
Graduate Theses, Dissertations, and Problem Reports

2006

Machine vision applications in UAVs for autonomous aerial Machine vision applications in UAVs for autonomous aerial

refueling and runway detection refueling and runway detection

Larry W. Rowe II
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Rowe, Larry W. II, "Machine vision applications in UAVs for autonomous aerial refueling and runway
detection" (2006). Graduate Theses, Dissertations, and Problem Reports. 1742.
https://researchrepository.wvu.edu/etd/1742

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1742?utm_source=researchrepository.wvu.edu%2Fetd%2F1742&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Machine Vision Applications in UAVs for Autonomous Aerial Refueling
and Runway Detection

Larry W. Rowe II

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Aerospace Engineering

Marcello R. Napolitano, Ph.D., Chair
Giampiero Campa, Ph.D.

Mario G. Perhinschi, Ph.D.
Brad Seanor, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, WV
2006

Keywords: Machine Vision, Marker Detection, Runway Detection

ABSTRACT

Machine Vision Applications in UAVs for Autonomous Aerial Refueling
and Runway Detection

Larry W. Rowe II

 This research focuses on the application of Machine Vision (MV) techniques and

algorithms to the problems of Autonomous Aerial Refueling (AAR) and Runway

Detection. In particular, real laboratory based hardware was used in a simulated

environment to emulate real-life conditions for AAR. It was shown that the K-Means

Clustering Algorithm solution to the Marker Detection problem could be executed at a

frame rate of 30 Hz and it averaged a tracking error of less than one pixel while utilizing

only 0.16% of the image. It was also shown that the solution to the Runway Detection

problem could be executed at a frame rate of 20 Hz which is acceptable for use in an

UAV performing reconnaissance work. Data from these tests suggest that both software

schemes are suitable for applications in moving vehicles and that the accuracy of the

measurements produced by the schemes make them suitable for UAV applications.

iii

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Marcello Napolitano for his knowledge, guidance,

and support throughout my life as a graduate student. You will certainly not be forgotten.

I would also like to thank my colleagues Dr. Brad Seanor, Dr. Yu Gu, Dr.

Giampiero Campa, Srikanth Gururajan, and Peter Cooke for the knowledge and guidance

they gave me in completing this research. All seriousness aside, I would like to thank the

group for all of the camaraderie, good times, and bad times we had in completing the

Autonomous Formation Flight project. That is and will always be a memorable time in

my life.

Special thanks to the NASA West Virginia Space Grant Consortium, Dr. Majid

Jaraiedi, Dr. Mario Perhinschi, and Dr. Napolitano for the funding and the opportunity to

do this research.

I would like to express my deepest appreciation to my wife, Shannon, for being an

incredible supporting partner during this part of my life. At the same time I would like to

express my deepest sympathy to her for all of the lonely nights she spent while I was

working. I would also like to thank my son, Larry, for the inspiration he provided for me

to finish this thesis.

Lastly, I would like to thank my parents, Larry and Connie, for their help in

getting through college and their life long support in doing anything I ever wanted to do.

GO MOUNTAINEERS!

iv

Table of Contents

Title Page ... i
Abstract ... ii
Acknowledgements.. iii
Table of Contents... iv
List of Tables .. vii
List of Figures .. viii
Nomenclature.. x
Chapter 1: Introduction.. 1

1.1 What is Machine Vision?.. 1
1.2 Problem Definition.. 2

1.2.1 Marker Detection and Tracking .. 3
1.2.2 Runway Detection... 6

1.3 Research Objectives.. 7
1.4 Overview of Thesis ... 8

Chapter 2: Literature Review... 10
2.1 General .. 10
2.2 Image Segmentation Methods... 10

2.2.1 Pixel Based Methods... 11
2.2.2 Edge Based Methods... 13
2.2.3 Region Based Methods ... 15
2.2.4 Connectivity Preserving Relaxation Methods .. 16

2.3 Image Segmentation Applications .. 17
2.3.1 Aerospace Related Image Segmentation Applications 17
2.3.2 Other Engineering... 23
2.3.3 Manufacturing Industry .. 24
2.3.4 Medical Industry/Biology ... 26
2.3.5 Agriculture .. 28

Chapter 3: Theoretical Approach... 29
3.1 Overview of Theoretical Approach .. 29
3.2 Shared Image Processing Functions ... 29

3.2.1 Coordinate System.. 30
3.2.2 Image Definition ... 31
3.2.3 Gamma Correction and Color Level Conversion ... 33

3.2.3.1 Gamma Correction.. 34
3.2.3.2 RGB to Intensity ... 36

3.2.4 Thresholding ... 37
3.3 Theoretical Approach to the Marker Detection and Tracking Problem 39

3.3.1 Matlab Based Modified K-Means Clustering Algorithm 39
3.3.2 Matlab Based Advanced K-Means Clustering and Tracking Algorithm......... 45

3.4 Theoretical Approach to the Runway Detection Problem 47
3.4.1 Sobel Edge Detection.. 48
3.4.2 Morphological Filtering .. 52

3.4.2.1 Structuring Elements... 52
3.4.2.2 Morphological Dilation... 53

v

3.4.2.3 Morphological Erosion ... 54
3.4.2.4 Morphological Opening .. 56

3.4.3 Line Detection Algorithms ... 57
3.4.3.1 Hough Transform.. 59

Chapter 4: Experimental Procedures ... 63
4.1 Overview of Experimental Procedures ... 63
4.2 Experimental Procedures for the Marker Detection and Tracking Problem......... 63

4.2.1 Hardware Used for the Marker Detection and Tracking Problem.................... 64
4.2.1.1 Description of Hitachi CCD Camera and Fujinon Lens 64
4.2.1.2 Description of Euresys Picolo Frame Grabber PCI Card 67
4.2.1.3 Description of Machine Vision Research Computer 68
4.2.1.4 Model Aircraft and Camera Mount Apparatus ... 70
4.2.1.5 Camera Mount Noise Creation ... 73
4.2.1.6 Limitations of the Marker Detection Hardware Setup................................ 75

4.2.2 Software Used for the Marker Detection and Tracking Problem 76
4.2.2.1 Modified K-Means Clustering Algorithm .. 77
4.2.2.2 Advanced K-Means Clustering and Tracking Algorithm........................... 84

4.3 Experimental Procedures for the Runway Detection Problem 88
4.3.1 Hardware Used for the Runway Detection Problem... 89

4.3.1.1 Description of Mustek DV-4000 Mini DV Camera.................................... 89
4.3.1.2 Cessna 152 Video Acquisition Platform... 91

4.3.2 Software Used for the Runway Detection Problem.. 94
4.3.2.1 Image Acquisition ... 96
4.3.2.2 Image Preparation, Conversion, Filtering, and Edge Detection 97
4.3.2.3 Hough Transform Operations ... 100
4.3.2.4 Rho/Theta Correction.. 103
4.3.2.5 Image Regeneration .. 108

4.3.3 Description of the Graphical User Interface ... 110
4.3.3.1 Simulation Inputs .. 112
4.3.3.2 Result Values Display Section.. 115
4.3.3.3 Trend Plotting Section .. 117
4.3.3.4 Video Analysis Windows ... 118

Chapter 5: Simulation Results and Discussion .. 121
5.1 Marker Detection and Tracking Results ... 121

5.1.1 Computational Workload Comparison via Timing Data 122
5.1.2 Estimation Error.. 129
5.1.3 Robustness to Noise.. 136

5.2 Runway Detection Results.. 140
5.2.1 Computational Workload Analysis... 141
5.2.2 Performance Analysis ... 143

Chapter 6: Conclusions and Recommendations .. 147
6.1 Conclusions... 147
6.2 Recommendations... 149

References... 151
Appendix A: Code for Modified K-Means Clustering Algorithm 156

vi

Appendix B: Code for Modified K-Means Clustering Algorithm with Loss of Marker
Visibility ... 165
Appendix C: Code for Advanced K-Means Clustering and Tracking Algorithm 169

vii

List of Tables

Table 4.1: Hitachi KP-M22A Specifications .. 65
Table 4.2: Fujinon DF6HA-1 Specifications .. 66
Table 4.3: Common Example of List of White Pixels Obtained 80
Table 4.4: Mustek DV-4000 Mini DV Camera Specifications....................................... 90
Table 4.5: Cessna 152 Specifications ... 92
Table 5.1: Marker Detection – Breakdown of Trials Used for Evaluation................... 122
Table 5.2: Timing Comparison Between Marker Detection and Tracking Methods.... 123
Table 5.3: RMS Position Estimation Error – Method Comparison for All Trials 135
Table 5.4: Test Conditions Used for Robustness to Vibration Tests 137
Table 5.5: RMS Error of Roll Angle Measurements for Vibration Tests..................... 139
Table 5.6: Runway Detection – Breakdown of Trials Used for Evaluation 141
Table 5.7: Timing Analysis of the Runway Detection Scheme.................................... 142

viii

List of Figures

Figure 1.1: ‘GPS+MV’ approach with a single set of optical markers............................. 4
Figure 2.1: FLIR Star SAFIRETM HD .. 22
Figure 2.2: MV Inspection System for Date and Time on Yogurt Cups 25
Figure 3.1: Coordinate Convention for Images .. 30
Figure 3.2: RGB Image Construction ... 31
Figure 3.3: Color Map Style of RGB Image Definition ... 32
Figure 3.4: Illustration of the Construction of an Intensity Image 33
Figure 3.5: Gamma Correction Example Scale .. 34
Figure 3.6: Comparison of Original Image to Gamma Corrected Image 35
Figure 3.7: Example Images for the R G B′ ′ ′ to Intensity Color Conversion.................. 36
Figure 3.8: Illustration of Thresholding for Image Segmentation Purposes................... 38
Figure 3.9: Marker Position Situation for Calculating Velocity..................................... 46
Figure 3.10: Estimate of New Marker Location Using Velocity and Acceleration 47
Figure 3.11: Illustration of Line Definition in a Typical Image 49
Figure 3.12: Visual Example of Sobel Edge Detection Kernels Applied Seperately..... 51
Figure 3.13: Visual Example of Sobel Edge Detection Final Product 51
Figure 3.14: Example of Various Styles of Structuring Elements.................................. 53
Figure 3.15: Flowchart Indicating Process for Morphological Dilation......................... 54
Figure 3.16: Flowchart Indicating Process for Morphological Erosion 55
Figure 3.17: Visual Example of a Simple Morphological Opening 57
Figure 3.18: Relationship of Hough Parameters to Original Image Space..................... 59
Figure 3.19: Example Image Used to Perform Simple Hough Transform 60
Figure 3.20: Hough Space Resulting From Hough Transform....................................... 61
Figure 3.21: Implementation of Hough Transform to Detect Straight Lines 62
Figure 4.1: Marker Detection and Tracking Experimental Procedures 64
Figure 4.2: Hitachi KP-M22A Machine Vision Camera .. 66
Figure 4.3: Euresys Picolo Frame Grabber PCI Card... 68
Figure 4.4: Machine Vision Research Computer.. 69
Figure 4.5: Model Tanker, Mount, LED System ,and Compass 71
Figure 4.6: Tripod and Camera In Position Over The Model Tanker 72
Figure 4.7: View From Above the Laboratory Camera and Model Aircraft 73
Figure 4.8: Vibration Motor Attached to Tripod .. 74
Figure 4.9: Crossbow IMU Mounted With Camera On Tripod 74
Figure 4.10: Typical Input Image of the Tanker Aircraft with LEDs Illuminated 78
Figure 4.11: Mid-Stream Image After Performing Image Segmentation....................... 79
Figure 4.12: Typical Output Image with Aircraft Roll Angle ≈ 85º............................... 82
Figure 4.13: Macro Level Flowchart - Advanced Clustering and Tracking Algorithm . 88
Figure 4.14: Runway Detection Experimental Procedures... 89
Figure 4.15: Mustek DV4000 Mini DV Camera .. 91
Figure 4.16: Cessna 152 Model Test Bed... 92
Figure 4.17: Close Up View of the DV4000 Camera Mounted on the Cessna 152 93
Figure 4.18: Runway Detection – Main Simulation System .. 95
Figure 4.19: Runway Detection - Typical Input Image .. 96
Figure 4.20: Runway Detection – Pre-Processing Subsystem.. 97

ix

Figure 4.21: Runway Detection - Noise Filtering Subsystem .. 99
Figure 4.22: Runway Detection –Edge Image.. 100
Figure 4.23: Runway Detection – Hough Transform Operations................................. 101
Figure 4.24: Runway Detection – Typical Hough Space ... 102
Figure 4.25: Runway Detection – Rho/Theta Correction Subsystem........................... 104
Figure 4.26: Runway Detection – For Iterator Subsystem ... 106
Figure 4.27: Runway Detection – Rho/Theta Error Flag Display 107
Figure 4.28: Runway Detection – Image Regeneration Subsystem 109
Figure 4.29: Runway Detection – Hough Lines Calculator Subsystem 110
Figure 4.30: Runway Detection – Graphical User Interface .. 111
Figure 4.31: Runway Detection – Graphical User Interface Input Parameters 113
Figure 4.32: Runway Detection – GUI Result Values Display Section 117
Figure 4.33: Runway Detection – GUI Trend Plotting Section.................................... 118
Figure 4.34: Runway Detection – Analysis Window Cluster....................................... 120
Figure 5.1: Frame Processing Time Comparison Between Methods for All Trials 126
Figure 5.2: Transient Illustration from Frame Processing Speed Plot for Trial 4 127
Figure 5.3: Frame Processing Time Comparison Of New vs. Original Algorithm...... 128
Figure 5.4: Estimated vs. Actual Position for All Trials .. 130
Figure 5.5: Estimated vs. Actual Coordinates for Left Wingtip in Trial 3 131
Figure 5.6: Estimated vs. Actual Position for Left Wingtip in Trial 1 132
Figure 5.7: Marker Position Error Calculated Using Absolute Distance 133
Figure 5.8: Roll Angle Measurement from Marker Detection Software for All Trials 134
Figure 5.9: RMS Position Estimation Error – Method Comparison for All Trials 135
Figure 5.10: Power Spectral Density of Vibration Conditions..................................... 138
Figure 5.11: RMS Error of Roll Angle Measurement for Vibration Trials.................. 140
Figure 5.12: Performance Evaluation Image #1 for the Runway Detection Scheme... 144
Figure 5.13: Performance Evaluation Image #2 for the Runway Detection Scheme... 144
Figure 5.14: Performance Evaluation Image #3 for the Runway Detection Scheme... 145
Figure 5.15: Performance Evaluation Image #4 for the Runway Detection Scheme... 146

x

Nomenclature

Symbol Description

English
x X-component of a pixel in an image
y Y-component of a pixel in an image
N Number of rows in an image
M Number of columns in an image

(,)f x y Intensity of a pixel

Greek
θ Angle of normal line to the X axis
ρ Length of normal line w.r.t. the origin

Acronym
AAR Autonomous Aerial Refueling
AVI Audio Video Interlace
CCD Charge Coupled Device
CMOS Complementary Metal-Oxide-Semiconductor
COTS Commercial Off The Shelf
CT Computer Tomography
DDR2 Double Data Rate 2
DIP Dual In-Line Package
DSP Digital Signal Processing
DV Digital Video
FLIR Forward Looking Infrared Radar
FOV Field Of View
FPS Frames Per Second
FSB Front Side Bus
GB Gigabyte
GHz Gigahertz
GPS Global Positioning System
GUI Graphical User Interface
Hz Hertz
IMU Inertial Measurement Unit
I/O Input/Output
LED Light Emitting Diode
MAV Micro Air Vehicle
MB Megabyte
MHz Megahertz
MPEG Moving Picture Experts Group
MRI Magnetic Resonance Imaging
MSI Micro-Star International
MV Machine Vision
OBC On-board Computer

xi

PCI Peripheral Component Interface
PIC Programmable Integrated Circuit
PSD Power Spectral Density
PWM Pulse Width Modulation
RF Radio Frequency
ROI Region Of Interest
RGB Red-Green-Blue
RMS Root Mean Square
SATA Serial Advanced Technology Attachment
SEAD Suppression of Enemy Air Defenses
SDRAM Synchronous Dynamic Random Access Memory
UAV Unmanned Air Vehicle
US United States
WVU West Virginia University

 1

Chapter 1

Introduction

1.1 What is Machine Vision?

Machine vision (MV) is the application of computer vision for several industry,

manufacturing, and military purposes. While computer vision is primarily focused on

machine-based image processing, MV encompasses and almost always requires digital

input/output devices, computer networks, and/or software to control other equipment1.

The term MV dates back to 1954 when Jerome Lemelson used computers to analyze

digitized images from a video camera2. This was the beginning of several decades of

research to develop various theories and computer algorithms to perform certain

functions on images. Theoretical advances that form the basis of modern MV are now

more than 20 years old and one needs only to review the contents of A. Rosenfield and A.

Kak, Digital Picture Processing, Academic Press, vol. 1-2, 1982 to confirm this

assertion3. Thus, a MV system is simply a computer-based system that is capable of

capturing or grabbing an image and performing some sort of analysis on it. So, this

would lead one to believe that the recent history of MV is essentially the adaptation of

evolving computer technology to the commercialization of image processing for

automation3.

In the 1970s, mainframe computers were first coupled with image capture devices

and external display peripherals. With the advent of the desktop PC in the 1980s, having

a computer dedicated to MV was no longer so difficult and special purpose hardware

designed to accelerate image processing was readily available. During the 1990s, MV

followed trends set by current computing platforms such as Windows and Linux . High

performance microprocessors were available at a fraction of the previous cost and the

ability to perform many tasks previously performed by digital signal processors (DSP)

was now shifted primarily to software and this made special purpose DSP MV hardware

virtually obsolete.

 2

In recent years, MV has evolved into a highly integrated field involving many

disciplines of engineering such as computer science, optics, mechanical and/or aerospace

engineering, and automation. This further enhances the diversity of the applications of

MV to include a number of engineering topics. Within these topics, MV is used to help

solve problems or perform tasks which, otherwise, would be too expensive, unreliable, or

dangerous for human involvement.

1.2 Problem Definition

This research effort is divided into two distinct phases. The first phase deals with

the detection and tracking of multiple markers or light markers attributed to a tanker

aircraft in the field of view (FOV) and is referred to as the Marker Detection and

Tracking phase. The purpose of this phase of the research effort is to address the Marker

Detection and Tracking problem, and to develop and evaluate hardware and the

appropriate software tools and approaches. This includes the research, acquisition, and

evaluation of commercial off the shelf (COTS) hardware that can facilitate MV

laboratory experiments. The problem further involves the development and evaluation of

software that can detect light sources or markers on an aircraft using live video and track

the object as it moves in the FOV. This phase of this research effort was funded in part

by Dr. Majid Jaraiedi and the NASA West Virginia Space Grant Consortium.

The second phase of this research effort deals with the detection of a road,

pipeline, or, in this case, a runway, thus, referred to as the Runway Detection phase. The

purpose of developing a MV Runway Detection algorithm was to investigate the

feasibility of such a solution and determine its real-time applicability to unmanned aerial

vehicle (UAV) technology. The goal of this research is to develop software that can

detect a runway, road, or pipeline in a video stream. The research effort focused mainly

on software and on some hardware related issues and items. Specifically, the research

performed earlier on laboratory MV hardware was not necessary for this software

development.

 3

1.2.1 Marker Detection and Tracking

Marker Detection and Tracking is only a small part of a much larger set of

problems leading to the mutual goal of Autonomous Aerial Refueling (AAR). Initially,

the Marker Detection and Tracking problem became a topic for discussion, due to the

need to examine a number light emitting markers attached to an aircraft in various places

through MV. This was coupled with needs defined by a current research project focusing

on AAR at West Virginia University (WVU). The idea is that if the markers could be

reliably detected and tracked by an UAV, then the position information of the markers

could be used to estimate the position of the UAV relative to the tanker aircraft. This

problem is known in the technical literature as the pose estimation problem. This

information would then be used to drive a control system whose goal would be to guide

the UAV to the refueling position behind the tanker.

Several methods have been researched for performing guidance for the AAR

problem. The first method that was researched was the ‘GPS Only’ method. This

method used the global positioning system (GPS) to attempt to guide the UAV into

refueling position with the tanker. Several problems arose from this method. One

problem was that the accuracy of GPS was not high enough to enable to UAV to dock

with the tanker. The second problem was that the tanker would sometimes block the

UAV’s view of the satellites above, thus causing it to lose even more accuracy by using a

reduced number of satellites for a position fix. The second method that was researched

was the ‘MV Only’ method. This method used machine vision only to guide the UAV

into refueling position. This method did not work well at large distances due to the size

that the tanker would appear to the UAV’s camera. The third method that was researched

was the ‘GPS + MV Sensor Fusion’ method. This method uses GPS for large distances

where the MV does not work well. It then uses a combination of GPS and MV for the

intermediate distances. Finally, it uses MV only at close distances to complete the

docking process. This is the methodology that has continued to be researched today and

it has been shown to work very well. An illustration of the ‘GPS + MV Sensor Fusion’

method can be seen on the following page in Figure 1.1.

 4

Figure 1.1: ‘GPS+MV’ Approach with a Single Set of Optical Markers

This problem could be called Marker Detection only, but the goal was not limited

exclusively to finding these markers. Finding the markers in the fastest possible manner

was key to the operation due to the desired real-time applicability. Tracking the markers

once they were located was found to be a much faster method for performing this task.

Therefore, this is where tracking the marker plays an important role. Originally, the

markers were found by constantly scanning the current image for them. It was then

thought that if the markers could be found by scanning the entire image only three times

initially, that some inertial information about the movement of the markers could be

derived and the next position could be estimated. From this estimated position, the

search area could be reduced from the entire image area to a small area around the

estimated position, thus tracking the marker locations and enhancing the speed of

operation.

As with any problem, there are certain design constraints that should be

addressed. For this problem, there are three factors that had to be considered. First, a

decision must be made during the design phase to determine if the software should be

 5

made real-time capable or to have it executed as an external process on a ground-based

computer. The reasoning behind the necessity for this decision is that if the software

could not be made in a compact enough form to allow its use in an on-board computer

(OBC) in a UAV, then it could be executed on a ground based computer and the

input/output information relayed via radio frequency (RF) transmissions. The second

decision deals with the issue of the number of markers there are to find. Obviously, if the

number of markers increase, the computer workload will also increase and the

computation time will be increased and vice-versa. The pose estimation algorithm may

also have constraints with respect to the minimum number of markers required to obtain

an accurate pose estimate. Lastly and probably the most important thing to consider is

the physical constraints that should be in effect to ensure robust operation of the software.

This depends mostly on the initial conditions of the software and the attitude of the

aircraft in question when the software is executed and there are certain situations that

should be avoided which will be discussed in Chapter 4.

Although these decisions present themselves to the designer fairly obviously,

there are some other things that have to be considered such as what exact mathematical

approach should be taken to solve this problem. Up until recent years, a considerable

amount of research has been directed towards developing methodologies to cut through

the medium level processing to reach a point where it is sufficient to extract features from

an image based solely on a thresholding process. The result of this is that the

complexities of some cluster detecting algorithms have been reduced, making them more

attractive. Despite these efforts, most current cluster detecting algorithms can be

characterized as a fairly unorganized collection of concepts. Since researchers have been

tailoring the algorithms to their specific applications, there has been no consensus on a

generic cluster-detecting algorithm.

While tailoring algorithms for a specific application is practical and has produced

many useful problem-solving hints, the lack of a general concept on cluster detection has

made the interpretation and extension of the algorithms difficult. As a result of this, most

cluster detection problems still remain to be done manually and it is more efficient on

 6

many levels to perform brute force detection and tracking for each individual purpose as

it presents itself.

1.2.2 Runway Detection

The problem of road, pipeline, or, in this case, runway detection is a topic which

has spurred much interest since heightened security in the United States (US) and around

the world has been a major concern. The availability of an UAV that could

autonomously fly above these critical parts of infrastructure for the purpose of monitoring

their condition could be very useful to many security agencies such as the U.S.

Department of Homeland Security and the U.S. Border Patrol. This type of technology

could be used in UAVs to allow them to be used to monitor these points of infrastructure

without spending massive amounts of money required to operate a manned

reconnaissance type aircraft. Therefore, this phase of the research effort was inspired by

the this interest in this subject.

In essence, this is a problem of image segmentation. The image can be segmented

into two sections: that is the runway and everything else. In order to do this, one must

look at what features can be extracted from the runway image. The most striking feature

of a runway is the straight lines. Based on this defining feature of runways, line-

detecting algorithms and methods will be researched for use in solving this problem. The

aim of this research effort combines an actual hardware setup and a software based

method with the ability to test algorithms that could reliably detect a runway in a video

sequence in a near real-time manner. The trajectory of the straight lines could further be

used as an input to a guidance system in a UAV to allow it to follow the straight-line

object of interest. Based on the desire to use these methods on an UAV, the pre-

processing stage is one area that is examined closely since the pre-processing sequence

commonly demands more time with a frame than the main processing algorithm does. In

an effort to make the computation time and computer workload as small as possible for

use in an UAV, it is vital to the operation that the pre-processing sequence be as efficient

as possible. Therefore, it is important to find the correct sequence of filters to yield the

smallest processing time, yet, still yield acceptable results.

 7

Before a line-detecting algorithm can be decided upon, however, the design

constraints should once again be addressed. For this particular problem, the design

constraints are difficult to narrow down, but two things immediately stand out as

potential problems in this research. The first involves the desire to make this algorithm

perform in real-time or in near real-time fashion. This fact greatly influences the decision

of the software environment, the algorithms used, and the complexity of the filtering

process in order to achieve the goal. Often, it is not the main algorithm that uses most of

the processing time; the pre-processing stage might be main bottleneck instead. The

second problem is also clear and that is that there may be other things in the image that

have prominent straight lines. The immediate things that come to mind are roads, rivers,

and the horizon. These are all things that could skew the results while using any

candidate line-detection algorithm. Therefore, it seems that equal emphasis should be

placed on the algorithm, as well as the pre-processing sequence.

The pre-processing sequence must be responsible for filtering out these other

straight line ‘artifacts’ that are not the runway. It has to be able to present the line-

detecting algorithm with an image that is free of anomalies and free of artifacts that could

be mistaken for a runway. As a result of this, the pre-processing sequence has the most

important function in the entire scheme in that it must be able to execute in a timely

fashion and it has to assuredly filter out all unwanted things from the image. The

importance of the pre-processing task can be reduced slightly, however, by having a line-

detecting algorithm that is robust to runway imposters. In order to achieve this, an error

correcting feedback loop will be needed.

1.3 Research Objectives

The following research objectives are intended to address the development and

evaluation of MV hardware, as well as to develop and apply MV algorithms to the

problems of Marker Detection and Tracking and Runway Detection.

Task #1. Select and integrate a set of MV hardware capable of testing MV

algorithms in a lab environment.

 8

Task #2. Develop and test MV software using the Matlab programming

environment, which can detect light sources on a tanker style aircraft.

This software development shall coincide with ongoing AAR research at

WVU. This task involves the development of different approaches to the

problem of the detection of light sources. Possible experiments used to

validate this task include aircraft roll angle measurement and validation,

repeatability analysis, and timing profiles.

Task #3. Develop and test MV software using the Matlab programming

environment, which can detect and track light sources on a tanker style

aircraft. Possible experiments used to validate this task include aircraft

roll angle measurement and validation, repeatability analysis, and timing

profiles.

Task #4. Compare the results of Task #2 and Task #3 in the accuracy of the aircraft

roll angle measurement, the statistic profiles of the repeatability analysis,

and the timing profiles.

Task #5. Develop a MV software scheme using the Simulink programming

environment, capable of detecting things such as roads, runways, and

pipelines. This software development coincides with current interest

shown by security agencies in using UAVs to monitor critical parts of

infrastructure..

Task #6. Evaluate MV software scheme in Task #5. This is accomplished by

utilizing videos acquired via a hardware platform to be developed that

facilitates video acquisition from an existing WVU UAV. Possible

experiments used to analyze the performance of this scheme include

comparing calculated attitude parameters to parameter data recorded by an

OBC on a WVU UAV.

1.4 Overview of Thesis

This thesis is organized as follows. Chapter 2 presents work by other researchers

in the area of image segmentation methods ranging from the most simple to the more

complex, as well as their application to the aerospace industry.

 9

In Chapter 3, the theory behind the pre-processing algorithms and the main

solution to each problem is presented and discussed. In particular, the algorithms used to

find and track the markers and the line-detecting algorithms are covered here.

Chapter 4 is dedicated to the experimental setup of the solution arrived at by this

research effort. This includes the description of the pre-processing steps used in each

problem as well as the description of the implementation of the main algorithms in

software. The setup of the hardware required for obtaining results from laboratory

experiments is also covered here.

Chapter 5 presents the results obtained from laboratory experiments involving

both the Marker Detection and Tracking algorithm and the Runway Detection scheme.

These results include comparisons in performance and robustness as well as statistical

information regarding repeatability of results.

Chapter 6 contains the conclusions drawn from this research on these problems

and also the recommendations for future work involving the research presented here.

 10

Chapter 2

Literature Review

2.1 General

MV has traditionally been applied to industrial or manufacturing settings because

of the size and weight of the equipment required. But, in the last decade, MV has gained

a promising outlook as to its feasibility of use in aerospace applications requiring real-

time solutions. This new outlook for MV is not a realization of new MV techniques or

theory, but a realization of the advancement of semiconductor technology resulting in the

ability to manufacture faster, lighter, more efficient machines which can handle the heavy

loads of MV applications.

In general, the next step for MV technology is of course going to involve smaller,

faster, and more efficient technology. This technology will most likely focus on total

integration of the entire MV system into a single sensor. This vision sensor would be

required to be network ready and contain integrated DSP to ensure at minimum,

performance that matches current MV systems. It would also require the ease-of-use of

the current generation of MV systems, but at a lower cost. Distributed computing

techniques will most likely be involved, making the vision sensor a self-sufficient

network resource. Point-to-point dedicated user interfaces would become obsolete and

vision sensors would be able to cooperate in peer-to-peer groups; able to perform multi-

camera, multi-angle processes which currently are very bulky to consider. In the coming

years, expect to see the clear emergence of the vision sensor paradigm in, what is

conceivably, the ultimate step in the evolution of conventional MV hardware3.

2.2 Image Segmentation Methods

Image segmentation has a very broad research base, which varies greatly

depending on the application. Applications of MV have been researched in many fields

including medical, biology, agriculture, and aerospace engineering. Most of the research

in image segmentation has been done in the medical field. With respect to the aerospace

 11

field, image segmentation has been used for quite a while but in very specific

applications with automated rendezvous and docking (AR&D) being the main topic. In

the last decade, however, image segmentation has become a more prominent topic in the

aerospace industry. With the realization of new technology that enables computers to be

placed into smaller and lighter packages while maintaining the speed and reliability seen

in the past, image segmentation and MV in general has been applied to many more things

than it could have years ago. This technology has allowed a more complex MV system

to be incorporated into a lighter and smaller area allowing it to be used in many

applications where space is at a premium and this is especially true with the major push

in the field of UAVs that is being seen today. Since there is more interest in image

segmentation due to the availability of technology, this has caused the research base to

evolve to include many more techniques than would have previously been addressed

when talking about image segmentation.

The main topic, segmentation, can be defined as distinguishing objects from the

background. For intensity images, which are those images being represented by point-

wise intensity levels, the four popular approaches are: pixel-based methods, edge-based

methods, region-based methods, and connectivity-preserving relaxation methods4. These

methods will be described in detail in Section 2.2.1 through Section 2.2.4, respectively.

2.2.1 Pixel Based Methods

Threshold techniques, which make decisions based on local pixel information, are

effective when the intensity levels of the objects fall squarely outside the range of levels

in the background4. Therefore, any image that contains objects that have a blurred

boundary with respect to the background, will be difficult to detect with this method.

This downfall makes this technique difficult to apply reliably by itself, but it is possible

that it would be much more effective when applied in conjunction with a more advanced

segmentation method. Pixel based methods of image segmentation can be further broken

down into two parts. The first part mainly deals with a low-level segmentation method

called thresholding. The second part deals with a few of the more advanced pixel-based

 12

segmentation methods. Both aspects of pixel-based methods will be fully explored

below.

Image segmentation performed by thresholding is the simplest form of

segmentation. Because of this, there are a wide number of variations on the use of

thresholding for image segmentation purposes and many of them are only precursors to a

more advanced segmentation method. An example of thresholding being used as a

stepping-stone to a more advanced segmentation technique can be found in recent

research performed by Deshmukh and Shinde5. This research investigates the possible

methods that could be used to perform color-based image segmentation such as region

growing, neural network based, and fuzzy based techniques. In each of the methods,

thresholding is either used as a low-level technique or as the main technique acted on by

the adaptive nature of neural networks or fuzzy logic.

Clustering falls in the group of more advanced pixel based methods and is defined

as the process for grouping data points with similar feature vectors together in a single

cluster6. A feature vector may consist of the gray values, contrast values, and local

texture values or measurements for each pixel in the image. This type of clustering

frequently produces disjoint regions where there may be holes or disconnections in

regions that are supposed to be connected. Therefore, post processing of some type that

will allow the disjoint regions to reconnect as one region is usually necessary.

There is one main clustering algorithm with two variations used throughout image

processing. These three variations are all based on the K-Means Clustering algorithm.

The use of the K-Means algorithm alone is the most common, accounting for

approximately 70% of the use in clustering problems. The other two variations account

for the other 30% of use and they are the FUZZY C-Means Clustering Algorithm and the

Adaptive FUZZY C-Means Algorithm. These two methods are slightly more advanced

than the stand alone K-Means algorithm due to their adaptive nature. Most industry use

of K-Means occurs with the stand-alone algorithm with the two variations currently being

used only in the high-level research environment. These two variations are fairly new

 13

concepts and as such, they have not been applied to industry in any significant numbers.

As a result, the focus of the review of clustering methods will be on the stand alone K-

Means Clustering Algorithm.

The major drawback to the K-Means Clustering Algorithm is that a priori

knowledge of the number of clusters is needed to accurately make the algorithm work.

Many researchers are addressing these issues by using a hybrid, spectral clustering7,8,

neural networks5,9, a hybrid of the stand-alone K-Means10, and a hybrid of the Adaptive

FUZZY C-Means Algorithm5,11,12 mentioned earlier. A few more places where the K-

Means Clustering Algorithm can be found is in vision systems used by robots13 and in the

IT sector, where researchers have tried to improve the speed of image search engines by

clustering similar images14. These experimental methods are sure to move to the

forefront of technology when they are perfected enough to be reliable when used in an

everyday environment.

2.2.2 Edge Based Methods

Edge-based methods center around contour detection and their weakness is also a

blurred boundary. This causes a weakness in their ability to connect together broken

segments of a single contour line. This, in turn, will cause the software to detect several

contours instead of a single one. Ultimately, this weakness propagates into increased

computational workload because each contour must now be assessed rather than dealing

with one big contour line. Like thresholding, these methods are also likely to be much

more reliable when used in conjunction with a more advanced segmentation method.

Edge-based segmentations rely on edges found in an image by edge detecting operators –

these edges mark image locations of discontinuities in grey level, color, context, and

etc15. There are many different edge-detecting operators such as Sobel, Canny and

Roberts, but the image resulting from the use of these operators cannot be used as a

segmentation result. Other processing steps must follow to combine edges into contours

that correspond better with borders in the image15. Discussion will follow for the two

main methods of edge-based segmentation and a common higher-level method.

 14

In an edge image, small edge values correspond to insignificant grey level

changes resulting from quantization noise or small lighting irregularities15. Sometimes,

thresholding of an edge image can be used to remove the small edge values.

Thresholding an edge image simply filters out the more faint edges or noise, whatever

they may be. If the original image has high contrast, this method will work, but if the

image is noisy, this will result in errors. Graph searching is another method of edge-

based segmentation. The simplest, and also the least effective method of grouping edges

is to use heuristic search15. This means the algorithm would start on a boundary pixel

and try to join neighboring pixels based on their edge strength and direction. After this is

complete, some thinning such as the use of a skeleton algorithm would have to be used to

remove pixels at places where the edge line is more than one pixel thick. Also, Brejl and

Sonka present an automated model based image segmentation algorithm whose basis is

the edge-based segmentation method16. By adding additional algorithms to automate the

edge detection process, the two major edge based segmentation problems mentioned

previously are addressed.

These edge-based segmentation algorithms are very effective when used with

clean images. But, the most common problems of edge-based segmentation, caused by

image noise or unsuitable information in an image, are an edge presence in locations

where there is no border, and no edge presence where a real border exists17. Hence, they

can suffer from inadequate sensitivity and specificity because the image in the gradient

space must be thresholded or otherwise classified according to edge or non-edge

membership18. Also, the problem of tracking an edge that bifurcates into two or more

edges is one that cannot be adequately resolved using these low-level image operators

alone18.

There exists a considerably more complex edge-based segmentation method

known as the Hough transform. The Hough Transform was named after Paul Hough who

patented it in 1962 as a highly effective method of utilizing mathematics to describe

boundary curves in images19. The original Hough transform was designed to detect

straight lines and curves and this original method can be used if analytic equations of

 15

object borderlines are known -- no prior knowledge of region position is necessary20.

This is an extremely desirable trait of segmentation algorithms because it allows much

more flexibility in initial conditions or changing conditions. The greatest advantage of

this method is the robustness of the segmentation results; that is, segmentation is not too

sensitive to imperfect data or noise20. Since the Hough Transform has been around

almost as long as the term MV has (1954), one would expect there to be many sources for

information and there are. This review of the Hough transform focuses on the most

recent uses in industry and in research.

2.2.3 Region Based Methods

A region-based technique can be considered to be a more advanced segmentation

method. A region-based method usually proceeds by partitioning the image into

connected regions by grouping neighboring pixels of similar intensity levels. Adjacent

regions are then merged under some criterion involving perhaps homogeneity, sharpness,

or region boundaries. The downfalls of this method are that over-stringent criteria can

cause fragmentation and criteria that are too lenient will overlook object boundaries and

can cause many objects to be grouped as one.

Region-based image segmentation is a technique whose purpose is to separate the

image into meaningful, non-overlapping regions, which would be used for further

analysis21. Since the 60’s, a variety of techniques have been proposed for segmenting

images by identifying regions of some common property22. These can be classified into

two main classes. The first is merging algorithms in which neighboring regions are

compared and merged if they are close enough in some property22. The second is

splitting algorithms in which large non-uniform regions are broken up into smaller areas,

which may be uniform22.

Merging must start from a uniform seed region. One method of determining a

suitable seed region is to divide the image into 4 or 16 pieces and check each one for

similarities. Another approach is to divide the image into strips, horizontally or

vertically, and check each strip against each other for similarities. The worst case would

 16

be when the seed is a single pixel. Once a seed is found, each similar neighboring region

is merged until no more similar regions can be found. As one might imagine, there is a

major drawback to this method. This process is inherently sequential, and if fine detail is

required in the segmentation, then the computing time will be long22.

The splitting algorithms begin from the whole image and divide it up until each

sub region is uniform. The usual criterion for stopping the splitting process is when the

properties of a newly split pair do not differ from those of their original region by more

than a threshold22.

Given the explanation of these two main methods, one can immediately assess the

problems that would be encountered in trying to apply these methods in a real-time

situation. Computation time, human interaction to select the seed, and uncertain results

all come into play when assessing the feasibility of using these methods. Kothe23 has

evaluated the use of these methods in a post-processing manner. In this environment,

these methods work fairly well, except that they require some smoothing operations,

which always remove some details. It is evidenced in this paper that the computation

time and the reduction of detail make these algorithms usable only in a one-time use type

of way. It is evident that with all of these problems, these methods can be overlooked as

a feasible solution to their use in this research.

2.2.4 Connectivity Preserving Relaxation Methods

The connectivity preserving relaxation based segmentation method, usually

referred to as the active contour model, was proposed recently4. This method starts with

some initial boundary shape that is represented by splines and iterative modifications are

made to that shape using various shrink/expansion operations according to an energy

minimizing cost function4. Given the inherent complexity of splines and the added

complexity of a constantly evolving set of them, this method can most definitely be

categorized as computational intensive. Therefore, due to the required computational

effort, this method would probably not be a feasible solution in a real-time environment.

Since this method has just been recently proposed and is computational intensive, this is

 17

the least researched method of the four methods discussed. Given these circumstances,

this method is probably not applicable to the aim of the research described here and will

not be discussed further.

2.3 Image Segmentation Applications

Applications of image segmentation and especially the four methods previously

described have been researched extensively. The information gathered from the research

on their application to scientific problems is presented below in Sections 2.3.1 through

Section 2.3.6. These sections have been broken down into their respective scientific

areas and the applications of all of the methods to these areas are included.

2.3.1 Aerospace Related Image Segmentation Applications

As previously mentioned, MV has a promising outlook for applications within the

aerospace industry. Currently, many government agencies and universities are

performing research involving MV. Most research involves the replacement of a human

with MV technology to eliminate having to put a human in harm’s way. Research in the

aerospace industry has began to involve UAVs, which inherently do not carry humans.

Therefore, to extend the capabilities of an UAV to approximate that of a manned aircraft,

MV is one possible solution that is being investigated.

The trend of increasing use of UAVs in order to eliminate the human risk factor

involved in the Suppression of Enemy Air Defenses (SEAD), general reconissance,

and/or high risk, high value missions will certainly continue. These UAVs are very

attractive in that they eliminate risk to the human crew while performing these dangerous

missions, the aircraft have potential for greater survivability, they have greater endurance

to perform a mission as opposed to crew fatigue, the cooperative nature gives a greater

probability of successful outcome, and finally cost is reduced24. Given this information,

the ability for a UAV to detect objects on the ground and in the air will be vital to their

functionality and survivability. The ability to detect threats on the ground or to be able to

refuel itself to endure longer flight times are major objectives that can be met by the use

 18

of MV. In this review, a many applications of image segmentation were found that

directly relate to research in the aerospace industry. These applications will be

highlighted below.

AAR has been an extensively researched topic for the last several years. Many

universities such as Texas A&M25,26 and WVU27,28,29,30,31 as well as the United Stated Air

Force (USAF)32 has ongoing research in this area. The most recent research effort at

WVU involves semi-AAR in a real-time system28 and using feature extraction29 and

corner detection31 to determine the pose of the tanker with respect to an UAV. Research

in this area has focused on enabling an UAV to refuel without human intervention.

Previous research27,30 has taken many paths including active marker based vision where

the tanker would have light emitting ‘markers’ placed in an array on the underbelly and

tips of its empennage. The idea is that the UAV would then be able to sense the

‘markers’ and by the use of labeling techniques and feature matching algorithms the

markers would be labeled as to their actual location on the tanker. Then, pose estimation

such as the Gaussian Least Squares Differential Correction27 (GLSDC) or the Lu, Hager

and Mjolsness27 (LHM) algorithm would enable to UAV to determine its ‘pose’ with

respect to the tanker and the UAV would then orient itself correctly with the tanker using

a control system and move into refueling position.

This research has now been focused in another direction in which the tanker

would have no light emitting markers in the visible spectrum due to the risk presented in

revealing an aircraft’s location to an enemy at night. The UAV would then have to

discern its pose information from other methods using MV, namely feature extraction29.

Research at Texas A&M has focused on using a vision based navigation sensor26 for

AAR purposes and developing a robust trajectory tracking controller for the probe and

drogue type of refueling apparatus25.

There has also been extensive research in the area of autonomous formation flight

by researchers at WVU33,34 and Georgia Institute of Technology35,36. The need to find

ways of maintaining robustness in a formation flight system is important due to any

 19

number of circumstances. The number one thing that can affect formation flight is

communications. If communications are lost, the inability for a leader aircraft to send its

position to the follower aircraft will cause the follower aircraft to do very undesirable

things. So, in an effort to improve the robustness of a formation flight system, the

addition of a MV system has been investigated by a joint West Virginia University and

University of Pisa team33. In this research, five lighted markers were placed on a

simulated leader aircraft. The follower aircraft was able to use its vision system to ‘see’

the markers on the leader. After finding the markers, pose estimation algorithms were

used to estimate the position of the follower relative to the leader and then control

algorithms were able to control the follower to accurately follow the leader.

Another example of vision-based control is shown in research in a collaborative

effort between the University of California at Berkeley and the University of Colorado at

Boulder. Researchers there have used the Hough Transform to perform a very complex

job for an autonomous aircraft37. This job involves the autonomous following of a road

using a small aircraft. Using the Hough Transform combined with other pre-processing

techniques, the research team at the AINS Center for Collaborative Control of Unmanned

Vehicles have been able to build and flight test their small UAV which includes a MV

system. Their UAV was able to follow a road for over two miles before they had to end

their test due to hardware constraints37. Further research has been performed in

comparing various lateral controllers used in performing this function. Flight tests have

not been conducted but simulations have been performed under ideal conditions

comparing several aim-ahead controllers, sliding surface controllers, linear quadratic

Gaussian (LQG) regulators, and a receding horizon controller (RHC)38,39. This is a

perfect example of the uses of the Hough Transform that will be seen in the future in the

aerospace industry.

Stability and control using vision systems is also a widely researched subject.

Perhaps the easiest use of a vision system for stability and control is the ability to detect

roll angle. By detecting the horizon, the roll angle is easily found. This has been applied

both in simulation by researchers at Monash University in Australia40 and researchers at

 20

the University of Colorado at Boulder38 and in flight testing of micro UAVs by

researchers at the University of Florida41. In both instances, the horizon was detected

using either the Hough transform40,41 or the Adaptive Receding Horizon38 method and

then the roll angle was estimated by finding the relative angle of the line detected to the

artificial horizon defined by the camera orientation.

The researchers at Monash University40 achieved their goal by using a robotic arm

to rotate an artificial horizon image. The main purpose of this research was to do this

task with very few components, for very low cost, and at low computational cost. This

was achieved by using a programmable integrated circuit (PIC) microcontroller and not a

standard computer like has been used in so many UAVs. The research at the University

of Florida41 was performed on micro air vehicles (MAV) built at the university. Since the

MAVs were so small, a unique vision system had to be created. This was accomplished

by using a type of embedded processor similar to the Motorola MPC565. By using this

type of processor, the bulky computer parts normally seen in a UAV hardware suite was

eliminated while still being able to perform the desired tasks. In both cases, the horizon

detection problem was very well addressed and the results were impressive.

Researchers at Drexel University in Philadelphia have tried a different approach.

By using a blimp as a UAV they have been able to extend flight times almost indefinitely

and by doing so, can accomplish much more research per flight than can be accomplished

with a conventional UAV42. In reference to their research topic, this involves collision

avoidance and following a simulated road with a payload that weighs less than 100

grams. The collision avoidance is accomplished by using an optic flow sensor. An optic

flow sensor is not a camera, it is a sensor that will output a higher voltage if it ‘sees’ a lot

of things. For example, if the optic flow sensor were to be placed in the middle of a

room, the output would be fairly low. But, if the sensor were placed in front of a

bookshelf, a wall, or a person, the output would be fairly high. So, by monitoring the

voltage coming from this sensor, the blimp can determine if it is getting close to

something and begin to reverse its motors to stop or back up in order to avoid a collision.

The vision system is based on a small wireless camera that weighs 15 grams. This

 21

camera transmits its images down to a ground based vision computer, which analyzes the

image and then calculates flight control commands based on a proportional-derivative

controller. The commands are then translated into pulse width modulation (PWM) and

sent to the receiver in the blimp. This very simple vision system is able to perform lots of

things just by changing the software on the ground-based computer. Current research

focused on being able to follow an artificial road, which was set up in an auditorium.

Another example of MV used for obstacle avoidance is with research preformed

in a collaborative effort between the University of Missouri, Texas Tech. University, and

the USAF43. This research focuses on various ideas and approached to deal with image

noise in motion analysis. This research, like other research in robotics uses a range map

to define the distance to objects with the field of view (FOV). This range map is then

used for collision avoidance along with control and guidance laws designed to navigate

the UAV between waypoints and avoid obstacles. This is a prime example of the

direction of future research in coupling the diversity of MV with the advanced problems

in the aerospace industry.

One current production MV application currently in use by military and other

government agencies around the world is the forward-looking infrared radar (FLIR). The

FLIR has had many variations in its lifetime, but the current FLIR used by US

government armed forces and agencies as well as dozens of international governments

and organizations is the FLIR Star SAFIRETM HD44. This FLIR radar ball employs MV

technology that can track, range find, and laser illuminate targets at extremely high

resolutions at up to a 25 kilometer range in the Near, Mid, and Far Infrared and Visible

light frequencies. All of these features come in a package that is less than 100 pounds,

which makes this an incredibly viable package for any aircraft, but UAVs in particular.

This type of MV technology is on the forefront and will only continue to improve as

technology allows. The FLIR Star SAFIRETM HD can be seen in Figure 2.1.

 22

Figure 2.1: FLIR Star SAFIRETM HD44

Since thresholding based segmentation is the most widely used method, it is

expected that the use of this technique can be found in many places around the world,

including space. This simple technique is being used to detect human settlements in

images acquired by the IKONOS satellite45. Since the imagery from IKONOS is in 4-

meter resolution, one can expect that there are almost an unlimited number of images of

the earth to be processed. In order for scientists and researchers to process all of this

information quickly, low-level image processing is required. By using the multi-spectral

imagery from IKONOS, separating the regions of farmland from regions of housing is a

pretty simple task easily achieved by thresholding. As evidenced from previous

examples, thresholding is mostly a low level technique that is mainly used in conjunction

with other segmentation techniques. Rarely, is the use of thresholding enough to

complete the task at hand in an image analysis problem. Although, when thresholding is

enough, it is a very fast and simple approach. Occasionally, thresholding can be applied

to a complex problem such as IKONOS with great reliability, accuracy, and speed, which

was essential to the objectives required with IKONOS.

 23

2.3.2 Other Engineering

Aside from the field of aerospace engineering, uses of MV can be found in other

areas of engineering such as civil engineering and electrical engineering. Several

examples can be found of researchers in these areas using edge-based segmentation to

perform some sort of image analysis. For example, edge based segmentation is used in

mapping rock fractures46. According to the researchers, rock fracture mapping is an

important task in rock engineering and making the algorithm robust is the hardest part46.

According to Wang, using a valley-edge based segmentation algorithm is the first step in

creating a robust algorithm.

Some research has been performed to stress and highlight the robustness to noise

of the Hough transform.. Range images, which are images that are used to judge

distances, are subject to noise due to weather, lighting, and stray objects that may be in

the field of view. Robots acquire range images and process them to determine distances

to various objects in the field of view so that they may calculate how long to power their

motors to travel to the object47. In doing this, range images must be evaluated quickly

and accurately and the Hough transform can do just this. This method of analyzing range

images is described by Gatcher of the Ecole Polytechnique Federale de Lausanne and his

research shows that when compared to various other image processing techniques used to

do this same job, the Hough Transform is more accurate and faster than any other

method47.

The robustness of the Hough Transform has, again, been proven by researchers at

the University of Puerto Rico. They have shown that the major advantage of using this

transform instead of any other techniques is that it is tolerant of gaps in feature boundary

descriptions and is relatively unaffected by image noise48. This extreme robustness

makes the Hough Transform an ideal method of line extraction and image segmentation

in high-risk applications where it is essential that no mistake be made about the results of

the analysis being performed.

 24

2.3.3 Manufacturing Industry

Aside from the field of engineering, MV is also used in other areas of everyday

life, especially in the manufacturing industry. With the current methodology and

technology, MV systems are generally limited to performing narrowly defined tasks such

as inspecting food products on a conveyor belt49, tracking lift trucks in an industrial

setting50, or inspecting semiconductor chips51. The manufacturing industry favors MV

systems because they can provide continuous, repeatable, high speed, high magnification

inspections. Humans have traditionally catered to these tasks, but it is widely known that

humans are often affected by distraction, illness, and boredom, which can jeopardize their

perception over long periods of time. Although adapting MV systems to new quality

control policies and outlying defects can be time consuming and problematic, MV

systems provide a clear solution to the manufacturing industry to alleviate the economic

effects of missed defects and costs associated with having to employ human inspectors.

Another current use of MV is in the food industry49. Camera based inspection

systems are commonplace in just about every manufacturing plant for edibles around the

world and has been for many years In order to ensure the expiration dates and lot codes

are properly printed on many perishables, food manufacturers use MV systems. These

systems are much faster than humans and are more accurate; they also ensure almost

100% trouble free operation for the fast moving production line. A typical food

inspection system is shown in Figure 2.2. This system uses a camera to capture an image

at the correct time when the container passes on the conveyer belt. The computer then

uses character recognition software to analyze the image and make sure the correct

characters are present on the bottom of the container. The computer will then make a

decision to either let the container go to the next stage of production or to remove it from

the production line and place it in a reject bin. This process would require a very keen

eye from several humans in order to visually inspect every container accurately, but the

MV system does this with ease.

 25

Figure 2.2: MV Inspection System for Date and Time on Yogurt Cups49

K-Means Clustering Algorithm is attractive in that there is only one user definable

input and that is the number of clusters to be found. As a result of this, the K-Means

algorithm is very popular both in research and in industry. This can be seen in a paper

presented by Ramos and Muge of Portugal where the standard K-Means Algorithm was

used to segment maps52. They used K-Means because, according to the researchers,

segmenting a color image composed of different kinds of texture regions can be a hard

problem52. By using the K-Means Clustering Algorithm, their segmentation problem was

workable by simply knowing how many different textures there were on the map. Future

research is now being performed using an adaptive method of determining the number of

textures in the image instead of needing a human input.

In another application, the Hough Transform has been used to detect the borders

in patterned fabric12. Combined with the use of the FUZZY C-Means Algorithm

mentioned earlier, the Hough transform accurately detects the lines that make up the

borders of the regions in the printed fabric. The importance of this application is far

removed from the importance seen with the use of the Hough Transform in medical

imaging, but it is a point that should be stressed and that is the fact that in almost any

application involving the human eye, MV can step in and do a very remarkable job of

replacing the human.

 26

2.3.4 Medical Industry/Biology

As previously stated, the medical industry is on the forefront when it comes to

using imaging in a critical process. The medical industry uses imaging in almost all

diagnostic procedures either in the form of a computer tomography (CT) scan,

ultrasound, or magnetic resonance imaging (MRI). These advances in technology have

come about in the last two decades and have made diagnostic medicine much more

reliable with the ability to see what is happening inside the human body. MV is also not

exclusively applied to diagnosis purposes. MV is also used to help blind people read or

semi-blind people to see major objects. There is much research being performed in this

area where helping the handicapped is the main objective.

An example of research being performed to help the handicapped is seen in

research that has been conducted by Ferreira, Garin, and Gosselin at the Faculte

Polytechnique de Mons in Belgium53. This research focused on text detection in many

situations, but in all cases in order to single out the text, thresholding was used to simply

filter out the background and emphasize the text so that the image could be converted to a

binary form. Then, a more advanced region based technique was used to pick out each

letter and essentially ‘read’ the text. This is another example of thresholding being used

as a pre-process to a more advanced technique.

Other research has focused on a different set of objectives. According to

researchers in the United Kingdom, many people with vision problems resulting in “low

vision” such as having cataracts, diabetic retinopathy, age-related maculopathy, and

retinal detachment are not totally blind, but they retain some residual vision54. This

residual vision is usually not enough to allow mobility of the person, but the researchers

have used the K-Means Clustering Algorithm to pick out major objects in a FOV and

then display them in a head mounted display which would show much less detail than a

normal scene would as viewed by a person with low-vision54. This would allow them to

pick out objects more easily without the “noise” created by all of the details. The end

result is that the person, who was not previously mobile, could now move around with

 27

the ability to see main objects in their field of vision without being confused or blurred by

the details of the entire image.

As discussed before, MV is extremely important to the functioning medical

imaging and it has been found that the K-Means Clustering Algorithm is also a very

important subtopic in the use of MV in medical imaging. In a presentation highlighting

the segmentation methods available in segmenting a moving organ in a CT Scan, it was

shown that among all of the available segmentation techniques/algorithms, the K-Means

Clustering Algorithm was more effective in speed and in detecting subtle differences

among pixels that highlighted different regions in the organ55.

Mark Dow of University of Oregon has also completed research56 in the area of

neurosciences dealing with edge-based segmentation. As mentioned earlier, the medical

field is the forefront in image segmentation research. The research performed by Dow

deals with detecting the borders between white matter and gray matter in the brain from

images taken with a MRI. This research is more flexible in what can be segmented in the

images, but it is important that images with low spatial frequency be used so that the

determination between segments is not a hard decision for the algorithm to make. It can

be seen that almost unconditionally, these techniques are coupled with some other

algorithms to achieve the final goal. It is stressed that this type of low-level edge-based

segmentation is just that: low-level, and as such, generally requires additional algorithms

to achieve the final goal.

As with almost every aspect of MV, the Hough Transform has been applied to the

medical imaging area as well. In a paper written by researchers at Texas Tech

University, the Hough Transform was used to detect cervical vertebrae in x-ray images57.

Not only did this approach work but also it was very robust in detecting bone fragments

and anomalies on individual vertebrae that would have otherwise been hard for a

physician to detect by eye. The robustness of this algorithm in this application is a very

desirable trait since bone growth is something that can vary greatly from individual to

 28

individual. Therefore, the likelihood that an error in diagnosis being made is even further

reduced using the Hough Transform.

One last example of thresholding being used occurs in the biology discipline.

Researchers at the University of California at San Francisco recently used MV techniques

to study behavioral patters of mutant worms58. By first imaging the worm in

monochrome, thresholding was applied in order to convert the image to binary so that the

worm could be easily distinguished from the background. Again, higher-level

segmentation techniques were then applied to be able to measure and track the worm’s

movements to determine its behavioral patterns.

2.3.5 Agriculture

Another area of research that has been applied to industry, currently using the K-

Means Clustering Algorithm, is in the agriculture industry. Researchers at the University

of Illinois have applied the K-Means Clustering Algorithm in order to detect weeds in

real-time, as the herbicide spraying machine was making its way down a row of

soybeans59. The machine is able to count, classify, and then spray each weed

individually so that a minimal amount of herbicide is used and so that the effectiveness of

the herbicide can be evaluated and tracked by noting the location of the weed. Then, in a

subsequent spraying operation, each particular weed can be evaluated as to whether it

was killed or not, further enhancing the ability of the farmer to pinpoint specific types of

weeds in his field and eradicating them. The results of their research has shown this

application of MV be both a very cost effective and time conserving way to do this

important job in extremely large plots of farmland and by doing so, farmers have

increased crop yield and decreased ground water contamination.

 29

Chapter 3

Theoretical Approach

3.1 Overview of Theoretical Approach

The theoretical approach to the problems presented here can be broken down into

two distinct layers. The first layer includes low to medium level image processing

functions used in the pre-processing stage, on an as needed basis, in order to work toward

a solution to the problems of Marker Detection and Tracking and Runway Detection.

These functions do not differ in their inclusiveness to each problem, but the sequence in

which they were used in order to achieve an acceptable result may be different and these

differences will be fully explained in Chapter 4. Therefore, these functions, known as

Shared Image Processing Functions, will be discussed in Section 3.2. Section 3.2

highlights the theory behind these functions and also covers their application to both

problems in order to eliminate repeating the theoretical discussion regarding these

functions for each problem individually. The second layer involves high level image

processing methods and algorithms which are used to perform the main task needed to

solve each problem such as line-detection or marker detection and tracking. These

methods and/or algorithms are unrelated as they apply to each individual problem, hence,

they will be discussed separately in Section 3.3 and Section 3.4, respectively.

3.2 Shared Image Processing Functions

As previously mentioned, this section will cover functions that were used in the

pre-processing stage of both the Marker Detection and Tracking and Runway Detection

solutions. The fact that these functions were used to approach both problems reflects the

versatility of the low to medium level image processing techniques and emphasizes a

statement made earlier that many image processing solutions and, in this case,

subsystems such as the pre-processing stage, are just a collection of smaller, lower level

processes. These processes include the most basic things such as the definition of the

coordinate system and an image, which are covered in Section 3.2.1 and Section 3.2.2.

Section 3.2.3 covers image enhancement functions such as Gamma Correction and Color

 30

Space Conversions. Lastly, Section 3.2.4 presents the concept of and theory behind

thresholding in image processing.

3.2.1 Coordinate System

First, a spatial coordinate system must be defined. The nomenclature f(x,y) will

be used to define a point in a two-dimensional image frame, where x and y denote spatial

coordinates and the value of f at any point (x,y) is proportional to a color level value

normally ranging from 0 to 255 when speaking of an image constructed of separate red,

green, and blue (RGB) values. Figure 3.1 illustrates the coordinate convention used

during image processing.

Figure 3.1: Coordinate Convention for Images

Suppose that a continuous image is sampled uniformly into an array of N rows

and M columns, where each sample represents a color level value. This array is

subsequently called a digital image and is represented by Equation 3.1:

(1,1) (2,1) (,1)

(1,2) (2, 2) (, 2)
(,)

.......

(1,) (2,) (,)

f f f M

f f f M
f x y

f N f N f M N

 =

 (3.1)

where x and y are discrete values: x = 1,2,3,…,M; y = 1,2,3,…,N. Each element in the

array is defined as a pixel.

Origin

Y

X

f(x,y)

 31

3.2.2 Image Definition

An RGB image is composed using a red, green, and blue part which are stacked

on top of one another. The resulting color is a combination of the three colors at each

spatial location, resulting in a blended color with more than 16.7 million variations using

the standard 0 to 255 color pallette (8-bit). Sometimes, decimal values from zero to one

will be used to represent the 8-bit color pallette. This type of RGB image definition is

simply another way to define the image and is commonly used in Matlab . This type of

image definition is illustrated in Figure 3.2.

Figure 3.2: RGB Image Construction60

In most cases, the image is based on a color map, which may have any range of

values. This range of values will correspond to a certain combination of RGB values that

create the actual pixel color. Although this arrangement is not directly seen unless a

 32

distinct color map is defined, this is the process that is happening behind the scenes but it

is most likely happening using a ‘standard’ 8-bit color map. Although, a custom color

map is not usually defined, sometimes this can be useful if the user requires many

variations in one shade of a color. It is possible to define an infinite number of shades of

any color and then use them to construct an image using the color map image definition

method. This concept is illustrated in Figure 3.3.

Figure 3.3: Color Map Style of RGB Image Definition60

The value of f at any point (x,y) can also be proportional to a brightness level

value ranging from zero to one when speaking of values in an intensity image. There are

several distinct differences between an RGB image and an intensity image. First, the

intensity image never uses any sort of color map. Second, the intensity image is made up

of only one image or matrix, instead of three. Speaking on terms of similarities, there is

no limit on the discretization of the values except restrictions put on the image by the

software platform. An intensity image is similar to having an image made up of only red,

green, or blue except the ‘color’ is equivalent to brightness, ranging from white to black.

This essentially creates a grayscale image except that the colors of the image or not

shades of gray but shades of pure brightness ranging from black to white. Figure 3.4

illustrates the concept of an intensity image with values of class double.

 33

Figure 3.4: Illustration of the Construction of an Intensity Image60

3.2.3 Gamma Correction and Color Level Conversion

Gamma correction is a relationship between an image having linearly increasing

intensity and an image having linearly increasing luminance. Gamma correction is

usually performed in consumer video systems such as televisions and video cameras.

But, in MV, this aspect is usually left up to the system designer. In this research, the use

of gamma correction was a necessity rather than a want. All Matlab functions involving

RGB images required the image to be gamma corrected. Therefore, gamma correction

was the first step during the processing sequence and will be explained in Section 3.2.3.1.

Color level conversion was also an important first step for this image processing

application. When using this conversion within Matlab , it is usually a second step due

to the fact that Matlab requires the input to the conversions to be gamma corrected.

Therefore, the color level conversion usually takes a back seat to the gamma correction

for this reason. Color level conversion offers the ability to reduce computational

workload by representing the image in a different form. It has the ability to maintain

 34

high amounts of detail in an image while representing it in a different format. The color

level conversion method used in this research effort will be explained in Section 3.2.3.2.

3.2.3.1 Gamma Correction

The gamma characteristic is a power-law relationship that approximates the

relationship between the encoded luminance in a video system and the actual desired

image brightness. With this non-linear relationship, steps in encoded luminance

correspond to subjectively approximate steps in brightness61. MV systems and software

that require a linear relationship between these quantities, such as the Matlab

environment, use gamma correction. Although the gamma correction could have been

performed in software, there was a second option available in this research. The MV

camera used in this research had the ability to perform hardware gamma correction

internally. This method of gamma correction was used in this research effort in order to

further reduce the steps in the pre-processing stage. Equation 3.261 represents the general

form for hardware based gamma correction:

 SI V γ= (3.2)

where I is the light intensity, VS is the source voltage coming from each pixel location in

the charge coupled device (CCD), and γ is the gamma correction factor.

Gamma correction can be thought of as an inverse transfer function that is applied

to the video signal so that the encoded luminance is linear. The following illustration,

Figure 3.5, shows the difference between a scale with linearly increasing intensity (i.e.

gamma corrected) scale and a scale with the desired linearly increasing encoded

luminance signal61.

Figure 3.5: Gamma Correction Example Scale61

 35

In layman’s terms, the signal from the video camera or source is deliberately

distorted so that after it has been distorted again by the display device (in this case the

framegrabber card and video card), the viewer (Matlab in this case) sees the correct

brightness. It should be noted that from this point on, a normal, non-gamma corrected

signal will be referred to as the representative letter, such as RGB, and a gamma

corrected signal will be referred to with an added prime symbol, such as R G B′ ′ ′ .

Figure 3.6, below, shows a visual example of what impact gamma correction can

have on images. Figure 3.6a shows an image that is taken in bad lighting where the

gentleman’s face cannot easily be seen. Figure 3.6b shows a gamma corrected version

using a gamma correction value of 2.25 and now, the gentleman’s face is clearly defined.

This can be useful in aerospace applications where the lighting may not be suitable to

extract the details needed from the image to continue the processing task. A simple

gamma correction can fix this and, in this research effort, the hardware based gamma

correction was used to approach the problems. This gamma correction served a dual

purpose in helping to satisfy the Color Space Conversion inputs by providing them with

the required gamma corrected image and it helped to brighten up the image when it was

dark or overcast.

 (a) Original Image (b) Gamma Corrected Image

Figure 3.6: Comparison of Original Image to Gamma Corrected Image62

 36

3.2.3.2 RGB to Intensity

Converting an RGB image to an intensity image has obvious advantages in

changing an image described by a M×N×3 matrix to an image described by an M×N×1

matrix. Through a reduction in the size of the third dimension, the complexity of the

image definition is greatly reduced.

This conversion is described by a mathematical equation involving the intensity

of each red, green, and blue pixel of a point of interest. To find the intensity of a pixel in

gray level, the following formula, Equation 3.360, is used.

 []intensity 0.299 0.587 0.114

R

G

B

′
 ′=

′

 (3.3)

where R′ , G′ , and B′ are the gamma corrected color level values for each respective

pixel of the original RGB image.

The range of any input pixel value will match that of the output pixel intensity

value. The illustration shown in Figure 3.7 shows an example of the input and output of

the RGB to Intensity function of the function. The input image is shown in Figure 3.7a

and it is a typical M×N×3 RGB image. The output image is shown in Figure 3.7b and it

has been converted to a M×N×1 intensity image.

 (a) Original Image (b) Intensity Image

Figure 3.7: Example Images for the R G B′ ′ ′ to Intensity Color Conversion60

 37

3.2.4 Thresholding

Thresholding is a simple process that is also a very valuable filtering technique in

image processing. Thresholding has many meanings and many purposes, but probably

the most widely used application is in filtering out a certain color or shade from an

image. Many images may contain things that are unwanted and many times these things

are homogeneous in the image, such as a grassy field. Thresholding has the ability to

find all of the pixels that are green and set them to be another color such as black, that

will be ignored by other algorithms. This is a very simple but efficient form of image

segmentation.

Thresholding can also have another meaning when talking about gray scale

images. Sometimes the threshold level is referred to as a percentage. This percentage of

thresholding means the threshold level between the maximum and minimum intensity of

the initial image. Thresholding is a way to get rid of the effect of noise and to improve

the signal-noise ratio if the noise is homogeneous in intensity. To put this in laymen’s

terms, it is a method that allows the user to keep the significant information of the image

while disposing of the unimportant part (under the condition that is chosen as a plausible

thresholding level). The use of thresholding will be fully evident later when the use of

thresholding is shown in the research software being used for the purpose of image

segmentation.

Perhaps the easiest explanation of thresholding is mathematically. Once the

mathematical definition is made, it is easy to find many different areas to apply the

concept of thresholding to. Equation 3.4, below describes the thresholding process:

[] []

[]
If , , 1

Else , 0

a m n a m n object

a m n background

θ≥ = =

= =
 (3.4)

where a is the image defined by the pixel coordinates m and n and theta is the threshold

value. This method assumes that the interest lies in light objects on a dark background.

If a pixel value is greater than a certain threshold value, the pixel value is changed to one

 38

or white, if it is less than the threshold, the pixel value is made to be zero or black. This

is simple image segmentation. Figure 3.8, below, illustrates a simple thresholding

performed on an image for segmentation purposes. Figure 3.8a is the input image and

Figure 3.8b is the output image.

10 15 23 15 2 20 21 4 23 8

13 42 31 71 19 11 23 17 7 1

21 55 33 42 7 19 7 27 8 6

27 39 35 51 9 14 21 23 2 11

29 43 39 64 4 16 19 11 24 5

22 8 23 13 24 18 3 17 23 8

1 17 15 7 7 55 65 33 43 51

99 80 59 17 15 60 33 66 31 47

90 77 61 4 14 61 91 67 28 23

77 62 31 10 19 77 45 44 14 23

0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 1 1

1 1 1 0 0 1 1 1 0 0

1 1 1 0 0 1 1 1 0 0

30θ =

(a) Original Image (b) After Thresholding

Figure 3.8: Illustration of Thresholding for Image Segmentation Purposes

 39

3.3 Theoretical Approach to the Marker Detection and Tracking Problem

Aside from decisions regarding the pre-processing stage of the solution, one must

decide how to actually find the markers for the Marker Detection and Tracking problem.

Image segmentation can be described as the process of separating the useful information

of an image from the non-useful information. The problem of Marker Detection and

Tracking falls into the category of an image segmentation problem. After reviewing

several methods available, looking at how others have approached similar problems,

consulting with people working in image processing, and taking into account design

constraints discussed earlier in Section 1.2.1 it was decided that the problem of Marker

Detection and Tracking would be approached with the K-Means Clustering Algorithm.

The first solution was approached using Matlab and it involves the use of a Modified K-

Means Clustering Algorithm. This algorithm is called the Modified K-Means Clustering

Algorithm because it was modified to make it more efficient in scanning a large number

of pixels at a high frame rate. This will be covered in more detail in Section 3.3.1. The

second solution was also approached using Matlab . This solution involves the use of

the Modified K-Means Clustering Algorithm and an additional set of instructions that

estimates and tracks the positions of each marker. This solution will be covered in

Section 3.3.2.

3.3.1 Matlab Based Modified K-Means Clustering Algorithm

For a description of the mathematical representation of the K-Means Clustering

Algorithm, the following equations are presented. First, a measure of similarity must be

established which will determine if pixels are assigned to the domain of a particular

cluster. For this algorithm, the Euclidean distance, d, between two pixels, m and n is

used as a measure of similarity and this is shown below in Equation 3.5 through Equation

3.750:

 d m n= − (3.5)

 2 2() ()x x y yd m n m n= − + − (3.6)

 40

 2

1

()
n

k k
k

d m n
=

= −∑ (3.7)

where m and n are n -dimensional vectors with k components equal to km and kn ,

respectively.

In order for the algorithm to determine which cluster a new pixel belongs to, a

performance index must be introduced. The clustering criterion is based on the

minimization of the performance index that is guided by a procedure that will minimize

or maximize the result of the similarity measure, d . The performance index, J , is the

sum of the errors index given below in Equation 3.850:

1

| |
c

j

N

j
j x s

J x m
= ∈

= −∑∑ (3.8)

where cN is the number of clusters, jS is the set of samples belonging to the thj domain,

x is the data point to be clustered, and

1

j

j
x Sj

m x
N ∈

= ∑ (3.9)

is the sample mean vector of the set, or the center of cluster jS . In Equation 3.9, jN

represents the number of samples in cluster jS . The index of Equation 3.8 represents the

overall sum of the errors between the samples of a cluster domain and their

corresponding mean.

The K-Means Clustering Algorithm consists of the following steps.

1. Scan the image frame until a point is accepted (the first white pixel). Set

this point as the initial cluster center, 1Z , and cluster center 1S .

 41

2. Scan the image again for the next white pixel. Set it as a new point, X .

3. Computer absolute distance, id , from new point X to previous cluster

center, iZ , and distribute the point { X } among the cluster domains using

minimum distance similarity,

 if | |i iX S X Z T∈ − < (3.10)

for all 1,2,3,...,i k= , where iS denotes the set of points whose cluster center

is iZ and T is a predetermined minimum distance threshold for similarity.

4. If the new point satisfies the condition in Step 3, then go to Step 5, else

cluster the new point as a new cluster group and a new center,

 1iS X+ = and 1iZ X+ = (3.11)

5. Count the number of points in each cluster group and store it in an array

iN for 1,2,3,...,i k= .

6. Sum the point locations for each cluster group and store it in array iSUM

for 1,2,3,...,i k= ,

1

k

i i
i

SUM X
=

=∑ (3.12)

7. From the results of Step 5 and Step 6, compute the new cluster centers iZ ,

such that the absolute distances from all points to the new cluster center is

minimized.

 42

 i
i

i

SUM
Z

N
= (3.13)

8. If it is the last row of the image frame, go to Step 9, otherwise go to Step

2.

9. Stop.

The K-Means Clustering Algorithm was determined to be a feasible algorithm to

formulate an approach to the problem of Marker Detection. Once the decision to

continue with the K-Means Clustering Algorithm was made, it was examined in more

detail with respect to its application in a vision problem. When considering the aspect of

efficiency it was noted that the K-Means Clustering Algorithm is a fairly slow process by

design because it requires many, many complete scans of the image to find the pixels of

interest. While finding the pixels of interest, the algorithm is constantly grouping the

pixels based on a distance threshold, which further slows the process down. It then

calculates the current centroid for the group in question. It then uses these calculated

centroids to compare against the distance threshold for future decisions. It continues this

process of scanning, grouping, and recalculating the centroids for each individual white

pixel that is encountered in the image. This algorithm works fine when the ability of

running in near real-time is not desired but this is not the case with the software in this

research effort. Therefore, modifications were made to the way the K-Means Clustering

Algorithm is performed. This will be called the Modified K-Means Clustering

Algorithm.

The Modified K-Means Clustering Algorithm is an algorithm based on the K-

Means Clustering Algorithm but changes have been made which allows the algorithm to

be much more efficient. The main reasoning behind these changes can be explained by

examining the number of iterations required to scan the image one time. An image that is

of 640×480 pixels in resolution contains just over 300,000 pixels. The original K-Means

Clustering Algorithm performed multiple scans of these 300,000 pixels to achieve the

 43

clustering task. This multiple scanning of the image resulted in extra work and

computational effort required by the computer and no reasoning behind this approach

could be found. Therefore, the algorithm was modified in such a way that the image was

scanned only once per frame of input data. This modification greatly improved the speed

of the algorithm because most of the time in image processing is spent scanning the

image for useful information. In order to streamline the K-Means Clustering Algorithm

further, the constant calculation of the centroid of the group when a new pixel is added to

the group was abandoned. In order to calculate the centroid, two squaring functions and

a square root function were needed. Since the square root is performed by iterative

numerical methods such as Newton’s method, it is widely known as one of the most

burdening computations for a computer to perform. This constant calculation of the

square root would continuously use this computational burdening square root function

and this was found to be impractical and the constant calculation of the centroids was

abandoned. Once this centroid calculation was abandoned, the algorithm began to take

on a different shape as new, more efficient ways to do these jobs were developed.

A side-by-side, step-by-step comparison chart of the original K-Means Clustering

Algorithm versus the Modified K-Means algorithm is presented in Table 3.1, on the

following page.

 44

Table 3.1: K-Means Algorithm vs. Modified K-Means Algorithm

 K-Means Clustering Algorithm Modified K-Means Algorithm

Step 1 Scan the image until a white pixel is found,

assign point as cluster center Z1 and cluster

group S1.

Scan entire image and compile a list of all

of the white pixels in the image. Initialize

the first cluster group by assigning the first

pixel in the list to the first group.

Step 2 Scan the image again, find the next white pixel,

and set it as X. Compute absolute distance

from new point X to all previous cluster

centers Zi and apply a minimum distance

threshold.

Examine the next pixel in the list and

compare its X and Y coordinate to the X

and Y coordinate of the last pixel

encountered based on a threshold.

Step 3 If the new point satisfies the minimum distance

threshold for a cluster Z, it is added to that

cluster list and a new centroid is computed.

If the new point satisfies the threshold

condition, it is added to the pixel list for the

cluster in question.

Step 4 If not, the point is the added to a new cluster

group and a new cluster center is defined.

If not, it is defined as a new cluster group

and the process continues until all of the

pixels in the list of white pixels have been

evaluated.

Step 5 Return to Step 2. Once the lists of points belonging to each

cluster have been compiled, the centroid of

each cluster group is calculated.

Step 6 If no more pixels are found, Stop. Stop.

It can be seen from this comparison that there are some major differences. The

most obvious difference is that the image is now only being scanned once per image

frame instead of multiple times. The second difference is that the centroids are no longer

constantly calculated as the algorithm progresses. It was determined that this was not

necessary because the image scanning is performed left to right and the grouping steps

use the first pixel encountered, which is the leftmost pixel in a group. So, instead of

going through the trouble of computing the centroid, the threshold is simply applied to

the right hand side of the left most pixel in the group and it is ensured that the threshold is

big enough to encompass all of the pixels in the group of interest. This concept relies on

the assumption that the camera is always in focus, but greatly reduces the computational

 45

complexity of the algorithm. When the camera is out of focus, the marker will become

blurred and possibly appear large enough to exceed the threshold boundary.

3.3.2 Matlab Based Advanced K-Means Clustering and Tracking Algorithm

Once the Modified K-Means Clustering Algorithm was created and evaluated, an

idea involving the tracking of each marker and the estimation of the position in the next

frame presented itself and it was thought that this would make the algorithm faster and

more efficient. This idea became the Advanced K-Means Clustering and Tracking

Algorithm and it involves finding the markers in the first few frames of the video with the

Modified K-Means Clustering Algorithm, then by looking at the marker positions in the

past few frames, an estimation of the position of the markers in the next frame is

performed. From engineering dynamics, only three points are needed to estimate the

position of a point based on the velocities and acceleration. By doing this, the

computation speed is greatly increased and these results will be compared and discussed

in Chapter 5.

The solution begins by finding the markers from three consecutive frames using

the same method as in the Modified K-Means Clustering Algorithm. Once these marker

positions are found, the velocity of each marker is determined by Equation 3.14, below:

() (1)

() (1)
x

y

x index x index
V tV
V y index y index

t

− −
 ∆= = − −
 ∆

 (3.14)

where x is the X-coordinate of the centroids of the markers and y is the Y-coordinate of

the centroids of the markers at frame number index . t∆ is the time in seconds between

the two sequential frames. xV and yV are the velocities in the x and y directions,

respectively. Figure 3.9, on the following page, represents the marker position situation

for calculating velocity.

 46

Figure 3.9: Marker Position Situation for Calculating Velocity

Once the velocities were found, Equation 3.15, below, was used to calculate the

estimated position of the markers in the next frame:

()(1) ()

()(1) ()
x

y

V indexx index x index
t

V indexy index y index

+ = + ∆ +
 (3.15)

The final step in this solution is, of course, incorporating the acceleration into the

process. The acceleration of the markers can be found using Equation 3.16 and the

expanded version, Equation 3.17:

() (1)

() (1)

x x

x

y y y

V index V index
A t

A
A V index V index

t

− −
 ∆= = − −
 ∆

 (3.16)

2 2
1 2

2 2
1 2

() (1) (1) (2)

() (1) (1) (2)
x

y

x index x index x index x index
A t t

A
A y index y index y index y index

t t

− − − − − − ∆ ∆ = = − − − − − − ∆ ∆

 (3.17)

Now, the estimated marker location in the next frame becomes Equation 3.18:

(1), (1)x index y index− −

(), ()x index y index y∆

x∆

 47

 2
() ()(1) () 1

2() ()(1) ()
x x

y y

V index A indexx index x index
t t

V index A indexy index y index

+ = + ∆ + ∆ +
 (3.18)

Figure 3.10 illustrates the estimate of a new marker location using velocity and

acceleration.

(2), (2)x index y index− −
(1), (1)x index y index− −

x∆

y∆

(), ()x index y index

(1), (1)x index y index+ +

1V

2V
1A

Search Area

Figure 3.10: Estimate of New Marker Location Using Velocity and Acceleration

3.4 Theoretical Approach to the Runway Detection Problem

The problem of Runway Detection requires an entirely different way of thinking

than does the problem of Marker Detection and Tracking. The methods used to approach

the Marker Detection problem are general algorithms adapted to perform the job of

Marker Detection. Since the Runway Detection problem is a more complex problem, the

same architecture and use of non-specialized algorithms will not be sufficient to approach

this problem because of the many variations of the image that could be presented to the

algorithm because of the more uncontrolled environment that is encountered in this

application. Runway Detection is a problem which similarly involves filtering, but aside

from that, the presence of a much higher-level problem exists. This problem consists of

deriving information relating to the location of a runway in an image frame from an

entirely homogeneous color image. This intensely complicates matters, especially for the

filtering. Given the complexity of this problem, Simulink and the Video and Image

 48

Processing Blockset® 60 and the Image Acquisition Toolbox® 63 was chosen solely for the

purpose of solving this problem.

There are essentially three processes that are required for this solution which are

above and beyond the pre-processing functions previously mentioned in Section 3.1. The

first is a medium-level image processing function called ‘edge detection’. There are

several different types of edge detection routines but only one of them was needed for

this research effort and it is covered in Section 3.4.1. The second is a medium-level

image processing function called ‘morphological opening’. Morphological opening

consists of two children functions called morphological dilation and morphological

erosion. All three of these functions will be covered in Section 3.4.2. The third is a high-

level image processing function known as the Hough transform. This is the basis for the

solution to the runway detection problem and it is covered in Section 3.4.3.

3.4.1 Sobel Edge Detection

Edge detection is one of the most important fundamental operations in image

processing and many applications rely solely on edge detection and, thus, would not be

possible without it. There are two main types of edge detection algorithms: Gradient

Based and Laplacian Based64. The gradient based algorithms can be further broken down

into three algorithms: Sobel, Roberts, and Prewitt64. In looking at a line in the gradient

frame of mind, the values leading up to an edge and following an edge will always

increase and then decrease. This is true in a grayscale image or a binary image. As a

result of this, these gradient-based methods all use the same approach but they use

different convolution matrices.

The Laplacian based algorithms only consist of one algorithm that fits this

description: that is the Canny edge detector64. The Canny edge detector finds edges by

looking for the local maxima of the gradient of the input image, which it calculates from

the derivative of the Gaussian filter64. The three gradient based methods are very similar

to each other, so similar in fact, that most of the time the eye cannot detect the difference

in the lines that have been detected and almost 100% of the time, the computer software

 49

will not perform any differently using any of the three methods. For this reason, only the

most common Sobel operator will be discussed in this section.

The Sobel edge detector is a gradient-based edge detection operator. The Sobel

operator performs a 2-D spatial gradient measurement on an image and as such, it

emphasizes regions of high spatial frequency that correspond to edges65. Regions of high

spatial frequency correspond to edges because an edge is not usually made up of a single

line of pixels. Rather, it is made up of a group of pixels whose intensity increases and

decreases as the ‘line’ approaches, much like a car does when it is traveling over a

mountain. The peak represents the real line and the slope leading up to it is usually what

needs to be filtered out. This mountain peak analogy can be seen in Figure 3.11, below.

5 14 12 17 3 8 15 30 24 16

4 12 7 4 11 21 31 26 12 10

3 0 10 17 24 33 28 24 15 10

5 14 24 28 36 31 28 23 21 10

16 25 29 32 27 24 15 8 3 7

19 26 34 29 21 16 18 3 13 5

23 29 26 21 16 17 5 24 13 14

31 27 21 17 10 0 8 9 12 31

27 24 14 11 13 7 9 13 0 3

21 19 13 7 11 5 2 9 9 1

Figure 3.11: Illustration of Line Definition in a Typical Image

The Sobel operator consists of a set of convolution kernels. These kernels are

designed to bring out the vertical and horizontal gradients separately. The definition of

these kernels are shown in Equations 3.1965 and 3.2065, on the following page:

1 0 1

2 0 2

1 0 1
XG

− +
 = − +
− +

 (3.19)

 50

1 2 1

0 0 0

1 2 1
YG

+ + +
 =
− − −

 (3.20)

As stated before, these kernels are designed to respond maximally to edges

running vertically and horizontally relative to the pixel grid. The kernels can be applied

separately to the input image, to produce separate measurements of the gradient

component in each orientation. This is the exact method that Matlab uses. The resultant

images from applying the vertical kernel and the horizontal kernel to a test image of some

grains of rice is seen on the following page in Figure 3.12a and Figure 3.12b,

respectively. These can then be combined together to find the absolute magnitude of the

gradient at each point and the orientation of that gradient. The gradient magnitude is

given by the following equation, Equation 3.2165:

 2 2| | x yG G G= + (3.21)

where xG and yG are the individual resultant image matrices associated with each kernel

and | |G is the total gradient magnitude matrix. It can be seen in Figure 3.12a that the

vertical lines are darker and more well defined than the horizontal lines. The same is true

with Figure 3.12b with the horizontal lines being darker and more well defined than the

vertical lines.

 51

 (a) Vertical Kernel Applied (b) Horizontal Kernel Applied

Figure 3.12: Visual Example of Sobel Edge Detection Kernels Applied Seperately60

Normally, the edge detection process would be complete with the calculation of

the gradient magnitude, | |G , but Matlab uses a slightly different approach to complete

the edge detection process. Once it applies both kernels to the original image, the

resultant gradient magnitude is found using Equation 3.21, above. Then, using a built-in

threshold function, the background can be made black and the edges can be made white.

This process essentially transforms the image into a binary image showing the edges

only. This is illustrated below in Figure 3.13, with the final product of the edge detection

process. This figure is the resultant image of the same grains of rice test image used

above in Figure 3.12.

Figure 3.13: Visual Example of Sobel Edge Detection Final Product60

 52

3.4.2 Morphological Filtering

Morphology consists of a broad set of image processing operations that filter

images based on shape masks. These shape masks are called structuring elements;

Section 3.4.2.1 describes the concept of a structuring element. Based on the definition of

the structuring element certain shapes in an image can be emphasized or de-emphasized

depending on what the interest is. This makes morphology a very useful filtering

technique in operations where removing unwanted artifacts in the image is important in

order to derive the correct information from the image. There are eight different

morphological operations supported within Matlab 60. Of these eight, only three were

used in this research effort and they will be described in Section 3.4.2.2 through Section

3.4.2.4.

3.4.2.1 Structuring Elements

An essential part of any morphological filtering operation is the structuring

element which is used to probe the input image. Structuring elements consist of a two-

dimensional matrix filled with zeros and ones and the structuring element is always much

smaller than the image it is being applied to64. Just like a standard Cartesian coordinate

system, the origin of a structuring element is the center pixel64. This location also

identifies the pixel of interest when the structuring element is being applied to the input

image. Furthermore, the pixels in the structuring element, which have the value of one,

define the neighborhood64.

Structuring elements can come in any shape desired. Most structuring elements

are created using a premeditated shape because the shape of the structuring element

defines the type of filter that a morphological operation becomes. Matlab has some

predefined structuring elements that reflect the most common elements used for noise

filtering, feature extraction, and line detection. These elements are in the shape of a line,

a disc, a diamond, or a square. The exact use of structuring elements will be described in

detail in the forthcoming sections regarding each morphological operation. Examples of

these structuring elements can be seen on the next page in Figure 3.14. Figure 3.14a is an

 53

example of a diamond shaped element, Figure 3.14b is an example of a line shaped

element, while Figure 3.14c is an example of a square element.

0 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

1 1 1 1 1 1 1

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

(a) Diamond (b) Line Shape (c) Square

Figure 3.14: Example of Various Styles of Structuring Elements

3.4.2.2 Morphological Dilation

Morphological dilation is a process which allows a region of white pixels in an

image to be able to grow in size. This may be desirable in order to fill in holes or to join

two regions together in an image. The direction of growth can be adjusted by the design

of the structuring element and this will be seen in examples below. Set theory is often

used in MV in order to describe what the functions are actually doing to the image to

perform its task. The definitions within Minkowski set theory will not be reviewed here,

but set theory will be used to describe the individual functions. The definition of dilation,

in terms of set theory, is as follows in Equation 3.2264:

 b x
b B x X

Y X B X B B X
∈ ∈

= ⊕ = = = ⊕∪ ∪ (3.22)

where Y is the set of pixels with a value of one that make up the output image, bX is the

set of pixels with a value of one that make up the original image, and xB is the set of

pixels that make up the structuring element neighborhood. The exact sequence for

performing morphological dilation is as shown on the following page in Figure 3.15.

 54

Input
Image

Scan image
and apply rules

for dilation

Output
Image

Define
Structuring

Element

Place origin of
structuring

element at first
pixel in the image

Is pixel a 1? YES

Continue to
next pixel

NO

Add neighborhood
pixels in the

structuring element
to the original image

Figure 3.15: Flowchart Indicating Process for Morphological Dilation

A visual example of morphological dilation will be presented in Section 3.4.2.4.

along with an example of morphological erosion which, when combined, make up a

morphological opening. Please refer to Section 3.4.2.4 for a visualization of the dilation

process.

3.4.2.3 Morphological Erosion

Morphological erosion is very similar to morphological dilation. This process is

meant to allow objects in an image to shrink. This is desirable where a feature is

comprised of many layers of pixels, such as a line, and this feature needs to be detected

by some other algorithm. This erosion can be used first to shrink the line down to one

pixel thick, so that it is easier to detect as a line rather than an object such as a rectangle.

This is used extensively in fingerprint matching algorithms where the lines from the

fingerprint are shrunk to one pixel thick. As with the dilation, the direction of shrinkage

can be adjusted by the design of the structuring element and this will be seen, again, in

examples below. The definition of erosion in terms of set theory is as follows in

Equation 3.2364:

 55

 }{ : xY X B x B X= = ⊂○ (3.23)

where Y is the set of pixels with a value of one that make up the output image, X is the

set of pixels with a value of one that make up the original image, and xB is the set of

pixels that make up the structuring element neighborhood. The exact sequence for

performing morphological erosion is as follows in Figure 3.16.

Input
Image

Scan image
and apply rules

for erosion

Output
Image

Define
Structuring

Element

Place origin of
structuring

element at first
pixel in the image

Is pixel a 1? Does structuring
element neighborhood

exist at the current
location?

YES

NO

Change value
of pixel of

interest to 0

Continue to
next pixel

YES

NO

Figure 3.16: Flowchart Indicating Process for Morphological Erosion

By looking at the flowchart, above, it can be seen that morphological erosion

requires one more decision step than dilation does. This is fairly insignificant, but it

should be noted because even so much as one more processing step can cause a slightly

longer processing time, especially in larger images. As in the case of the morphological

dilation, a visual example of morphological erosion will be presented in Section 3.4.2.4.

along with the example of morphological dilation which, when combined, make up a

 56

morphological opening. Please refer to Section 3.4.2.4 for a visualization of the erosion

process.

3.4.2.4 Morphological Opening

Morphological opening is a basic workhorse in image processing for noise

removal and it can also be used to find certain shapes in the image that are defined by the

structuring element. Basically, morphological opening consists of first performing an

erosion followed by a dilation. The effect is that all of the stray pixels are removed by

the erosion and then the object is regrown to resemble its original size and shape but

without the ‘outlier’ noise pixels. The definition of opening as defined by set theory is as

follows in Equation 3.2464:

 ()Y X B X B B= = ⊕○ (3.24)

where Y is the set of pixels with a value of one that make up the output image, X is the

set of pixels with a value of one that make up the original image, and B is the set of

pixels that make up the structuring element neighborhood. Because opening is simply a

combination of dilation and erosion, a flowchart will not be presented.

A slightly more advanced illustration depicting the use of opening for noise

removal is presented on the next page in Figure 3.17. It can be seen in this figure that

there are several outlying pixels that are considered to be noise. After the initial erosion

is complete, almost all of the pixel information in the image has been lost. Because of

the shape of the structuring element and the nature of the process of dilation, after the

dilation is complete, all of the important pixel information in the image is regained and

the noise has been removed. In this figure, the blue dots represent pixels that comprise

objects who need to be separated from the noise in the image. The pixels that are

considered to be noise are depicted as green dots. In this figure, the pixels that change

state but are in the original image will have no color; this is because most of these pixels

will come back in the second step. It should be noted that when performing a noise-

filtering opening, the structuring element is almost always a 5×5 or a 9×9 matrix of ones.

 57

In this simple example, a 3×3 structuring element is used. As stated before, this is a very

effective tool for noise removal in binary images and was used throughout this research

to ‘clean up’ the image sequence in the pre-processing stage prior to the application of

any higher level MV algorithms.

 X

 EROSION ○

 B

 DILATION ⊕

 Y

Figure 3.17: Visual Example of a Simple Morphological Opening

3.4.3 Line Detection Algorithms

There are two possible methods that immediately present themselves when

thinking or researching about line detection. These methods are called edge detection

 58

and the Hough transform. Edge detection is a fairly simple routine that is easy to

implement and this makes it a good candidate for such an application But, edge detection

is a primitive routine and its ability to yield consistent and reliable results is almost non-

existent. This is where the Hough transform steps in. The Hough transform is

specifically a line-detecting algorithm. Therefore, it is thought that it must incorporate

some ideas that will make its implementation and rate of success much higher than that of

the edge detection. Both of these methods were probed for their feasibility of application

to this problem of runway detection and the findings follow.

Edge detection is one of the most fundamental aspects of image processing that

could be used in the runway detection process. If the image of the runway is looked at as

edges or straight lines, the edges of the runways in particular stand out a great deal. This

is a great point, but other things also stand out such as the horizon, roads, rivers, and

bridges because these things also have edges or lines associated with them. These are the

things that should be ignored when searching for the runway in the image. This is fairly

tough since when an edge detection routine such as the Sobel algorithm, which was

described earlier, is performed, the edges are not sorted out automatically. All of the

edges are made equally as prominent and this makes edge detection very difficult to use

by itself.

The Hough transform on the other hand is considered to be a more specialized,

higher-level image processing algorithm. As such, it carries with it certain things that

make it a fairly complex idea, yet easy to use and very effective. The Hough transform

uses a mathematical transformation in combination with a search for global maximums in

the output matrix to perform the line detection. After review of these two methods, it was

decided not to attempt to rely on edge detection alone as the method for runway

detection. It is felt that it would be better to use edge detection as a low level filtering

technique and use the Hough transform as the main line detection algorithm. This is the

approach taken in this solution.

 59

3.4.3.1 Hough Transform

The Hough transform uses a mathematical transformation for detecting lines in an

image. It is essentially a method for finding straight lines hidden in large amounts of data

which is the same thing as line detection. The difference in the two methods is that with

the Hough transform a certain number of lines can be detected based on their strength and

a subsystem can be implemented to take care of false positives. This description makes it

perfect for the purpose presented here regarding runway detection. The underlying

principle of the Hough transform is that there are an infinite number of potential lines that

pass through any point, each at a different orientation. The purpose of the transform is to

determine which of these theoretical lines pass through the greatest number of features in

an image.

In order to determine that two points lie on the same potential line, it is necessary

to create a representation of a line that allows meaningful comparison and this is what the

Hough transform does. In the standard Hough transform, each line in the original image

is represented by two parameters called rho (ρ) and theta (θ), which represent the

length and angle from the origin of a normal to the line in question. In other words, a line

is described as being at an angle 90 degrees from θ , and being ρ units away from the

origin at its closest point. See Figure 3.18, below, for an illustration of the description of

how the Hough parameters relate to the original image space.

Figure 3.18: Relationship of Hough Parameters to Original Image Space

ρ

θ X

Y

 60

By transforming all of the possible lines through a point into this coordinate

system, which means calculating the value of ρ for every possible value of θ , a

sinusoidal curve is created which is unique to that point. This representation of the two

parameters is referred to as the Hough space. If the curves corresponding to two points

are superimposed, the locations in the Hough space where they cross correspond to lines

in the original image that pass through both points. An example image of a straight line

with some noise is shown in Figure 3.19, below. This image was used to perform a

simple Hough transform for illustration purposes. The illustration of Hough space with

points on the straight line in Figure 3.19 represented as sinusoids is found below, in

Figure 3.20.

Example Image Using a Single Line

X-Coordinate (pixels)

Y
-C

oo
rd

in
at

e
(p

ix
el

s)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Point 1

Point 2
Point 3

Figure 3.19: Example Image Used to Perform Simple Hough Transform

This figure is of a simple line drawn with a drawing program. The points used to

calculate the Hough lines in Figure 3.20, on the next page, are shown by the red, blue,

and green circles. These three points correspond to three sinusoids in Hough space in

 61

Figure 3.20. The point in which these three sinusoids cross represent a single ρ and θ

value. This is also called a Hough peak. In this example, the Hough peak would have a

value or strength of three because three sinusoids are crossing at this point. If the inverse

transform were to be applied, the endpoints of the line in the input image could easily be

found and plotted. This is the exact sequence of operation of the Hough transform.

-100 -80 -60 -40 -20 0 20 40 60 80 100
-400

-300

-200

-100

0

100

200

300

400
Example of Hough Space After Hough Transform

Theta (degrees)

R
ho

 (
un

its
)

Hough Line Resulting From Transform at Point 1

Hough Line Resulting From Transform at Point 2
Hough Line Resulting From Transform at Point 3

Figure 3.20: Hough Space Resulting From Hough Transform

The implementation of the Hough transform is not complex, mathematically

speaking. In particular, the Hough transform is described by Equation 3.2564, below:

 cos() sin()x yρ θ θ= + (3.25)

 62

where x is the X-coordinate of the pixel of interest, y is the Y-coordinate of the pixel of

interest, and θ is the range of values which are used in the calculation to get a

corresponding list of ρ values.

Once a list of ρ and θ values are compiled for one single white pixel on the

input image, the sinusoid is plotted in the Hough space. This process of calculating and

plotting sinusoids is continued until sinusoids corresponding to the ρ values calculated

from the corresponding discrete range of θ values are plotted in Hough space for every

white pixel in the image frame. Once this is complete, a function, which determines

maximums of values or strengths of peaks in the Hough space, is implemented, which

scans the Hough space and will find the specified number of Hough peaks based on a

threshold. Each peak in the Hough space corresponds to a place where many sinusoids

cross at one point. This point represents a specific ρ and θ value, which inversely

corresponds to a line in the original image. A flowchart highlighting this process of line

detection is shown in Figure 3.21, below.

Binary
Image

Hough Transform

For all and all ,x y
() cos(()) cos(())i x i y iρ θ θ= +

Hough Peaks

Search for peaks based on
threshold value and number

of desired peaks

Hough Matrix

Shows sinusoids created
by Hough transform

ρ θ

1 1

2 2

3 3

... ...

n n

ρ θ
ρ θ
ρ θ

ρ θ

Hough Lines

Calculate inverse transform
and plot lines back in

Cartesian space

Output
Image

Figure 3.21: Implementation of Hough Transform to Detect Straight Lines

 63

Chapter 4

Experimental Procedures

4.1 Overview of Experimental Procedures

The experimental procedures necessary to address the problems required not only

the development of software algorithms to accomplish the objectives outlined in Section

1.3 but also, the application of this software using real hardware in a laboratory setting.

This provides an advantage in the level of assessment that can be attained from this

research. By using real hardware and real images, many more issues are addressed than

would be if a virtual image were generated and used. The experimental procedures for

the two problems addressed in this research effort can be described in two sections. The

first section, Section 4.2, includes the hardware and software used for the Marker

Detection and Tracking problem. More specifically, Section 4.2 contains the hardware

descriptions, the hardware setup, and the full description of the implementation of the

Marker Detection and Tracking algorithms. The second section, Section 4.3, includes the

hardware and software used for the Runway Detection problem. This section, like

Section 4.2, also contains the hardware descriptions, and hardware setup, and the full

description of the implementation of the Runway Detection scheme as well as an in depth

description of the graphical used interface (GUI) used to control the simulation.

4.2 Experimental Procedures for the Marker Detection and Tracking Problem

The experimental procedures for this problem consist of a combination of

hardware selection/setup and software setup. The merging of the software with the

hardware is very much dependent upon the exact hardware setup that is and exactly what

type of information can be gathered from the hardware outputs. This is an indication as

to how much work the software will actually have to perform in order to accomplish the

goals set forth for this problem. The overview of this blending of the hardware and

software for the Marker Detection and Tracking problem can be seen in Figure 4.1, on

the following page.

 64

3-D World Camera
Frame Grabbing

And Digitizing

Image Acquisition

Color Space
Conversion

Thresholding

Image Segmentation

OR

Modified K-
Means

Clustering
Algorithm

Advanced K-
Means Clustering

and Tracking
Algorithm

Marker Detection and Tracking

Image Reconstruction

Figure 4.1: Marker Detection and Tracking Experimental Procedures

4.2.1 Hardware Used for the Marker Detection and Tracking Problem

This section is dedicated to the physical and functional description of each piece

of machine vision hardware used to address the Marker Detection and Tracking problem.

Through this, the function, importance, and experimental procedures for each part as it

relates to the problem will be outlined.

4.2.1.1 Description of Hitachi CCD Camera and Fujinon Lens

The camera used in the laboratory experiments for this research is a Hitachi

brand, model KP-M22A. The KP-M22A is a compact, lightweight, black and white

camera. The camera uses a high grade ½” charge coupled discharge (CCD) chip which

 65

produces a usable resolution of 768 by 494 pixels. The camera is powered by a +12 volt

supply which is provided through the video bus cable from the frame grabber card. The

parameters describing the cameras features are listed below in Table 4.1.

Table 4.1: Hitachi KP-M22A Specifications

Imaging Device ½” Interline CCD
No. Of Effective Pixels 768(H) x 494(V) pixels
Sync System Internal/External (Automatically Switched)
Sensitivity Switching FIX, AGC, or MANUAL
Gamma Correction 1 or correction
Electronic Shutter Modes 1/100 to 1/10,000
External Trigger Field on Demand
Lens Mount C-Mount
Power Supply +12 VDC
Dimensions 29(H)×29(W)×62(D) mm
Mass 100 g

This camera has many features which include it in the list of high end industrial

type machine vision cameras. All of these features are not needed for the purpose of this

research but, the ability of the camera to have a high shutter speed, gamma correction, a

½” CCD and be small and lightweight were the determining factors in the purchase of

this camera. For these experiments the use of the frame synchronization system was not

used, nor was the external trigger options. The gamma correction was set to correction

which applies a gamma correction of 2.4 and satisfies the Matlab® image standard of

using a gamma corrected image. The shutter speed is dual in-line package (DIP) switch

selectable and it was set to 1/100 of a second, which is acceptable for almost any

conditions found in the lab environment. The sensitivity was set to FIX so as not to allow

the camera to adjust the video gain to control the brightness. The reasoning behind this is

that the brightness was to be controlled by the aperture of the lens which is easier to

adjust and control by the user. The camera is shown on the following page in Figure 4.2.

 66

Figure 4.2: Hitachi KP-M22A Machine Vision Camera

The lens attached to the camera is a lens designed for general machine vision

applications. The lens was selected so that the field of view would be approximately 4 ft.

by 3 ft., which is appropriate for the type of simulations being conducted in a laboratory

environment. The lens is a Fujinon brand, model DF6HA-1; it has a 6 mm focal length

and it is designed for a camera which uses a ½” CCD. The full details of the Fujinon lens

is found below in Table 4.2.

Table 4.2: Fujinon DF6HA-1 Specifications

Application For ½” format CCD
Focal Length 6 mm
Focus Range ∞ - 0.1 m
Field Angle 56° Horizontal/44° Vertical/67° Diagonal
Field of View @ 1 meter 1.06 m (W)×0.79 m (H)
Iris Operation Manual
Focus Operation Manual
Mass 55 g

 67

The color filter attached to the lens, shown in Figure 4.2, is a type of mechanical

optical filter which is designed to enhance the red part of the visual spectrum of light.

The basis for the use of this type of filter is to reduce the number of processing steps in

software. By using this hardware type of filter, any red light that is viewed by the camera

will show up as white to the black and white camera. This greatly intensifies the red

markers in the image of the tanker and allows the software to take a more ‘economical’

approach in finding the markers.

4.2.1.2 Description of Euresys Picolo Frame Grabber PCI Card

The Picolo frame grabber peripheral component interface (PCI) card was selected

for this research because of its outstanding price/quality ratio. The Picolo is a full

featured frame grabber capable of capturing images in color or monochrome format in

resolutions up to 768 by 576 pixels. The card can capture individual images as well as

video sequences and write them to the computer’s memory. This model of frame grabber

card is designed to drastically simplify any task associated with machine vision. The

Picolo is suitable for single camera operations but it supports three different input formats

at a frame rate of up to 30 frames per second. The card also has four input/output (I/O)

lines that can be used as hardware triggers for image acquisitions or for triggers for

external hardware. The Euresys Picolo Frame Grabber PCI Card is shown on the

following page in Figure 4.3.

 68

Figure 4.3: Euresys Picolo Frame Grabber PCI Card

4.2.1.3 Description of Machine Vision Research Computer

The MV research computer was purchased in pieces and assembled into the

current machine. The purpose of buying separate pieces was to be able to buy the fastest

components possible so that the computer would be well suited for MV research

applications because it is widely known that MV applications take a great amount of

processing power.

The computer was built using Intel framework utilizing a Pentium 4 class 3.20

gigahertz (GHz) Prescott processor seated in an Micro-Star International (MSI) brand,

model 915G motherboard. This motherboard and processor combo allows the front side

bus (FSB) to run at 800 megahertz (MHz) which was the fastest front side bus made at

the time the machine was assembled. The speed of the FSB is an integral part of the

speed of the computer because the FSB is the place where passing of information from

memory to the main processor occurs. The machine is also using 512 megabytes (MB) of

Double Data Rate 2 (DDR2) Synchronous Dynamic Random Access Memory (SDRAM)

 69

running at a speed of 2700 MHz. This is another very important part of the computer

which must be fast to ensure the data transfer between internal parts is not bottlenecked

in any way. The last part that must be fast is the hard disk drive. The hard disk drive in

the machine is a special edition Western Digital 80 gigabyte (GB) hard drive running on

a serial advanced technology attachment (SATA) bus. The SATA bus type of drive was

selected because its speed in data transfer is superior to other previously used hard drive

busses such as ATA 100 and ATA 133. This drive is a special edition drive because it

has an enhanced seek time which further reduces the time it takes to store and retrieve

data through the SATA bus.

The machine is also outfitted with a 17” flat screen monitor to save space. Its

wireless mouse and keyboard enable the software to be manipulated while the user is

standing next to the experiment. The machine vision computer system can be seen in

Figure 4.4, below.

Figure 4.4: Machine Vision Research Computer

 70

4.2.1.4 Model Aircraft and Camera Mount Apparatus

The model aircraft used in the laboratory simulations is a model of a Boeing 747

which is a typical tanker style aircraft. This aircraft was mounted into a sheet of blue

foam board which was meant to emulate the color of the sky as a background. These

aspects of the model aircraft and mount were attempts at achieving as much detail and to

be as close to reality as possible in the laboratory environment.

The blue foam also has an axis hard mounted into the underside which allows it to

be rotated about the longitudinal body axis of the aircraft. This allows tests and

measurements to be performed on the part of the software which calculates the bank

angle of the tanker using the marker positions. To validate the measurements, a large

diameter compass was created and fixed to the table to allow visual angle measurements

to verify the bank angle measurements given by the software. The aircraft’s light

emitting diode (LED) system is very simple, involving one resistor and a power

distribution bus. The LEDs are powered by a single nine volt battery which must be

wrapped in black tape to eliminate the glare off of its metal case from the overhead lights.

The rotational axis is also removable such that the aircraft can be translated as well as

rotated in order to evaluate the performance of other parts of the software. The aircraft,

mount, LED system, and compass is seen on the following page in Figure 4.5.

 71

Figure 4.5: Model Tanker, Mount, LED System ,and Compass

The camera is mounted on a standard camera tripod which is hovering over the

rear of the tanker model. This tripod is adjustable in height and the camera can adjust in

many angles in order to ensure that the camera plane is parallel with the table, which is

the most favorable position. The tripod and camera can be seen in Figure 4.6, on the

following page.

 72

Figure 4.6: Tripod and Camera In Position Over The Model Tanker

Figure 4.7, on the following page, shows the typical view from above for the

laboratory camera and model tanker equipment.

 73

Figure 4.7: View From Above the Laboratory Camera and Model Aircraft

4.2.1.5 Camera Mount Noise Creation

In order to test the robustness of the software a source of noise was needed that

could impact the stability of the camera such that the accuracy of measurements taken by

the software was affected. It was determined that a good source of image noise would be

vibrations. To impact the camera with vibrations, a source was needed. This source

came in the form of a small electric motor. A small off-center weight was mounted on

the motor such that when the motor was energized, a vibration was created. This motor

was mounted to the top of the tripod, above the camera, such that the vibrations were

intensified by the moment arm between the motor mount and the camera mount. The

specifications of the motor are not known since it was a ‘junkbox’ motor but modeling of

the noise was performed and it is described below..

To measure the vibrations, an inertial measurement unit (IMU) was employed.

Since, the lab had ready supply of IMUs, the procurement of one for this purpose was not

 74

difficult. The IMU used is a Crossbow brand, model VG400. The VG400 was powered

by an external power supply and it was mounted to the camera tripod as close to the

camera as possible in order to attempt to accurately measure the vibrations that the

camera was encountering. The VG400 was connected to the machine vision research

computers serial port and the supplied software was used to record the accelerations felt

by the IMU and camera. These accelerations were later used to quantify the vibrations

and will be covered in more detail in Chapter 5. Figure 4.8, below shows a picture of the

vibration motor attached to the tripod and Figure 4.9, below shows a picture of the IMU

attached to the camera tripod.

Figure 4.8: Vibration Motor Attached to Tripod

Figure 4.9: Crossbow IMU Mounted With Camera On Tripod

 75

4.2.1.6 Limitations of the Marker Detection Hardware Setup

Before the experimental procedures are discussed further, the limitations of this

setup should be discussed. Due to the fact that these experiments were performed in a

laboratory environment which was fairly controlled, there are some issues that were not

fully explored due to these limitations. The limitations are listed below.

1. Lighting conditions were controlled – Because the lighting conditions

were controlled, an almost perfect depiction of the markers was available

all of the time and this is certainly not indicative of the conditions

experienced in a real situation. Possible solutions to this are to have the

experiment inside an area where the lighting could be randomly generated

such that the brightness of the lights varies independently of anything else.

This would give a more realistic effect to this limitation.

2. Scale of aircraft model with respect to the size of the markers – The scale

of the aircraft w.r.t the size of the markers was certainly not proportional.

The availability of LEDs that would be size appropriate for the scale of the

tanker were not readily available, therefore, the LEDs that were available

were used and thus created an unfairness in that they are larger than could

be expected in a real situation. This limitation enabled the software to

detect the markers more easily than would probably occur in a real

situation. This limitation could be rectified by obtaining information

relating to the size of markers on a real tanker and scaling them

appropriately.

3. Distance of camera to tanker – The distance of the camera to the tanker

was also not proportional. This limitation also allowed the markers to be

more easily detected than would normally be expected in a real situation

due to the increased size of the tanker in the image frame. This limitation

could be eliminated by either using a taller tripod or using a smaller

camera.

 76

4. Tanker had limited motion – The tanker was not able to be mounted on

any kind of motion actuation system and therefore was left to be moved by

hand in order to simulate the motion that could be encountered in flight.

This simulated motion was certainly not what could be expected in a real

situation due to the motion being much greater. Since the motion was

much greater, the tests were unfair to the software in that they presented

much greater motion than would normally be encountered. This limitation

could be removed by attaching the tanker to an motion actuation system

that would allow the tanker to move like a real aircraft in flight.

5. Tanker had a limited number of markers - Since the LEDs were much

bigger than the tanker in scale, the number of markers was limited by

simply not having enough area on the tanker to place more markers. This

limitation presents an easier problem to the MV system than would

normally be encountered in a typical AAR situation. This problem could

be solved by simply increasing the size of the tanker model or decreasing

the size of the LEDs.

These limitations have a direct effect on the real life performance of this

algorithm. Therefore, these issues should be addressed before the results presented in

this research are used for determining real life applicability of such an algorithm.

4.2.2 Software Used for the Marker Detection and Tracking Problem

The software used to address the Marker Detection and Tracking problem consists

of two different methods, both of which accomplish the same result. The first method,

whose theory was described in Section 3.3.1, is the Modified K-Means Clustering

Algorithm. The second method, whose theory was described in Section 3.3.2, is the

Advanced Modified K-Means Clustering Algorithm.

 77

4.2.2.1 Modified K-Means Clustering Algorithm

In order to address the problem of Marker Detection and Tracking, the

assumptions on which to base the software framework using the Modified K-Means

Clustering Algorithm must be determined. In order to make this algorithm robust and

have the ability to be used in a fairly uncontrolled environment, the assumptions must not

be strictly confined. Keeping this in mind, the following list of assumptions was

assembled for this problem.

Assumptions for the Modified K-Means Clustering Algorithm:

1. The number of markers is always fixed,

2. The wing tip markers must have the greatest distance to each other, the

horizontal stabilizer markers must have the next greatest distance to each

other,

3. The bank angle of the aircraft in question can never exceed 85 degrees.

Most of these assumptions fall into the ‘more than acceptable’ category in a real

world environment, except for Assumption #1. This assumption is not favorable in a real

world environment due to weather conditions or other factors that may exist that could

obscure one or more markers. Although this assumption is a tough one to guarantee, it is

required by the software because of the use of the K-Means Clustering Algorithm. The

number of objects being searched for is the only constraint that must be fixed in the K-

Means Clustering Algorithm. Therefore, for this research, this constraint must be

applied.

This algorithm performs four basic image processing functions: Image

Acquisition, Image Segmentation, Pixel Grouping, and Marker Labeling. The Image

Acquisition is very straightforward and consists of simply grabbing an input image and

digitizing it. Image Segmentation refers to, of course, discretely segmenting the image

into parts that the software can discern useful information from. The Pixel Grouping

function refers to physically constructing the desired number of groups of pixels, each

representing one marker, from the global list of white pixels found in the image. The

 78

grouping function then calculates the centroids of each group and designates each

marker’s location as the location of the centroid. The Marker Labeling function gives

each marker centroid location a name associated with the correct location on the aircraft.

This labeling is necessary in order to tell if a certain group of pixels belongs to say, the

left horizontal stabilizer tip or the vertical stabilizer tip. This is an essential operation if

the algorithm is to be used with a pose estimation algorithm.

The first section of the software performs the image acquisition. A typical input

image of the tanker aircraft with LED markers illuminated is shown in Figure 4.10,

below.

Figure 4.10: Typical Input Image of the Tanker Aircraft with LEDs Illuminated

Once the image acquisition is complete, it is followed by the Image Segmentation

function, which, in itself, consists of two parts: Color Space Conversion and

Thresholding. These two parts are described in detail in the following paragraph.

The first part of Image Segmentation is the color space conversion. A binary

color space conversion is performed on the input image which converts it from a

 79

640×480×3 grayscale image (pixel values range from 0 to 255) to a 640×480×1 binary

image (pixel values range from 0 to 1). This operation was explained in detail in Section

3.2.3.2. Once this is complete, a thresholding operation is performed to accomplish basic

image segmentation. This thresholding is designed such that all of the background pixels

will change to a value of zero or black and all of the pixels representing the light markers

will change to a value of one or white. This principle was explained in detail in Section

3.2.5. Once the thresholding is complete, the image is left in a state where all five

markers are clearly defined by small groups of white pixels surrounded by an all black

background. The Image Segmentation part of this algorithm is thus complete. An

example of the image after the segmentation portion of the software is complete is seen

below, in Figure 4.11.

Figure 4.11: Mid-Stream Image After Performing Image Segmentation

The second main part of the algorithm, the Pixel Grouping section, is now ready

to be performed. The pixels are grouped by first examining the X-coordinate and based

on a distance threshold, the pixels are separated into distinct groups. Once the pixels are

grouped by X-coordinates, then the Y-coordinate is examined. This can sometimes result

in a more detailed grouping. This only occurs when the aircraft is at a bank angle which

 80

allows two markers to line up vertically. If it were not for this condition, the software

could rely on the X-coordinate based grouping alone. In order to visualize how this

problem can occur, refer to the list of white pixels is shown below in Table 4.3.

Table 4.3: Common Example of List of White Pixels Obtained

97, 350 182, 91
97, 351 183, 251
180, 250 183, 252
180, 251 183, 90
181, 250 183, 91
181, 251 184, 252
182, 250 184, 253
182, 251 184, 91
182, 252 184, 92
182, 90 …

In Table 4.3, a representative partial list of white pixels is shown and the colors

represent the actual clusters that each pixel belongs to. The magenta pixels are the

‘Marker One’ pixels, the blue pixels are the ‘Marker Two’ pixels, and the green pixels

are the ‘Marker Three’ pixels. If the grouping is based solely on the X-coordinate, it can

be seen in this table how the pixels could be confused in their respective groups. In this

example, all of the pixels in blue and green would have been grouped as one marker

cluster, but by looking at the Y-coordinates it is easy to see that there is a large void

between the two groups of Y-coordinates. The examination of the Y-coordinate allows

the more detailed grouping in this case, thus creating three groups and not two.

Once the Pixel Grouping section is complete, the Marker Labeling section of the

algorithm is performed. This is the last step in the Modified K-Means Clustering

Algorithm. The Marker Labeling section of the algorithm is based upon a simple

assumption about most aircraft, Assumption #2 in the list of assumptions. This

assumption basically states that in most aircraft, the wings are always the longest

‘extensions’ from the centerline of the aircraft and they are always longer than the

horizontal stabilizer. This is especially true for tanker style aircraft due to their long

wingspan and this assumption must not be violated to ensure proper labeling is taking

 81

place. This will not be a problem because the aircraft is very unlikely to change its

configuration in flight in such a way to violate this assumption, especially since tankers

are non-reconfigurable aircraft. Even so, if an aircraft design is presented in which this

assumption is broken, the software can easily be adjusted to accommodate the

configuration of the new aircraft to ensure proper labeling of the markers. Assumption

#3 is also very important in this labeling process. If this assumption is violated, the

markers may be labeled wrong from the start or may become labeled wrong. The exact

surfaces they represent will not be affected but the fact that they are on the left or right

side of the aircraft will be affected. This will be explained in more detail in the following

paragraphs.

Using these two assumptions, the markers are labeled by calculating the absolute

distance combinations for all five markers. This means the distance from ‘Marker One’

to the other four markers will be calculated and so on, until all of the combinations have

been calculated. These combinations consist of 10 different distance calculations. Along

with these calculations, the marker numbers being used in the calculation are stored with

each distance. In order to find the wing, the largest distance is found by using the

maximum function within Matlab®. Once this value is found, the list of 10 distances is

scanned for this one particular distance. When it is found, the marker numbers associated

with that particular distance calculation are retrieved and the two marker numbers and

their positions are known. The software can now positively say that those two markers

belong to the wing tips. Once the wing tips are identified, the algorithm removes all of

the distance calculations from the list that involved the two now identified wing tip

markers, reducing the list to only three distances instead of 10. Then, the same method is

used to find the horizontal stabilizer markers, using the maximum distance found in the

now updated list. Once the horizontal stabilizer markers are identified, there is only one

marker left and it is thus identified as the vertical stabilizer marker.

The software will distinguish between left and right hand side markers. This is

accomplished two ways: one way has to do with how the image is scanned left to right,

always encountering the left markers first, the second way is the use of Assumption #3.

 82

It cannot be positively stated that the aircraft in question will never exceed 85 degrees of

bank angle, but if this occurs, there are many more important issues to worry about than

trying to approach or follow another aircraft. In Figure 4.12, below, the aircraft is shown

in a radical attitude of approximately 85 degrees of bank angle and the markers are still

being labeled correctly. Note that the method of labeling the markers allows the left and

right sides to be distinguished while also labeling the wingtips, horizontal stabilizer, and

the vertical stabilizer. The red markers are used to indicate the right side, the green

markers are used to indicate the left side, and the blue marker is for the center. The

marker shapes represent the different locations on the aircraft thus, the wing tips are

represented by stars, the horizontal stabilizer tips are represented by circles, and the

vertical stabilizer is represented by a diamond. The Matlab code for this algorithm can be

found in Appendix A.

Figure 4.12: Typical Output Image with Aircraft Roll Angle ≈ 85º

Possibility of Loss of Marker Visibility

Upon review, a point was made that the possibility exists for one or more of the

markers on the tanker to become obscured by the refueling boom during the refueling

process. A marker may also disappear due to being damaged or burnt out. It was

previously mentioned that when using the K-Means algorithm, the only thing that needed

 83

to be set was the number of clusters being searched for. This obviously presents a

problem during the time when a marker would be obscured. Therefore, some changes

were made to the Modified K-Means Clustering Algorithm to make it robust to this

problem.

In the previous version of this software, the code for-looped through the marker

detection section, one marker at a time up to the number of desired markers. If a marker

did not exist, the code would halt due to the lack of a marker in the image frame. In this

version of the software the number of clusters to be found are not set and a while loop is

employed which will find any number of clusters instead of a set number. This has

proven to be an effective way to deal with any number of markers including the loss or

gain of them.

The use of this method of finding the clusters did present other problems. In the

previous version of the software, the labeling of the markers was performed by

calculating the distance between every possible pair of markers and determining which

set of markers belong to the wingtips first, the stabilizer tips secondly, and the rudder was

last. This order was chosen because the array of calculated distances could be searched

for the maximum distance first, which should be attributed to the wingtips and then those

distances which included the now defined wingtip markers would be removed from the

array and the list would be searched again. On this subsequent search, the stabilizer tips

would be found because they would now be the largest distance in the list. This

continued until there was only one marker left in the list and that would be defined as the

rudder. This scheme of labeling will not work if a loss or gain of marker situation is

presented. Due to the fact that the marker could present itself anyplace in the frame due

to the bank angle that the tanker could achieve, there is no way to label the markers using

the hierarchical method that was used previously. A more advanced points matching and

labeling algorithm50,51,52,53,54 would have to be used in order to label the markers

accurately. The addition of such a labeling algorithm was not within the scope of this

research effort and thus was not attempted. This method, when compared to the previous

method, is very much in contrast in that it does not require any assumptions. With the

 84

implementation of the while loop the previous Assumption #1 is no longer needed and

since there is no labeling algorithm employed, then Assumption #2 and Assumption #3 is

not needed as well.

In order to test this software, the model aircraft apparatus had to be modified to

allow an additional LED and a switch that could activate and deactivate the LED at will.

This type of setup was used to record two additional videos in which the tanker was in

motion with the LED disappearing and reappearing. These videos were used to evaluate

the computational workload of the software and to visually validate that it was working

properly. These results will be shown in Section 5.1. The Matlab code for this more

robust algorithm can be found in Appendix B.

4.2.2.2 Advanced K-Means Clustering and Tracking Algorithm

Once the Modified K-Means Clustering Algorithm was created, the Advanced K-

Means Clustering and Tracking Algorithm was simple to implement. Its implementation

consisted of adding a separate set of instructions to the initial piece of code that could

calculate the velocity and accelerations of the markers that were found from the last three

frames of video. Before these instructions could be solidified, the assumptions governing

the software must be determined. The assumptions governing the Advanced K-Means

Clustering and Tracking Algorithm follow.

Assumptions for the Advanced K-Means Clustering and Tracking Algorithm:

1. The number of markers is always fixed,

2. The wing tip markers must have the greatest distance to each other, the

horizontal stabilizer markers must have the next greatest distance to each

other,

3. For the initial conditions, the bank angle of the aircraft in question can not

be greater than 85 degrees.

In examining the assumptions outlined above, the only difference between the

Modified K-Means Clustering Algorithm and this algorithm is that the aircraft in question

 85

can now exceed 90 degrees of bank angle but not initially. This is a direct result of the

implementation of the tracking part of the algorithm and this will be explained in detail in

the following paragraphs. In order to implement the additional code for this version of

software, the original piece of code was changed to run for only three time steps, after

which the whole scanning of the image was eliminated and only small areas around the

estimated positions were scanned for white pixels. This software was also written, first,

to only use the marker velocities and no acceleration calculations at all, thus utilizing

Equation 4.1:

()(1) ()

()(1) ()
x

y

V indexx index x index
t

V indexy index y index

+ = + ∆ +
 (4.1)

where x is the X-coordinate of the centroids of the markers and y is the Y-coordinate of

the centroids of the markers at frame number index . t∆ is the time in seconds between

the two sequential frames. xV and yV are the velocities in the x and y directions,

respectively. This was implemented to give a middle baseline for comparison of the

tracking improvement from using no inertial information (like in the Modified K-Means

Clustering Algorithm), to using only velocity and, finally, to using both velocities and

accelerations. These situations will be evaluated in Chapter 5.

Once the position is estimated using either Equation 4.1 or 4.2, below, the

software will calculate a range of X and Y coordinates, creating a processing window,

relating to each marker.

 2
() ()(1) () 1

2() ()(1) ()
x x

y y

V index A indexx index x index
t t

V index A indexy index y index

+ = + ∆ + ∆ +
 (4.2)

The concept of the processing window is simple and it is the heart of the expected

increase in computational efficiency in this version of the software. This concept relates

to the scanning of the image for white pixels. In the previous version of the software, the

entire image was scanned and searched for white pixels. In this version, the entire image

 86

is scanned only three times, during the initial three frames of video. Once this is finished,

the marker positions are estimated and then only a small area around the estimated

position, based on a fixed square search area, is scanned on the subsequent image. This

reduces the number of pixels to be scanned from about 300,000 in a 640 pixel ×480 pixel

resolution image to about 500 pixels using a search area size of 10×10. This relates to

scanning only 0.16% of the image compared to previously scanning 100% of the image.

Furthermore, by scanning only the areas around the estimated marker positions,

the calculation of the distances between the markers used to determine the labeling of

each marker can be eliminated. It is because of this that the algorithm can be accelerated

even further. This further acceleration is the result of the marker positions being

estimated and tracked, having no chance of being confused with any other markers on the

screen. Once the markers are labeled during the first three frames, the algorithm then

tracks their labels along with the estimated and actual marker positions and never has to

perform the labeling algorithm again. This advantage of tracking the labeled markers

explains how the aircraft in question can now roll greater than 85 degrees and the marker

still be labeled accurately. The reasoning behind Assumption #3 is now clear. If this

assumption were to be violated in any way when the software is activated (within the first

three frames), the left and right markers would be confused and would continue to be

tracked in the confused manner. Again, the likelihood that the aircraft would be banked

more than 85 degrees during this time is very low.

As previously mentioned, the range of X and Y coordinates used for creating the

processing window is based upon a fixed square search area. This search area can be

adjusted depending on the accuracy of the estimates being made. If the estimates are not

well correlated with the actual positions, then the search area will need to be made larger

to account for the lack of accuracy in the estimates. This search area size relies greatly

on the processing speed of the MV computer system. If there is much lag between

frames, then the motion information used to perform the velocity calculations may be

inaccurate due to frequent motion changes between frames, when the computer is not

‘looking’. If this is the case, the processing window will need to be made larger to

 87

accommodate for the appropriate conditions. Conversely, if the processing time is very

fast, the motion of the markers can be very diverse in speed and direction and the

processing window can be quite small while still finding the markers accurately. This is,

of course, the desired condition.

This algorithm is the result of a build up of ideas leading to this solution. Many

aspects of image processing have been used in this algorithm and these have already been

mentioned earlier in Section 3.2 and Section 3.3. Instead of developing a micro level

flowchart to detail the operation of this algorithm, a macro level flowchart, shown on the

following page in Figure 4.13, will describe the process used to perform the Advanced K-

Means Clustering and Tracking Algorithm. The Matlab code for the Advanced K-Means

Clustering and Tracking Algorithm can be found in Appendix C.

 88

Figure 4.13: Macro Level Flowchart - Advanced Clustering and Tracking Algorithm

4.3 Experimental Procedures for the Runway Detection Problem

Like the Marker Detection and Tracking problem, a blend of hardware and

software tools were used to address the goals associated with this problem. For this

problem though, the software is not dependent upon the hardware setup at all. The only

duty of the hardware is to provide an input video for the software to post-process. This

made the construction of the software somewhat easier in that there were no internal

hardware/software interaction issues to deal with. An overview of the experimental

procedures required to address the Runway Detection problem is shown on the following

page in Figure 4.14.

Image
Acquisition

Filtering provided by
color level conversion,

thresholding, and erosion.

Clustering algorithm finds
marker locations for the first
three frames of input video.

Labeling algorithm labels the markers
found in the first three frames.

Velocity and Acceleration calculations
are performed and estimated marker
locations are calculated and stored

Processing window boundaries are calculated
and actual marker centroid locations are

Image
Acquisition

Velocity and Acceleration calculations
are performed and estimated marker
locations are calculated and stored

For
index=1 to 3

For
index=4 to n

 89

3-D World

Camera

Video Acquisition

Image
Reconstruction

Memory
Card

UAV in Flight

In-Flight
Video

Preprocessing/
Image

Segmentation

Hough Transform
with Error Correction

Simulink Scheme

Manual Video
Editing

Figure 4.14: Runway Detection Experimental Procedures

4.3.1 Hardware Used for the Runway Detection Problem

This section is dedicated to the physical description and description of the

function of each piece of equipment used to address the Runway Detection problem.

Through this, the function, importance, and experimental procedures for each part as it

relates to the problem will be outlined.

4.3.1.1 Description of Mustek DV-4000 Mini DV Camera

The Mustek DV-4000 Mini Digital Video (DV) Camera is the camera that was

used on the aircraft while obtaining runway video to be used in a post-processing fashion

in order to evaluate the runway detection scheme. This camera is perfect for this

application because it is very lightweight, has an adequate field of view, and it can store a

 90

large amount of video enabling a long flight time. It is also quite small, which allowed it

to be easily mounted on the aircraft test bed. Another thing that makes the camera a good

candidate for this job is the fact that it is fairly low resolution which allows the software

to be tested in a low resolution setting and it also enables the software to perform its best

and fastest rate possible due to the small resolution of the video. A full description of the

Mustek camera specifications is shown in Table 4.4.

Table 4.4: Mustek DV-4000 Mini DV Camera Specifications

Sensor Type 3 Mega pixel CMOS
Resolution 640 (W) by 480 (H)
Focal Length 8.5 mm
Focus Range ∞ - 0.2 m
Field of View @ 30 meters 12.71 m (W) x 9.64 m (H)
Iris Operation Fixed @ F2.8
Focus Operation Automatic
Frame Rate 10 fps
Video Format MPEG-4
Capacity > 3 hours recording time
Size 3.5” x 2.5” x 1.125”
Weight 118 g

This use of this camera created a real test for the software in terms of error

correction. With its frame rate of only 10 fps and a highly dynamic field of view created

by the nature of flight, the video taken by the camera is not the smoothest video ever

encountered. This being the case, the difference in movement from frame to frame was

sometimes great and this allowed the software to be put to the test using such a ‘jumpy’

and unstable video. Also, since this camera would automatically adjust the video gain,

the brightness sometimes would vary due to the lens being pointed towards the sun, to the

clouds, or ground. This also provided a great testing opportunity for the pre-

processing/image segmentation part of the runway detection software to see how well it

would perform with varying lighting conditions resulting in varying brightness. The

Mustek DV-4000 Mini DV Camera is shown on the following page in Figure 4.15.

 91

Figure 4.15: Mustek DV4000 Mini DV Camera

4.3.1.2 Cessna 152 Video Acquisition Platform

In order to achieve the first part of the experiment, a test bed must be selected to

carry the video equipment in order to obtain the video of the runway. In this case, the

Cessna 152 aircraft was selected as the test bed. The Cessna 152 is a large 35% scale

replica of an actual Cessna 152. The payload capacity is enormous and as such, carrying

a small camera is no huge task for it. The Cessna 152 specification are shown in Table

4.5, on the following page.

 92

Table 4.5: Cessna 152 Specifications

Span 120”
Length 86”
Height 30”
Weight 34 lbs.
Payload Capacity ~10 lbs.
Duration >30 minutes
Engine Zenoah G-62 with Mejzlik 22x10 prop
Radio JR XP9303 9 channel PCM radio system
Cruise Speed ~60 knots

The Cessna 152 test bed is shown below in Figure 4.16.

Figure 4.16: Cessna 152 Model Test Bed

The Mustek DV4000 Mini DV Camera was mounted on the Cessna 152 using a

bracket that was custom designed and manufactured by the author. The bracket is a ½”

solid aluminum rod which is cut and threaded on each end to match the angle of the

original landing gear. The landing gear then had mounting holes (to match the threaded

holes in the rod) drilled so that the rod could be mounted with socket head cap screws to

the landing gear. The camera mount plate was engineered such that the camera could be

rotated by loosening the bolts on the mounting collar and rotating the mount on the rod

and then retightening the bolts. This would allow for different viewing angles to be

achieved with one mount. In this configuration, the camera was set to recording mode

before takeoff and was deactivated upon landing, thus capturing the entire flight.

 93

Vibration was a concern, but turned out not to be an issue once the aircraft was in flight.

The sturdiness of the bracket also helped this situation. The close up view of the

DV4000 and the camera mount can be seen in Figure 4.17, below.

Figure 4.17: Close Up View of the DV4000 Camera Mounted on the Cessna 152

 94

4.3.2 Software Used for the Runway Detection Problem

The software used to address the Runway Detection problem consists of only one

method and that is the Simulink based method using the Hough transform. In order to

apply the Hough transform to the problem of runway detection, many things have to

come together. These include the acquisition and filtering scheme, the actual Hough

transform operations, an error checking scheme to eliminate false peaks in the Hough

space, and finally a scheme to put all of the images back together and display them. Each

of these subsystems are clearly labeled and each will be fully explained in subsequent

sections. Figure 4.18, on the following page, shows the main Simulink® scheme used to

perform runway detection.

There are several main concepts to be discussed in this section. The image

acquisition block is shown on the following page, in Figure 4.18, in magenta. This block

will be discussed in Section 4.3.2.1. The image preparation, conversion, filtering and

edge detection routines are contained in the pre-processing subsystem that is shown on

the following page, in Figure 4.18, as the cyan colored block. The image acquisition and

pre-processing subsystem will be discussed in Section 4.3.2.2. The Hough transform and

its related operations are contained in the Hough transform operation subsystem which is

shown on the following page, in Figure 4.18, as the light green colored block. The

Hough transform operations subsystem will be discussed in Section 4.3.2.3. The

Rho/Theta Correction block is a subsystem that contains a feedback routine capable of

eliminating false peaks found in the Hough space. This block which is shown on the

following page, in Figure 4.18, is colored in red. This subsystem will be explained in

Section 4.3.2.4. The Image Regeneration block, on the following page, in Figure 4.18,

colored in yellow, performs the task of putting all of the pieces of the original image back

together so it can be displayed for visual evaluation. This subsystem will be discussed in

Section 4.3.2.5.

 95

Runway detection and tracking

To Video
Display

R

G

B

Runway Track View

To Video
Display

III

Runway Edge View

To Video
Display

R

G

B

Runway Confined View

Rho

Theta

Rhocorr

Thetacorr

Rho/Theta Correction

vid1.avi
240x320, 2.997000e+001 fps

R

G

B

Read Runway Video File

Rwhole

Gwhole

Bwhole

Rhocorr

Thetacorr

Rcut

Gcut

Bcut

Rtrack

Gtrack

Btrack

Image Regeneration

R

G

B

Rwhole

Gwhole

Bwhole

Edge

Rcut

Gcut

Bcut

Image Preparation, Conversion,
 FIltering, and Edge Detection

Edge

Rho

Theta

Hough Matrix

Hough Transform Operations

H

Hough Matrix Display

Call GUI

Figure 4.18: Runway Detection – Main Simulation System

 96

4.3.2.1 Image Acquisition

The purpose of this scheme was to perform Runway Detection simulations on real

camera images of a real runway. This simulation was restricted to the use of pre-

recorded videos due to the lack of availability of an instrumented UAV to fly in order to

record videos. As a result of this and other factors, the things that affect the flight and

video characteristics have not been fully evaluated and the amount of usable video

obtained is fairly small. Even though the video was small, it was sufficient to perform

the simulations and to be able to evaluate the performance of the scheme. Therefore, the

application of any other acquisition methods such as a simulated runway in a laboratory

environment was not necessary and the small videos clips obtained from flight were used

solely for evaluation of this scheme. A typical frame from a simulation input video is

shown in Figure 4.19, below.

.

Figure 4.19: Runway Detection - Typical Input Image

 97

4.3.2.2 Image Preparation, Conversion, Filtering, and Edge Detection

The image pre-processing subsystem, shown below in Figure 4.20, contains all of

the functions necessary to convert the image from RGB to intensity,

Image Preparation, Conversion, Edge Detection, and Filtering

7

Bcut

6

Gcut

5

Rcut

4

EdgeFiltered

3

Bwhole

2

Gwhole

1

Rwhole

Switch

Red

Green

Blue

Binary

Single Color Selector

R Confine

Edge EdgeFiltered

Noise Filtering for Edge Image

G Confine

SobelII EdgeEdgeEdge

Edge Detection

3

Color Selector

B Confine

3

B

2

G

1

R

Figure 4.20: Runway Detection – Pre-Processing Subsystem

perform edge detection, and filter out most of the noise left in the image. The blocks

used in this subsystem and all included subsystems are standard blocks within the

standard Simulink® blockset66 or the Video and Image Processing Blockset60 within

Simulink®. The inputs to this subsystem are the red, green, and blue components from

the image acquisition block. The output is a fully filtered, binary edge image. This

subsystem does contain one smaller subsystem. This subsystem is the Noise Filtering

Routine, shown in Figure 4.20 as yellow block. There are some other very important

 98

functions that serve to speed up the processing time that will be discussed first. In Figure

4.20, on the left shown in light gray are three blocks that are labeled as ‘R Confine’, ‘G

Confine’, and ‘B Confine’. These blocks are very essential to the efficiency of the

scheme. These blocks take the full resolution image, which in this case is 320×240, and

confines the image in the vertical direction, essentially picking a piece of the image out.

The result is the same input image but it looks as though it has been cropped on the top

and bottom. This allows approximately 40% of the image to be ignored while still being

able to detect the lines on the runway. This could also be useful if the detection was

involving something that was known to be in the same place in the image frame all of the

time, such as the horizon. This would allow for almost 100% positive identification by

ignoring all of the other lines in the image and only looking at a small area around it. The

whole image is kept intact and sent out of the block for use later in the scheme as well as

the ‘cut’ portion of the image. These will be needed later to put the image back together.

It should be noted that the rows of the image to which the processing is confined is used

definable in the GUI.

The image then enters the section that performs the color conversion. This is

accomplished using the RGB to Intensity conversion which was discussed previously in

Sections 3.2.3.2. Therefore, the details of the conversion will not be covered here. The

RGB to intensity conversion is performed slightly different in this case. Instead of

converting all of the colors to intensity, there is a color selector, indicated in Figure 4.20

as the cyan colored block. This color selector allows the user to switch between using

only one of the colors at a time, depending on the conditions in the image. For example,

if there were a lot of green in the image from a grassy field that was causing problems in

the line detection, by simply turning green off and using red or blue, this problem can not

be eliminated, but this is an action that helps remove the influence the green field is

having on the resultant edge image. Therefore, by doing this, an actual RGB to Intensity

color space conversion block is not necessary. Simply using one color is like having an

8-bit intensity image instead of having a 1-bit intensity image.

 99

Once the color space conversion is complete and an intensity image has been

obtained, the image is sent to the Sobel Edge Detection block shown previously in Figure

4.20, colored in magenta. The Sobel edge detection routine has previously been

discussed in Section 3.4.1 and no further explanation will be given here. The edge image

is then sent to the Noise Filtering subsystem block shown previously in Figure 4.20,

colored in yellow. The Noise Filtering subsystem is shown below, in Figure 4.21. This

subsystem is a simple morphological opening that was previously discussed in Section

3.4.2.4. The unique part of this filter lies in the structuring element. Since this scheme

has the purpose of detecting lines that make up a runway and the lines in this setup run

vertically through the image frame, a structuring element tailored to enhance vertical

lines is used. The structuring element is a 3×3 matrix with the center column set to one

and the rest of the element is zero. This greatly enhances the vertical lines on the runway

and filters out the rest of the noise from the surroundings quite effectively.

Noise Filtering Using Morphological Opening

1

EdgeFiltered

Open

Opening

boolean

Data Type Conversion1

single

Data Type Conversion

1

Edge

Figure 4.21: Runway Detection - Noise Filtering Subsystem

Figure 4.22, on the following page, shows a typical output image from the pre-

processing subsystem.

 100

Figure 4.22: Runway Detection –Edge Image

4.3.2.3 Hough Transform Operations

The Hough transform subsystem, shown on the following page in Figure 4.23,

contains only two higher-level blocks. These blocks are the Hough transform block and

the Hough peaks block and both of these blocks were standard blocks included in the

Video and Image Processing Blockset60 within Simulink®. The Hough transform block

as well as the Hough peaks block and their application has already been discussed in

Section 3.4.3.1. These points will not be discussed again, but their inputs and outputs and

the application within this particular scheme will be discussed.

The Hough transform operations subsystem uses the black and white edge image

from the image pre-processing subsystem as its input. In particular, the Hough transform

block within this subsystem takes this input directly. This block can be found in Figure

4.23 as the yellow colored block. The outputs of the Hough transform operations

subsystem are the ρ values and the θ values that correspond to the number of Hough

peaks desired. The Hough transform block has two options. These options are the rho

resolution and the theta resolution to be applied while performing the transform. The

ranges of these options are fixed within the block, therefore the only thing to determine is

the resolution of these values and both of these values are user definable in the GUI.

 101

Hough Transform Operations 3

Hough Matrix

2

Theta

1

Rho

In

Idx
Out

Select
Columns

Variable
Selector1

In

Idx
Out

Select
Columns

Variable
Selector

Theta - ZOH[theta]

Theta - Goto

[theta]

Theta - From

U U(R,C)

Select Theta

U U(R,C)

Select Rho

Rho - ZOH

[rho]

Rho - Goto

[rho]

Rho - From

Hough
Transform

BW

Hough

Theta

Rho

Hough Transform

Hough

Peaks

Count

Hough Peaks1

Edge

Figure 4.23: Runway Detection – Hough Transform Operations

The ρ and θ values are stored for later use and the Hough peaks block, which is found

in Figure 4.23 as the cyan colored block, uses the Hough space or Hough matrix as its

input. The Hough peaks block has three options that can be changed to alter its

performance. These options are possibly the most influential values used in the entire

scheme. The first option is the value of the desired number of peaks. The second option

is the threshold value used in determining if a peak is actually a peak or not. The third

option is the neighborhood size. The neighborhood size is the size of ‘block’ of the space

in the Hough matrix that is searched to find a peak. In other words, once the block finds

a peak, it checks the threshold value for the entire neighborhood size to ensure that it is a

peak. The output of this block is the short list of the ρ and θ coordinates of the

strongest peaks in the Hough space and the size of the list, of course, depends on the

number of Hough peaks desired. The rest of the blocks shown in Figure 4.23 are blocks

that help separate the ρ values from the θ values into their separate vectors from the

output of the Hough peaks block. Figure 4.24, on the following page, illustrates the

typical Hough space obtained when performing a runway detection simulation.

 102

Figure 4.24: Runway Detection – Typical Hough Space

 103

4.3.2.4 Rho/Theta Correction

The Rho/Theta Correction subsystem is shown previously in Figure 4.18 as the

red colored block. It should be noted that all of the blocks in this subsystem are standard

blocks found within the standard Simulink® blockset66. This block takes the ρ and θ

values found from the Hough transform subsystem and basically checks to see if there is

too much difference between the last values and the current values. If there is a great

difference in the values from the last time step, the block assumes there has been an

errant Hough peak used and it discards the current ρ and θ values and uses the values

from the last time step. This is performed by using a negative feedback loop with a one

time step delay and a threshold value for both ρ and θ . The decision then enters a ‘For

Iterator’ subsystem that helps to select which ρ and θ value to output based on the error

flag. These subsystems will be described in detail below. The Rho/Theta Correction

subsystem is shown in Figure 4.25, on the following page.

In order to begin the detailed discussion of the Rho/Theta Correction subsystem,

the underlying principle of the subsystem must be explained. In the first two time steps,

no correction is being performed. This two-step buffer is meant to allow any transients to

disappear, for the line detection to become established, and for a good set of ρ and θ

values to become set. This two time step wait time was determined to be adequate by

performing several simulations and watching the performance of the scheme. If less than

two time steps were used then the scheme would have large errors at the start of the

simulation and if more than two time steps were used, no notable change could be seen.

Therefore, it was determined that more than two time steps are not needed and making

the Rho/Theta Correction subsystem wait longer to become active has no benefit. Once

this is complete, the correction process can begin. This principle is controlled by the two

green blocks shown on the following page, in Figure 4.25. These blocks are called ‘N-

Sample Switch’ and their job is to change their state after the specified number of time

steps has passed. Once the desired number of time steps has passed, in this case two time

steps, the switch will flip and the last known corrected values will be sent to the negative

side of the summing junction in place of the current values.

 104

Rho/Theta Correction

2

Thetacorr

1

Rhocorr

result2

To Workspace2

result1

To Workspace1

[Tc]

Theta(k-1) - Goto

[Tc]

Theta(k-1) - From

[Tcorr]

Tcorr - Goto

[Tcorr]

Tcorr - From

[T]

T - Goto

[T]

T - From

[Rc]

Rho(k-1) - Goto

[Rc]

Rho(k-1) - From

[Rcorr]

Rcorr - Goto

[Rcorr]

Rcorr - From

[R]

R - Goto [R]

R - From

2

2

OR

Logical
Operator

for { ... }

Rho(k)

Rho(k-1)

Flag

Theta(k)

Theta(k-1)

Rho Flag

Theta Flag

Rcorr

Tcorr

For Iterator
Subsystem

Rho Flags

Theta Flags

Flag Display

z-1

z-1

>= 0.0017453

>= 1

|u|

|u|

2

Theta

1

Rho

Figure 4.25: Runway Detection – Rho/Theta Correction Subsystem

 105

Once this is complete, the values enter the light blue blocks found in Figure 4.25,

which are called the ‘Compare to Constant’ blocks. These blocks are essentially

comparing the error between ρ and θ values from the current time step and the last time

step with an error threshold. If the error is greater than the threshold, then the block will

output a one, if not a zero is the output. The output of these blocks are meant to allow the

user to determine which line on the image is creating the most errors to give the user an

idea of what to look at and what to adjust on the GUI to produce better performance.

These flags are then fed into the ‘OR’ which is shown in cyan in Figure 4.25. The ‘OR’

block will output a true signal no matter which error flag is true. By using the ‘OR’

block, this ensures that almost under no circumstances will an errant set of values be

passed on.

The situation at this point is that there is a set of flags indicating which Hough

peaks may be false peaks. The problem is that there is more than one flag in a vector

since there are more than one peak being used, in this case three peaks. Therefore, the

‘For Iterator’ subsystem is used. The ‘For Iterator’ subsystem block is shown in Figure

4.26, on the following page. This subsystem takes care of applying the decisions made

by the ‘Compare to Constant’ blocks. The need for this subsystem is based on the need

to make different decisions about each Hough peak individually in the same vector.

Using this subsystem, the error flag vector is not looked at as a whole, but it is looked at

as elements in the vector. The “For Iterator’ subsystem will loop itself through the

decision making process for each of the error flags separately. This allows for one

Hough peak to be acceptable and for another not to be acceptable in the same time step,

thus applying the correction to only one of the Hough peaks and not the others. This is

the heart of the Rho/Theta Correction subsystem and without it, the error corrections

would have to be applied to all three Hough peaks or none at all. If this was the case,

there would surely be no line to make it though the Rho/Theta Correction subsystem

block without being corrected regardless if it was under the error threshold or not.

 106

For Iterator Subsystem

2

Tcorr

1

Rcorr

result

To Workspace

Switch1

Switch

U
E

1
U(E)

U
E

1
U(E)

U
E

1
U(E)

U
E

1
U(E)

U
E

1
U(E)

U
E

1
U(E)

U
E

1
U(E)

Flag

Rho Flag

Theta Flag

For
Iterator

1 : N

For Iterator

U1 -> Y

U2 -> Y(E)

E
1

Y

Assignment1

U1 -> Y

U2 -> Y(E)

E
1

Y

Assignment

7

Theta Flag

6

Rho Flag

5

Theta(k-1)

4

Theta(k)

3

Flag

2

Rho(k-1)

1

Rho(k)

Flag

Rho corr

Theta Flag

Rho Flag

Theta corr

Figure 4.26: Runway Detection – For Iterator Subsystem

Even though the error flag is based on the ‘OR’ of the comparison results,

meaning one value could be acceptable and the other not acceptable, both the ρ and θ

values are corrected. This can be seen in the setup of the switches in Figure 4.26, above,

that control which value exits the block, the value from the last time step or the current

time step. The error flag operates both switches at the same time, applying the correction

to both values. The values are then assigned back into their original positions in the ρ

and θ vectors so as not to be confused and they are sent to the output, which is in turn

the output of the Rho/Theta Correction subsystem. The flag values are also stored for

every simulation so as to aid in tuning the error thresholds and to determine if the

 107

simulation is really performing the best it can. Although the number of times the flags

are true is not a perfect indication as to the performance of the simulation, it is a point of

concern and it is counted and displayed in the results section of the GUI to be discussed

later.

There is one more subsystem included in the Rho/Theta Correction subsystem and

that is shown in red in Figure 4.25. This block is called the Rho/Theta Flag Display and

it performs no essential duties in the scheme. It is an important analysis tool though,

which allows the user to examine the video outputs and inputs while at the same time

viewing which error flags are being set to true and false in the real simulation timeframe.

This helps in determining which of the many settings in this scheme need to be adjusted

in order to cause the number of times the correction is applied to be reduced. The

optimal case in this simulation is when the output lines on the video track well with the

actual lines visually and that the lowest number of correction flags are seen at the same

time. The Rho/Theta Flag Display subsystem is shown in Figure 4.27, below.

Rho/Theta Error Flag Display

0

Theta3

1

Theta2

1

Theta1

U U(E)

Select Theta3

U U(E)

Select Theta2

U U(E)

Select Theta1

U U(E)

Select Rho3

U U(E)

Select Rho2

U U(E)

Select Rho1

0

Rho3

1

Rho2

1

Rho1

2

Theta Flags

1

Rho Flags

Figure 4.27: Runway Detection – Rho/Theta Error Flag Display

 108

4.3.2.5 Image Regeneration

The Image Regeneration subsystem block plays an important role in this scheme

helping the user determine if the software is performing adequately. The blocks used in

this subsystem and all included subsystems are standard blocks within the standard

Simulink® blockset66 or the Video and Image Processing Blockset60 within Simulink®.

Recall from Section 4.3.2.2 when the image was confined to a smaller part, a horizontal

slice if you will, which is the only part of the image that is processed. Therefore, the

output image from the rest of the scheme is only this slice. This block takes care of

joining the parts of the image (top, middle slice, and bottom) back together so the user

can see the image in its entirety while overlaying the Hough lines in Cartesian space on

the image. The Image Regeneration block is shown previously in Figure 4.18, as the

yellow colored block. There are many inputs to this block as can be seen in this figure.

The original image and the cut portion of the image are both needed to regenerate the

original image and the ρ and θ vectors are needed to calculate the Cartesian coordinates

of the lines corresponding to the Hough Peaks that were found. The output is simply the

red, green, and blue images that make up the regenerated image. These outputs are

connected to a video display for visual reference. The Image Regeneration subsystem is

shown on the following page, in Figure 4.28.

In this subsystem, there are four separate processes happening. First, the red,

green, and blue parts of the original whole image are confined in such a way to cut the

middle part that was used for line detection away from the image, leaving only the top

and bottom pieces. This can be seen in Figure 4.28 by looking for the confine blocks

colored in gray. The second thing is that the Hough Lines block, colored in green in

Figure 4.28, is using the middle cut piece of the image from the pre-processing subsystem

and the ρ and θ vectors to perform an inverse Hough transform and thus calculate and

plot the resulting detected lines on that cut image piece. Third, the top, bottom, and

middle piece with the detected lines overlaid on it are rejoined by using the vertical

concatenation blocks shown in Figure 4.28, colored in yellow. The result from the

vertical concatenation blocks is the final product of the scheme.

 109

The fourth thing being performed in this subsystem is the execution of yet another

subsystem called the Hough Lines Calculator subsystem. This subsystem is responsible

Build Original Image While Injecting Hough Lines

3

Btrack

2

Gtrack

1

Rtrack

R Confine Low

R Confine High

Rhocorr

Thetacorr

Hough Lines Calculator

Hough
Lines

R

G

B

Rho

Theta

R

G

B

Hough Lines

G Confine Low

G Confine High

Vert Cat

Vert Cat

Vert Cat

B Confine Low

B Confine High

8

Bcut

7

Gcut

6

Rcut

5

Thetacorr

4

Rhocorr

3

Bwhole

2

Gwhole

1

Rwhole

Figure 4.28: Runway Detection – Image Regeneration Subsystem

for verifying that the Hough Lines block is actually performing its assigned job. This is

implemented as a second verification to the fact that the scheme did find the desired lines

and that it is plotting them in the correct place. This subsystem essentially performs the

 110

same job the Hough Lines block does but its outputs, which are the end points of the lines

in Cartesian space, are stored and later plotted in a Matlab plotting window for

verification of the position of the detected lines. This block has no higher-level functions

in it as it only performs a mathematical calculation. The Hough Lines Calculator

subsystem is shown in Figure 4.29, below.

Hough Line Location Verification Calculations

cos

Trigonometric
Function3

sin

Trigonometric
Function2

cos

Trigonometric
Function1

sin

Trigonometric
Function

twozz

To Workspace1

onezz

To Workspace

Subtract1

Subtract

Product1

Product

Divide1

Divide

param(1,1)

Constant2

param(2,1)

Constant

2

Thetacorr

1

Rhocorr

Figure 4.29: Runway Detection – Hough Lines Calculator Subsystem

4.3.3 Description of the Graphical User Interface

This section will explain the features and functions available in the graphical user

interface (GUI) which was created for use with the Runway Detection scheme. The GUI

allows many options useful for keeping track of simulation results and different sets of

 111

inputs as well as giving the user an easy to use plotting interface to view the results. Now

that the entire scheme has been explained, the simulation inputs will be covered in

Section 4.3.3.1. The result values display section is the section of the GUI which

displays the counts on the error flags and this will be covered in Section 4.3.3.2. The

trend plotting section is the section of the GUI which allows any number of used

selectable plots to be made after a simulation is complete and it will be covered in

Section 4.3.3.3. The final section of the GUI to be covered is the video analysis

windows. These video windows show the simulation video at several stages throughout

the process so the user can adjust parameters to fine tune the performance or simply view

the output. The video analysis windows will be covered in Section 4.3.3.4. The entire

GUI is shown below in Figure 4.30.

Figure 4.30: Runway Detection – Graphical User Interface

 112

4.3.3.1 Simulation Inputs

The input section of the GUI is very straight forward. First, when the GUI loads

up, it automatically initializes all of the parameters in the software with a default set of

values. The GUI also gives the user the ability to load and save sets of parameters so that

a simulation can be run and then the exact same setup can be recalled and performed

again without the user having to know anything but a filename. The GUI parameters

section consists of two columns, the first of which indicate the current value associated

with the current data set loaded and the second is an editable box which allows the values

to be changed. Once any value is changed, it is automatically updated in the workspace

without the need to save the setup. This allows things to be changed quickly and the

simulation ran for a trial and then if the outcome is acceptable the user may then want to

save the setup. This keeps the user from saving a lot of junk setups in the phase of testing

when major tuning of the parameters is taking place. The GUI also allows the user to run

a simulation and not save the results or to run and save the results. When results are

saved, the GUI also saves all of the information regarding the setup as well as the saved

setup filename if there is one. The parameters section of the GUI is shown on the

following page in Figure 4.31 and a description of each of the simulation inputs is

provided below.

The following list is a description of each simulation input parameter:

1. Starting Row Index – The row in the image where the upper image

confinement takes place. The image confinement block in Figure 4.20

requires this input to set the row of the image where the upper image

confinement occurs.

2. Ending Row Index – The row in the image where the lower image

confinement takes place. The image confinement block in Figure 4.20

requires this input to set the row of the image where the lower image

confinement occurs.

3. Hough Transform Rho Resolution – Resolution used for the discretization

of the ρ vector used in the Hough Transform block in Figure 4.23. This

number determines the interval between ρ values used in the Hough

transform in Equation 3.16.

 113

Figure 4.31: Runway Detection – Graphical User Interface Input Parameters

4. Hough Transform Theta Resolution – Resolution used for the

discretization of the θ used in the Hough Transform block in Figure 4.23.

This number determines the interval between θ values used in the Hough

transform in Equation 3.16.

5. Number of Hough Peaks – This represents the number of Hough peaks

that to be found in the Hough space. This value is used in the Hough

Peaks block in Figure 4.23. Essentially, this represents the number of

lines of interest in the input image.

 114

6. Hough Peaks Neighborhood – The size of the ‘window’ of pixels that the

Hough Peaks block in Figure 4.23 searches for when finding a peak. If

this value is too large, the existence of two equally sized peaks within the

window may occur and cause them to be ignored as individual peaks.

These values should be smaller than the average distance between peaks in

the Hough space when the scheme is applied to a specific application to

ensure that the peaks will be detected reliably. These values must also be

odd numbers for the searching of the neighborhood to work properly.

7. Rho Error Flag Threshold – The threshold used in the Rho/Theta

Correction subsystem in Figure 4.25 for determining if there is excessive

error in the ρ signal. This threshold must be tuned be examining the

number of times the error flag is tripped and the visual performance of the

algorithm. If the error threshold is too small, more correction than are

necessary can take place and cause larger errors in the algorithm than is

being corrected. This situation can be detected by visual examination of

the output of the scheme for lines that do not change position on the

display with respect to the actual lines in the image. This means that the

same line is being fed back over and over because the threshold is too low.

If the threshold is too high, not enough error correction will occur and

when there is actually an error to be corrected, the scheme will overlook it

and continue without feeding back any corrected lines. This situation can

also be detected by visual examination of the output of the scheme for

lines than change position by a great amount on the screen to a position

that does not coincide with the desired output.

8. Theta Error Flag Threshold – The threshold used in the Rho/Theta

Correction subsystem in Figure 4.25 for determining if there is excessive

error in the θ signal. This threshold must be tuned be examining the

number of times the error flag is tripped and the visual performance of the

algorithm. If the error threshold is too small, more correction than are

necessary can take place and cause larger errors in the algorithm than is

being corrected. This situation can be detected by visual examination of

 115

the output of the scheme for lines that do not change position on the

display with respect to the actual lines in the image. This means that the

same line is being fed back over and over because the threshold is too low.

If the threshold is too high, not enough error correction will occur and

when there is actually an error to be corrected, the scheme will overlook it

and continue without feeding back any corrected lines. This situation can

also be detected by visual examination of the output of the scheme for

lines than change position by a great amount on the screen to a position

that does not coincide with the desired output.

9. Hough Peaks Threshold – The threshold used by the Hough Peaks block

in Figure 4.23 for determining if a peak is, in fact, a peak by examining its

‘height’. If height is above this threshold with respect to the pixels in the

Hough Peaks Neighborhood, then it is a peak. Essentially, this value sets

the minimum strength of a peak that is necessary to trigger this block to

output that specific location as the location of a peak in the Hough space.

If a potential peak is lower than this threshold, it will not be defined as a

peak. The setting of this value is contingent upon the strength of the line

definition in the input image. If the line is very clearly defined, the peak

will be very strong and a high number (>15) may be used to ensure that

the desired peak is being detected. If the line is not very clearly defined,

the peak will not be strong, instead, it will look more like a hill than a peak

and some tuning of both the Hough Peaks Neighborhood and this Hough

Peaks Threshold should be done to ensure robustness with respect to

finding the peaks in a situation when the lines are not so clearly defined.

4.3.3.2 Result Values Display Section

The result values display section is a part of the GUI which displays some stored

and some calculated values which reflect on the performance of the runway detection

scheme. At the top of this section, the number of flags for the ρ , θ , and the combined

flag value taken after the OR block in the rho/theta correction subsystem. These are

fairly good indicators of the performance for the scheme. It would be a perfect situation

 116

if the number of flags read zero, which would mean the scheme perfectly tracked the

lines on every frame. But, this is never the case. The typical values for this will be

presented in the Results section.

The other half of the result values display section is a section which displays

calculated values which indicate the average and standard deviation of the ρ and θ

values for each of the three lines in the image. This is not as good of an indication to

performance as is the flag data, but it does give some indication as to the smoothness of

the video and the ability of the video to maintain the lines in the same position on the

screen. This would be much more useful if this scheme was implemented in a UAV

which could follow the runway or road. In this case, a small standard deviation would

indicate that the control system was able to hold the image in the same area on the screen,

meaning the controller would be working very well. If the standard deviation was larger,

that would mean the controller had the tendency to bounce around the desired lines and

was not able to maintain the exact heading all of the time. A screen shot of the result

values display section is shown on the following page in Figure 4.32.

 117

Figure 4.32: Runway Detection – GUI Result Values Display Section

4.3.3.3 Trend Plotting Section

The trend plotting section is very useful when trying to tune the values of the

scheme in order to make the scheme run more efficiently instead of relying on the

rho/theta correction subsystem block. This section allows a very versatile plotting

routine to occur by using the check boxes to indicate which things the user wants to plot

and then using another button to execute the plotting routine. The plotting can be further

controlled by the on and off buttons. If the plotting is off, the plots will not be made until

the ‘Plot Now’ button is pressed. If the plotting is turned on, the plotting routine will be

executed upon completion of the simulation. The flag data, average values, and standard

deviation from the result values display section can be plotted against the number of runs

that have been performed. This data is constantly saved along with the data set used as

input parameters and the run number. This allows a trend to be developed where a value

in the input section is changed and then the results for all saved runs can be plotted such

 118

that a comparison can be made. This allows the user to easily decide if the change that

was made affected the performance in a good way or in a bad way.

There are also options governing which method of plotting will occur. The user

can select the plots to be made in a single plot per figure fashion, all in a subplot fashion,

or in a grouped fashion where the lines from each group of parameters to be plotted are

grouped together. This allows multiple methods of comparisons to be made either within

a certain group or across groups to allow the user to examine one plot and see how the

change affected more than one result value at the same time. The trend plotting section is

shown below in Figure 4.33.

Figure 4.33: Runway Detection – GUI Trend Plotting Section

4.3.3.4 Video Analysis Windows

The main method of evaluating the performance of the runway detection scheme

is working is by visual verification. This is done by examining several video output

windows during the course of a simulation. These windows show the user how well the

image pre-processing is working, how much of the image the scheme is actually using

(the confinement), how well the edge detection is working, the strength of the peaks in

the Hough space, and the actual placement of the lines resulting from the Hough peaks.

When a user runs a simulation, four video viewing windows and one Hough space

window appears. The first window to appear simply shows the input image. The second

window shows the confined image. This window is useful when perhaps the software is

‘losing’ one of the desired lines intermittently. This could be caused by the confined

image being too small, so this window allows the user to watch the particular detail that

is desired to be found and try to correlate it with an event in the window, like the detail

 119

moving out of the confined image area. If this happens, the user knows the confinement

window is too small and an adjustment is needed.

The third window to open up displays the confined image after all pre-processing

has been performed. What is seen here is the binary edge image after the morphological

opening has been performed. This is when the user can really begin to detect the strong

presence of the desired lines in the image. The desired lines are now fully filtered out

and are obviously the most prominent thing on the display. If this is not true, then some

adjustments may need to be made to one of several threshold values or the structuring

element in the morphological opening operator. If there is a problem with the Hough

transform in finding the wrong lines, this is the display where the root of the problem will

be seen.

The fourth window is simply the output image from the image reconstruction

block. This image is the confined image with the top and bottom sections rejoined to it

with the Hough lines drawn in an overlay fashion onto the original image. This is the

main output and this is where the visual verification of the functioning of the entire

scheme is evaluated. If the scheme is having a problem and not finding the correct

desired lines in the image, this display will show the line that it did find. Then, the user

must decide how to filter out the line or line artifacts that the Hough transform is seeing

that are obviously stronger than the line that is desired.

The fifth window is the Hough space display. This display shows all of the

sinusoids created by the Hough transform of the edge image shown in the third video

window. It is also easy to find the strongest Hough peaks by eye most of the time. This

is another place where the user can determine why the scheme is not performing the way

it is desired to. The Hough space can also help the user tune the Hough peaks

neighborhood and the Hough peaks threshold value by looking at the strength and

distribution of the sinusoids making up the peak. If the sinusoids do not form a direct

peak, but are spread out over many pixels, then the neighborhood would need to be made

larger to encompass the entire peak and the threshold would need to be made lower

 120

because the peak in this case would not be a peak, it would be a ‘hill’. The Hough space

can also show an emergence of a peak which is not desired and can allow the user to

determine exactly at what time this occurs. The user can then look at the other analysis

windows to determine why this is happening and to try to rectify the situation in some

manner, hopefully by a simple adjustment of the input parameters in the GUI. A

screenshot of the analysis window cluster is shown below in Figure 4.34.

Figure 4.34: Runway Detection – Analysis Window Cluster

 121

Chapter 5

Simulation Results and Discussion

5.1 Marker Detection and Tracking Results

The solutions to the Marker Detection and Tracking Problem can be evaluated in

a number of ways. For this research effort, the different solutions were put through a

series of tests which highlight their performance in computational workload,

repeatability, robustness, and overall performance. These tests were conducted using pre-

recorded videos created in the lab using the tanker and camera apparatus. The use of the

pre-recorded videos allow a more fair comparison to be made, ensuring that one method

is not encountering a video with more or less motion that the other method used. These

videos were of a 10 second duration and they were recorded at a frame rate of 15 frames

per second (FPS). By using the pre-recorded videos some computational workload is

reduced by not introducing the use of the frame grabber and camera. The use of the

frame grabber with Matlab® or Simulink® introduces a delay in the scheme because the

software is trying to access the hardware through a Windows® based system. If the

software were executed in any other platform than Windows®, it is thought that the frame

grabber performance would be much better. Thus, eliminating the frame grabber from

this simulation allowed a more accurate estimate of the computational workload to be

made. The results of these experiments will be discussed in detail in the following

sections: Section 5.1.1 covers the computational workload comparisons, Section 5.1.2

covers the estimation error comparisons, and Section 5.1.3 covers the robustness to noise

comparisons. On the following page, Table 5.1, illustrates the array of simulations that

was used for evaluation of the Marker Detection and Tracking Algorithm.

 122

Table 5.1: Marker Detection – Breakdown of Trials Used for Evaluation

Frame-by-frame comparison Matlab Profiler comparison
Trial 1 Trial 1
Trial 2 Trial 2
Trial 3 Trial 3
Trial 4 Trial 4

Computational Workload Comparison

5.1.1 Computational Workload Comparison via Timing Data

In order to evaluate how efficient each of the three methods of marker detection

are, comparisons were made between the methods using two different sets of data. The

first set of data was obtained by using the Matlab® Profiler. In using the profiler, a list of

each function that was used was given along with the total duration of time it took to

execute and the number of times it was called. A list of the code was also given with

times associated with each line number indicating how long the computer took to execute

that particular line and how many times that line was executed. This data was then used

to break down the code into sections that could be compared between each method. The

code was broken down into seven sections and these sections are detailed in the following

list:

1. Reading the AVI – when the computer reads the audio video interlace

(AVI) file into memory from the disk.

2. Pre-processing – self explanatory – consists of the pre-processing steps in

the code.

3. Image Scanning – fully scanning the image for white pixels.

Actual vs. Estimate position RMS position error Roll Angle Measurement
Trial 1 Trial 1 Trial 1
Trial 2 Trial 2 Trial 2
Trial 3 Trial 3 Trial 3
Trial 4 Trial 4 Trial 4

Roll Angle = 0 Roll Angle = 20 Roll Angle = 50
Vibration 1 Vibration 1 Vibration 1
Vibration 2 Vibration 2 Vibration 2
Vibration 3 Vibration 3 Vibration 3
Vibration 4 Vibration 4 Vibration 4

Estimation Error

Robustness to Vibration

 123

4. Scanning for Estimation – scanning the ‘search area’ determined from the

position estimation part of the code.

5. Centroid Calculation – calculation of the centroid of the markers in the

images.

6. Marker Definition – determining which markers belong to each respective

location on the plane, i.e. left wingtip, left stabilizer, etc.

7. Other Lines and Overhead – all other functions within the code such as

matrix manipulation, etc. Each of these lines amounted to less than 0.01

seconds each.

The table on the following page, Table 5.2, lists the time spent on each of the

previously described sections and compares them across the three different methods of

marker detection. The table also lists the number of times each section was executed for

this particular run. The data in this table was found while using the video file for Trial 1.

Table 5.2: Timing Comparison Between Marker Detection and Tracking Methods

Marker Detection/Tracking Modified Detection and Detection and
Speed Comparison using Detection Algorithm Tracking Algorithm Tracking Algorithm

Matlab Profiler (No Estimation) (Velocity Only) (Full Estimation)

Machine Vision Process Time (s) Executions Time (s) Executions Time (s) Executions
Reading the AVI 5.516 1 6.109 1 6.828 1
Pre-processing 4.422 150 4.779 150 5.34 150
Image Scanning 44.955 46,080,000 0.92 921,600 0.89 921,600
Scanning for Estimation N/A N/A 0.49 324,135 0.51 324,135
Centroid Calculation 0.4 15,328 0.15 24,870 0.22 24,870
Marker Definition 0.2 150 <0.01 3 <0.01 3
Other Lines and Overhead 0.867 N/A 4.376 N/A 1.79 N/A
Total Time 56.36 1 17.094 1 15.828 1

By looking at the previous table, several comparisons can be made. First, the

time taken by reading in the AVI file is large because the AVI file is approximately 150

MB and there are some differences between the times it took to do this task and these can

be attributed to the different background processes running in the Windows®

environment. While looking at the pre-processing times, the same deduction can be

made. There are slight differences here, but these must also be attributed to background

 124

processes. It is felt that since the pre-processing functions and the reading of the AVI

are exactly the same in each version of code, that the indifferences must be attributed to

an external source.

The largest difference can be seen in the image scanning section. In the Modified

K-Means Detection Algorithm, each image is fully scanned resulting in over 46 million

iterations for 150 frames of video. In contrast, the Advanced K-Means Detection and

Tracking Algorithms only perform this on 3 frames resulting in just under 1 million

iterations. The time is not any different on a per frame basis, but the fact that the

scanning of the remaining frames is replaced by scanning smaller ‘search areas’ in the

Advanced K-Means Detection and Tracking Algorithm reflect greatly on the increased

efficiency of this algorithm. It can also be seen that while the Image Scanning section in

the Modified K-Means Detection Algorithm took almost 45 seconds to complete, the two

processes that comprise the same function in the Advanced K-Means Detection and

Tracking Algorithm, Image Scanning and Scanning for Estimation, only take

approximately one and a half seconds. This is equivalent to a 3000% decrease in the time

spent on this section.

Te centroid calculation section of the code is not a computational intensive part

but there is an odd phenomenon shown in the table. The centroid calculation section in

the Modified K-Means Detection Algorithm was looped just over 15,000 times and took

0.40 seconds to execute while the same calculation was looped almost 25,000 times and

took around half the time. At this time, there is no explanation for this phenomenon, but

it is felt that this inconsistency is related to the background processes occurring at the

same time and causing this time difference to occur.

One last thing to note in the table is the difference in the time taken by the marker

definition section. This section is not a process that takes a lot of time but, the fact that it

was looped for every frame, 150 times, in the Modified K-Means Detection Algorithm

and in the Advanced K-Means Detection and Tracking Algorithm, it was only looped 3

times is very relevant. This relates back to the tracking part of the algorithm and shows

 125

that since the tracking part is actually tracking the markers and their names, then it only

needs to run during the first three frames, instead of every frame. This reflects in favor of

the efficiency of the Advanced K-Means Detection and Tracking Algorithm once again.

Finally, the total time taken by each algorithm is shown and it can be seen that there is a

significant difference, even in the Advanced K-Means Detection and Tracking Algorithm

with the velocity only estimation and the full estimation. Using these results, the

Advanced K-Means Detection and Tracking Algorithm is certainly the most efficient.

The second method used to evaluate the efficiency of the algorithms was by the

use of the tictoc command in Matlab®. This command was used to calculate the exact

time it took to process each frame of video data. This data was recorded and plotted for

each video trial that was ran. The frame processing time for each method was plotted for

every trial and compared. This can be seen on the following page in Figure 5.1. It can be

seen from this figure that the data is very consistent and there is a clear trend that

develops. It is very obvious that the Modified K-Means Detection Algorithm is the

slowest and this was also shown in Table 5.2. This algorithm averaged a 0.085 second

processing time for each frame of video. This is equivalent to a frame rate of

approximately 11 Hertz (Hz). There is, however, a drastic drop when looking at the

methods which use estimation to find the markers. The Advanced K-Means Detection

and Tracking Algorithm which uses velocity only for estimation is much faster,

averaging just under 0.05 seconds per frame of video which is equivalent to

approximately 20 Hz. The Advanced K-Means Detection and Tracking Algorithm which

uses velocity and acceleration for marker position estimation is even faster, averaging

less than 0.03 seconds per frame. This is an equivalent processing speed of

approximately 33 Hz. Something that should be noted again is that the inconsistencies

seen in the frame processing time data in Figure 5.1 reflect some background processes

that are interfering with the smooth operation of the code. In only one instance, in Trial 4

using the Full Estimation code, did the entire simulation run without one major

interruption from the operating system. This is reflected in Figure 5.1 in the lower right

hand plot for Trial 4. By looking at the plots below and referring to the table above, it is

 126

obvious that the best performing algorithm is the Advanced K-Means Detection and

Tracking Algorithm using the full estimation.

Figure 5.1: Frame Processing Time Comparison Between Methods for All Trials

In examining the plots above, a noticeable transient occurs that should be

examined closer. The transient is a direct result of performing a complete image scan

during the first three frames that the Advanced K-Means Detection and Tracking

Algorithm processes. This transient is also present in the Modified K-Means Detection

Algorithm but it is only present in Trial 2 and Trial 4. Since this transient is not shown

100% of the time and this code does not change the way it scans the image after 3 frames

of video like the codes using estimation do, it is thought that this is somehow related to

the initial allocation of memory for all of the images. If this is true, then it also means

that the large transient seen in the codes which use estimation is not created entirely by

the transition from full frame scanning to estimation but the memory allocation must also

have some effect on these codes as well. This transient is about 3 times the average value

 127

of a frame processing time for the code using the full estimation. This is shown below in

Figure 5.2. In this figure, the transient can be seen until the third frame, at that time, the

frame processing time drops to the normal value seen for the rest of simulation. In

support of the theory above, a noticeable difference can be seen in the transient before

frame two and after frame two. It is thought that the transient before frame two is due to

the memory allocation coupled with the full image scanning and the transient after frame

two is the pure difference between scanning the entire image and not scanning the entire

image. This is further supported by seeing that in frame two the frame processing time is

approximately the same value as the Modified K-Means Detection Algorithm frame

processing time. This is a direct reflection that in the first three frames, all of the

methods are performing the exact same task.

Figure 5.2: Transient Illustration from Frame Processing Speed Plot for Trial 4

It was mentioned in Chapter 4 that a point was made regarding the

accommodation of the loss or gain of markers during a refueling operation. This issue

was addressed with a separate software method utilizing a while loop and an unknown

number of markers instead of a for loop with a known number of markers. Similar to the

other methods, this method was also evaluated for its computational efficiency. Since the

tracking part of the algorithm was not implemented in the improved version of the

software, a fair comparison between those methods can not be performed. Therefore, the

 128

only fair comparison that can be made is between the original Modified K-Means

Clustering Algorithm and the improved version of the same software. This was

performed with the tictoc command in Matlab®. The comparison between these two

methods and the results from the methods using estimation is shown below in Figure 5.3.

The methods using estimation are shown only for reference.

Figure 5.3: Frame Processing Time Comparison Of New vs. Original Algorithm

In examining Figure 5.3, the addition of the method which compensates for the

‘Loss of Marker’ is evident with the magenta line. It can be determined from this plot

that the software which uses the while loop is slightly more efficient than the original

software using the set number of for loops. The average time per frame using the original

software is approximately 0.085 seconds while the average time per frame using the

software which accommodates for the loss of marker visibility is approximately 0.07

seconds. This reflects an approximate 18% decrease in the average time per frame. This

same speed increase evident here in the comparison of the two Modified K-Means

Clustering Algorithms would not be directly applied to the methods using estimation if

the same while loop is implemented in those versions. This is because the versions

 129

performing estimation only use this method of complete image scanning during the initial

three frames. Therefore, the 0.015 second increase in speed could only be applied to the

initial three frames and the frame processing time seen in Figure 5.2 and Figure 5.3

regarding the speed of the methods which use estimation would still be valid for the time

after frame 3.

In fact, the implementation of the while loop to accommodate for the loss of

marker visibility would be more difficult to couple with the estimation part of the code

due to the fact that the estimation constantly uses information from the last three frames.

Therefore, to accommodate the disappearance of a marker additional software would

have to be written to ensure that the position of the marker is still estimated and tracked

using either the last known inertial information or current inertial information from

another marker in the array. Also, the search area size would probably have to be

automatically increased if a marker was lost to ensure that it could be found again due to

the erroneous estimations that would be made regarding its location, if and when it

reappeared. Since the point of the loss of marker visibility was made after this research

was complete it was not within the scope of this effort to accommodate for the loss of

marker visibility in the more complicated method using estimation. The addition of the

code which accommodates for the loss of marker visibility was intended to demonstrate

that the assumption regarding the fixed number of markers could be removed but for it to

be applied globally to all versions of the K-Means Clustering Algorithm would require a

structural overhaul to deal with this dynamic situation.

5.1.2 Estimation Error

The estimation error comparison is an important part of the performance

evaluation of these software methods. If there were times during a simulation when a

method would have a false indication, this would be a great point to start evaluating each

method. Since this is not the case and each method does its job of detecting the markers

very well, one must find other avenues to measure their performance in this respect. The

first way is to examine the actual positions and the estimated positions. Figure 5.4, on

the following page, shows the estimated position vs. the actual position for all four trials

 130

using the full estimation software. The estimated positions are shown by the red line and

the actual positions are shown by the blue line. The green circles indicate the position of

the markers at the start of the video and the red circles indicate the position of the

markers at the end of the video. As indicated in the plots, the differences are very minute

and as a result of this, it is very difficult to indicate the performance in this manner since

comparisons are hard to make when the two lines being compared overlap so much.

Figure 5.4: Estimated vs. Actual Position for All Trials

Another representation of the estimation error can be seen in Figure 5.5, on the

following page. The estimated positions are shown by the red line and the actual

positions are shown by the blue line. This figure illustrates the actual position versus the

estimated position in terms of X and Y coordinates in separate plots. In this example, it

is easy to see how the estimated position constantly overshoots the actual position but, in

all cases, this overshoot is on the order of less than 2 pixels which is negligible. This plot

was taken from Trial 2 simulations where the movement was very erratic and

 131

unpredictable. Figure 5.6, also on the following page illustrates the same comparison

between the actual position versus the estimated position but, this plot is selected during

the section of the Trial 1 simulation where the tanker comes to a stop and changes

directions and the X and Y coordinates are plotted against each other. This plot

illustrates the constant overshooting problem very well.

Figure 5.5: Estimated vs. Actual Coordinates for Left Wingtip in Trial 3

 132

Figure 5.6: Estimated vs. Actual Position for Left Wingtip in Trial 1

Another example of the estimation error is shown on the following page in Figure

5.7. Figure 5.7 illustrates the distance error from the actual position to the estimated

position. It can be seen from these plots that the error is below 2 pixels for all markers in

almost every instance. This is a good indication that the estimation is working well but

the overshoot seen in earlier plots like Figure 5.5 and Figure 5.6 indicate that the estimate

is overshooting the actual position very frequently. The plots presented here were all

produced using the full estimation software but similar results can be seen in plots

produced using the velocity only estimation as well. This phenomenon will be explained

further in the RMS error plots on the following pages.

 133

Figure 5.7: Marker Position Error Calculated Using Absolute Distance

Although the plots above and on the previous pages are the result of a single

detection method (full estimation), similar plots were examined for the other methods as

well. The plots all indicated the same minute differences. As a result of this, the roll

angle measurement, which was calculated from the wingtip marker positions, was also

examined for ‘dropouts’ and since there were no false indications in the actual positions,

there were similarly no false indications on the roll angle measurement plots. These plots

can be seen on the following page in Figure 5.8.

 134

Figure 5.8: Roll Angle Measurement from Marker Detection Software for All Trials

By close examination of Figure 5.3, Figure 5.4, and Figure 5.7, it could be said

that all of the Marker Detection software works very well. In order to quantify this

indication, the root mean square (RMS) position error was calculated and compared. The

RMS position estimation error was calculated for the Advanced K-Means Detection and

Tracking Algorithms only. This is due to the fact that the Modified K-Means Detection

Algorithm does not perform an estimation and therefore, does not have an error to be

calculated. The RMS position error was calculated for all markers, for both methods, and

for all four simulation trials. Table 5.3, on the following page, shows the RMS errors

calculated from those trials.

 135

Table 5.3: RMS Position Estimation Error – Method Comparison for All Trials

Trial # Estimation Type Left Wing Left Stabilizer Rudder Right Stabilizer Right Wing
Velocity Only 0.8306 0.4556 0.3829 0.378 0.5478 1 Full Estimation 0.7341 0.4500 0.4725 0.4414 0.5621
Velocity Only 0.6145 0.6570 0.6486 0.6243 0.5398 2 Full Estimation 0.6479 0.7684 0.7643 0.7363 0.5759
Velocity Only 0.4310 0.4082 0.3546 0.4519 0.3590 3 Full Estimation 0.4987 0.3901 0.3546 0.5299 0.3804
Velocity Only 0.4937 0.5285 0.5434 0.4916 0.4762 4 Full Estimation 0.4887 0.5776 0.5969 0.5404 0.4660

In examining Table 5.3, two things will become obvious. The first thing is that

both of the software methods that perform estimation work very well. In fact, in the 40

RMS error calculations performed, not one value was greater than 1 pixel of RMS error.

This is also evident in Figure 5.9, below. Figure 5.9 is a plot which compares the results

from the table above and it is broken down into four plots, one for each trial.

Figure 5.9: RMS Position Estimation Error – Method Comparison for All Trials

 136

The second thing that will become obvious is that there is no clear winner in these

results. For one method to be declared better performing than the other, the RMS error

differences would have to be clear cut. In the trials outlined above, the method using

only velocity for estimation only has better RMS errors roughly 50% of the time and

vice-versa. In examining Figure 5.9 for Trial 1 for example, it can be seen that for the

left most two markers, the full estimation method outperforms the velocity only method.

But, in looking at the other three markers, it is clear that the velocity only method

outperforms the full estimation method. This type of split is again seen in Trial 3 and

Trial 4. In Trial 2, the clear winner is the velocity only estimation method.

There is some indication as to what exactly causes this split. In examining the

types of videos used in the trials there is only one clear difference that can be related

between the movement in the video and the results of the RMS errors and that is, in fact,

in Trial 2. Referring to Figure 5.4 on a previous page, the video for Trial 2 could be

described as quite erratic and very unpredictable. It is again, in this trial, that the RMS

error for the velocity only estimation method indicates that it outperforms the full

estimation method. Therefore, the theory is that when there is sufficient motion, the full

estimation using the acceleration calculation is actually over shooting the actual position

much more often and causing a larger RMS error. This relates to a fact stated earlier that

if the frame rate is sufficient enough to capture the motion, the full estimation would

work better in theory, but if either the frame rate was too slow or the motion too high

then the estimation would miss the actual positions more. It appears as though this is

exactly what is happening in Trial 2 and partially in the other trials as well. But, even

under these conditions, both methods still perform very well.

5.1.3 Robustness to Noise

A robustness to noise study was performed to assess the performance of the

software to a noise source such as vibrations. Vibrations can not be considered a

complete and exhaustive study of image noise but within the scope of this research,

vibrations were determined to be suitable for the robustness to noise study. Vibrations

were chosen because they are fairly easy to create and they could be measured and

 137

quantified with equipment already on hand. Vibrations are also a very practical

disturbance that may be encountered in a machine vision situation such as this one in an

UAV.

In order to create the vibrations, a motor with an off center weight was attached to

the top of the camera tripod. The motor was then connected to a variable power supply

which allowed varying speeds of the motor. A Crossbow IMU was used to measure the

vibrations applied to the camera and the data was recorded for analysis. This entire setup

was described in detail in Section 4.2.1.5. Once determinations were made as to the

exact desired vibration based on the visual movement of the camera, the related voltages

being applied to the vibration motor were recorded so that the vibration could be

recreated. Once the setup was complete, the desired vibrations were recorded and

calculations were made to quantify the different vibrations. Once the vibrations were

recorded, the accelerations in all three axis’ were used in power spectral density (PSD)

calculations. The PSD data allowed the frequency and amplitude of the vibrations to be

determined. These values were used to quantify the vibrations used in the robustness

tests. The information gathered from the PSD plots is shown in Table 5.4, below.

Table 5.4: Test Conditions Used for Robustness to Vibration Tests

Condition Primary Frequency Amplitude Harmonics
 (Hertz) (dB/Hertz) (Hertz)

No Motion 39.4 2.77E-06 N/A
Vibration 1 11.06 0.005248 22.12, 33.11, 66.58
Vibration 2 14.21 0.01204 28.42, 64.01
Vibration 3 16.63 0.01378 8.31, 24.98, 33.22, 41.78, 49.88, 58.26, 66.54

By looking at the PSD plots, shown on the following page in Figure 5.10, it was

easy to determine the primary frequency of vibration and all of the related harmonics.

Interestingly enough, some harmonics were not present in some trials because of the

damping effect of the legs of the tripod. Another fact gathered by using the PSD plots

was that with the tripod totally still, there was a large peak at 39.4 Hz in the X-direction

and a second smaller peak in the Y-direction. This could only be attributed to

measurement noise created inside the IMU itself. The 39.4 Hz noise even appeared on

 138

the PSD plot for Vibration Trial #2 but was not noticeable in the other trials. The PSD

plots were extremely useful in this case to help to verify that each vibration trial used was

actually stronger than the previous one but not only amplitude information was gained.

The frequency information was an added bonus and allowed a further delineation to be

created between the vibration trials.

Figure 5.10: Power Spectral Density of Vibration Conditions

The vibration noise that was created for this study was most likely higher in

frequency that would be encountered in a real situation. The amplitude of the vibrations,

however, cause some great excitation in the measurements taken by the software which

was the desired end result of the application of the vibrations to the camera mount. The

fact that the vibrations also had numerous harmonics in different directions which would

have intermittent waves of canceling each other out and opposing each other allowed a

much more intense screening of the robustness of the software to take place than would

have been achieved with a constant vibration only. The data taken by the software to

 139

analyze the robustness was based solely on the roll angle measurement. In these tests, the

roll angle was set to three specific values for each vibration trial. For each of these 12

different sets of conditions, the roll angle was measured 60 times, once per second. Once

this was complete the RMS error of the roll angle measurements for all of the conditions

was calculated and compared. The table outlining the RMS errors is shown below in

Table 5.5.

Table 5.5: RMS Error of Roll Angle Measurements for Vibration Tests

Condition
No Motion 0.004941 0.003679 0.01315
Vibration 1 0.1063 0.056434 0.089607
Vibration 2 0.1971 0.2035 0.19598
Vibration 3 0.4215 0.2693 0.3303

RMS Error (deg)
0Φ = ° 20Φ = ° 50Φ = °

As can be seen from the table, the roll angle measurement RMS error did increase

as the vibration amplitude and frequency increased and there were no worrisome

differences between the different roll angles for each vibration trial.. The RMS error did

not, however, increase to an undesirable amount. The vibration presented to the camera

in Vibration Trial #3 was certainly more than could be expected in a real situation and the

software appeared to handle it without duress. Figure 5.11, on the following page, is a

plot of the RMS errors for each of the vibration trials. The data appears fairly consistent

with the exception of Vibration Trial #3. This trial exhibited an undue amount of

vibrations to the camera which attributed to the slightly uncorrelated results.

 140

Figure 5.11: RMS Error of Roll Angle Measurement for Vibration Trials

5.2 Runway Detection Results

Normally, the assessment of the performance of the Runway Detection scheme

would not be difficult but, because the video used in the Runway Detection scheme was

taken from an aircraft that was not yet instrumented, there were no other data sets, such

as GPS, associated with the flight that could be used for comparison. As a result of this,

the performance evaluation is quite limited in the scope of tests that can be performed.

This limitation does not exclude visual means of evaluation however, and that constitutes

the majority of the performance evaluation of this scheme. The visual means of

evaluation is comprised of actually looking at the output of the scheme and verifying that

it is working and this is covered in Section 5.2.2. One other aspect of the scheme that

was explored was the computational workload. This is always an important aspect of

software when dealing with MV applications. Therefore, a full computational workload

analysis was performed and it is detailed in Section 5.2.1.

It should be noted, however, that with the availability of flight data associated

with the flight videos, the performance metrics would be easily defined. If flight data

was available, the visual means of validation and the use of the computational workload

calculations would still be used but, there would be additional things to consider as well.

 141

First, with the availability GPS data for the flight, a small addendum to the Runway

Detection scheme could be made that could output the GPS coordinates of the runway

using the known position of the aircraft. This could then be used as a judge of the

performance of the Runway Detection scheme. In order for this comparison between the

estimated runway position and the actual runway position to be made, the actual runway

position would have to be known. The actual position could be determined by using a

static GPS unit and mapping the runway manually. This data could then be extrapolated

and compared to the estimated position. Secondly, if a directional control system such as

a heading hold controller could be implemented, the algorithm could actually be tested in

it runway following ability and with this kind of experiment, the tracking error could be

calculated which in this case, would be the best gauge of performance possible. Table

5.6, below, illustrates a breakdown of the tests performed on the runway detection

scheme.

Table 5.6: Runway Detection – Breakdown of Trials Used for Evaluation

Computational Workload Comparison Visual Examination
Simulink Profiler comparison

Trial 1 Trial 1
Trial 2 Trial 2

5.2.1 Computational Workload Analysis

In order to evaluate the computational workload of the scheme, the Simulink

Profiler was used. The profiler was able to break down the time spent on each block in

the scheme and these blocks and their times were assembled in Table 5.7, on the

following page. The description of the blocks can be found in Section 4.3.2, therefore no

additional explanation will be given here.

 142

Table 5.7: Timing Analysis of the Runway Detection Scheme

Speed Comparison using Runway Detection
Simulink Profiler No Video Output

Machine Vision Process Time (s) Executions
Model Initialize 0.3906 1
Reading the AVI 1.6562 150
Pre-processing 3.4374 150
Hough Transform 2.4218 150
Rho/Theta Correction 0.09375 150
Image Regeneration 0.3125 150
Other Lines and Overhead 0.2658 N/A
Total Time 7.9062 1

The Runway Detection tests were performed using videos that were 5 seconds in

duration and recorded at a frame rate of 30 FPS. This combination creates a video that is

150 frames long and this is reflected in the timing analysis data in the above table in the

number of executions column. Since there were only 150 frames, there were only 150

executions of each block.

The timing analysis was broken down into the major subsystems and the model

initialization function. It is easy to see that the pre-processing subsystem takes the most

time compared to all of the other subsystems. It accounts for about 43% of the

computational workload. This reflects on the importance of a bare minimum pre-

processing scheme. The Hough transform is the next most computational intensive

subsystem. Surprising is the fact that it did not exceed the time spent in the pre-

processing subsystem as the number of calculations the Hough transform must perform

for every frame is enormous.. At 2.4218 seconds, the Hough transform comprises 30%

of the computational workload. The last large time consumer in the list is the reading of

the AVI file function. This function, like in the Marker Detection software is another of

the computationally intensive functions. It consumed 1.6562 seconds of the 7.9062

second total time, which amounts to about 21% of the total time. These two subsystems

and one function amount for 94% of the total computational time required by this

scheme. The rest of the time was spent on other smaller functions which individually

comprise less than 0.5 seconds each but they amount to the other 6% of computational

workload exhibited by the scheme. Since there are many other blocks in the scheme, in

 143

fact, almost 10 times the number of blocks that comprise 94% of the computational time,

the time spent on all of these blocks is negligible.

In order to have a fair estimation of the real computational frame rate, it is

necessary to discard the time taken by the model initialization function. The model

initialization function only happens once in the simulation but for a frame by frame look

at the computational time, it needs to be removed because it does not happen during

frame processing, only before. With discarding this value, the ‘total time’ of processing

stands at 7.5156 seconds. Using the total number of frames processed, which is 150,

results in a frame rate of approximately 20 Hz. This frame rate is probably adequate to

be used in an UAV for navigation and since the scheme was not written in a real-time

environment the possibility exists for the speed of this scheme to be increased which

could yield even better performance for a real-time application.

5.2.2 Performance Analysis

As mentioned before, the Runway Detection scheme is very difficult to analyze

without the availability of video taken from an instrumented aircraft. Therefore, most of

the performance evaluation is based on visual examination of the output only. The

following figures show examples of the output of the Runway Detection scheme. The

colored lines on the images indicate the position that the scheme has detected there to be

a strong presence of a straight line. The strong presence of a straight line relates to the

sides of the runway and the center line of the runway. It is evident in the figures

presented below that the scheme is working to the best of its ability and it performing as

it should, detecting the three most prominent lines on the image. Figures 5.12, 5.13, 5.14,

and 5.15 are examples taken from real flight video and are presented for performance

evaluation purposes. These figures an be found on the following pages.

 144

Figure 5.12: Performance Evaluation Image #1 for the Runway Detection Scheme

Figure 5.13: Performance Evaluation Image #2 for the Runway Detection Scheme

 145

Figure 5.14: Performance Evaluation Image #3 for the Runway Detection Scheme

These figures show an almost unflawed performance in detecting the lines

comprising the runway. Ultimately, an UAV with a control system would have no

problem following this runway with the accuracy given by the Runway Detection scheme

as long as the scheme was able to execute fast enough to accommodate the speed of the

aircraft. The accuracy of this scheme is not where a failure would likely occur, it is in the

speed of execution where the real problem with implementation lies. Figure 5.12

represents a perfect frame of detection. Figure 5.13, 5.14, and 5.15 all have some slight

misjudgment of the actual edge of the runway or the center line. But, it is easy to see that

the trajectory needed to follow this runway could easily be discerned from images

displaying this type of accuracy.

 146

Figure 5.15: Performance Evaluation Image #4 for the Runway Detection Scheme

 147

Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The purpose of this research effort was to investigate the feasibility of MV

applications in an UAV. These applications consisted of marker detection on a tanker

aircraft for the purposes of AAR and runway detection for the purposes of following the

trajectory of a runway, road, or pipeline. Through the research presented here, the

objectives regarding these MV problems were satisfied. This research has shown that

this type of MV application is feasible and it is assured that this type of technology will

be applied in the future. The possibilities that extend from an UAV having these abilities

are numerous and they will be invaluable to the future of military aviation.

The Marker Detection and Tracking software has been shown to work very well

under numerous conditions simulated in the lab environment. Taking into account the

data from all of the experiments, the Advanced K-Means Detection and Tracking

software would be the clear favorite. This software continuously yielded a faster

computational time than the other methods although the RMS errors were a toss up

between the two methods using estimation. The software could be accelerated even

further while also gaining robustness to the loss of marker visibility situation if the K-

Means Clustering Algorithm using the while loop was implemented along with the

tracking algorithm. This was detailed earlier in an effort to address the problem of loss of

visibility of markers during a simulation. Regardless, this method showed solid

performance in every aspect and would be the choice for further research in this area.

In every case shown, all of the software versions were able to continuously find

the location of the markers on the aircraft. In the cases shown where estimation was

involved, the estimation error was very negligible, with RMS errors being less than 1

pixel. This shows that a marker position estimation scheme could be relied upon under

much more adverse conditions. An attempt at simulating these conditions was made by

 148

using vibrations to excite the motion of the camera. In these cases, the repeatability of

the roll angle measurements was proven to be acceptable even under the most violent

vibration activity. This was proven by showing that the RMS error of the roll angle

measurement was consistently less than 1 degree. This is not an indication that the MV

software could be used for roll angle measurement but it was an indication to the

robustness of the marker detection algorithm. These tests indicated that the algorithm

could still provide acceptable results using blurred markers caused by vibrations which

could possibly be a concern for an small UAV. The computational loads exhibited by the

marker detection software indicate that it could be used in a real-time environment. This

fact only strengthens the claim that this is, in fact, a feasible operation. The frame rate

achieved by the Marker Detection and Tracking software using full estimation was

greater than 30 Hz. It is currently thought that a computational speed of 20 Hz or more is

acceptable to ensure operational effectiveness within a UAV platform. Therefore, based

on the information available about the performance of this algorithm such as the

computational loads and the estimation errors, it is thought that it could be applied in an

UAV. Furthermore, if the current growth rate of high speed, efficient, lightweight,

compact computers and research efforts such as this one continues, the problem of AAR

could very well be addressed in a real-life application in this decade.

The Runway Detection scheme was a difficult problem to address and the analysis

of the results proved to be even more difficult. The concept of the use of runway

detection for things such as automatic landing or simply following a trajectory is a very

feasible idea as proven by this research effort. This effort proved that runway detection

could be used in a real-life application because of the speed and effectiveness of the

scheme presented here. This scheme exhibited almost perfect runway detections at a

frame rate of 20 Hz. This frame rate is more than acceptable to be applied in an UAV.

Similar to the Marker Detection and Tracking software, this runway detection scheme

exhibits the capability to be deployed in this decade. Its use could also prove invaluable

in the areas of cost and safety when it is applied to the patrol of national borders. With

the current global outlook, the need for such a machine is certainly in the spotlight and

the uses for said machine will only continue to grow.

 149

In both algorithms and/or schemes there are some aspects that are not very

desirable. There are serious issues regarding the performance in real-time that are of

concern. At this time, it is not thought that these algorithms could be used in a real-time

system. Although they execute fast enough to do so, the applicability to a real-time

system is not very feasible. This is due to the fact that the execution times presented here

are from simulations produced on a very fast ground-based computer. A computer of

approximately one-third the power is feasible in a real-time system using current

methodologies of incorporating computer systems into UAVs. Therefore, these

algorithms will certainly need further evaluation to determine if they could ever be

applied in a real-time system and possibly in a decade, these methods may be able to be

used in a much faster real-time system but, with the equipment available today this proof

of concept is simply that and no real-time applicability can be seen in the near future for

these algorithms.

6.2 Recommendations

The future of the Marker Detection and Tracking software is certainly bright.

Although current military interests are in the areas of passive markers, this software could

easily be adapted to detect passive markers of any type with the correct hardware. The

current recommendations for this software is to conduct further testing in the application

of this software to pose estimation. The availability of a fully instrumented six degree of

freedom robotic arm which could hold a simulated tanker aircraft would certainly be a

step in the right direction. With this robotic arm, real measurements could be made as to

the accuracy of this detection scheme. On a smaller level relating to the software itself,

more robustness could be added to the software to make it more real-life friendly.

Currently, the ability to lose sight of a marker will cause a fatal error but some additional

software could be written to contend with this issue. In addition, the use of a color

camera could be of some use in detecting passive markers, depending on the type.

The future idea the of research with the Runway Detection scheme is to be able to

use the lines extracted from the image to define a trajectory for an aircraft to follow. This

would be relatively easy since the sidelines of the runway already define the trajectory

 150

that is desired. All that is needed is to be able to pick out the lines. Of course, this is

where the Runway Detection scheme comes in. Once the scheme has performed its job,

the output is the end points, defined in pixels, of two lines representing the sides of the

runway. Once this is complete, all that is necessary is to calculate a desired heading.

Using the desired heading, a lateral-directional tracking controller could be developed

that would minimize the error between the desired heading and the current heading.

Once this is complete, some type of ground detection would be necessary to keep the

UAV from hitting the ground. This ground detection would not be necessary if an

altitude hold was employed using the global positioning system (GPS). Although, for the

simple altitude hold to work reliably, the route to be followed would have to be mapped

in order to calculate a reasonable altitude in which to fly such that a collision would not

occur. This is a very feasible research idea that could be attempted with current

equipment in the WVU UAV lab. This would make the Runway Detection research and

its application to other things very attractive to many agencies in many countries.

 151

References

1. “Machine Vision” Wikipedia, The Free Encyclopedia. 7 Jan 2006, 13:24.
12 Jan 2006, 03:28 http://en.wikipedia.org/w/index.php?
title=Machine_vision&oldid=34237195.

2. “The History Of Computing” Idea Finder. 13 Jan 2006, 22:59

http://www.ideafinder.com/features/smallstep/computing.htm

3. McGarry, E. J. “An Outlook for Machine Vision” Machine Vision Online.

13 Jan 2006, 22:59 http://www.machinevisiononline.org/public/articles/
articlesdetails.cfm?id=1134

4. Chazelle, Bernard. “The Computational Geometry Impact Task Force

Report” Advances in Discrete and Computational Geometry 223 (1999):
407-463.

5. Deshmukh, K.S., Shinde, G.N. “An Adaptive Color Image Segmentation”

Electronic Letters on Computer Vision and Image Analysis 5.4 (2005):
12-23.

6. Rezaei, Mehdi Home page. http://www.cs.tut.fi/%7Erezaei/

Medical%20Image%20Segmentation.pdf

7. Ng, A., Jordan, M., Weiss, Y. “On spectral clustering: Analysis and an
algorithm” Proceedings of the 2001 Advances in Neural Information
Processing Systems 14 (2001).

8. Bach, F.R., Jordan, M.I. “Learning Spectral Clustering” Proceedings of

the 2003 Advances in Neural Information Processing Systems 16 (2003).

9. Chen, A., Donovan, G, Sowmya, A, Trinder, J. “Inductive Clustering:

automating low-level segmentation in high resolution images”
Proceedings of the 2002 ICML, Machine Learning in Conputer Vision
Workshop (2002).

10. Gibou, F. and Fedkiw, R., "A Fast Hybrid k-Means Level Set Algorithm

for Segmentation" 4th Annual Hawaii International Conference on
Statistics and Mathematics (2005): 281-291.

11. Eisenstein, J., Ghandeharizadeh, S., Huang, L., Shahabi, C., Shanbhag, G.,

Zimmermann, R. “Analysis of Clustering Techniques to Detect Hand
Signs” Proceedings of the International Symposium on Intelligent
Multimedia, Video and Speech Processing (2001).

 152

12. Kuo, Chung-Feng, Shih, Chung-Yang, Lee, Jiunn-Yih “Repeat Pattern
Segmentation of Printed Fabrics by Hough Transform Method” Textile
Research Journal, Vol. 75, No. 11 (2005): 779-783.

13. Bab-Hadiashar, Alireza and Suter, David “Motion Segmentation Using

Robust Statistics and Spatial Continuity” International Workshop on
Image Analysis and Information Fusion IAIF ’97 (1997)

14. Deselaers, Thomas, Keysers, Daniel, Ney, Hermann “Clustering visually

similar images to improve image search engines” Diploma Thesis, Chair
of Computer Science VI, RWTH Aachen University, 2003.

15. Yang, GZ Home page. “Edge Based Segmentation and Active Contours”

http://www.doc.ic.ac.uk/~gzy/teaching/vision/vision-s03.pdf

16. Marek Brejl, Milan Sonka. "Automated Initialization and Automated

Design of Border Detection Criteria in Edge-Based Image Segmentation"
Proceedings of the 4th IEEE Southwest Symposium on Image Analysis
and Interpretation (2000): 25.

17. Jiang, Ming Home page. “Edge Based Segmentation” http://iria.math.pku

.edu.cn/~jiangm/courses/dip/html/node122.html

18. Pichumani, Ramani Home page. “Boundary-Based Segmentation” http://
homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RAMANI1/node
24.html#SECTION00315000000000000000

19. Yang, GZ Home page. “Hough Transform” http://www.doc.ic.ac.uk/~gzy

/teaching/vision/vision-s03.pdf

20. Jiang, Ming Home page. “Hough Transform” http://iria.math.pku.edu.cn
/~jiangm/courses/dip/html/node132.html

21. Ray, Sid Home page. “Image Segmentation” http://www.csse.monash.

edu.au/~sid/teach/CSE3314/notes10.pdf

22. Yang, GZ Home page. “Region Based Segmentation” http://www.doc.ic.
ac.uk/~gzy/teaching/vision/vision-s04.pdf

23. Kothe, Ullrich “Primary Image Segmentation” DAGM-Symposium

(1995): 554-561.

24. McClain, T. W. “Coordinated Control of Unmanned Air Vehicles” Air
Vehicles Directorate, Wright-Patterson Air Force Base, Ohio, Summer
1999.

 153

25. Tandale, Monish D., Bowers, Roshawn, and Valasek, John, “Robust
Trajectory Tracking Controller for Vision Based Probe and Drogue
Autonomous Aerial Refueling”, AIAA-2005-5868, Proceedings of the
AIAA Guidance, Navigation, and Control Conference, San Francisco, CA,
15-18 August 2005.

26. Valasek, John, Kimmett, Jennifer, Junkins, John L. “Autonomous Aerial

Refueling Utilizing A Vision Based Navigation System”, Journal of
Guidance, Control, and Dynamics, Volume 28, Number 5, pp. 979-989,
September-October 2005.

27. Campa, G., Mammarella, M., Napolitano, M.R., Fravolini, M.L., Pollini,

L. "Addressing Pose Estimation Issues for Machine Vision based UAV
Autonomous Aerial Refueling", Submitted for publication to IEEE
Transaction On Systems, Man and Cybernetics, Accepted May 2005.

28. Dell’Aquila, R.V., Campa, G., Napolitano, M.R., Mammarella, M. “Real-

Time Machine-Vision-Based Position Sensing System for UAV Aerial
Refueling”, Submitted to the SPRINGER, Journal of Real-Time Image
Processing, May 2006.

29. Campa, G., Napolitano, M.R., Vendra, Soujanya, Fravolini, M.L. “A

Simulation Environment for Machine Vision based Aerial Refueling for
UAVs”, Submitted to the IEEE Transaction On Aerospace and Electronic
Systems, April 2006.

30. Fravolini, M.L., Campa, G., Napolitano, M.R., Ficola, A. “Evaluation of

Machine Vision Algorithms for Autonomous Aerial Refueling for
Unmanned Aerial Vehicles”, Submitted to the AIAA Journal of Aerospace
Computing, Information and Communication, April 2005.

31. Vendra, S., Campa, G., Napolitano, M.R., Mammarella, M., Fravolini,

M.L. “Addressing Corner Detection Issues for Machine Vision based
UAV Aerial Refueling”, Submitted to the Journal of Machine Vision
Application, October 2005.

32. Nalepka, Joseph P., Hinchman, Jacob L. “Aerial Refueling for Unmanned

Air Vehicles”, Air Force Research Laboratory.

33. Pollini, L., Mati, R., Innocenti, M., Campa, G., Napolitano, M.R. “A
Synthetic Environment for Simulation of Vision-Based Formation Flight”
Proceedings of the AIAA Modeling and Simulation Technologies
Conference, Austin, TX, August 2003.

 154

34. Seanor, B., Campa, G., Gu, Y., Napolitano, M.R., Rowe, L., Perhinschi,
M. “Formation Flight Test Results for UAV Research Aircraft Models”,
Proceedings of the 2004 AIAA Intelligent Systems Technology
Conference, Chicago, IL, September 2004.

35. Sattigeri, Ramachandra, Calise, Anthony J. “AnAdaptive Approach to

Vision-Based Formation Control”, Proceedings of the 2003 AIAA
Guidance, Navigation, and Control Conference and Exhibit, Austin TX,
August 2003.

36. Proctor, Allison, Johnson, Eric N. “Vision-Only Aircraft Flight Control

Methods and Test Results”, Proceedings of the 2004 AIAA Guidance,
Navigation, and Control Conference and Exhibit, Providence, RI, August
2004.

37. Frew, Eric, et al. “Vision-Based Road-Following Using a Small

Autonomous Aircraft” Proceedings of the 2004 IEEE Aerospace
Conference (2004).

38. Frew, Eric, Langelaan, Jack, Joo, Sungmoon “Adaptive Receding Horizon

Control for Vision-Based Navigation of Small Unmanned Aircraft”, To be
presented at the 2006 American Control Conference, Minneapolis, MN,
June 2006.

39. Frew, Eric “Comparison of Lateral Controllers for Following Linear

Structures Using Computer Vision”, To be presented at the 2006
American Control Conference, Minneapolis, MN, June 2006.

40. Cornall, T. “A Low Computation Method to Determine Horizon Angle

from Video” Monash University, Department of Electrical and Computer
Systems, Technical Report MECSE-4-2004.

41. Ettinger, S., Mechyba, M.C., Ifju, P.G., Wasnak, M “Vision-Guided Flight

Stability and Control for Micro Air Vehicles” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(2002).

42. Green, W., Sevcik, K.,Oh, P., “A Competition to Identify Key Challenges

for Unmanned Aerial Robots in Near-Earth Environments” Proceedings of
the IEEE International Conference on Advanced Robotics (2005).

43. He, Zhihai, Iyer, Ram Venkataraman, Chandler, Phillip R. “Vision-Based

UAV Flight Control and Obstacle Avoidance”, To be presented at the
2006 American Control Conference, Minneapolis, MN, June 2006.

 155

44. Star SAFIRETM HD” FLIR Systems. http://www.flir.com/imaging/
Airborne/Products/StarSAFIREHD.aspx

45. Kamath, C., Sengupta, S., Poland, D., Futterman, J.. “Use of Machine

Vision Techniques to Detect Human Settlements in Satellite Images”
Proceedings of the International Society of Optical Engineering 5014
(2003): 270-280.

46. Weixing Wang. "An Edge Based Segmentation Algorithm for Rock

Fracture Tracing" Proceedings of the International Conference on
Computer Graphics, Imaging and Visualization (2005): 43-48.

47. Gachter, S. “Results on Range Image Segmentation for Service Robots”

Ecole Polytechnique Federale de Lausanne, Laboratoire de Systemes
Autonomes, Technical Report EPFL-LSA-2005-01.

48. Muniz, R., Rivera, F. “Segmentation of Hyperspectral Images Uning the

Hough Transform” Poster. http://www.censsis.neu.edu/Education/
StudentResearch/2001/posters/rivera_f!.pdf

49. Sippel, M., Traxler, M. “Packagers Choose Machine Vision Quality

Inspection to Reduce Waste and Boost ROI” Automation.com. 2004. 13
Jan 2006, 23:01 http://www.automation.com/sitepages/pid1632.php

50. Toh, Teck Soon “Multiple Target Tracking Using Computer-Aided

Vision”, Masters Thesis, West Virginia University, May 1991.

51. “Machine Vision and Industrial Inspection” Fairchild Imaging.
http://www.fairchildimaging.com/main/machinevision.htm

52. Ramos, V., Muge, F. “Image Colour Segmentation by Genetic

Algorithms” Proceedings of the 11th Portuguese Conference on Pattern
Recognition (2000).

53. Ferreira, S., Garin, V., Gosselin, B. “A Text Detection Technique Applied

in the Framework of a Mobile Camera-Based Application” Proceedings of
Camera-based Document Analysis and Recognition (2005): 133-139.

54. Everingham, M.R., Thomas, B.T., Troscianko, T., Easty, D. “Neural-

network virtual reality mobility air for the severely visually impaired”
Proceedings of the 2nd European Conference on Disability, Virtual Reality
and Associated Technologies (1998): 183-192.

55. Godbout, Andrew “Segmentation Methods Applicable to Segmenting The

Moving Organ in a CT Scan” Saint Mary’s University 2003.

 156

56. Dow, Mark “An Edge Based Segmentation Method” International Society
of Magnetic Resonance in Medicine (2004): Poster.

57. Texmol, A., Sari-Sarraf, H., Mirta, S., Long, R., Gururajan, A.

“Customized Hough Transform for Robust Segmentation of Cervical
Vertebrae from X-Ray Images” Fifth IEEE Southwest Symposium on
Image Analysis and Interpretation (2002).

58. Geng, W., et al. “Quantitative classification and natural clustering of C.

elegans behavioral patterns” Genetics 165 (2003): 1117-1123.

59. Steward, B.L. and Tian, L.F. “Real-time machine vision weed sensing”
ASAE Paper No 98-7006. St. Joseph, MI: ASAE.

60. “Video and Image Processing Blockset” The Mathworks

http://www.mathworks.com/access/helpdesk/help/toolbox/vipblks/

61. “Gamma correction" Wikipedia, The Free Encyclopedia. 15 May 2006,
17:48 UTC. 18 May 2006, 05:08 http://en.wikipedia.org/w/index.php?
title=Gamma_correction&oldid=53351099>.

62. Basu, Saurav Home page “Gamma Correction” .http://www.cs.utah.edu/

~sbasu/ipprojects /project1 /index.html

63. “Image Acquisiton Toolbox” The Mathworks
http://www.mathworks.com/access/helpdesk/help/toolbox/imaq/

64. Class Notes EE 465 - Intro to Image Processing. West Virginia

University. Professor Dr. Xin Li Spring 2004.

65. Fisher, R., Perkins, S., Walker, A., Wolfart, E. “Sobel Edge Detection”
Hypermedia Image Processing Reference http://homepages.inf.ed.ac.uk
/rbf/HIPR2/sobel.htm

66. “Standard Simulink Blockset” The Mathworks

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/

 157

Appendix A

MATLAB Code

For

 Matlab Based Modified K-Means Clustering Algorithm

marker_detect.m

 158

% marker_detect.m
% Machine Vision Image Processing
% Larry Rowe
% Fall 2004

%%%
%%%%%%
%%%%% This version of software performs NO ESTIMATION of the position
%%%%%
%%%
%%%%%%

clear all;
clc;
close all;
imaqreset;

video = aviread('..\VIDEOS\MV1.avi');

level=0.7; % Threshold Level
T=15; %Pixel filter threshold level
index = 0;

for i=1:150
 index=index+1;
 tic; % Begin counting frame time;

 % Get single frame to work with
 frame1=frame2im(video(i));

 % Convert to binary and threshold
 frame2=im2bw(frame1,level);

 clear targetindex;

 % FIND TARGET PIXELS
 i=1;j=1;k=0;
 for i=1:640
 for j=1:480
 if frame2(j,i)==1
 k=k+1;
 targetindex(k,:)=[i j];
 end
 end
 end

 % TARGET DETERMINATION AND LOCATION CALCULATION
 clear targetindex1;
 targetindex1=targetindex;

 % FIND LIST OF TARGET 1 PIXELS
 k=0;q=0;
 X1=targetindex1(1,1);
 Y1=targetindex1(1,2);
 Xrange_max1=X1+T;
 Yrange_min1=Y1-T;
 Yrange_max1=Y1+T;

 159

 listsize1=size(targetindex1);
 clear target1;
 for k = 1:listsize1(1)
 if targetindex1(k,1) <= Xrange_max1 && targetindex1(k,1) ~= 0
 if targetindex1(k,2)>= Yrange_min1 && targetindex1(k,2)<=
Yrange_max1
 q=q+1;
 target1(q,1:2) =targetindex1(k,:);
 targetindex1(k,:)=0;
 end
 end
 end

 varsize1=size(target1);
 clear targetindex2;
 j=0;
 for k = 1:listsize1(1)
 if targetindex1(k,1) ~= 0
 j=j+1;
 targetindex2(j,1:2)=targetindex1(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 1
 target1sumX=0;target1sumY=0;
 for h=1:varsize1(1)
 target1sumX=target1(h,1)+target1sumX;
 target1sumY=target1(h,2)+target1sumY;
 end
 target1avgX=target1sumX/varsize1(1);
 target1avgY=target1sumY/varsize1(1);

 % FIND LIST OF TARGET 2 PIXELS
 k=0;q=0;
 X2=targetindex2(1,1);
 Y2=targetindex2(1,2);
 Xrange_max2=X2+T;
 Yrange_min2=Y2-T;
 Yrange_max2=Y2+T;
 listsize2=size(targetindex2);
 clear target2;
 for k = 1:listsize2(1)
 if targetindex2(k,1) <= Xrange_max2 && targetindex2(k,1) ~= 0
 if targetindex2(k,2)>= Yrange_min2 && targetindex2(k,2)<=
Yrange_max2
 q=q+1;
 target2(q,1:2)=targetindex2(k,:);
 targetindex2(k,:)=0;
 end
 end
 end

 varsize2=size(target2);
 clear targetindex3;
 j=0;
 for k = 1:listsize2(1)
 if targetindex2(k,1) ~= 0

 160

 j=j+1;
 targetindex3(j,1:2)=targetindex2(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 2
 target2sumX=0;target2sumY=0;
 for h=1:varsize2(1)
 target2sumX=target2(h,1)+target2sumX;
 target2sumY=target2(h,2)+target2sumY;
 end
 target2avgX=target2sumX/varsize2(1);
 target2avgY=target2sumY/varsize2(1);

 % FIND LIST OF TARGET 3 PIXELS
 k=0;q=0;
 X3=targetindex3(1,1);
 Y3=targetindex3(1,2);
 Xrange_max3=X3+T;
 Yrange_min3=Y3-T;
 Yrange_max3=Y3+T;
 listsize3=size(targetindex3);
 clear target3;
 for k = 1:listsize3(1)
 if targetindex3(k,1) <= Xrange_max3 && targetindex3(k,1) ~= 0
 if targetindex3(k,2)>= Yrange_min3 && targetindex3(k,2)<=
Yrange_max3
 q=q+1;
 target3(q,1:2)=targetindex3(k,:);
 targetindex3(k,:)=0;
 end
 end
 end

 varsize3=size(target3);
 clear targetindex4;
 j=0;
 for k = 1:listsize3(1)
 if targetindex3(k,1) ~= 0
 j=j+1;
 targetindex4(j,1:2)=targetindex3(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 3
 target3sumX=0;target3sumY=0;
 for h=1:varsize3(1)
 target3sumX=target3(h,1)+target3sumX;
 target3sumY=target3(h,2)+target3sumY;
 end
 target3avgX=target3sumX/varsize3(1);
 target3avgY=target3sumY/varsize3(1);

 % FIND LIST OF TARGET 4 PIXELS
 k=0;q=0;
 X4=targetindex4(1,1);
 Y4=targetindex4(1,2);

 161

 Xrange_max4=X4+T;
 Yrange_min4=Y4-T;
 Yrange_max4=Y4+T;
 listsize4=size(targetindex4);
 clear target4;
 for k=1:listsize4(1)
 if targetindex4(k,1) <= Xrange_max4 && targetindex4(k,1) ~= 0
 if targetindex4(k,2)>= Yrange_min4 && targetindex4(k,2)<=
Yrange_max4
 q=q+1;
 target4(q,1:2)=targetindex4(k,:);
 targetindex4(k,:)=0;
 end
 end
 end

 varsize4=size(target4);
 clear targetindex5;
 j=0;
 for k = 1:listsize4(1)
 if targetindex4(k,1) ~= 0
 j=j+1;
 targetindex5(j,1:2)=targetindex4(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 4
 target4sumX=0;target4sumY=0;
 for h=1:varsize4(1)
 target4sumX=target4(h,1)+target4sumX;
 target4sumY=target4(h,2)+target4sumY;
 end
 target4avgX=target4sumX/varsize4(1);
 target4avgY=target4sumY/varsize4(1);

 % FIND LIST OF TARGET 5 PIXELS
 k=0;q=0;
 X5=targetindex5(1,1);
 Y5=targetindex5(1,2);
 Xrange_max5=X5+T;
 Yrange_min5=Y5-T;
 Yrange_max5=Y5+T;
 listsize5=size(targetindex5);
 clear target5;
 for k= 1:listsize5(1)
 if targetindex5(k,1) <= Xrange_max5 && targetindex5(k,1) ~= 0
 if targetindex5(k,2)>= Yrange_min5 && targetindex5(k,2)<=
Yrange_max5
 q=q+1;
 target5(q,1:2)=targetindex5(k,:);
 targetindex5(k,:)=0;
 end
 end
 end

 varsize5=size(target5);

 162

 % FIND AVERAGE PIXEL LOCATION OF TARGET 5
 target5sumX=0;target5sumY=0;
 for h=1:varsize5(1)
 target5sumX=target5(h,1)+target5sumX;
 target5sumY=target5(h,2)+target5sumY;
 end
 target5avgX=target5sumX/varsize5(1);
 target5avgY=target5sumY/varsize5(1);

 % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS
 Ftarget1=[target1avgX target1avgY];
 Ftarget2=[target2avgX target2avgY];
 Ftarget3=[target3avgX target3avgY];
 Ftarget4=[target4avgX target4avgY];
 Ftarget5=[target5avgX target5avgY];

 % DETERMINE ABSOLUTE DISTANCES
 dist(1,:)=[sqrt(((Ftarget1(1,1)-Ftarget2(1,1))^2)+((Ftarget1(1,2)-
Ftarget2(1,2))^2)),1,2];
 dist(2,:)=[sqrt(((Ftarget1(1,1)-Ftarget3(1,1))^2)+((Ftarget1(1,2)-
Ftarget3(1,2))^2)),1,3];
 dist(3,:)=[sqrt(((Ftarget1(1,1)-Ftarget4(1,1))^2)+((Ftarget1(1,2)-
Ftarget4(1,2))^2)),1,4];
 dist(4,:)=[sqrt(((Ftarget1(1,1)-Ftarget5(1,1))^2)+((Ftarget1(1,2)-
Ftarget5(1,2))^2)),1,5];
 dist(5,:)=[sqrt(((Ftarget2(1,1)-Ftarget3(1,1))^2)+((Ftarget2(1,2)-
Ftarget3(1,2))^2)),2,3];
 dist(6,:)=[sqrt(((Ftarget2(1,1)-Ftarget4(1,1))^2)+((Ftarget2(1,2)-
Ftarget4(1,2))^2)),2,4];
 dist(7,:)=[sqrt(((Ftarget2(1,1)-Ftarget5(1,1))^2)+((Ftarget2(1,2)-
Ftarget5(1,2))^2)),2,5];
 dist(8,:)=[sqrt(((Ftarget3(1,1)-Ftarget4(1,1))^2)+((Ftarget3(1,2)-
Ftarget4(1,2))^2)),3,4];
 dist(9,:)=[sqrt(((Ftarget3(1,1)-Ftarget5(1,1))^2)+((Ftarget3(1,2)-
Ftarget5(1,2))^2)),3,5];
 dist(10,:)=[sqrt(((Ftarget4(1,1)-Ftarget5(1,1))^2)+((Ftarget4(1,2)-
Ftarget5(1,2))^2)),4,5];

 % DETECTING THE WING TIPS
 wings=max(dist(:,1));
 for i=1:10
 if dist(i,1)==wings;
 wingdef(1,1)=dist(i,2);
 wingdef(1,2)=dist(i,3);
 end
 end
 leftwing=wingdef(1);
 rightwing=wingdef(2);

 % DETECTING THE HORIZONTAL STAB TIPS
 count=0;
 for i=1:10
 if dist(i,2)~=wingdef(1)&&dist(i,2)~=wingdef(2)&&dist(i,3)...
 ~=wingdef(1)&&dist(i,3)~=wingdef(2)
 count=count+1;
 elev(count,:)=dist(i,:);
 end

 163

 end
 stabsize=size(elev);
 limit=stabsize(1);
 stab=max(elev(:,1));
 for i=1:limit
 if elev(i,1)==stab;
 stabdef(1,1)=elev(i,2);
 stabdef(1,2)=elev(i,3);
 end
 end
 leftstab=stabdef(1);
 rightstab=stabdef(2);

 % DEFINING THE VERTICAL STAB TIP
 vertstab=15-leftwing-rightwing-leftstab-rightstab;

 % SAVE TARGET LOCATIONS FOR COMPARISONS
 targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5];
 targetlocX=targetloc(:,1);
 targetlocY=targetloc(:,2);

FtargetX=[Ftarget1(1);Ftarget2(1);Ftarget3(1);Ftarget4(1);Ftarget5(1)];

FtargetY=[Ftarget1(2);Ftarget2(2);Ftarget3(2);Ftarget4(2);Ftarget5(2)];
 ACTtargetlocationX(:,index)=FtargetX;
 ACTtargetlocationY(:,index)=FtargetY;

 %CALCULATE BANK ANGLE
 riserun=(targetlocY(rightwing)-targetlocY(leftwing))/...
 (targetlocX(rightwing)-targetlocX(leftwing));
 phirad=atan(riserun);
 phideg(index)=atan(riserun)*180/pi();

 frametime(index,:)=toc;
end;

% PLOTTING ROUTINE
figure;
plot(frametime);
axis([1 150 0 1])
title('Image Processing Speed on Frame by Frame Basis')
xlabel('Frame Number');
ylabel('Time between frames (secs)');

figure;
plot(phideg);
axis([1 150 -90 90])
title('Aircraft Bank Angle As Calculated From Wing Tip Target
Positions')
xlabel('Frame Number');
ylabel('Bank Angle - Phi (degrees)');

figure;
axis ij;
hold on;
plot(ACTtargetlocationX(5,:),ACTtargetlocationY(5,:),'b');
plot(ACTtargetlocationX(4,:),ACTtargetlocationY(4,:),'b');

 164

plot(ACTtargetlocationX(3,:),ACTtargetlocationY(3,:),'b');
plot(ACTtargetlocationX(2,:),ACTtargetlocationY(2,:),'b');
plot(ACTtargetlocationX(1,:),ACTtargetlocationY(1,:),'b');
title('Actual Location for All Markers');
xlabel('X-Coordinate');
ylabel('Y-Coordinate');
axis([0 640 0 480])
hold off;

% SAVE DATA FILE FOR COMPARISON
save data.mat -MAT ACTtargetlocation* frametime phideg;
% END

 165

Appendix B

MATLAB Code

For

 Matlab Based Modified K-Means

Clustering Algorithm with Loss of Marker Visibility

marker_loss.m

 166

% marker_loss.m
% Machine Vision Image Processing
% Larry Rowe
% May 2006

%%%
%%%%%%%
%%%%% This version of software performs marker detection ONLY. No
%%%%%
%%%%% labeling of the markers is performed in this software. This
%%%%%
%%%%% software does accomodate the loss/gain of any number of markers.
%%%%%
%%%
%%%%%%%

clear all;
clc;
close all;
imaqreset;

video = aviread('..\VIDEOS\MV5.avi');

level=0.7; % Threshold Level
T=15; %Pixel filter threshold level
index = 0;
disp('READY TO BEGIN SIMULATION, PRESS A KEY TO CONTINUE');
pause;

for i=1:150
 index=index+1;

 tic;

 % Get single frame to work with
 frame1= frame2im(video(i));

 % Convert to binary and threshold
 frame2=im2bw(frame1,level);

 clear targetindex;

 % FIND TARGET PIXELS
 i=1;j=1;k=0;
 for i=1:640
 for j=1:480
 if frame2(j,i)==1
 k=k+1;
 targetindex(k,:)=[i j];
 end
 end
 end

 % TARGET DETERMINATION AND LOCATION CALCULATION
 k=0;q=0;targetsize=0;targetnum=0;targetlist=0;
 g=size(targetindex);

 167

 listsize=g(1);
 while(sum(targetindex(:,1)) ~= 0 && sum(targetindex(:,2)) ~= 0)

 targetnum=targetnum+1;
 k=targetsize+1;

 Xrange_max=targetindex(k,1)+T;
 Yrange_min=targetindex(k,2)-T;
 Yrange_max=targetindex(k,2)+T;

 for u = k:listsize
 if targetindex(u,1) <= Xrange_max && targetindex(u,1) ~= 0
 if targetindex(u,2) >= Yrange_min && targetindex(u,2)
<= Yrange_max
 q=q+1;
 targetlist(q,1:3) = [targetindex(u,:),targetnum];
 targetindex(u,:) = 0;
 end
 end
 end
 h=size(targetlist);
 targetsize=h(1);
 end

 targetnum=0;targetsumX=0;targetsumY=0;
 for i=1:targetsize
 if targetlist(i,3) == (targetnum+1)
 targetnum=targetnum+1;
 targetsumX=0;targetsumY=0;count=0;
 end
 if targetlist(i,3) == targetnum
 targetsumX=targetlist(i,1)+targetsumX;
 targetsumY=targetlist(i,2)+targetsumY;
 count=count+1;
 end
 targetavgX=targetsumX/count;
 targetavgY=targetsumY/count;
 centroidlist(targetnum,1:2)=[targetavgX targetavgY];
 end

 targetlocX=centroidlist(:,1);
 targetlocY=centroidlist(:,2);
 clear centroidlist;

 if length(targetlocX) == 5
 targetlocX(6)=0;
 targetlocY(6)=0;
 end

 ACTtargetlocationX(index,1:6)=targetlocX;
 ACTtargetlocationY(index,1:6)=targetlocY;

 % PLOT TARGETS ON ORIGINAL FRAME
 imshow(frame1);

 168

 hold on;
 plot(targetlocX,targetlocY,'rO');
 frametime(index,:)=toc;
 pause(.03);
end;

% PLOTTING ROUTINE
figure;
plot(frametime);
axis([1 150 0 1])
title('Image Processing Speed on Frame by Frame Basis')
xlabel('Frame Number');
ylabel('Time between frames (secs)');

% SAVE DATA FILE FOR COMPARISON
save data.mat -MAT ACTtargetlocation* frametime;
% END

 169

Appendix C

MATLAB Code

For

 Matlab Based Advanced K-Means

Clustering and Tracking Algorithm

marker_track.m

 170

% marker_track.m
% Machine Vision Image Processing
% Larry Rowe
% Fall 2004

%%%
%%
%%%%% This version of software performs the full estimation of the
%%%%%
%%%%% of the position using velocity and acceleration or velocity
%%%%%
%%%%% only. To use VELOCITY ONLY for estimation, UNCOMMENT LINE
%%%%%
%%%%% 366 and 367. To use VELOCITY AND ACCELERATION for
%%%%%
%%%%% estimation, UNCOMMENT LINE 362 and 363.
%%%%%
%%%
%%

clear all;
clc;
close all;
imaqreset;

video = aviread('..\VIDEOS\MV1.avi');

level=0.7; % Threshold Level
T=15; %Pixel filter threshold level
index = 0;

for i=1:3
 index=index+1;

 tic;

 % Get single frame to work with
 frame1= frame2im(video(i));

 % Convert to binary and threshold
 frame2=im2bw(frame1,level);

 % Perform binary erosion to make targets smaller
 %se=strel('square',3); %Structuring Element
 %frame3=imerode(frame2,se);
 frame3=frame2;

 clear targetindex;

 % FIND TARGET PIXELS
 i=1;j=1;k=0;
 for i=1:640
 for j=1:480
 if frame3(j,i)==1
 k=k+1;
 targetindex(k,:)=[i j];
 end

 171

 end
 end

 % TARGET DETERMINATION AND LOCATION CALCULATION
 clear targetindex1;
 targetindex1=targetindex;

 % FIND LIST OF TARGET 1 PIXELS
 k=0;q=0;
 X1=targetindex1(1,1);
 Y1=targetindex1(1,2);
 Xrange_max1=X1+T;
 Yrange_min1=Y1-T;
 Yrange_max1=Y1+T;
 listsize1=size(targetindex1);
 clear target1;
 for k = 1:listsize1(1)
 if targetindex1(k,1) <= Xrange_max1 && targetindex1(k,1) ~= 0
 if targetindex1(k,2)>= Yrange_min1 && targetindex1(k,2)<=
Yrange_max1
 q=q+1;
 target1(q,1:2) =targetindex1(k,:);
 targetindex1(k,:)=0;
 end
 end
 end

 varsize1=size(target1);
 clear targetindex2;
 j=0;
 for k = 1:listsize1(1)
 if targetindex1(k,1) ~= 0
 j=j+1;
 targetindex2(j,1:2)=targetindex1(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 1
 target1sumX=0;target1sumY=0;
 for h=1:varsize1(1)
 target1sumX=target1(h,1)+target1sumX;
 target1sumY=target1(h,2)+target1sumY;
 end
 target1avgX=target1sumX/varsize1(1);
 target1avgY=target1sumY/varsize1(1);

 % FIND LIST OF TARGET 2 PIXELS
 k=0;q=0;
 X2=targetindex2(1,1);
 Y2=targetindex2(1,2);
 Xrange_max2=X2+T;
 Yrange_min2=Y2-T;
 Yrange_max2=Y2+T;
 listsize2=size(targetindex2);
 clear target2;
 for k = 1:listsize2(1)
 if targetindex2(k,1) <= Xrange_max2 && targetindex2(k,1) ~= 0

 172

 if targetindex2(k,2)>= Yrange_min2 && targetindex2(k,2)<=
Yrange_max2
 q=q+1;
 target2(q,1:2)=targetindex2(k,:);
 targetindex2(k,:)=0;
 end
 end
 end

 varsize2=size(target2);
 clear targetindex3;
 j=0;
 for k = 1:listsize2(1)
 if targetindex2(k,1) ~= 0
 j=j+1;
 targetindex3(j,1:2)=targetindex2(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 2
 target2sumX=0;target2sumY=0;
 for h=1:varsize2(1)
 target2sumX=target2(h,1)+target2sumX;
 target2sumY=target2(h,2)+target2sumY;
 end
 target2avgX=target2sumX/varsize2(1);
 target2avgY=target2sumY/varsize2(1);

 % FIND LIST OF TARGET 3 PIXELS
 k=0;q=0;
 X3=targetindex3(1,1);
 Y3=targetindex3(1,2);
 Xrange_max3=X3+T;
 Yrange_min3=Y3-T;
 Yrange_max3=Y3+T;
 listsize3=size(targetindex3);
 clear target3;
 for k = 1:listsize3(1)
 if targetindex3(k,1) <= Xrange_max3 && targetindex3(k,1) ~= 0
 if targetindex3(k,2)>= Yrange_min3 && targetindex3(k,2)<=
Yrange_max3
 q=q+1;
 target3(q,1:2)=targetindex3(k,:);
 targetindex3(k,:)=0;
 end
 end
 end

 varsize3=size(target3);
 clear targetindex4;
 j=0;
 for k = 1:listsize3(1)
 if targetindex3(k,1) ~= 0
 j=j+1;
 targetindex4(j,1:2)=targetindex3(k,:);
 end
 end

 173

 % FIND AVERAGE PIXEL LOCATION OF TARGET 3
 target3sumX=0;target3sumY=0;
 for h=1:varsize3(1)
 target3sumX=target3(h,1)+target3sumX;
 target3sumY=target3(h,2)+target3sumY;
 end
 target3avgX=target3sumX/varsize3(1);
 target3avgY=target3sumY/varsize3(1);

 % FIND LIST OF TARGET 4 PIXELS
 k=0;q=0;
 X4=targetindex4(1,1);
 Y4=targetindex4(1,2);
 Xrange_max4=X4+T;
 Yrange_min4=Y4-T;
 Yrange_max4=Y4+T;
 listsize4=size(targetindex4);
 clear target4;
 for k=1:listsize4(1)
 if targetindex4(k,1) <= Xrange_max4 && targetindex4(k,1) ~= 0
 if targetindex4(k,2)>= Yrange_min4 && targetindex4(k,2)<=
Yrange_max4
 q=q+1;
 target4(q,1:2)=targetindex4(k,:);
 targetindex4(k,:)=0;
 end
 end
 end

 varsize4=size(target4);
 clear targetindex5;
 j=0;
 for k = 1:listsize4(1)
 if targetindex4(k,1) ~= 0
 j=j+1;
 targetindex5(j,1:2)=targetindex4(k,:);
 end
 end

 % FIND AVERAGE PIXEL LOCATION OF TARGET 4
 target4sumX=0;target4sumY=0;
 for h=1:varsize4(1)
 target4sumX=target4(h,1)+target4sumX;
 target4sumY=target4(h,2)+target4sumY;
 end
 target4avgX=target4sumX/varsize4(1);
 target4avgY=target4sumY/varsize4(1);

 % FIND LIST OF TARGET 5 PIXELS
 k=0;q=0;
 X5=targetindex5(1,1);
 Y5=targetindex5(1,2);
 Xrange_max5=X5+T;
 Yrange_min5=Y5-T;
 Yrange_max5=Y5+T;
 listsize5=size(targetindex5);

 174

 clear target5;
 for k= 1:listsize5(1)
 if targetindex5(k,1) <= Xrange_max5 && targetindex5(k,1) ~= 0
 if targetindex5(k,2)>= Yrange_min5 && targetindex5(k,2)<=
Yrange_max5
 q=q+1;
 target5(q,1:2)=targetindex5(k,:);
 targetindex5(k,:)=0;
 end
 end
 end

 varsize5=size(target5);

 % FIND AVERAGE PIXEL LOCATION OF TARGET 5
 target5sumX=0;target5sumY=0;
 for h=1:varsize5(1)
 target5sumX=target5(h,1)+target5sumX;
 target5sumY=target5(h,2)+target5sumY;
 end
 target5avgX=target5sumX/varsize5(1);
 target5avgY=target5sumY/varsize5(1);

 % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS
 Ftarget1=[target1avgX target1avgY];
 Ftarget2=[target2avgX target2avgY];
 Ftarget3=[target3avgX target3avgY];
 Ftarget4=[target4avgX target4avgY];
 Ftarget5=[target5avgX target5avgY];

 % DETERMINE ABSOLUTE DISTANCES
 dist(1,:)=[sqrt(((Ftarget1(1,1)-Ftarget2(1,1))^2)+((Ftarget1(1,2)-
Ftarget2(1,2))^2)),1,2];
 dist(2,:)=[sqrt(((Ftarget1(1,1)-Ftarget3(1,1))^2)+((Ftarget1(1,2)-
Ftarget3(1,2))^2)),1,3];
 dist(3,:)=[sqrt(((Ftarget1(1,1)-Ftarget4(1,1))^2)+((Ftarget1(1,2)-
Ftarget4(1,2))^2)),1,4];
 dist(4,:)=[sqrt(((Ftarget1(1,1)-Ftarget5(1,1))^2)+((Ftarget1(1,2)-
Ftarget5(1,2))^2)),1,5];
 dist(5,:)=[sqrt(((Ftarget2(1,1)-Ftarget3(1,1))^2)+((Ftarget2(1,2)-
Ftarget3(1,2))^2)),2,3];
 dist(6,:)=[sqrt(((Ftarget2(1,1)-Ftarget4(1,1))^2)+((Ftarget2(1,2)-
Ftarget4(1,2))^2)),2,4];
 dist(7,:)=[sqrt(((Ftarget2(1,1)-Ftarget5(1,1))^2)+((Ftarget2(1,2)-
Ftarget5(1,2))^2)),2,5];
 dist(8,:)=[sqrt(((Ftarget3(1,1)-Ftarget4(1,1))^2)+((Ftarget3(1,2)-
Ftarget4(1,2))^2)),3,4];
 dist(9,:)=[sqrt(((Ftarget3(1,1)-Ftarget5(1,1))^2)+((Ftarget3(1,2)-
Ftarget5(1,2))^2)),3,5];
 dist(10,:)=[sqrt(((Ftarget4(1,1)-Ftarget5(1,1))^2)+((Ftarget4(1,2)-
Ftarget5(1,2))^2)),4,5];

 % DETECTING THE WING TIPS
 wings=max(dist(:,1));
 for i=1:10
 if dist(i,1)==wings;
 wingdef(1,1)=dist(i,2);

 175

 wingdef(1,2)=dist(i,3);
 end
 end
 leftwing=wingdef(1);
 rightwing=wingdef(2);

 % DETECTING THE HORIZONTAL STAB TIPS
 count=0;
 for i=1:10
 if
dist(i,2)~=wingdef(1)&&dist(i,2)~=wingdef(2)&&dist(i,3)~=wingdef(1)&&di
st(i,3)~=wingdef(2)
 count=count+1;
 elev(count,:)=dist(i,:);
 end
 end
 stabsize=size(elev);
 limit=stabsize(1);
 stab=max(elev(:,1));
 for i=1:limit
 if elev(i,1)==stab;
 stabdef(1,1)=elev(i,2);
 stabdef(1,2)=elev(i,3);
 end
 end
 leftstab=stabdef(1);
 rightstab=stabdef(2);

 % DEFINING THE VERTICAL STAB TIP
 vertstab=15-leftwing-rightwing-leftstab-rightstab;

 % SAVE TARGET LOCATIONS FOR INERTIAL CALCULATIONS
 targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5];
 targinert(1:5,1:2,index)=targetloc;
 targetlocX=targetloc(:,1);
 targetlocY=targetloc(:,2);

 % PLOT TARGETS ON ORIGINAL FRAME
% imshow(frame1);
% hold on;
% plot(targetlocX(leftwing),targetlocY(leftwing),'gp');
% plot(targetlocX(rightwing),targetlocY(rightwing),'rp');
% plot(targetlocX(leftstab),targetlocY(leftstab),'go');
% plot(targetlocX(rightstab),targetlocY(rightstab),'ro');
% plot(targetlocX(vertstab),targetlocY(vertstab),'bd');
% hold off;

 %CALCULATE BANK ANGLE
 riserun=(targetlocY(rightwing)-
targetlocY(leftwing))/(targetlocX(rightwing)-targetlocX(leftwing));
 phirad=atan(riserun);
 phideg(index)=atan(riserun)*180/pi();

 frametime(index,:)=toc;
end;

% END OF FIRST LOOP FINDING THE INITIAL TARGETS

 176

%%%
%%%%
%%%
%%%%

% CALCULATE DELTA T
dT12=frametime(1);
dT23=frametime(2);
dT13=frametime(1)+frametime(2);

% CALCULATE VELOCITY AND ACCELERATION OF EACH TARGET
for i=1:5
 targetvelocX12(i,:)=(targinert(i,1,2)-targinert(i,1,1))/dT12;
 targetvelocY12(i,:)=(targinert(i,2,2)-targinert(i,2,1))/dT12;

 targetvelocX23(i,:)=(targinert(i,1,3)-targinert(i,1,2))/dT23;
 targetvelocY23(i,:)=(targinert(i,2,3)-targinert(i,2,2))/dT23;

 targetaccelX(i,:)=(targetvelocX12(i)-targetvelocX23(i))/dT13;
 targetaccelY(i,:)=(targetvelocY12(i)-targetvelocY23(i))/dT13;
 % OUTPUT IS PIXELS/FRAME VELOCITY
end

% CALCULATE ACCELERATION OF EACH TARGET

% NEW THRESHOLD FOR REGION OF INTEREST
RoIT=10;

% CREATE INITIAL ESTIMATE TARGET LOCATIONS
for i=1:3
 ESTtargetlocationX(:,i)=targinert(:,1,i);
 ESTtargetlocationY(:,i)=targinert(:,2,i);
 ACTtargetlocationX(:,i)=targinert(:,1,i);
 ACTtargetlocationY(:,i)=targinert(:,2,i);
end

%%%
%%%%
%%%
%%%%

% LOOP FOR ESTIMATING WINDOW AND SO ON

for framecount=4:150
 index=index+1;
 clear ACTtargetloc;

 %% USE FOR FULL ESTIMATION %%

ESTtargetlocX=targetlocX+targetvelocX23*dT23+0.5*targetaccelX*dT23^2;

ESTtargetlocY=targetlocY+targetvelocY23*dT23+0.5*targetaccelY*dT23^2;

 %% USE FOR ESTIMATION WITH NO ACCELERATION %%
 %ESTtargetlocX=targetlocX+targetvelocX23*dT23;
 %ESTtargetlocY=targetlocY+targetvelocY23*dT23;

 177

 ESTtargetlocationX(:,index)=ESTtargetlocX; %USED FOR PLOTTING
 ESTtargetlocationY(:,index)=ESTtargetlocY; %USED FOR PLOTTING

 tic;

 % Get single frame to work with
 frame1=frame2im(video(framecount));

 % Convert to binary and threshold
 frame2=im2bw(frame1,level);

 % Perform binary erosion to make targets smaller
 frame3=frame2;

 % FIND LIST OF PIXELS
 ESTtargetlocrangeXdec=[ESTtargetlocX-RoIT ESTtargetlocX+RoIT];
 ESTtargetlocrangeYdec=[ESTtargetlocY-RoIT ESTtargetlocY+RoIT];

 ESTtargetlocrangeX=uint16(ESTtargetlocrangeXdec);
 ESTtargetlocrangeY=uint16(ESTtargetlocrangeYdec);

 % FIND TARGET PIXELS
 for targ=1:5
 k=0;
 for i=ESTtargetlocrangeX(targ,1):ESTtargetlocrangeX(targ,2)
 for j=ESTtargetlocrangeY(targ,1):ESTtargetlocrangeY(targ,2)
 if frame3(j,i)==1
 k=k+1;
 ACTtargetloc(k,:,targ)=[i j];
 end
 end
 end
 end

 listsize=size(ACTtargetloc);

 % FILTER OUT ZEROS AND CALCULATE THE CENTROIDS
 num=0;
 for targ=1:5
 j=0;
 clear centroidindex;
 targetsumX=0;targetsumY=0;
 for k = 1:listsize(1)
 if ACTtargetloc(k,1,targ) ~= 0
 j=j+1;
 centroidindex(j,:)=[ACTtargetloc(k,1,targ)
ACTtargetloc(k,2,targ)];
 end
 end
 CIsize=size(centroidindex);
 num=num+1;
 targetsumX=sum(centroidindex(:,1));
 targetsumY=sum(centroidindex(:,2));
 targetavgX(:,num)=targetsumX/CIsize(1);
 targetavgY(:,num)=targetsumY/CIsize(1);
 end

 178

 % DEFINE TARGET LOCATIONS FROM AVERAGE CALCULATIONS
 Ftarget1=[targetavgX(1) targetavgY(1)];
 Ftarget2=[targetavgX(2) targetavgY(2)];
 Ftarget3=[targetavgX(3) targetavgY(3)];
 Ftarget4=[targetavgX(4) targetavgY(4)];
 Ftarget5=[targetavgX(5) targetavgY(5)];

FtargetX=[Ftarget1(1);Ftarget2(1);Ftarget3(1);Ftarget4(1);Ftarget5(1)];

FtargetY=[Ftarget1(2);Ftarget2(2);Ftarget3(2);Ftarget4(2);Ftarget5(2)];
 ACTtargetlocationX(:,index)=FtargetX;
 ACTtargetlocationY(:,index)=FtargetY;

 % SAVE TARGET LOCATIONS FOR INERTIAL CALCULATIONS
 targetloc=[Ftarget1;Ftarget2;Ftarget3;Ftarget4;Ftarget5];
 targinert(1:5,1:2,index)=targetloc;
 targetlocX=targetloc(:,1);
 targetlocY=targetloc(:,2);

 % PLOT TARGETS ON ORIGINAL FRAME
% imshow(frame1);
% hold on;
% plot(targetlocX(leftwing),targetlocY(leftwing),'gp');
% plot(targetlocX(rightwing),targetlocY(rightwing),'rp');
% plot(targetlocX(leftstab),targetlocY(leftstab),'go');
% plot(targetlocX(rightstab),targetlocY(rightstab),'ro');
% plot(targetlocX(vertstab),targetlocY(vertstab),'bd');
% hold off;
 %pause;

 %CALCULATE BANK ANGLE
 riserun=(targetlocY(rightwing)-
targetlocY(leftwing))/(targetlocX(rightwing)-targetlocX(leftwing));
 phirad=atan(riserun);
 phideg(index)=atan(riserun)*180/pi();

 frametime(index,:)=toc;

 % CALCULATE DELTA T
 dT12=frametime(index-2);
 dT23=frametime(index-1);
 dT13=dT12+dT23;

 % CALCULATE VELOCITY AND ACCELERATION OF EACH TARGET TO ESTIMATE
NEW
 for i=1:5
 targetvelocX12(i,:)=(targinert(i,1,index-1)-
targinert(i,1,index-2))/dT12;
 targetvelocY12(i,:)=(targinert(i,2,index-1)-
targinert(i,2,index-2))/dT12;

 targetvelocX23(i,:)=(targinert(i,1,index)-targinert(i,1,index-
1))/dT23;
 targetvelocY23(i,:)=(targinert(i,2,index)-targinert(i,2,index-
1))/dT23;

 targetaccelX(i,:)=(targetvelocX12(i)-targetvelocX23(i))/dT13;

 179

 targetaccelY(i,:)=(targetvelocY12(i)-targetvelocY23(i))/dT13;
 % OUTPUT IS PIXELS/SEC
 end

end;
% END OF LAST LOOP FINDING THE ESTIMATED TARGETS

% PLOTTING
figure;
subplot(2,1,1);
hold on;
plot(frametime);
axis([1 10 0 1])
title('Image Processing Speed on Frame by Frame Basis - Transient
Illustration')
xlabel('Frame Number');
ylabel('Time between frames (secs)');
hold off;
subplot(2,1,2);
hold on;
plot(frametime);
axis([1 150 0 0.1]);
title('Image Processing Speed on Frame by Frame Basis')
xlabel('Frame Number');
ylabel('Time between frames (secs)');
hold off;

figure;
plot(phideg);
axis([1 150 -20 30])
title('Aircraft Roll Angle As Calculated From Wing Tip Marker
Positions')
xlabel('Frame Number');
ylabel('Bank Angle - {\Phi} (degrees)');

figure;
subplot(2,1,1),plot(ESTtargetlocationX(1,:),'r');
hold on;
subplot(2,1,1),plot(ACTtargetlocationX(1,:),'b');
title('Estimate vs. Actual X-Coordinate Location for Target 1');
xlabel('Frame Number');
ylabel('X-Coordinate');
subplot(2,1,2),plot(ESTtargetlocationY(1,:),'r');
hold on;
subplot(2,1,2),plot(ACTtargetlocationY(1,:),'b');
title('Estimate vs. Actual Y-Coordinate Location for Target 1');
xlabel('Frame Number');
ylabel('Y-Coordinate');

figure;
subplot(2,1,1),plot(ESTtargetlocationX(2,:),'r');
hold on;
subplot(2,1,1),plot(ACTtargetlocationX(2,:),'b');
title('Estimate vs. Actual X-Coordinate Location for Target 2');
xlabel('Frame Number');
ylabel('X-Coordinate');
subplot(2,1,2),plot(ESTtargetlocationY(2,:),'r');

 180

hold on;
subplot(2,1,2),plot(ACTtargetlocationY(2,:),'b');
title('Estimate vs. Actual Y-Coordinate Location for Target 2');
xlabel('Frame Number');
ylabel('Y-Coordinate');

figure;
subplot(2,1,1),plot(ESTtargetlocationX(3,:),'r');
hold on;
subplot(2,1,1),plot(ACTtargetlocationX(3,:),'b');
title('Estimate vs. Actual X-Coordinate Location for Target 3');
xlabel('Frame Number');
ylabel('X-Coordinate');
subplot(2,1,2),plot(ESTtargetlocationY(3,:),'r');
hold on;
subplot(2,1,2),plot(ACTtargetlocationY(3,:),'b');
title('Estimate vs. Actual Y-Coordinate Location for Target 3');
xlabel('Frame Number');
ylabel('Y-Coordinate');

figure;
subplot(2,1,1),plot(ESTtargetlocationX(4,:),'r');
hold on;
subplot(2,1,1),plot(ACTtargetlocationX(4,:),'b');
title('Estimate vs. Actual X-Coordinate Location for Target 4');
xlabel('Frame Number');
ylabel('X-Coordinate');
subplot(2,1,2),plot(ESTtargetlocationY(4,:),'r');
hold on;
subplot(2,1,2),plot(ACTtargetlocationY(4,:),'b');
title('Estimate vs. Actual Y-Coordinate Location for Target 4');
xlabel('Frame Number');
ylabel('Y-Coordinate');

figure;
subplot(2,1,1),plot(ESTtargetlocationX(5,:),'r');
hold on;
subplot(2,1,1),plot(ACTtargetlocationX(5,:),'b');
title('Estimate vs. Actual X-Coordinate Location for Target 5');
xlabel('Frame Number');
ylabel('X-Coordinate');
subplot(2,1,2),plot(ESTtargetlocationY(5,:),'r');
hold on;
subplot(2,1,2),plot(ACTtargetlocationY(5,:),'b');
title('Estimate vs. Actual Y-Coordinate Location for Target 5');
xlabel('Frame Number');
ylabel('Y-Coordinate');

figure;
axis ij;
hold on;
plot(ESTtargetlocationX(5,:),ESTtargetlocationY(5,:),'r');
plot(ACTtargetlocationX(5,:),ACTtargetlocationY(5,:),'b');
plot(ESTtargetlocationX(4,:),ESTtargetlocationY(4,:),'r');
plot(ACTtargetlocationX(4,:),ACTtargetlocationY(4,:),'b');
plot(ESTtargetlocationX(3,:),ESTtargetlocationY(3,:),'r');
plot(ACTtargetlocationX(3,:),ACTtargetlocationY(3,:),'b');

 181

plot(ESTtargetlocationX(2,:),ESTtargetlocationY(2,:),'r');
plot(ACTtargetlocationX(2,:),ACTtargetlocationY(2,:),'b');
plot(ESTtargetlocationX(1,:),ESTtargetlocationY(1,:),'r');
plot(ACTtargetlocationX(1,:),ACTtargetlocationY(1,:),'b');
title('Estimate vs. Actual Location for All Markers');
xlabel('X-Coordinate');
ylabel('Y-Coordinate');
axis([0 640 0 480])
hold off;

% COMPUTE ERROR
error5X=abs(ESTtargetlocationX(5,:)-ACTtargetlocationX(5,:));
error5Y=abs(ESTtargetlocationY(5,:)-ACTtargetlocationY(5,:));
error5=sqrt(error5X.*error5X+error5Y.*error5Y);

error4X=abs(ESTtargetlocationX(4,:)-ACTtargetlocationX(4,:));
error4Y=abs(ESTtargetlocationY(4,:)-ACTtargetlocationY(4,:));
error4=sqrt(error4X.*error4X+error4Y.*error4Y);

error3X=abs(ESTtargetlocationX(3,:)-ACTtargetlocationX(3,:));
error3Y=abs(ESTtargetlocationY(3,:)-ACTtargetlocationY(3,:));
error3=sqrt(error3X.*error3X+error3Y.*error3Y);

error2X=abs(ESTtargetlocationX(2,:)-ACTtargetlocationX(2,:));
error2Y=abs(ESTtargetlocationY(2,:)-ACTtargetlocationY(2,:));
error2=sqrt(error2X.*error2X+error2Y.*error2Y);

error1X=abs(ESTtargetlocationX(1,:)-ACTtargetlocationX(1,:));
error1Y=abs(ESTtargetlocationY(1,:)-ACTtargetlocationY(1,:));
error1=sqrt(error1X.*error1X+error1Y.*error1Y);

avgerr5=mean(error5);
avgerr4=mean(error4);
avgerr3=mean(error3);
avgerr2=mean(error2);
avgerr1=mean(error1);
avgerr=[avgerr1;avgerr2;avgerr3;avgerr4;avgerr5];

stderr5=std(error5);
stderr4=std(error4);
stderr3=std(error3);
stderr2=std(error2);
stderr1=std(error1);
stderr=[stderr1;stderr2;stderr3;stderr4;stderr5];

% PLOT MEAN OF THE ERROR
figure;
hold on;
bar(avgerr);
set(gca,'XTick',0:1:6)
set(gca,'XTickLabel',{'','Left Wing','Left Stab','Rudder','Right
Stab','Right Wing'})
title('Mean of Position Error for All Markers');
ylabel('Pixels');
hold off;

% PLOT STANDARD DEVIATION OF THE ERROR

 182

figure;
hold on
bar(stderr);
set(gca,'XTick',0:1:6)
set(gca,'XTickLabel',{'','Left Wing','Left Stab','Rudder','Right
Stab','Right Wing'})
title('Standard Deviation of Position Error for All Markers');
ylabel('Pixels');
hold off;

% CREATE DATA FILE VECTORS
ACTtargetlocationX_FULL=ACTtargetlocationX;
ACTtargetlocationY_FULL=ACTtargetlocationY;
ESTtargetlocationX_FULL=ESTtargetlocationX;
ESTtargetlocationY_FULL=ESTtargetlocationY;
frametime_FULL=frametime;
phideg_FULL=phideg;
avgerr_FULL=avgerr;
stderr_FULL=stderr;

% SAVE DATA FILE FOR COMPARISON
save data.mat -MAT ACTtargetlocationX_FULL ACTtargetlocationY_FULL
ESTtargetlocationX_FULL...
 ESTtargetlocationY_FULL frametime_FULL phideg_FULL avgerr_FULL
stderr_FULL;
% END

	Machine vision applications in UAVs for autonomous aerial refueling and runway detection
	Recommended Citation

	Machine Vision Applications in UAVs for Autonomous Aerial Refueling and Runway Detection

		2006-07-13T14:40:32-0400
	John H. Hagen
	I am approving this document

