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Abstract: This contribution illustrates how to construct free-particle and harmonic-oscillator
quantum-mechanical propagators in two and three dimensions in cartesian, and in circu-

lar and spherical coordinates, respectively, starting from the corresponding one-dimensional

propagators in cartesian coordinates.
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Resumo: Esta contribuição ilustra como construir propagadores para part́ıcula livre e os-
cilador harmônico em duas e três dimensões, em coordenadas cartesianas, polares e esféricas,

partindo do propagador correspondente em uma dimensão em coordenada cartesiana.
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1 Introduction

The study of quantum-mechanical propagators, or Green functions, in most
textbooks is restricted to one-dimensional systems, including closed analytical forms
for the free particle and the harmonic oscillator [1]-[4]. This contribution illustrates
how to construct the corresponding Green functions in two and three dimensions
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in cartesian, and in circular and spherical coordinates, respectively. The basis for
such an extension is the separability of the Schrödinger equation and the consequent
factorability of its eigenfunctions and Green functions in the different coordinates.

Green functions, K(~r,~r 0; t), determine the time evolution of the quantum sys-
tem’s wave function,

ψ(~r, t) =

Z t

0
dNr0K(~r, ~r 0; t)ψ(~r, 0). (1)

They satisfy the Schrödinger equation

ih̄
∂
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K(~r, ~r 0; t) =

"
− h̄
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2µ
∇2 + v(~r)

#
K(~r, ~r 0; t), (2)

and the initial condition

K(~r,~r 0; t = 0) = δ(~r− ~r 0). (3)

Correspondingly, the Green function can be constructed as the linear superposi-
tion

K(~r, ~r 0; t) =
∞X
n=0

ψ∗n(~r
0)ψn(~r)e−iEnt/h̄ (4)

of the orthonormal eigenfunctions ψn(~r), each one evolving harmonically in time
with the frequency En/h̄ determined by the corresponding energy eigenvalues of the
quantum system. For t = 0, the initial condition of Eq. (3) is obviously satisfied
because of the completeness, or closure, property of the eigenfunctions.

In particular, Eq. (4) for the one-dimensional free-particle and harmonic-oscillator
propagators takes the respective forms [1]-[6]
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and
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2 cosωt−2xx0+x02 cosωt)/(2ih̄ sinωt), (6)

where Hn(z) are the Hermite polynomials.
The task of constructing the corresponding propagators in two and three dimen-

sions is accomplished in the next section in two successive stages.The first one in
cartesian coordinates is straightforward, and the second one involves the change to
circular or spherical coordinates as well as the change to the corresponding eigen-
functions and energy eigenvalues. In Section 3 we discuss some points of didactic
interest.
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2 Construction of the quantum propagators in two and
three dimensions

The extensions of Eqs. (5) and (6) to N-dimensions in cartesian coordinates,
x1 = x, x2 = y, x3 = z, are obtained by direct multiplication

Kfp({xq}, {x0q}; t) =
1
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and
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In Eq. (7) the product of the gaussian exponentials is equal to a single gaussian
exponential with argument

−µ
2ih̄t

NX
s=1

(xs − x0s)2 =
−µ
2ih̄t

(~r − ~r 0)2.

The propagator of Eq. (8) is valid in general for anisotropic harmonic oscilla-
tors, i. e., ωx 6= ωy 6= ωz; but, it can be simplified further for isotropic harmonic
oscillators, i. e., ωx = ωy = ωz = ω, for which

NX
s=1

x2s = r
2
s and

NX
s=1

xsx
0
s = ~rs · ~r 0s

in the product of the exponentials.
The adaptations of Eq. (4) and the changes of Eq. (7) to circular and spher-

ical coordinates and the corresponding eigenfunctions and eigenvalues lead to the
respective free-particle propagators in N = 2 and 3 dimensions:
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and
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where Jm(z) and jl(z) are the ordinary and spherical Bessel functions, respectively,
and Ylm(θ,ϕ) are the spherical harmonics. Likewise, the propagators for the isotropic
harmonic oscillators in circular and spherical coordinates are constructed via Eqs.
(4) and (8) with the results
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in terms of the circular and spherical radial Laguerre polynomials L
(α)
n (z) and an-

gular harmonics, respectively.

This section can be concluded by recognizing that Eqs. (7) and (8) are the
quantum propagators in N dimensions in cartesian coordinates for the free particle
and harmonic oscillator, respectively. Correspondingly, the respective propagators
for N = 2 in circular coordinates are given by Eqs. (9) and (11) and for N = 3 in
spherical coordinates by Eqs. (10) and (12).
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3 Discussion

The general construction of quantum propagators, Eq. (4), requires the solution
of the Schrödinger Eq. (2) subject to the initial condition of Eq. (3). For the free
particle and the harmonic oscillator in one dimension and cartesian coordinates the
sumations of Eqs. (5) and (6) have been explicitly done [1]-[6]. The extension to
higher dimensions in cartesian coordinates, Eqs. (7) and (8), are immediate for both
quantum systems on account of the separability of the Schrödinger equation.

It is well known that the Schrödinger equation for both systems is also separable
in circular and spherical coordinates for two and three dimensions, respectively.
Consequently, the steps from Eqs. (7) to (9) and (10) correspond to the changes
from cartesian coordinates and plane waves to circular and spherical coordinates and
waves, respectively. Their study can be implemented after having learned about the
free particle in states with well-defined angular momentum. Similar comments are
valid for the steps from Eq. (8) to (11) and (12) for the harmonic oscillators.

Comparison of Eqs. (9)-(12) with Eq. (4) allows the identification of the ortho-
normal eigenfunctions ψn(~r) and eigenenergies for each system in the corresponding
coordinates. The solution of Eq. (2) subject to the initial condition of Eq. (3) is
the same in the different coordinate systems, guaranteeing by construction the va-
lidity of Eqs. (9)-(12). Of course, if the reader is interested in proving their validity
independently of the context of this paper, the easiest way to do it is to expand
the exponentials using the Rayleigh expansion for the angular dependent factor and
resumming. Part of the didactic value of our results is the ease with which they can
be obtained, understood and explained.

While Eqs. (7) and (8) are valid for any dimensionN , the propagators of (9)-(12)
have been written explicitly for N = 2 and 3. The extension to higher dimensions
using hyperspherical coordinates and hyperspherical harmonics can also be imple-
mented for both the free particle and the harmonic oscillator.
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