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ABSTRACT 

 

Use of Data Mining for Investigation of Crime Patterns 
 

Manoday Dhananjay Padhye 
 

Lot of research is being done to improve the utilization of crime data.  This thesis 
deals with the design and implementation of a crime database and associated search 
methods to identify crime patterns from the database.  The database was created in 
Microsoft SQL Server (back end).  The user interface (front end) and the crime pattern 
identification software (middle tier) were implemented in ASP.NET.  Such a web based 
approach enables the user to utilize the database from anywhere and at anytime.  A 
general ARFF file can also be generated, for the user in Windows based format to use 
other Data Mining software such as WEKA for detailed analysis.  Further, an effective 
navigation was provided to make use of the software in a user friendly way. 
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1. INTRODUCTION 

 

1.1 Background 
 

In recent years, there has been an exponential growth in the amount of data being 

generated.  Unseen to all, such data may seem irrelevant, but to some it is a gold mine that 

needs to be fathomed for precious information pertaining to the cause.  Thus, one is 

introduced to the terminologies of data generation, data collection, data processing, 

retention and security.  Activities such as purchasing groceries, watching television, 

traveling, health care, opinion polls, elections, drug purchase, and crime, generate 

stupendous amounts of data.  For example, WalMart captures point-of-sale transactions 

from over 2,900 stores in 6 countries and continuously transmits these data to its massive 

7.5 terabyte data storage facility, referred to as the “data warehouse” [1,2].  Previously, 

such data were lost due to lack of tools.  Recent advancements in data collection, storage 

and manipulation tools, such as phenomenal storage and computational capacity, use of 

the Internet, advanced surveillance equipments etc., have broadened the scope and limits 

for the same.  Moreover, the increasing dependence on high technology equipment has 

also eased the process of data collection.  For example, each and every credit card that is 

swiped at the WalMart store generates data that can be valuable not only to WalMart, but 

to credit card companies, manufacturers, advertisement agencies, financial institutions, etc 

[3].  Another aspect worth mentioning is the security of the database which has to do with 

protection not just from losing the data, but also from the data falling into undesirable 

hands.  Also, often the privacy of citizens is breached due to lack of established protocols 

over the use of data, because the data that look harmless are not necessarily so.  For 

example, with the name and social security number stripped from files, still 87 % of 

Americans can be identified simply by their date of birth, gender, and five-digit zip code, 

as established from a review at Carnegie Mellon University [4].  Much to one’s relief, 

several companies are becoming increasingly conscious of this fact.  

The data may or may not be in a directly usable form and may need some 

interpretation based on previous knowledge, experience and most importantly the purpose 
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of data analysis.  This problem is further augmented by sheer volume, texture of the data, 

and lack of human capability to infer it in different ways.  For this reason, many 

computational tools are used and are broadly termed as “Data Mining Tools.”  The tools 

are comprised of basic Statistics and Regression methods, ANOVA, Decision Trees, Rule 

Based Techniques, and, more importantly, advanced algorithms that use Artificial 

Intelligence, Neural Networks, etc.  Such tools are used to query the database either 

individually or in a combined form, also called “Hybrid Algorithms” [2].  The result of 

such data processing is that many important non-obvious relationships can be identified.  

The applications of Data Mining tools are boundless and basically driven by cost, time 

constraints, and requirements of the community, business, and the government.  The 

application of Data Mining can be broadly classified in the following fields: 

 

a. Medical and scientific research 

b. Commercial and financial institutions 

c. Security agencies 

d. Sports and entertainment 

 

Applications in medicine can be best exemplified by the fact that there are around 

3000 cases of brain tumors each year in United States and almost half of them are fatal.  

The Children’s Memorial Hospital in Chicago is mining the gene expression database for 

pediatric brain tumors [1].  With this effort, the researchers not only wish to understand 

the tumors in a better way but also to provide more effective treatment to children.  

Further, Data Mining has extensive application in space research such as studying stars 

and their movements, studying weather patterns all over the world, and in understanding 

electromagnetic bursts.  In the commercial field, Data Mining is used by credit card 

companies primarily to look for patterns of suspicious activities in order to prevent fraud.  

Stores such as WalMart do Data Mining to determine customer buying patterns and 

trends. 

In an ABC News Broadcast of 15 February 2006, it was reported that the U.S. 

government is developing a massive computer system called Analysis, Dissemination, 

Visualization, Insight, and Semantic Enhancement System (ADVISE) that can collect 
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large amounts of data.  It will then search for patterns of terrorist activities by cross-

referencing them against U.S. intelligence and law-enforcement records.  Moreover, the 

idea is to identify critical patterns in data that illuminate their motives and intentions.  The 

storage requirements alone are huge -- enough to retain about 1 quadrillion entries.  

While, privacy concerns have put many hurdles in the way of this program and place 

some restriction on government use of private data, they do not prevent intelligence 

agencies from buying information from commercial data collectors [4].  

The National Basketball Association (NBA) offers a Data Mining application that 

can be used in conjunction with video recordings of basketball games to analyze the 

movements of players which helps coaches orchestrate plays and strategies against their 

opponents.  

There are quite a few Data Mining tools that are available commercially or open-

source.  Some of these tools are: SAS – Enterprise Miner, JMP, R, TeraData, Clementine, 

and WEKA.  Data Analysis tools such as Microsoft Excel, MiniTab and Statistica can 

indirectly do Data Mining by searching for vital trends in the data.  The primary issue with 

such software is that they are generalized tools and require significant data preparation 

and/or coding on the part of the user.  Moreover, the data are often not in the form to be 

interpreted directly.  Currently, these tools are being upgraded to reduce user input, to 

improve cross functionality and to get better results.  The main thrust of research is in 

commercial and health care sector followed by science and technology.  It is only recently 

that Data Mining has gained recognition in the national security field. 

 

 

1.2 Related Research 
 

Searching databases to extract vital information has been practiced for several 

years.  Pre-9/11 it was driven by commercial needs.  Post-9/11 has seen increased use of 

database search techniques for regional and national security needs.  By drawing 

correlations, Data Mining can lead to identification of crime patterns which will help in 

crime investigation, and, most importantly, to crime prediction. 
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The Tucson Police Department was able to trace a narcotics network comprised of 

approximately 60 criminals using Data Mining tools [5].  It was difficult to detect 

subgroups, interaction patterns, and the overall structure of the network manually.  They 

utilized clustering and block-modeling methods to identify a chain structure.  Various 

techniques were applied as per their applicability and depending on the investigation.  The 

developed system aided investigators in a better and faster understanding of the network 

and operations of criminals.  Most importantly, it suggested investigative leads to the 

investigators that otherwise might have been overlooked [6]. 

Based on past experience, it has been observed that clustering techniques group 

data items into classes based on characteristics so as to maximize in-class similarity.  For 

example, they can identify suspects those conduct crimes in similar fashion or distinguish 

among groups belonging to different gangs.  While, association rules mine frequent data 

patterns by treating them as rules, so any discrepancy can be identified as an intrusion.  

Classification is often used to predict crime trends.  It can reduce the time required to 

identify criminal entities.  However, it requires a complete training and testing database.  

It is also limited by a high degree of missing data values that seem to limit the prediction 

accuracy. 

As per the Regional Crime Analysis Program (RECAP) at Richmond B&E, if one 

decides to use only one year of crime data for detailed analysis then an analyst must spend 

1.5 million minutes, and will be able to perform only 15% of queries and spend 

approximately 20 minutes of time on each case [7].  Thus, the infeasibility of querying the 

database for analysis is stressed.  Also, it was noted that, to effectively relate crimes, the 

analyst needs to consider combinations of spatial, demographic, personnel and other data 

attributes. 

In intrusion and fraud detection [8], it was observed that besides scalability and 

efficiency, the fraud detection task had other problems such as skewed distributions of the 

training data and non-uniform cost per error, which had not been considered by the 

Knowledge-Discovery and Data Mining research.  Moreover, post pruning succeeded in 

computing with similar or better fraud detection capabilities, while reducing their size and 

improving efficiency.  Finally, the results of the study clearly demonstrated that 
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distributed Data Mining techniques that combine multiple models produce more effective 

fraud and intrusion detectors. 

To explore associations among a large number of objects of different types, Link 

Analysis concepts have been implemented [9].  Used in the case of money laundering, 

these objects include people, bank accounts, businesses, wire transfers, and cash deposits.  

Exploring relationships among different objects help indicate networks of activity, both 

legal and illegal.  The technique ensured productive use of records, but proved to be 

computationally intensive and required great skill and judgment on the part of the analyst 

during link construction and interpretation of whether the networks represented a 

legitimate pattern or that of a criminal organization.  

The use of statistical methods, predominantly Logistic Regression and Bayesian 

Networks, has also been suggested [10].  However, these methods are in a primitive stage.  

There is no clear consensus on how to control groups from the population as a datum for a 

given type of crime.  There is also lack of consensus regarding the selection of a particular 

method based on crime.  Lastly, the interpretation of the results depends on the viewpoint 

of the statisticians and the crime investigators. 

All of the above cases stress the fact that there are many means to the end, and 

more research is required to efficiently and effectively get the desirable outcomes.  In 

other words, there are many tools at our disposal but not an all-encompassing model or 

approach [2].  Examples of the current research field reaffirm the fact that, human 

intervention is absolute.  Also, better software and hardware are keys to analyzing the data 

that are routinely being generated these days. 
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1.3 Problem Statement 
 

The objective of this thesis is to design and implement a crime database and to 

provide the user with a capability to detect crime patterns in the data.  The data fields will 

be identified from the crime information in the available literature.  Basic and advanced 

search algorithms will be implemented.  Moreover, Association Rules and Decision Rules 

algorithms will be implemented and validated with the WEKA software. 

The database will be created in Microsoft SQL Server (back end).  The user 

interface (front end) and the crime pattern identification software (middle tier) will be 

implemented in ASP.NET.  This will enable the user to utilize the database from 

anywhere and at anytime.  A code to generate ARFF file that is compatible with WEKA 

will be provided to the user to graphically view the data.  Further, an effective navigation 

will be provided to make use of the software in user friendly way. 

It is expected that the Data Mining Tool will be able to identify hidden patterns 

from the test data that one cannot identify with routine database queries. 
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2. DATA MINING TECHNIQUES 

 

2.1 Introduction 
 

Data Mining (also called Knowledge Discovery) is the process of analyzing data 

from different perspectives and summarizing it into useful information or relationships.  It 

is also characterized as the process of finding correlations or patterns among dozens of 

fields in large relational databases.  Data Mining as defined by Larose [1] is an 

interdisciplinary field bringing together techniques from machine learning, pattern 

recognition, statistics, databases and visualization to address the issue of information 

extraction from large data bases. 

 

Such extracted information is deemed both understandable and useful to the data 

owner.  Organizations accumulate vast amounts of data in different formats and different 

databases, which are often located at more than one physical location.  For Data Mining 

applications, only the elements that can be interpreted and converted into a computer 

usable form are treated as data.  Data are defined as, any facts, numbers, or text that can 

be processed by a computer, to generate information.  This may include:  

a. Operational or transactional data such as, sales, cost, inventory, payroll, and 

accounting 

b. Non-operational data, such as industry sales, forecast data, and macro economic data  

c. Meta data--data about the data itself, such as logical database design or data dictionary 

definitions 

 

Further, the databases are combined, either by actual transfer of data or just 

logically with the use of database servers.  From these, the data can be accessed on a real-

time basis in ever increasing amounts and frequencies.  Almost all of the medium to large 

organizations have built their own data banks (warehouses).  The term data warehousing 

is defined in [1], as a process of centralized data management and retrieval. It represents 

an ideal vision of maintaining a central repository of all organizational data. 
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The organizations often rely on external agencies for proper use of the data.  Thus, 

the data warehouses are subjected to use by various Data Warehousing agencies with the 

aim of retrieving useful bits of information.  This information may not have any 

mathematical logical, or, for that matter, any sense at all, but may help the database 

researcher close in on the objective.  Thus, information is defined by [1]; are the patterns, 

associations, or relationships among all this data. Information can be converted into 

knowledge about historical patterns and future trends. 

 

Figure 2.1 shows the flow of data while being generated, stored and processed to 

get information which in turn becomes knowledge when interpreted. 

 

 
Figure 2.1: Flow of Data 
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2.2 Data Mining Methodology 
 

Data Mining is typically carried out in six phases referred to as CRISP - DM 

(Cross-Industry Standard Process for Data Mining) [1]. 

 

1. Business Understanding: This is the initial phase of CRISP-DM. In this, one strives to 

understand the main objective of the Data Mining endeavor. A problem definition is 

established clearly stating its goals, restrictions and strategy. 

 

2. Data Understanding: The primary focus during this phase is to evaluate data in terms 

of quality and quantity. Finally, an initial level classification is done on the database to 

get actionable data patterns. 

 

3. Data Preparation: During this phase, these data are transformed into a suitable form. 

This often involves modifying/transforming the database as well as normalizing if 

needed. 

 

4. Modeling: An appropriate model for the database is selected from the pool of options 

and optimized to suite the requirements. Often, more than one model is applied to 

meet the goals of the Data Mining project. 

 

5. Evaluation: In this phase, the model is evaluated to check whether it meets all the 

required parameters, objectives, and constraints, and to monitor if any aspect is left 

unattended with respect to the pre-established goals. 

 

6. Deployment: The model is implemented and detailed reports are generated based on 

the outcome. After brief analyses of the reports by the end user, possible ways of 

making more complex models are explored and to apply the model at more facilities. 
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Typical life cycle diagram of the CRISP_DM process is shown in the Figure 2.2 below. 

 

 
Figure 2.2: Cross-Industry Standard Process for Data Mining [1]. 

 

 

2.3 Data Mining Models 
 

Selection of a Data Mining Technique is the most important aspect of any Data 

Mining endeavor. Based on the objective, one decides what data should be used from the 

pool of data, and how they should be processed. This is followed by analysis of that data 

in a predefined way, which paves the way for the selection of a particular algorithm or a 

set of algorithms. In many of the emerging applications, it is clear that no single approach 

is optimal and that multiple methods and approaches need to be used. Consequently, 

combining several modalities and classifiers or techniques is now a common practice [10].  

The Data Mining models are categorized into different leaves. Further, each leaf 

signifies the relationship, if any, that is highlighted from the database. The techniques that 
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are actually applied may be a part of one or more leaves, and, based on which the 

categorization may vary.  This sometimes is a cause of discord amongst the researchers.  

For most applications the Data Mining Models can be put into one of the six main 

categories: 1) Association, 2) Classification, 3) Clustering, 4) Prediction, 5) Sequence 

Discovery, and 6) Generalization. Figure 2.3 shows the Data Mining Models along with 

associated methods. The models are briefly discussed below: 

 

 
Figure 2.3: Data Mining Approach 

 

 

1. Association: 

Association rules depict the inter-relationship between the data items.  These 

relationships often do not have any coherence with functional dependencies or correlation 

(Statistical Relationships).  Interpretation of the outcome by this technique may be best 

achieved by behavioral-based reasoning rather than use of any engineering technique.  

The data are paired or transactional, often present in a date-time-based sequence.  

Partitioning of the data into training and validation sets purely depends on the type of 

algorithm being used for this technique.  The sole aim is to come up with maximum 

number of item pairs with most number of transactions.  The typical examples of 

association are the transaction data from a retail store, collected over the year.  The 

interest is to find hidden relationships, if any, between any two items that are sold.  For 
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example, the items can be formal trousers and a shoe polish, that otherwise do not have 

any statistical and/or functional relation, but makes sense if one follows the thinking of a 

person who might be buying the trousers for an interview and remembers to buy the shoe 

polish as well.  

 

2. Classification: 

Classification, as the name suggests, is the process of placing or assigning the 

categorical variables into predefined classes.  An algorithm needs to be selected to place 

these data in categories.  The decision rules are based on training data and then used to 

locate these data in pre-determined groups.  The rules are further validated by the 

validation dataset.  Classification falls under supervised or directed Data Mining 

technique.  Most of the Data Mining techniques end up classifying these data in some way 

or other.  The classification techniques can be best explained by an example.  Let’s say a 

restaurant chain could mine customer purchase data to determine when they visit and what 

they typically order.  This information could be used to increase customer traffic by 

having daily specials.  Also, the menu could be arranged to suit customer needs.  Some of 

the issues in classification are: 

 

a. Missing Data: Missing values in the database can have a significant impact on the 

decision rules.  The missing data are filled by the mean value of the database or based 

on the business logic.  This may lead to improper decision rules because they have 

tendency to pull the regression line towards themselves.  

 

b. Measuring Accuracy: Accuracy is measured as the percentage of tupules that are 

placed into correct classes.  This is often based on user intellect, the algorithms that 

are chosen and the quantity and quality of data.  Data that overlap (belong to more 

than one class) can bear significant effect on the accuracy of the model. 

 

c. Being a highly supervised technique user input is required to determine the number of 

levels, leaves, etc. 
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d. Finally, the size of training, validation, and, test data affect the outcome of the 

relationship significantly. 

 

3. Clustering: 

In clustering, the data items are grouped according to their logical relationships or 

natural groupings and a structure as a whole is generated.  No clustering technique is 

universally applicable in uncovering the variety of structures present in multidimensional 

datasets; usually the ‘best’ applicable technique is selected [10].  There are no pre-defined 

groups, thus, clustering comes in the group of undirected Data Mining techniques.  Each 

cluster is collection of homogeneous elements, which may be exclusive to that group, but 

are similar to each other.  The presence of an element in a particular cluster may be 

definite or probabilistic.  They might even have a hierarchical structure, having a crude 

division of elements at the highest level of the hierarchy, which is then refined to sub-

clusters at lower levels.  Moreover, each cluster may be different from other clusters.  

Clustering prior to application of other Data Mining techniques might reduce the 

complexity by dividing the space of elements [12].  These space partitions might exhibit 

improved results when mined separately.  Clustering has found extensive application in 

the fields of marketing, Web mining, insurance, disaster planning, etc.  Clustering 

techniques identify clusters, whereas the classification methods place data in pre-defined 

clusters.  The main requirements of any clustering model are [3]: 

 

a. It should be robust to deal with multiple attributes of data, have high dimensionality 

and scalability 

b. It must successfully discover clusters even with arbitrary shape, but avoid reaching 

local minimum for a local function/decision 

c. For some algorithms, the number of clusters or distance needs to be chosen 

scientifically 

d. It should deal with noise and insensitivity better when compared to other models 

e. For a given model, the user is responsible to check whether the clusters are real and 

interesting from an application point of view 
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4. Prediction: 

In prediction, data are mined to anticipate behavior, patterns, and trends.  This is 

often the outcome of the previous three basic models.  The idea is that once the decision 

rules are generated through classification or clustering, those rules form the basis of the 

prediction model.  Thus, all the techniques discussed earlier are capable of prediction to 

some extent.  The error or the probability factor is considered while choosing any 

particular algorithm over another.  A good example of prediction would be an outdoor 

equipment retailer predicting the likelihood of a backpack being purchased based on a 

consumer's purchase of sleeping bags and hiking shoes.  

 

5. Sequence Discovery: 

Sequence discovery is used to determine sequential patterns in the data.  These 

sequences are more often associations between various data fields, but they are essentially 

based on time and often follow a particular queue.  This technique encompasses 

association rules as well as Markov concepts; hence not much can be elaborated on 

regarding this.  For instance, if a person buys a CD player then he is bound to buy CDs for 

it sooner than later [2]. 

 

6. Generalization: 

Generalization, also called Description or Summarization, pulls the data into 

subsets with their respective descriptions.  Sometimes actual portions of the mined data 

are retrieved and based on that the subsets described above are created.  Generalization is 

not a Data Mining method; it is the outcome of Data Mining technique. 

 

Often algorithms are called by the name of the model they fit into or by the name 

of the algorithm.  For example, an algorithm for finding clusters in the database is called a 

“Clustering Algorithm,” whereas an algorithm used to establish association rules is called 

an “Apriori Algorithm.” 
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2.4 Data Mining Methods 
 

The common Data Mining methods are 1) Regression Analysis, 2) Naïve Bayes 

Classification, 3) Decision Rules, 4) Rule Induction, 5) Neural Networks, 6) Genetic 

Algorithm, 7) Association Rules, 8) Hierarchical Clustering, 9) Partitional Clustering, 10) 

Markov Model, and 11) Data Visualization. A brief description of each method is 

provided below: 

 

 

1. Regression Analysis 

Regression Analysis is used by the classification and prediction models.  Statistical 

regression models are implemented that best fit the training data.  The objective is to 

minimize the Sum of Squared Error (SSE).  Once a model is developed, it is then 

validated with the validation dataset.  The model is run on a new set of data (independent 

variables).  Regression algorithms consider effects of interaction and correlation in data; 

they also measure trend in the data that many other Data Mining methods cannot.  Even 

so, Logistic Regression has found more practical applications in many real-life scenarios 

[14].  It is a non-linear regression model where the response variables are discrete in 

nature, often qualitative for Data Mining, with a sigmoidal response function.  Different 

response functions are used, namely, Probit, Logit, Log-Log, MLE, give the probability 

for the event.  These functions often generate the odds or probability of the event under 

study. 

 

 

2. Naïve Bayes Algorithm 

The Naïve Bayes algorithm is based on the Bayesian theorem and is particularly 

well suited when the dimensionality of the inputs is high.  Essentially it classifies a new 

record based on probabilities estimated from the training data.  Despite its simplicity, 

Naïve Bayes can often outperform many sophisticated classification methods.  

For example, a task could be to classify new cases as they arrive based on the 

existing types of objects with their respective probability of occurrence i.e. prior 
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probability.  Then, for a new point in space, one can calculate the likelihood as, the 

number of objects in vicinity, divided by total objects of the same type.  The final 

classification would then be produced by combining both sources of information, i.e., the 

prior and the likelihood, to form a probability of classification into a particular class 

(posterior probability) using the Bayes' rule.  This algorithm has accuracy problems, based 

on the complexity of data, for continuous data. 

 

 

3. Decision Rules 

Decision Rules or decision trees are based on an inductive approach. Decision 

rules take an if/then approach and Decision trees develop a graph similar to a tree 

diagram.  Decision trees are constructed in order to help in decisions that in turn generate 

rules for the classification of a new unclassified dataset.  They also act as a tool for 

selection of variables for Neural Networks and Regression.  Some of the methods are 

Iterative Dichotomizer 3 (ID3), Classification and Regression Trees (CART), and Chi 

Square Automatic Interaction Detection (CHAID). ID3 and CART segment the dataset by 

binary splits and CHAID does multi-way splits.  Also, decision rule algorithms have 

difficulty with missing values (now imputed, i.e., removed or replaced), continuous data 

(now pruned), and most ignore correlations and interactions in data [2]. 

 

 

4. Rule Induction  

Rule Induction algorithms work complementarily to the Decision Tree algorithm, 

concerning, extraction of useful rules from data.  Each class is considered separately and 

then an attempt is made to cover all elements in that class.  The Rule Induction is called 

the “Covering Approach,” because at each stage, rules would be determined that cover a 

set of the elements.  Further, these algorithms test the rule being constructed, thus 

maximizing accuracy. 
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5. Neural Networks 

Neural Networks algorithms originated from the research aimed at understanding 

biological information processing systems.  Thus, the concept of Artificial Neural 

Networks (ANN) was born in an attempt to simulate the brain’s processing system.  Even 

though there is lack of understanding about how the brain works, the models that were 

built produced reasonably good results.  Instead of using the central processor to analyze a 

number of instructions, the neural net software analyzes the data by passing them through 

several simulated processes that are interconnected. 

 

A simple neural network consists of input, hidden, and output layers: 

1. The Input Layer is comprised of the input nodes.  The input data are scaled and then a 

model is built to calculate the scaled output values. 

 

2. The Hidden Layer receives the data from the input nodes and transmits their combined 

value to the output node. 

 

3. The Output Layer gets the inputs from the hidden layer and these inputs are used to 

calculate the output of the whole system.  These outputs are scaled back to their 

original values. 

 

The Neural Networks can be used for Data Mining applications [15].  Some of the 

popular Neural Network algorithms for Data Mining are: a) Back Propagation Algorithm 

that is effectively able to do all six main tasks of Data Mining, but primarily, used for 

prediction purposes, b) Kohonen, Self Organizing Maps is essentially a clustering method 

only, and has been extensively used for that. 

 

Historically, Neural Networks are found to generate outcomes that are best 

amongst the group, but often by a small margin especially in case of Regression 

Algorithms and Decision Trees.  At the same time, they use many more parameters as 

compared to any other method.  Therefore, in practice there is a trade off with the use of 

Neural Networks and other Data Mining Algorithms.  All Neural Networks are prone to 
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over-fitting the data; they require data in numerical or converted to numerical form.  

Moreover, their training is slow and, being “Black Box,” relatively harder to interpret and 

use. 

 

 

6. Genetic Algorithm 

This optimization search technique is based on the concepts of natural evolution, 

sometimes considered as an automatically evolving special case of the Rule Induction 

algorithm [16].  Unlike other algorithms, the output is general yet specific to the case 

under study and is understandable mainly by the domain experts.  Hence, it cannot be used 

to build generic applications for Data Mining.  During each run, a large population of 

random chromosomes is created.  When decoded, each one represents a different solution 

to the problem at hand.  The following steps are repeated until a solution is found: 

 

a. Test each chromosome with fitness function to see how good it is at solving the 

problem at hand and assign a fitness score accordingly 

 

b. Select two members from the current population based on fitness.  The Roulette wheel 

selection is a commonly used method where size of a section is proportional to fitness 

 

c. Dependent on the crossover rate the bits from each chosen chromosome swap at a 

randomly chosen point 

 

d. Step through the chosen chromosomes bits and flip depending on the mutation rates 

 

e. Repeat step b, c, d until a new population of N members has been created 

 

Thus a generalized solution to problem is reached.  Genetic Algorithm is preferred 

for applications pertaining to relatively smaller databases. 
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7. Association Algorithm 

Association algorithms generate candidate item sets from complete item sets; of 

those, the ones with infrequent sub-patterns are pruned.  Thus, the generated candidate 

sets contain item sets that scan the whole transaction database to determine frequent item 

sets among the candidates.  For determining frequent items in a fast manner, the algorithm 

stores candidate item sets.  Unlike other algorithms, Association algorithms are designed 

to operate on databases containing transactions.  The algorithms are generally simple to 

implement and reasonably efficient. 

For example, the owner of a store that sells DVDs, VCD, books, and games may 

want to discover which of these items customers are likely to buy together.  Customers in 

this particular store may like buying a DVD and a game in 10 out of every 100 

transactions, or the sale of VCD may hardly ever be associated with a sale of a DVD.  

With the information above, the store could strive for more optimum placement of DVDs 

and games, as the sale of one of them may improve the chances of the sale of the 

other frequently associated item. 

Some of the association methods are: Apriori, Partitioning Algorithm, Count 

Distribution Algorithm (CDA), and Data Distribution Algorithm (DDA) [2]. Of these, the 

Partitioning algorithms generate a large number of candidates for non-uniform data, thus 

increasing the computational complexity and resource consumption, but they are able to 

utilize the memory. The CDA and DDA often need parallel processing or even multi-

processing for computation as they have large message traffic. 

 
Advantages and Drawbacks 

 

Advantages: 

a. Decision Rule models are simple to understand and interpret (White Box). 

b. They can handle both nominal and categorical data, once discrete before use in the 

model. 

c. They do not need normalization and or removal of missing values. 

d. They are robust and work well with large data. 
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Drawbacks: 

a. Difficult to predict the value of the continuous attributes.  

b. Reduced accuracy of classification for high dimensional data. 

c. They are computationally expensive.  Moreover, pruning algorithms add to the 

complexity as many candidate sub-trees are formed and compared. 

d. Decision rules often lead to rectangular classification boxes that might not correspond 

well with the actual distribution of records. 

 

 

8. Hierarchical Clustering  
The two primary algorithms of this type are a) Agglomerative Algorithm and b) 

Divisive Algorithm [2]. 

 

Agglomerative Clustering  

Agglomerative Clustering algorithms start with each individual item as its own 

cluster and then iteratively merge clusters until all items merge into one cluster as per the 

threshold distance criteria.  The three sub-types of these algorithms are Single Link, 

Complete Link and Average Link algorithms.  

 

Divisive Clustering  

These algorithms behave in the way that is exactly opposite to the Agglomerative 

Clustering.  Here, all the items are considered to be part of a single cluster and then split.  

All hierarchical clustering algorithms face excessive space and time constraints.  Thus, 

they are difficult to use on large databases.  Moreover, these algorithms cannot handle 

trends in data, whenever new data are added or old data removed, it has to be re-run. 

 

 

 

 

 

 



 21

9. Partitional Clustering  

The two primary algorithms of this type of clustering are: a) K- Means Clustering, 

and b) Nearest Neighbor. 

 

K – means Clustering 

K-means Clustering are the most common unsupervised learning algorithms that 

are used for classification or partition of the data into clusters that are fixed a priori.  The 

main idea is to pre-define centroids, one for each cluster, the artificial points in the spaces 

which represent a mean location of all the items of that particular cluster.  These centroids 

should be placed in an intelligent way, as the algorithm is sensitive to initial selection, 

because their different location gives different results.  So, the better choice is to place 

them as far as possible from each other.  Centroid is defined as the representative element 

of a cluster; it is the point whose parameter values are the average of the parameter 

values of every point in the current cluster.  The steps of the K-means algorithm are: 

a. Randomly select some points to be the seeds for the centroids of the clusters. 

 

b. Assign data items to the centroid closest to them, thus forming clusters of items. 

 

c. Find new centroids for the items belonging to the same cluster. 

 

d. If the centroids have changed their “coordinates,” then start again from step b.  Else, 

cluster detection is finished with all cluster memberships defined. 

 

The K-means algorithm might not find the most optimal configuration, 

corresponding to the global objective function minimum.  A simple approach is to 

compare the results of multiple runs with different seed selection and choose the best one 

as per given criterion, while taking care of overfitting.  Also, the values in the dataset must 

all be numeric; categorical data must be transformed into numeric ones, and should be 

normalized in order to allow fair computation of the overall distances in a multi-attribute 

space.  Median values are often used to tackle outliers.  Also, individual significance of 

the items in the group, towards the centroid, remains unknown. 
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Nearest Neighbor  

These are memory-based algorithms, typically used for classification and 

prediction scenario.  Each dataset consists of a set of independent values labeled by a set 

of dependent outcomes.  They would be either continuous or categorical based on which 

regression or classification is done.  For a new dependent value called query point, the 

outcome is estimated based on the KNN datasets.  For regression, the predictions are 

based on averaging the outcomes of the k nearest neighbors and for classification; voting 

is used.  Choice of “k” could be the most important factor of the algorithm which also acts 

as a smoothing parameter.  A higher value for “k” increases the bias and reduces variance 

and vice versa also holds true. 

The value of “k” is estimated by Cross-validation when model parameters are 

unknown.  The data are divided into numbers of randomly drawn samples.  For a fixed 

value of “k,” the KNN model is used to make predictions and evaluate the error (SSE for 

regression or Accuracy for prediction).  This is then successively applied to all possible 

sample choices.  At the end, the errors are averaged to yield a measure of the stability of 

the model.  The above steps are repeated for various “k” and the value with lowest error or 

highest classification accuracy is selected.  It would be worth the effort, however only for 

fast queries and large numbers of items.  Moreover, nearest neighbor search gets 

progressively harder as the dimensionality increases.    

For prediction i.e. regression the typical score functions would be Euclidean, or 

other Weighted Distance measures.  While for classification, a voting scheme is used.  

The KNN is often found to be vulnerable in case of equal instances and weights of 

variables. 

 

 

10. Markov and Hidden Markov 

Markov and Hidden Markov Algorithms are widely used to model sequential 

processes, and have achieved practical successes in many areas such as Web log mining, 

computational biology, speech recognition, robotics, fault diagnosis, and survival analysis 

[17].  A first-order Markov model contains a single variable, the state, and specifies the 

probability of each state and of transiting from one state to another.  Hidden Markov 
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Models (HMMs) contain two variables: the hidden state and the observation. In addition 

to the transition probabilities, HMMs specify the probability of making each observation 

in each state.  Because the number of parameters of a first-order Markov model is 

quadratic in the number of states (and higher for higher-order models), learning Markov 

models is feasible only in relatively small state spaces.  This requirement makes them 

unsuitable for many Data Mining applications, which are concerned with very large state 

spaces.  Still, their advantage is that they can be estimated statistically and adapted 

quickly.  For example, they could be used to predict the probability of seeing a link on a 

Web page given a history of accessed links and also help generate a sequence of links that 

could be accessed by the user in the future.  

 

11. Data Visualization 

The visual interpretations of complex relationships in the multidimensional data 

are often termed as Data Visualization.  Many new and innovative graphics tools are used 

to illustrate the data in space and, more importantly the data relationships.  Data 

Visualization is mostly used in combination with other algorithms to make the results 

more presentable, readable, and understandable.  Thus, it is an important part of Data 

Mining group, even though it does not analyze the data. 

 

DMQL 

With increased use of RDBMS (Relational Database Models) and recent 

advancements in SQL based querying tools, such as Oracle 9i and MS SQL Server 2005, 

more complicated tasks such as OLAP (Online Analytical Processing) and Data Mining 

Applications are being developed.  A Data Mining Query Language (DMQL) has been 

proposed.  This works only with RDBMS [2]. 

 

Table 2.1 classifies the various Data Mining algorithms according to problem type, 

namely, Association, Classification, Clustering, Prediction, Discovery, and 

Summarization. 
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Table 2.1: List of Data Mining Algorithms 

Problem Types 
S.  

No. Methods 
Association Classification Clustering Prediction Sequence 

Discovery 
Description/ 
Summarization 

Input Output 

1 Regression Analysis  Y  Y   Numerical Values Multivariate 
Equation 

2 

Naïve Bayes 
Classification 

Algorithm 
(Probabilistic) 

 Y     Numerical Values
Probability of 

outcomes belonging 
to particular classes. 

3.1 Decision Rules or 
Trees (DT): ID3  Y Y Y  Y 

Sample 
Computational 
Data, Numeric. 

Decision Rules/Tree 

3.2 DT: C4.5  Y  Y   
Sample 

Computational 
Data, 

Decision Rules/Tree 

3.3 
DT: Classification 

And Regression Trees 
(CART) 

 Y  Y   
Sample 

Computational 
Data, Numeric. 

Decision 
Rules/Binary Tree 

3.4 
DT: Chi Squared 

Automatic Interaction 
Detection (CHAID) 

 Y  Y   
Sample 

Computational 
Data, Numeric. 

Decision Rules/Tree 

3.5 
DT: Quick Unbiased 
Efficient Statistical 

Tree (QUEST) 
 Y  Y   

Sample 
Computational 
Data, Numeric. 

Decision Rules/Tree 

4 Rule Induction  Y  Y   
Sample 

Computational 
Data, Numeric. 

Decision Rules/Tree 

5.1 NN: Back Propagation 
Algorithm Y Y Y Y   Feature of pattern.

Classification, 
Prediction, 

Clustering and 
Association results. 
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Problem Types 
S. 

No. Methods 
Association Classification Clustering Prediction Sequence 

Discovery 
Description/ 

Summarization

Input Output 

5.2 NN: Self Organizing 
Map - Kohonen  Y Y    Feature of pattern. Clusters of data. 

6 Genetic Algorithm    Y   Binary streams. Set of rules. 

7 Association Algorithm 
(Apriori) Y    Y  Transactional 

Data 
Freq. of Associations 

of features. 

8.1 

Agglomerative 
Algorithm 

(Hierarchical 
Clustering) 

  Y    Sample feature 
data. Clusters of data. 

8.2 
Divisive Algorithm 

(Hierarchical 
Clustering) 

  Y    Sample feature 
data. Clusters of data. 

9.1 
k - Nearest Neighbor 

(Partitional 
Clustering) 

Y Y Y Y   

Features of the 
predictor and/or 

classifier 
variables. 

Classification or 
grouping of datasets 
based on weighted 
distance from the 

target or query 
(centroid). 

9.2 
k - Means Clustering 

(Partitional 
Clustering) 

Y  Y   Y 

Features of the 
predictor and/or 

classifier 
variables. 

Clusters or grouping 
of datasets based on 
similarities or closest 

to centroid. 

10 Markov and Hidden 
Markov Model  Y  Y Y  Instance based 

data. 

Sequence or 
probability of a 

sequence. 
11 Data Visualization     Y Y Not Considered Not Considered 
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2.5 Algorithm Structure 

 

Section 2.3 described how the Data Mining models are categorized.  This section 

describes the different components of Data Mining algorithms.  The four components of a 

typical Data Mining algorithm are [13]: 

 

1. Pattern Structure: 

Pattern structure is the underlying structure or functional form that is part of the 

algorithm.  Based on the score or selection criterion, data similar to the pattern structures 

are sought from the data.  They are often called the relevant condition, constraint or 

parameter that will be computed by the algorithm.  The name “pattern structure” is 

sometimes replaced by the term “model structure.” 

 

2. Score Function: 

This quantifies how well a given pattern or parameter fits the given dataset.  Thus, 

based on the error that is generated, modifications are made to the algorithm.  Further, the 

range of the input values to the model, in the form of constraints of the function, can be 

determined.  They often serve the purpose of comparing the utility or efficiency of one 

method over the other, thus helping to choose one model over another.  Finally, it is 

desirable that the score function should be robust and not be sensitive to the input values.  

There are many types of score functions, including Squared Error, Gini Coefficient, 

Euclidean Distance, and Entropy. 

 

3. Optimization and Search Function: 

The task of the optimization function is to determine the “best” set of values from 

the given data depending on the objective.  The best set essentially means the values that 

minimize or maximize the score function as desired by the Data Mining logic.  The task of 

finding an interesting pattern is essentially the task of a search function.  The search 

function may make use of searching techniques such as binary search, index search and 

more importantly using different heuristic search techniques. 
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4. Data Management Strategy 

This concerns efficient handling of data during the optimization and search 

operation.  Until recently, this had little bearing on the Data Mining model, but now 

significant emphasis is put on the data that are being managed in order to improve the 

overall efficiency of the Data Mining algorithm.  Moreover, the way (format, order, etc.) 

in which data are to be arranged from the user or algorithm viewpoint is also important.  

This is supported by fact that with increase in the size of data, it takes more and more time 

to train, validate and actually mine them. 
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2.6 Summary 

 

The significance of the Data Mining field can be attributed to: 

 

a. Explosive growth in data.  

b. Advancement in data gathering mechanisms. Superior Internet and intranet facilities. 

c. Proportionate increase in data storage and computation capability. 

d. Competitive pressure to maintain market share in this era of globalization. 

e. Advancement in health care facilities. 

f. Security needs of the community, country and the world. 

 

 

Some issues concerning Data Mining are: 

 

a. It is an open-ended search which does not guaranty a solution to the problem. 

b. Most algorithms require significantly skilled human input. 

c. The outcome of the Data Mining procedure is highly dependent on the data quality 

and quantity for the given objective. 

d. The significance of the outcome has to be gauged by the end user, while keeping the 

objective in mind. 

e. The returns of Data Mining in terms of cost, time, and effort are a matter of dispute. 
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3. DATABASE DESIGN AND IMPLEMENTATION 

 

3.1 Introduction 
 

For the crime database, various data fields were identified to cover real world 

scenarios.  The inputs were taken from the Forensic Information Management System 

(FIMS) that is being developed for West Virginia State Police Department [21] and Web 

sources of various crime investigation agencies [22].  The entities that were identified are, 

1) Offense, 2) Suspect, 3) Victim, 4) Convict, 5) Investigating Agency, 6) Officer In-

charge, 7) Charges (against convict), and 8) Verdict.  Four groups of tables as shown in 

Table 3.1 were created (Data Tables, Code Tables, Link Tables, and Query Tables).  The 

various tables under each group are shown below. 

 

Table 3.1: Tables in Crime Database 

S. 
No. Data Tables 

S. 
No. Code Tables 

S. 
No. Link Tables 

S. 
No Query Tables

1 dtOffense 1 ctOffenseType 1 ltLnkOffSus 1 tblQuery 
2 dtSuspect_Physical 2 ctDrugListType 2 ltLnkOffVic     
3 dtSuspect_Alias 3 ctAgencyType 3 ltLnkCon     
4 dtSuspect_Variable 4 ctOfficerTitle         
5 dtVictim_Physical 5 ctCountyType         
6 dtVictim_Alias 6 ctStateType         
7 dtVictim_Variable 7 ctCountryType         
8 dtAgencyInfo 8 ctRaceType         
9 dtOfficerInfo 9 ctGenderType         
10 dtOfficerWorkInfo 10 ctEyeColorType         
11 dtConvict 11 ctHairColorType         
12 dtCharges 12 ctFinCondtnType         
13 dtVerdict 13 ctBehvAspctType         
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3.2 Data Tables 
 

The fields of the data tables were built from various sources as stated earlier.  The 

tables are populated as the cases are registered by the crime investigating agency.  The 

various fields of the “dtOffense” table are shown in Table 3.2.  This table has details 

related to offense such as registration, time, type and address of offense as well as brief 

description of offense. 

 

Table 3.2: Fields of “dtOffense” Table 

Field Name Data Type Length Description 
ACN nvarchar 50 Agency Case Number 
AgencyID nvarchar 50 Agency Identification Number 
OfficerID nvarchar 50 Officer’s Identification Number 
EntryDate datetime 8 Entry date of case 
ModifDate datetime 8 Modification date 
OffenseDate datetime 8 Offense date 
OffenseTime datetime 8 Offense time 
OffenseDay nvarchar 50 Offense day 
OffenseType nvarchar 50 Offense type 
Street nvarchar 50 Address of offense 
City nvarchar 50 City of Offense 
County nvarchar 50 County of Offense 
State nvarchar 50 State of Offense 
Country nvarchar 50 Country of Offense 
ZipCode nvarchar 50 Zip Code of Offense 
OffenseDescp nvarchar 500 Brief description of offense 
CaseStatus nvarchar 50 Status of the case 
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The fields of the “dtSuspect_Physical” table are shown in Table 3.3.  This table 

stores the physical attributes (non-changeable) of a suspect in the database and a suspect 

identification number is generated. 

 

Table 3.3: Fields of “dtSuspect_Physical” Table 

Field Name Data Type Length Description 
SuspectID nvarchar 50 Identification Number of suspect 
EntryDate datetime 8 Entry date of record 
ModifDate datetime 8 Modification date of record 
SSN nvarchar 50 Social security of the suspect  
LName nvarchar 50 Last Name of the suspect 
FName nvarchar 50 First Name of the suspect 
MName nvarchar 50 Middle Name of the suspect 
Suffix nvarchar 50 Suffix of the suspect 
DOB nvarchar 8 Date of birth 
POB nvarchar 50 Place of birth 
Age nvarchar 50 Age of the suspect 
Height nvarchar 50 Height of the suspect 
Weight nvarchar 50 Weight of the suspect 
Dexterity nvarchar 50 Right/Left handedness of the suspect 
EyeColor nvarchar 50 Eye Color of the suspect 
HairColor nvarchar 50 Hair Color of the suspect 
SkinColor nvarchar 50 Skin Color of the suspect 
FingerClass nvarchar 50 Finger Print Classification of the suspect 
FingerPatt nvarchar 50 Finger Print Pattern of the suspect 
IndvMarks nvarchar 500 Marks on individual’s body of the suspect 
Race nvarchar 50 Race of the suspect 
Gender nvarchar 50 Gender of the suspect 

 

The fields of the table “dtSuspect_Alias” are shown in Table 3.4.  This table stores 

various aliases of the suspect in the database for the same suspect identification number. 

 

Table 3.4: Fields of “dtSuspect_Alias” Table 

Field Name Data Type Length Description 
SuspectID nvarchar 50 Identification Number of suspect. 
AliasNum nvarchar 50 Alias Number of suspect 
LastName nvarchar 50 Last Name of the suspect 
FirstName nvarchar 50 First Name of the suspect 
MiddleName nvarchar 50 Middle Name of the suspect 
Suffix nvarchar 50 Suffix of the suspect 
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The fields of the “dtSuspect_Variable” table are shown in Table 3.5.  This table 

stores variable characteristics (changeable) of a suspect in the database based on suspect 

identification number and alias number. 

 

Table 3.5: Fields of “dtSuspect_Variable” Table 

Field Name Data Type Length Description 
SuspectID nvarchar 50 Identification Number of Suspect 
AliasNum nvarchar 50 Alias Number of Suspect 
EntryLevel nvarchar 50 Level of record entry for given alias 
EntryDate datetime 8 Date of record entry 
PassportNo nvarchar 50 Passport No of suspect 
Citizenship nvarchar 50 Citizenship of suspect 
LiscenceNo nvarchar 50 License No of suspect 
Religion nvarchar 50 Religion of suspect 
Occupation nvarchar 50 Occupation of suspect 
Street nvarchar 50 Street of suspect  
City nvarchar 50 City of suspect 
County nvarchar 50 County of suspect 
State nvarchar 50 State of suspect 
Country nvarchar 50 Country of suspect 
ZipCode nvarchar 50 Zip Code of suspect 
Phone nvarchar 50 Phone No of suspect 
EmerContact nvarchar 50 Emergency contact of suspect 
FinCondtn nvarchar 50 Financial condition of suspect 
FinDescp nvarchar 50 Financial description of suspect 
BehvAspect nvarchar 50 Behavioral aspect of suspect 
BehvDescp nvarchar 50 Behavioral description of suspect 
DefnTrain nvarchar 50 Defense training if any 
WeapTrain nvarchar 50 Weapons training if any 
DrugHist nvarchar 50 Drug history if any 
DrugType nvarchar 50 Drug type associated with if any 
Charge1 nvarchar 50 Charge1 if any 
Charge2 nvarchar 50 Charge2 if any 
Charge3 nvarchar 50 Charge3 if any 
Status nvarchar 50 Status as in prior conviction etc 
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The fields of the “dtVictim_Physical” table are shown in Table 3.6.  This table 

stores the physical attributes (non-changeable) of a victim in the database and a victim 

identification number is generated. 

 

Table 3.6: Fields of “dtVictim_Physical” Table 

Field Name Data Type Length Description 
VictimID nvarchar 50 Identification Number of victim 
EntryDate datetime 8 Entry date of record 
ModifDate datetime 8 Modification date of record 
SSN nvarchar 50 Social security of the victim 
LName nvarchar 50 Last Name of the victim 
FName nvarchar 50 First Name of the victim 
MName nvarchar 50 Middle Name of the victim 
Suffix nvarchar 50 Suffix of the victim 
DOB nvarchar 8 Date of birth 
POB nvarchar 50 Place of birth 
Age nvarchar 50 Age of the victim 
Height nvarchar 50 Height of the victim 
Weight nvarchar 50 Weight of the victim 
Dexterity nvarchar 50 Right/Left handedness of the victim 
EyeColor nvarchar 50 Eye Color of the victim 
HairColor nvarchar 50 Hair Color of the victim 
SkinColor nvarchar 50 Skin Color of the victim 
FingerClass nvarchar 50 Finger Print Classification of the victim 
FingerPatt nvarchar 50 Finger Print Pattern of the victim 
IndvMarks nvarchar 500 Marks on individual’s body of the victim 
Race nvarchar 50 Race of the victim 
Gender nvarchar 50 Gender of the victim 

 

The fields of the “dtVictim_Alias” table are shown in Table 3.7.  This table stores 

the aliases of the victim in the database for the same victim identification number. 

 

Table 3.7: Fields of “dtVictim_Alias” Table 

Field Name Data Type Length Description 
VictimID nvarchar 50 Identification Number of victim 
AliasNum nvarchar 50 Alias Number of victim 
LastName nvarchar 50 Last Name of the victim 
FirstName nvarchar 50 First Name of the victim 
MiddleName nvarchar 50 Middle Name of the victim 
Suffix nvarchar 50 Suffix of the victim 
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The fields of the “dtVictim_Variable” table are shown in Table 3.8.  This table 

stores variable characteristics (changeable) of a victim in the database based on 

identification number and alias number. 

 

Table 3.8: Fields of “dtVictim_Variable” Table 

Field Name Data Type Length Description 
Victim ID nvarchar 50 Identification Number of victim 
AliasNum nvarchar 50 Alias Number of victim 
EntryLevel nvarchar 50 Level of record entry for given alias 
EntryDate datetime 8 Date of record entry 
PassportNo nvarchar 50 Passport No of victim 
Citizenship nvarchar 50 Citizenship of victim 
LiscenceNo nvarchar 50 License No of victim 
Religion nvarchar 50 Religion of victim 
Occupation nvarchar 50 Occupation of victim 
Street nvarchar 50 Street of victim 
City nvarchar 50 City of victim 
County nvarchar 50 County of victim 
State nvarchar 50 State of victim 
Country nvarchar 50 Country of victim 
ZipCode nvarchar 50 Zip Code of victim 
Phone nvarchar 50 Phone No of victim 
EmerContact nvarchar 50 Emergency contact of victim 
FinCondtn nvarchar 50 Financial condition of victim 
FinDescp nvarchar 50 Financial description of victim 
BehvAspect nvarchar 50 Behavioral aspect of victim 
BehvDescp nvarchar 50 Behavioral description of victim 
DefnTrain nvarchar 50 Defense training if any 
WeapTrain nvarchar 50 Weapons training if any 
DrugHist nvarchar 50 Drug history if any 
DrugType nvarchar 50 Drug type associated with if any 
Charge1 nvarchar 50 Charge1 if any 
Charge2 nvarchar 50 Charge2 if any 
Charge3 nvarchar 50 Charge3 if any 
Status nvarchar 50 Status as in prior conviction etc 
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The fields of the “dtAgencyInfo” table are shown in Table 3.9.  This table stores 

information pertaining to the different agencies involved in solving the crime. 

 

Table 3.9: Fields of “dtAgencyInfo” Table 

Field Name Data Type Length Description 
AgencyID nvarchar 50 Agency Identification Number 
AgencyName nvarchar 50 Agency Name 
AgencyType nvarchar 50 Type of agency Ex. Forensic, Investigation etc. 
Street nvarchar 50 Street of the agency 
City nvarchar 50 City of the agency 
County nvarchar 50 County of the agency 
State nvarchar 50 State of the agency 
Country nvarchar 50 Country of the agency 
ZipCode nvarchar 50 Zip Code of the agency 
Phone nvarchar 50 Phone number of the agency 
Contact nvarchar 50 Contact person at the agency 
Notes nvarchar 500 Important notes if any 

 

The fields of the “dtOfficerInfo” table are shown in Table 3.10.  This table stores 

the personal information about the crime investigating and other security officers. 

 

Table 3.10: Fields of “dtOfficerInfo” Table 

Field Name Data Type Length Description 
OfficerID nvarchar 50 Identification Number of the officer 
LName nvarchar 50 Last Name of the officer 
FName nvarchar 50 First Name of the officer 
MName nvarchar 50 Middle Name of the officer 
Suffix nvarchar 50 Suffix of the officer 
SSN nvarchar 50 Social security number of the officer 
DOB datetime 8 Date of birth of the officer 
Gender nvarchar 50 Gender of the officer 
Race nvarchar 50 Race of the officer 
Street nvarchar 50 Street of the officer 
City nvarchar 50 City of the officer 
County nvarchar 50 County of the officer 
State nvarchar 50 State of the officer 
Country nvarchar 50 Country of the officer 
ZipCode nvarchar 50 Zip Code of the officer 
Phone nvarchar 50 Phone number of the officer 
Notes nvarchar 500 Important notes if any 

 



 36

The fields of the “dtOfficerWorkInfo” table are shown in Table 3.11.  This table 

stores the professional information about the crime investigating and other security 

officers. 

 

Table 3.11: Fields of “dtOfficerWorkInfo” Table 

Field Name Data Type Length Description 
OfficerID nvarchar 50 Identification Number of the officer 
EntryDate datetime 8 Date of record entry 
ModifDate datetime 8 Date of record modification 
JobTitle nvarchar 50 Title of the officer 
Dept nvarchar 50 Department of the officer 
HireDate datetime 8 Date of hire of the officer 
TitleDate datetime 8 Date of current title 
Status nvarchar 50 Status of the officer 
Specialization nvarchar 500 Specialization of the Officer 
Performance nvarchar 500 Performance of the Officer 

 

 

The fields of the “dtConvict” table are shown in Table 3.12.  This table stores the 

official information about the individuals convicted of crime. 

 
Table 3.12: Fields of “dtConvict” Table 

Field Name Data Type Length Description 
ConvictID nvarchar 50 Identification Number of the convict 
ArrestDate datetime 8 Arrest date of the convict 
CourtAssigned nvarchar 50 Court assigned for trial 
Trial nvarchar 50 Type of trial 
Counsel nvarchar 50 Counsel status, type and name 
PurposeCode nvarchar 50 Purpose Code of the convict 
OBTS nvarchar 50 OBTS of the convict 
SuspectID nvarchar 50 Suspect Identification if matches 
VictimID nvarchar 50 Victim Identification if matches 
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The fields of the “dtConvict” table are shown in Table 3.13.  This table stores the 

charges and related information of the individual convicted of crime. 

 

Table 3.13: Fields of “dtCharges” Table 

Field Name Data Type Length Description 
ConvictID nvarchar 50 Convict’s Identification Number 
ChargeNum nvarchar 50 Charge Number 
Charge nvarchar 50 Type of charge 
Motivation nvarchar 50 Motivation for crime 
ProsecData nvarchar 50 Data available with prosecution 
CourtData nvarchar 50 Data available with court 
ConvictPlea nvarchar 50 Convict’s plea 
Status nvarchar 50 Guilty / Not Guilty 

 

 

The fields of the “dtVerdict” table are shown in Table 3.14.  This table stores the 

verdict against individual charge of the individual convicted of crime. 

 

Table 3.14: Fields of “dtVerdict” Table 

Field Name Data Type Length Description 
ConvictID nvarchar 50 Convict Identification Number 
ChargeNum nvarchar 50 Charge Number 
Statute nvarchar 50 Statute 
StatueDate datetime 8 Date of statute 
StatuteLevel nvarchar 50 Level or Degree of statute 
StatuteDescp nvarchar 50 Description of Statute 
Sentence nvarchar 50 Type of sentence 
SentenceDate datetime 8 Date of sentence 
SentencePlace nvarchar 50 Place of sentence 
FinalDispo nvarchar 50 Final Disposition 
DispoDate datetime 8 Date of disposition 
MdtRelDate datetime 8 Mandatory release date 
MdtExpDate datetime 8 Mandatory expiry date 
SupRelDate datetime 8 Supplementary release date 
SupExpDate datetime 8 Supplementary expiry date 
SupRelTerms nvarchar 50 Supplementary release terms 
SupStatus nvarchar 50 Supplementary status 
ParoleDate datetime 8 Parole date 
ParoleExpDate datetime 8 Parole expiration date 
ProbDate datetime 8 Probation date 
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ProbExpDate datetime 8 Probation expiration date 
SPTDate datetime 8 SPT date 
SPTExpDate datetime 8 SPT expiration date 
PTDDate datetime 8 PTD date 
PTDExpDate datetime 8 PTD expiration date 
StatusWanted nvarchar 50 Convict status 

 

 

3.3 Code Tables 
 

These tables are used to populate the fields of the data tables. They are also termed 

as “Filler Tables” as they do not serve any direct purpose other than the aforesaid task.  

The fields of the “ctAgencyType” table are shown in Table 3.15.  This table stores 

different agency types. 

 

Table 3.15: Fields of “ctAgencyType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
AgencyType nvarchar 50 Types of Agency 

 

 

The fields of the “ctOfficerType” table are shown in Table 3.16.  This table stores 

different officer designations. 

 

Table 3.16: Fields of “ctOfficerType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
OfficerTitle nvarchar 50 Types of Officer Title 
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The fields of the “ctCountyType” table are shown in Table 3.16.  This table stores 

all names of the counties in West Virginia. 

 

Table 3.17: Fields of “ctCountyType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
CountyType nvarchar 50 Type  of Counties 

 

The fields of the “ctStateType” table are shown in Table 3.18.  This table stores 

names of all states in US. For now, this has only single id for the State of West Virginia. 

 

Table 3.18: Fields of “ctStateType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
StateName nvarchar 50 Type of States 

 

 

The fields of the “ctCountryType” table are shown in Table 3.19.  This table stores 

names of all the countries in the world. For now, this has only single id for the US. 

 

Table 3.19: Fields of “ctCountryType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
CountryName nvarchar 50 Type of Countries 

 

 

The fields of the “ctRaceType” table are shown in Table 3.20.  This table stores 

different races as identified by the FBI. 

 

Table 3.20: Fields of “ctRaceType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
RaceType nvarchar 50 Type of Race  
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The fields of the “ctGenderType” table are shown in Table 3.21.  This table stores 

different genders as identified by the FBI. 

 

Table 3.21: Fields of “ctGenderType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
GenderType nvarchar 50 Type of Gender  

 

 

The fields of the “ctCourtType” table are shown in Table 3.22.  This table stores 

names of different courts in US. 

 

Table 3.22: Fields of “ctCourtType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
CourtType nvarchar 50 Type of Court 

 

 

The fields of the “ctEyeColorType” table are shown in Table 3.23.  This table 

stores eye colors as identified by the FBI. 

 

Table 3.23: Fields of “ctEyeColorType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
EyeType nvarchar 50 Eye Color Type 

 

 

The fields of the “ctHairType” table are shown in Table 3.24.  This table stores 

hair colors as identified by the FBI. 

 

Table 3.24: Fields of “ctHairType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
HairType nvarchar 50 Hair Color Type 

 



 41

The fields of the “ctFinCondtnType” table are shown in Table 3.25.  This table 

stores attributes related to the financial condition of the individual. 

 

Table 3.25: Fields of “ctFinCondtnType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
FinCondtnType nvarchar 50 Types of Financial Condition 

 

 

The fields of the “ctBehvAspectType” table are shown in Table 3.26.  This table 

stores attributes related to the behavioral aspects of the individual. 

 

Table 3.26: Fields of “ctBehvAspectType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
BehvAspectType nvarchar 50 Types of Behavioral Aspect 

 

 

The fields of the “ctOffenseType” table are shown in Table 3.27.  This table stores 

all the offense types as identified by different investigation agencies. 

 

Table 3.27: Fields of “ctOffenseType” Table 

Field Name Data Type Length Description 
ID nvarchar 50 Serial Number 
OffenseType nvarchar 50 Types of Offense 
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3.4 Link Tables 
 

The link or linker tables are used to establish many-to-many (logical) relationship 

between the data tables.  The individual tables make one-to-many relation with these 

tables, and while doing so maintain a many-to-many relation with one another.  The linker 

tables are described below.  The fields of the “ltLnkOffSus” table are shown in Table 

3.28.  This table acts as a link between the table “dtOffense” and “dtSuspect_Physical” 

table. 

 

Table 3.28: Fields of “ltLnkOffSus” Table 

Field Name Data Type Length Description 
ACN nvarchar 50 Agency Case Number 
SuspectID nvarchar 50 Suspect Identification Number 

 

 

The fields of the “ltLnkOffVic” table are shown in Table 3.29.  This table acts as a 

link between the table “dtOffense” and “dtVictim_Physical” table. 

 
Table 3.29: Fields of “ltLnkOffVic” Table 

Field Name Data Type Length Description 
ACN nvarchar 50 Agency Case Number 
VictimID nvarchar 50 Victim Identification Number 

 

 

The fields of the “ltLnkOffVic” table are shown in Table 3.30.  This table acts as a 

link between the table “dtOffense” and “dtConvict” table. 

 
Table 3.30: Fields of “ltLnkOffCon” Table 

Field Name Data Type Length Description 
ACN nvarchar 50 Agency Case Number 
ConvictID nvarchar 50 Convict Identification Number 
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3.5 Query Table 
 

Form the above tables, additional table can be created for the “Knowledge 

Discovery” purpose, called “tblQuery”.  This table will be built by extracting important 

fields from various tables of the database.  Initially, the table will be populated with the 

data specifically prepared for it.  In a production system this table would be populated 

simultaneously with the actual tables of the database.  The focus of the initial table is to 

find typical crime patterns that were carried out within the state boundaries.  The fields of 

the “tblQuery” table are shown in Table 3.31. 

 

 
Table 3.31: Fields of “tblQuery” Table 

Field Name Data 
Type Length Description 

ACN nvarchar 50 Agency Case Number 
OffYear datetime 8 Offense Year 
OffMonth nvarchar 50 Offense Month 
OffDate nvarchar 50 Offense Date 
OffHour nvarchar 50 Offense Hour 
OffMinutes nvarchar 50 Offense Minutes 
OffDay nvarchar 50 Offense Day 
County nvarchar 50 Offense County 
OffType nvarchar 50 Offense Type 
Gender nvarchar 50 Convict’s Gender 
Race nvarchar 50 Convict’s Race 
Age nvarchar 50 Convict’s Age 
CriminalBkgd nvarchar 50 Convict’s Previous Crime Status (Yes / No) 

 

The salient features of the Query Table are: 

 

a. Important fields, based on domain knowledge and inputs from security agencies, were 

duplicated from the database into the “Query Table”. 

 

b. These fields were essentially put into single table to ensure the integrity and 

normalization constraints. 
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c. While doing so, the privacy and security of the victim, suspect and the convicts are 

ensured. 

 

d. All fields of the table are of type “nominal” and “non-ordinal”; also most were “Null” 

able.  Moreover, there are no “Dependent – Independent” variable relationship in the 

data. 

 

e. The data entries are sequential in terms of date of registration and not as per actual 

event. 

 

f. Based on the conditions Query table would be populated first to have random data in 

space.  Then a pattern would be fed to it.  Finally, all the tools would be used to find 

that pattern and the outcome would be reported. 

 

3.6 Assumptions 
 

The data tables had predefined relations between them, and to express them, 

certain database constraints are required [18].  These constraints provide data stability and 

at the same time cover security issues.  The various assumptions were: 

 

a. One criminal offense can be registered in many agencies. 

 

b. One criminal offense is assigned to one investigating officer only.  However, one 

investigating officer can handle multiple criminal offenses. 

 

c. One criminal offense can include multiple suspects, victims and convicts.  They may 

have multiple aliases having additional set of information. 

 

d. One convict can face multiple criminal charges and each criminal charge will have a 

single verdict. 
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3.7 Database 
 

The crime database was created from various tables described below.  The relation 

between different data entities can be “one-to-one” or “one-to-many”.  The “key” symbol 

represents primary key relationship and the “∞” symbol represents one-to-many 

relationship.  The relationships between various tables of the database are shown in the 

Figure 3.1 as below. 

 

 

Figure 3.1: Database Diagram 
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4. USER INTERFACE DESIGN AND IMPLEMENTATION 

 

4.1 Introduction 
 

This chapter describes the design and implementation of the user interface.  The 

task was to create Data Mining techniques on the query table that was extracted from the 

crime database.  The table can be searched with tools such as the Search Engine, Expert 

Search or with the Data Mining techniques.  The forms (front end) were designed in 

ASP.NET, thus giving the user Web-based applicability.  Moreover, a Server (Windows) 

based application were implemented that enabled user to use WEKA for visualization of 

data. 

 

 

4.2 Query Design 
 

Querying application was designed in “Structured Query Language” and was 

primarily of “Select” type.  The outcome of query was displayed with the help of “Data 

Grid”.  The user had a choice of selecting: 

 

a. One or all fields along with their specific value. 

 

b. User could assign conditions such as AND, OR, NOT and its combinations to each of 

the fields. 

 

Based on user input a run time query is generated and that will be sent through the 

“Data Adapter” to the database and the outcome of the query displayed. 
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4.3 Query Implementation 
 

The user can choose different fields, with condition and value selection.  Figure 

4.1 shows the user selected “Year” as 2005 and on pressing the “Search” button, the 

generated SQL query as well as the outcome are displayed. 

 

 
Figure 4.1: Search Engine 

 

The Search Engine was able to generate basic / general queries and displayed the 

results that were queried by the user.  But, it was unable to search multiple and 

simultaneous “If” statements (queries).  Also, it was unable to offer multiple selections on 

one (same) field.  These issues were primarily due to the user interface and data display 

constraints.  
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For that, a better user interface was designed and implemented.  With this, the user 

had the flexibility to query the database with complex queries and also view only the 

desired information. 

 

4.4 Modified Query Implementation 
 

The modified query scheme, “Expert Search” is shown in Figure 4.2. 

 

 
Figure 4.2: Expert Search 
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The query was built based on the choice made by the user with the “Build SQL” 

button and later run once the user clicks on “Run SQL” button.  The outcome of the query 

put forth by the user, with only the selected fields, is show in Figure 4.3. Expert Search 

requires significant knowledge of SQL on the part of the user.  

 

 
Figure 4.3: Result page of "Expert Search" 
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Still, few issues pertaining to querying the database remain unresolved.  For 

nominal values, the user has (2n-1 – 1) choices, where ‘n’ are the number of fields.  That is, 

for 11 fields, the user would have 1023 choices to select from, without considering the 

“drop down” selections within each field or the conditions for each field.  It is therefore 

overwhelming for the user without some initial leads.  Moreover, the outcome was 

essentially a static picture and does not present the boundary conditions and / or over all 

picture to the user. 

The above two issues are inherent to the searching method and there was no better 

method of querying the database.  So, one has to look for other means of extracting 

information / knowledge from the data. 

 

 

4.5 Data Mining: Algorithm Selection 
 

The next level for information extraction is, moving from querying the data to 

mining it.  One might recollect that, quite a few algorithms could be applied to mine the 

Query Table; as a matter of fact, most of the algorithms can mine the data.  Thus, one 

must select appropriate algorithm, from the pool that was described earlier.  However, the 

selection will depend on the type of data, the final objective and most importantly the kind 

of application of data, planned by the analyst. 

From the Query Table (Section 3.7) it is known that the data are collection of 

nominal fields with no dependent variables or predefined groups.  This rules out the 

Statistical and Neural Network based algorithms as they primarily work on training 

dataset with some sort of “dependent-independent” relationship to build the model.  The 

Distance Based algorithms (Clustering) were difficult to apply and would further require 

significant changes to the existing data table to be applied effectively.  This renders them 

practically infeasible.  

Association Rules and Decision Rules / Trees show promise for our Data Mining 

application.  These algorithms address the constraints put forth by the Query Table.  

Moreover, the outcome is directly seen by the end user and would not need further 

processing or interpretation. 
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Association Rules 

The Association algorithm consists of three main functions, 1) Search Engine, 2) 

Item Set Generator, and 3) Pruning Algorithm.  The Item Set Generator generates a 

combination of items from the given set.  This is then used with help of Search Engine to 

search for similar patterns through the database.  The combinations that have frequency 

below the desired level are pruned by the Pruning Algorithm.  Moreover, the Item Set 

Generator and Pruning Algorithm work together such that all future instances of the 

combinations already pruned are automatically pruned.  Thus, the solution contains a set 

of association rules derived from the dataset.  One serious drawback of the Association 

technique is that they work only with nominal data, though this drawback can be 

overcome by using coding techniques. 

For example, shown in Table 4.1 is a Level -1 set of items that are available in a 

store.  These five items are being considered to find an association relation, if any, 

between them.  

 

Table 4.1: Level-1 item set 

Beer Bread Jelly Milk PeanutButter 
 

The data available for the analysis are a transactional dataset as observed in Figure 

4.2, where t1 to t5 and so on are the transactions.  For each transaction there is set of items 

purchased from the store. 

 

Table 4.2: Transaction Data  

Transaction Item 
t1 Bread, Jelly, PeanutButter 
t2 Bread, PeanutButter 
t3 Bread, Milk, PeanutButter 
t4 Beer, Bread 
t5 Beer, Milk 
: : 

 

In essence, the Association algorithm creates various combinations of the item set 

and runs a frequency check through the entire database.  One has to specify a lower bound 

for the frequency below which the items sets would be pruned.  The lower bound is 
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usually is terms of Minimum Support and Minimum Confidence.  Based on this different 

combinations of items are pruned.  Thus, one is left with the high frequency item 

combinations. 

The Table 4.3 shows different combinations of the item or item sets that are being 

studied as well as the frequency of each combination.  As explained one can select high 

frequency item combinations that will form the basis for Association Rules. 

 

Table 4.3: Item set with frequencies 

Set  Frequency Set Frequency
Beer 40 Beer, Bread, Jelly 0 
Bread 80 Beer, Bread, Milk 0 
Jelly 20 Beer, Bread, PeanutButter 0 
Milk 40 Beer, Jelly, Milk 0 
PeanutButter 60 Beer, Jelly, PeanutButter 0 
Beer, Bread 20 Beer, Milk, PeanutButter 0 
Beer, Jelly 0 Bread, Jelly, Milk 0 
Beer, Milk 20 Bread, Jelly, PeanutButter 20 
Beer, PeanutButter 0 Bread, Milk, PeanutButter 20 
Bread, Jelly 20 Jelly, Milk, PeanutButter 0 
Bread, Milk 20 Beer, Bread, Jelly, Milk 0 
Bread, PeanutButter 60 Beer, Bread, Jelly, PeanutButter 0 
Jelly, Milk 0 Beer, Bread, Milk, PeanutButter 0 
Jelly, PeanutButter 20 Beer, Jelly, Milk, PeanutButter 0 
Milk, PeanutButter 20 Bread, Jelly, Milk, PeanutButter 0 
    Beer, Bread, Jelly, Milk, PeanutButter 0 

 

Small item sets can be managed by simple logic or code.  But the ones with large 

item sets require use of advance algorithms such as Apriori, CDA etc.  Just as we saw a 

Level-1 item set, Table 4.4 shows a Level-2 item set where one can have combinations 

based on both field and field value. 

 

Table 4.4: Level-2 item set 

Type American Italian Mexican Beverages 
ForHere Burger Pasta Burrito Soda 
ToGo Sandwich Pizza Quesadilla Shakes 
  Fries     Coffee 
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This table represents an actual scenario where Data Mining is useful for finding 

association rules.  A logic similar to this was developed that can find association between 

different items but in paired form.  Moreover, the complexity of algorithm was reduced by 

selecting only the first three field values having high frequency of occurrence.  

 

 

Decision Rules 

Decision rules, also called as Decision Trees, help with decisions that enable 

classification of a new unclassified dataset in an easily interpretable way.  They are very 

easy and efficient way of mining the databases and work irrespective of the database size.  

They used to suffer from missing values and continuous data; which are now pruned and 

imputed.  Also, most algorithms ignore correlations and interactions in data [2].  The 

leaves represent classifications, while branches represent conjunction sets of attributes that 

lead to classifications. 

Attributes that have been incorporated higher in the tree are excluded, so that any 

given attribute can appear at most once along any path through the tree.  This process 

continues for each new leaf node until either every attribute has already been included 

along this path through the tree, or all elements associated with this leaf node have their 

score function (entropy) as zero. 

For example, Table 4.5 shows set of factors that determine the Credit Score of an 

individual. 

 

Table 4.5: Factors for determining credit score – Stage I 

Credit Score Bank Balance Age Sex Job Title Race 
Average > $10,000 > 35 Female Entrepreneur Asian 
Bad $10,000 > & > $5,000 35 > & > 24 Male Manager Black 
Good $5,000 > 24 >   Worker Caucasian 

 

Now, the Decision Rules algorithm finds out a Field and Filed Value combinations 

that maximizes the score function, which in our case can be Entropy or Gain, and that is 

the point of first split.  Let’s say from the dataset of 1000 entries, attribute Job Title = 

“Manager” has maximum gain of 700 entries, so is the point of first split; this will 
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generate two branches from the root which is the dataset based on condition of split.  The 

new set of factors is shown in Table 4.6. 

 

Table 4.6: Factors for determining credit score – Stage II 

Credit Score Bank Balance Age Sex Race 
Average > $10,000 > 35 Female Asian 
Bad $10,000 > & > $5,000 35 > & > 24 Male Black 
Good $5,000 > 24 >   Caucasian 

 

Let’s say the next two splits are for Age = “> 35” and “Bank Balance = “> 

$10,000”, with gain of 400 and 250 entries respectively, and, for Sex and Race the gain in 

zero.  Thus, a tree with following conditions is generated.  

 

 
Figure 4.4: Good Credit Score Tree 

 

This, tree is itself the conditions or decision rules for Good Credit Score.  Decision 

rules similar to the example above were generated by implementing a parallel logic, the 

criteria for decisions being frequency of occurrence of a particular “Field-Value” 

combination. 
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It should be noted that one would use the algorithms in essence / logic along with 

DMQL concept (Section 2.7 – Page 30).  All advanced or commercially available 

software use better algorithms and make use of Data Visualization to display the results. 

 

4.6 Association Rules 
 

In Association Rules, the user will have to select the fields from the database on 

which he wishes to mine the Query Table.  For example, in Figure 4.5, the user selected 

“OffDay” (Offense Day) and “OffType” (Offense Type) to find associations.  After 

pressing “Run” button, the generated output shows association between different days and 

offense along with frequency of occurrence. 

 

 
Figure 4.5: Association Rule 

 



 56

4.7 Decision Rules 

 
The Decision Rules algorithm implementation is displayed in Figure 4.6, where, 

the user selected the Field and Field-value combination as “OffDay” and “Sat”.  Also, he 

selected fields “OffType” and “Gender” to find out the Decision Rules.  After pressing 

“Run” button, the generated output points out the frequency of occurrence particular 

offense and involvement of specific gender on Saturday.  This kind of analysis can help in 

decision making in many real world scenario. 

 

 
Figure 4.6: Decision Rule 
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4.8 Result Page 

 

The results of all the techniques are summarized in the “Result Page”, as displayed 

in Figure 4.7 below.  This included storing the queries for the Searching procedures and 

the results for the Data Mining procedures respectively.  This can be stored in the database 

by the user as per the requirement. 

 

 
Figure 4.7: Result Page 
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4.9 Navigation Page 

 

For the user to toggle between the various data search / mine operations navigation 

page, called “Data Mining Tools” was created.  The user can click on a button and the 

user interface as discussed earlier is presented.  Also, “Generate ARFF File” button is 

provided.  This generates an ARFF file that will allow the user to use other Data Mining 

tools.  The user interface for the same is shown in the Figure 4.8. 

 

 
 

Figure 4.8: Navigation Page – “PageOne". 
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4.10 Other Data Mining Tools 

 
WEKA is another prototype Data Mining tool available over the Internet.  This is 

being developed by The University of Waikato, New Zealand [20].  Though it is 

implemented primarily in Java, recently many more computer languages have been added 

to it.  WEKA is a shell command based program.  Therefore it cannot be directly executed 

on the Web.  The user has to create a file in Attribute Related File Format (ARFF) file as 

shown in Figure 4.9.  The ARFF file can then be input to the WEKA program. 

 

 
Figure 4.9: Test Data in ARFF. 

 

 

The above approach provides a generalized way to study the database using variety of 

algorithms. 
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The server based model has button “WEKA” that generates an ARFF file, called 

“TestData.arff”, dynamically from the query table “tblQuery”.  This will also open the 

WEKA front page as in Figure 4.10.  

 

 
Figure 4.10: WEKA – Front Page 
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The user has to click the button named “Explorer” and then open the file by just 

clicking the “Open File” button, as in Figure 4.11 and select the “TestData.arff” file. 

 

 
Figure 4.11: WEKA - Explorer Page 
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Further, the user can choose the required fields and click on “Visualize” tab at the 

top of the application.  He can view the confusion matrix of the data, as shown in Figure 

4.12. 

 

 
Figure 4.12: WEKA – Visualize (Confusion Matrix) 

 



 63

By clicking on one of the graphs and by changing the x-axis, y-axis and color 

options one can view different trends and patterns in the data as in Figure 4.13.  The jitter 

scale on the plot should be at maximum for best visualization. 

 

 
Figure 4.13: WEKA – Plot from confusion matrix 
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5. APPLICATION STUDY 

 

Data Mining Methodology was briefly described in Section 2.2.  This chapter 

describes how that methodology was carried out for an application study.  Similar to Data 

Mining methodology, the application study was also done in a phased manner. 

 

5.1 Business Understanding Phase 

 

The primary objective is to give to the end user (e.g., a crime investigator) a 

simple tool that will help him or her utilize the crime data to identify criminals and crime 

patterns.  Even with minimal Data Mining knowledge one should be able to use the tool 

and generate meaningful results.  Also, the tool should provide Web functionality so that 

the user can access it from anywhere and at any time. 

Thus, the user will be provided with Web-based basic and advanced search 

techniques to query for specific inputs.  Additionally, he or she will be offered suitable 

Data Mining techniques to generate vital information (e.g., crime-related leads) from the 

data.  To visualize the data, he or she will use the WEKA-Experimenter. 

 

 

5.2 Data Understanding Phase 

 

The data required for Data Mining were not available due to security reasons, so 

major data fields used in the crime database were determined from the Web and other 

sources.  However, a need for data (query) table for Querying and Data Mining was 

identified. 

The data consisted of nominal, non-ordinal and/or null values with varied data 

types such as numeric, datetime, and varchar.  It did not have “Dependent – Inependent” 

relationship nor was it available in any particular sequence.  Moreover, the data contained 
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13 fields with a maximum of 112 (crime types) possible values for a given field.  Such 

data posed unique constraints concerning the selection of Data Mining techniques. 

 

 

5.3 Data Preparation Phase 

 

To develop the Data Mining Tool, the crime database was created, as described in 

Chapter 3, and populated.  Initially, the “OffDate” and the “OffTime” fields of the tables 

were populated with the help of random numbers and the “OffDay” field was populated 

with the help of calendar.  From the “Most Wanted” criminal data of West Virginia Police 

Dept. [21] and Bureau of Justice Statistics database [22], other fields such as “OffType,” 

“Gender,” “Race,” and “CriminalBkgd” were populated.  But these data was distributed in 

three tables “dtOffense,” “dtSuspect_Physical,” and “dtSuspect_Variable.” 

For ease of Data Mining application, the data was put into single data table called 

“tblQuery.”  This was done in two stages by selecting data from the database in middle 

tier and inserting the results back to the query table “tblQuery.”  The test data that were 

populated can be seen in Appendix A.  Finally, the query table “tblQuery” was used for 

the Data Mining tool. 

 

 

5.4 Modeling Phase 

 

As described in Chapter 4, the searching algorithms as well as appropriate Data 

Mining techniques were implemented according to the established objective.  This was 

done in ASP.NET to give Web-based functionality to the tool.  But this tool lacked visual 

depiction of the results.  To overcome this issue, the user was given an option to use the 

data with WEKA software at server end.  Another aspect concerning the tool was that the 

Data Mining techniques used hard coded field descriptions to work with data, as it was 

necessary to reduce the complexity the algorithm. 
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5.5 Evaluation Phase 

 

The model was evaluated in two stages.  At first, the model was run directly on the 

given data.  The outcomes of all the techniques were directly validated by MS Excel and 

SQL Query Analyzer by running specific queries.  The validation results were judged by 

actual numeric value of the output of the techniques.  This ensured that the values 

generated were correct and the relation that is expressed is true.  The second stage was to 

test the model against an external source.  It was decided to test results of the model 

against WEKA and then compare the output.  This testing was carried out, but the actual 

numeric values could not be confirmed, as WEKA does not report an outcome in a form 

similar to ones tool.  The relationships represented by WEKA and the tool were found to 

be same during testing phase.  Moreover, the code for dynamic conversion of test data into 

ARFF was checked by comparing file created by code with the actual physically created 

file. 

 

 

5.6 Deployment Phase 

 

This is the last stage of the Data Mining Process.  Once the database and software 

was implemented and tested, the tool was put through a pilot run and further deployment. 

Often, steps (2) to (5) of the methodology are re-run for further refining the Data Mining 

Tool.  For an application study, some patterns were embedded into the test data.  In this 

study a pattern refers to relationship between data fields that have some relevance to 

crime.  These patterns resemble actual patterns in a Data Mining scenario.  The patterns 

that were embedded are: 

 

a. Harrison County had a high rate of accidents. 

b. Crime against women occurred mostly on weekends and was committed by older age 

group. 

c. Drugs were consumed more during weekends by young men. 
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d. Monongalia County had significant number of burglary and drug cases. 

 

These patterns were placed in a very non-obvious way.  A very low frequency of 

occurrence was maintained, such that the inherent noise in the data may overcome the 

intended patterns and one could get an altogether different and non-obvious pattern 

similar to real life scenario.  An attempt was made to identify these patterns with the Data 

Mining Tool. 

Figure 5.1 shows the implementation of the Deployment Phase.  The Validation of 

the tool is only done initially during the pilot of the tool.  Once implemented the user will 

select the tools based on the task.  For Searching and Querying operation he will use the 

“Search Engine” and “Expert Search”; while to mine these data for non-obvious crime 

patterns the “Association Rules” and “Decision Rules” will be used.  User may use 

searching tools to further query these data based on the mining results. 

 

 
Figure 5.1: Tree for Deployment Phase 

 

 

Data Mining with Searching Tools 

 

The outcomes of the Search Engine were unable to identify any patterns in the 

data.  The Expert Search also worked on similar lines, as initially there were no leads 

available.  One faced an overwhelming number of combinations while using the two 

searching tools. 
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When the patterns were specifically queried, even then the Search Engine was 

unable to clearly determine the conditions that govern them.  While the Expert Search 

with a better interface could find the results, they were isolated or exact outcomes and did 

not clearly determine if they represent any patterns. 

 

 

Data Mining with Association Rules 

 

The Association Rules was used with selection of various combinations of the four 

fields – “OffDay,” “OffType,” “OffCounty,” and “Race.”  They were: 

a.  OffDay – OffType – OffCounty – Race 

b.  OffDay – OffType – OffCounty 

c.  OffDay – OffType 

d.  OffDay – OffCounty 

 

These combinations were randomly chosen.  The other two field types, 

“CrimeBkgd” and “Gender,” of the query table “tblQuery” were left out of the study as 

they had only two Field Values.  By selecting them, the outcome would be biased, as these 

field values will split the data into two and always end up with higher frequency.  Also, 

the numeric fields, such as “Age,” “Date,” and “Time” of Crime are excluded as they 

cannot be used for the Association Rules technique in their present form and coding them 

requires significant knowledge and input that was beyond the scope of the thesis. 

The Association Rules technique selected the first three Field Values from each of 

the above Fields, with a high frequency of occurrence, and checked their combinations to 

find out associations in the data.  The four fields “OffDay,” “OffType,” “County,” and 

“Race” are selected by choosing each and clicking the right arrow key.  When the “run” 

button is pressed, the outcome of association for the selected fields is displayed in the text 

box, as show in Figure 5.2.  The complete outcome of the above textbox is displayed in 

Figure 5.3, while the outcomes for different field combinations are shown in Appendix C. 
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Figure 5.2: Association Rules with selected fields 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Association Rules outcome 
 

Monongalia – Black : 42 
Sat – Black  : 41 
Tue – Black  : 30 
Sat – Monongalia : 30 
Sun – Black  : 27 
Accident – White : 26 
Drugs – Black  : 26 
Accident – Black : 25 
Monongalia – Drugs : 24 
Cabell – Burglary : 22 
Tue – Burglary : 21 
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The selective (top four associations) view of the Association Rules for various 

combinations is shown in Table 5.1. 

 

Table 5.1: Tabulated Outcome of Association Rule 

Combinations Selective Outcome 
“OffDay,” “OffType,” “County,” and “Race” Monongalia – Black 
  Sat – Black 
  Tue – Black 
  Sat – Monongalia 
“OffDay,” “OffType,” and “County” Sat – Monongalia 
  Drugs – Monongalia 
  Tue – Burglary 
  Burglary – Cabell 
“OffDay” and “OffType” Tue – Burglary 
  Tue – Accident 
  Sat –Drugs 
  Sun – Burglary 
“OffDay” and “County” Sat – Monongalia 
  Tue – Cabell 
  Tue – Monongalia 
  Sun – Cabell 

 

 

From the table, it was observed that most of the incidents in the data that have high 

association occur on Tuesdays and/or Weekends.  For the first combination, “OffDay – 

OffType – County - Race,” it was seen that the associations mainly included just the 

Black race.  The combination of “OffDay – OffType – County” showed association 

between Tuesday and Burglary, Saturday and Monongalia, Drugs and Monongalia, and 

Burglary and Cabell.  The combination of “OffDay – OffType” showed associations on 

similar lines involving Tuesday with Burglary and Accident, Saturday and Drugs and 

Sunday and Burglary.  While in the last combination, “OffDay – County,” it was seen that 

Monongalia County was associated with Tuesday and Saturday, while Cabell was 

associated with Tuesday and Sunday. 
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Data Mining with Decision Rules 

 

The Decision Rules followed the Association as the Data Mining Tool.  The field 

“OffType” was randomly selected and all the offenses or field values were selected one at 

a time.  This “Field-Field Value” combination was then worked against other fields that 

were selected for generating the Decision Rules.  The Figure 5.4 shows the outcome of the 

Decision Rules for Field Name = “OffType” and Field Value = “Accident.” 

 

 
Figure 5.4: Decision Rules for OffType = “Accident” 

 

The complete outcome of the above textbox is displayed in Figure 5.5, while the 

outcomes for different field combinations are shown in Appendix D. 
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Figure 5.5: Decision Rules outcome 
 

The technique finds the maximum frequency of occurrence of all field values of 

the selected fields with the Field-Field Value combination from the data table “tblQuery.”  

Then, the top three occurrences for each selected field were listed as outcome of the 

Decision Rule.  The outcomes for each Field Value or Offense Type were shown in 

Appendix D.  The selective view of the outcomes, with significantly high occurrences 

from the group, is shown in Table 5.2. 

 

 

 

Field Name: OffType  Field Value: Accident 
 
Age 
> 35: 37; between 24 and 35: 17; between 14 and 23: 12;  
 
County 
Harrison: 14;  Mercer: 9;  Cabell: 8;  
 
CriminalBkgd 
Yes: 20; No: 46;  
 
Gender 
Male: 56; Female: 10;  
 
OffDate 
between 6 and 10: 18;  between 26 and 31: 16; between 1 and 5: 11;  
 
OffDay 
Mon: 25; Wed: 14; Tue: 13;  
 
OffHour 
between 6 and 9: 18;  between 15 and 18: 9;  between 9 and 12: 8;  
 
OffMonth 
Jun: 10; Jul: 9;  Sep: 6;  
 
Race 
White: 26; Black: 25; AorPI: 8; 
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Table 5.2: Tabulated Outcome of Decision Rule 

Offense Types Selective Outcome 
Accident Age > 35, County - Harrison, Day – Monday, Race - White & Black 

Arson Age between 24 & 35, County - Harrison, Day – Sunday, Race - Black 
Assault Age between 24 & 35, Day – Sunday, Race - Black 

Burglary Age >24, County – Cabell, Day - Tuesday 

Drugs Age between 14 & 23, County - Monongalia, Day – Friday & Saturday, 
Race - Black 

Murder Age > 35, County - Marion, Day – Sunday, Race - Black 
Rape Age > 35, County - Monongalia, Day – Saturday, Race, Black 

Sex_Assault Age > 35, County - Monongalia, Day – Saturday, Race - Black 

Weap_Threat Age > 35 and between 24 & 35, County - Hancock, Day – Tuesday & 
Sunday, Race - Black 

 

 

From the Table 5.2, the Decision Rules for each of the Offense types were 

observed.  Most Crimes against women occurred on weekends and the offenders belonged 

to higher age group (35 to 45).  Based on Age groups, namely between 14 & 23, between 

24 & 35 and greater than 35, the offense type changed from Drugs, Arson and Assault to 

more serious ones such as Murder and Weapons Threat.  Based on Race for most of the 

crime incidents, the Black population had maximum involvement while there are Asian or 

Pacific Islanders who were involved in Drugs-related offenses.  While considering Day of 

offense, it was seen that Drugs offense and Crime against Women, were reported more, in 

the later half of the week, on Friday and Saturday respectively.  Also, it was seen that on 

Monday, a greater number of Accidents occurred, while more Burglary incidents were 

reported on Tuesday.  With County of Offense, it was observed that Monongalia County 

reported a greater number of Drug and Crime against Women incidents.  Harrison County 

lead Accident- and Arson-related cases and finally Burglary, Murder and Weapon Threat 

were reported in Cabell, Marion, and Hancock counties respectively. 
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Interpretation of Data Mining Tools 

 

In the above sections, the outcomes of the two Data Mining Techniques were 

gathered in a selective manner.  Those outcomes are interpreted in this section.  The 

approach is to first compare the results of both the techniques and then figure out whether 

the selected Field Values indeed turn out to be a pattern.  Moreover, the Decision Rules 

give us Age related outcomes, so those would not be compared but directly used for 

interpretation. 

The Association Rules, from Table 5.2, showed only the Black and White race for 

crime.  This can be attributed to the Test Data where 77.67% of the population was 

represented by these two races.  From other combinations the ones with common Field 

Values were paired.  For this the Field with more occurrences was selected as common 

field, which as per the Association outcome was Day of Offense.  These pairs (links) are 

show below: 

 

a. Tuesday – Burglary and Accident 

– Cabell and Monongalia 

– Black 

b. Saturday – Monongalia 

– Black 

c. Sunday – Burglary and Accident 

– Monongalia 

 

There was also another single pair: 

d. Drugs – Monongalia 

 

The pairs identified above were then compared with the outcomes of Table 5.2.  

The commonalities found by comparison were: 

A. Drugs – Monongalia – Saturday – Black 

B. Burglary – Cabell – Tuesday 
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Moreover, from the Table 5.2, by pairing based on the outcomes, another single 

pair was found: 

C. Age Between 24 & 35 – Sunday – Black  – Assault 

– Weap_Threat 

D. Age > 35 – Monongalia – Saturday – Black – Sex_Assault 

– Rape 

 

The last four selected cases (from A to D) were then run specifically through the 

searching tools and their number of occurrence was reported in the Table 5.3. 

 

Table 5.3: Number of Occurrences of Combinations 

S. No. Combinations No of 
Occurrence 

1 Drugs – Monongalia – Saturday – Black 8 
2 Burglary – Cabell – Tuesday 5 
3 Age Between 24 & 35 – Sunday – Black – Assault 5 
4 Age Between 24 & 35 – Sunday – Black – Weap_Threat 2 
5 Age > 35 – Monongalia – Saturday – Black – Sex_Assault 4 
6 Age > 35 – Monongalia – Saturday – Black – Rape 6 

 

It was observed that for the Drugs offense had the highest number of occurrences 

followed by Rape, Burglary, and Assault.  The Weapons Threat reported just two 

incidents, so they would be pruned.  

The outcome was then compared with the pattern (Page 67) that was planted into 

the test data of the query table “tblQuery.”  The Data Mining tool was not able to find the 

sub-pattern (a).  This was selected in Table 5.2 but was not selected for further study as it 

neither match the relations in Table 5.1 nor formed pair in the same table.  Also, the sub-

patterns (b) and (c) were identified by the Data Mining tool. For pattern (d), the tool could 

find the relation for the Drugs offense, but for the Burglary offense no relation was 

identified.  Instead, the tool found a new relation shown in Table 5.3 – S. No. 2.  These 

results were validated with the WEKA software. 
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Data Mining with WEKA 

 

The test data from table “tblQuery” were converted into ARFF format with a code 

specifically developed to dynamically access data from the database and convert them into 

an ARFF file.  Thus, the generated file was input with WEKA software.  The data were 

preprocessed with an unsupervised filter “Discretize –B 10 –M -1.0 –Rfirst –last” and 

then “Apriori” and “Tertius” classifiers (Associators) were used.  Figure 5.6 shows the 

outcome for WEKA with Discretize filter and Tertius classifies with 6 attributes. 

 

 
Figure 5.6: Tertius classifier with 6 attributes using Discretize filter 

 

The outcomes for all other combinations of these classifiers and number of 

attributes are shown in the Appendix E.  The selective outcomes are listed by pairing 

them, as done in prior sections, in the Table 5.4. 
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Table 5.4: Tabulated outcome of WEKA 

S. No Apriori 
1 Saturday Black Male  
2 Monongalia Black Male  
 Tertius 
3 Accident Harrison Monday  
4 Accident Harrison Female  
5 AorPI Accident Harrison  
6 Drugs Thru Monongalia Age < 19 
7 Monongalia Saturday Sex_Assault Age between 24 & 29 
8 Burglary Tuesday Cabell Hspnc 
9 Burglary Cabell Hspnc  
10 Drugs Thursday AorPI  

 

The WEKA software identified all the patterns that were planted into the database.  

Moreover, the newly discovered relation that was identified by the Data Mining tool was 

also identified by the WEKA software in Table 5.4 – S.No. 8 and 9.  From relation (d) of 

the planted pattern (Page 67), even WEKA did not find any relation between Burglary and 

Monongalia County.  The WEKA outcomes had many more paired relations that included 

the “CriminalBkgd” and “Gender” fields.  These relations were ignored as explained in 

previous section.  In cases of the Drug offense, the Data Mining model identified the Day 

of offense in the link as “Saturday,” while WEKA reported it to be “Thursday.”  The 

database was specifically queried for this and it was found that number of occurrence of 

Drug offense on “Thursday” and “Saturday” was 10 and 8 respectively.  This was due to 

the additional constraint, Race = Black, that was included while using Data Mining tool.  

The other small variations in the outcome of the Data Mining and WEKA software can be 

justified as both have different approaches for finding the patterns.  The WEKA also 

found one more relation in the database that is listed in Table 5.4 – S.No.10.  When 

specifically queried it was found that Asian or Pacific Islanders were involved in Drugs 

offense significantly. 

The outcome of WEKA validates the Data Mining tool (stage II) as discussed in 

the Evaluation Phase (Page 67).  Further, one can make use of WEKA to “Visualize” the 

patterns and other interesting combinations as described in Section 4.10. 
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6. CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

The objective of this study was to develop a Data Mining tool for the crime 

investigator.  The tool should be able to identify obvious and non-obvious crime patterns 

in the database that would be helpful in investigations.  The tool needed development of a 

crime database as well as the software to work on the data. Moreover, the software 

included development and implementation of data searching and mining tools.  The tool 

was developed and implemented using the MS SQL Server and ASP.NET.  The basic and 

advanced search techniques as well as the Association and Decision Rules techniques 

were implemented successfully.  A suitable user interface was created to access them and 

a navigation page was provided to use different tools preferentially. 

For validation, the tool was first checked by actual querying the database with 

SQL Query Analyzer.  The test data were created with a pattern planted deliberately in it.  

The outcome of the tool for the test data was then compared with the outcome of WEKA 

software.  It was observed that the tool was able to find the non-obvious patterns in the 

test data. Some other features of the tools are: 

 

a. The Data Mining tool is customized for the application as per the objective; so unlike 

WEKA, which is a generalized application, it requires no preprocessing of the data. 

 

b. The outcome of the tool showed direct relations in the field values and was easily 

interpreted even with limited knowledge of the Data Mining tools. 

 

c. Further, the outcome can be immediately analyzed by using specific queries with the 

searching techniques provided in the tool.  This required basic SQL querying 

knowledge on part of user. 
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d. The tool can be used over the Web and, at the same time, ensure the privacy and 

security of the data. 

 

e. An ARFF file can be generated, which acts as a cross platform, thus enabling other 

Data Mining software to use the data for analysis. 

 

 

6.2 Future Work 

 

The tool provided satisfactory results and was able to determine crime patterns 

from the data for further investigation.  This satisfies the foremost objective of the tool.  

However, there are several improvements that can be made. Some of these are listed 

below: 

 

a. Currently, the tool does not have an ability to visualize the data.  This makes it 

dependent on other applications such as WEKA for the same.  Data Visualization 

could be incorporated in the tool. 

 

b. The Data Mining algorithms were specific to the application.  These algorithms can be 

further generalized so that they can be used in other cases and applications. 

 

c. The query table “tblQuery” was essentially static in terms of fields and field types.  An 

application can be built to achieve dynamic generation of the table based on user 

choice to make the tool more robust. 

 

d. Further, an option to generate an XML file from the SQL data, similar to an ARFF file 

could be added.  This would provide a general purpose platform for use of other Data 

Mining techniques. 
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APPENDIX A: Test Data from Query Table “tblQuery” 

 
ACN Year Mth. Dt. Hr. Min. Day County OffType Gen. Race Age Crime 

Bkgd 
1001 2004 1 2 12 28 Tue Harrison Assault M White 31 No 
1002 2004 1 3 2 7 Sat Monongalia Drugs M Black 21 No 
1003 2004 1 3 2 22 Wed Cabell Murder M Black 23 Yes 
1004 2004 1 4 10 55 Thru Monongalia Drugs F AorPI 20 No 
1005 2004 1 10 4 22 Sat Marion Burglary M White 24 Yes 
1006 2004 1 10 23 38 Sun Hancock Murder M White 36 Yes 
1007 2004 1 13 7 50 Tue Berkley Accident F AorPI 52 No 
1008 2004 1 16 3 9 Fri Monongalia Sex_Assault M White 40 Yes 
1009 2004 1 20 7 13 Tue Mercer Accident M White 52 No 
1010 2004 1 25 11 16 Sun Harrison Arson M Black 22 Yes 
1011 2004 1 25 20 34 Sun Mercer Weap_Threat M Black 27 Yes 
1012 2004 1 27 9 59 Tue Cabell Assault M Black 29 Yes 
1013 2004 1 27 3 29 Tue Cabell Burglary M Black 48 Yes 
1014 2004 2 1 7 42 Sun Marion Murder M Black 43 Yes 
1015 2004 2 2 1 1 Mon Monongalia Accident M AorPI 22 No 
1016 2004 2 7 22 18 Sat Monongalia Sex_Assault M White 21 No 
1017 2004 2 7 5 29 Sat Monongalia Rape M Black 21 Yes 
1018 2004 2 9 18 5 Mon Hancock Accident F Black 24 No 
1019 2004 2 10 4 29 Tue Mercer Burglary M Black 33 Yes 
1020 2004 2 10 9 49 Tue Cabell Burglary M AorPI 25 No 
1021 2004 2 11 10 53 Wed Marion Burglary M AorPI 56 No 
1022 2004 2 17 13 20 Tue Monongalia Burglary F Black 37 Yes 
1023 2004 2 21 3 5 Sat Monongalia Rape M White 46 Yes 
1024 2004 2 23 19 51 Mon Kanawha Sex_Assault M Black 38 Yes 
1025 2004 3 1 16 27 Mon Mercer Accident M White 28 No 
1026 2004 3 13 1 10 Sat Kanawha Sex_Assault M Black 21 Yes 
1027 2004 3 31 21 8 Wed Cabell Arson M White 39 Yes 
1028 2004 4 4 0 27 Sun Hancock Weap_Threat M Black 23 Yes 
1029 2004 4 6 1 57 Tue Cabell Burglary M White 41 No 
1030 2004 4 9 1 32 Fri Monongalia Rape M Black 28 Yes 
1031 2004 4 11 2 39 Sun Mercer Burglary M Hspnc 44 Yes 
1032 2004 4 17 15 23 Sat Monongalia Drugs M Black 19 Yes 
1033 2004 4 17 23 16 Sat Cabell Arson M Black 29 Yes 
1034 2004 4 17 23 26 Sat Raleigh Rape M Black 43 Yes 
1035 2004 4 20 1 13 Tue Harrison Arson M Black 32 Yes 
1036 2004 4 29 22 20 Thru Hancock Drugs M Black 29 Yes 
1037 2004 5 5 15 15 Wed Monongalia Burglary M Hspnc 36 Yes 
1038 2004 5 8 22 52 Sat Monongalia Drugs M Black 30 Yes 
1039 2004 5 16 1 10 Sun Cabell Burglary M Black 21 Yes 
1040 2004 5 18 1 24 Tue Harrison Arson M Black 24 Yes 
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1041 2004 5 19 15 46 Wed Mercer Assault M Hspnc 37 No 
1042 2004 5 21 1 50 Fri Monongalia Rape M Hspnc 46 Yes 
1043 2004 5 27 20 46 Thru Kanawha Sex_Assault M Hspnc 33 Yes 
1044 2004 5 27 23 14 Thru Monongalia Rape M White 23 Yes 
1045 2004 6 2 7 36 Wed Kanawha Accident F White 36 Yes 
1046 2004 6 2 7 53 Wed Kanawha Accident F AorPI 41 No 
1047 2004 6 2 7 18 Wed Cabell Accident M White 57 No 
1048 2004 6 2 23 50 Wed Cabell Burglary M Hspnc 26 Yes 
1049 2004 6 5 15 52 Sat Hancock Assault M Hspnc 37 Yes 
1050 2004 6 8 8 44 Tue Berkley Weap_Threat M Hspnc 59 Yes 
1051 2004 6 8 9 0 Tue Cabell Burglary F Hspnc 29 Yes 
1052 2004 6 8 19 3 Tue Monongalia Accident M Black 29 No 
1053 2004 6 11 21 38 Fri Monongalia Sex_Assault M Black 23 Yes 
1054 2004 6 11 2 31 Fri Monongalia Rape M Black 23 Yes 
1055 2004 6 12 1 54 Sat Monongalia Sex_Assault M White 46 Yes 
1056 2004 6 15 8 11 Tue Monongalia Accident M AorPI 24 Yes 
1057 2004 6 16 19 44 Wed Hancock Assault M Hspnc 30 Yes 
1058 2004 6 18 21 34 Fri Hancock Weap_Threat M White 49 Yes 
1059 2004 6 24 23 15 Thru Monongalia Drugs M Hspnc 21 Yes 
1060 2004 6 24 22 29 Thru Monongalia Drugs M AorPI 22 No 
1061 2004 6 25 23 8 Fri Monongalia Sex_Assault M White 47 Yes 
1062 2004 6 30 7 15 Wed Mercer Accident M Hspnc 52 No 
1063 2004 6 30 14 46 Wed Marion Burglary F Hspnc 34 Yes 
1064 2004 7 3 20 51 Sat Kanawha Rape M Black 39 Yes 
1065 2004 7 4 23 27 Sun Cabell Burglary M Hspnc 36 Yes 
1066 2004 7 5 9 38 Mon Raleigh Accident M White 31 Yes 
1067 2004 7 6 19 38 Tue Mercer Accident M White 20 No 
1068 2004 7 10 21 16 Sat Monongalia Sex_Assault M Black 37 Yes 
1069 2004 7 11 2 21 Sun Cabell Burglary F White 31 Yes 
1070 2004 7 26 0 46 Mon Harrison Accident M Black 37 No 
1071 2004 7 31 1 39 Sat Kanawha Sex_Assault M Hspnc 46 Yes 
1072 2004 8 1 22 50 Sun Berkley Arson M White 61 Yes 
1073 2004 8 7 22 42 Sat Monongalia Rape M Hspnc 37 Yes 
1074 2004 8 8 15 43 Sun Marion Arson M White 24 Yes 
1075 2004 8 9 23 38 Mon Marion Accident M Black 18 No 
1076 2004 8 11 3 51 Wed Berkley Burglary F White 29 Yes 
1077 2004 8 31 3 11 Tue Cabell Burglary M AorPI 21 Yes 
1078 2004 9 8 7 56 Wed Monongalia Accident M White 19 No 
1079 2004 9 11 2 19 Sat Monongalia Rape M Black 38 Yes 
1080 2004 9 14 22 49 Tue Berkley Drugs M Black 25 Yes 
1081 2004 9 17 19 39 Fri Monongalia Sex_Assault M Black 27 Yes 
1082 2004 9 18 23 10 Sat Monongalia Accident M White 67 Yes 
1083 2004 9 21 2 59 Tue Marion Murder F Black 34 Yes 
1084 2004 9 21 20 23 Tue Cabell Burglary M Black 24 Yes 
1085 2004 9 24 19 19 Fri Kanawha Drugs M AorPI 33 Yes 
1086 2004 9 26 2 48 Sun Harrison Accident M Black 15 Yes 
1087 2004 10 3 0 7 Sun Berkley Accident M White 49 No 
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1088 2004 10 3 23 27 Sun Monongalia Assault M Hspnc 33 Yes 
1089 2004 10 17 4 1 Sun Cabell Burglary M White 44 No 
1090 2004 10 17 15 49 Sun Kanawha Weap_Threat M Black 20 Yes 
1091 2004 10 18 8 36 Mon Hancock Accident M White 28 Yes 
1092 2004 10 26 3 46 Tue Cabell Burglary M Black 21 No 
1093 2004 10 29 2 18 Fri Marion Sex_Assault M Black 27 Yes 
1094 2004 10 30 2 7 Sat Hancock Drugs M Black 22 Yes 
1095 2004 11 2 21 2 Tue Berkley Weap_Threat M White 54 Yes 
1096 2004 11 3 16 6 Wed Kanawha Arson M Black 34 No 
1097 2004 11 15 18 54 Tue Cabell Burglary M AorPI 53 Yes 
1098 2004 11 27 2 9 Sat Mercer Rape M White 28 Yes 
1099 2004 11 28 1 30 Sun Raleigh Accident M White 27 No 
1100 2004 11 30 3 56 Tue Mercer Burglary M White 24 No 
1101 2004 12 5 23 56 Mon Marion Murder M Black 38 Yes 
1102 2004 12 6 18 56 Tue Hancock Burglary M White 17 No 
1103 2004 12 23 18 43 Thru Monongalia Drugs M White 21 Yes 
1104 2004 12 28 9 1 Tue Marion Assault M White 32 Yes 
1105 2004 12 28 1 46 Tue Harrison Arson M White 16 Yes 
1106 2004 12 30 12 6 Thru Hancock Weap_Threat M Black 28 Yes 
1107 2004 12 30 10 34 Thru Hancock Drugs M White 62 Yes 
1108 2004 12 30 2 7 Thru Marion Drugs M Black 30 Yes 
1109 2004 12 31 18 19 Fri Raleigh Assault M Hspnc 22 No 
1110 2004 12 31 14 43 Fri Monongalia Sex_Assault M Black 30 Yes 
1111 2005 1 2 0 32 Sun Hancock Rape M Black 38 Yes 
1112 2005 1 2 14 46 Sun Harrison Arson M White 25 No 
1113 2005 1 4 15 23 Tue Kanawha Weap_Threat M Black 27 Yes 
1114 2005 1 10 7 51 Mon Harrison Accident M White 67 No 
1115 2005 1 15 16 59 Sat Cabell Assault M Black 36 Yes 
1116 2005 1 16 3 36 Sun Cabell Burglary M Hspnc 53 Yes 
1117 2005 1 21 1 43 Fri Monongalia Rape M Black 29 Yes 
1118 2005 1 25 14 58 Tue Hancock Weap_Threat M Hspnc 49 Yes 
1119 2005 1 25 19 24 Tue Mercer Sex_Assault M Black 33 Yes 
1120 2005 1 30 2 30 Sun Monongalia Arson M White 23 Yes 
1121 2005 1 31 20 17 Mon Hancock Accident F Black 20 No 
1122 2005 2 1 4 40 Tue Berkley Burglary M Hspnc 35 Yes 
1123 2005 2 2 18 7 Wed Monongalia Sex_Assault M Black 31 Yes 
1124 2005 2 7 17 1 Mon Harrison Accident M Black 47 Yes 
1125 2005 2 7 4 5 Mon Mercer Burglary M Black 32 Yes 
1126 2005 2 9 15 51 Wed Kanawha Accident M White 54 No 
1127 2005 2 10 18 41 Thru Hancock Drugs M Black 44 Yes 
1128 2005 2 11 7 22 Fri Raleigh Rape M Black 28 Yes 
1129 2005 2 12 19 19 Sat Monongalia Drugs F Black 22 Yes 
1130 2005 2 15 12 33 Tue Berkley Sex_Assault M Black 27 No 
1131 2005 2 19 22 22 Sat Raleigh Drugs M AorPI 24 Yes 
1132 2005 2 26 0 49 Sat Monongalia Sex_Assault M White 50 Yes 
1133 2005 3 1 22 53 Tue Marion Murder M Black 57 Yes 
1134 2005 3 13 22 46 Sun Harrison Murder M White 51 Yes 
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1135 2005 3 13 9 35 Sun Kanawha Assault M White 42 Yes 
1136 2005 3 29 2 52 Tue Monongalia Burglary M Hspnc 34 No 
1137 2005 3 31 23 57 Thru Kanawha Rape M White 52 Yes 
1138 2005 4 8 20 8 Fri Cabell Drugs F White 22 No 
1139 2005 4 9 0 59 Sat Monongalia Sex_Assault M Black 39 Yes 
1140 2005 4 12 12 25 Tue Raleigh Burglary M Black 39 Yes 
1141 2005 4 17 0 46 Sun Harrison Accident M Black 19 Yes 
1142 2005 4 18 18 51 Mon Hancock Weap_Threat M White 53 Yes 
1143 2005 4 23 20 25 Sat Raleigh Sex_Assault M Black 45 Yes 
1144 2005 4 26 17 14 Tue Kanawha Accident M Black 25 No 
1145 2005 5 5 23 56 Thru Hancock Drugs F White 21 Yes 
1146 2005 5 16 9 30 Mon Berkley Assault M Black 24 Yes 
1147 2005 5 18 8 43 Wed Cabell Accident M Black 33 Yes 
1148 2005 5 19 23 37 Thru Kanawha Rape M Black 37 Yes 
1149 2005 5 21 4 22 Sat Cabell Burglary M Black 22 Yes 
1150 2005 5 21 1 54 Sat Marion Murder M White 46 Yes 
1151 2005 5 25 18 44 Wed Mercer Burglary M Black 24 Yes 
1152 2005 5 27 0 2 Fri Raleigh Rape M White 38 Yes 
1153 2005 5 27 20 19 Fri Mercer Drugs M AorPI 21 No 
1154 2005 6 4 23 32 Sat Hancock Accident M Hspnc 39 Yes 
1155 2005 6 7 7 10 Tue Marion Accident M Black 30 No 
1156 2005 6 7 19 31 Tue Monongalia Sex_Assault M Black 41 Yes 
1157 2005 6 8 9 21 Wed Cabell Accident M Black 36 Yes 
1158 2005 6 9 17 38 Thru Kanawha Drugs M White 23 Yes 
1159 2005 6 11 7 3 Sat Kanawha Sex_Assault M Black 39 Yes 
1160 2005 6 11 1 22 Sat Raleigh Sex_Assault M Hspnc 44 Yes 
1161 2005 6 15 11 11 Wed Harrison Burglary M Black 51 Yes 
1162 2005 6 16 19 34 Thru Harrison Drugs M Black 24 Yes 
1163 2005 6 17 23 45 Fri Berkley Assault M Black 37 Yes 
1164 2005 6 21 12 7 Tue Monongalia Rape M Black 24 Yes 
1165 2005 6 24 22 12 Fri Kanawha Arson M Black 32 Yes 
1166 2005 6 26 8 27 Sun Raleigh Sex_Assault M Hspnc 52 Yes 
1167 2005 6 26 15 58 Sun Mercer Burglary M Hspnc 44 Yes 
1168 2005 7 2 0 53 Sat Hancock Rape M Hspnc 52 Yes 
1169 2005 7 3 11 9 Sun Hancock Assault M White 22 Yes 
1170 2005 7 4 17 56 Mon Cabell Accident M White 19 No 
1171 2005 7 5 23 23 Tue Marion Murder M White 39 Yes 
1172 2005 7 6 2 25 Wed Harrison Burglary M Hspnc 53 Yes 
1173 2005 7 10 10 38 Sun Cabell Assault M Black 25 Yes 
1174 2005 7 11 8 28 Mon Raleigh Accident F AorPI 63 No 
1175 2005 7 24 10 10 Sun Harrison Assault M Black 34 Yes 
1176 2005 7 26 17 16 Tue Berkley Accident M Black 33 No 
1177 2005 7 31 12 0 Sun Harrison Arson M Black 45 Yes 
1178 2005 8 1 1 17 Mon Monongalia Drugs M Black 19 No 
1179 2005 8 7 13 29 Sun Hancock Weap_Threat F Black 33 Yes 
1180 2005 8 8 0 7 Mon Kanawha Sex_Assault M Black 44 Yes 
1181 2005 8 9 15 23 Tue Berkley Assault M Black 20 No 
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1182 2005 8 11 21 23 Thru Raleigh Drugs M AorPI 28 Yes 
1183 2005 8 23 11 41 Tue Cabell Burglary M White 41 Yes 
1184 2005 8 24 16 16 Wed Marion Accident M White 47 No 
1185 2005 8 27 1 47 Sat Monongalia Rape M Black 32 Yes 
1186 2005 9 3 0 15 Sat Monongalia Drugs M Black 16 Yes 
1187 2005 9 4 6 17 Sun Harrison Sex_Assault M Black 34 Yes 
1188 2005 9 11 19 48 Sun Berkley Assault M Black 29 Yes 
1189 2005 9 14 22 8 Wed Berkley Sex_Assault M Hspnc 44 Yes 
1190 2005 9 17 14 38 Sat Mercer Accident F White 28 No 
1191 2005 9 23 0 34 Fri Kanawha Drugs F Black 27 Yes 
1192 2005 9 28 4 8 Wed Mercer Burglary M Black 24 Yes 
1193 2005 9 28 3 30 Wed Cabell Weap_Threat M Black 50 Yes 
1194 2005 9 30 17 52 Fri Mercer Arson M Hspnc 57 Yes 
1195 2005 10 3 20 54 Mon Hancock Accident M White 51 No 
1196 2005 10 14 0 25 Fri Monongalia Rape M Hspnc 52 Yes 
1197 2005 10 15 23 54 Sat Hancock Assault M White 24 Yes 
1198 2005 10 22 2 16 Sat Cabell Drugs M Black 20 Yes 
1199 2005 10 22 22 45 Sat Kanawha Sex_Assault M White 57 Yes 
1200 2005 10 23 0 6 Sun Marion Assault M Black 24 No 
1201 2005 10 27 23 26 Thru Monongalia Drugs M Hspnc 21 Yes 
1202 2005 10 27 20 35 Thru Hancock Drugs M AorPI 29 Yes 
1203 2005 10 30 3 28 Sun Monongalia Murder M Black 41 Yes 
1204 2005 11 3 23 49 Thru Raleigh Drugs M White 21 No 
1205 2005 11 27 3 3 Sun Berkley Rape M Black 47 Yes 
1206 2005 11 29 1 55 Tue Kanawha Accident M Black 60 Yes 
1207 2005 11 30 3 19 Wed Cabell Burglary M Black 22 Yes 
1208 2005 11 30 15 0 Wed Hancock Arson M Black 41 Yes 
1209 2005 11 30 23 1 Wed Berkley Drugs M Black 28 Yes 
1210 2005 12 3 21 33 Sat Monongalia Drugs M Black 23 Yes 
1211 2005 12 17 0 40 Sat Monongalia Drugs F Black 15 No 
1212 2005 12 22 19 27 Thru Monongalia Drugs F White 23 Yes 
1213 2005 12 22 14 15 Thru Mercer Rape M Black 27 Yes 
1214 2005 12 26 6 26 Mon Berkley Accident M Black 67 No 
1215 2005 12 26 7 47 Mon Harrison Accident M White 63 No 
1216 2005 12 30 0 55 Fri Monongalia Drugs M AorPI 23 No 
1217 2005 12 31 1 29 Sat Kanawha Rape M White 45 Yes 
1218 2005 12 31 22 12 Sat Berkley Sex_Assault M Black 49 Yes 
1219 2005 12 31 23 53 Sat Kanawha Rape M Black 27 No 
1220 2006 1 1 14 41 Sun Mercer Weap_Threat M Black 24 Yes 
1221 2006 1 1 23 26 Sun Marion Burglary M AorPI 50 Yes 
1222 2006 1 3 15 2 Tue Monongalia Drugs M Black 18 Yes 
1223 2006 1 7 0 19 Sat Cabell Arson M White 51 No 
1224 2006 1 7 21 27 Sat Monongalia Rape M Black 53 Yes 
1225 2006 1 12 19 50 Thru Berkley Drugs M Black 26 Yes 
1226 2006 1 14 20 56 Sat Harrison Assault M White 33 Yes 
1227 2006 1 17 0 20 Tue Mercer Weap_Threat M Black 22 Yes 
1228 2006 1 20 3 34 Fri Hancock Weap_Threat M White 56 Yes 



 87

1229 2006 1 20 3 47 Fri Monongalia Drugs M Black 19 No 
1230 2006 1 30 6 40 Mon Harrison Accident M Hspnc 19 No 
1231 2006 1 31 18 14 Tue Marion Burglary M Hspnc 53 Yes 
1232 2006 2 4 0 53 Sat Monongalia Rape M Black 45 Yes 
1233 2006 2 9 18 38 Thru Kanawha Drugs M White 24 Yes 
1234 2006 2 11 23 59 Sat Raleigh Rape M Black 29 Yes 
1235 2006 2 12 23 8 Sun Monongalia Sex_Assault M AorPI 36 Yes 
1236 2006 2 16 0 27 Thru Harrison Drugs M Black 16 No 
1237 2006 2 23 19 57 Thru Mercer Accident M Hspnc 56 No 
1238 2006 2 23 21 37 Thru Marion Weap_Threat M Black 27 Yes 
1239 2006 2 28 2 45 Tue Cabell Burglary M AorPI 46 Yes 
1240 2006 3 2 21 42 Thru Hancock Rape M Black 36 Yes 
1241 2006 3 4 22 39 Sat Monongalia Rape M Black 49 Yes 
1242 2006 3 5 14 17 Sun Monongalia Assault M Black 33 No 
1243 2006 3 6 9 19 Mon Marion Accident M AorPI 39 No 
1244 2006 3 6 20 9 Mon Raleigh Accident M Black 49 No 
1245 2006 3 16 23 4 Thru Monongalia Drugs M AorPI 23 No 
1246 2006 3 29 14 56 Wed Hancock Burglary F White 22 Yes 
1247 2006 3 30 22 34 Thru Marion Drugs M Black 15 No 
1248 2006 4 1 18 53 Sat Mercer Sex_Assault M White 45 Yes 
1249 2006 4 1 19 23 Sat Monongalia Rape M Black 38 Yes 
1250 2006 4 2 2 38 Sun Marion Murder M Hspnc 49 Yes 
1251 2006 4 2 2 46 Sun Monongalia Burglary M White 15 No 
1252 2006 4 15 1 43 Sat Mercer Rape M Hspnc 44 Yes 
1253 2006 4 18 7 15 Tue Raleigh Accident M Black 20 Yes 
1254 2006 4 21 1 17 Fri Marion Drugs M Hspnc 28 Yes 
1255 2006 4 26 8 59 Wed Cabell Accident M White 41 Yes 
1256 2006 5 1 20 16 Mon Monongalia Sex_Assault M Black 31 Yes 
1257 2006 5 6 1 52 Sat Monongalia Drugs M Black 53 Yes 
1258 2006 5 8 0 4 Mon Mercer Accident M Hspnc 42 No 
1259 2006 5 8 11 49 Mon Cabell Burglary M White 24 Yes 
1260 2006 5 9 16 46 Tue Harrison Accident F AorPI 44 No 
1261 2006 5 12 19 15 Fri Mercer Arson M Hspnc 28 Yes 
1262 2006 5 12 4 24 Fri Monongalia Sex_Assault M White 27 Yes 
1263 2006 5 14 0 23 Sun Cabell Weap_Threat F Black 31 No 
1264 2006 5 14 14 39 Sun Kanawha Assault M Hspnc 24 Yes 
1265 2006 5 15 15 19 Mon Marion Accident M Black 50 No 
1266 2006 5 15 15 38 Fri Raleigh Rape M Black 48 Yes 
1267 2006 5 19 22 11 Fri Berkley Accident M White 51 No 
1268 2006 5 23 12 24 Tue Harrison Arson M Black 23 No 
1269 2006 5 23 18 5 Tue Cabell Burglary M White 45 Yes 
1270 2006 5 26 2 56 Fri Monongalia Drugs M White 23 Yes 
1271 2006 5 27 15 15 Sat Raleigh Rape M Black 50 Yes 
1272 2006 5 29 22 6 Mon Marion Murder M Hspnc 57 Yes 
1273 2006 6 1 19 2 Thru Monongalia Drugs M AorPI 21 Yes 
1274 2006 6 3 19 3 Sat Monongalia Rape M Black 45 No 
1275 2006 6 9 0 25 Fri Berkley Drugs M Black 14 No 
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1276 2006 6 12 21 57 Mon Cabell Rape M Black 54 Yes 
1277 2006 6 17 0 45 Sat Mercer Sex_Assault M Black 38 Yes 
1278 2006 6 17 1 33 Sat Harrison Rape M Black 37 Yes 
1279 2006 6 23 18 8 Fri Berkley Assault M Black 24 Yes 
1280 2006 6 25 9 44 Sun Monongalia Drugs M AorPI 22 Yes 
1281 2006 6 28 9 36 Wed Raleigh Accident M Hspnc 57 No 
1282 2006 6 28 20 14 Wed Kanawha Assault M Hspnc 51 Yes 
1283 2006 7 1 18 14 Sat Monongalia Burglary M Hspnc 62 Yes 
1284 2006 7 2 10 42 Sun Hancock Weap_Threat M White 51 Yes 
1285 2006 7 5 10 27 Wed Monongalia Accident F AorPI 24 No 
1286 2006 7 5 19 27 Wed Mercer Sex_Assault M White 26 Yes 
1287 2006 7 8 0 39 Sat Berkley Rape M Black 39 Yes 
1288 2006 7 11 14 23 Tue Hancock Accident F Hspnc 59 Yes 
1289 2005 7 16 23 35 Sat Monongalia Sex_Assault M Black 36 No 
1290 2006 7 24 0 3 Mon Harrison Accident M Black 53 No 
1291 2006 7 30 20 56 Sun Mercer Weap_Threat M Black 25 Yes 
1292 2006 8 2 1 56 Wed Cabell Burglary M Hspnc 34 Yes 
1293 2006 8 6 21 6 Sun Harrison Accident M Black 29 No 
1294 2006 8 6 0 33 Sun Berkley Accident M White 24 Yes 
1295 2006 8 10 23 5 Thru Marion Drugs M Black 33 Yes 
1296 2006 8 11 21 7 Fri Monongalia Rape M White 56 Yes 
1297 2006 8 25 22 23 Fri Cabell Sex_Assault M Hspnc 27 Yes 
1298 2006 8 26 9 56 Sat Monongalia Rape M Black 41 No 
1299 2006 8 28 19 52 Mon Mercer Accident M White 46 No 
1300 2006 9 3 1 19 Sun Harrison Burglary M Hspnc 22 Yes 
1301 2006 9 3 22 15 Sun Marion Murder M Black 39 Yes 
1302 2006 9 6 11 33 Wed Harrison Accident M White 19 Yes 
1303 2006 9 8 10 40 Fri Hancock Weap_Threat F White 33 Yes 
1304 2006 9 23 10 52 Sat Monongalia Sex_Assault M Black 43 Yes 
1305 2006 9 24 0 5 Sun Monongalia Arson M White 19 No 
1306 2006 9 25 9 49 Mon Mercer Accident M Black 45 No 
1307 2006 9 29 2 0 Fri Hancock Drugs M Black 14 No 
1308 2006 10 5 23 23 Thru Monongalia Sex_Assault M Black 33 Yes 
1309 2006 10 15 22 54 Sun Cabell Accident M Black 44 Yes 
1310 2006 10 17 2 38 Tue Mercer Burglary M Black 20 Yes 
1311 2006 10 21 0 10 Sat Raleigh Rape M Black 42 Yes 
1312 2006 10 23 1 48 Mon Cabell Accident M White 51 No 
1313 2006 10 24 13 6 Tue Harrison Accident M Black 62 Yes 
1314 2006 10 30 13 17 Mon Cabell Burglary M White 31 Yes 
1315 2006 11 2 18 23 Thru Monongalia Drugs M AorPI 21 No 
1316 2006 11 6 19 34 Mon Kanawha Sex_Assault M Hspnc 52 Yes 
1317 2006 11 21 21 54 Tue Hancock Weap_Threat M Black 30 Yes 
1318 2006 11 21 15 16 Tue Marion Burglary M AorPI 22 Yes 
1319 2006 11 23 0 59 Fri Raleigh Rape M Black 50 Yes 
1320 2006 11 30 21 35 Thru Monongalia Drugs M AorPI 24 Yes 
1321 2006 12 6 13 27 Wed Harrison Accident M Black 15 No 
1322 2006 12 23 19 40 Sat Hancock Drugs M Hspnc 53 Yes 
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1323 2006 12 23 19 10 Sat Monongalia Sex_Assault M Black 45 Yes 
1324 2006 12 25 9 12 Mon Berkley Accident M Black 25 No 
1325 2006 12 25 11 18 Mon Monongalia Weap_Threat M Black 29 Yes 
1326 2006 12 30 11 56 Sat Monongalia Rape M Black 43 No 
1327 2006 12 30 22 45 Sat Cabell Accident M White 24 No 
1328 2006 12 31 8 54 Sun Mercer Sex_Assault M Black 33 Yes 
1329 2006 12 31 0 22 Sun Harrison Accident M White 56 Yes 
1330 2006 12 31 0 53 Sun Raleigh Rape M Black 37 Yes 
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APPENDIX B: Requirements Document  

 

This is a customized and brief form of a requirements document; the original 

documents are much more extensive and cover other modules such as Database 

Requirement, Navigation Requirement, etc.  Ones document encapsulates the all the 

aspects of the model into one single document.  This helps in clear understanding of 

various functions and constrains.  Finally, the document is an outline to what the model is 

all about. 

 

Objective 

The objective of the model is to allow the end user to navigate through all the data 

searching and mining technique, use them with the data stored in the pre-selected data 

table and store the results of his / her choice in order to refer back to it at the end. 

 

Scope 

a. Allow the user to select the data mining and search technique of his choice. 

b. Provide a data source where the user is able to execute the selected algorithm without 

any concern of the data, algorithms or techniques. 

c. Provide ability of storing the results for further reference. 

 

End-users 

This model is intended for use by detectives of different crime investigation 

agencies such as State Police Dept. and FBI. 

 

Assumptions 

The user should have basic knowledge of Searching / Querying techniques and 

ability of interpreting the results of Data Mining algorithms. 
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Constraints 

The tool works only with predefined data table.  Web functionality cannot be 

provided to all the features in the model. 

 

Model Requirements 

a. The tool should have an appropriate navigational structure. 

b. The tool should have a database capable of addressing issues as per the objective. 

c. The different algorithms used in the tool should generate correct results. 

d. The obtained results should serve the objective. 

 

Model Functionality 

The tool design would be such that the end user must have basic data querying and 

interpretation knowledge.  Initially, the Data Mining methods would assist to identify 

relationship between different variables of the Query Table and find out any non-obvious 

crime patterns in it.  The searching algorithms would then be used by putting in specific 

queries that based on the patterns would find specific details about the pattern. 

 

Testing Considerations 

a. Does the tool help the end user meet the functional requirements? 

b. Is the user interface consistent and user friendly? 

c. Is the tool database robust so as to meet different or specific needs of the end user? 

d. Are the results provided by the tool correct and serve purpose of the end user? 

 



 92

APPENDIX C: Association Rules Output 

Association Rule output with columns “OffDay”, “OffType”, “County” and “Race”. 

 
 

Association Rule output with columns “OffDay”, “OffType” and “County”. 

 

 

 

 

 

 

 

Monongalia – Black : 42 
Sat – Black  : 41 
Tue – Black  : 30 
Sat – Monongalia : 30 
Sun – Black  : 27 
Accident – White : 26 
Drugs – Black  : 26 
Accident – Black : 25 
Monongalia – Drugs : 24 
Cabell – Burglary : 22 
Tue – Burglary : 21 

Sat – Monongalia : 30 
Monongalia – Drugs : 24 
Cabell – Burglary : 22 
Tue – Burglary : 21 
Tue – Accident : 13 
Tue – Cabell  : 12 
Sat – Drugs  : 12 
Sun – Burglary : 10 
Sun – Cabell  : 8 
Sun – Monongalia : 8 
Cabell – Accident : 8 
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Association Rule output with columns “OffDay” and “OffType”. 

 

 

 

 

 

 

Association Rule output with columns “OffDay” and “County”. 

 

 

 

 

 

 

Tue – Burglary : 21 
Tue – Accident : 13 
Sat – Drugs  : 12 
Sun – Burglary : 10 
Sun – Accident : 8 
Sat – Accident  : 4 
Sat – Burglary  : 3 
Tue – Drugs  : 2 
Sun – Drugs  : 1 

Sat – Monongalia : 30 
Tue – Cabell  : 12 
Sun – Monongalia : 8 
Sun – Cabell  : 8 
Tue – Monongalia : 7 
Sat – Cabell  : 6 
Sat – Hancock  : 6 
Sun – Hancock : 6 
Tue – Hancock : 4 
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APPENDIX D: Decision Rule Output 

Decision Rule Output with Field as “OffType” and Field Value as “Accident”. 

 

 
 
 

Field Name: OffType  Field Value: Accident 
 
Age 
> 35: 37; between 24 and 35: 17; between 14 and 23: 12;  
 
County 
Harrison: 14; Mercer: 9; Cabell: 8;  
 
CriminalBkgd 
Yes: 20; No: 46;  
 
Gender 
Male: 56; Female: 10;  
 
OffDate 
between 6 and 10: 18; between 26 and 31: 16; between 1 and 5: 11;  
 
OffDay 
Mon: 25; Wed: 14; Tue: 13;  
 
OffHour 
between 6 and 9: 18; between 15 and 18: 9; between 9 and 12: 8;  
 
OffMonth 
Jun: 10; Jul: 9; Sep: 6;  
 
Race 
White: 26; Black: 25; AorPI: 8; 



 95

Decision Rule Output with Field as “OffType” and Field Value as “Arson”. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Field Name: OffType   Field Value: Arson 
 
Age 
between 24 and 35: 8;  > 35: 6; between 14 and 23: 5;  
 
County 
Harrison: 7; Cabell: 3; Kanawha: 2;  
 
CriminalBkgd 
Yes: 14; No: 5;  
 
Gender 
Male: 19;  
 
OffDate 
between 26 and 31: 6;  between 21 and 25: 4;  between 1 and 5: 3;  
 
OffDay 
Sun:7;  Tue:4;  Fri:3;  
 
OffHour 
between 15 and 18: 4;  between 21 and 24: 4;  between 12 and 15: 3;  
 
OffMonth 
Jan: 4;  May: 3; Apr: 2;  
 
Race 
Black: 9; White: 8; Hspnc: 2; 
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Decision Rule Output with Field as “OffType” and Field Value as “Assault”. 

 

 
 
 
 
 
 
 
 

Field Name: OffType  Field Value: Assault 
 
Age 
between 24 and 35: 15; > 35: 6; between 14 and 23: 3;  
 
County 
Berkley: 5; Hancock: 4; Kanawha: 3;  
 
CriminalBkgd 
Yes: 18; No: 6;  
 
Gender 
Male: 24;  
 
OffDate 
between 11 and 15: 6;  between 1 and 5: 5; between 16 and 20: 4;  
 
OffDay 
Sun: 9;  Tue: 4;  Sat: 4; 
 
OffHour 
between 9 and 12: 7;  between 18 and 21: 6;  between 15 and 18: 4;  
 
OffMonth 
Jun: 5;  Jan: 4;  May: 3;  
 
Race 
Black: 11; Hspnc: 7; White: 6; 
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Decision Rule Output with Field as “OffType” and Field Value as “Burglary”. 

 

 
 
 
 
 
 

Field Name: OffType  Field Value: Burglary 
 
Age 
> 35: 20; between 24 and 35: 18; between 14 and 23: 11;  
 
County 
Cabell: 22; Mercer: 8; Marion: 6;  
 
CriminalBkgd 
Yes: 40; No: 9;  
 
Gender 
Male: 43; Female: 6;  
 
OffDate 
between 26 and 31: 13; between 1 and 5: 9; between 6 and 10: 7;  
 
OffDay 
Tue: 21; Wed: 12; Sun: 10;  
 
OffHour 
between 3 and 6: 14;  between 12 and 15: 7;  between 18 and 21: 6;  
 
OffMonth 
Feb: 7;  May: 6; Jan: 5;  
 
Race 
Hspnc: 15; Black: 13; White: 13; 
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Decision Rule Output with Field as “OffType” and Field Value as “Drugs”. 
 

 
 

Field Name: OffType  Field Value: Drugs 
 
Age 
between 14 and 23: 32; between 24 and 35: 16; > 35: 4;  
 
County 
Monongalia: 24; Hancock: 8; Kanawha: 4;  
 
CriminalBkgd 
Yes: 36; No: 16;  
 
Gender 
Male: 45; Female: 7;  
 
OffDate 
between 26 and 31: 13; between 21 and 25: 10; between 1 and 5: 10;  
 
OffDay 
Sat: 12;  Fri: 10;  Tue: 2;  
 
OffHour 
between 21 and 24: 16; between 18 and 21: 14; between 9 and 12: 3;  
 
OffMonth 
Dec: 8;  Jun: 7;  May: 5;  
 
Race 
Black: 26; AorPI: 13; White: 9; 
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Decision Rule Output with Field as “OffType” and Field Value as “Murder”. 

 

 
 

Field Name: OffType  Field Value: Murder 
 
Age 
> 35: 11; between 24 and 35: 1;  between 14 and 23: 1;  
 
County 
Marion: 9; Hancock: 1;  Harrison: 1;  
 
CriminalBkgd 
Yes: 13;  
 
Gender 
Male: 12; Female: 1;  
 
OffDate 
between 1 and 5: 7;  between 21 and 25: 2;  between 26 and 31: 2;  
 
OffDay 
Sun: 6;  Tue: 3;  Mon: 2;  
 
OffHour 
between 21 and 24: 7;  between 6 and 9: 1;  between 3 and 6: 1;  
 
OffMonth 
Jan: 2;  Mar: 2;  May: 2;  
 
Race 
Black: 7; White: 4; Hspnc: 2; 
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Decision Rule Output with Field as “OffType” and Field Value as “Rape”. 

 

 

Field Name: OffType  Field Value: Rape 
 
Age 
> 35: 22; between 24 and 35: 9; between 14 and 23: 3;  
 
County 
Monongalia: 20; Raleigh: 9; Kanawha: 5;  
 
CriminalBkgd 
Yes: 40; No: 4;  
 
Gender 
Male: 44;  
 
OffDate 
between 26 and 31: 12; between 11 and 15: 9;  between 21 and 25: 8;  
 
OffDay 
Sat: 24; Fri: 10;  Sun: 3;  
 
OffHour 
between 21 and 24: 12; between 18 and 21: 3;  between 3 and 6: 3;  
 
OffMonth 
May: 6; Feb: 5;  Jun: 5;  
 
Race 
Black: 32; White: 7; Hspnc: 5; 
 



 101

Decision Rule Output with Field as “OffType” and Field Value as “Sex_Assault”. 

 

 
 

Field Name: OffType  Field Value: Sex_Assault 
 
Age 
> 35: 24; between 24 and 35: 14; between 14 and 23: 3;  
 
County 
Monongalia: 19; Kanawha: 8; Mercer: 5;  
 
CriminalBkgd 
Yes: 38; No: 2;  
 
Gender 
Male: 41;  
 
OffDate 
between 11 and 15: 9;  between 21 and 25: 8;  between 26 and 31: 8;  
 
OffDay 
Sat: 17; Fri: 8; Mon: 4;  
 
OffHour 
between 18 and 21: 12; between 21 and 24: 9;  between 6 and 9: 4;  
 
OffMonth 
Jun: 8;  Feb: 6;  Jul: 4;  
 
Race 
Black: 24; White: 9; Hspnc: 7; 
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Decision Rule Output with Field as “OffType” and Field Value as “Weap_Threat”. 

 

 
 

Field Name: OffType  Field Value: Weap_Threat 
 
Age 
between 24 and 35: 11;  > 35: 8; between 14 and 23: 3;  
 
County 
Hancock: 10;  Mercer: 4;  Berkley: 2;  
 
CriminalBkgd 
Yes: 20; No: 1 
 
6]Gender 
Male: 19; Female: 3;  
 
OffDate 
between 1 and 5: 5; between 16 and 20: 5;  between 21 and 25: 5;  
 
OffDay 
Sun: 8;  Tue: 6;  Fri: 3;  
 
OffHour 
between 12 and 15: 4;  between 21 and 24: 4;  between 18 and 21: 3;  
 
OffMonth 
Jan: 6;  Apr: 2;  Jun: 2;  
 
Race 
Black: 14; White: 8; Hspnc: 2; 
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APPENDIX E: WEKA Output 

Apriori Output with 6 attributes. 
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Apriori Output with 5 attributes. 
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Tertius Output with 6 attributes. 
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Tertius Output with 6 attributes with filter. 
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Tertius Output with 5 attributes. 
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Tertius Output with 4 atributes. 
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