraft’s location to an enemy at night.  The UAV would then have to 

discern its pose information from other methods using MV, namely feature extraction29.  

Research at Texas A&M has focused on using a vision based navigation sensor26 for 

AAR purposes and developing a robust trajectory tracking controller for the probe and 

drogue type of refueling apparatus25.   

 

There has also been extensive research in the area of autonomous formation flight 

by researchers at WVU33,34 and Georgia Institute of Technology35,36.  The need to find 

ways of maintaining robustness in a formation flight system is important due to any 
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number of circumstances.  The number one thing that can affect formation flight is 

communications.  If communications are lost, the inability for a leader aircraft to send its 

position to the follower aircraft will cause the follower aircraft to do very undesirable 

things.  So, in an effort to improve the robustness of a formation flight system, the 

addition of a MV system has been investigated by a joint West Virginia University and 

University of Pisa team33.  In this research, five lighted markers were placed on a 

simulated leader aircraft.  The follower aircraft was able to use its vision system to ‘see’ 

the markers on the leader.  After finding the markers, pose estimation algorithms were 

used to estimate the position of the follower relative to the leader and then control 

algorithms were able to control the follower to accurately follow the leader. 

 

Another example of vision-based control is shown in research in a collaborative 

effort between the University of California at Berkeley and the University of Colorado at 

Boulder.  Researchers there have used the Hough Transform to perform a very complex 

job for an autonomous aircraft37.  This job involves the autonomous following of a road 

using a small aircraft.  Using the Hough Transform combined with other pre-processing 

techniques, the research team at the AINS Center for Collaborative Control of Unmanned 

Vehicles have been able to build and flight test their small UAV which includes a MV 

system.  Their UAV was able to follow a road for over two miles before they had to end 

their test due to hardware constraints37.  Further research has been performed in 

comparing various lateral controllers used in performing this function.  Flight tests have 

not been conducted but simulations have been performed under ideal conditions 

comparing several aim-ahead controllers, sliding surface controllers, linear quadratic 

Gaussian (LQG) regulators, and a receding horizon controller (RHC)38,39.  This is a 

perfect example of the uses of the Hough Transform that will be seen in the future in the 

aerospace industry. 

 

Stability and control using vision systems is also a widely researched subject.  

Perhaps the easiest use of a vision system for stability and control is the ability to detect 

roll angle.  By detecting the horizon, the roll angle is easily found.  This has been applied 

both in simulation by researchers at Monash University in Australia40 and researchers at 
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the University of Colorado at Boulder38 and in flight testing of micro UAVs by 

researchers at the University of Florida41.  In both instances, the horizon was detected 

using either the Hough transform40,41 or the Adaptive Receding Horizon38 method and 

then the roll angle was estimated by finding the relative angle of the line detected to the 

artificial horizon defined by the camera orientation. 

 

The researchers at Monash University40 achieved their goal by using a robotic arm 

to rotate an artificial horizon image.  The main purpose of this research was to do this 

task with very few components, for very low cost, and at low computational cost.  This 

was achieved by using a programmable integrated circuit (PIC) microcontroller and not a 

standard computer like has been used in so many UAVs.  The research at the University 

of Florida41 was performed on micro air vehicles (MAV) built at the university.  Since the 

MAVs were so small, a unique vision system had to be created.  This was accomplished 

by using a type of embedded processor similar to the Motorola MPC565.  By using this 

type of processor, the bulky computer parts normally seen in a UAV hardware suite was 

eliminated while still being able to perform the desired tasks.  In both cases, the horizon 

detection problem was very well addressed and the results were impressive. 

 

Researchers at Drexel University in Philadelphia have tried a different approach.  

By using a blimp as a UAV they have been able to extend flight times almost indefinitely 

and by doing so, can accomplish much more research per flight than can be accomplished 

with a conventional UAV42.  In reference to their research topic, this involves collision 

avoidance and following a simulated road with a payload that weighs less than 100 

grams.  The collision avoidance is accomplished by using an optic flow sensor.  An optic 

flow sensor is not a camera, it is a sensor that will output a higher voltage if it ‘sees’ a lot 

of things.  For example, if the optic flow sensor were to be placed in the middle of a 

room, the output would be fairly low.  But, if the sensor were placed in front of a 

bookshelf, a wall, or a person, the output would be fairly high.  So, by monitoring the 

voltage coming from this sensor, the blimp can determine if it is getting close to 

something and begin to reverse its motors to stop or back up in order to avoid a collision.  

The vision system is based on a small wireless camera that weighs 15 grams.  This 
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camera transmits its images down to a ground based vision computer, which analyzes the 

image and then calculates flight control commands based on a proportional-derivative 

controller.  The commands are then translated into pulse width modulation (PWM) and 

sent to the receiver in the blimp.  This very simple vision system is able to perform lots of 

things just by changing the software on the ground-based computer.  Current research 

focused on being able to follow an artificial road, which was set up in an auditorium.   

 

Another example of MV used for obstacle avoidance is with research preformed 

in a collaborative effort between the University of Missouri, Texas Tech. University, and 

the USAF43.  This research focuses on various ideas and approached to deal with image 

noise in motion analysis.  This research, like other research in robotics uses a range map 

to define the distance to objects with the field of view (FOV).  This range map is then 

used for collision avoidance along with control and guidance laws designed to navigate 

the UAV between waypoints and avoid obstacles.  This is a prime example of the 

direction of future research in coupling the diversity of MV with the advanced problems 

in the aerospace industry. 

 

One current production MV application currently in use by military and other 

government agencies around the world is the forward-looking infrared radar (FLIR).  The 

FLIR has had many variations in its lifetime, but the current FLIR used by US 

government armed forces and agencies as well as dozens of international governments 

and organizations is the FLIR Star SAFIRETM HD44.  This FLIR radar ball employs MV 

technology that can track, range find, and laser illuminate targets at extremely high 

resolutions at up to a 25 kilometer range in the Near, Mid, and Far Infrared and Visible 

light frequencies.  All of these features come in a package that is less than 100 pounds, 

which makes this an incredibly viable package for any aircraft, but UAVs in particular.  

This type of MV technology is on the forefront and will only continue to improve as 

technology allows.  The FLIR Star SAFIRETM HD can be seen in Figure 2.1. 
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Figure 2.1:  FLIR Star SAFIRETM HD44 

 

Since thresholding based segmentation is the most widely used method, it is 

expected that the use of this technique can be found in many places around the world, 

including space.  This simple technique is being used to detect human settlements in 

images acquired by the IKONOS satellite45.  Since the imagery from IKONOS is in 4-

meter resolution, one can expect that there are almost an unlimited number of images of 

the earth to be processed.  In order for scientists and researchers to process all of this 

information quickly, low-level image processing is required.  By using the multi-spectral 

imagery from IKONOS, separating the regions of farmland from regions of housing is a 

pretty simple task easily achieved by thresholding.  As evidenced from previous 

examples, thresholding is mostly a low level technique that is mainly used in conjunction 

with other segmentation techniques.  Rarely, is the use of thresholding enough to 

complete the task at hand in an image analysis problem.  Although, when thresholding is 

enough, it is a very fast and simple approach.  Occasionally, thresholding can be applied 

to a complex problem such as IKONOS with great reliability, accuracy, and speed, which 

was essential to the objectives required with IKONOS. 
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2.3.2 Other Engineering 

Aside from the field of aerospace engineering, uses of MV can be found in other 

areas of engineering such as civil engineering and electrical engineering.  Several 

examples can be found of researchers in these areas using edge-based segmentation to 

perform some sort of image analysis.  For example, edge based segmentation is used in 

mapping rock fractures46.  According to the researchers, rock fracture mapping is an 

important task in rock engineering and making the algorithm robust is the hardest part46.  

According to Wang, using a valley-edge based segmentation algorithm is the first step in 

creating a robust algorithm. 

 

Some research has been performed to stress and highlight the robustness to noise 

of the Hough transform..  Range images, which are images that are used to judge 

distances, are subject to noise due to weather, lighting, and stray objects that may be in 

the field of view.  Robots acquire range images and process them to determine distances 

to various objects in the field of view so that they may calculate how long to power their 

motors to travel to the object47.  In doing this, range images must be evaluated quickly 

and accurately and the Hough transform can do just this.  This method of analyzing range 

images is described by Gatcher of the Ecole Polytechnique Federale de Lausanne and his 

research shows that when compared to various other image processing techniques used to 

do this same job, the Hough Transform is more accurate and faster than any other 

method47. 

 

The robustness of the Hough Transform has, again, been proven by researchers at 

the University of Puerto Rico.  They have shown that the major advantage of using this 

transform instead of any other techniques is that it is tolerant of gaps in feature boundary 

descriptions and is relatively unaffected by image noise48.  This extreme robustness 

makes the Hough Transform an ideal method of line extraction and image segmentation 

in high-risk applications where it is essential that no mistake be made about the results of 

the analysis being performed. 
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2.3.3 Manufacturing Industry 

Aside from the field of engineering, MV is also used in other areas of everyday 

life, especially in the manufacturing industry.  With the current methodology and 

technology, MV systems are generally limited to performing narrowly defined tasks such 

as inspecting food products on a conveyor belt49, tracking lift trucks in an industrial 

setting50, or inspecting semiconductor chips51.  The manufacturing industry favors MV 

systems because they can provide continuous, repeatable, high speed, high magnification 

inspections.  Humans have traditionally catered to these tasks, but it is widely known that 

humans are often affected by distraction, illness, and boredom, which can jeopardize their 

perception over long periods of time.  Although adapting MV systems to new quality 

control policies and outlying defects can be time consuming and problematic, MV 

systems provide a clear solution to the manufacturing industry to alleviate the economic 

effects of missed defects and costs associated with having to employ human inspectors. 

 

Another current use of MV is in the food industry49.  Camera based inspection 

systems are commonplace in just about every manufacturing plant for edibles around the 

world and has been for many years  In order to ensure the expiration dates and lot codes 

are properly printed on many perishables, food manufacturers use MV systems.  These 

systems are much faster than humans and are more accurate; they also ensure almost 

100% trouble free operation for the fast moving production line.  A typical food 

inspection system is shown in Figure 2.2.  This system uses a camera to capture an image 

at the correct time when the container passes on the conveyer belt.  The computer then 

uses character recognition software to analyze the image and make sure the correct 

characters are present on the bottom of the container.  The computer will then make a 

decision to either let the container go to the next stage of production or to remove it from 

the production line and place it in a reject bin.  This process would require a very keen 

eye from several humans in order to visually inspect every container accurately, but the 

MV system does this with ease. 
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Figure 2.2:  MV Inspection System for Date and Time on Yogurt Cups49 

 

K-Means Clustering Algorithm is attractive in that there is only one user definable 

input and that is the number of clusters to be found.  As a result of this, the K-Means 

algorithm is very popular both in research and in industry.  This can be seen in a paper 

presented by Ramos and Muge of Portugal where the standard K-Means Algorithm was 

used to segment maps52.  They used K-Means because, according to the researchers, 

segmenting a color image composed of different kinds of texture regions can be a hard 

problem52.  By using the K-Means Clustering Algorithm, their segmentation problem was 

workable by simply knowing how many different textures there were on the map.  Future 

research is now being performed using an adaptive method of determining the number of 

textures in the image instead of needing a human input. 

 

In another application, the Hough Transform has been used to detect the borders 

in patterned fabric12.  Combined with the use of the FUZZY C-Means Algorithm 

mentioned earlier, the Hough transform accurately detects the lines that make up the 

borders of the regions in the printed fabric.  The importance of this application is far 

removed from the importance seen with the use of the Hough Transform in medical 

imaging, but it is a point that should be stressed and that is the fact that in almost any 

application involving the human eye, MV can step in and do a very remarkable job of 

replacing the human. 
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2.3.4 Medical Industry/Biology 

As previously stated, the medical industry is on the forefront when it comes to 

using imaging in a critical process.  The medical industry uses imaging in almost all 

diagnostic procedures either in the form of a computer tomography (CT) scan, 

ultrasound, or magnetic resonance imaging (MRI).  These advances in technology have 

come about in the last two decades and have made diagnostic medicine much more 

reliable with the ability to see what is happening inside the human body.  MV is also not 

exclusively applied to diagnosis purposes.  MV is also used to help blind people read or 

semi-blind people to see major objects.  There is much research being performed in this 

area where helping the handicapped is the main objective. 

 

An example of research being performed to help the handicapped is seen in 

research that has been conducted by Ferreira, Garin, and Gosselin at the Faculte 

Polytechnique de Mons in Belgium53.  This research focused on text detection in many 

situations, but in all cases in order to single out the text, thresholding was used to simply 

filter out the background and emphasize the text so that the image could be converted to a 

binary form.  Then, a more advanced region based technique was used to pick out each 

letter and essentially ‘read’ the text.  This is another example of thresholding being used 

as a pre-process to a more advanced technique.  

 

Other research has focused on a different set of objectives.  According to 

researchers in the United Kingdom, many people with vision problems resulting in “low 

vision” such as having cataracts, diabetic retinopathy, age-related maculopathy, and 

retinal detachment are not totally blind, but they retain some residual vision54.  This 

residual vision is usually not enough to allow mobility of the person, but the researchers 

have used the K-Means Clustering Algorithm to pick out major objects in a FOV and 

then display them in a head mounted display which would show much less detail than a 

normal scene would as viewed by a person with low-vision54.  This would allow them to 

pick out objects more easily without the “noise” created by all of the details.  The end 

result is that the person, who was not previously mobile, could now move around with 



 

 27

the ability to see main objects in their field of vision without being confused or blurred by 

the details of the entire image. 

 

As discussed before, MV is extremely important to the functioning medical 

imaging and it has been found that the K-Means Clustering Algorithm is also a very 

important subtopic in the use of MV in medical imaging.  In a presentation highlighting 

the segmentation methods available in segmenting a moving organ in a CT Scan, it was 

shown that among all of the available segmentation techniques/algorithms, the K-Means 

Clustering Algorithm was more effective in speed and in detecting subtle differences 

among pixels that highlighted different regions in the organ55. 

 

Mark Dow of University of Oregon has also completed research56 in the area of 

neurosciences dealing with edge-based segmentation.  As mentioned earlier, the medical 

field is the forefront in image segmentation research.  The research performed by Dow 

deals with detecting the borders between white matter and gray matter in the brain from 

images taken with a MRI.  This research is more flexible in what can be segmented in the 

images, but it is important that images with low spatial frequency be used so that the 

determination between segments is not a hard decision for the algorithm to make.  It can 

be seen that almost unconditionally, these techniques are coupled with some other 

algorithms to achieve the final goal.  It is stressed that this type of low-level edge-based 

segmentation is just that: low-level, and as such, generally requires additional algorithms 

to achieve the final goal. 

 

As with almost every aspect of MV, the Hough Transform has been applied to the 

medical imaging area as well.  In a paper written by researchers at Texas Tech 

University, the Hough Transform was used to detect cervical vertebrae in x-ray images57.  

Not only did this approach work but also it was very robust in detecting bone fragments 

and anomalies on individual vertebrae that would have otherwise been hard for a 

physician to detect by eye.  The robustness of this algorithm in this application is a very 

desirable trait since bone growth is something that can vary greatly from individual to 
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individual.  Therefore, the likelihood that an error in diagnosis being made is even further 

reduced using the Hough Transform. 

 

One last example of thresholding being used occurs in the biology discipline.  

Researchers at the University of California at San Francisco recently used MV techniques 

to study behavioral patters of mutant worms58.  By first imaging the worm in 

monochrome, thresholding was applied in order to convert the image to binary so that the 

worm could be easily distinguished from the background.  Again, higher-level 

segmentation techniques were then applied to be able to measure and track the worm’s 

movements to determine its behavioral patterns.   

 

2.3.5 Agriculture 

Another area of research that has been applied to industry, currently using the K-

Means Clustering Algorithm, is in the agriculture industry.  Researchers at the University 

of Illinois have applied the K-Means Clustering Algorithm in order to detect weeds in 

real-time, as the herbicide spraying machine was making its way down a row of 

soybeans59.  The machine is able to count, classify, and then spray each weed 

individually so that a minimal amount of herbicide is used and so that the effectiveness of 

the herbicide can be evaluated and tracked by noting the location of the weed.  Then, in a 

subsequent spraying operation, each particular weed can be evaluated as to whether it 

was killed or not, further enhancing the ability of the farmer to pinpoint specific types of 

weeds in his field and eradicating them.  The results of their research has shown this 

application of MV be both a very cost effective and time conserving way to do this 

important job in extremely large plots of farmland and by doing so, farmers have 

increased crop yield and decreased ground water contamination.
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Chapter 3 

Theoretical Approach 

 
3.1 Overview of Theoretical Approach 

The theoretical approach to the problems presented here can be broken down into 

two distinct layers.  The first layer includes low to medium level image processing 

functions used in the pre-processing stage, on an as needed basis, in order to work toward 

a solution to the problems of Marker Detection and Tracking and Runway Detection.  

These functions do not differ in their inclusiveness to each problem, but the sequence in 

which they were used in order to achieve an acceptable result may be different and these 

differences will be fully explained in Chapter 4.  Therefore, these functions, known as 

Shared Image Processing Functions, will be discussed in Section 3.2.  Section 3.2 

highlights the theory behind these functions and also covers their application to both 

problems in order to eliminate repeating the theoretical discussion regarding these 

functions for each problem individually.  The second layer involves high level image 

processing methods and algorithms which are used to perform the main task needed to 

solve each problem such as line-detection or marker detection and tracking.  These 

methods and/or algorithms are unrelated as they apply to each individual problem, hence, 

they will be discussed separately in Section 3.3 and Section 3.4, respectively. 

 

3.2 Shared Image Processing Functions 

As previously mentioned, this section will cover functions that were used in the 

pre-processing stage of both the Marker Detection and Tracking and Runway Detection 

solutions.  The fact that these functions were used to approach both problems reflects the 

versatility of the low to medium level image processing techniques and emphasizes a 

statement made earlier that many image processing solutions and, in this case, 

subsystems such as the pre-processing stage, are just a collection of smaller, lower level 

processes.  These processes include the most basic things such as the definition of the 

coordinate system and an image, which are covered in Section 3.2.1 and Section 3.2.2.  

Section 3.2.3 covers image enhancement functions such as Gamma Correction and Color 
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Space Conversions.  Lastly, Section 3.2.4 presents the concept of and theory behind 

thresholding in image processing. 

 

3.2.1 Coordinate System 

First, a spatial coordinate system must be defined.  The nomenclature f(x,y) will 

be used to define a point in a two-dimensional image frame, where x and y denote spatial 

coordinates and the value of f at any point (x,y) is proportional to a color level value 

normally ranging from 0 to 255 when speaking of an image constructed of separate red, 

green, and blue (RGB) values.  Figure 3.1 illustrates the coordinate convention used 

during image processing. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  Coordinate Convention for Images 

 

Suppose that a continuous image is sampled uniformly into an array of N rows 

and M columns, where each sample represents a color level value.  This array is 

subsequently called a digital image and is represented by Equation 3.1: 
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where x and y are discrete values:  x = 1,2,3,…,M;  y = 1,2,3,…,N.  Each element in the 

array is defined as a pixel. 
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3.2.2 Image Definition 

An RGB image is composed using a red, green, and blue part which are stacked 

on top of one another.  The resulting color is a combination of the three colors at each 

spatial location, resulting in a blended color with more than 16.7 million variations using 

the standard 0 to 255 color pallette (8-bit).  Sometimes, decimal values from zero to one 

will be used to represent the 8-bit color pallette.  This type of RGB image definition is 

simply another way to define the image and is commonly used in Matlab .  This type of 

image definition is illustrated in Figure 3.2. 

 

 

Figure 3.2:  RGB Image Construction60 

 

In most cases, the image is based on a color map, which may have any range of 

values.  This range of values will correspond to a certain combination of RGB values that 

create the actual pixel color.  Although this arrangement is not directly seen unless a 
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distinct color map is defined, this is the process that is happening behind the scenes but it 

is most likely happening using a ‘standard’ 8-bit color map.  Although, a custom color 

map is not usually defined, sometimes this can be useful if the user requires many 

variations in one shade of a color.  It is possible to define an infinite number of shades of 

any color and then use them to construct an image using the color map image definition 

method.  This concept is illustrated in Figure 3.3. 

 

 

Figure 3.3:  Color Map Style of RGB Image Definition60 

 

The value of f at any point (x,y) can also be proportional to a brightness level 

value ranging from zero to one when speaking of values in an intensity image.  There are 

several distinct differences between an RGB image and an intensity image.  First, the 

intensity image never uses any sort of color map.  Second, the intensity image is made up 

of only one image or matrix, instead of three.  Speaking on terms of similarities, there is 

no limit on the discretization of the values except restrictions put on the image by the 

software platform.  An intensity image is similar to having an image made up of only red, 

green, or blue except the ‘color’ is equivalent to brightness, ranging from white to black.  

This essentially creates a grayscale image except that the colors of the image or not 

shades of gray but shades of pure brightness ranging from black to white.  Figure 3.4 

illustrates the concept of an intensity image with values of class double. 
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Figure 3.4:  Illustration of the Construction of an Intensity Image60 

 

3.2.3 Gamma Correction and Color Level Conversion 

Gamma correction is a relationship between an image having linearly increasing 

intensity and an image having linearly increasing luminance.  Gamma correction is 

usually performed in consumer video systems such as televisions and video cameras.  

But, in MV, this aspect is usually left up to the system designer.  In this research, the use 

of gamma correction was a necessity rather than a want.  All Matlab  functions involving 

RGB images required the image to be gamma corrected.  Therefore, gamma correction 

was the first step during the processing sequence and will be explained in Section 3.2.3.1. 

 

Color level conversion was also an important first step for this image processing 

application.  When using this conversion within Matlab , it is usually a second step due 

to the fact that Matlab  requires the input to the conversions to be gamma corrected.  

Therefore, the color level conversion usually takes a back seat to the gamma correction 

for this reason.  Color level conversion offers the ability to reduce computational 

workload by representing the image in a different form.  It has the ability to maintain 
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high amounts of detail in an image while representing it in a different format.  The color 

level conversion method used in this research effort will be explained in Section 3.2.3.2. 

 

3.2.3.1 Gamma Correction 

The gamma characteristic is a power-law relationship that approximates the 

relationship between the encoded luminance in a video system and the actual desired 

image brightness.  With this non-linear relationship, steps in encoded luminance 

correspond to subjectively approximate steps in brightness61.  MV systems and software 

that require a linear relationship between these quantities, such as the Matlab  

environment, use gamma correction.  Although the gamma correction could have been 

performed in software, there was a second option available in this research.  The MV 

camera used in this research had the ability to perform hardware gamma correction 

internally.  This method of gamma correction was used in this research effort in order to 

further reduce the steps in the pre-processing stage.  Equation 3.261 represents the general 

form for hardware based gamma correction: 

 

                                                      SI V γ=                                                            (3.2) 

 

where I is the light intensity, VS is the source voltage coming from each pixel location in 

the charge coupled device (CCD), and γ is the gamma correction factor. 

 

Gamma correction can be thought of as an inverse transfer function that is applied 

to the video signal so that the encoded luminance is linear.  The following illustration, 

Figure 3.5, shows the difference between a scale with linearly increasing intensity (i.e. 

gamma corrected) scale and a scale with the desired linearly increasing encoded 

luminance signal61. 

 

Figure 3.5:  Gamma Correction Example Scale61 
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In layman’s terms, the signal from the video camera or source is deliberately 

distorted so that after it has been distorted again by the display device (in this case the 

framegrabber card and video card), the viewer (Matlab  in this case) sees the correct 

brightness.  It should be noted that from this point on, a normal, non-gamma corrected 

signal will be referred to as the representative letter, such as RGB, and a gamma 

corrected signal will be referred to with an added prime symbol, such as R G B′ ′ ′ . 

 

Figure 3.6, below, shows a visual example of what impact gamma correction can 

have on images.  Figure 3.6a shows an image that is taken in bad lighting where the 

gentleman’s face cannot easily be seen.  Figure 3.6b shows a gamma corrected version 

using a gamma correction value of 2.25 and now, the gentleman’s face is clearly defined.  

This can be useful in aerospace applications where the lighting may not be suitable to 

extract the details needed from the image to continue the processing task.  A simple 

gamma correction can fix this and, in this research effort, the hardware based gamma 

correction was used to approach the problems.  This gamma correction served a dual 

purpose in helping to satisfy the Color Space Conversion inputs by providing them with 

the required gamma corrected image and it helped to brighten up the image when it was 

dark or overcast. 

 

   

                        (a) Original Image                                        (b) Gamma Corrected Image 

Figure 3.6:  Comparison of Original Image to Gamma Corrected Image62 
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3.2.3.2 RGB to Intensity 

Converting an RGB image to an intensity image has obvious advantages in 

changing an image described by a M×N×3 matrix to an image described by an M×N×1 

matrix.  Through a reduction in the size of the third dimension, the complexity of the 

image definition is greatly reduced. 

 

This conversion is described by a mathematical equation involving the intensity 

of each red, green, and blue pixel of a point of interest.  To find the intensity of a pixel in 

gray level, the following formula, Equation 3.360, is used. 

                               [ ]intensity 0.299 0.587 0.114

R

G

B

′ 
 ′=  

′  

                             (3.3)  

where R′ , G′ , and B′  are the gamma corrected color level values for each respective 

pixel of the original RGB image. 

 

The range of any input pixel value will match that of the output pixel intensity 

value.  The illustration shown in Figure 3.7 shows an example of the input and output of 

the RGB to Intensity function of the function.  The input image is shown in Figure 3.7a 

and it is a typical M×N×3 RGB image.  The output image is shown in Figure 3.7b and it 

has been converted to a M×N×1 intensity image. 

 

 

                            (a) Original Image                                      (b) Intensity Image 

Figure 3.7:  Example Images for the R G B′ ′ ′  to Intensity Color Conversion60 
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3.2.4 Thresholding 

Thresholding is a simple process that is also a very valuable filtering technique in 

image processing.  Thresholding has many meanings and many purposes, but probably 

the most widely used application is in filtering out a certain color or shade from an 

image.  Many images may contain things that are unwanted and many times these things 

are homogeneous in the image, such as a grassy field.  Thresholding has the ability to 

find all of the pixels that are green and set them to be another color such as black, that 

will be ignored by other algorithms.  This is a very simple but efficient form of image 

segmentation. 

 

Thresholding can also have another meaning when talking about gray scale 

images.  Sometimes the threshold level is referred to as a percentage.  This percentage of 

thresholding means the threshold level between the maximum and minimum intensity of 

the initial image.  Thresholding is a way to get rid of the effect of noise and to improve 

the signal-noise ratio if the noise is homogeneous in intensity. To put this in laymen’s 

terms, it is a method that allows the user to keep the significant information of the image 

while disposing of the unimportant part (under the condition that is chosen as a plausible 

thresholding level).  The use of thresholding will be fully evident later when the use of 

thresholding is shown in the research software being used for the purpose of image 

segmentation. 

 

Perhaps the easiest explanation of thresholding is mathematically.  Once the 

mathematical definition is made, it is easy to find many different areas to apply the 

concept of thresholding to.  Equation 3.4, below describes the thresholding process: 

 

                           
[ ] [ ]

[ ]
If ,        , 1

Else                      , 0

a m n a m n object

a m n background

θ≥ = =

= =
                         (3.4) 

 

where a is the image defined by the pixel coordinates m and n and theta is the threshold 

value.  This method assumes that the interest lies in light objects on a dark background.  

If a pixel value is greater than a certain threshold value, the pixel value is changed to one 
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or white, if it is less than the threshold, the pixel value is made to be zero or black.  This 

is simple image segmentation.  Figure 3.8, below, illustrates a simple thresholding 

performed on an image for segmentation purposes.  Figure 3.8a is the input image and 

Figure 3.8b is the output image. 

 

10 15 23 15 2 20 21 4 23 8

13 42 31 71 19 11 23 17 7 1

21 55 33 42 7 19 7 27 8 6

27 39 35 51 9 14 21 23 2 11

29 43 39 64 4 16 19 11 24 5

22 8 23 13 24 18 3 17 23 8

1 17 15 7 7 55 65 33 43 51

99 80 59 17 15 60 33 66 31 47

90 77 61 4 14 61 91 67 28 23

77 62 31 10 19 77 45 44 14 23

0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0

1 1 1 0 0 1 1 1 0 0

30θ =

(a) Original Image (b) After Thresholding

Figure 3.8:  Illustration of Thresholding for Image Segmentation Purposes 
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3.3 Theoretical Approach to the Marker Detection and Tracking Problem 

Aside from decisions regarding the pre-processing stage of the solution, one must 

decide how to actually find the markers for the Marker Detection and Tracking problem.  

Image segmentation can be described as the process of separating the useful information 

of an image from the non-useful information.  The problem of Marker Detection and 

Tracking falls into the category of an image segmentation problem.  After reviewing 

several methods available, looking at how others have approached similar problems, 

consulting with people working in image processing, and taking into account design 

constraints discussed earlier in Section 1.2.1 it was decided that the problem of Marker 

Detection and Tracking would be approached with the K-Means Clustering Algorithm.  

The first solution was approached using Matlab  and it involves the use of a Modified K-

Means Clustering Algorithm.  This algorithm is called the Modified K-Means Clustering 

Algorithm because it was modified to make it more efficient in scanning a large number 

of pixels at a high frame rate.  This will be covered in more detail in Section 3.3.1.  The 

second solution was also approached using Matlab .  This solution involves the use of 

the Modified K-Means Clustering Algorithm and an additional set of instructions that 

estimates and tracks the positions of each marker.  This solution will be covered in 

Section 3.3.2. 

 

3.3.1 Matlab Based Modified K-Means Clustering Algorithm 

For a description of the mathematical representation of the K-Means Clustering 

Algorithm, the following equations are presented.  First, a measure of similarity must be 

established which will determine if pixels are assigned to the domain of a particular 

cluster.  For this algorithm, the Euclidean distance, d, between two pixels, m and n is 

used as a measure of similarity and this is shown below in Equation 3.5 through Equation 

3.750: 

                                                   d m n= −                                                      (3.5) 

 

                                    2 2( ) ( )x x y yd m n m n= − + −                                           (3.6) 
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= −∑                                                   (3.7) 

 

where m  and n  are n -dimensional vectors with k  components equal to km  and kn , 

respectively. 

 

In order for the algorithm to determine which cluster a new pixel belongs to, a 

performance index must be introduced.  The clustering criterion is based on the 

minimization of the performance index that is guided by a procedure that will minimize 

or maximize the result of the similarity measure, d .  The performance index, J , is the 

sum of the errors index given below in Equation 3.850: 
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= −∑∑                                                  (3.8) 

 

where cN  is the number of clusters, jS  is the set of samples belonging to the thj  domain, 

x  is the data point to be clustered, and  

 

                                                            
1

j
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N ∈

= ∑                                                      (3.9) 

 

is the sample mean vector of the set, or the center of cluster jS .  In Equation 3.9, jN  

represents the number of samples in cluster jS .  The index of Equation 3.8 represents the 

overall sum of the errors between the samples of a cluster domain and their 

corresponding mean.   

 

The K-Means Clustering Algorithm consists of the following steps. 

 

1. Scan the image frame until a point is accepted (the first white pixel).  Set 

this point as the initial cluster center, 1Z , and cluster center 1S . 
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2. Scan the image again for the next white pixel.  Set it as a new point, X . 

 

3. Computer absolute distance, id , from new point X  to previous cluster 

center, iZ , and distribute the point { X } among the cluster domains using 

minimum distance similarity, 

 

                                        if | |i iX S X Z T∈ − <                                          (3.10) 

for all 1,2,3,...,i k= , where iS  denotes the set of points whose cluster center 

is iZ  and T  is a predetermined minimum distance threshold for similarity. 

 

4. If the new point satisfies the condition in Step 3, then go to Step 5, else 

cluster the new point as a new cluster group and a new center, 

  

                                 1iS X+ =      and      1iZ X+ =                                      (3.11) 

 

5. Count the number of points in each cluster group and store it in an array 

iN  for 1,2,3,...,i k= . 

 

6. Sum the point locations for each cluster group and store it in array iSUM  

for 1,2,3,...,i k= , 

 

                                                              
1

k

i i
i

SUM X
=

=∑                                                 (3.12) 

 

7. From the results of Step 5 and Step 6, compute the new cluster centers iZ , 

such that the absolute distances from all points to the new cluster center is 

minimized. 
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=                                                      (3.13) 

 

8. If it is the last row of the image frame, go to Step 9, otherwise go to Step 

2. 

 

9. Stop. 

 

The K-Means Clustering Algorithm was determined to be a feasible algorithm to 

formulate an approach to the problem of Marker Detection.  Once the decision to 

continue with the K-Means Clustering Algorithm was made, it was examined in more 

detail with respect to its application in a vision problem.  When considering the aspect of 

efficiency it was noted that the K-Means Clustering Algorithm is a fairly slow process by 

design because it requires many, many complete scans of the image to find the pixels of 

interest.  While finding the pixels of interest, the algorithm is constantly grouping the 

pixels based on a distance threshold, which further slows the process down.  It then 

calculates the current centroid for the group in question.  It then uses these calculated 

centroids to compare against the distance threshold for future decisions.  It continues this 

process of scanning, grouping, and recalculating the centroids for each individual white 

pixel that is encountered in the image.  This algorithm works fine when the ability of 

running in near real-time is not desired but this is not the case with the software in this 

research effort.  Therefore, modifications were made to the way the K-Means Clustering 

Algorithm is performed.  This will be called the Modified K-Means Clustering 

Algorithm. 

 

The Modified K-Means Clustering Algorithm is an algorithm based on the K-

Means Clustering Algorithm but changes have been made which allows the algorithm to 

be much more efficient.  The main reasoning behind these changes can be explained by 

examining the number of iterations required to scan the image one time.  An image that is 

of 640×480 pixels in resolution contains just over 300,000 pixels.  The original K-Means 

Clustering Algorithm performed multiple scans of these 300,000 pixels to achieve the 
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clustering task.  This multiple scanning of the image resulted in extra work and 

computational effort required by the computer and no reasoning behind this approach 

could be found.  Therefore, the algorithm was modified in such a way that the image was 

scanned only once per frame of input data.  This modification greatly improved the speed 

of the algorithm because most of the time in image processing is spent scanning the 

image for useful information.  In order to streamline the K-Means Clustering Algorithm 

further, the constant calculation of the centroid of the group when a new pixel is added to 

the group was abandoned.  In order to calculate the centroid, two squaring functions and 

a square root function were needed.  Since the square root is performed by iterative 

numerical methods such as Newton’s method, it is widely known as one of the most 

burdening computations for a computer to perform.  This constant calculation of the 

square root would continuously use this computational burdening square root function 

and this was found to be impractical and the constant calculation of the centroids was 

abandoned.  Once this centroid calculation was abandoned, the algorithm began to take 

on a different shape as new, more efficient ways to do these jobs were developed.   

 

A side-by-side, step-by-step comparison chart of the original K-Means Clustering 

Algorithm versus the Modified K-Means algorithm is presented in Table 3.1, on the 

following page. 
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Table 3.1:  K-Means Algorithm vs. Modified K-Means Algorithm 

 K-Means Clustering Algorithm Modified K-Means Algorithm 

Step 1 Scan the image until a white pixel is found, 

assign point as cluster center Z1 and cluster 

group S1. 

Scan entire image and compile a list of all 

of the white pixels in the image.  Initialize 

the first cluster group by assigning the first 

pixel in the list to the first group.  

Step 2 Scan the image again, find the next white pixel, 

and set it as X.  Compute absolute distance 

from new point X to all previous cluster 

centers Zi and apply a minimum distance 

threshold. 

Examine the next pixel in the list and 

compare its X and Y coordinate to the X 

and Y coordinate of the last pixel 

encountered based on a threshold. 

Step 3 If the new point satisfies the minimum distance 

threshold for a cluster Z, it is added to that 

cluster list and a new centroid is computed. 

If the new point satisfies the threshold 

condition, it is added to the pixel list for the 

cluster in question. 

Step 4 If not, the point is the added to a new cluster 

group and a new cluster center is defined.   

If not, it is defined as a new cluster group 

and the process continues until all of the 

pixels in the list of white pixels have been 

evaluated. 

Step 5 Return to Step 2. Once the lists of points belonging to each 

cluster have been compiled, the centroid of 

each cluster group is calculated. 

Step 6 If no more pixels are found, Stop. Stop. 

 

It can be seen from this comparison that there are some major differences.  The 

most obvious difference is that the image is now only being scanned once per image 

frame instead of multiple times.  The second difference is that the centroids are no longer 

constantly calculated as the algorithm progresses.  It was determined that this was not 

necessary because the image scanning is performed left to right and the grouping steps 

use the first pixel encountered, which is the leftmost pixel in a group.  So, instead of 

going through the trouble of computing the centroid, the threshold is simply applied to 

the right hand side of the left most pixel in the group and it is ensured that the threshold is 

big enough to encompass all of the pixels in the group of interest.  This concept relies on 

the assumption that the camera is always in focus, but greatly reduces the computational 
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complexity of the algorithm.  When the camera is out of focus, the marker will become 

blurred and possibly appear large enough to exceed the threshold boundary. 

 

3.3.2 Matlab Based Advanced K-Means Clustering  and Tracking Algorithm 

Once the Modified K-Means Clustering Algorithm was created and evaluated, an 

idea involving the tracking of each marker and the estimation of the position in the next 

frame presented itself and it was thought that this would make the algorithm faster and 

more efficient.  This idea became the Advanced K-Means Clustering and Tracking 

Algorithm and it involves finding the markers in the first few frames of the video with the 

Modified K-Means Clustering Algorithm, then by looking at the marker positions in the 

past few frames, an estimation of the position of the markers in the next frame is 

performed.  From engineering dynamics, only three points are needed to estimate the 

position of a point based on the velocities and acceleration.  By doing this, the 

computation speed is greatly increased and these results will be compared and discussed 

in Chapter 5. 

 

The solution begins by finding the markers from three consecutive frames using 

the same method as in the Modified K-Means Clustering Algorithm.  Once these marker 

positions are found, the velocity of each marker is determined by Equation 3.14, below: 

 

                                        

( ) ( 1)
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   ∆= =    − −   
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                                   (3.14) 

 

where x  is the X-coordinate of the centroids of the markers and y  is the Y-coordinate of 

the centroids of the markers at frame number index .  t∆  is the time in seconds between 

the two sequential frames.  xV  and yV  are the velocities in the x and y directions, 

respectively.  Figure 3.9, on the following page, represents the marker position situation 

for calculating velocity. 
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Figure 3.9:  Marker Position Situation for Calculating Velocity 

 

Once the velocities were found, Equation 3.15, below, was used to calculate the 

estimated position of the markers in the next frame: 
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                            (3.15) 

 

The final step in this solution is, of course, incorporating the acceleration into the 

process.  The acceleration of the markers can be found using Equation 3.16 and the 

expanded version, Equation 3.17: 
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          (3.17) 

Now, the estimated marker location in the next frame becomes Equation 3.18: 
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Figure 3.10 illustrates the estimate of a new marker location using velocity and  

acceleration. 
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Figure 3.10:  Estimate of New Marker Location Using Velocity and Acceleration 

 

3.4 Theoretical Approach to the Runway Detection Problem 

The problem of Runway Detection requires an entirely different way of thinking 

than does the problem of Marker Detection and Tracking.  The methods used to approach 

the Marker Detection problem are general algorithms adapted to perform the job of 

Marker Detection.  Since the Runway Detection problem is a more complex problem, the 

same architecture and use of non-specialized algorithms will not be sufficient to approach 

this problem because of the many variations of the image that could be presented to the 

algorithm because of the more uncontrolled environment that is encountered in this 

application.  Runway Detection is a problem which similarly involves filtering, but aside 

from that, the presence of a much higher-level problem exists.  This problem consists of 

deriving information relating to the location of a runway in an image frame from an 

entirely homogeneous color image.  This intensely complicates matters, especially for the 

filtering.  Given the complexity of this problem, Simulink  and the Video and Image 
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Processing Blockset® 60 and the Image Acquisition Toolbox® 63 was chosen solely for the 

purpose of solving this problem. 

 

There are essentially three processes that are required for this solution which are 

above and beyond the pre-processing functions previously mentioned in Section 3.1.  The 

first is a medium-level image processing function called ‘edge detection’.  There are 

several different types of edge detection routines but only one of them was needed for 

this research effort and it is covered in Section 3.4.1.  The second is a medium-level 

image processing function called ‘morphological opening’.  Morphological opening 

consists of two children functions called morphological dilation and morphological 

erosion.  All three of these functions will be covered in Section 3.4.2.  The third is a high-

level image processing function known as the Hough transform.  This is the basis for the 

solution to the runway detection problem and it is covered in Section 3.4.3. 

 

3.4.1 Sobel Edge Detection 

Edge detection is one of the most important fundamental operations in image 

processing and many applications rely solely on edge detection and, thus, would not be 

possible without it.  There are two main types of edge detection algorithms:  Gradient 

Based and Laplacian Based64.  The gradient based algorithms can be further broken down 

into three algorithms:  Sobel, Roberts, and Prewitt64.  In looking at a line in the gradient 

frame of mind, the values leading up to an edge and following an edge will always 

increase and then decrease.  This is true in a grayscale image or a binary image.  As a 

result of this, these gradient-based methods all use the same approach but they use 

different convolution matrices. 

 

The Laplacian based algorithms only consist of one algorithm that fits this 

description:  that is the Canny edge detector64.  The Canny edge detector finds edges by 

looking for the local maxima of the gradient of the input image, which it calculates from 

the derivative of the Gaussian filter64.  The three gradient based methods are very similar 

to each other, so similar in fact, that most of the time the eye cannot detect the difference 

in the lines that have been detected and almost 100% of the time, the computer software 
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will not perform any differently using any of the three methods.  For this reason, only the 

most common Sobel operator will be discussed in this section. 

 

The Sobel edge detector is a gradient-based edge detection operator.  The Sobel 

operator performs a 2-D spatial gradient measurement on an image and as such, it 

emphasizes regions of high spatial frequency that correspond to edges65.  Regions of high 

spatial frequency correspond to edges because an edge is not usually made up of a single 

line of pixels.  Rather, it is made up of a group of pixels whose intensity increases and 

decreases as the ‘line’ approaches, much like a car does when it is traveling over a 

mountain.  The peak represents the real line and the slope leading up to it is usually what 

needs to be filtered out.  This mountain peak analogy can be seen in Figure 3.11, below. 
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19 26 34 29 21 16 18 3 13 5

23 29 26 21 16 17 5 24 13 14

31 27 21 17 10 0 8 9 12 31

27 24 14 11 13 7 9 13 0 3

21 19 13 7 11 5 2 9 9 1
 

Figure 3.11:  Illustration of Line Definition in a Typical Image 

 

The Sobel operator consists of a set of convolution kernels.  These kernels are 

designed to bring out the vertical and horizontal gradients separately.  The definition of 

these kernels are shown in Equations 3.1965 and 3.2065, on the following page: 
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                                               (3.20) 

 

As stated before, these kernels are designed to respond maximally to edges 

running vertically and horizontally relative to the pixel grid.  The kernels can be applied 

separately to the input image, to produce separate measurements of the gradient 

component in each orientation.  This is the exact method that Matlab  uses.  The resultant 

images from applying the vertical kernel and the horizontal kernel to a test image of some 

grains of rice is seen on the following page in Figure 3.12a and Figure 3.12b, 

respectively.  These can then be combined together to find the absolute magnitude of the 

gradient at each point and the orientation of that gradient. The gradient magnitude is 

given by the following equation, Equation 3.2165: 

 

                                                2 2| | x yG G G= +                                                 (3.21) 

 

where xG and yG  are the individual resultant image matrices associated with each kernel 

and | |G  is the total gradient magnitude matrix.  It can be seen in Figure 3.12a that the 

vertical lines are darker and more well defined than the horizontal lines.  The same is true 

with Figure 3.12b with the horizontal lines being darker and more well defined than the 

vertical lines. 
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   (a) Vertical Kernel Applied                             (b) Horizontal Kernel Applied 

Figure 3.12:  Visual Example of Sobel Edge Detection Kernels Applied Seperately60 

 

Normally, the edge detection process would be complete with the calculation of 

the gradient magnitude, | |G , but Matlab  uses a slightly different approach to complete 

the edge detection process.  Once it applies both kernels to the original image, the 

resultant gradient magnitude is found using Equation 3.21, above.  Then, using a built-in 

threshold function, the background can be made black and the edges can be made white.  

This process essentially transforms the image into a binary image showing the edges 

only.  This is illustrated below in Figure 3.13, with the final product of the edge detection 

process.  This figure is the resultant image of the same grains of rice test image used 

above in Figure 3.12. 

 

 

Figure 3.13:  Visual Example of Sobel Edge Detection Final Product60 
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3.4.2 Morphological Filtering 

Morphology consists of a broad set of image processing operations that filter 

images based on shape masks.  These shape masks are called structuring elements; 

Section 3.4.2.1 describes the concept of a structuring element.  Based on the definition of 

the structuring element certain shapes in an image can be emphasized or de-emphasized 

depending on what the interest is.  This makes morphology a very useful filtering 

technique in operations where removing unwanted artifacts in the image is important in 

order to derive the correct information from the image.  There are eight different 

morphological operations supported within Matlab 60.  Of these eight, only three were 

used in this research effort and they will be described in Section 3.4.2.2 through Section 

3.4.2.4. 

 

3.4.2.1 Structuring Elements 

An essential part of any morphological filtering operation is the structuring 

element which is used to probe the input image.  Structuring elements consist of a two-

dimensional matrix filled with zeros and ones and the structuring element is always much 

smaller than the image it is being applied to64.  Just like a standard Cartesian coordinate 

system, the origin of a structuring element is the center pixel64.  This location also 

identifies the pixel of interest when the structuring element is being applied to the input 

image.  Furthermore, the pixels in the structuring element, which have the value of one, 

define the neighborhood64. 

 

Structuring elements can come in any shape desired.  Most structuring elements 

are created using a premeditated shape because the shape of the structuring element 

defines the type of filter that a morphological operation becomes.  Matlab  has some 

predefined structuring elements that reflect the most common elements used for noise 

filtering, feature extraction, and line detection.  These elements are in the shape of a line, 

a disc, a diamond, or a square.  The exact use of structuring elements will be described in 

detail in the forthcoming sections regarding each morphological operation.  Examples of 

these structuring elements can be seen on the next page in Figure 3.14.  Figure 3.14a is an 
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example of a diamond shaped element, Figure 3.14b is an example of a line shaped 

element, while Figure 3.14c is an example of a square element. 
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(a) Diamond (b) Line Shape (c) Square

Figure 3.14:  Example of Various Styles of Structuring Elements 

 

3.4.2.2 Morphological Dilation 

Morphological dilation is a process which allows a region of white pixels in an 

image to be able to grow in size.  This may be desirable in order to fill in holes or to join 

two regions together in an image.  The direction of growth can be adjusted by the design 

of the structuring element and this will be seen in examples below.  Set theory is often 

used in MV in order to describe what the functions are actually doing to the image to 

perform its task.  The definitions within Minkowski set theory will not be reviewed here, 

but set theory will be used to describe the individual functions.  The definition of dilation, 

in terms of set theory, is as follows in Equation 3.2264: 

 

                              b x
b B x X

Y X B X B B X
∈ ∈

= ⊕ = = = ⊕∪ ∪                                  (3.22) 

 

where Y  is the set of pixels with a value of one that make up the output image, bX  is the 

set of pixels with a value of one that make up the original image, and xB  is the set of 

pixels that make up the structuring element neighborhood.  The exact sequence for 

performing morphological dilation is as shown on the following page in Figure 3.15. 
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Input
Image

Scan image
and apply rules

for dilation

Output
Image

Define
Structuring

Element

Place origin of
structuring

element at first
pixel in the image

Is pixel a 1? YES

Continue to
next pixel

NO

Add neighborhood
pixels in the

structuring element
to the original image

 

Figure 3.15:  Flowchart Indicating Process for Morphological Dilation 

 

A visual example of morphological dilation will be presented in Section 3.4.2.4. 

along with an example of morphological erosion which, when combined, make up a 

morphological opening.  Please refer to Section 3.4.2.4 for a visualization of the dilation 

process. 

 

3.4.2.3 Morphological Erosion 

Morphological erosion is very similar to morphological dilation.  This process is 

meant to allow objects in an image to shrink.  This is desirable where a feature is 

comprised of many layers of pixels, such as a line, and this feature needs to be detected 

by some other algorithm.  This erosion can be used first to shrink the line down to one 

pixel thick, so that it is easier to detect as a line rather than an object such as a rectangle.  

This is used extensively in fingerprint matching algorithms where the lines from the 

fingerprint are shrunk to one pixel thick.  As with the dilation, the direction of shrinkage 

can be adjusted by the design of the structuring element and this will be seen, again, in 

examples below.  The definition of erosion in terms of set theory is as follows in 

Equation 3.2364: 
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                                       }{ : xY X B x B X= = ⊂○                                           (3.23) 

 

where Y  is the set of pixels with a value of one that make up the output image, X  is the 

set of pixels with a value of one that make up the original image, and xB  is the set of 

pixels that make up the structuring element neighborhood.  The exact sequence for 

performing morphological erosion is as follows in Figure 3.16. 

 

Input
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Scan image
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Output
Image
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Structuring
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Place origin of
structuring

element at first
pixel in the image

Is pixel a 1? Does structuring
element neighborhood

exist at the current
location?

YES

NO

Change value
of pixel of

interest to 0

Continue to
next pixel

YES

NO

 

Figure 3.16:  Flowchart Indicating Process for Morphological Erosion 

 

By looking at the flowchart, above, it can be seen that morphological erosion 

requires one more decision step than dilation does.  This is fairly insignificant, but it 

should be noted because even so much as one more processing step can cause a slightly 

longer processing time, especially in larger images.  As in the case of the morphological 

dilation, a visual example of morphological erosion will be presented in Section 3.4.2.4. 

along with the example of morphological dilation which, when combined, make up a 



 

 56

morphological opening.  Please refer to Section 3.4.2.4 for a visualization of the erosion 

process. 

 

3.4.2.4 Morphological Opening 

Morphological opening is a basic workhorse in image processing for noise 

removal and it can also be used to find certain shapes in the image that are defined by the 

structuring element.  Basically, morphological opening consists of first performing an 

erosion followed by a dilation.  The effect is that all of the stray pixels are removed by 

the erosion and then the object is regrown to resemble its original size and shape but 

without the ‘outlier’ noise pixels.  The definition of opening as defined by set theory is as 

follows in Equation 3.2464: 

 

                                       ( )Y X B X B B= = ⊕○                                            (3.24) 

 

where Y  is the set of pixels with a value of one that make up the output image, X  is the 

set of pixels with a value of one that make up the original image, and B  is the set of 

pixels that make up the structuring element neighborhood.  Because opening is simply a 

combination of dilation and erosion, a flowchart will not be presented. 

 

A slightly more advanced illustration depicting the use of opening for noise 

removal is presented on the next page in Figure 3.17.  It can be seen in this figure that 

there are several outlying pixels that are considered to be noise.  After the initial erosion 

is complete, almost all of the pixel information in the image has been lost.  Because of 

the shape of the structuring element and the nature of the process of dilation, after the 

dilation is complete, all of the important pixel information in the image is regained and 

the noise has been removed.  In this figure, the blue dots represent pixels that comprise 

objects who need to be separated from the noise in the image.  The pixels that are 

considered to be noise are depicted as green dots.  In this figure, the pixels that change 

state but are in the original image will have no color; this is because most of these pixels 

will come back in the second step.  It should be noted that when performing a noise-

filtering opening, the structuring element is almost always a 5×5 or a 9×9 matrix of ones.  
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In this simple example, a 3×3 structuring element is used.  As stated before, this is a very 

effective tool for noise removal in binary images and was used throughout this research 

to ‘clean up’ the image sequence in the pre-processing stage prior to the application of 

any higher level MV algorithms. 
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Figure 3.17:  Visual Example of a Simple Morphological Opening 

 

3.4.3 Line Detection Algorithms 

There are two possible methods that immediately present themselves when 

thinking or researching about line detection.  These methods are called edge detection 
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and the Hough transform.  Edge detection is a fairly simple routine that is easy to 

implement and this makes it a good candidate for such an application  But, edge detection 

is a primitive routine and its ability to yield consistent and reliable results is almost non-

existent.  This is where the Hough transform steps in.  The Hough transform is 

specifically a line-detecting algorithm.  Therefore, it is thought that it must incorporate 

some ideas that will make its implementation and rate of success much higher than that of 

the edge detection.  Both of these methods were probed for their feasibility of application 

to this problem of runway detection and the findings follow. 

 

Edge detection is one of the most fundamental aspects of image processing that 

could be used in the runway detection process.  If the image of the runway is looked at as 

edges or straight lines, the edges of the runways in particular stand out a great deal.  This 

is a great point, but other things also stand out such as the horizon, roads, rivers, and 

bridges because these things also have edges or lines associated with them.  These are the 

things that should be ignored when searching for the runway in the image.  This is fairly 

tough since when an edge detection routine such as the Sobel algorithm, which was 

described earlier, is performed, the edges are not sorted out automatically.  All of the 

edges are made equally as prominent and this makes edge detection very difficult to use 

by itself. 

 

The Hough transform on the other hand is considered to be a more specialized, 

higher-level image processing algorithm.  As such, it carries with it certain things that 

make it a fairly complex idea, yet easy to use and very effective.  The Hough transform 

uses a mathematical transformation in combination with a search for global maximums in 

the output matrix to perform the line detection.  After review of these two methods, it was 

decided not to attempt to rely on edge detection alone as the method for runway 

detection.  It is felt that it would be better to use edge detection as a low level filtering 

technique and use the Hough transform as the main line detection algorithm.  This is the 

approach taken in this solution. 
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3.4.3.1 Hough Transform 

The Hough transform uses a mathematical transformation for detecting lines in an 

image.  It is essentially a method for finding straight lines hidden in large amounts of data 

which is the same thing as line detection.  The difference in the two methods is that with 

the Hough transform a certain number of lines can be detected based on their strength and 

a subsystem can be implemented to take care of false positives.  This description makes it 

perfect for the purpose presented here regarding runway detection.  The underlying 

principle of the Hough transform is that there are an infinite number of potential lines that 

pass through any point, each at a different orientation.  The purpose of the transform is to 

determine which of these theoretical lines pass through the greatest number of features in 

an image. 

 

In order to determine that two points lie on the same potential line, it is necessary 

to create a representation of a line that allows meaningful comparison and this is what the 

Hough transform does.  In the standard Hough transform, each line in the original image 

is represented by two parameters called rho ( ρ ) and theta (θ ), which represent the 

length and angle from the origin of a normal to the line in question.  In other words, a line 

is described as being at an angle 90 degrees from θ , and being ρ  units away from the 

origin at its closest point.  See Figure 3.18, below, for an illustration of the description of 

how the Hough parameters relate to the original image space. 

 

 

 

 

 

 

 

  

 

Figure 3.18:  Relationship of Hough Parameters to Original Image Space 
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By transforming all of the possible lines through a point into this coordinate 

system, which means calculating the value of ρ  for every possible value of θ , a 

sinusoidal curve is created which is unique to that point.  This representation of the two 

parameters is referred to as the Hough space.  If the curves corresponding to two points 

are superimposed, the locations in the Hough space where they cross correspond to lines 

in the original image that pass through both points.  An example image of a straight line 

with some noise is shown in Figure 3.19, below.  This image was used to perform a 

simple Hough transform for illustration purposes.  The illustration of Hough space with 

points on the straight line in Figure 3.19 represented as sinusoids is found below, in 

Figure 3.20. 
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Figure 3.19:  Example Image Used to Perform Simple Hough Transform 

 

This figure is of a simple line drawn with a drawing program.  The points used to 

calculate the Hough lines in Figure 3.20, on the next page, are shown by the red, blue, 

and green circles.  These three points correspond to three sinusoids in Hough space in 



 

 61

Figure 3.20.  The point in which these three sinusoids cross represent a single ρ  and θ  

value.  This is also called a Hough peak.  In this example, the Hough peak would have a 

value or strength of three because three sinusoids are crossing at this point.  If the inverse 

transform were to be applied, the endpoints of the line in the input image could easily be 

found and plotted.  This is the exact sequence of operation of the Hough transform. 
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Figure 3.20:  Hough Space Resulting From Hough Transform 

 

The implementation of the Hough transform is not complex, mathematically 

speaking.  In particular, the Hough transform is described by Equation 3.2564, below: 

 

                                        cos( ) sin( )x yρ θ θ= +                                              (3.25) 
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where x  is the X-coordinate of the pixel of interest, y  is the Y-coordinate of the pixel of 

interest, and θ  is the range of values which are used in the calculation to get a 

corresponding list of ρ  values. 

 

Once a list of ρ  and θ  values are compiled for one single white pixel on the 

input image, the sinusoid is plotted in the Hough space.  This process of calculating and 

plotting sinusoids is continued until sinusoids corresponding to the ρ  values calculated 

from the corresponding discrete range of θ  values are plotted in Hough space for every 

white pixel in the image frame.  Once this is complete, a function, which determines 

maximums of values or strengths of peaks in the Hough space, is implemented, which 

scans the Hough space and will find the specified number of Hough peaks based on a 

threshold.  Each peak in the Hough space corresponds to a place where many sinusoids 

cross at one point.  This point represents a specific ρ  and θ  value, which inversely 

corresponds to a line in the original image.  A flowchart highlighting this process of line 

detection is shown in Figure 3.21, below. 
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Figure 3.21:  Implementation of Hough Transform to Detect Straight Lines 
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Chapter 4 

Experimental Procedures 

 
4.1 Overview of Experimental Procedures 

The experimental procedures necessary to address the problems required not only 

the development of software algorithms to accomplish the objectives outlined in Section 

1.3 but also, the application of this software using real hardware in a laboratory setting.  

This provides an advantage in the level of assessment that can be attained from this 

research.  By using real hardware and real images, many more issues are addressed than 

would be if a virtual image were generated and used.  The experimental procedures for 

the two problems addressed in this research effort can be described in two sections.  The 

first section, Section 4.2, includes the hardware and software used for the Marker 

Detection and Tracking problem.  More specifically, Section 4.2 contains the hardware 

descriptions, the hardware setup, and the full description of the implementation of the 

Marker Detection and Tracking algorithms.  The second section, Section 4.3, includes the 

hardware and software used for the Runway Detection problem.  This section, like 

Section 4.2, also contains the hardware descriptions, and hardware setup, and the full 

description of the implementation of the Runway Detection scheme as well as an in depth 

description of the graphical used interface (GUI) used to control the simulation. 

 

4.2 Experimental Procedures for the Marker Detection and Tracking Problem 

The experimental procedures for this problem consist of a combination of 

hardware selection/setup and software setup.  The merging of the software with the 

hardware is very much dependent upon the exact hardware setup that is and exactly what 

type of information can be gathered from the hardware outputs.  This is an indication as 

to how much work the software will actually have to perform in order to accomplish the 

goals set forth for this problem.  The overview of this blending of the hardware and 

software for the Marker Detection and Tracking problem can be seen in Figure 4.1, on 

the following page. 
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Figure 4.1:  Marker Detection and Tracking Experimental Procedures 

 

4.2.1 Hardware Used for the Marker Detection and Tracking Problem 

This section is dedicated to the physical and functional description of each piece 

of machine vision hardware used to address the Marker Detection and Tracking problem.  

Through this, the function, importance, and experimental procedures for each part as it 

relates to the problem will be outlined. 

 

4.2.1.1 Description of Hitachi CCD Camera and Fujinon Lens 

The camera used in the laboratory experiments for this research is a Hitachi 

brand, model KP-M22A.  The KP-M22A is a compact, lightweight, black and white 

camera.  The camera uses a high grade ½” charge coupled discharge (CCD) chip which 
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produces a usable resolution of 768 by 494 pixels.  The camera is powered by a +12 volt 

supply which is provided through the video bus cable from the frame grabber card.  The 

parameters describing the cameras features are listed below in Table 4.1. 

 

Table 4.1:  Hitachi KP-M22A Specifications 

Imaging Device ½” Interline CCD 
No. Of Effective Pixels 768(H) x 494(V) pixels 
Sync System Internal/External (Automatically Switched) 
Sensitivity Switching FIX, AGC, or MANUAL 
Gamma Correction 1 or correction 
Electronic Shutter Modes 1/100 to 1/10,000 
External Trigger Field on Demand 
Lens Mount C-Mount 
Power Supply +12 VDC 
Dimensions 29(H)×29(W)×62(D) mm 
Mass 100 g 

 

This camera has many features which include it in the list of high end industrial 

type machine vision cameras.  All of these features are not needed for the purpose of this 

research but, the ability of the camera to have a high shutter speed, gamma correction, a 

½” CCD and be small and lightweight were the determining factors in the purchase of 

this camera.  For these experiments the use of the frame synchronization system was not 

used, nor was the external trigger options.  The gamma correction was set to correction 

which applies a gamma correction of 2.4 and satisfies the Matlab® image standard of 

using a gamma corrected image.  The shutter speed is dual in-line package (DIP) switch 

selectable and it was set to 1/100 of a second, which is acceptable for almost any 

conditions found in the lab environment.  The sensitivity was set to FIX so as not to allow 

the camera to adjust the video gain to control the brightness.  The reasoning behind this is 

that the brightness was to be controlled by the aperture of the lens which is easier to 

adjust and control by the user.  The camera is shown on the following page in Figure 4.2. 
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Figure 4.2:  Hitachi KP-M22A Machine Vision Camera 

 

The lens attached to the camera is a lens designed for general machine vision 

applications.  The lens was selected so that the field of view would be approximately 4 ft. 

by 3 ft., which is appropriate for the type of simulations being conducted in a laboratory 

environment.  The lens is a Fujinon brand, model DF6HA-1; it has a 6 mm focal length 

and it is designed for a camera which uses a ½” CCD.  The full details of the Fujinon lens 

is found below in Table 4.2. 

 

Table 4.2:  Fujinon DF6HA-1 Specifications 

Application For ½” format CCD 
Focal Length 6 mm 
Focus Range  ∞  - 0.1 m 
Field Angle 56° Horizontal/44° Vertical/67° Diagonal 
Field of View @ 1 meter 1.06 m (W)×0.79 m (H) 
Iris Operation Manual 
Focus Operation Manual 
Mass 55 g 
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The color filter attached to the lens, shown in Figure 4.2, is a type of mechanical 

optical filter which is designed to enhance the red part of the visual spectrum of light.  

The basis for the use of this type of filter is to reduce the number of processing steps in 

software.  By using this hardware type of filter, any red light that is viewed by the camera 

will show up as white to the black and white camera.  This greatly intensifies the red 

markers in the image of the tanker and allows the software to take a more ‘economical’ 

approach in finding the markers. 

 

4.2.1.2 Description of Euresys Picolo Frame Grabber PCI Card 

The Picolo frame grabber peripheral component interface (PCI) card was selected 

for this research because of its outstanding price/quality ratio.  The Picolo is a full 

featured frame grabber capable of capturing images in color or monochrome format in 

resolutions up to 768 by 576 pixels.  The card can capture individual images as well as 

video sequences and write them to the computer’s memory.  This model of frame grabber 

card is designed to drastically simplify any task associated with machine vision.  The 

Picolo is suitable for single camera operations but it supports three different input formats 

at a frame rate of up to 30 frames per second.  The card also has four input/output (I/O) 

lines that can be used as hardware triggers for image acquisitions or for triggers for 

external hardware.  The Euresys Picolo Frame Grabber PCI Card is shown on the 

following page in Figure 4.3. 
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Figure 4.3:  Euresys Picolo Frame Grabber PCI Card 

 

4.2.1.3 Description of Machine Vision Research Computer 

The MV research computer was purchased in pieces and assembled into the 

current machine.  The purpose of buying separate pieces was to be able to buy the fastest 

components possible so that the computer would be well suited for MV research 

applications because it is widely known that MV applications take a great amount of 

processing power. 

 

The computer was built using Intel framework utilizing a Pentium 4 class 3.20 

gigahertz (GHz) Prescott processor seated in an Micro-Star International (MSI) brand, 

model 915G motherboard.  This motherboard and processor combo allows the front side 

bus (FSB) to run at 800 megahertz (MHz) which was the fastest front side bus made at 

the time the machine was assembled.  The speed of the FSB is an integral part of the 

speed of the computer because the FSB is the place where passing of information from 

memory to the main processor occurs.  The machine is also using 512 megabytes (MB) of 

Double Data Rate 2 (DDR2) Synchronous Dynamic Random Access Memory (SDRAM) 
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running at a speed of 2700 MHz.  This is another very important part of the computer 

which must be fast to ensure the data transfer between internal parts is not bottlenecked 

in any way.  The last part that must be fast is the hard disk drive.  The hard disk drive in 

the machine is a special edition Western Digital 80 gigabyte (GB) hard drive running on 

a serial advanced technology attachment (SATA) bus.  The SATA bus type of drive was 

selected because its speed in data transfer is superior to other previously used hard drive 

busses such as ATA 100 and ATA 133.  This drive is a special edition drive because it 

has an enhanced seek time which further reduces the time it takes to store and retrieve 

data through the SATA bus. 

 

The machine is also outfitted with a 17” flat screen monitor to save space.  Its 

wireless mouse and keyboard enable the software to be manipulated while the user is 

standing next to the experiment.  The machine vision computer system can be seen in 

Figure 4.4, below. 

 

 

Figure 4.4:  Machine Vision Research Computer 
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4.2.1.4 Model Aircraft and Camera Mount Apparatus 

The model aircraft used in the laboratory simulations is a model of a Boeing 747 

which is a typical tanker style aircraft.  This aircraft was mounted into a sheet of blue 

foam board which was meant to emulate the color of the sky as a background.  These 

aspects of the model aircraft and mount were attempts at achieving as much detail and to 

be as close to reality as possible in the laboratory environment. 

 

The blue foam also has an axis hard mounted into the underside which allows it to 

be rotated about the longitudinal body axis of the aircraft.  This allows tests and 

measurements to be performed on the part of the software which calculates the bank 

angle of the tanker using the marker positions.  To validate the measurements, a large 

diameter compass was created and fixed to the table to allow visual angle measurements 

to verify the bank angle measurements given by the software.  The aircraft’s light 

emitting diode (LED) system is very simple, involving one resistor and a power 

distribution bus.  The LEDs are powered by a single nine volt battery which must be 

wrapped in black tape to eliminate the glare off of its metal case from the overhead lights.  

The rotational axis is also removable such that the aircraft can be translated as well as 

rotated in order to evaluate the performance of other parts of the software.  The aircraft, 

mount, LED system, and compass is seen on the following page in Figure 4.5. 
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Figure 4.5:  Model Tanker, Mount, LED System ,and Compass 

 

The camera is mounted on a standard camera tripod which is hovering over the 

rear of the tanker model.  This tripod is adjustable in height and the camera can adjust in 

many angles in order to ensure that the camera plane is parallel with the table, which is 

the most favorable position.  The tripod and camera can be seen in Figure 4.6, on the 

following page. 
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Figure 4.6:  Tripod and Camera In Position Over The Model Tanker 

 

Figure 4.7, on the following page, shows the typical view from above for the 

laboratory camera and model tanker equipment. 
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Figure 4.7:  View From Above the Laboratory Camera and Model Aircraft 

 

4.2.1.5 Camera Mount Noise Creation 

In order to test the robustness of the software a source of noise was needed that 

could impact the stability of the camera such that the accuracy of measurements taken by 

the software was affected.  It was determined that a good source of image noise would be 

vibrations.  To impact the camera with vibrations, a source was needed.  This source 

came in the form of a small electric motor.  A small off-center weight was mounted on 

the motor such that when the motor was energized, a vibration was created.  This motor 

was mounted to the top of the tripod, above the camera, such that the vibrations were 

intensified by the moment arm between the motor mount and the camera mount.  The 

specifications of the motor are not known since it was a ‘junkbox’ motor but modeling of 

the noise was performed and it is described below.. 

 

To measure the vibrations, an inertial measurement unit (IMU) was employed.  

Since, the lab had ready supply of IMUs, the procurement of one for this purpose was not 
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difficult.  The IMU used is a Crossbow brand, model VG400.  The VG400 was powered 

by an external power supply and it was mounted to the camera tripod as close to the 

camera as possible in order to attempt to accurately measure the vibrations that the 

camera was encountering.  The VG400 was connected to the machine vision research 

computers serial port and the supplied software was used to record the accelerations felt 

by the IMU and camera.  These accelerations were later used to quantify the vibrations 

and will be covered in more detail in Chapter 5.  Figure 4.8, below shows a picture of the 

vibration motor attached to the tripod and Figure 4.9, below shows a picture of the IMU 

attached to the camera tripod. 

 

 

Figure 4.8:  Vibration Motor Attached to Tripod 

 

 

Figure 4.9:  Crossbow IMU Mounted With Camera On Tripod 
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4.2.1.6 Limitations of the Marker Detection Hardware Setup 

Before the experimental procedures are discussed further, the limitations of this 

setup should be discussed.  Due to the fact that these experiments were performed in a 

laboratory environment which was fairly controlled, there are some issues that were not 

fully explored due to these limitations.  The limitations are listed below. 

 

1. Lighting conditions were controlled – Because the lighting conditions 

were controlled, an almost perfect depiction of the markers was available 

all of the time and this is certainly not indicative of the conditions 

experienced in a real situation.  Possible solutions to this are to have the 

experiment inside an area where the lighting could be randomly generated 

such that the brightness of the lights varies independently of anything else.  

This would give a more realistic effect to this limitation. 

 

2. Scale of aircraft model with respect to the size of the markers – The scale 

of the aircraft w.r.t the size of the markers was certainly not proportional.  

The availability of LEDs that would be size appropriate for the scale of the 

tanker were not readily available, therefore, the LEDs that were available 

were used and thus created an unfairness in that they are larger than could 

be expected in a real situation.  This limitation enabled the software to 

detect the markers more easily than would probably occur in a real 

situation.  This limitation could be rectified by obtaining information 

relating to the size of markers on a real tanker and scaling them 

appropriately. 

 

3. Distance of camera to tanker – The distance of the camera to the tanker 

was also not proportional.  This limitation also allowed the markers to be 

more easily detected than would normally be expected in a real situation 

due to the increased size of the tanker in the image frame.  This limitation 

could be eliminated by either using a taller tripod or using a smaller 

camera. 
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4. Tanker had limited motion – The tanker was not able to be mounted on 

any kind of motion actuation system and therefore was left to be moved by 

hand in order to simulate the motion that could be encountered in flight.  

This simulated motion was certainly not what could be expected in a real 

situation due to the motion being much greater.  Since the motion was 

much greater, the tests were unfair to the software in that they presented 

much greater motion than would normally be encountered.  This limitation 

could be removed by attaching the tanker to an motion actuation system 

that would allow the tanker to move like a real aircraft in flight. 

 

5. Tanker had a limited number of markers - Since the LEDs were much 

bigger than the tanker in scale, the number of markers was limited by 

simply not having enough area on the tanker to place more markers.  This 

limitation presents an easier problem to the MV system than would 

normally be encountered in a typical AAR situation.  This problem could 

be solved by simply increasing the size of the tanker model or decreasing 

the size of the LEDs. 

 

These limitations have a direct effect on the real life performance of this 

algorithm.  Therefore, these issues should be addressed before the results presented in 

this research are used for determining real life applicability of such an algorithm. 

 

4.2.2 Software Used for the Marker Detection and Tracking Problem 

The software used to address the Marker Detection and Tracking problem consists 

of two different methods, both of which  accomplish the same result.  The first method, 

whose theory was described in Section 3.3.1, is the Modified K-Means Clustering 

Algorithm.  The second method, whose theory was described in Section 3.3.2, is the 

Advanced Modified K-Means Clustering Algorithm. 

 



 

 77

4.2.2.1 Modified K-Means Clustering Algorithm 

In order to address the problem of Marker Detection and Tracking, the 

assumptions on which to base the software framework using the Modified K-Means 

Clustering Algorithm must be determined.  In order to make this algorithm robust and 

have the ability to be used in a fairly uncontrolled environment, the assumptions must not 

be strictly confined.  Keeping this in mind, the following list of assumptions was 

assembled for this problem. 

 

Assumptions for the Modified K-Means Clustering Algorithm: 

1. The number of markers is always fixed, 

2. The wing tip markers must have the greatest distance to each other, the 

horizontal stabilizer markers must have the next greatest distance to each 

other, 

3. The bank angle of the aircraft in question can never exceed 85 degrees. 

 

Most of these assumptions fall into the ‘more than acceptable’ category in a real 

world environment, except for Assumption #1.  This assumption is not favorable in a real 

world environment due to weather conditions or other factors that may exist that could 

obscure one or more markers.  Although this assumption is a tough one to guarantee, it is 

required by the software because of the use of the K-Means Clustering Algorithm.  The 

number of objects being searched for is the only constraint that must be fixed in the K-

Means Clustering Algorithm.  Therefore, for this research, this constraint must be 

applied. 

 

This algorithm performs four basic image processing functions:  Image 

Acquisition, Image Segmentation, Pixel Grouping, and Marker Labeling.  The Image 

Acquisition is very straightforward and consists of simply grabbing an input image and 

digitizing it.  Image Segmentation refers to, of course, discretely segmenting the image 

into parts that the software can discern useful information from.  The Pixel Grouping 

function refers to physically constructing the desired number of groups of pixels, each 

representing one marker, from the global list of white pixels found in the image.  The 
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grouping function then calculates the centroids of each group and designates each 

marker’s location as the location of the centroid.  The Marker Labeling function gives 

each marker centroid location a name associated with the correct location on the aircraft.  

This labeling is necessary in order to tell if a certain group of pixels belongs to say, the 

left horizontal stabilizer tip or the vertical stabilizer tip.  This is an essential operation if 

the algorithm is to be used with a pose estimation algorithm. 

 

The first section of the software performs the image acquisition.  A typical input 

image of the tanker aircraft with LED markers illuminated is shown in Figure 4.10, 

below. 

 

 

Figure 4.10:  Typical Input Image of the Tanker Aircraft with LEDs Illuminated 

 

Once the image acquisition is complete, it is followed by the Image Segmentation 

function, which, in itself, consists of two parts:  Color Space Conversion and 

Thresholding.  These two parts are described in detail in the following paragraph. 

 

The first part of Image Segmentation is the color space conversion.  A binary 

color space conversion is performed on the input image which converts it from a 
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640×480×3 grayscale image (pixel values range from 0 to 255) to a 640×480×1 binary 

image (pixel values range from 0 to 1).  This operation was explained in detail in Section 

3.2.3.2.  Once this is complete, a thresholding operation is performed to accomplish basic 

image segmentation.  This thresholding is designed such that all of the background pixels 

will change to a value of zero or black and all of the pixels representing the light markers 

will change to a value of one or white.  This principle was explained in detail in Section 

3.2.5.  Once the thresholding is complete, the image is left in a state where all five 

markers are clearly defined by small groups of white pixels surrounded by an all black 

background.  The Image Segmentation part of this algorithm is thus complete.  An 

example of the image after the segmentation portion of the software is complete is seen 

below, in Figure 4.11. 

 

 

Figure 4.11:  Mid-Stream Image After Performing Image Segmentation 

 

The second main part of the algorithm, the Pixel Grouping section, is now ready 

to be performed.  The pixels are grouped by first examining the X-coordinate and based 

on a distance threshold, the pixels are separated into distinct groups.  Once the pixels are 

grouped by X-coordinates, then the Y-coordinate is examined.  This can sometimes result 

in a more detailed grouping.  This only occurs when the aircraft is at a bank angle which 



 

 80

allows two markers to line up vertically.  If it were not for this condition, the software 

could rely on the X-coordinate based grouping alone.  In order to visualize how this 

problem can occur, refer to the list of white pixels is shown below in Table 4.3. 

 

Table 4.3:  Common Example of List of White Pixels Obtained 

97, 350 182, 91 
97, 351 183, 251 
180, 250 183, 252 
180, 251 183, 90 
181, 250 183, 91 
181, 251 184, 252 
182, 250 184, 253 
182, 251 184, 91 
182, 252 184, 92 
182, 90 … 

 

In Table 4.3, a representative partial list of white pixels is shown and the colors 

represent the actual clusters that each pixel belongs to.  The magenta pixels are the 

‘Marker One’ pixels, the blue pixels are the ‘Marker Two’ pixels, and the green pixels 

are the ‘Marker Three’ pixels.  If the grouping is based solely on the X-coordinate, it can 

be seen in this table how the pixels could be confused in their respective groups.  In this 

example, all of the pixels in blue and green would have been grouped as one marker 

cluster, but by looking at the Y-coordinates it is easy to see that there is a large void 

between the two groups of Y-coordinates.  The examination of the Y-coordinate allows 

the more detailed grouping in this case, thus creating three groups and not two. 

 

Once the Pixel Grouping section is complete, the Marker Labeling section of the 

algorithm is performed.  This is the last step in the Modified K-Means Clustering 

Algorithm.  The Marker Labeling section of the algorithm is based upon a simple 

assumption about most aircraft, Assumption #2 in the list of assumptions.  This 

assumption basically states that in most aircraft, the wings are always the longest 

‘extensions’ from the centerline of the aircraft and they are always longer than the 

horizontal stabilizer.  This is especially true for tanker style aircraft due to their long 

wingspan and this assumption must not be violated to ensure proper labeling is taking 
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place.  This will not be a problem because the aircraft is very unlikely to change its 

configuration in flight in such a way to violate this assumption, especially since tankers 

are non-reconfigurable aircraft.  Even so, if an aircraft design is presented in which this 

assumption is broken, the software can easily be adjusted to accommodate the 

configuration of the new aircraft to ensure proper labeling of the markers.  Assumption 

#3 is also very important in this labeling process.  If this assumption is violated, the 

markers may be labeled wrong from the start or may become labeled wrong.  The exact 

surfaces they represent will not be affected but the fact that they are on the left or right 

side of the aircraft will be affected.  This will be explained in more detail in the following 

paragraphs. 

 

Using these two assumptions, the markers are labeled by calculating the absolute 

distance combinations for all five markers.  This means the distance from ‘Marker One’ 

to the other four markers will be calculated and so on, until all of the combinations have 

been calculated.  These combinations consist of 10 different distance calculations.  Along 

with these calculations, the marker numbers being used in the calculation are stored with 

each distance.  In order to find the wing, the largest distance is found by using the 

maximum function within Matlab®.  Once this value is found, the list of 10 distances is 

scanned for this one particular distance.  When it is found, the marker numbers associated 

with that particular distance calculation are retrieved and the two marker numbers and 

their positions are known.  The software can now positively say that those two markers 

belong to the wing tips.  Once the wing tips are identified, the algorithm removes all of 

the distance calculations from the list that involved the two now identified wing tip 

markers, reducing the list to only three distances instead of 10.  Then, the same method is 

used to find the horizontal stabilizer markers, using the maximum distance found in the 

now updated list.  Once the horizontal stabilizer markers are identified, there is only one 

marker left and it is thus identified as the vertical stabilizer marker. 

 

The software will distinguish between left and right hand side markers.  This is 

accomplished two ways:  one way has to do with how the image is scanned left to right, 

always encountering the left markers first, the second way is the use of Assumption #3.  
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It cannot be positively stated that the aircraft in question will never exceed 85 degrees of 

bank angle, but if this occurs, there are many more important issues to worry about than 

trying to approach or follow another aircraft.  In Figure 4.12, below, the aircraft is shown 

in a radical attitude of approximately 85 degrees of bank angle and the markers are still 

being labeled correctly.  Note that the method of labeling the markers allows the left and 

right sides to be distinguished while also labeling the wingtips, horizontal stabilizer, and 

the vertical stabilizer.  The red markers are used to indicate the right side, the green 

markers are used to indicate the left side, and the blue marker is for the center.  The 

marker shapes represent the different locations on the aircraft thus, the wing tips are 

represented by stars, the horizontal stabilizer tips are represented by circles, and the 

vertical stabilizer is represented by a diamond.  The Matlab code for this algorithm can be 

found in Appendix A. 

 

 

Figure 4.12:  Typical Output Image with Aircraft Roll Angle ≈ 85º 

 

Possibility of Loss of Marker Visibility 

 

Upon review, a point was made that the possibility exists for one or more of the 

markers on the tanker to become obscured by the refueling boom during the refueling 

process.  A marker may also disappear due to being damaged or burnt out.  It was 

previously mentioned that when using the K-Means algorithm, the only thing that needed 
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to be set was the number of clusters being searched for.  This obviously presents a 

problem during the time when a marker would be obscured.  Therefore, some changes 

were made to the Modified K-Means Clustering Algorithm to make it robust to this 

problem. 

 

In the previous version of this software, the code for-looped through the marker 

detection section, one marker at a time up to the number of desired markers.  If a marker 

did not exist, the code would halt due to the lack of a marker in the image frame.   In this 

version of the software the number of clusters to be found are not set and a while loop is 

employed which will find any number of clusters instead of a set number.  This has 

proven to be an effective way to deal with any number of markers including the loss or 

gain of them. 

 

The use of this method of finding the clusters did present other problems.  In the 

previous version of the software, the labeling of the markers was performed by 

calculating the distance between every possible pair of markers and determining which 

set of markers belong to the wingtips first, the stabilizer tips secondly, and the rudder was 

last.  This order was chosen because the array of calculated distances could be searched 

for the maximum distance first, which should be attributed to the wingtips and then those 

distances which included the now defined wingtip markers would be removed from the 

array and the list would be searched again.  On this subsequent search, the stabilizer tips 

would be found because they would now be the largest distance in the list.  This 

continued until there was only one marker left in the list and that would be defined as the 

rudder.  This scheme of labeling will not work if a loss or gain of marker situation is 

presented.  Due to the fact that the marker could present itself anyplace in the frame due 

to the bank angle that the tanker could achieve, there is no way to label the markers using 

the hierarchical  method that was used previously.  A more advanced points matching and 

labeling algorithm50,51,52,53,54 would have to be used in order to label the markers 

accurately.  The addition of such a labeling algorithm was not within the scope of this 

research effort and thus was not attempted.  This method, when compared to the previous 

method, is very much in contrast in that it does not require any assumptions.  With the 
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implementation of the while loop the previous Assumption #1 is no longer needed and 

since there is no labeling algorithm employed, then Assumption #2 and Assumption #3 is 

not needed as well. 

 

In order to test this software, the model aircraft apparatus had to be modified to 

allow an additional LED and a switch that could activate and deactivate the LED at will.  

This type of setup was used to record two additional videos in which the tanker was in 

motion with the LED disappearing and reappearing.  These videos were used to evaluate 

the computational workload of the software and to visually validate that it was working 

properly.  These results will be shown in Section 5.1.  The Matlab code for this more 

robust algorithm can be found in Appendix B. 

 

4.2.2.2 Advanced K-Means Clustering and Tracking Algorithm 

Once the Modified K-Means Clustering Algorithm was created, the Advanced K-

Means Clustering and Tracking Algorithm was simple to implement.  Its implementation 

consisted of adding a separate set of instructions to the initial piece of code that could 

calculate the velocity and accelerations of the markers that were found from the last three 

frames of video.  Before these instructions could be solidified, the assumptions governing 

the software must be determined.  The assumptions governing the Advanced K-Means 

Clustering and Tracking Algorithm follow. 

 

Assumptions for the Advanced K-Means Clustering and Tracking Algorithm: 

1. The number of markers is always fixed, 

2. The wing tip markers must have the greatest distance to each other, the 

horizontal stabilizer markers must have the next greatest distance to each 

other, 

3. For the initial conditions, the bank angle of the aircraft in question can not 

be greater than 85 degrees. 

 

In examining the assumptions outlined above, the only difference between the 

Modified K-Means Clustering Algorithm and this algorithm is that the aircraft in question 
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can now exceed 90 degrees of bank angle but not initially.  This is a direct result of the 

implementation of the tracking part of the algorithm and this will be explained in detail in 

the following paragraphs.  In order to implement the additional code for this version of 

software, the original piece of code was changed to run for only three time steps, after 

which the whole scanning of the image was eliminated and only small areas around the 

estimated positions were scanned for white pixels.  This software was also written, first, 

to only use the marker velocities and no acceleration calculations at all, thus utilizing 

Equation 4.1: 

                                  
( )( 1) ( )

( )( 1) ( )
x

y

V indexx index x index
t

V indexy index y index

+     = + ∆    +     
                              (4.1) 

 

where x  is the X-coordinate of the centroids of the markers and y  is the Y-coordinate of 

the centroids of the markers at frame number index .  t∆  is the time in seconds between 

the two sequential frames.  xV  and yV  are the velocities in the x and y directions, 

respectively.  This was implemented to give a middle baseline for comparison of the 

tracking improvement from using no inertial information (like in the Modified K-Means 

Clustering Algorithm), to using only velocity and, finally, to using both velocities and 

accelerations.  These situations will be evaluated in Chapter 5. 

 

Once the position is estimated using either Equation 4.1 or 4.2, below, the 

software will calculate a range of X and Y coordinates, creating a processing window, 

relating to each marker.   

 

        2
( ) ( )( 1) ( ) 1

2( ) ( )( 1) ( )
x x

y y

V index A indexx index x index
t t

V index A indexy index y index

+       = + ∆ + ∆      +       
          (4.2) 

 

The concept of the processing window is simple and it is the heart of the expected 

increase in computational efficiency in this version of the software.  This concept relates 

to the scanning of the image for white pixels.  In the previous version of the software, the 

entire image was scanned and searched for white pixels.  In this version, the entire image 
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is scanned only three times, during the initial three frames of video.  Once this is finished, 

the marker positions are estimated and then only a small area around the estimated 

position, based on a fixed square search area, is scanned on the subsequent image.  This 

reduces the number of pixels to be scanned from about 300,000 in a 640 pixel ×480 pixel 

resolution image to about 500 pixels using a search area size of 10×10.  This relates to 

scanning only 0.16% of the image compared to previously scanning 100% of the image. 

 

Furthermore, by scanning only the areas around the estimated marker positions, 

the calculation of the distances between the markers used to determine the labeling of 

each marker can be eliminated.  It is because of this that the algorithm can be accelerated 

even further.  This further acceleration is the result of the marker positions being 

estimated and tracked, having no chance of being confused with any other markers on the 

screen.  Once the markers are labeled during the first three frames, the algorithm then 

tracks their labels along with the estimated and actual marker positions and never has to 

perform the labeling algorithm again.  This advantage of tracking the labeled markers 

explains how the aircraft in question can now roll greater than 85 degrees and the marker 

still be labeled accurately.  The reasoning behind Assumption #3 is now clear.  If this 

assumption were to be violated in any way when the software is activated (within the first 

three frames), the left and right markers would be confused and would continue to be 

tracked in the confused manner.  Again, the likelihood that the aircraft would be banked 

more than 85 degrees during this time is very low. 

 

As previously mentioned, the range of X and Y coordinates used for creating the 

processing window is based upon a fixed square search area.  This search area can be 

adjusted depending on the accuracy of the estimates being made.  If the estimates are not 

well correlated with the actual positions, then the search area will need to be made larger 

to account for the lack of accuracy in the estimates.  This search area size relies greatly 

on the processing speed of the MV computer system.  If there is much lag between 

frames, then the motion information used to perform the velocity calculations may be 

inaccurate due to frequent motion changes between frames, when the computer is not 

‘looking’.  If this is the case, the processing window will need to be made larger to 
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accommodate for the appropriate conditions.  Conversely, if the processing time is very 

fast, the motion of the markers can be very diverse in speed and direction and the 

processing window can be quite small while still finding the markers accurately.  This is, 

of course, the desired condition. 

 

This algorithm is the result of a build up of ideas leading to this solution.  Many 

aspects of image processing have been used in this algorithm and these have already been 

mentioned earlier in Section 3.2 and Section 3.3.  Instead of developing a micro level 

flowchart to detail the operation of this algorithm, a macro level flowchart, shown on the 

following page in Figure 4.13, will describe the process used to perform the Advanced K-

Means Clustering and Tracking Algorithm.  The Matlab code for the Advanced K-Means 

Clustering and Tracking Algorithm can be found in Appendix C. 
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Figure 4.13:  Macro Level Flowchart - Advanced Clustering and Tracking Algorithm 

 

4.3 Experimental Procedures for the Runway Detection Problem 

Like the Marker Detection and Tracking problem, a blend of hardware and 

software tools were used to address the goals associated with this problem.  For this 

problem though, the software is not dependent upon the hardware setup at all.  The only 

duty of the hardware is to provide an input video for the software to post-process.  This 

made the construction of the software somewhat easier in that there were no internal 

hardware/software interaction issues to deal with.  An overview of the experimental 

procedures required to address the Runway Detection problem is shown on the following 

page in Figure 4.14. 

Image 
Acquisition 

Filtering provided by 
color level conversion, 

thresholding, and erosion. 

Clustering algorithm finds 
marker locations for the first 
three frames of input video. 

Labeling algorithm labels the markers 
found in the first three frames. 

Velocity and Acceleration calculations 
are performed and estimated marker 
locations are calculated and stored 

Processing window boundaries are calculated 
and actual marker centroid locations are 

Image 
Acquisition 

Velocity and Acceleration calculations 
are performed and estimated marker 
locations are calculated and stored 

For 
index=1 to 3 

 

For 
index=4 to n 



 

 89

3-D World

Camera

Video Acquisition

Image
Reconstruction

Memory
Card

UAV in Flight

In-Flight
Video

Preprocessing/
Image

Segmentation

Hough Transform
with Error Correction

Simulink Scheme

Manual Video
Editing

 

Figure 4.14:  Runway Detection Experimental Procedures 

 

4.3.1 Hardware Used for the Runway Detection Problem 

This section is dedicated to the physical description and description of the 

function of each piece of equipment used to address the Runway Detection problem.  

Through this, the function, importance, and experimental procedures for each part as it 

relates to the problem will be outlined. 

 

4.3.1.1 Description of Mustek DV-4000 Mini DV Camera 

The Mustek DV-4000 Mini Digital Video (DV) Camera is the camera that was 

used on the aircraft while obtaining runway video to be used in a post-processing fashion 

in order to evaluate the runway detection scheme.  This camera is perfect for this 

application because it is very lightweight, has an adequate field of view, and it can store a 
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large amount of video enabling a long flight time.  It is also quite small, which allowed it 

to be easily mounted on the aircraft test bed.  Another thing that makes the camera a good 

candidate for this job is the fact that it is fairly low resolution which allows the software 

to be tested in a low resolution setting and it also enables the software to perform its best 

and fastest rate possible due to the small resolution of the video.  A full description of the 

Mustek camera specifications is shown in Table 4.4. 

 

Table 4.4:  Mustek DV-4000 Mini DV Camera Specifications 

Sensor Type 3 Mega pixel CMOS 
Resolution 640 (W) by 480 (H) 
Focal Length 8.5 mm 
Focus Range  ∞ - 0.2 m 
Field of View @ 30 meters 12.71 m (W) x 9.64 m (H) 
Iris Operation Fixed @ F2.8 
Focus Operation Automatic 
Frame Rate 10 fps 
Video Format MPEG-4 
Capacity > 3 hours recording time 
Size 3.5” x 2.5” x 1.125” 
Weight 118 g 

 

This use of this camera created a real test for the software in terms of error 

correction.  With its frame rate of only 10 fps and a highly dynamic field of view created 

by the nature of flight, the video taken by the camera is not the smoothest video ever 

encountered.  This being the case, the difference in movement from frame to frame was 

sometimes great and this allowed the software to be put to the test using such a ‘jumpy’ 

and unstable video.  Also, since this camera would automatically adjust the video gain, 

the brightness sometimes would vary due to the lens being pointed towards the sun, to the 

clouds, or ground.  This also provided a great testing opportunity for the pre-

processing/image segmentation part of the runway detection software to see how well it 

would perform with varying lighting conditions resulting in varying brightness.  The 

Mustek DV-4000 Mini DV Camera is shown on the following page in Figure 4.15. 
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Figure 4.15:  Mustek DV4000 Mini DV Camera 

 

4.3.1.2 Cessna 152 Video Acquisition Platform 

In order to achieve the first part of the experiment, a test bed must be selected to 

carry the video equipment in order to obtain the video of the runway.  In this case, the 

Cessna 152 aircraft was selected as the test bed.  The Cessna 152 is a large 35% scale 

replica of an actual Cessna 152.  The payload capacity is enormous and as such, carrying 

a small camera is no huge task for it.  The Cessna 152 specification are shown in Table 

4.5, on the following page. 
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Table 4.5:  Cessna 152 Specifications 

Span 120” 
Length 86” 
Height 30” 
Weight 34 lbs. 
Payload Capacity ~10 lbs. 
Duration >30 minutes 
Engine Zenoah G-62 with Mejzlik 22x10 prop 
Radio JR XP9303 9 channel PCM radio system 
Cruise Speed ~60 knots 
 

The Cessna 152 test bed is shown below in Figure 4.16. 

 

 

Figure 4.16:  Cessna 152 Model Test Bed 

 

The Mustek DV4000 Mini DV Camera was mounted on the Cessna 152 using a 

bracket that was custom designed and manufactured by the author.  The bracket is a ½” 

solid aluminum rod which is cut and threaded on each end to match the angle of the 

original landing gear.  The landing gear then had mounting holes (to match the threaded 

holes in the rod) drilled so that the rod could be mounted with socket head cap screws to 

the landing gear.  The camera mount plate was engineered such that the camera could be 

rotated by loosening the bolts on the mounting collar and rotating the mount on the rod 

and then retightening the bolts.  This would allow for different viewing angles to be 

achieved with one mount.  In this configuration, the camera was set to recording mode 

before takeoff and was deactivated upon landing, thus capturing the entire flight.  
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Vibration was a concern, but turned out not to be an issue once the aircraft was in flight.  

The sturdiness of the bracket also helped this situation.  The close up view of the 

DV4000 and the camera mount can be seen in Figure 4.17, below. 

 

 

Figure 4.17:  Close Up View of the DV4000 Camera Mounted on the Cessna 152 
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4.3.2 Software Used for the Runway Detection Problem 

The software used to address the Runway Detection problem consists of only one 

method and that is the Simulink based method using the Hough transform.  In order to 

apply the Hough transform to the problem of runway detection, many things have to 

come together.  These include the acquisition and filtering scheme, the actual Hough 

transform operations, an error checking scheme to eliminate false peaks in the Hough 

space, and finally a scheme to put all of the images back together and display them.  Each 

of these subsystems are clearly labeled and each will be fully explained in subsequent 

sections.  Figure 4.18, on the following page, shows the main Simulink® scheme used to 

perform runway detection. 

 

There are several main concepts to be discussed in this section.  The image 

acquisition block is shown on the following page, in Figure 4.18, in magenta.  This block 

will be discussed in Section 4.3.2.1.  The image preparation, conversion, filtering and 

edge detection routines are contained in the pre-processing subsystem that is shown on 

the following page, in Figure 4.18, as the cyan colored block.  The image acquisition and 

pre-processing subsystem will be discussed in Section 4.3.2.2.  The Hough transform and 

its related operations are contained in the Hough transform operation subsystem which is 

shown on the following page, in Figure 4.18, as the light green colored block.  The 

Hough transform operations subsystem will be discussed in Section 4.3.2.3.  The 

Rho/Theta Correction block is a subsystem that contains a feedback routine capable of 

eliminating false peaks found in the Hough space.  This block which is shown on the 

following page, in Figure 4.18, is colored in red.  This subsystem will be explained in 

Section 4.3.2.4.  The Image Regeneration block, on the following page, in Figure 4.18, 

colored in yellow, performs the task of putting all of the pieces of the original image back 

together so it can be displayed for visual evaluation.  This subsystem will be discussed in 

Section 4.3.2.5. 
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Figure 4.18:  Runway Detection – Main Simulation System 
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4.3.2.1 Image Acquisition 

The purpose of this scheme was to perform Runway Detection simulations on real 

camera images of a real runway.  This simulation was restricted to the use of pre-

recorded videos due to the lack of availability of an instrumented UAV to fly in order to 

record videos.  As a result of this and other factors, the things that affect the flight and 

video characteristics have not been fully evaluated and the amount of usable video 

obtained is fairly small.  Even though the video was small, it was sufficient to perform 

the simulations and to be able to evaluate the performance of the scheme.  Therefore, the 

application of any other acquisition methods such as a simulated runway in a laboratory 

environment was not necessary and the small videos clips obtained from flight were used 

solely for evaluation of this scheme.  A typical frame from a simulation input video is 

shown in Figure 4.19, below. 

.

 

Figure 4.19:  Runway Detection - Typical Input Image 
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4.3.2.2 Image Preparation, Conversion, Filtering, and Edge Detection 

The image pre-processing subsystem, shown below in Figure 4.20, contains all of 

the functions necessary to convert the image from RGB to intensity, 
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Figure 4.20:  Runway Detection – Pre-Processing Subsystem 

 

perform edge detection, and filter out most of the noise left in the image.  The blocks 

used in this subsystem and all included subsystems are standard blocks within the 

standard Simulink® blockset66 or the Video and Image Processing Blockset60 within 

Simulink®.  The inputs to this subsystem are the red, green, and blue components from 

the image acquisition block.  The output is a fully filtered, binary edge image.  This 

subsystem does contain one smaller subsystem.  This subsystem is the Noise Filtering 

Routine, shown in Figure 4.20 as yellow block.  There are some other very important 
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functions that serve to speed up the processing time that will be discussed first.  In Figure 

4.20, on the left shown in light gray are three blocks that are labeled as ‘R Confine’, ‘G 

Confine’, and ‘B Confine’.  These blocks are very essential to the efficiency of the 

scheme.  These blocks take the full resolution image, which in this case is 320×240, and 

confines the image in the vertical direction, essentially picking a piece of the image out.  

The result is the same input image but it looks as though it has been cropped on the top 

and bottom.  This allows approximately 40% of the image to be ignored while still being 

able to detect the lines on the runway.  This could also be useful if the detection was 

involving something that was known to be in the same place in the image frame all of the 

time, such as the horizon.  This would allow for almost 100% positive identification by 

ignoring all of the other lines in the image and only looking at a small area around it.  The 

whole image is kept intact and sent out of the block for use later in the scheme as well as 

the ‘cut’ portion of the image.  These will be needed later to put the image back together.  

It should be noted that the rows of the image to which the processing is confined is used 

definable in the GUI. 

 

The image then enters the section that performs the color conversion.  This is 

accomplished using the RGB to Intensity conversion which was discussed previously in 

Sections 3.2.3.2.  Therefore, the details of the conversion will not be covered here.  The 

RGB to intensity conversion is performed slightly different in this case.  Instead of 

converting all of the colors to intensity, there is a color selector, indicated in Figure 4.20 

as the cyan colored block.  This color selector allows the user to switch between using 

only one of the colors at a time, depending on the conditions in the image.  For example, 

if there were a lot of green in the image from a grassy field that was causing problems in 

the line detection, by simply turning green off and using red or blue, this problem can not 

be eliminated, but this is an action that helps remove the influence the green field is 

having on the resultant edge image.  Therefore, by doing this, an actual RGB to Intensity 

color space conversion block is not necessary.  Simply using one color is like having an 

8-bit intensity image instead of having a 1-bit intensity image. 
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Once the color space conversion is complete and an intensity image has been 

obtained, the image is sent to the Sobel Edge Detection block shown previously in Figure 

4.20, colored in magenta.  The Sobel edge detection routine has previously been 

discussed in Section 3.4.1 and no further explanation will be given here.  The edge image 

is then sent to the Noise Filtering subsystem block shown previously in Figure 4.20, 

colored in yellow.  The Noise Filtering subsystem is shown below, in Figure 4.21.  This 

subsystem is a simple morphological opening that was previously discussed in Section 

3.4.2.4.  The unique part of this filter lies in the structuring element.  Since this scheme 

has the purpose of detecting lines that make up a runway and the lines in this setup run 

vertically through the image frame, a structuring element tailored to enhance vertical 

lines is used.  The structuring element is a 3×3 matrix with the center column set to one 

and the rest of the element is zero.  This greatly enhances the vertical lines on the runway 

and filters out the rest of the noise from the surroundings quite effectively. 
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Figure 4.21:  Runway Detection - Noise Filtering Subsystem 

 

Figure 4.22, on the following page, shows a typical output image from the pre-

processing subsystem. 
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Figure 4.22:  Runway Detection –Edge Image 

 

4.3.2.3 Hough Transform Operations 

The Hough transform subsystem, shown on the following page in Figure 4.23, 

contains only two higher-level blocks.  These blocks are the Hough transform block and 

the Hough peaks block and both of these blocks were standard blocks included in the 

Video and Image Processing Blockset60 within Simulink®.  The Hough transform block 

as well as the Hough peaks block and their application has already been discussed in 

Section 3.4.3.1.  These points will not be discussed again, but their inputs and outputs and 

the application within this particular scheme will be discussed. 

The Hough transform operations subsystem uses the black and white edge image 

from the image pre-processing subsystem as its input.  In particular, the Hough transform 

block within this subsystem takes this input directly.  This block can be found in Figure 

4.23 as the yellow colored block.  The outputs of the Hough transform operations 

subsystem are the ρ  values and the θ  values that correspond to the number of Hough 

peaks desired.  The Hough transform block has two options.  These options are the rho 

resolution and the theta resolution to be applied while performing the transform.  The 

ranges of these options are fixed within the block, therefore the only thing to determine is 

the resolution of these values and both of these values are user definable in the GUI. 
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Figure 4.23:  Runway Detection – Hough Transform Operations 

 

The ρ  and θ  values are stored for later use and the Hough peaks block, which is found 

in Figure 4.23 as the cyan colored block, uses the Hough space or Hough matrix as its 

input.  The Hough peaks block has three options that can be changed to alter its 

performance.  These options are possibly the most influential values used in the entire 

scheme.  The first option is the value of the desired number of peaks.  The second option 

is the threshold value used in determining if a peak is actually a peak or not.  The third 

option is the neighborhood size.  The neighborhood size is the size of ‘block’ of the space 

in the Hough matrix that is searched to find a peak.  In other words, once the block finds 

a peak, it checks the threshold value for the entire neighborhood size to ensure that it is a 

peak.  The output of this block is the short list of the ρ  and θ  coordinates of the 

strongest peaks in the Hough space and the size of the list, of course, depends on the 

number of Hough peaks desired.  The rest of the blocks shown in Figure 4.23 are blocks 

that help separate the ρ  values from the θ  values into their separate vectors from the 

output of the Hough peaks block.  Figure 4.24, on the following page, illustrates the 

typical Hough space obtained when performing a runway detection simulation. 
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Figure 4.24:  Runway Detection – Typical Hough Space 
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4.3.2.4 Rho/Theta Correction 

The Rho/Theta Correction subsystem is shown previously in Figure 4.18 as the 

red colored block.  It should be noted that all of the blocks in this subsystem are standard 

blocks found within the standard Simulink® blockset66.  This block takes the ρ  and θ  

values found from the Hough transform subsystem and basically checks to see if there is 

too much difference between the last values and the current values.  If there is a great 

difference in the values from the last time step, the block assumes there has been an 

errant Hough peak used and it discards the current ρ  and θ  values and uses the values 

from the last time step.  This is performed by using a negative feedback loop with a one 

time step delay and a threshold value for both ρ  and θ .  The decision then enters a ‘For 

Iterator’ subsystem that helps to select which ρ  and θ  value to output based on the error 

flag.  These subsystems will be described in detail below.  The Rho/Theta Correction 

subsystem is shown in Figure 4.25, on the following page. 

 

In order to begin the detailed discussion of the Rho/Theta Correction subsystem, 

the underlying principle of the subsystem must be explained.  In the first two time steps, 

no correction is being performed.  This two-step buffer is meant to allow any transients to 

disappear, for the line detection to become established, and for a good set of ρ  and θ  

values to become set.  This two time step wait time was determined to be adequate by 

performing several simulations and watching the performance of the scheme.  If less than 

two time steps were used then the scheme would have large errors at the start of the 

simulation and if more than two time steps were used, no notable change could be seen.   

Therefore, it was determined that more than two time steps are not needed and making 

the Rho/Theta Correction subsystem wait longer to become active has no benefit.  Once 

this is complete, the correction process can begin.  This principle is controlled by the two 

green blocks shown on the following page, in Figure 4.25.  These blocks are called ‘N-

Sample Switch’ and their job is to change their state after the specified number of time 

steps has passed.  Once the desired number of time steps has passed, in this case two time 

steps, the switch will flip and the last known corrected values will be sent to the negative 

side of the summing junction in place of the current values. 
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Figure 4.25:  Runway Detection – Rho/Theta Correction Subsystem
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Once this is complete, the values enter the light blue blocks found in Figure 4.25, 

which are called the ‘Compare to Constant’ blocks.  These blocks are essentially 

comparing the error between ρ  and θ  values from the current time step and the last time 

step with an error threshold.  If the error is greater than the threshold, then the block will 

output a one, if not a zero is the output.  The output of these blocks are meant to allow the 

user to determine which line on the image is creating the most errors to give the user an 

idea of what to look at and what to adjust on the GUI to produce better performance.  

These flags are then fed into the ‘OR’ which is shown in cyan in Figure 4.25.  The ‘OR’ 

block will output a true signal no matter which error flag is true.  By using the ‘OR’ 

block, this ensures that almost under no circumstances will an errant set of values be 

passed on. 

 

The situation at this point is that there is a set of flags indicating which Hough 

peaks may be false peaks.  The problem is that there is more than one flag in a vector 

since there are more than one peak being used, in this case three peaks.  Therefore, the 

‘For Iterator’ subsystem is used.  The ‘For Iterator’ subsystem block is shown in Figure 

4.26, on the following page.  This subsystem takes care of applying the decisions made 

by the ‘Compare to Constant’ blocks.  The need for this subsystem is based on the need 

to make different decisions about each Hough peak individually in the same vector.  

Using this subsystem, the error flag vector is not looked at as a whole, but it is looked at 

as elements in the vector.  The “For Iterator’ subsystem will loop itself through the 

decision making process for each of the error flags separately.  This allows for one 

Hough peak to be acceptable and for another not to be acceptable in the same time step, 

thus applying the correction to only one of the Hough peaks and not the others.  This is 

the heart of the Rho/Theta Correction subsystem and without it, the error corrections 

would have to be applied to all three Hough peaks or none at all.  If this was the case, 

there would surely be no line to make it though the Rho/Theta Correction subsystem 

block without being corrected regardless if it was under the error threshold or not. 
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Figure 4.26:  Runway Detection – For Iterator Subsystem 

 

Even though the error flag is based on the ‘OR’ of the comparison results, 

meaning one value could be acceptable and the other not acceptable, both the ρ  and θ  

values are corrected.  This can be seen in the setup of the switches in Figure 4.26, above, 

that control which value exits the block, the value from the last time step or the current 

time step.  The error flag operates both switches at the same time, applying the correction 

to both values.  The values are then assigned back into their original positions in the ρ  

and θ  vectors so as not to be confused and they are sent to the output, which is in turn 

the output of the Rho/Theta Correction subsystem.  The flag values are also stored for 

every simulation so as to aid in tuning the error thresholds and to determine if the 
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simulation is really performing the best it can.  Although the number of times the flags 

are true is not a perfect indication as to the performance of the simulation, it is a point of 

concern and it is counted and displayed in the results section of the GUI to be discussed 

later. 

There is one more subsystem included in the Rho/Theta Correction subsystem and 

that is shown in red in Figure 4.25.  This block is called the Rho/Theta Flag Display and 

it performs no essential duties in the scheme.  It is an important analysis tool though, 

which allows the user to examine the video outputs and inputs while at the same time 

viewing which error flags are being set to true and false in the real simulation timeframe.  

This helps in determining which of the many settings in this scheme need to be adjusted 

in order to cause the number of times the correction is applied to be reduced.  The 

optimal case in this simulation is when the output lines on the video track well with the 

actual lines visually and that the lowest number of correction flags are seen at the same 

time.  The Rho/Theta Flag Display subsystem is shown in Figure 4.27, below. 
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Figure 4.27:  Runway Detection – Rho/Theta Error Flag Display 
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4.3.2.5 Image Regeneration 

The Image Regeneration subsystem block plays an important role in this scheme 

helping the user determine if the software is performing adequately.  The blocks used in 

this subsystem and all included subsystems are standard blocks within the standard 

Simulink® blockset66 or the Video and Image Processing Blockset60 within Simulink®.  

Recall from Section 4.3.2.2 when the image was confined to a smaller part, a horizontal 

slice if you will, which is the only part of the image that is processed.  Therefore, the 

output image from the rest of the scheme is only this slice.  This block takes care of 

joining the parts of the image (top, middle slice, and bottom) back together so the user 

can see the image in its entirety while overlaying the Hough lines in Cartesian space on 

the image.  The Image Regeneration block is shown previously in Figure 4.18, as the 

yellow colored block.  There are many inputs to this block as can be seen in this figure.  

The original image and the cut portion of the image are both needed to regenerate the 

original image and the ρ  and θ  vectors are needed to calculate the Cartesian coordinates 

of the lines corresponding to the Hough Peaks that were found.  The output is simply the 

red, green, and blue images that make up the regenerated image.  These outputs are 

connected to a video display for visual reference.  The Image Regeneration subsystem is 

shown on the following page, in Figure 4.28. 

 

In this subsystem, there are four separate processes happening.  First, the red, 

green, and blue parts of the original whole image are confined in such a way to cut the 

middle part that was used for line detection away from the image, leaving only the top 

and bottom pieces.  This can be seen in Figure 4.28 by looking for the confine blocks 

colored in gray.  The second thing is that the Hough Lines block, colored in green in 

Figure 4.28, is using the middle cut piece of the image from the pre-processing subsystem 

and the ρ  and θ  vectors to perform an inverse Hough transform and thus calculate and 

plot the resulting detected lines on that cut image piece.  Third, the top, bottom, and 

middle piece with the detected lines overlaid on it are rejoined by using the vertical 

concatenation blocks shown in Figure 4.28, colored in yellow.  The result from the 

vertical concatenation blocks is the final product of the scheme. 
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The fourth thing being performed in this subsystem is the execution of yet another 

subsystem called the Hough Lines Calculator subsystem.  This subsystem is responsible  
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Figure 4.28:  Runway Detection – Image Regeneration Subsystem 

 

for verifying that the Hough Lines block is actually performing its assigned job.  This is 

implemented as a second verification to the fact that the scheme did find the desired lines 

and that it is plotting them in the correct place.  This subsystem essentially performs the 
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same job the Hough Lines block does but its outputs, which are the end points of the lines 

in Cartesian space, are stored and later plotted in a Matlab plotting window for 

verification of the position of the detected lines.  This block has no higher-level functions 

in it as it only performs a mathematical calculation.  The Hough Lines Calculator 

subsystem is shown in Figure 4.29, below. 
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Figure 4.29:  Runway Detection – Hough Lines Calculator Subsystem 

 

4.3.3 Description of the Graphical User Interface 

This section will explain the features and functions available in the graphical user 

interface (GUI) which was created for use with the Runway Detection scheme.  The GUI 

allows many options useful for keeping track of simulation results and different sets of 
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inputs as well as giving the user an easy to use plotting interface to view the results.  Now 

that the entire scheme has been explained, the simulation inputs will be covered in 

Section 4.3.3.1.  The result values display section is the section of the GUI which 

displays the counts on the error flags and this will be covered in Section 4.3.3.2.  The 

trend plotting section is the section of the GUI which allows any number of used 

selectable plots to be made after a simulation is complete and it will be covered in 

Section 4.3.3.3.  The final section of the GUI to be covered is the video analysis 

windows.  These video windows show the simulation video at several stages throughout 

the process so the user can adjust parameters to fine tune the performance or simply view 

the output.  The video analysis windows will be covered in Section 4.3.3.4.  The entire 

GUI is shown below in Figure 4.30. 

 

 

Figure 4.30:  Runway Detection – Graphical User Interface 
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4.3.3.1 Simulation Inputs 

The input section of the GUI is very straight forward.  First, when the GUI loads 

up, it automatically initializes all of the parameters in the software with a default set of 

values.  The GUI also gives the user the ability to load and save sets of parameters so that 

a simulation can be run and then the exact same setup can be recalled and performed 

again without the user having to know anything but a filename.  The GUI parameters 

section consists of two columns, the first of which indicate the current value associated 

with the current data set loaded and the second is an editable box which allows the values 

to be changed.  Once any value is changed, it is automatically updated in the workspace 

without the need to save the setup.  This allows things to be changed quickly and the 

simulation ran for a trial and then if the outcome is acceptable the user may then want to 

save the setup.  This keeps the user from saving a lot of junk setups in the phase of testing 

when major tuning of the parameters is taking place.  The GUI also allows the user to run 

a simulation and not save the results or to run and save the results.  When results are 

saved, the GUI also saves all of the information regarding the setup as well as the saved 

setup filename if there is one.  The parameters section of the GUI is shown on the 

following page in Figure 4.31 and a description of each of the simulation inputs is 

provided below. 

The following list is a description of each simulation input parameter: 

1. Starting Row Index – The row in the image where the upper image 

confinement takes place.  The image confinement block in Figure 4.20 

requires this input to set the row of the image where the upper image 

confinement occurs. 

2. Ending Row Index – The row in the image where the lower image 

confinement takes place.  The image confinement block in Figure 4.20 

requires this input to set the row of the image where the lower image 

confinement occurs. 

3. Hough Transform Rho Resolution – Resolution used for the discretization 

of the ρ  vector used in the Hough Transform block in Figure 4.23.  This 

number determines the interval between ρ  values used in the Hough 

transform in Equation 3.16. 
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Figure 4.31:  Runway Detection – Graphical User Interface Input Parameters 

 

4. Hough Transform Theta Resolution – Resolution used for the 

discretization of the θ  used in the Hough Transform block in Figure 4.23.  

This number determines the interval between θ  values used in the Hough 

transform in Equation 3.16. 

5. Number of Hough Peaks – This represents the number of Hough peaks 

that to be found in the Hough space.  This value is used in the Hough 

Peaks block in Figure 4.23.  Essentially, this represents the number of 

lines of interest in the input image. 
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6. Hough Peaks Neighborhood – The size of the ‘window’ of pixels that the 

Hough Peaks block in Figure 4.23 searches for when finding a peak.  If 

this value is too large, the existence of two equally sized peaks within the 

window may occur and cause them to be ignored as individual peaks.  

These values should be smaller than the average distance between peaks in 

the Hough space when the scheme is applied to a specific application to 

ensure that the peaks will be detected reliably.  These values must also be 

odd numbers for the searching of the neighborhood to work properly. 

7. Rho Error Flag Threshold – The threshold used in the Rho/Theta 

Correction subsystem in Figure 4.25 for determining if there is excessive 

error in the ρ  signal.  This threshold must be tuned be examining the 

number of times the error flag is tripped and the visual performance of the 

algorithm.  If the error threshold is too small, more correction than are 

necessary can take place and cause larger errors in the algorithm than is 

being corrected.  This situation can be detected by visual examination of 

the output of the scheme for lines that do not change position on the 

display with respect to the actual lines in the image.  This means that the 

same line is being fed back over and over because the threshold is too low.  

If the threshold is too high, not enough error correction will occur and 

when there is actually an error to be corrected, the scheme will overlook it 

and continue without feeding back any corrected lines.  This situation can 

also be detected by visual examination of the output of the scheme for 

lines than change position by a great amount on the screen to a position 

that does not coincide with the desired output. 

8. Theta Error Flag Threshold – The threshold used in the Rho/Theta 

Correction subsystem in Figure 4.25 for determining if there is excessive 

error in the θ  signal.  This threshold must be tuned be examining the 

number of times the error flag is tripped and the visual performance of the 

algorithm.  If the error threshold is too small, more correction than are 

necessary can take place and cause larger errors in the algorithm than is 

being corrected.  This situation can be detected by visual examination of 
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the output of the scheme for lines that do not change position on the 

display with respect to the actual lines in the image.  This means that the 

same line is being fed back over and over because the threshold is too low.  

If the threshold is too high, not enough error correction will occur and 

when there is actually an error to be corrected, the scheme will overlook it 

and continue without feeding back any corrected lines.  This situation can 

also be detected by visual examination of the output of the scheme for 

lines than change position by a great amount on the screen to a position 

that does not coincide with the desired output. 

9. Hough Peaks Threshold – The threshold used by the Hough Peaks block 

in Figure 4.23 for determining if a peak is, in fact, a peak by examining its 

‘height’.  If height is above this threshold with respect to the pixels in the 

Hough Peaks Neighborhood, then it is a peak.  Essentially, this value sets 

the minimum strength of a peak that is necessary to trigger this block to 

output that specific location as the location of a peak in the Hough space.  

If a potential peak is lower than this threshold, it will not be defined as a 

peak.  The setting of this value is contingent upon the strength of the line 

definition in the input image.  If the line is very clearly defined, the peak 

will be very strong and a high number (>15) may be used to ensure that 

the desired peak is being detected.  If the line is not very clearly defined, 

the peak will not be strong, instead, it will look more like a hill than a peak 

and some tuning of both the Hough Peaks Neighborhood and this Hough 

Peaks Threshold should be done to ensure robustness with respect to 

finding the peaks in a situation when the lines are not so clearly defined. 

 

4.3.3.2 Result Values Display Section 

The result values display section is a part of the GUI which displays some stored 

and some calculated values which reflect on the performance of the runway detection 

scheme.  At the top of this section, the number of flags for the ρ , θ , and the combined 

flag value taken after the OR block in the rho/theta correction subsystem.  These are 

fairly good indicators of the performance for the scheme.  It would be a perfect situation 
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if the number of flags read zero, which would mean the scheme perfectly tracked the 

lines on every frame.  But, this is never the case.  The typical values for this will be 

presented in the Results section. 

 

The other half of the result values display section is a section which displays 

calculated values which indicate the average and standard deviation of the ρ  and θ  

values for each of the three lines in the image.  This is not as good of an indication to 

performance as is the flag data, but it does give some indication as to the smoothness of 

the video and the ability of the video to maintain the lines in the same position on the 

screen.  This would be much more useful if this scheme was implemented in a UAV 

which could follow the runway or road.  In this case, a small standard deviation would 

indicate that the control system was able to hold the image in the same area on the screen, 

meaning the controller would be working very well.  If the standard deviation was larger, 

that would mean the controller had the tendency to bounce around the desired lines and 

was not able to maintain the exact heading all of the time.  A screen shot of the result 

values display section is shown on the following page in Figure 4.32. 
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Figure 4.32:  Runway Detection – GUI Result Values Display Section 

 

4.3.3.3 Trend Plotting Section 

The trend plotting section is very useful when trying to tune the values of the 

scheme in order to make the scheme run more efficiently instead of relying on the 

rho/theta correction subsystem block.  This section allows a very versatile plotting 

routine to occur by using the check boxes to indicate which things the user wants to plot 

and then using another button to execute the plotting routine.  The plotting can be further 

controlled by the on and off buttons.  If the plotting is off, the plots will not be made until 

the ‘Plot Now’ button is pressed.  If the plotting is turned on, the plotting routine will be 

executed upon completion of the simulation.  The flag data, average values, and standard 

deviation from the result values display section can be plotted against the number of runs 

that have been performed.  This data is constantly saved along with the data set used as 

input parameters and the run number.  This allows a trend to be developed where a value 

in the input section is changed and then the results for all saved runs can be plotted such 
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that a comparison can be made.  This allows the user to easily decide if the change that 

was made affected the performance in a good way or in a bad way. 

 

There are also options governing which method of plotting will occur.  The user 

can select the plots to be made in a single plot per figure fashion, all in a subplot fashion, 

or in a grouped fashion where the lines from each group of parameters to be plotted are 

grouped together.  This allows multiple methods of comparisons to be made either within 

a certain group or across groups to allow the user to examine one plot and see how the 

change affected more than one result value at the same time.  The trend plotting section is 

shown below in Figure 4.33. 

 

 

Figure 4.33:  Runway Detection – GUI Trend Plotting Section 

 

4.3.3.4 Video Analysis Windows 

The main method of evaluating the performance of the runway detection scheme 

is working is by visual verification.  This is done by examining several video output 

windows during the course of a simulation.  These windows show the user how well the 

image pre-processing is working, how much of the image the scheme is actually using 

(the confinement), how well the edge detection is working, the strength of the peaks in 

the Hough space, and the actual placement of the lines resulting from the Hough peaks. 

 

When a user runs a simulation, four video viewing windows and one Hough space 

window appears.  The first window to appear simply shows the input image.  The second 

window shows the confined image.  This window is useful when perhaps the software is 

‘losing’ one of the desired lines intermittently.  This could be caused by the confined 

image being too small, so this window allows the user to watch the particular detail that 

is desired to be found and try to correlate it with an event in the window, like the detail 
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moving out of the confined image area.  If this happens, the user knows the confinement 

window is too small and an adjustment is needed. 

 

The third window to open up displays the confined image after all pre-processing 

has been performed.  What is seen here is the binary edge image after the morphological 

opening has been performed.  This is when the user can really begin to detect the strong 

presence of the desired lines in the image.  The desired lines are now fully filtered out 

and are obviously the most prominent thing on the display.  If this is not true, then some 

adjustments may need to be made to one of several threshold values or the structuring 

element in the morphological opening operator.  If there is a problem with the Hough 

transform in finding the wrong lines, this is the display where the root of the problem will 

be seen. 

 

The fourth window is simply the output image from the image reconstruction 

block.  This image is the confined image with the top and bottom sections rejoined to it 

with the Hough lines drawn in an overlay fashion onto the original image.  This is the 

main output and this is where the visual verification of the functioning of the entire 

scheme is evaluated.  If the scheme is having a problem and not finding the correct 

desired lines in the image, this display will show the line that it did find.  Then, the user 

must decide how to filter out the line or line artifacts that the Hough transform is seeing 

that are obviously stronger than the line that is desired. 

 

The fifth window is the Hough space display.  This display shows all of the 

sinusoids created by the Hough transform of the edge image shown in the third video 

window.  It is also easy to find the strongest Hough peaks by eye most of the time.  This 

is another place where the user can determine why the scheme is not performing the way 

it is desired to.  The Hough space can also help the user tune the Hough peaks 

neighborhood and the Hough peaks threshold value by looking at the strength and 

distribution of the sinusoids making up the peak.  If the sinusoids do not form a direct 

peak, but are spread out over many pixels, then the neighborhood would need to be made 

larger to encompass the entire peak and the threshold would need to be made lower 
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because the peak in this case would not be a peak, it would be a ‘hill’.  The Hough space 

can also show an emergence of a peak which is not desired and can allow the user to 

determine exactly at what time this occurs.  The user can then look at the other analysis 

windows to determine why this is happening and to try to rectify the situation in some 

manner, hopefully by a simple adjustment of the input parameters in the GUI.  A 

screenshot of the analysis window cluster is shown below in Figure 4.34. 

 

 

Figure 4.34:  Runway Detection – Analysis Window Cluster 
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Chapter 5 

Simulation Results and Discussion 

 

5.1 Marker Detection and Tracking Results 

The solutions to the Marker Detection and Tracking Problem can be evaluated in 

a number of ways.  For this research effort, the different solutions were put through a 

series of tests which highlight their performance in computational workload, 

repeatability, robustness, and overall performance.  These tests were conducted using pre-

recorded videos created in the lab using the tanker and camera apparatus.  The use of the 

pre-recorded videos allow a more fair comparison to be made, ensuring that one method 

is not encountering a video with more or less motion that the other method used.  These 

videos were of a 10 second duration and they were recorded at a frame rate of 15 frames 

per second (FPS).  By using the pre-recorded videos some computational workload is 

reduced by not introducing the use of the frame grabber and camera.  The use of the 

frame grabber with Matlab® or Simulink® introduces a delay in the scheme because the 

software is trying to access the hardware through a Windows® based system.  If the 

software were executed in any other platform than Windows®, it is thought that the frame 

grabber performance would be much better.  Thus, eliminating the frame grabber from 

this simulation allowed a more accurate estimate of the computational workload to be 

made.  The results of these experiments will be discussed in detail in the following 

sections:  Section 5.1.1 covers the computational workload comparisons, Section 5.1.2 

covers the estimation error comparisons, and Section 5.1.3 covers the robustness to noise 

comparisons.  On the following page, Table 5.1, illustrates the array of simulations that 

was used for evaluation of the Marker Detection and Tracking Algorithm. 
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Table 5.1:  Marker Detection – Breakdown of Trials Used for Evaluation 

Frame-by-frame comparison Matlab Profiler comparison
Trial 1 Trial 1
Trial 2 Trial 2
Trial 3 Trial 3
Trial 4 Trial 4

Computational Workload Comparison

 

 

 

 

5.1.1 Computational Workload Comparison via Timing Data 

In order to evaluate how efficient each of the three methods of marker detection 

are, comparisons were made between the methods using two different sets of data.  The 

first set of data was obtained by using the Matlab® Profiler.  In using the profiler, a list of 

each function that was used was given along with the total duration of time it took to 

execute and the number of times it was called.  A list of the code was also given with 

times associated with each line number indicating how long the computer took to execute 

that particular line and how many times that line was executed.  This data was then used 

to break down the code into sections that could be compared between each method.  The 

code was broken down into seven sections and these sections are detailed in the following 

list: 

1. Reading the AVI – when the computer reads the audio video interlace 

(AVI) file into memory from the disk. 

2. Pre-processing – self explanatory – consists of the pre-processing steps in 

the code. 

3. Image Scanning – fully scanning the image for white pixels. 

Actual vs. Estimate position RMS position error Roll Angle Measurement
Trial 1 Trial 1 Trial 1
Trial 2 Trial 2 Trial 2
Trial 3 Trial 3 Trial 3
Trial 4 Trial 4 Trial 4

Roll Angle = 0 Roll Angle  = 20 Roll Angle = 50
Vibration 1 Vibration 1 Vibration 1
Vibration 2 Vibration 2 Vibration 2
Vibration 3 Vibration 3 Vibration 3
Vibration 4 Vibration 4 Vibration 4

Estimation Error

Robustness to Vibration
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4. Scanning for Estimation – scanning the ‘search area’ determined from the 

position estimation part of the code. 

5. Centroid Calculation – calculation of the centroid of the markers in the 

images. 

6. Marker Definition – determining which markers belong to each respective 

location on the plane, i.e. left wingtip, left stabilizer, etc. 

7. Other Lines and Overhead – all other functions within the code such as 

matrix manipulation, etc.  Each of these lines amounted to less than 0.01 

seconds each. 

 

The table on the following page, Table 5.2, lists the time spent on each of the 

previously described sections and compares them across the three different methods of 

marker detection.  The table also lists the number of times each section was executed for 

this particular run.  The data in this table was found while using the video file for Trial 1. 

 

Table 5.2:  Timing Comparison Between Marker Detection and Tracking Methods 

Marker Detection/Tracking Modified Detection and Detection and 
Speed Comparison using  Detection Algorithm Tracking Algorithm Tracking Algorithm 

Matlab Profiler (No Estimation)  (Velocity Only) (Full Estimation) 

Machine Vision Process Time (s) Executions Time (s) Executions Time (s) Executions 
Reading the AVI 5.516 1 6.109 1 6.828 1 
Pre-processing 4.422 150 4.779 150 5.34 150 
Image Scanning 44.955 46,080,000 0.92 921,600 0.89 921,600 
Scanning for Estimation N/A N/A 0.49 324,135 0.51 324,135 
Centroid Calculation 0.4 15,328 0.15 24,870 0.22 24,870 
Marker Definition 0.2 150 <0.01 3 <0.01 3 
Other Lines and Overhead 0.867 N/A 4.376 N/A 1.79 N/A 
Total Time 56.36 1 17.094 1 15.828 1 

 

By looking at the previous table, several comparisons can be made.  First, the 

time taken by reading in the AVI file is large because the AVI file is approximately 150 

MB and there are some differences between the times it took to do this task and these can 

be attributed to the different background processes running in the Windows® 

environment.  While looking at the pre-processing times, the same deduction can be 

made.  There are slight differences here, but these must also be attributed to background 
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processes.  It is felt that since the pre-processing functions and  the reading of the AVI 

are exactly the same in each version of code, that the indifferences must be attributed to 

an external source.  

 

The largest difference can be seen in the image scanning section.  In the Modified 

K-Means Detection Algorithm, each image is fully scanned resulting in over 46 million 

iterations for 150 frames of video.  In contrast, the Advanced K-Means Detection and 

Tracking Algorithms only perform this on 3 frames resulting in just under 1 million 

iterations.  The time is not any different on a per frame basis, but the fact that the 

scanning of the remaining frames is replaced by scanning smaller ‘search areas’ in the 

Advanced K-Means Detection and Tracking Algorithm reflect greatly on the increased 

efficiency of this algorithm.  It can also be seen that while the Image Scanning section in 

the Modified K-Means Detection Algorithm took almost 45 seconds to complete, the two 

processes that comprise the same function in the Advanced K-Means Detection and 

Tracking Algorithm, Image Scanning and Scanning for Estimation, only take 

approximately one and a half seconds.  This is equivalent to a 3000% decrease in the time 

spent on this section. 

 

Te centroid calculation section of the code is not a computational intensive part 

but there is an odd phenomenon shown in the table.  The centroid calculation section in 

the Modified K-Means Detection Algorithm was looped just over 15,000 times and took 

0.40 seconds to execute while the same calculation was looped almost 25,000 times and 

took around half the time.  At this time, there is no explanation for this phenomenon, but 

it is felt that this inconsistency is related to the background processes occurring at the 

same time and causing this time difference to occur. 

 

One last thing to note in the table is the difference in the time taken by the marker 

definition section.  This section is not a process that takes a lot of time but, the fact that it 

was looped for every frame, 150 times, in the Modified K-Means Detection Algorithm 

and in the Advanced K-Means Detection and Tracking Algorithm, it was only looped 3 

times is very relevant.  This relates back to the tracking part of the algorithm and shows 
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that since the tracking part is actually tracking the markers and their names, then it only 

needs to run during the first three frames, instead of every frame.  This reflects in favor of 

the efficiency of the Advanced K-Means Detection and Tracking Algorithm once again.  

Finally, the total time taken by each algorithm is shown and it can be seen that there is a 

significant difference, even in the Advanced K-Means Detection and Tracking Algorithm 

with the velocity only estimation and the full estimation.  Using these results, the 

Advanced K-Means Detection and Tracking Algorithm is certainly the most efficient. 

 

The second method used to evaluate the efficiency of the algorithms was by the 

use of the tictoc command in Matlab®.  This command was used to calculate the exact 

time it took to process each frame of video data.  This data was recorded and plotted for 

each video trial that was ran.  The frame processing time for each method was plotted for 

every trial and compared.  This can be seen on the following page in Figure 5.1.  It can be 

seen from this figure that the data is very consistent and there is a clear trend that 

develops.  It is very obvious that the Modified K-Means Detection Algorithm is the 

slowest and this was also shown in Table 5.2.  This algorithm averaged a 0.085 second 

processing time for each frame of video.  This is equivalent to a frame rate of 

approximately 11 Hertz (Hz).  There is, however, a drastic drop when looking at the 

methods which use estimation to find the markers.  The Advanced K-Means Detection 

and Tracking Algorithm which uses velocity only for estimation is much faster, 

averaging just under 0.05 seconds per frame of video which is equivalent to 

approximately 20 Hz.  The Advanced K-Means Detection and Tracking Algorithm which 

uses velocity and acceleration for marker position estimation is even faster, averaging 

less than 0.03 seconds per frame.  This is an equivalent processing speed of 

approximately 33 Hz.  Something that should be noted again is that the inconsistencies 

seen in the frame processing time data in Figure 5.1 reflect some background processes 

that are interfering with the smooth operation of the code.  In only one instance, in Trial 4 

using the Full Estimation code, did the entire simulation run without one major 

interruption from the operating system.  This is reflected in Figure 5.1 in the lower right 

hand plot for Trial 4.  By looking at the plots below and referring to the table above, it is 
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obvious that the best performing algorithm is the Advanced K-Means Detection and 

Tracking Algorithm using the full estimation. 

 

 

Figure 5.1:  Frame Processing Time Comparison Between Methods for All Trials 

 

In examining the plots above, a noticeable transient occurs that should be 

examined closer.  The transient is a direct result of performing a complete image scan 

during the first three frames that the Advanced K-Means Detection and Tracking 

Algorithm processes.  This transient is also present in the Modified K-Means Detection 

Algorithm but it is only present in Trial 2 and Trial 4.  Since this transient is not shown 

100% of the time and this code does not change the way it scans the image after 3 frames 

of video like the codes using estimation do, it is thought that this is somehow related to 

the initial allocation of memory for all of the images.  If this is true, then it also means 

that the large transient seen in the codes which use estimation is not created entirely by 

the transition from full frame scanning to estimation but the memory allocation must also 

have some effect on these codes as well.  This transient is about 3 times the average value 
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of a frame processing time for the code using the full estimation.  This is shown below in 

Figure 5.2.  In this figure, the transient can be seen until the third frame, at that time, the 

frame processing time drops to the normal value seen for the rest of simulation.  In 

support of the theory above, a noticeable difference can be seen in the transient before 

frame two and after frame two.  It is thought that the transient before frame two is due to 

the memory allocation coupled with the full image scanning and the transient after frame 

two is the pure difference between scanning the entire image and not scanning the entire 

image.  This is further supported by seeing that in frame two the frame processing time is 

approximately the same value as the Modified K-Means Detection Algorithm frame 

processing time.  This is a direct reflection that in the first three frames, all of the 

methods are performing the exact same task.  

 

 

Figure 5.2: Transient Illustration from Frame Processing Speed Plot for Trial 4 

 

It was mentioned in Chapter 4 that a point was made regarding the 

accommodation of the loss or gain of markers during a refueling operation.  This issue 

was addressed with a separate software method utilizing a while loop and an unknown 

number of markers instead of a for loop with a known number of markers.  Similar to the 

other methods, this method was also evaluated for its computational efficiency.  Since the 

tracking part of the algorithm was not implemented in the improved version of the 

software, a fair comparison between those methods can not be performed.  Therefore, the 
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only fair comparison that can be made is between the original Modified K-Means 

Clustering Algorithm and the improved version of the same software.  This was 

performed with the tictoc command in Matlab®.  The comparison between these two 

methods and the results from the methods using estimation is shown below in Figure 5.3.  

The methods using estimation are shown only for reference. 

 

 

Figure 5.3:  Frame Processing Time Comparison Of New vs. Original Algorithm 

 

In examining Figure 5.3, the addition of the method which compensates for the 

‘Loss of Marker’ is evident with the magenta line.  It can be determined from this plot 

that the software which uses the while loop is slightly more efficient than the original 

software using the set number of for loops.  The average time per frame using the original 

software is approximately 0.085 seconds while the average time per frame using the 

software which accommodates for the loss of marker visibility is approximately 0.07 

seconds.  This reflects an approximate 18% decrease in the average time per frame.  This 

same speed increase evident here in the  comparison of the two Modified K-Means 

Clustering Algorithms would not be directly applied to the methods using estimation if 

the same while loop is implemented in those versions.  This is because the versions 
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performing estimation only use this method of complete image scanning during the initial 

three frames.  Therefore, the 0.015 second increase in speed could only be applied to the 

initial three frames and the frame processing time seen in Figure 5.2 and Figure 5.3 

regarding the speed of the methods which use estimation would still be valid for the time 

after frame 3. 

 

In fact, the implementation of the while loop to accommodate for the loss of 

marker visibility would be more difficult to couple with the estimation part of the code 

due to the fact that the estimation constantly uses information from the last three frames.  

Therefore, to accommodate the disappearance of a marker additional software would 

have to be written to ensure that the position of the marker is still estimated and tracked 

using either the last known inertial information or current inertial information from 

another marker in the array.  Also, the search area size would probably have to be 

automatically increased if a marker was lost to ensure that it could be found again due to 

the erroneous estimations that would be made regarding its location, if and when it 

reappeared.  Since the point of the loss of marker visibility was made after this research 

was complete it was not within the scope of this effort to accommodate for the loss of 

marker visibility in the more complicated method using estimation.  The addition of the 

code which accommodates for the loss of marker visibility was intended to demonstrate 

that the assumption regarding the fixed number of markers could be removed but for it to 

be applied globally to all versions of the K-Means Clustering Algorithm would require a 

structural  overhaul to deal with this dynamic situation. 

 

5.1.2 Estimation Error 

The estimation error comparison is an important part of the performance 

evaluation of these software methods.  If there were times during a simulation when a 

method would have a false indication, this would be a great point to start evaluating each 

method.  Since this is not the case and each method does its job of detecting the markers 

very well, one must find other avenues to measure their performance in this respect.  The 

first way is to examine the actual positions and the estimated positions.  Figure 5.4, on 

the following page, shows the estimated position vs. the actual position for all four trials 
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using the full estimation software.  The estimated positions are shown by the red line and 

the actual positions are shown by the blue line.  The green circles indicate the position of 

the markers at the start of the video and the red circles indicate the position of the 

markers at the end of the video.  As indicated in the plots, the differences are very minute 

and as a result of this, it is very difficult to indicate the performance in this manner since 

comparisons are hard to make when the two lines being compared overlap so much.   

 

 

Figure 5.4:  Estimated vs. Actual Position for All Trials 

 

Another representation of the estimation error can be seen in Figure 5.5, on the 

following page.  The estimated positions are shown by the red line and the actual 

positions are shown by the blue line.  This figure illustrates the actual position versus the 

estimated position in terms of X and Y coordinates in separate plots.  In this example, it 

is easy to see how the estimated position constantly overshoots the actual position but, in 

all cases, this overshoot is on the order of less than 2 pixels which is negligible.  This plot 

was taken from Trial 2 simulations where the movement was very erratic and 
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unpredictable.  Figure 5.6, also on the following page illustrates the same comparison 

between the actual position versus the estimated position but, this plot is selected during 

the section of the Trial 1 simulation where the tanker comes to a stop and changes 

directions and the X and Y coordinates are plotted against each other.  This plot 

illustrates the constant overshooting problem very well. 

 

 

Figure 5.5:  Estimated vs. Actual Coordinates for Left Wingtip in Trial 3 

 



 

 132

 

Figure 5.6:  Estimated vs. Actual Position for Left Wingtip in Trial 1 

 

Another example of the estimation error is shown on the following page in Figure 

5.7.  Figure 5.7 illustrates the distance error from the actual position to the estimated 

position.  It can be seen from these plots that the error is below 2 pixels for all markers in 

almost every instance.  This is a good indication that the estimation is working well but 

the overshoot seen in earlier plots like Figure 5.5 and Figure 5.6 indicate that the estimate 

is overshooting the actual position very frequently.  The plots presented here were all 

produced using the full estimation software but similar results can be seen in plots 

produced using the velocity only estimation as well.  This phenomenon will be explained 

further in the RMS error plots on the following pages. 
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Figure 5.7:  Marker Position Error Calculated Using Absolute Distance 

 

Although the plots above and on the previous pages are the result of a single 

detection method (full estimation), similar plots were examined for the other methods as 

well.  The plots all indicated the same minute differences.  As a result of this, the roll 

angle measurement, which was calculated from the wingtip marker positions, was also 

examined for ‘dropouts’ and since there were no false indications in the actual positions, 

there were similarly no false indications on the roll angle measurement plots.  These plots 

can be seen on the following page in Figure 5.8.   
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Figure 5.8:  Roll Angle Measurement from Marker Detection Software for All Trials 

 

By close examination of Figure 5.3, Figure 5.4, and Figure 5.7, it could be said 

that all of the Marker Detection software works very well.  In order to quantify this 

indication, the root mean square (RMS) position error was calculated and compared.  The 

RMS position estimation error was calculated for the Advanced K-Means Detection and 

Tracking Algorithms only.  This is due to the fact that the Modified K-Means Detection 

Algorithm does not perform an estimation and therefore, does not have an error to be 

calculated.  The RMS position error was calculated for all markers, for both methods, and 

for all four simulation trials.  Table 5.3, on the following page, shows the RMS errors 

calculated from those trials. 
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Table 5.3:  RMS Position Estimation Error – Method Comparison for All Trials 

Trial # Estimation Type Left Wing Left Stabilizer Rudder Right Stabilizer Right Wing 
Velocity Only 0.8306 0.4556 0.3829 0.378 0.5478 1 Full Estimation 0.7341 0.4500 0.4725 0.4414 0.5621 
Velocity Only 0.6145 0.6570 0.6486 0.6243 0.5398 2 Full Estimation 0.6479 0.7684 0.7643 0.7363 0.5759 
Velocity Only 0.4310 0.4082 0.3546 0.4519 0.3590 3 Full Estimation 0.4987 0.3901 0.3546 0.5299 0.3804 
Velocity Only 0.4937 0.5285 0.5434 0.4916 0.4762 4 Full Estimation 0.4887 0.5776 0.5969 0.5404 0.4660 

 

In examining Table 5.3, two things will become obvious.  The first thing is that 

both of the software methods that perform estimation work very well.  In fact, in the 40 

RMS error calculations performed, not one value was greater than 1 pixel of RMS error.  

This is also evident in Figure 5.9, below.  Figure 5.9 is a plot which compares the results 

from the table above and it is broken down into four plots, one for each trial.   

 

 

Figure 5.9:  RMS Position Estimation Error – Method Comparison for All Trials 
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The second thing that will become obvious is that there is no clear winner in these 

results.  For one method to be declared better performing than the other, the RMS error 

differences would have to be clear cut.  In the trials outlined above, the method using 

only velocity for estimation only has better RMS errors roughly 50% of the time and 

vice-versa.  In examining Figure 5.9 for Trial 1 for example, it can be seen that for the 

left most two markers, the full estimation method outperforms the velocity only method.  

But, in looking at the other three markers, it is clear that the velocity only method 

outperforms the full estimation method.  This type of split is again seen in Trial 3 and 

Trial 4.  In Trial 2, the clear winner is the velocity only estimation method. 

 

There is some indication as to what exactly causes this split.  In examining the 

types of videos used in the trials there is only one clear difference that can be related 

between the movement in the video and the results of the RMS errors and that is, in fact, 

in Trial 2.  Referring to Figure 5.4 on a previous page, the video for Trial 2 could be 

described as quite erratic and very unpredictable.  It is again, in this trial, that the RMS 

error for the velocity only estimation method indicates that it outperforms the full 

estimation method.  Therefore, the theory is that when there is sufficient motion, the full 

estimation using the acceleration calculation is actually over shooting the actual position 

much more often and causing a larger RMS error.  This relates to a fact stated earlier that 

if the frame rate is sufficient enough to capture the motion, the full estimation would 

work better in theory, but if either the frame rate was too slow or the motion too high 

then the estimation would miss the actual positions more.  It appears as though this is 

exactly what is happening in Trial 2 and partially in the other trials as well.  But, even 

under these conditions, both methods still perform very well. 

 

5.1.3 Robustness to Noise 

A robustness to noise study was performed to assess the performance of the 

software to a noise source such as vibrations.  Vibrations can not be considered a 

complete and exhaustive study of image noise but within the scope of this research, 

vibrations were determined to be suitable for the robustness to noise study.  Vibrations 

were chosen because they are fairly easy to create and they could be measured and 
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quantified with equipment already on hand.  Vibrations are also a very practical 

disturbance that may be encountered in a machine vision situation such as this one in an 

UAV. 

 

In order to create the vibrations, a motor with an off center weight was attached to 

the top of the camera tripod.  The motor was then connected to a variable power supply 

which allowed varying speeds of the motor.  A Crossbow IMU was used to measure the 

vibrations applied to the camera and the data was recorded for analysis.  This entire setup 

was described in detail in Section 4.2.1.5.  Once determinations were made as to the 

exact desired vibration based on the visual movement of the camera, the related voltages 

being applied to the vibration motor were recorded so that the vibration could be 

recreated.  Once the setup was complete, the desired vibrations were recorded and 

calculations were made to quantify the different vibrations.  Once the vibrations were 

recorded, the accelerations in all three axis’ were used in  power spectral density (PSD) 

calculations.  The PSD data allowed the frequency and amplitude of the vibrations to be 

determined.  These values were used to quantify the vibrations used in the robustness 

tests.  The information gathered from the PSD plots is shown in Table 5.4, below. 

 

Table 5.4:  Test Conditions Used for Robustness to Vibration Tests 

Condition Primary Frequency Amplitude Harmonics 
  (Hertz) (dB/Hertz) (Hertz) 

No Motion 39.4 2.77E-06 N/A 
Vibration 1 11.06 0.005248 22.12, 33.11, 66.58 
Vibration 2 14.21 0.01204 28.42, 64.01 
Vibration 3 16.63 0.01378 8.31, 24.98, 33.22, 41.78, 49.88, 58.26, 66.54 

 

By looking at the PSD plots, shown on the following page in Figure 5.10, it was 

easy to determine the primary frequency of vibration and all of the related harmonics.  

Interestingly enough, some harmonics were not present in some trials because of the 

damping effect of the legs of the tripod.  Another fact gathered by using the PSD plots 

was that with the tripod totally still, there was a large peak at 39.4 Hz in the X-direction 

and a second smaller peak in the Y-direction.  This could only be attributed to 

measurement noise created inside the IMU itself.  The 39.4 Hz noise even appeared on 
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the PSD plot for Vibration Trial #2 but was not noticeable in the other trials.  The PSD 

plots were extremely useful in this case to help to verify that each vibration trial used was 

actually stronger than the previous one but not only amplitude information was gained.  

The frequency information was an added bonus and allowed a further delineation to be 

created between the vibration trials.   

 

 

Figure 5.10:  Power Spectral Density of Vibration Conditions 

 

The vibration noise that was created for this study was most likely higher in 

frequency that would be encountered in a real situation.  The amplitude of the vibrations, 

however, cause some great excitation in the measurements taken by the software which 

was the desired end result of the application of the vibrations to the camera mount.  The 

fact that the vibrations also had numerous harmonics in different directions which would 

have intermittent waves of canceling each other out and opposing each other allowed a 

much more intense screening of the robustness of the software to take place than would 

have been achieved with a constant vibration only.     The data taken by the software to 
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analyze the robustness was based solely on the roll angle measurement.  In these tests, the 

roll angle was set to three specific values for each vibration trial.  For each of these 12 

different sets of conditions, the roll angle was measured 60 times, once per second.  Once 

this was complete the RMS error of the roll angle measurements for all of the conditions 

was calculated and compared.  The table outlining the RMS errors is shown below in 

Table 5.5. 

 

Table 5.5:  RMS Error of Roll Angle Measurements for Vibration Tests 

Condition
No Motion 0.004941 0.003679 0.01315
Vibration 1 0.1063 0.056434 0.089607
Vibration 2 0.1971 0.2035 0.19598
Vibration 3 0.4215 0.2693 0.3303

RMS Error (deg)
0Φ = ° 20Φ = ° 50Φ = °

 

 

As can be seen from the table, the roll angle measurement RMS error did increase 

as the vibration amplitude and frequency increased and there were no worrisome 

differences between the different roll angles for each vibration trial..  The RMS error did 

not, however, increase to an undesirable amount.  The vibration presented to the camera 

in Vibration Trial #3 was certainly more than could be expected in a real situation and the 

software appeared to handle it without duress.  Figure 5.11, on the following page, is a 

plot of the RMS errors for each of the vibration trials.  The data appears fairly consistent 

with the exception of Vibration Trial #3.  This trial exhibited an undue amount of 

vibrations to the camera which attributed to the slightly uncorrelated results.   
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Figure 5.11:  RMS Error of Roll Angle Measurement for Vibration Trials 

 

5.2 Runway Detection Results 

Normally, the assessment of the performance of the Runway Detection scheme 

would not be difficult but, because the video used in the Runway Detection scheme was 

taken from an aircraft that was not yet instrumented, there were no other data sets, such 

as GPS, associated with the flight that could be used for comparison.  As a result of this, 

the performance evaluation is quite limited in the scope of tests that can be performed.  

This limitation does not exclude visual means of evaluation however, and that constitutes 

the majority of the performance evaluation of this scheme.  The visual means of 

evaluation is comprised of actually looking at the output of the scheme and verifying that 

it is working and this is covered in Section 5.2.2.  One other aspect of the scheme that 

was explored was the computational workload.  This is always an important aspect of 

software when dealing with MV applications.  Therefore, a full computational workload 

analysis was performed and it is detailed in Section 5.2.1.   

 

It should be noted, however, that with the availability of flight data associated 

with the flight videos, the performance metrics would be easily defined.  If flight data 

was available, the visual means of validation and the use of the computational workload 

calculations would still be used but, there would be additional things to consider as well.  
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First, with the availability GPS data for the flight, a small addendum to the Runway 

Detection scheme could be made that could output the GPS coordinates of the runway 

using the known position of the aircraft.  This could then be used as a judge of the 

performance of the Runway Detection scheme.  In order for this comparison between the 

estimated runway position and the actual runway position to be made, the actual runway 

position would have to be known.  The actual position could be determined by using a 

static GPS unit and mapping the runway manually.  This data could then be extrapolated 

and compared to the estimated position.  Secondly, if a directional control system such as 

a heading hold controller could be implemented, the algorithm could actually be tested in 

it runway following ability and with this kind of experiment, the tracking error could be 

calculated which in this case, would be the best gauge of performance possible.  Table 

5.6, below, illustrates a breakdown of the tests performed on the runway detection 

scheme. 

 

Table 5.6:  Runway Detection – Breakdown of Trials Used for Evaluation 

Computational Workload Comparison Visual Examination
Simulink Profiler comparison

Trial 1 Trial 1
Trial 2 Trial 2  

 

5.2.1 Computational Workload Analysis 

In order to evaluate the computational workload of the scheme, the Simulink 

Profiler was used.  The profiler was able to break down the time spent on each block in 

the scheme and these blocks and their times were assembled in Table 5.7, on the 

following page.  The description of the blocks can be found in Section 4.3.2, therefore no 

additional explanation will be given here. 
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Table 5.7:  Timing Analysis of the Runway Detection Scheme 

Speed Comparison using  Runway Detection 
Simulink Profiler No Video Output 

Machine Vision Process Time (s) Executions 
Model Initialize 0.3906 1 
Reading the AVI 1.6562 150 
Pre-processing 3.4374 150 
Hough Transform 2.4218 150 
Rho/Theta Correction 0.09375 150 
Image Regeneration 0.3125 150 
Other Lines and Overhead 0.2658 N/A 
Total Time 7.9062 1 

 

The Runway Detection tests were performed using videos that were 5 seconds in 

duration and recorded at a frame rate of 30 FPS.  This combination creates a video that is 

150 frames long and this is reflected in the timing analysis data in the above table in the 

number of executions column.  Since there were only 150 frames, there were only 150 

executions of each block. 

 

The timing analysis was broken down into the major subsystems and the model 

initialization function.  It is easy to see that the pre-processing subsystem takes the most 

time compared to all of the other subsystems.  It accounts for about 43% of the 

computational workload.  This reflects on the importance of a bare minimum pre-

processing scheme.  The Hough transform is the next most computational intensive 

subsystem.  Surprising is the fact that it did not exceed the time spent in the pre-

processing subsystem as the number of calculations the Hough transform must perform 

for every frame is enormous..  At 2.4218 seconds, the Hough transform comprises 30% 

of the computational workload.  The last large time consumer in the list is the reading of 

the AVI file function.  This function, like in the Marker Detection software is another of 

the computationally intensive functions.  It consumed 1.6562 seconds of the 7.9062 

second total time, which amounts to about 21% of the total time.  These two subsystems 

and one function amount for 94% of the total computational time required by this 

scheme.  The rest of the time was spent on other smaller functions which individually 

comprise less than 0.5 seconds each but they amount to the other 6% of computational 

workload exhibited by the scheme.  Since there are many other blocks in the scheme, in 
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fact, almost 10 times the number of blocks that comprise 94% of the computational time, 

the time spent on all of these blocks is negligible. 

 

In order to have a fair estimation of the real computational frame rate, it is 

necessary to discard the time taken by the model initialization function.  The model 

initialization function only happens once in the simulation but for a frame by frame look 

at the computational time, it needs to be removed because it does not happen during 

frame processing, only before.  With discarding this value, the ‘total time’ of processing 

stands at 7.5156 seconds.  Using the total number of frames processed, which is 150, 

results in a frame rate of approximately 20 Hz.  This frame rate is probably adequate to 

be used in an UAV for navigation and since the scheme was not written in a real-time 

environment the possibility exists for the speed of this scheme to be increased which 

could yield even better performance for a real-time application. 

 

5.2.2 Performance Analysis 

As mentioned before, the Runway Detection scheme is very difficult to analyze 

without the availability of video taken from an instrumented aircraft.  Therefore, most of 

the performance evaluation is based on visual examination of the output only.  The 

following figures show examples of the output of the Runway Detection scheme.  The 

colored lines on the images indicate the position that the scheme has detected there to be 

a strong presence of a straight line.  The strong presence of a straight line relates to the 

sides of the runway and the center line of the runway.  It is evident in the figures 

presented below that the scheme is working to the best of its ability and it performing as 

it should, detecting the three most prominent lines on the image.  Figures 5.12, 5.13, 5.14, 

and 5.15 are examples taken from real flight video and are presented for performance 

evaluation purposes.  These figures an be found on the following pages. 
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Figure 5.12:  Performance Evaluation Image #1 for the Runway Detection Scheme 

 

 

Figure 5.13:  Performance Evaluation Image #2 for the Runway Detection Scheme 
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Figure 5.14:  Performance Evaluation Image #3 for the Runway Detection Scheme 

 

These figures show an almost unflawed performance in detecting the lines 

comprising the runway.  Ultimately, an UAV with a control system would have no 

problem following this runway with the accuracy given by the Runway Detection scheme 

as long as the scheme was able to execute fast enough to accommodate the speed of the 

aircraft.  The accuracy of this scheme is not where a failure would likely occur, it is in the 

speed of execution where the real problem with implementation lies.  Figure 5.12 

represents a perfect frame of detection.  Figure 5.13, 5.14, and 5.15 all have some slight 

misjudgment of the actual edge of the runway or the center line.  But, it is easy to see that 

the trajectory needed to follow this runway could easily be discerned from images 

displaying this type of accuracy. 
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Figure 5.15:  Performance Evaluation Image #4 for the Runway Detection Scheme 
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Chapter 6 

Conclusions and Recommendations 

 
6.1 Conclusions 

The purpose of this research effort was to investigate the feasibility of MV 

applications in an UAV.  These applications consisted of marker detection on a tanker 

aircraft for the purposes of AAR and runway detection for the purposes of following the 

trajectory of a runway, road, or pipeline.  Through the research presented here, the 

objectives regarding these MV problems were satisfied.  This research has shown that 

this type of MV application is feasible and it is assured that this type of technology will 

be applied in the future.  The possibilities that extend from an UAV having these abilities 

are numerous and they will be invaluable to the future of military aviation. 

 

The Marker Detection and Tracking software has been shown to work very well 

under numerous conditions simulated in the lab environment.  Taking into account the 

data from all of the experiments, the Advanced K-Means Detection and Tracking 

software would be the clear favorite.  This software continuously yielded a faster 

computational time than the other methods although the RMS errors were a toss up 

between the two methods using estimation.  The software could be accelerated even 

further while also gaining robustness to the loss of marker visibility situation if the K-

Means Clustering Algorithm using the while loop was implemented along with the 

tracking algorithm.  This was detailed earlier in an effort to address the problem of loss of 

visibility of markers during a simulation.  Regardless, this method showed solid 

performance in every aspect and would be the choice for further research in this area.   

 

In every case shown, all of the software versions were able to continuously find 

the location of the markers on the aircraft.  In the cases shown where estimation was 

involved, the estimation error was very negligible, with RMS errors being less than 1 

pixel.  This shows that a marker position estimation scheme could be relied upon under 

much more adverse conditions.  An attempt at simulating these conditions was made by 
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using vibrations to excite the motion of the camera.  In these cases, the repeatability of 

the roll angle measurements was proven to be acceptable even under the most violent 

vibration activity.  This was proven by showing that the RMS error of the roll angle 

measurement was consistently less than 1 degree.  This is not an indication that the MV 

software could be used for roll angle measurement but it was an indication to the 

robustness of the marker detection algorithm.  These tests indicated that the algorithm 

could still provide acceptable results using blurred markers caused by vibrations which 

could possibly be a concern for an small UAV.  The computational loads exhibited by the 

marker detection software indicate that it could be used in a real-time environment.  This 

fact only strengthens the claim that this is, in fact, a feasible operation.  The frame rate 

achieved by the Marker Detection and Tracking software using full estimation was 

greater than 30 Hz.  It is currently thought that a computational speed of 20 Hz or more is 

acceptable to ensure operational effectiveness within a UAV platform.  Therefore, based 

on the information available about the performance of this algorithm such as the 

computational loads and the estimation errors, it is thought that it could be applied in an 

UAV.  Furthermore, if the current growth rate of high speed, efficient, lightweight, 

compact computers and research efforts such as this one continues, the problem of AAR 

could very well be addressed in a real-life application in this decade. 

 

The Runway Detection scheme was a difficult problem to address and the analysis 

of the results proved to be even more difficult.  The concept of the use of runway 

detection for things such as automatic landing or simply following a trajectory is a very 

feasible idea as proven by this research effort.  This effort proved that runway detection 

could be used in a real-life application because of the speed and effectiveness of the 

scheme presented here.  This scheme exhibited almost perfect runway detections at a 

frame rate of 20 Hz.  This frame rate is more than acceptable to be applied in an UAV.  

Similar to the Marker Detection and Tracking software, this runway detection scheme 

exhibits the capability to be deployed in this decade.  Its use could also prove invaluable 

in the areas of cost and safety when it is applied to the patrol of national borders.  With 

the current global outlook, the need for such a machine is certainly in the spotlight and 

the uses for said machine will only continue to grow. 
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In both algorithms and/or schemes there are some aspects that are not very 

desirable.  There are serious issues regarding the performance in real-time that are of 

concern.  At this time, it is not thought that these algorithms could be used in a real-time 

system.  Although they execute fast enough to do so, the applicability to a real-time 

system is not very feasible.  This is due to the fact that the execution times presented here 

are from simulations produced on a very fast ground-based computer.  A computer of 

approximately one-third the power is feasible in a real-time system using current 

methodologies of incorporating computer systems into UAVs.  Therefore, these 

algorithms will certainly need further evaluation to determine if they could ever be 

applied in a real-time system and possibly in a decade, these methods may be able to be 

used in a much faster real-time system but, with the equipment available today this proof 

of concept  is simply that and no real-time applicability can be seen in the near future for 

these algorithms.  

 

6.2 Recommendations 

The future of the Marker Detection and Tracking software is certainly bright.  

Although current military interests are in the areas of passive markers, this software could 

easily be adapted to detect passive markers of any type with the correct hardware.  The 

current recommendations for this software is to conduct further testing in the application 

of this software to pose estimation.  The availability of a fully instrumented six degree of 

freedom robotic arm which could hold a simulated tanker aircraft would certainly be a 

step in the right direction.  With this robotic arm, real measurements could be made as to 

the accuracy of this detection scheme.  On a smaller level relating to the software itself, 

more robustness could be added to the software to make it more real-life friendly.  

Currently, the ability to lose sight of a marker will cause a fatal error but some additional 

software could be written to contend with this issue.  In addition, the use of a color 

camera could be of some use in detecting passive markers, depending on the type.   

 

The future idea the of research with the Runway Detection scheme is to be able to 

use the lines extracted from the image to define a trajectory for an aircraft to follow.  This 

would be relatively easy since the sidelines of the runway already define the trajectory 
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that is desired.  All that is needed is to be able to pick out the lines.  Of course, this is 

where the Runway Detection scheme comes in.  Once the scheme has performed its job, 

the output is the end points, defined in pixels, of two lines representing the sides of the 

runway.  Once this is complete, all that is necessary is to calculate a desired heading.  

Using the desired heading, a lateral-directional tracking controller could be developed 

that would minimize the error between the desired heading and the current heading.  

Once this is complete, some type of ground detection would be necessary to keep the 

UAV from hitting the ground.  This ground detection would not be necessary if an 

altitude hold was employed using the global positioning system (GPS).  Although, for the 

simple altitude hold to work reliably, the route to be followed would have to be mapped 

in order to calculate a reasonable altitude in which to fly such that a collision would not 

occur.  This is a very feasible research idea that could be attempted with current 

equipment in the WVU UAV lab.  This would make the Runway Detection research and 

its application to other things very attractive to many agencies in many countries. 
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% marker_detect.m 
% Machine Vision Image Processing 
% Larry Rowe 
% Fall 2004 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%%%%%  This version of software performs NO ESTIMATION of the position  
%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
  
clear all; 
clc; 
close all; 
imaqreset; 
  
video = aviread('..\VIDEOS\MV1.avi'); 
  
level=0.7; % Threshold Level 
T=15;  %Pixel filter threshold level 
index = 0; 
  
for i=1:150 
    index=index+1; 
    tic;  % Begin counting frame time; 
  
    % Get single frame to work with 
    frame1=frame2im(video(i)); 
  
    % Convert to binary and threshold 
    frame2=im2bw(frame1,level); 
  
    clear targetindex; 
     
    % FIND TARGET PIXELS 
    i=1;j=1;k=0; 
    for i=1:640 
        for j=1:480 
            if frame2(j,i)==1 
                k=k+1; 
                targetindex(k,:)=[i j]; 
            end 
        end 
    end 
  
    % TARGET DETERMINATION AND LOCATION CALCULATION 
    clear targetindex1; 
    targetindex1=targetindex; 
  
    % FIND LIST OF TARGET 1 PIXELS 
    k=0;q=0; 
    X1=targetindex1(1,1); 
    Y1=targetindex1(1,2); 
    Xrange_max1=X1+T; 
    Yrange_min1=Y1-T; 
    Yrange_max1=Y1+T; 



 

 159

    listsize1=size(targetindex1); 
    clear target1; 
    for k = 1:listsize1(1) 
        if targetindex1(k,1) <= Xrange_max1 && targetindex1(k,1) ~= 0 
            if targetindex1(k,2)>= Yrange_min1 && targetindex1(k,2)<= 
Yrange_max1 
                q=q+1; 
                target1(q,1:2) =targetindex1(k,:); 
                targetindex1(k,:)=0; 
            end 
        end 
    end 
  
    varsize1=size(target1); 
    clear targetindex2; 
    j=0; 
    for k = 1:listsize1(1) 
        if targetindex1(k,1) ~= 0 
            j=j+1; 
            targetindex2(j,1:2)=targetindex1(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 1 
    target1sumX=0;target1sumY=0; 
    for h=1:varsize1(1) 
        target1sumX=target1(h,1)+target1sumX; 
        target1sumY=target1(h,2)+target1sumY; 
    end 
    target1avgX=target1sumX/varsize1(1); 
    target1avgY=target1sumY/varsize1(1); 
  
    % FIND LIST OF TARGET 2 PIXELS 
    k=0;q=0; 
    X2=targetindex2(1,1); 
    Y2=targetindex2(1,2); 
    Xrange_max2=X2+T; 
    Yrange_min2=Y2-T; 
    Yrange_max2=Y2+T; 
    listsize2=size(targetindex2); 
    clear target2; 
    for k = 1:listsize2(1) 
        if targetindex2(k,1) <= Xrange_max2 && targetindex2(k,1) ~= 0 
            if targetindex2(k,2)>= Yrange_min2 && targetindex2(k,2)<= 
Yrange_max2 
                q=q+1; 
                target2(q,1:2)=targetindex2(k,:); 
                targetindex2(k,:)=0; 
            end 
        end 
    end 
  
    varsize2=size(target2); 
    clear targetindex3; 
    j=0; 
    for k = 1:listsize2(1) 
        if targetindex2(k,1) ~= 0 
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            j=j+1; 
            targetindex3(j,1:2)=targetindex2(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 2 
    target2sumX=0;target2sumY=0; 
    for h=1:varsize2(1) 
        target2sumX=target2(h,1)+target2sumX; 
        target2sumY=target2(h,2)+target2sumY; 
    end 
    target2avgX=target2sumX/varsize2(1); 
    target2avgY=target2sumY/varsize2(1); 
  
    % FIND LIST OF TARGET 3 PIXELS 
    k=0;q=0; 
    X3=targetindex3(1,1); 
    Y3=targetindex3(1,2); 
    Xrange_max3=X3+T; 
    Yrange_min3=Y3-T; 
    Yrange_max3=Y3+T; 
    listsize3=size(targetindex3); 
    clear target3; 
    for k = 1:listsize3(1) 
        if targetindex3(k,1) <= Xrange_max3 && targetindex3(k,1) ~= 0 
            if targetindex3(k,2)>= Yrange_min3 && targetindex3(k,2)<= 
Yrange_max3 
                q=q+1; 
                target3(q,1:2)=targetindex3(k,:); 
                targetindex3(k,:)=0; 
            end 
        end 
    end 
  
    varsize3=size(target3); 
    clear targetindex4; 
    j=0; 
    for k = 1:listsize3(1) 
        if targetindex3(k,1) ~= 0 
            j=j+1; 
            targetindex4(j,1:2)=targetindex3(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 3 
    target3sumX=0;target3sumY=0; 
    for h=1:varsize3(1) 
        target3sumX=target3(h,1)+target3sumX; 
        target3sumY=target3(h,2)+target3sumY; 
    end 
    target3avgX=target3sumX/varsize3(1); 
    target3avgY=target3sumY/varsize3(1); 
  
    % FIND LIST OF TARGET 4 PIXELS 
    k=0;q=0; 
    X4=targetindex4(1,1); 
    Y4=targetindex4(1,2); 
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    Xrange_max4=X4+T; 
    Yrange_min4=Y4-T; 
    Yrange_max4=Y4+T; 
    listsize4=size(targetindex4); 
    clear target4; 
    for k=1:listsize4(1) 
        if targetindex4(k,1) <= Xrange_max4 && targetindex4(k,1) ~= 0 
            if targetindex4(k,2)>= Yrange_min4 && targetindex4(k,2)<= 
Yrange_max4 
                q=q+1; 
                target4(q,1:2)=targetindex4(k,:); 
                targetindex4(k,:)=0; 
            end 
        end 
    end 
  
    varsize4=size(target4); 
    clear targetindex5; 
    j=0; 
    for k = 1:listsize4(1) 
        if targetindex4(k,1) ~= 0 
            j=j+1; 
            targetindex5(j,1:2)=targetindex4(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 4 
    target4sumX=0;target4sumY=0; 
    for h=1:varsize4(1) 
        target4sumX=target4(h,1)+target4sumX; 
        target4sumY=target4(h,2)+target4sumY; 
    end 
    target4avgX=target4sumX/varsize4(1); 
    target4avgY=target4sumY/varsize4(1); 
  
    % FIND LIST OF TARGET 5 PIXELS 
    k=0;q=0; 
    X5=targetindex5(1,1); 
    Y5=targetindex5(1,2); 
    Xrange_max5=X5+T; 
    Yrange_min5=Y5-T; 
    Yrange_max5=Y5+T; 
    listsize5=size(targetindex5); 
    clear target5; 
    for k= 1:listsize5(1) 
        if targetindex5(k,1) <= Xrange_max5 && targetindex5(k,1) ~= 0 
            if targetindex5(k,2)>= Yrange_min5 && targetindex5(k,2)<= 
Yrange_max5 
                q=q+1; 
                target5(q,1:2)=targetindex5(k,:); 
                targetindex5(k,:)=0; 
            end 
        end 
    end 
  
    varsize5=size(target5); 
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    % FIND AVERAGE PIXEL LOCATION OF TARGET 5 
    target5sumX=0;target5sumY=0; 
    for h=1:varsize5(1) 
        target5sumX=target5(h,1)+target5sumX; 
        target5sumY=target5(h,2)+target5sumY; 
    end 
    target5avgX=target5sumX/varsize5(1); 
    target5avgY=target5sumY/varsize5(1); 
  
    % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS 
    Ftarget1=[target1avgX target1avgY]; 
    Ftarget2=[target2avgX target2avgY]; 
    Ftarget3=[target3avgX target3avgY]; 
    Ftarget4=[target4avgX target4avgY]; 
    Ftarget5=[target5avgX target5avgY]; 
  
    %  DETERMINE ABSOLUTE DISTANCES 
    dist(1,:)=[sqrt(((Ftarget1(1,1)-Ftarget2(1,1))^2)+((Ftarget1(1,2)-
Ftarget2(1,2))^2)),1,2]; 
    dist(2,:)=[sqrt(((Ftarget1(1,1)-Ftarget3(1,1))^2)+((Ftarget1(1,2)-
Ftarget3(1,2))^2)),1,3]; 
    dist(3,:)=[sqrt(((Ftarget1(1,1)-Ftarget4(1,1))^2)+((Ftarget1(1,2)-
Ftarget4(1,2))^2)),1,4]; 
    dist(4,:)=[sqrt(((Ftarget1(1,1)-Ftarget5(1,1))^2)+((Ftarget1(1,2)-
Ftarget5(1,2))^2)),1,5]; 
    dist(5,:)=[sqrt(((Ftarget2(1,1)-Ftarget3(1,1))^2)+((Ftarget2(1,2)-
Ftarget3(1,2))^2)),2,3]; 
    dist(6,:)=[sqrt(((Ftarget2(1,1)-Ftarget4(1,1))^2)+((Ftarget2(1,2)-
Ftarget4(1,2))^2)),2,4]; 
    dist(7,:)=[sqrt(((Ftarget2(1,1)-Ftarget5(1,1))^2)+((Ftarget2(1,2)-
Ftarget5(1,2))^2)),2,5]; 
    dist(8,:)=[sqrt(((Ftarget3(1,1)-Ftarget4(1,1))^2)+((Ftarget3(1,2)-
Ftarget4(1,2))^2)),3,4]; 
    dist(9,:)=[sqrt(((Ftarget3(1,1)-Ftarget5(1,1))^2)+((Ftarget3(1,2)-
Ftarget5(1,2))^2)),3,5]; 
    dist(10,:)=[sqrt(((Ftarget4(1,1)-Ftarget5(1,1))^2)+((Ftarget4(1,2)-
Ftarget5(1,2))^2)),4,5]; 
  
    %  DETECTING THE WING TIPS 
    wings=max(dist(:,1)); 
    for i=1:10 
        if dist(i,1)==wings; 
            wingdef(1,1)=dist(i,2); 
            wingdef(1,2)=dist(i,3); 
        end 
    end 
    leftwing=wingdef(1); 
    rightwing=wingdef(2); 
  
    %  DETECTING THE HORIZONTAL STAB TIPS 
    count=0; 
    for i=1:10 
        if dist(i,2)~=wingdef(1)&&dist(i,2)~=wingdef(2)&&dist(i,3)... 
                ~=wingdef(1)&&dist(i,3)~=wingdef(2) 
            count=count+1; 
            elev(count,:)=dist(i,:); 
        end 
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    end 
    stabsize=size(elev); 
    limit=stabsize(1); 
    stab=max(elev(:,1)); 
    for i=1:limit 
        if elev(i,1)==stab; 
            stabdef(1,1)=elev(i,2); 
            stabdef(1,2)=elev(i,3); 
        end 
    end 
    leftstab=stabdef(1); 
    rightstab=stabdef(2); 
  
    %  DEFINING THE VERTICAL STAB TIP 
    vertstab=15-leftwing-rightwing-leftstab-rightstab; 
  
    % SAVE TARGET LOCATIONS FOR COMPARISONS 
    targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5]; 
    targetlocX=targetloc(:,1); 
    targetlocY=targetloc(:,2); 
    
FtargetX=[Ftarget1(1);Ftarget2(1);Ftarget3(1);Ftarget4(1);Ftarget5(1)]; 
    
FtargetY=[Ftarget1(2);Ftarget2(2);Ftarget3(2);Ftarget4(2);Ftarget5(2)]; 
    ACTtargetlocationX(:,index)=FtargetX; 
    ACTtargetlocationY(:,index)=FtargetY; 
  
    %CALCULATE BANK ANGLE 
    riserun=(targetlocY(rightwing)-targetlocY(leftwing))/... 
        (targetlocX(rightwing)-targetlocX(leftwing)); 
    phirad=atan(riserun); 
    phideg(index)=atan(riserun)*180/pi(); 
  
    frametime(index,:)=toc; 
end; 
  
% PLOTTING ROUTINE 
figure; 
plot(frametime); 
axis([1 150 0 1]) 
title('Image Processing Speed on Frame by Frame Basis') 
xlabel('Frame Number'); 
ylabel('Time between frames (secs)'); 
  
figure; 
plot(phideg); 
axis([1 150 -90 90]) 
title('Aircraft Bank Angle As Calculated From Wing Tip Target 
Positions') 
xlabel('Frame Number'); 
ylabel('Bank Angle - Phi (degrees)'); 
  
figure; 
axis ij; 
hold on; 
plot(ACTtargetlocationX(5,:),ACTtargetlocationY(5,:),'b'); 
plot(ACTtargetlocationX(4,:),ACTtargetlocationY(4,:),'b'); 
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plot(ACTtargetlocationX(3,:),ACTtargetlocationY(3,:),'b'); 
plot(ACTtargetlocationX(2,:),ACTtargetlocationY(2,:),'b'); 
plot(ACTtargetlocationX(1,:),ACTtargetlocationY(1,:),'b'); 
title('Actual Location for All Markers'); 
xlabel('X-Coordinate'); 
ylabel('Y-Coordinate'); 
axis([0 640 0 480]) 
hold off; 
  
% SAVE DATA FILE FOR COMPARISON 
save data.mat -MAT ACTtargetlocation* frametime phideg; 
%  END 
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MATLAB Code 

 

For 

 

 Matlab Based Modified K-Means 

Clustering Algorithm with Loss of Marker Visibility 

 

 

 

 

marker_loss.m 
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% marker_loss.m 
% Machine Vision Image Processing 
% Larry Rowe 
% May 2006 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
%%%%%  This version of software performs marker detection ONLY.  No      
%%%%% 
%%%%%  labeling of the markers is performed in this software. This       
%%%%% 
%%%%%  software does accomodate the loss/gain of any number of markers.  
%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
  
clear all; 
clc; 
close all; 
imaqreset; 
  
video = aviread('..\VIDEOS\MV5.avi'); 
  
level=0.7; % Threshold Level 
T=15;  %Pixel filter threshold level 
index = 0; 
disp('READY TO BEGIN SIMULATION, PRESS A KEY TO CONTINUE'); 
pause; 
  
  
for i=1:150 
    index=index+1; 
  
    tic; 
  
    % Get single frame to work with 
    frame1= frame2im(video(i)); 
  
    % Convert to binary and threshold 
    frame2=im2bw(frame1,level); 
  
    clear targetindex; 
     
    %  FIND TARGET PIXELS 
    i=1;j=1;k=0; 
    for i=1:640 
        for j=1:480 
            if frame2(j,i)==1 
                k=k+1; 
                targetindex(k,:)=[i j]; 
            end 
        end 
    end 
  
    %  TARGET DETERMINATION AND LOCATION CALCULATION 
    k=0;q=0;targetsize=0;targetnum=0;targetlist=0; 
    g=size(targetindex); 
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    listsize=g(1); 
    while(sum(targetindex(:,1)) ~= 0 && sum(targetindex(:,2)) ~= 0) 
  
        targetnum=targetnum+1; 
        k=targetsize+1; 
  
        Xrange_max=targetindex(k,1)+T; 
        Yrange_min=targetindex(k,2)-T; 
        Yrange_max=targetindex(k,2)+T; 
  
  
        for u = k:listsize 
            if targetindex(u,1) <= Xrange_max && targetindex(u,1) ~= 0 
                if targetindex(u,2) >= Yrange_min && targetindex(u,2) 
<= Yrange_max 
                    q=q+1; 
                    targetlist(q,1:3) = [targetindex(u,:),targetnum]; 
                    targetindex(u,:) = 0; 
                end 
            end 
        end 
        h=size(targetlist); 
        targetsize=h(1); 
    end 
  
    targetnum=0;targetsumX=0;targetsumY=0; 
    for i=1:targetsize 
        if targetlist(i,3) == (targetnum+1) 
            targetnum=targetnum+1; 
            targetsumX=0;targetsumY=0;count=0; 
        end 
        if targetlist(i,3) == targetnum 
            targetsumX=targetlist(i,1)+targetsumX; 
            targetsumY=targetlist(i,2)+targetsumY; 
            count=count+1; 
        end 
        targetavgX=targetsumX/count; 
        targetavgY=targetsumY/count; 
        centroidlist(targetnum,1:2)=[targetavgX targetavgY]; 
    end 
  
     
    targetlocX=centroidlist(:,1); 
    targetlocY=centroidlist(:,2); 
    clear centroidlist; 
     
     
    if length(targetlocX) == 5 
        targetlocX(6)=0; 
        targetlocY(6)=0; 
    end 
     
    ACTtargetlocationX(index,1:6)=targetlocX; 
    ACTtargetlocationY(index,1:6)=targetlocY; 
     
    % PLOT TARGETS ON ORIGINAL FRAME 
    imshow(frame1); 
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    hold on; 
    plot(targetlocX,targetlocY,'rO'); 
    frametime(index,:)=toc; 
    pause(.03); 
end; 
  
% PLOTTING ROUTINE 
figure; 
plot(frametime); 
axis([1 150 0 1]) 
title('Image Processing Speed on Frame by Frame Basis') 
xlabel('Frame Number'); 
ylabel('Time between frames (secs)'); 
  
% SAVE DATA FILE FOR COMPARISON 
save data.mat -MAT ACTtargetlocation* frametime; 
%  END 
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% marker_track.m 
% Machine Vision Image Processing 
% Larry Rowe 
% Fall 2004 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%%%%%  This version of software performs the full estimation of the 
%%%%% 
%%%%%  of the position using velocity and acceleration or velocity  
%%%%% 
%%%%%  only.  To use VELOCITY ONLY for estimation, UNCOMMENT LINE   
%%%%% 
%%%%%  366 and 367.      To use VELOCITY AND ACCELERATION for       
%%%%% 
%%%%%  estimation, UNCOMMENT LINE 362 and 363.                      
%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
  
clear all; 
clc; 
close all; 
imaqreset; 
  
video = aviread('..\VIDEOS\MV1.avi'); 
  
level=0.7; % Threshold Level 
T=15;  %Pixel filter threshold level 
index = 0; 
  
for i=1:3 
    index=index+1; 
     
    tic; 
     
    % Get single frame to work with 
    frame1= frame2im(video(i)); 
     
    % Convert to binary and threshold 
    frame2=im2bw(frame1,level); 
     
    % Perform binary erosion to make targets smaller 
    %se=strel('square',3); %Structuring Element 
    %frame3=imerode(frame2,se); 
    frame3=frame2; 
     
    clear targetindex; 
     
    % FIND TARGET PIXELS 
    i=1;j=1;k=0; 
    for i=1:640 
        for j=1:480 
            if frame3(j,i)==1 
                k=k+1; 
                targetindex(k,:)=[i j]; 
            end 
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        end 
    end 
  
    % TARGET DETERMINATION AND LOCATION CALCULATION 
    clear targetindex1; 
    targetindex1=targetindex; 
  
    % FIND LIST OF TARGET 1 PIXELS 
    k=0;q=0; 
    X1=targetindex1(1,1); 
    Y1=targetindex1(1,2); 
    Xrange_max1=X1+T; 
    Yrange_min1=Y1-T; 
    Yrange_max1=Y1+T; 
    listsize1=size(targetindex1); 
    clear target1; 
    for k = 1:listsize1(1) 
        if targetindex1(k,1) <= Xrange_max1 && targetindex1(k,1) ~= 0 
            if targetindex1(k,2)>= Yrange_min1 && targetindex1(k,2)<= 
Yrange_max1 
                q=q+1; 
                target1(q,1:2) =targetindex1(k,:); 
                targetindex1(k,:)=0; 
            end 
        end 
    end 
  
    varsize1=size(target1); 
    clear targetindex2; 
    j=0; 
    for k = 1:listsize1(1) 
        if targetindex1(k,1) ~= 0 
            j=j+1; 
            targetindex2(j,1:2)=targetindex1(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 1 
    target1sumX=0;target1sumY=0; 
    for h=1:varsize1(1) 
        target1sumX=target1(h,1)+target1sumX; 
        target1sumY=target1(h,2)+target1sumY; 
    end 
    target1avgX=target1sumX/varsize1(1); 
    target1avgY=target1sumY/varsize1(1); 
  
    % FIND LIST OF TARGET 2 PIXELS 
    k=0;q=0; 
    X2=targetindex2(1,1); 
    Y2=targetindex2(1,2); 
    Xrange_max2=X2+T; 
    Yrange_min2=Y2-T; 
    Yrange_max2=Y2+T; 
    listsize2=size(targetindex2); 
    clear target2; 
    for k = 1:listsize2(1) 
        if targetindex2(k,1) <= Xrange_max2 && targetindex2(k,1) ~= 0 
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            if targetindex2(k,2)>= Yrange_min2 && targetindex2(k,2)<= 
Yrange_max2 
                q=q+1; 
                target2(q,1:2)=targetindex2(k,:); 
                targetindex2(k,:)=0; 
            end 
        end 
    end 
  
    varsize2=size(target2); 
    clear targetindex3; 
    j=0; 
    for k = 1:listsize2(1) 
        if targetindex2(k,1) ~= 0 
            j=j+1; 
            targetindex3(j,1:2)=targetindex2(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 2 
    target2sumX=0;target2sumY=0; 
    for h=1:varsize2(1) 
        target2sumX=target2(h,1)+target2sumX; 
        target2sumY=target2(h,2)+target2sumY; 
    end 
    target2avgX=target2sumX/varsize2(1); 
    target2avgY=target2sumY/varsize2(1); 
  
    % FIND LIST OF TARGET 3 PIXELS 
    k=0;q=0; 
    X3=targetindex3(1,1); 
    Y3=targetindex3(1,2); 
    Xrange_max3=X3+T; 
    Yrange_min3=Y3-T; 
    Yrange_max3=Y3+T; 
    listsize3=size(targetindex3); 
    clear target3; 
    for k = 1:listsize3(1) 
        if targetindex3(k,1) <= Xrange_max3 && targetindex3(k,1) ~= 0 
            if targetindex3(k,2)>= Yrange_min3 && targetindex3(k,2)<= 
Yrange_max3 
                q=q+1; 
                target3(q,1:2)=targetindex3(k,:); 
                targetindex3(k,:)=0; 
            end 
        end 
    end 
  
    varsize3=size(target3); 
    clear targetindex4; 
    j=0; 
    for k = 1:listsize3(1) 
        if targetindex3(k,1) ~= 0 
            j=j+1; 
            targetindex4(j,1:2)=targetindex3(k,:); 
        end 
    end 
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    % FIND AVERAGE PIXEL LOCATION OF TARGET 3 
    target3sumX=0;target3sumY=0; 
    for h=1:varsize3(1) 
        target3sumX=target3(h,1)+target3sumX; 
        target3sumY=target3(h,2)+target3sumY; 
    end 
    target3avgX=target3sumX/varsize3(1); 
    target3avgY=target3sumY/varsize3(1); 
  
    % FIND LIST OF TARGET 4 PIXELS 
    k=0;q=0; 
    X4=targetindex4(1,1); 
    Y4=targetindex4(1,2); 
    Xrange_max4=X4+T; 
    Yrange_min4=Y4-T; 
    Yrange_max4=Y4+T; 
    listsize4=size(targetindex4); 
    clear target4; 
    for k=1:listsize4(1) 
        if targetindex4(k,1) <= Xrange_max4 && targetindex4(k,1) ~= 0 
            if targetindex4(k,2)>= Yrange_min4 && targetindex4(k,2)<= 
Yrange_max4 
                q=q+1; 
                target4(q,1:2)=targetindex4(k,:); 
                targetindex4(k,:)=0; 
            end 
        end 
    end 
  
    varsize4=size(target4); 
    clear targetindex5; 
    j=0; 
    for k = 1:listsize4(1) 
        if targetindex4(k,1) ~= 0 
            j=j+1; 
            targetindex5(j,1:2)=targetindex4(k,:); 
        end 
    end 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 4 
    target4sumX=0;target4sumY=0; 
    for h=1:varsize4(1) 
        target4sumX=target4(h,1)+target4sumX; 
        target4sumY=target4(h,2)+target4sumY; 
    end 
    target4avgX=target4sumX/varsize4(1); 
    target4avgY=target4sumY/varsize4(1); 
  
    % FIND LIST OF TARGET 5 PIXELS 
    k=0;q=0; 
    X5=targetindex5(1,1); 
    Y5=targetindex5(1,2); 
    Xrange_max5=X5+T; 
    Yrange_min5=Y5-T; 
    Yrange_max5=Y5+T; 
    listsize5=size(targetindex5); 
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    clear target5; 
    for k= 1:listsize5(1) 
        if targetindex5(k,1) <= Xrange_max5 && targetindex5(k,1) ~= 0 
            if targetindex5(k,2)>= Yrange_min5 && targetindex5(k,2)<= 
Yrange_max5 
                q=q+1; 
                target5(q,1:2)=targetindex5(k,:); 
                targetindex5(k,:)=0; 
            end 
        end 
    end 
  
    varsize5=size(target5); 
  
    % FIND AVERAGE PIXEL LOCATION OF TARGET 5 
    target5sumX=0;target5sumY=0; 
    for h=1:varsize5(1) 
        target5sumX=target5(h,1)+target5sumX; 
        target5sumY=target5(h,2)+target5sumY; 
    end 
    target5avgX=target5sumX/varsize5(1); 
    target5avgY=target5sumY/varsize5(1); 
  
    % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS 
    Ftarget1=[target1avgX target1avgY]; 
    Ftarget2=[target2avgX target2avgY]; 
    Ftarget3=[target3avgX target3avgY]; 
    Ftarget4=[target4avgX target4avgY]; 
    Ftarget5=[target5avgX target5avgY]; 
  
    %  DETERMINE ABSOLUTE DISTANCES 
    dist(1,:)=[sqrt(((Ftarget1(1,1)-Ftarget2(1,1))^2)+((Ftarget1(1,2)-
Ftarget2(1,2))^2)),1,2]; 
    dist(2,:)=[sqrt(((Ftarget1(1,1)-Ftarget3(1,1))^2)+((Ftarget1(1,2)-
Ftarget3(1,2))^2)),1,3]; 
    dist(3,:)=[sqrt(((Ftarget1(1,1)-Ftarget4(1,1))^2)+((Ftarget1(1,2)-
Ftarget4(1,2))^2)),1,4]; 
    dist(4,:)=[sqrt(((Ftarget1(1,1)-Ftarget5(1,1))^2)+((Ftarget1(1,2)-
Ftarget5(1,2))^2)),1,5]; 
    dist(5,:)=[sqrt(((Ftarget2(1,1)-Ftarget3(1,1))^2)+((Ftarget2(1,2)-
Ftarget3(1,2))^2)),2,3]; 
    dist(6,:)=[sqrt(((Ftarget2(1,1)-Ftarget4(1,1))^2)+((Ftarget2(1,2)-
Ftarget4(1,2))^2)),2,4]; 
    dist(7,:)=[sqrt(((Ftarget2(1,1)-Ftarget5(1,1))^2)+((Ftarget2(1,2)-
Ftarget5(1,2))^2)),2,5]; 
    dist(8,:)=[sqrt(((Ftarget3(1,1)-Ftarget4(1,1))^2)+((Ftarget3(1,2)-
Ftarget4(1,2))^2)),3,4]; 
    dist(9,:)=[sqrt(((Ftarget3(1,1)-Ftarget5(1,1))^2)+((Ftarget3(1,2)-
Ftarget5(1,2))^2)),3,5]; 
    dist(10,:)=[sqrt(((Ftarget4(1,1)-Ftarget5(1,1))^2)+((Ftarget4(1,2)-
Ftarget5(1,2))^2)),4,5]; 
  
    %  DETECTING THE WING TIPS 
    wings=max(dist(:,1)); 
    for i=1:10 
        if dist(i,1)==wings; 
            wingdef(1,1)=dist(i,2); 
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            wingdef(1,2)=dist(i,3); 
        end 
    end 
    leftwing=wingdef(1); 
    rightwing=wingdef(2); 
  
    %  DETECTING THE HORIZONTAL STAB TIPS 
    count=0; 
    for i=1:10 
        if 
dist(i,2)~=wingdef(1)&&dist(i,2)~=wingdef(2)&&dist(i,3)~=wingdef(1)&&di
st(i,3)~=wingdef(2) 
            count=count+1; 
            elev(count,:)=dist(i,:); 
        end 
    end 
    stabsize=size(elev); 
    limit=stabsize(1); 
    stab=max(elev(:,1)); 
    for i=1:limit 
        if elev(i,1)==stab; 
            stabdef(1,1)=elev(i,2); 
            stabdef(1,2)=elev(i,3); 
        end 
    end 
    leftstab=stabdef(1); 
    rightstab=stabdef(2); 
     
    %  DEFINING THE VERTICAL STAB TIP 
    vertstab=15-leftwing-rightwing-leftstab-rightstab; 
  
    % SAVE TARGET LOCATIONS FOR INERTIAL CALCULATIONS 
    targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5]; 
    targinert(1:5,1:2,index)=targetloc; 
    targetlocX=targetloc(:,1); 
    targetlocY=targetloc(:,2); 
  
    % PLOT TARGETS ON ORIGINAL FRAME 
%     imshow(frame1); 
%     hold on; 
%     plot(targetlocX(leftwing),targetlocY(leftwing),'gp'); 
%     plot(targetlocX(rightwing),targetlocY(rightwing),'rp'); 
%     plot(targetlocX(leftstab),targetlocY(leftstab),'go'); 
%     plot(targetlocX(rightstab),targetlocY(rightstab),'ro'); 
%     plot(targetlocX(vertstab),targetlocY(vertstab),'bd'); 
%     hold off; 
  
    %CALCULATE BANK ANGLE 
    riserun=(targetlocY(rightwing)-
targetlocY(leftwing))/(targetlocX(rightwing)-targetlocX(leftwing)); 
    phirad=atan(riserun); 
    phideg(index)=atan(riserun)*180/pi(); 
  
    frametime(index,:)=toc; 
end; 
  
% END OF FIRST LOOP FINDING THE INITIAL TARGETS 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
% CALCULATE DELTA T 
dT12=frametime(1); 
dT23=frametime(2); 
dT13=frametime(1)+frametime(2); 
  
% CALCULATE VELOCITY AND ACCELERATION OF EACH TARGET 
for i=1:5 
    targetvelocX12(i,:)=(targinert(i,1,2)-targinert(i,1,1))/dT12; 
    targetvelocY12(i,:)=(targinert(i,2,2)-targinert(i,2,1))/dT12; 
  
    targetvelocX23(i,:)=(targinert(i,1,3)-targinert(i,1,2))/dT23; 
    targetvelocY23(i,:)=(targinert(i,2,3)-targinert(i,2,2))/dT23; 
  
    targetaccelX(i,:)=(targetvelocX12(i)-targetvelocX23(i))/dT13; 
    targetaccelY(i,:)=(targetvelocY12(i)-targetvelocY23(i))/dT13; 
    % OUTPUT IS PIXELS/FRAME VELOCITY 
end 
  
% CALCULATE ACCELERATION OF EACH TARGET 
  
%  NEW THRESHOLD FOR REGION OF INTEREST 
RoIT=10; 
  
% CREATE INITIAL ESTIMATE TARGET LOCATIONS 
for i=1:3 
    ESTtargetlocationX(:,i)=targinert(:,1,i); 
    ESTtargetlocationY(:,i)=targinert(:,2,i); 
    ACTtargetlocationX(:,i)=targinert(:,1,i); 
    ACTtargetlocationY(:,i)=targinert(:,2,i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 
  
% LOOP FOR ESTIMATING WINDOW AND SO ON 
  
for framecount=4:150 
    index=index+1; 
    clear ACTtargetloc; 
     
    %%  USE FOR FULL ESTIMATION  %% 
    
ESTtargetlocX=targetlocX+targetvelocX23*dT23+0.5*targetaccelX*dT23^2; 
    
ESTtargetlocY=targetlocY+targetvelocY23*dT23+0.5*targetaccelY*dT23^2; 
     
    %%  USE FOR ESTIMATION WITH NO ACCELERATION  %% 
    %ESTtargetlocX=targetlocX+targetvelocX23*dT23; 
    %ESTtargetlocY=targetlocY+targetvelocY23*dT23; 
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    ESTtargetlocationX(:,index)=ESTtargetlocX;  %USED FOR PLOTTING 
    ESTtargetlocationY(:,index)=ESTtargetlocY;  %USED FOR PLOTTING 
  
    tic; 
     
    % Get single frame to work with 
    frame1=frame2im(video(framecount)); 
     
    % Convert to binary and threshold 
    frame2=im2bw(frame1,level); 
     
    % Perform binary erosion to make targets smaller 
    frame3=frame2; 
    
    % FIND LIST OF PIXELS 
    ESTtargetlocrangeXdec=[ESTtargetlocX-RoIT ESTtargetlocX+RoIT]; 
    ESTtargetlocrangeYdec=[ESTtargetlocY-RoIT ESTtargetlocY+RoIT]; 
  
    ESTtargetlocrangeX=uint16(ESTtargetlocrangeXdec); 
    ESTtargetlocrangeY=uint16(ESTtargetlocrangeYdec); 
  
    % FIND TARGET PIXELS 
    for targ=1:5 
        k=0; 
        for i=ESTtargetlocrangeX(targ,1):ESTtargetlocrangeX(targ,2) 
            for j=ESTtargetlocrangeY(targ,1):ESTtargetlocrangeY(targ,2) 
                if frame3(j,i)==1 
                    k=k+1; 
                    ACTtargetloc(k,:,targ)=[i j]; 
                end 
            end 
        end 
    end 
  
    listsize=size(ACTtargetloc); 
  
    % FILTER OUT ZEROS AND CALCULATE THE CENTROIDS 
    num=0; 
    for targ=1:5 
        j=0; 
        clear centroidindex; 
        targetsumX=0;targetsumY=0; 
        for k = 1:listsize(1) 
            if ACTtargetloc(k,1,targ) ~= 0 
                j=j+1; 
                centroidindex(j,:)=[ACTtargetloc(k,1,targ) 
ACTtargetloc(k,2,targ)]; 
            end 
        end 
        CIsize=size(centroidindex); 
        num=num+1; 
        targetsumX=sum(centroidindex(:,1)); 
        targetsumY=sum(centroidindex(:,2)); 
        targetavgX(:,num)=targetsumX/CIsize(1); 
        targetavgY(:,num)=targetsumY/CIsize(1); 
    end 
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    % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS 
    Ftarget1=[targetavgX(1) targetavgY(1)]; 
    Ftarget2=[targetavgX(2) targetavgY(2)]; 
    Ftarget3=[targetavgX(3) targetavgY(3)]; 
    Ftarget4=[targetavgX(4) targetavgY(4)]; 
    Ftarget5=[targetavgX(5) targetavgY(5)]; 
    
FtargetX=[Ftarget1(1);Ftarget2(1);Ftarget3(1);Ftarget4(1);Ftarget5(1)]; 
    
FtargetY=[Ftarget1(2);Ftarget2(2);Ftarget3(2);Ftarget4(2);Ftarget5(2)]; 
    ACTtargetlocationX(:,index)=FtargetX; 
    ACTtargetlocationY(:,index)=FtargetY; 
  
    % SAVE TARGET LOCATIONS FOR INERTIAL CALCULATIONS 
    targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5]; 
    targinert(1:5,1:2,index)=targetloc; 
    targetlocX=targetloc(:,1); 
    targetlocY=targetloc(:,2); 
  
    % PLOT TARGETS ON ORIGINAL FRAME 
%     imshow(frame1); 
%     hold on; 
%     plot(targetlocX(leftwing),targetlocY(leftwing),'gp'); 
%     plot(targetlocX(rightwing),targetlocY(rightwing),'rp'); 
%     plot(targetlocX(leftstab),targetlocY(leftstab),'go'); 
%     plot(targetlocX(rightstab),targetlocY(rightstab),'ro'); 
%     plot(targetlocX(vertstab),targetlocY(vertstab),'bd'); 
%     hold off; 
    %pause; 
     
    %CALCULATE BANK ANGLE 
    riserun=(targetlocY(rightwing)-
targetlocY(leftwing))/(targetlocX(rightwing)-targetlocX(leftwing)); 
    phirad=atan(riserun); 
    phideg(index)=atan(riserun)*180/pi(); 
  
    frametime(index,:)=toc; 
  
    % CALCULATE DELTA T 
    dT12=frametime(index-2); 
    dT23=frametime(index-1); 
    dT13=dT12+dT23; 
     
    % CALCULATE VELOCITY AND ACCELERATION OF EACH TARGET TO ESTIMATE 
NEW 
    for i=1:5 
        targetvelocX12(i,:)=(targinert(i,1,index-1)-
targinert(i,1,index-2))/dT12; 
        targetvelocY12(i,:)=(targinert(i,2,index-1)-
targinert(i,2,index-2))/dT12; 
  
        targetvelocX23(i,:)=(targinert(i,1,index)-targinert(i,1,index-
1))/dT23; 
        targetvelocY23(i,:)=(targinert(i,2,index)-targinert(i,2,index-
1))/dT23; 
  
        targetaccelX(i,:)=(targetvelocX12(i)-targetvelocX23(i))/dT13; 
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        targetaccelY(i,:)=(targetvelocY12(i)-targetvelocY23(i))/dT13; 
        % OUTPUT IS PIXELS/SEC 
    end 
     
end; 
% END OF LAST LOOP FINDING THE ESTIMATED TARGETS 
  
% PLOTTING 
figure; 
subplot(2,1,1); 
hold on; 
plot(frametime); 
axis([1 10 0 1]) 
title('Image Processing Speed on Frame by Frame Basis - Transient 
Illustration') 
xlabel('Frame Number'); 
ylabel('Time between frames (secs)'); 
hold off; 
subplot(2,1,2); 
hold on; 
plot(frametime); 
axis([1 150 0 0.1]); 
title('Image Processing Speed on Frame by Frame Basis') 
xlabel('Frame Number'); 
ylabel('Time between frames (secs)'); 
hold off; 
  
figure; 
plot(phideg); 
axis([1 150 -20 30]) 
title('Aircraft Roll Angle As Calculated From Wing Tip Marker 
Positions') 
xlabel('Frame Number'); 
ylabel('Bank Angle - {\Phi} (degrees)'); 
  
figure; 
subplot(2,1,1),plot(ESTtargetlocationX(1,:),'r'); 
hold on; 
subplot(2,1,1),plot(ACTtargetlocationX(1,:),'b'); 
title('Estimate vs. Actual X-Coordinate Location for Target 1'); 
xlabel('Frame Number'); 
ylabel('X-Coordinate'); 
subplot(2,1,2),plot(ESTtargetlocationY(1,:),'r'); 
hold on; 
subplot(2,1,2),plot(ACTtargetlocationY(1,:),'b'); 
title('Estimate vs. Actual Y-Coordinate Location for Target 1'); 
xlabel('Frame Number'); 
ylabel('Y-Coordinate'); 
  
figure; 
subplot(2,1,1),plot(ESTtargetlocationX(2,:),'r'); 
hold on; 
subplot(2,1,1),plot(ACTtargetlocationX(2,:),'b'); 
title('Estimate vs. Actual X-Coordinate Location for Target 2'); 
xlabel('Frame Number'); 
ylabel('X-Coordinate'); 
subplot(2,1,2),plot(ESTtargetlocationY(2,:),'r'); 
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hold on; 
subplot(2,1,2),plot(ACTtargetlocationY(2,:),'b'); 
title('Estimate vs. Actual Y-Coordinate Location for Target 2'); 
xlabel('Frame Number'); 
ylabel('Y-Coordinate'); 
  
figure; 
subplot(2,1,1),plot(ESTtargetlocationX(3,:),'r'); 
hold on; 
subplot(2,1,1),plot(ACTtargetlocationX(3,:),'b'); 
title('Estimate vs. Actual X-Coordinate Location for Target 3'); 
xlabel('Frame Number'); 
ylabel('X-Coordinate'); 
subplot(2,1,2),plot(ESTtargetlocationY(3,:),'r'); 
hold on; 
subplot(2,1,2),plot(ACTtargetlocationY(3,:),'b'); 
title('Estimate vs. Actual Y-Coordinate Location for Target 3'); 
xlabel('Frame Number'); 
ylabel('Y-Coordinate'); 
  
figure; 
subplot(2,1,1),plot(ESTtargetlocationX(4,:),'r'); 
hold on; 
subplot(2,1,1),plot(ACTtargetlocationX(4,:),'b'); 
title('Estimate vs. Actual X-Coordinate Location for Target 4'); 
xlabel('Frame Number'); 
ylabel('X-Coordinate'); 
subplot(2,1,2),plot(ESTtargetlocationY(4,:),'r'); 
hold on; 
subplot(2,1,2),plot(ACTtargetlocationY(4,:),'b'); 
title('Estimate vs. Actual Y-Coordinate Location for Target 4'); 
xlabel('Frame Number'); 
ylabel('Y-Coordinate'); 
  
figure; 
subplot(2,1,1),plot(ESTtargetlocationX(5,:),'r'); 
hold on; 
subplot(2,1,1),plot(ACTtargetlocationX(5,:),'b'); 
title('Estimate vs. Actual X-Coordinate Location for Target 5'); 
xlabel('Frame Number'); 
ylabel('X-Coordinate'); 
subplot(2,1,2),plot(ESTtargetlocationY(5,:),'r'); 
hold on; 
subplot(2,1,2),plot(ACTtargetlocationY(5,:),'b'); 
title('Estimate vs. Actual Y-Coordinate Location for Target 5'); 
xlabel('Frame Number'); 
ylabel('Y-Coordinate'); 
  
figure; 
axis ij; 
hold on; 
plot(ESTtargetlocationX(5,:),ESTtargetlocationY(5,:),'r'); 
plot(ACTtargetlocationX(5,:),ACTtargetlocationY(5,:),'b'); 
plot(ESTtargetlocationX(4,:),ESTtargetlocationY(4,:),'r'); 
plot(ACTtargetlocationX(4,:),ACTtargetlocationY(4,:),'b'); 
plot(ESTtargetlocationX(3,:),ESTtargetlocationY(3,:),'r'); 
plot(ACTtargetlocationX(3,:),ACTtargetlocationY(3,:),'b'); 
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plot(ESTtargetlocationX(2,:),ESTtargetlocationY(2,:),'r'); 
plot(ACTtargetlocationX(2,:),ACTtargetlocationY(2,:),'b'); 
plot(ESTtargetlocationX(1,:),ESTtargetlocationY(1,:),'r'); 
plot(ACTtargetlocationX(1,:),ACTtargetlocationY(1,:),'b'); 
title('Estimate vs. Actual Location for All Markers'); 
xlabel('X-Coordinate'); 
ylabel('Y-Coordinate'); 
axis([0 640 0 480]) 
hold off; 
  
%  COMPUTE ERROR 
error5X=abs(ESTtargetlocationX(5,:)-ACTtargetlocationX(5,:)); 
error5Y=abs(ESTtargetlocationY(5,:)-ACTtargetlocationY(5,:)); 
error5=sqrt(error5X.*error5X+error5Y.*error5Y); 
  
error4X=abs(ESTtargetlocationX(4,:)-ACTtargetlocationX(4,:)); 
error4Y=abs(ESTtargetlocationY(4,:)-ACTtargetlocationY(4,:)); 
error4=sqrt(error4X.*error4X+error4Y.*error4Y); 
  
error3X=abs(ESTtargetlocationX(3,:)-ACTtargetlocationX(3,:)); 
error3Y=abs(ESTtargetlocationY(3,:)-ACTtargetlocationY(3,:)); 
error3=sqrt(error3X.*error3X+error3Y.*error3Y); 
  
error2X=abs(ESTtargetlocationX(2,:)-ACTtargetlocationX(2,:)); 
error2Y=abs(ESTtargetlocationY(2,:)-ACTtargetlocationY(2,:)); 
error2=sqrt(error2X.*error2X+error2Y.*error2Y); 
  
error1X=abs(ESTtargetlocationX(1,:)-ACTtargetlocationX(1,:)); 
error1Y=abs(ESTtargetlocationY(1,:)-ACTtargetlocationY(1,:)); 
error1=sqrt(error1X.*error1X+error1Y.*error1Y); 
  
avgerr5=mean(error5); 
avgerr4=mean(error4); 
avgerr3=mean(error3); 
avgerr2=mean(error2); 
avgerr1=mean(error1); 
avgerr=[avgerr1;avgerr2;avgerr3;avgerr4;avgerr5]; 
  
stderr5=std(error5); 
stderr4=std(error4); 
stderr3=std(error3); 
stderr2=std(error2); 
stderr1=std(error1); 
stderr=[stderr1;stderr2;stderr3;stderr4;stderr5]; 
  
%  PLOT MEAN OF THE ERROR 
figure; 
hold on; 
bar(avgerr); 
set(gca,'XTick',0:1:6) 
set(gca,'XTickLabel',{'','Left Wing','Left Stab','Rudder','Right 
Stab','Right Wing'}) 
title('Mean of Position Error for All Markers'); 
ylabel('Pixels'); 
hold off; 
  
%  PLOT STANDARD DEVIATION OF THE ERROR 
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figure; 
hold on 
bar(stderr); 
set(gca,'XTick',0:1:6) 
set(gca,'XTickLabel',{'','Left Wing','Left Stab','Rudder','Right 
Stab','Right Wing'}) 
title('Standard Deviation of Position Error for All Markers'); 
ylabel('Pixels'); 
hold off; 
  
% CREATE DATA FILE VECTORS 
ACTtargetlocationX_FULL=ACTtargetlocationX; 
ACTtargetlocationY_FULL=ACTtargetlocationY; 
ESTtargetlocationX_FULL=ESTtargetlocationX; 
ESTtargetlocationY_FULL=ESTtargetlocationY; 
frametime_FULL=frametime; 
phideg_FULL=phideg; 
avgerr_FULL=avgerr; 
stderr_FULL=stderr; 
  
% SAVE DATA FILE FOR COMPARISON 
save data.mat -MAT ACTtargetlocationX_FULL ACTtargetlocationY_FULL 
ESTtargetlocationX_FULL... 
    ESTtargetlocationY_FULL frametime_FULL phideg_FULL avgerr_FULL 
stderr_FULL; 
%  END 
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