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ABSTRACT 

 

Pilot in Loop Assessment of Fault Tolerant Flight Control Schemes in a Motion 

Flight Simulator 

 

Girish Kumar Sagoo 

 

This research presents the pilot in the loop tests carried out in a Six-Degree of Freedom (6-DOF) 

motion flight simulator to evaluate failure detection, isolation and identification (FDII) schemes 

for an advanced F-15 aircraft. The objective behind this study is to leverage the capability of the 

flight simulator at West Virginia University (WVU) to carry out a performance assessment of 

neurally augmented control algorithms developed on a Matlab/Simulink® platform. The 

experimental setup features an interface setup of Gen-2 Simulink® ® schemes with MOTUS 

Flight Simulator (MFS). The set up is a close substitute to a real flight and thus is helpful in 

evaluation of the schemes in a realistic manner. The graphics in X-plane is used to obtain visual 

cues and the motion platform is used to obtain motion cues in the simulator cockpit. The whole 

set-up enables the pilot to respond with a joystick in the advent of a failure as he would otherwise 

in a real flight. The pilot response in maintaining the mission profile is different for different 

neural network augmentations and thus an indication of performance comparison of these 

schemes. Secondly, FDII schemes are developed for a sensor and actuator failure using an 

adaptive threshold for cross-correlation coefficients of the angular rates of the aircraft.     Failure 

detection, isolation and identification logic is formulated based on monitoring the cross-

correlation parameters with their Floating Limiter (FL) bounds. The FDII scheme developed 

shows a good performance with desktop simulation because of no pilot activity but with a pilot in 

the loop significant cross-correlation of the rates occur and hence the scheme become more 

susceptible to wrongs FDII. In addition, the pilot might induce some coupling of the cross-

correlation parameters between detection and identification time which may trigger false 

detections and may configure the controller differently based on incorrect detection. Thus it is 

necessary that FDII scheme accommodate real flight conditions. The performance of the FDII 

schemes is improved with a pilot in the loop by monitoring the cross-correlation parameters and 

fine tuning FDII algorithms for real situations. This study has set up an excellent example to 

effectively utilize the aural, visual and motion cues to create a higher level of simulation 

complexity in designing control algorithms. 
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Chapter 1. Introduction 

1.1. Importance of Failure Detection and Identification 

The most published work on failure detection, isolation and identification (FDII) is in 

the aerospace domain. A control flight system that is able to recover an aircraft from a 

failure by reconfiguration is a challenge among many aerospace researchers. The fault 

tolerance has gained a considerable academic research interest after two commercial 

carrier accidents in late 1970s and it was realized that there is a persistent need to warn 

the pilot of any malfunctions arising in the aircraft. The Delta 1080 flight accident1 was 

because one of the elevators jammed at 19 deg and the pilot had no indication about its 

occurrence. Another accident of the AA DC10 aircraft2 could have been avoided if the 

pilot had known about the failure. The pilot had 15 sec to react after he realized about the 

failure and subsequently the plan crashed. Therefore, a prompt display of failure 

information to the pilot started gaining significant importance among the aerospace 

researchers. Failures to the aircraft primary control surfaces are critical and can lead to 

the loss of the aircraft. Smart failure detection and identification schemes can 

immediately detect failures and can reconfigure the controller and help in situations 

where pilot becomes perplexed in the advent of failures. A similar accident due to 

actuator failure was the 30 December 2001 crash of Air Vehicle 5 due to rudder actuator, 

which became loose while conducting a mission. Operators redirected the UAV to return 

to base, though during the return the rudder began flapping excessively, causing a 

catastrophic failure. Similar incidents of Boeing aircraft accidents due to actuator failure 

(rudder) are shown in Fig. 1-1. The sensor failures can also lead to fatal accidents and is 

evident by the recent accident of B-2 bomber aircraft on 23rd February, 2008. The 

accident was because of moisture in sensors which distorted three of the aircrafts twenty 

four sensor readings forcing the bomber to pitch up on takeoff which resulted in stalling 

and subsequent crash. The sensor readings confused the pilot and resulted in the loss of 

this $1.4 billion airplane and are one of the biggest losses in terms of money. 
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Fig. 1-1-Boeing Rudder Failure Accidents (Courtesy Seattle Times) 

 Typically, physical redundancy for the actuators of the primary control surfaces is not 

available. Therefore, actuators failures represent major threats to flight safety. Due to the 

unique dynamic signature of each and every failure, it might not be feasible to train pilots 
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in an exhaustive manner to handle every class of actuator failures. The existence of an 

actuator failure detection isolation and identification scheme can significantly improve 

the pilot reaction time and, in turn, enhance the success probability for the post-failure 

recovery. Fault tolerant flight control systems may allow an aircraft to avoid 

unrecoverable flight conditions, regain equilibrium, and continue the mission. Many of 

these systems are based on the availability of an AFDII scheme to trigger compensating 

changes in the control laws. 

 

 

Fig. 1-2-A locked slat on a Boeing 737 -844 (courtesy www.airliners.net) 

1.2. Overview of Flight Simulation 

 A flight simulator is a system imitating or simulating the experience of flying an 

aircraft. It can range from PC based video game, instrument only simulator, fixed 

simulator to full size cockpit replica mounted on hydraulic or electromechanical 

actuators. A full flight simulator has motion platforms and is capable of replicating the 

physical sensations of flight. In spite of varying complexities and functions of a flight 

simulator, the fundamental attribute is similar for desktop running flight simulation 

software as well for a multi- million dollar full scale flight simulator. Both represent an 

input-output representation of the system process varying only in comprehensiveness and 

complexity of information. The principle task of a flight simulator is to model the 



 4 

dynamics of an aircraft which is achieved by way of a mathematical model of the system 

under consideration. The mathematical model generally needs to be executed in real time 

and mainly embedded in digital format through computers in the form of a software 

algorithm or program. 

 

The pilot interface subconsciously tricks the brain into reflexive actions giving 

appropriate stimulations. Thus the inputs must be adequately timed and accurate for any 

realistic flight simulation experience and stipulates a perfect blend of aural, visual and 

motion cues. The aural cues replicate all sounds audible in a cockpit and ranges from 

engine, propellers, warnings, radio chatter and even aerodynamic sounds because of 

retracting landing gear, thrust vectoring, surface deflections as well as weather related 

such as thunderstorms and downbursts. 

 

The main components of a simulator are visual cueing and motion cueing for pilot 

immersion during the simulator experience. The level of immersion measures closeness 

to flying the real aircraft. Recent advances in computers and graphics have vastly 

improved the visual cueing in flight simulators.  Figure 1-3 shows the sub logic flight 

simulator (1982) and the Microsoft flight simulator (2004) and the evolution of graphics 

and resolution for visual cues is evident. 

  

Figure 1-3 A comparison of visual cue improvement (1982 to 2004) 
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The motion cues in a flight simulator provide a real-time approximation of the 

translational and rotational accelerations experienced by the pilot. The exact replication 

of these acceleration are however not feasible in practice because of imposed mechanical 

constraints. The high fidelity flight simulators typically use a six-degree of freedom 

(DOF) motion simulation. The translational and rotational acceleration exerted by the 

airplane dynamics provides the motion cue necessary to make the pilot feel immersed in 

the simulator. This is achieved by the acceleration phase is followed by a washout phase 

beyond human threshold of perception. The washout phase is essential to maintain the 

working of simulator within a confined area. The simulator retrieves back to its original 

position during the washout phase without the perceivable sensory receptions of the pilot. 

 

A full flight simulator (FFS) duplicates almost all aspects of the aircraft and its 

environment including the six-degrees of freedom motion. In the academic research flight 

simulators are used extensively for understanding various aerospace subjects such as 

flight dynamics and man-machine interaction (MMI). The range of these simulators can 

be anything from video games to extremely expensive simulator designs such as 

LAMARS Figure 1-4 installed at Wright-Patterson Air Force Base at Ohio. 

 

Figure 1-4- LAMARS Motion Flight Simulator at Wright Patterson Air Force Base, Ohio 

 

The simulators are characterized by Instructor operating stations (IOS) which allows an 

instructor to modify flight conditions within the flight simulator cockpit. Many flight 
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simulators have a provision to control the simulator from the cockpit, either from a 

console adjacent to the pilot or a co-pilot.  

 

With the advent of low cost electromechanical actuators the flight simulators have 

become an affordable engineering solution. In the past its applications were limited 

because of the multi-million dollar hydraulic devices used in flight simulators. Thus the 

flight simulators were limited to larger corporations and military centers. High end flight 

simulators today incorporate motion bases or platforms to provide cues for real motion. 

These complement the visual cues shown in Figure 1-5 and are vital to simulate a real 

flight.  

 

Figure 1-5-Visual Cues in a home-built Boeing Style Simulator  

Also the motion cues are advantageous in case of poor visibility conditions. The motion 

platforms used commonly in the flight simulators are six cylinders Stewart platform 

called as hexapods. The electromechanical actuators for MOTUS flight simulator are 

shown in Figure 1-6. 
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Figure 1-6 Six Electromechanical Actuators for MOTUS Flight Simulator at WVU 

1.3. Research Objectives 

There are many advantages of flight simulation among aerospace researchers because 

of the significant reduction in cost. Also, for researchers it is the only way to test new 

equipments, approaches while remaining in the research budget as well as providing 

safety and fewer hazards in operation. A flight simulator is capable of reproducing a 

variety of human behavior and is a tool to evaluate new concepts, approaches, formulate 

new means of training pilots in critical situations without using a real aircraft. 

 

This research is inspired from many advantages of using a flight simulator in the design 

process. The motion flight simulator is used to create a research test-bed for carrying out 

analysis of advanced flight control schemes. In this particular study it has been used to 

perform evaluation of FDII scheme and in principle used to demonstrate the design, 

implementation of this man-machine interface of Simulink scheme with the MOTUS 

flight simulator. The setup features a MOTUS Six-DOF flight simulator at   West 

Virginia University (WVU) which is used as a test bed to test different control schemes 

for an F-15 aircraft. Specific algorithms will be used to evaluate the performance of 

different NN schemes. Since the FDII schemes take care of the failures automatically, 
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monitoring the pilot activity is an important indication of the efficacy of the FDII 

schemes. The pilot activity can significantly qualify the performance of the FDII scheme. 

If the pilot issues negligible stick activity in the advent of a failure then it’s an indication 

of good failure detection and accommodation scheme. The tasks outlined to complete this 

effort are described in the following paragraph. 

 

Initially, an interface for communication of the F-15 Gen-2 Schemes with the 6-DOF 

MOTUS flight simulator at WVU is developed. The X-plane software provides visual 

and aural cues while the Motion Base Computer (MBC) provides motion cues by way of 

electromechanical motors in the motion base. This is accomplished by developing plugins 

for X-plane software that enables execution of Simulink® based codes in the MOTUS 

flight simulator. The communication of data is through User Datagram Protocol (UDP) 

facilitated by the X-plane software. 

 

In the next part of study, nominal conditions are tested in the flight simulator for               

3 different pilots in order to reproduce the earlier work on the Gen-2 NLDI schemes. 

These tests are baseline tests for the study and serve to test the interface. This will be 

followed by failure tests with no failure detection and identification schemes. 

 

Thereafter, a FDII scheme for an actuator/sensor is developed using adaptive threshold 

for cross-correlation coefficients of the angular rates. The scheme is capable of detecting 

failures and piloted experiments will be carried out for different failure conditions. The 

performance of EMRAN NN is compared with a No NN case considering the tracking 

error (TE), pilot activity etc for the FDII scheme. The technique for FDII warning system 

is utilized to warn pilot in advent of a failure by making a provision to receive text 

messages in the cockpit by a suitable plugin in X-plane. 
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1.4. Overview of Thesis 

The organization of the thesis will be in the following manner: 

 

Chapter 2 will cover the literature review on the failure detection and identification. The 

earlier work done on Actuator failure Detection Identification and Accommodation 

(AFDIA) and Sensor/Actuator Failure Detection, Identification and Accommodation 

(S/AFDIA) using fixed threshold is reviewed. The extension of the fixed threshold to an 

adaptive threshold for actuator and sensor FDII is discussed.  

 

 

Chapter 3 will discuss the concept behind the F-15 Gen-2 Neurally Augmented Schemes, 

AFDIA/SFDIA schemes and the failure detection and identification concepts. The 

adaptive threshold approach for integrated FDII formulated for the research problem at 

hand is described in detail. 

 

Chapter 4 will explain the setup of the experimental environment.  This includes detailed 

descriptions the Motus flight simulator and the X-plane software. This will be followed 

by a detailed explanation of the interface and how the pilot is included in the loop and 

how the visual, aural, motion cues are obtained for F-15 Simulink schemes. The hardware 

and experimental setup will be explained in detail and the graphic user interface to carry 

out experiments will be explained. 

 

Chapter 5 will show the simulation results obtained for different failure scenarios for a no 

FDII and a FDII case in respect to TE performance, pilot compensation and detection 

efficiency. The results of adaptive threshold approach for integrated FDII scheme will be 

presented.  

 

Chapter 6 will contain the conclusion of the results that are obtained from the conducted 

experiments in the motion simulator. This will be followed by future recommendations 

on the work. 
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Chapter 2. Literature Review 

2.1. General Description  

A fault can be defined as an unexpected change in a system which can range from a 

malfunction to a catastrophic failure. Normally a fault tends to degrade the system 

performance and, sometimes, makes it inoperable. The term “fault” and “failure” are here 

used interchangeably.  However, the term failure suggests complete breakdown while a 

fault is somewhat a malfunction rather than a catastrophe. Failure detection is very 

important in general as it can help us avoid major breakdown and is essential to maintain 

safety in critical systems such as chemical plants3,nuclear plants4, space systems5 etc. The 

FDII problem is widely investigated problem in flight control research because of 

increasing complexity and interconnectivity of system at end. In general FD implies some 

sort of continuous monitoring of the measurable outputs of the system. Under nominal 

conditions the variable tends to follow rather well established patterns. A failure in a 

flight control system (FCS) will induce deviations from nominal and predictable patterns. 

  

Hardware redundancy is a traditional way to achieve fault tolerance in dynamical 

systems and the term strictly means duplicating the channels with hardware components 

such as sensors, actuators or even computers. Based on the desired level of reliability, 

duplex, triplex or quadruple parallel systems are often implemented. In case of a failure 

backup switch switches the control to the redundant system. Clearly an important way of 

achieving fault tolerance is by means of multiple lanes of hardware. Some of the 

examples of redundant control surfaces in modern aircrafts include speed brakes, wing 

flaps, differential canards, spoilers, rudder below fuselage. Redundancy in thrust control 

mechanism involves differential thrusts, thrust vectoring and canted engines.  

Nonetheless this type of redundancy comes with a price of additional weight, cost, 

volume and maintainability. In small systems like UAVs and small scaled prototypes 

where weight is a critical component of design hardware redundancy is not a feasible 

alternative. Recent advances in the control theory and advanced mathematical modeling 

facilitates development of a whole new FDII methods based on functional rather than 
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physical redundancy. The implementations of onboard digital computers have led to 

development of fault detection schemes relying on analytical rather than hardware 

redundancy. The analytical redundancy provision in the aircraft rather than hardware is 

also promising approach as it is cost effective, weight reducing and less power dependent 

whilst providing a substantial increase in performance and reliability. It should be noted 

that in aerospace systems there has been a little tendency to replace hardware redundancy 

due to the safety requirements. Therefore it acts somewhat to suppress some levels of 

replication in the system for example- replacing a quadruplex system with a triplex 

employing using analytical redundancy. 

2.2. Fault Detection Methods  

The traditional approaches to failure detection were based on hardware redundancy or 

signal processing techniques such as frequency spectrum analysis, limit checking or fault 

dictionary approach. The modern approach to the FDII is model based in which the 

failure detection scheme makes use of mathematical model of the system and knowledge 

based approach in which human knowledge of reasoning is used to detect and diagnose 

failures. FDII methods utilize parameter identification and state estimation, detection 

filters, statistical pattern recognition, multiple model estimators, maximum likelihood 

techniques and bayes theorem. In analytical methods a mathematical model acts as a 

substitute to the redundant hardware and is used to compare and monitor it with the 

actual system. One prime requirement of the algorithms is that they are simple enough to 

fit on the onboard computer and fast enough to provide a real-time calculation for safe 

and reliable system at the onset of a fault. Additionally, they should be robust enough to 

provide nominal performance in presence of parameter variations, turbulence and 

coupling effects during maneuvers.  The analytical redundancy has its implicit fallbacks. 

One of the challenges in this process of model based method is to obtain an accurate 

mathematical model for complex systems. Poor modeling leads to more probability of 

false alarms and detections. However, the appeal to analytical methods lies in the fact that 

there no additive physical instrumentation in the plant. The analytical based methods can 

be classified into model based6,7 and the knowledge based8,9 or a combination of 

both10.The model based method is normally implemented as a software algorithm. The 
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earliest work on FDII is through the use of estimation filter11, failure detection filter12, 

band limiting filters 13 and innovations   tests14 15 16. 

2.2.1. Model Based Methods 

These types of methods make explicit use of mathematical model of the system. The 

method relies on residual generation and decision making. The signals from the system 

are initially processed to enhance the effect of fault so that it can be recognized. These 

processed measurements are called residuals and the enhanced effect of fault on the 

residuals is called the signature of the fault. Analytical redundancy methods are based on 

detection, isolation and identification of failures from the comparison of system’s 

available measurements with the prior information represented by system’s mathematical 

models17. The failures are detected by setting fixed thresholds on the residuals generated 

from difference between real and estimates of the measurement using the mathematical 

model. A number of residuals can be designed with each having its own sensitivity to 

detect a failure. There are many methods for residual generation in which observer 

approach19,20, parity relations approach21,22 and the parameter identification approach23 

have been widely used among early researchers. 

 

The basic idea behind observer approach is the estimation of system outputs from 

the measurements by either full order or reduced order state observers. A suitable 

weighting of output estimation error is defined as the residual. This approach has 

advantages because of it’s flexibility in design, the relative ease of obtaining robustness, 

algorithms and software simplicity and the speed of response in detecting and isolating 

failures. The parity relations approach is based either on a technique of direct redundancy 

i.e. making use of static algebraic relationships between sensor and actuator signals or 

based on temporal redundancy when dynamic relations between inputs and outputs are 

used. An interesting feature of parity space methods for FDII is that given certain design 

conditions, the parity equation residual signals can become identical to those from 

observer approach. This has been described by Massoumnia24 and Patton25. The parameter 

identification approach makes use of the fact that failures are reflected in physical 

parameters such as friction, mass, viscosity, resistance, inductance or capacitance. This 
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approach is used to detect failures via the estimation or identification of model 

parameters using a non-parametric model. 

 

The FDII for stochastic systems are based on statistical testing of the residuals. The 

noted work in this area is by Willsky using Chi-Squared Testing17, Basseville using 

Sequential probability ratio testing18 and Willsky using Generalized Likelihood Ratio17. In 

order to reduce the noise of residuals the residual generator has to accommodate the noise 

in the generation of residuals. The Kalman filter technique is a common approach to 

generate residuals. The structure of a Kalman filter is similar to an observer and is based 

on stochastic model of the dynamic system. If the system is nominal then the normalized 

innovation sequence in a correlated Kalman filter is a Gaussian white noise with zero 

mean and a unit covariance matrix6.  Failures leads to changes in system dynamics 

causing drifts of the state vector components, abnormal measurements, sudden shifts in 

measurement channels leading to a drift from near zero mean and a change in the 

covariance matrix. The detection of the failure is based on detecting changes in these 

parameters from their nominal values. Some variants of Kalman filter include multiple 

model adaptive filters and two stage bias correction filters. 

 

Kalman filtering techniques have been widely used for failure detection. Of these 

the work done by Mehra 6,7 makes use of multiple hypothesis EKF and several Kalman 

filters running in parallel and switching decision is based on innovation sequence and 

likelihood function of each filter. One drawback of these methods is detection delays due 

to likelihood functions for active hypothesis. To address detection delays issues an 

Interactive Multiple Models7 (IMM) approach with Extended Kalman Filter (EKF) is 

more time efficient than Multi hypothesis EKF. The failure detection scheme consists of 

representing each failure by a model and combining the outputs of EKFs based on 

different models in an optimal way. So in addition to fast failure detection it also provides 

a near optimal estimate of states as well. The IMM approach has been applied to 

spacecraft autonomy of failure detection and identification for sensors (gyros, star 

tracker) and actuator failures. Similar work by Eide37 uses a bank of Kalman filters 

modeled to match a particular hypothesis of real world.   
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2.2.2. Knowledge Based Methods  

Control theory and artificial intelligence (AI) strive to harness mathematics and logic for 

problem solving however control theory finds it’s origin in dynamics and electronics 

while the AI springs from biology, psychology and computer science. Knowledge based 

methods offer a new dimension to the fault detection methods where analytical methods 

fail because of unavailability of accurate models that represent the physical system. 

Therefore the knowledge based methods offer alternatives to analytical based methods or 

may complement it. AI techniques like Neural Networks and Fuzzy logic have been 

extensively used for failure detection by many researchers lately.  Neural networks are 

motivated by the input-output relationships and learning properties of living neurons. 

Initially due to limited computational capacity of computers, the training of neural 

networks were found to be unworkable 34,35. Artificial NNs consists of nodes that simulate 

the neurons and weighing factors that simulate the synapse of living neurons. There are 

many advantages of NNs in performing a variety of fault tolerant systems because of 

their speed, ability to model non-linear functions, ease of modeling multidimensional 

problems and capability of learning with experience. 

 

In order to formulate failure detection logic where mathematical modeling is hard 

to realize various knowledge based methods are used. Although mathematical models 

that describe the dynamic behavior of faults is present, yet the problem-solving actually 

used by pilots and human operators are fairly more than quantitative. According to 

Handelman26 there is a need for incorporating a human like reasoning ability in flight 

control systems. The artificial intelligence concepts like neural networks and fuzzy logic 

strive to emulate the human thought process by computer and therefore provided good 

alternative to mathematical techniques. There have been used extensively among 

researchers because of ease of modeling uncertainties and non-linearities by expert 

systems. The problem is handled by Neural Networks52 53 54 55 56 or fuzzy logic49 or a 

combination in the form of Neuro-fuzzy systems60 61 62 .The work by Chiang 61 approaches 

the problem with a Neuro-fuzzy logic in which the neural network is capable of 

approximating a non-linear function if there are sufficient number of neurons. The fuzzy 

logic augments the system by developing a physical understanding by setting linguistic 
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rules. The global nature of the system is handled by the fuzzy system while neural 

network handles the local variables in real time. Similar work on a Neuro fuzzy system 

by Al-Jarrah 62 uses neural network for online learning and fuzzy system to handle 

uncertainties in the system. This is compared with work by Polycarpou60 and has a better 

tracking error performance and approximations of the functions. 

 

A FDII technique requires knowledge of system behavior by the FCS be available at any 

operating point at a heavy computational and storage costs. NNs have gained interest 

because they maintain the save level of FD capability without increasing the 

computational burden. The mapping property of the NN architecture is attractive when 

the input-output are related to completely or partially unknown dynamics. The NN 

implementation in the design on the estimator can be offline (frozen architecture) or 

online. The online learning is because of the advantageous as it provides flexibility to 

deal with variable dynamics and failure conditions.   

 

The actuator FDII have been extensively researched using neural networks 8,52,53 

and some of them have been flight tested as well. Due to availability of redundant sensors 

on an aircraft system however sensor FDII hasn’t gained attention comparable to actuator 

failures. Notable work in the area of FDII using neural networks is by Napolitano, 

Perhinschi in which they have demonstrated NNs efficacy in actuator FDII, sensor FDII 

and a combination of both. The scheme utilized two sets of NNs which monitor the 

angular rates in the aircraft. The cross-correlations of these rates indicate any anomaly in 

the aircraft system. In most of the work the fixed threshold approaches have been used 

for actuator48,54 and Integrated56,58 (sensor/actuator) FDII by them. From simulation results 

it was concluded that NNs were very helpful in modeling failure detection algorithms.  

 

Perhinschi 57 and others have extended the actuator failure FDII using an adaptive 

threshold which reduces the ratio of false alarms considerably. The use of Autoregressive 

Moving Average Filter (ARMA) in their approach of floating Limiter (FL) for thresholds 

of cross-correlations rates is the main source of inspiration of this research work. The 

adaptive threshold offers more robustness because it is based on an auto regressive filter 
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and therefore takes into account any disturbance induced by pilot. In the fixed threshold it 

is noticed that there are many false detection flags if a pilot is included in the loop. These 

approaches have been extended for an integrated sensor/actuator FDII and have a good 

performance in terms of failure detection accuracy and speed of detection. A similar work 

for sensor failure9 is done using an adaptive threshold concept. This FL approach is 

extended for an integrated sensor/actuator FDII scheme in this research work. The 

integrated scheme developed is also tested in a motion flight simulator to monitor pilot 

activity in case of the failure. The simulation capability of a motion simulator in terms of 

more realistic motion and visual cues are leveraged in this experimental study. The 

MOTUS simulator interface with the F-15 FDII schemes offers a new extension to 

existing simulation capabilities at WVU. It provides a more complex simulation 

environment to study pilot behavior and monitor the performance in a simulation 

environment comparable to a real flight. 
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Chapter 3. Theoretical Background 

3.1. Description of Gen-2 Scheme 

The NASA Intelligent Flight Control System (IFCS) F-15 program27 is aimed at 

development and testing of new control approaches using self learning neural networks 

that can optimize aircraft performance in both nominal and failure conditions. The 

explicit use of artificial intelligence techniques and on-line system identification 

algorithms have been used effectively in recent years for adaptive control systems. One 

of the advantages of these techniques over conventional control approaches is that they 

eliminate gain scheduling and also can handle a variety of control surface deflections. 

The control surface failures change the aircraft stability and control characteristics and 

render conventional control schemes ineffective. The general scheme architecture shown 

in Fig. 3-1 is taken from [46], named Gen-2 within the IFCS program, is based on an 

adaptive neural controller canceling the errors associated with the dynamic inversion of 

the model. In order to reduce the level of computational effort the control strategy38, 39, 40 

has been selected to provide consistent handling qualities and eliminate the need of gain-

scheduling or system identification. Initially, constant values of aerodynamic stability and 

control derivatives for a fixed condition in the flight envelope are used for model 

inversion. In addition, desired handling qualities are achieved with ad hoc reference 

models 
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Fig. 3-1-General Block Diagram for IFCS Gen-2 Controller Scheme [46] 
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3.1.1. NLDI scheme 

The mathematical model for Gen-238 is based on a Non-Linear Dynamic Inversion 

(NLDI) which uses pre-trained neural networks (PTNN) to obtain the stability and 

control derivatives. The scheme developed at WVU uses the stick commands as input to 

the NLDI controller. The displacement from longitudinal, lateral and directional stick 

(
sticklonδ , 

sticklatδ
pedaldirδ ) commands are converted into corresponding roll, pitch, and yaw 

rate commands ( comp , comq , comr ). A reference model provides filtered rate commands 

( refp , refq , refr ) and acceleration commands ( �refp , �refq , �refr ) using first order roll rate and 

second order pitch and yaw rate transfer functions. The inputs to dynamic inversion 

( �cp , �cq , �cr ) is a function of augmentation commands generated by NNs and pseudo control 

commands and is computed using the expression: 
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In order to neutralize the effect of errors due to dynamic inversion, the augmentation 

commands (
adpU ,

adqU ,
adrU )are generated by adaptive NNs from the difference of 

reference and the aircraft actual angular rates. The errors ( pe , qe , re ) are used to create 

pseudo control acceleration commands ( pU , qU , rU ) are computed with the following 

expressions: 
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Where pK  and iK  are, respectively, proportional and integral constants 

The necessary control surface deflections ( aδ , eδ , rδ ) are obtained by NLDI and control 

surface commands (
comaδ , 

comeδ , 
comrδ ) are obtained with the following equation: 
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Where B is the state space system control matrix and the terms ( −�c 1p L , −�c 1q M , −�c 1r N ) 

are the differences between input acceleration commands and actual plant acceleration 

contributions (L1, M1, N1). These plant contributions are function of inertial and 

geometric characteristics, aerodynamic derivatives, angular rates, and aerodynamic 

angles. Using first and second order transfer functions, the actual control surface actual 

deflections are computed. 

3.1.2. Neural Network Algorithms 

The NLDI scheme features three different types of adaptive NNs and this study is carried 

out for comparing the performance of these three different NN augmentations. These 

NNs serve the purpose of canceling the dynamic inversion errors. The first method 

Sigma-Pi, is based on a two-layer Sigma-Pi NN41,42 for each angular acceleration 

( �p , �q , �r ). These NNs use proportional and integral acceleration errors ( _p errorU , _q errorU , 

_r errorU ) for on-line learning purpose. The pseudo control acceleration commands        

( pU , qU , rU ), bias terms, and sensor feedback are inputs to the neural networks. For each 

channel three terms C1, C2 and C3 are computed as functions of input variables and 

previous-step network outputs (
adpU , 

adqU , 
adrU ). The neural network gets its name 

because the neurons are summed and multiplied with each other. The neural network 

output is an additional control command for compensating the inversion errors and is 

calculated from Eq. (6). 

 

  ( )1 2 3, ,= T
adU W f C C C                                     (6) 

 

where f is computed from each signal inputs using a nested Kronecker product. The 

network weights W are determined by an adaptation law: 

  ( )= − ⋅ +�
error errorW G U f L U W                                               (7) 
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where G and L are user selected specific gains. 

  

The EMRAN43 algorithm is an extension of the standard MRAN63 and is noted for its 

selective selection criterion of the neurons. The network features growing and pruning 

mechanisms and is based on the “survival of the fittest” strategy and updates parameters 

for the most activated neurons. This strategy allows only the parameters of the most 

activated neurons to be updated, while all the others are left unchanged. This strategy in 

suitable of online applications64 as it reduces the number of parameters to be updated and 

thus reduces computational burden. 

 

For Gaussian basis function used for EMRAN is given by the expression: 
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Where x is the input vector, θ  is the set of parameters to be tuned by the learning 

algorithm including the weight w, the Gaussian center positions µ , and the variancesσ . 

The EMRAN NN is activated once the criteria for the initiation of NN are met. The 

neuron is activated as soon as estimation error, windowed estimation error and distance 

of inputs from center cross its threshold. Once it is activated the center, variance, and 

weight of the new neuron at iteration k are given by, respectively: 
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If the above criteria is not met the parameters are updated using the eq(10) 
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                                                   (10) 

Where ( )e k  is the estimation error and η  is the learning rate 
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To achieve an optimum performance in the presence of non-linearities and to minimize 

the computational burden on the operating areas, a combination of ADALINE48 and an 

EMRAN network (A+EMRAN) working in parallel has been implemented on each of the 

three channels. 

 

The Single Hidden Layer38,39 (SHL) NN The output of the network is given by the 

relationship: 

 

1 1

, 1, 2,...
m n

i ij jk k vj wi

j k

y w v x i pσ θ θ
= =

  
= + + =  

   
∑ ∑             (11) 

 

where ijw  are the interconnection weights between the hidden layer and the output layer, 

jkv  are the interconnection weights between the input layer and the hidden layer, and 

,vj wiθ θ  are bias terms. The activation potential ‘a’ is used to compute the activation 

function of the form:   
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Fig. 3-2- The integration of NLDI based F-15 Controller with MFS 
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3.2. Aerodynamic Modeling of the failure 

The actuator failure modeling has been developed and applied in recent literature for 

longitudinal, lateral and directional control surface locking48. On the advent of a failure 

the stability and control derivatives changes and leads to a reduced “control surface 

effectiveness”. This is used to model the partial effectiveness once a control surface 

failure occurs. The sensor failure implies a bias induced in the sensor measurements 

which go in the feedback loop.  

3.2.1. Failure Detection and Identification concepts  

Since it is practically not feasible to have multiple channels of redundant primary control 

surfaces therefore actuator failures are major threats to safety of the flight. Each failure in 

an aircraft has a unique dynamic signature and hence it is not possible to pre-train pilots 

extensively for such situations. State estimation methods performance degrades in the 

presence of non-linearities and uncertainties. The augmentation of neural networks in 

FDII schemes handles modeling error52-56 and have been used in detection and 

identification criteria for primary control surfaces54,55
.In this effort, this approach has 

been extended to an integrated actuator failures to detect and identify failures of the 

locked primary surfaces(stabilator, aileron and rudder) as well sensor failures for the roll, 

pitch and yaw rate gyros. The experimental set-up of the West Virginia University’s 

(WVU) MOTUS Flight simulator as a simulation test bed is used to evaluate the FDII 

schemes. The failures considered in research work are actuator locking and sensor bias 

type failures. 

3.2.2. The Adaptive Threshold Concept for FDII  

While the fixed threshold provides a FDII scheme capable of fairly accurate detection 

and identification for actuator and sensor failures 54, 58, they are however susceptible to 

false alarms and wrong identifications when pilot in included in the loop. The adaptive 

threshold approach for FDII offers advantage over a fixed threshold FDII because it 

eliminates any need for parameter scheduling with different flight conditions, thereby 

reducing the design effort. In addition to this the Floating Limiter approaches57 have 

demonstrated better performance in terms of detection delays and ratio of false alarms. 

The fixed threshold approach has to take into account the rate of variation of cross-
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correlation parameters and therefore has higher detection, isolation or identification time 

as some parameters require certain time for the signal to build up and cross the fixed 

threshold. On the other hand the FL limiter is crossed when ever there is an abrupt rise in 

parameters being monitored. The FDII scheme for integrated actuator/sensor failure is 

built on an adaptive ARMA (Auto Regressive Moving Average) filter termed Floating 

Limiter (FL) which fluctuates with an upper and lower bound around the signal. The 

signal experiences a sudden jump at failure which crosses the FL bounds and hence a 

failure alarm is triggered. 

 

The FL filter used is in the study is shown below 

3 2

3 2

1
( )

40( 0.3 0.3 0.3)

z z z
D Z

z z z

+ + +
=

− + −
         (15) 

 

The FL limiter is used to evaluate the variable thresholds for the parameters monitored 

for FDII scheme. The soft and hard Upper and Lower bounds are computed as shown in 

Eq. (16). The respective bounds are shown in Figure 3-3. 
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       (16) 

 

Where  

X = Average of signal computed over the time window 

σ =Standard deviation of the signal 

HUB
β =Bound factor for Hard Upper Limit 

HLB
β =Bound Factor for Hard Lower Limit 

SUB
β =Bound factor for Soft Upper Limit 

SLB
β =Bound Factor for Soft Lower Limit 

HUB
b =Bias for Hard Upper Bound 

HLB
b =Bias for Hard Lower Bound 
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SUB
b =Bias for Soft Upper Bound 

SLB
b =Bias for Soft Lower Bound 

 

A typical FL signal in a non-failure mode will drift constantly with the signal and the 

main signal will remain within bounds. On the advent of a failure the signal abruptly rises 

and cross the FL bounds. This is used as an indication of a possible failure. 

 

Figure 3-3- A FL approach to FDII showing the detection with MQEE 

 

3.2.3. The FL architecture for Integrated Sensor/Actuator Failure 

The concept of adaptive threshold in failure detection algorithms for actuator 57 and 

sensor9 failures is extended to an integrated S/AFDII scheme using the FL approach. The 

scheme is based on monitoring the outputs of Floating Limiter (FL)65,66 bounds for the 

signal in consideration. The signals are mostly the cross-correlation coefficients of 

angular rates by the aircraft. The FL fluctuates around the signal and drift with a rate of 

the signal but less than an imposed limit. The block diagram for the FL is shown in 

Figure 3-4. The FL consists of two low pass filters in which one of them is Infinite 

impulse response and the other is finite impulse response. The filter allows the signal to 

move within bounds which drift with the rate of signal. The FL Simulink block is shown 

in Figure 3-5. 
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Figure 3-4- Block Diagram of Floating Limiter 

 

 

Figure 3-5- Simulink block showing Bounds of Floating Limiter 

3.2.4. The Adaptive Threshold Parameters for S/AFDII Scheme 

The FDII scheme is divided into three main steps mainly 

Detection: The failure of an unspecified kind (Actuator/Sensor) is detected; 

Isolation: The detected failure is differentiated between an actuator and a sensor failure. 

Identification: The isolated failure is identified to be a stabilator, aileron, or rudder 

failure if there is actuator failure and a roll, pitch, yaw gyro if there is sensor failure. 

 

The FDII scheme rests on two different sets of NNs; Main Neural Networks (MNNs) and 

the Decentralized Neural Networks (DNNs) for monitoring the FDII parameters. These 

parameters are basically cross-correlation functions of the aircraft angular rates. The 

outputs of the MNNs are the estimates of the angular rates, roll, pitch, and yaw 

(
MNN

p ,
MNN

q  &
MNN

r ) at time ‘k’, using measurements from time instant ‘k-1’ to ‘k-m’. 

The inputs to the MNNs may include the respective gyro measurements. The outputs of 

the DNNs are individual estimates of the angular rates (
DNN

p ,
DNN

q & 
DNN

r )and does not 

include measurements from sensors. 
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The estimates from the MNNs are compared with the actual measurements at time ‘k’ 

(
actual

p ,
actual

q ,
actual

r ) to define the main quadratic estimation error ( MQEE ) parameter: 

 

( ) ( ) ( )
2 2 21

2
actual MNN actual MNN actual MNN

MQEE p p q q r r = − + − + −
 

                 (17) 

 

A NN output quadratic estimation error (OQEE ) parameter is defined by comparing the 

estimates from the MNNs and DNNs: 

 

( ) ( ) ( )
2 2 21

2
DNN MNN DNN MNN DNN MNN

OQEE p p q q r r = − + − + −
 

     (18) 

 

Both MQEE and OQEE are used in the detection phase. 

The isolation of the sensor/actuator failure is based on two main parameters which are  

 

 
R

k
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i k n
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= −

= ∑                      (19) 

R

k
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i k n
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= −

= ∑                      (20) 

 

The cross-coupling parameters  pqR  induces a strong perturbation in case of an actuator 

failure particularly stabilator and aileron. Since a sensor failure has very slow effect on 

cross-coupling so the rise is not abrupt and the time interval can be used for isolation. 

Similarly rrR increase is abrupt for a rudder failure compared to a yaw sensor failure and 

can isolate the failure. 

 

The other is an angular rate dominance parameter representing the weighted difference of 

the roll and pitch rate floating averages: 

 

 
pq

p qω µ= −                      (21) 
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A stabilator failure induces both p and q perturbations and hence 
pq

ω  is significantly 

lower than for an aileron failure which doesn’t have an appreciable pitch rate. There is 

roll rate variation in aileron failure without affecting the pitch rate and hence pqω  rises 

fast in comparison to stabilator failure. This can be used to distinguish between 

stabilator/aileron failures. 

3.2.5. The detection phase 

The occurrence of a primary control surface failure produces a perturbation of the normal 

dynamic response of the aircraft. This translates into large errors between the measured 

angular rates and the MNN estimates, in particular large values of MQEE , and/or large 

values ofOQEE . Therefore, the condition for a control surface failure to be declared is: 

 

 
FL

FL

MQEE MQEE

or

OQEE OQEE

≥

≥

                    (22) 

It should be noted that actuator failure corresponds to a large and a faster variation in 

MQEE  while sensor failures have a large and faster variation of OQEE  

3.2.6. The Isolation phase 

Once a failure is detected it is essential to differentiate between an actuator and a sensor 

failure. In general, the actuator failures induces strong cross coupling in angular rates as 

opposed to sensor failures. A failure to any of the actuators will induce a coupling 

between the longitudinal and lateral or directional channel. In turn, this implies large 

values of the roll-pitch rate cross-correlation function. Therefore, the criterion for 

preliminary identification is shown in eq. (23) 

 

pq pq _ FL rr rr _ FL 1

pq pq _ FL rr rr _ FL 1

R R R R & t t Actuator Failure

else

R R R R & t t Sensor Failure

≥ ∨ ≥ ∆ ≥ ∆ ⇒

≤ ∨ ≤ ∆ ≥ ∆ ⇒

    (23) 
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It should be noted that pqR  varies slower for a sensor failure; therefore, a time interval up 

to 1t∆  should be allowed before a final preliminary failure isolation. 

3.2.7. Failure Identification for Actuator Isolated 

Three types of actuator failures are addressed here. Once the actuator failure is isolated it 

has to be differentiated as a stabilator, aileron or rudder failure.  

 

pq pq _ FL 2

pq pq _ FL 2

rr rr _ FL

& t t Aileron Failure

& t t Stabilator Failure

R R Rudder Failure

ω ≥ ω ∆ ≥ ∆ ⇒

ω ≤ ω ∆ ≥ ∆ ⇒

≥ ⇒

             (24) 

In case of isolation, a time interval up to 2t∆  should be allowed for pqω  to grow 

3.2.8. Failure Identification for Sensor Isolated 

On the advent of sensor failures MNN starts learning biased angular rates as it have the 

sensor values as inputs while DNN still calculates angular rates based on the flight 

parameters except the sensor values. The difference of actual angular rates and the 

respective rates from the DNNs trigger failure flags and are identified by monitoring the 

outputs of DNNs. In an advent of failure the DQEEs  cross their respective FL bounds 

and issues an identification flag which are given by eq. (25). 

 

p p _ FL

q q _ FL

r r _ FL

DQEE DQEE Roll Sensor Failure

DQEE DQEE Pitch Sensor Failure

DQEE DQEE Yaw Sensor Failure

≥ ⇒

≥ ⇒

≥ ⇒

          (25) 

 

The logical diagram of the FDII scheme for an actuator and sensor failure with above 

discussed criteria is shown in Figure 3-6. 
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Figure 3-6 Logical Diagram for FDII 

 

The FL parameters are tuned by changing the bound factor and bias by running the 

failure simulations till the number of false alarms is reduced. The tuned FL parameters 

are shown in Table 3-1. These were obtained by running the simulation for a number of 

times for different failures till the number of false detections was reduced to minimum. 
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Floating Limit Parameter 

BoundX X (X) b= +β×σ +  
SB

β  
SB

b  
HB

β  
HB

b  

floating
MQEE  1.4 0.00001 3.0 0.00001 

floating
OQEE  1.2 0.00005 6.0 0.00005 

_pq floating
R  1.5 0.001 6.0 0.001 

_rr floating
R  1.5 0.001 3.0 0.001 

_pq floating
ω  1.2 0.003 3.0 0.003 

_p floating
DQEE  1.5 0.002 3.0 0.002 

_q floating
DQEE  2.0 0.00001 6.0 0.00001 

_r floating
DQEE  1.5 0.00001 3.0 0.00001 

Table 3-1 Floating Limiter Tuning Parameters for Integrated FDII Scheme 

3.3. Integrated Sensor/Actuator S/AFDII Scheme with FL  

The Simulink scheme shown in Fig. 3-7 is developed and the FDII block is incorporated 

in Gen-2 controller scheme and it issues failure warnings using the GUI. The inputs to the 

FDII scheme is the sensors values and they are processed separately by the MNNs and 

DNNs to monitor the correlations coefficients such as , , ,
pq pq

MQEE DQEE R ω .The FDII 

makes use of the logic shown in Figure 3-6 to detect, isolate and identify the failure. The 

output of the FDII block is also channeled to the X-plane visuals to send the same 

warning into the cockpit to warn the pilot about the failure. 
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Fig. 3-7-Integrated Simulink scheme for S/AFDIA with Floating Limiter and MFS Interface 

The detailed FDII block is shown in Fig. 3-8 and the outputs from MNNs and DNNs are 

processed to detect, isolate and identify the failure. The FDII block consists of a display 

warning system for the failure. 

 

Fig. 3-8-S/AFDIA Scheme incorporating the Floating Limiters 
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The typical failure warning window in the Simulink scheme is shown in Figure 3-9.It 

pops up when the failure is initially detected. Similarly Figure 3-10 is a snap shot of GUI 

pop up when the actuator failure is identified.  At the same time the outputs of the failure 

warning block are sent to the UDP block to display a text message warning the pilot 

about the failure once the detection takes place within the Simulink scheme. A typical 

warning received in cockpit is shown in Figure 3-11. 

 

Figure 3-9 A warning window with Failure Detection 

 

 

Figure 3-10 GUI for Actuator Failure Identification  
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Figure 3-11 Typical Warning received at lower left corner of pilot facing visual display 

 

These warnings in the cockpit provide the pilot a notification of the failure and augment 

his response in handling the failure. Thus in addition to the aural, visual and motion cues 

these help the pilot to make a best judgment in compensation. 
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Chapter 4. Experimental Procedures 

4.1. Experimental Environment Setup 

The experiments are set up by interfacing the Flight Simulation Research Computer 

(FSRC) with the MOTUS flight simulator (MFS). The F-15 Gen-2 schemes run on the 

FSRC and it is interfaced with MFS. A conventional joystick shown in Fig. 4-1 is used 

for all piloted experiments and it is used as an input device to the Simulink scheme. The 

cockpit controls of the flight simulator are replaced by this joystick for sake of 

convenience and also because the joystick is more realistic for flying a fighter aircraft. 

The joystick is provisioned to be placed in the cockpit by making a fitment shown in   

Fig. 4-2. This fitment ensures that the joystick remains secure in the cockpit and 

eliminates any need for the pilot to hold it in hands or lap. Additionally, in order to 

monitor the variables that are sent to the motion base from Simulink scheme an external 

monitor is hooked to one of the VGA outputs of the simulator mainframe. It is shown in 

Figure 4-3. 

 

Fig. 4-1- Joystick Used for Piloted Experiments 

 

 

Fig. 4-2-Fitment Placed in Cockpit to Place the joystick 
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Figure 4-3 Externally Hooked Monitor to inspect the Motion Base Data 

4.1.1. Description of MOTUS Flight Simulator 

The MOTUS flight simulator is a state of the art flight simulator consisting of five 

computers communicating with each other and synchronizing information by means of a 

central computer called the server computer. X-plane is the flight simulation software 

running simultaneously on all five computers and the communication is through intranet 

among the computers. The sever computer controls the other 4 computers as well as the 

Motion Base Computer (MBC). The MBC converts the accelerations into the inputs for 

motion base actuator motors which provide the desired motion cues. It should be noted 

that the algorithm for MBC is proprietary software by Fidelity Flight Inc. and there is no 

direct method to change the software parameters. The following are the main systems of 

the Motus Simulator 

 

Computer 1 – This is visual display No. 1 which forms the side left view. 

Computer 2 – This is Visual Display No. 2 which forms the forward view.  

Computer 3 - This is Visual Display No. 3 which forms the side right view.  

Computer 4- This is the Server and displays the cockpit view showing instrument  

          Panels 

Computer 5- This is Instructor Console and used for changing the flight  

          Conditions and loading different aircrafts etc 
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Motion Base Control Box: This is used to bring the motion base to kneel or flying mode 

and is shown in Figure 4-4. 

 

 

Figure 4-4- Motion Base Control Box 

4.1.2. Description of X-plane Software 

X-plane software67 is the heart of the MOTUS visual and aural flight simulation 

environment. It is developed by Laminar Research and features good graphics, an 

external user interface and ability to design and custom the aircrafts and scenery. The 

software has features to input and output the data pertaining to the flight simulation and it 

features a Software Development Kit (SDK) that allows users to set up communication 

with X-plane software by means of User Datagram Protocol (UDP). The UDP data can 

be sent /received by X-plane by means of writing external plugins which are essentially 

Dynamically Linked Libraries (DLLs). All plugins are managed by X-plane Plugin 

Manager (XPLM) which controls the data handling within the software. This feature is 

effectively utilized for this research effort and the Simulink based schemes are modified 

to communicate with X-plane and Motion Base Computer (MBC) in the MOTUS flight 

simulator by writing suitable plugins. 
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4.2. Interface of Simulink Scheme with Motion Simulator 

The prime objective of the Simulink® interface with MFS is to create an efficient test bed 

to simulate advanced F-15 Gen-2 schemes. The basic idea behind using the simulator was 

to obtain motion and visual cues for these Simulink schemes and create an advanced 

simulation environment than desktop simulation. The schematic of the interface is shown 

in Figure 4-5 and it can be seen that the joystick inclusion in the cockpit creates a 

feedback loop. The instructor console set-up is shown in Figure 4-6 which shows the 

research computer and the The foremost part of the interface was to identify the 

parameters necessary to obtain the necessary visual and motion cues for the Simulink® 

scheme. The parameters required to produce the desired visual cue were identified based 

on understanding the X-plane simulation set-up. The X-plane loads the scenery based on 

latitude and longitude information on a spherical earth. The aircraft is placed on the earth 

based by specifying the Euler angles and altitude and therefore the visual cues are 

obtained from the X-plane based on the location of the aircraft in terms of altitude, 

latitude and longitude and it defines the position of the aircraft on the globe. The 

deflections of the primary control surfaces need to be specified and they formed other 

important parameters in the visual cues. Thirdly the spatial orientations i.e. Euler angles 

are transformed to Quaternion in the X-plane. The parameters that are used to obtain the 

visual cues from X-plane and motion cues from MBC are shown in Table 4-1 and Table 

4-2. 



 38 

 

Figure 4-5 A schematic of the MFS interface with the Gen-2 Simulink Scheme for experiments 

 

 

Figure 4-6 The instructor console station at MFS 
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Variable X-Plane DataRef 

Lat, Long, Elev. sim/flightmodel/position/q 

Vx Sim/flightmodel/position/local_vx 

Vy sim/flightmodel/position/local_vy 

Vz Sim/flightmodel/position/local_vz 

Roll rate sim/flightmodel/position/P 

Pitch rate sim/flightmodel/position/Q 

Yaw rate sim/flightmodel/position/R 

Throttle Sim/flightmodel/engine/ENGN_thro_override 

Aileron def Sim/joystick/artstab_roll_ratio 

Elevator def Sim/joystick/artstab_pitch_ratio 

Rudder def sim/joystick/artstab_heading_ratio 

Table 4-1 : Data Sent to X-Plane for Visual Cue 

 

 

Variable X-Plane DataRef 

Total Airspeed Sim/flightmodel//position/groundspeed 

Angle of Attack sim/flightmodel//position/alpha 

Pitch Acceleration sim/flightmodel//position/Q_dot 

Yaw Acceleration sim/flightmodel//position/R_dot 

Roll Acceleration sim/flightmodel//position/P_dot 

Side Acceleration Sim/flightmodel//forces/g_side 

Normal Acceleration Sim/flightmodel//forces/g_nrml 

Axial Acceleration Sim/flightmodel//forces/g_axil 

Pitch Angle Sim/flightmodel//position/theta 

Yaw Angle Sim/flightmodel//position/beta 

Roll Angle Sim/flightmodel//position/phi 

Table 4-2- Data Sent to Motion base for Motion Cue 

4.2.1. Motion Computer Data and Displays 

In order to check whether correct data is sent to the motion base, an external monitor is 

hooked to the MBC. During the flight experiments the data on the monitor can be 

checked with the ones in the Simulink schemes. The format of the data is specified by the 
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manufacturer and should strictly adhere to the format shown in Table 4-3. These indicate 

the order in which data is received and can be compared with the Simulink data. 

 

Table 4-3- Motion Base Computer Data Format for Receiving via UDP 

 

The motion data is sent through the Simulink scheme since the objective is to obtain the 

motion cues based on the Gen-2 control algorithms. The software designed by Fidelity 

Flight Inc within MFS for driving motion base automatically adjusts the acceleration 

received from the X-plane within the prescribed limits but it is not the case with us. Thus 

we have placed a hard limit on the accelerations limits as prescribed by the manufacturer 

as shown in Table 4-4. A couple of tests were carried out to ensure the accelerations 

experienced for the tests are within the limits. The accelerations can be monitored while 

running the experiments while they are sent to the motion base. A generic external 

monitor used and connected to VGA output of MBC. The data received is shown in a 

zoomed view in Figure 4-7. 

Acceleration Limits 

Pitch Acceleration 2
30 deg/ sec±  

Yaw Acceleration 2
30 deg/ sec±  

Roll Acceleration 2
30 deg/ sec±  

Side Acceleration 3 g±  

Normal Acceleration 3 g±  

Axial acceleration 3 g±  

Table 4-4- Limits on acceleration for Motion base 
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Figure 4-7 The external monitor showing the Motion Base data  

 

This interface is divided into two main blocks. 

1. X-plane visual UDP interface  

2. Motion Base UDP interface  

The 2 interfaces are s-functions custom built for obtaining the visual and motion cues for 

the Simulink model. 

4.2.2. UDP interface and IP address settings for Communications 

The main objective was to carry out simulation experiments for the neurally augmented 

failure detection schemes in the flight simulator. To accomplish this, two different          

S-function were written in the Simulink scheme to send UDP data to the X-plane and the 

motion computer. Figure 4-8 shows the Simulink scheme with the UDP interface block 

for this particular study. Figure 4-9 shows the UDP interface block in detail. The visual 

UDP block asks for user to input the IP address of the server computer in order to make a 

communication with X-plane. When the user clicks on the visual block, a window shown 

in Figure 4-10 prompts the user to specify the IP address. Similarly, a pop up block 

prompts user to input the IP address for Motion data interface and is shown in Figure 

4-11. 
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In addition to these, two plugins for X-plane whose objective is to receive the data sent 

by Simulink scheme via s-function discussed before were created. These plugins 

communicate with the central plugin called X-plane Plugin Manager (XPLM). The        

X-plane software doesn’t allow any communication directly and therefore all 

communications are channeled through the XPLM. The syntax and procedure for writing 

customized plugin for X-plane can be found in Software Development Kit (SDK) at the 

manufacturer website. 

 

There are few things which must be taken into account while running the experiments 

using this interface. Foremost the Simulink scheme should be running before X-plane is 

started. This is necessary to open UDP ports for the X-plane plugins. Also, it clears 

previous buffer from the memory of X-plane.  The X-plane dial for the indicated airspeed 

uses knots for display. We have adjusted it to display speed in m/sec for our convenience 

and for consistency with the Simulink model. 

 

Figure 4-8- Simulink Scheme integrated with the UDP interface 
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Figure 4-9- UDP interface Block in the F-15 Simulation Scheme 

 

Figure 4-10- POP up window to specify IP address of the Motus Server machine for Visual UDP interface 

 

 

Figure 4-11 POP up window to specify IP address of the Motus Server machine for Motion UDP interface 

As mentioned earlier the five computers interact with each other through Ethernet 

connections. The server houses the IP addresses of the other machines. The visual display 
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computers should have IP address of the server. The snapshot of the server computer 

should have for the IP address settings is shown in Figure 4-12.These should be strictly 

selected as shown in figure else it could desynchronize the visual and instructor console 

with the server computer.  

 

 

Figure 4-12 IP settings and UDP setting for Server Computer 

4.2.3. Pilot interaction and Warning Systems in the Cockpit 

The pilot is included in the loop by placing the joystick in the cockpit as shown in Figure 

4-13 and the flight experiments are conducted in a controlled fashion and many a times it 

is necessary to warn the pilot about the type of work he is expected to do. It can be 

anything from notifying in advance about a maneuver about to hit or to instruct him to 

leave the stick or fly with the stick. An example of such a warning is shown in Figure 

4-14 
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Figure 4-13 Joystick Placed in the Cockpit 

 

 

Figure 4-14-Pilot warning about an oncoming maneuver 

Since the objective is pilot in the loop assessment therefore a warning system is also 

developed to display failure messages in the cockpit. As soon as the simulink FDII block 
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detects and identifies a failure it is communicated to the pilot by way of a text warning as 

shown in Figure 4-15 on the bottom left corner. These warning can be enabled/disabled 

by using F1/F2 keys from the server computer.  The instructor console computer is used 

to visually observe the flight experiments and Figure 4-16 shows a chase view of the 

simulation.  

 

Figure 4-15- A snapshot of warning message received in the cockpit 

 

 

 

Figure 4-16- Instructor Console Snapshot for monitoring the flight experiments 

4.3. Description of Simulink software 

A desktop based simulation environment46 is developed in Simulink for the F-15 Gen-2 

control scheme. The model was originally derived from a high performance fighter 

aircraft non-linear code distributed at the 1990 AIAA GNC Design Challenge47 by 

NASA. The model efficiently embedded in the Simulink environment and the Graphic 

User Interface (GUI) to create a user friendly simulation environment. Two types of 
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control surface failure have been modeled. The first failure type corresponds to an 

actuator mechanism failure and results in a locked surface; in fact, at the failure 

occurrence, the control surface remains fixed in the current or in a user prescribed 

position. Any of the individual six control surfaces may be subject to a failure: left or 

right stabilator, aileron, and rudder. The second failure types correspond to induced 

drifting biases of the angular rate sensor output and are implemented as sensor failures56. 

The user can select between different transients as well as different sizes of the bias for a 

total of six different sensor failures. 

4.3.1. The Simulink graphic user interface 

Figure 4-17 shows the typical interface of the Simulink Graphic User Interface (GUI) 

scheme for user friendly selection menu for choosing the flight scenarios. The left hand 

side of Figure 4-17 enables the user to choose the type of flight scenario. Once it is 

selected then it is required to choose the simulation scenario which has different options 

like nominal, actuator failure without FDI, actuator failure with FDI etc. 

  

 

Figure 4-17- Main GUI window for Flight Scenario Selection  

After selecting the desired simulation scenario the next window shown in Figure 4-18 

gives user the option to select the mode of pilot input. The input can be all generated by 
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joystick, pre-recorded or a combination of both. If the pre-recorded input is chosen it 

must be included in the parent directory. 

 

Figure 4-18- Input command selection window 

With the selection of inputs the 3rd GUI window shown in Figure 4-19 pops up which 

prompt the user to select the type of NN for the scheme. Figure 4-20 shows the GUI pop 

up window to define the actuator failure parameters. The user has option to introduce a 

particular failure at a particular time instant and deflection. Similarly Figure 4-21 shows 

the selection of sensor failure scenarios.  

 

 

Figure 4-19-Selection of Neural Network Scheme 

 



 49 

 

Figure 4-20- Defining the actuator failure parameters 

 

 

Figure 4-21-Defining the Sensor Failure Parameters  
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Chapter 5. Results and Evaluation 

5.1. Overview of the experiments 

The goal of this research effort is the evaluation of the pilot-in-loop performance of the 

fault tolerant flight control schemes under different flight conditions (nominal/failure) as 

well as for different class of failures (actuator/sensor). There were primarily two broad 

objectives of the study. Firstly, to compare the performance of three NN augmented 

schemes and secondly to evaluate the adaptive FDII schemes with a pilot in the loop in 

the flight simulator. The different phases of the experiments can be divided into the 

following scenarios: 

1. Nominal Condition 

2. Failure Conditions with no FDII  

3. Failure Condition with Adaptive FDII scheme 

5.2. Comparison of different NN schemes with Actuator failure (NO FDII) 

To begin with baseline experiments were first conducted for nominal flight conditions. 

Pre-generated doublet maneuver along the longitudinal and lateral channel as shown in 

Fig. 5-1 is used as a baseline test estimate the performance of the NN schemes. At this 

point there is no pilot in the loop and the test served to validate the prior established 

performance. 

 

Fig. 5-1-Pre-generated Doublet for longitudinal and lateral channel  



 51 

5.2.1. Tracking Error Performance for Nominal Condition (Baseline 

Doublets) 

The TE statistics for comparing the NN schemes for the longitudinal doublet maneuver 

shown in Table 5-1 

 

Figure 5-2-Tracking Error for Longitudinal Doublet 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e-4 4.7978 4.8227 -1.4091 4.7296 

Mean Pitch x10e-4 -1.1241 -1.4045 1.1829 -1.2762 

Mean Yaw x10e-5 6.7871 6.7671 -5.2985 6.7599 

SD Roll x10e-3 4.5470 4.5443 4.7688 4.5454 

SD Pitch x10e-2 2.8178 2.8278 3.1351 2.8124 

SD Yaw x10e-4 4.1754 4.1672 4.9050 4.1739 

Table 5-1 Longitudinal Doublet TE – (Nominal Condition) 
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Figure 5-3- Tracking Error for Lateral Doublet 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e-4 1.5575 1.5916 -0.25313 1.5552 

Mean Pitch x10e-3 -2.8190 -2.8747 -1.7086 -2.8110 

Mean Yaw x10e-3 -1.2636 -1.2633 -0.3650 -1.2650 

SD Roll x10e-1 2.3504 2.3541 1.7207 2.3487 

SD Pitch x10e-2 1.5643 1.5895 1.4898 1.5623 

SD Yaw x10e-2 1.0075 1.0098 0.35934 1.0094 

Table 5-2 Latéral Doublet TE Statistics (Nominal Condition) 

 

The tracking error (TE), defined as the difference between the rates generated by the 

reference model and the actual aircraft rates is an important indicator of neural networks 

performance. The TE along the pitch channel for a longitudinal maneuver and the pitch 

and roll channels for a lateral maneuver are considered for analysis in the following 

sections. For the purposes of this study, the TE statistics on each channel is computed 

over a 20 sec time window around the pre-generated longitudinal maneuvers and           

10 second window for the lateral maneuver, starting from the instant the maneuver 

occurs.   Figs. 7-8 show the comparison of the TE for the pre-generated maneuvers along 

the longitudinal and lateral channels, with and without NN compensation and the 

corresponding statistics are tabulated in Table 5-1 and Table 5-2. It can be seen that the 
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effect of NN augmentation is negligible, and may be attributed to small inversion errors 

and periodic updating of aerodynamic coefficients. 

5.2.2. Analysis of Actuator Failures (No pilot- No FDII) 

Following the nominal condition experiments with pre-generated maneuvers, failures on 

the left stabilator and right aileron, as shown in Table 5-3 and Table 5-4, were simulated 

and the performance of the control laws evaluated (no pilot in loop). For failure cases, the 

TE statistics on each channel is computed over a 20 sec time window around the failure 

instant, beginning 5 seconds before the failure. 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 -0.6215 -0.4274 -0.2719 -0.6217 

Mean Pitch x10e0 0.2409 0.1865 0.1155 0.2410 

Mean Yaw x10e-2 -5.1404 -5.0736 -5.7683 -5.1420 

SD Roll x10e0 2.4756 2.3646 2.5454 2.4756 

SD Pitch x10e0 1.0592 1.0462 1.0386 1.0592 

SD Yaw x10e0 0.1997 0.2075 0.2211 0.1997 

Table 5-3 -Stabilator Failure TE Statistics (No Pilot) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 0.2420 0.2172 0.1420 0.2420 

Mean Pitch x10e-4 -2.7736 -2.8866 -2.3183 -2.7616 

Mean Yaw x10e-4 -3.6941 -4.0079 -1.2083 -3.6968 

SD Roll x10e0 1.5420 1.5309 1.5969 1.5420 

SD Pitch x10e-2 1.1089 1.1282 1.1239 1.1089 

SD Yaw x10e-3 5.7585 5.7924 7.5842 5.7584 

Table 5-4 Aileron Failure TE Statistics (No Pilot) 

 

  

Table 5-3 shows the TE statistics for the stabilator failure scenario (no pilot in the loop). 

The EMRAN performed better in comparison to the other NNs, reducing the mean of 

pitch tracking error by nearly 50% as compared to a no NN case. Table 5-4 shows the TE 

statistics for the aileron failure case. As in the case of the stabilator failure, the EMRAN 

performs better, reducing the mean of roll TE by nearly 40% TE and mean of pitch TE by 

15%. The analysis also shows that the neural augmentation using the SHL NN has an 

adverse effect on the TE performance. 
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5.2.3. Analysis of Actuator Failures (With Pilot- No FDII) 

The same failure conditions were now simulated with 3 different pilots that were selected 

from among the students in the WVU flight simulation course. Prior to conducting the 

experiments, the pilots were briefed about the nature of the failures and also instructed to 

maintain wings level flight after the failure. A specific objective of this phase of the study 

was to compare the level of pilot activity/compensation in the absence and presence of 

NN augmentation and to analyze the associated TE statistics.  With Pilot 1 in the loop, for 

the stabilator failure, it can be seen in Figure 5-4 that the EMRAN is the best performer, 

with the mean TE on the pitch and roll channels reduced as compared to the no NN case. 

The mean TE statistics is reduced by 50-55%, and is shown in Table 5-5. 

 

Figure 5-4   TE with different NN (Stab. Failure, Pilot1) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 -.5928 -.5445 -.2469 -.6156 

Mean Pitch x10e0 .2177 .2143 .1199 .2317 

Mean Yaw x10e-2 4.7926 -5.0836 -5.6346 -4.9166 

SD Roll x10e0 2.5489 2.3546 2.4624 2.5094 

SD Pitch x10e0 1.0545 1.0244 1.0076 1.0295 

SD Yaw x10e0 1.9724 2.0122 2.2005 1.9538 

Table 5-5 Stabilator Failure TE Statistics (Pilot 1) 
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Similarly, for an aileron failure, EMRAN outperforms the other networks, effectively 

reducing the mean TE in the pitch channel by nearly 77% and roll channel by about 58%.  

The corresponding results are tabulated in Table 5-6 and shown in Figure 5-5. It can also 

be seen that the SHL network has negligible effect on the tracking error statistics in both 

the pitch and roll channels for both failure cases.  

 

 

Figure 5-5- TE with different NN (Ail. Failure, Pilot1) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e-1 2.8866 2.5512 1.2169* 2.8644 

Mean Pitch x10e-4 -2.1266 -7.7528 1.3627* -12.885 

Mean Yaw x10e-3 -1.0142 -1.0213 -1.6379 -10.229 

SD Roll x10e0 1.7463 1.7031 1.7454 1.7585 

SD Pitch x10e-2 1.1651 1.2283 1.4529 1.8851 

SD Yaw x10e-3 8.0870 7.4486 9.4841 10.103 

Table 5-6 Aileron Failure TE Statistics (Pilot 1) 

 

 

With Pilot 2 in the loop, for the stabilator failure, Sigma-Pi and EMRAN NNs are 

comparable in TE performance in the stabilator failure with a 40% decrease in pitch TE. 

On the other hand, the Sigma-Pi outperforms the EMRAN along the roll channel. The 

tracking error statistics are shown in 
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 and Figure 5-6. The SHL NN actually degrades the performance in pitch TE, by 25%.  

 

Figure 5-6- Stabilator Failure TE with different NN (Pilot 2) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 -.5845 -.4564 -.9027 -.8390 

Mean Pitch x10e0 .2196 .1914* .1956 .2716 

Mean Yaw x10e-2 -4.5483 -4.6421 -4.5490 -3.6780 

SD Roll x10e0 2.5092 2.3910 3.3773 3.1885 

SD Pitch x10e0 1.0231 .9995 1.1218 1.1479 

SD Yaw x10e-1 1.9522 1.9547 1.3337 1.2997 

Table 5-7 Stabilator Failure TE Statistics (Pilot 2) 

 

On the other hand, for the aileron failure, the EMRAN performs the best with the mean of 

TE reduced considerably as compared with a no NN case. It shows a 65% reduction in 

mean TE along the roll channel and approximately 80% reduction in mean TE along 

pitch.  The statistics are listed in Table 5-8 and the TE performance shown in Figure 5-7.  
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Figure 5-7 Aileron Failure TE with different NN (Pilot 2) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e-1 3.0171 2.5672 1.0449 2.6877 

Mean Pitch x10e-4 -7.5015 -7.9599 1.3001 -9.6403 

Mean Yaw x10e-3 -116.20 -1.0067 -1.6330 -9.8127 

SD Roll  1.8405 1.7336 1.7007 1.7359 

SD Pitch x10e-3 9.7979 17.073 18.816 28.404 

SD Yaw x10e-3 7.2739 7.8356 8.9207 1.1077 

Table 5-8 Aileron Failure TE Statistics (Pilot 2) 

 

With Pilot 3 in the loop, a similar trend is observed for the stabilator failure. The 

contributions from all the three networks result in a decrease in TE, with EMRAN 

reducing it by 58% in pitch and 82% in roll. The statistics are given in Table 5-9 and 

shown in Figure 5-8. 
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Figure 5-8- Stabilator Failure TE with different NN (Pilot 3) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 -.6622 -.5030 -.1190 -.5570 

Mean Pitch x10e0 .2422 .1983 .1001 .2114 

Mean Yaw x10e-2 -5.2567 -4.4448 -4.9201 -4.4573 

SD Roll x10e0 2.4889 2.5544 2.5513 2.6015 

SD Pitch x10e0 1.0085 1.0678 1.0434 1.0599 

SD Yaw x10e-1 1.9158 2.0732 2.3196 2.0742 

Table 5-9 Stabilator Failure TE Statistics (Pilot 3) 

 

In the case of aileron failure, as shown in Figure 5-9, the TE performance is degraded for 

all the networks on the pitch channel. However, in the roll channel, the Sigma-Pi network 

reduces the mean TE by 6%, while the EMRAN significantly degrades the performance. 

The results are tabulated in Table 5-10. 
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Figure 5-9-Aileron Failure TE with different NN (Pilot 3) 

 

TE No NN Sigma-Pi EMRAN SHL 

Mean Roll x10e0 .3079 .2883 .8474 .3101 

Mean Pitch x10e0 -.66960 -2.3203 -1.6484 -5.2381 

Mean Yaw x10e-2 -1.2423 -1.4342 -2.0495 -1.1713 

SD Roll x10e0 1.8760 1.9125 1.8644 1.9196 

SD Pitch x10e0 1.2384 3.8596 1.2828 3.6064 

SD Yaw x10e-1 0.90192 1.1441 1.1084 1.1101 

Table 5-10- Aileron Failure TE Statistics (Pilot 3) 

 

With the conclusion of preliminary actuator failure tests in the simulator it was 

established that the MOTUS simulator served as a good test best for carrying out analysis 

of NN augmented control schemes. It extends the simulation capability to a next level of 

realism than the desktop simulation. Also, the motion and visual cues facilitate 

appropriate compensation in the advent of failure.  

 

The next step was to develop an adaptive failure detection scheme which is capable of 

detection and distinguishing an actuator failure from a sensor failure. The earlier work 

done on the integrated S/AFDIA scheme with constant thresholds is found to be 

susceptible to disturbances and the threshold is crossed from disturbances arising out of 
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stick input from pilot as well. The adaptive threshold scheme is extended for an 

integrated (sensor and actuator) FDII scheme and one broad objective of carrying out 

these piloted experiments was to evaluate the robustness of the adaptive FDII scheme 

which has substantial pilot activity. Normally in a desktop simulation there are fewer 

amounts of false alarms because of no pilot in the loop and as a result the scheme looks 

robust. In the advent of a pilot in the loop cross-correlations are induced even when there 

is no failure. Moreover, as soon as a failure is detected the pilot reacts and may result in 

perturbations of monitored signals and might lead to false isolations and detections. In a 

desktop simulation there is no such response and the scheme gives good results. In case 

of real flight this is not the case so the FDII scheme should be tolerant for pilot activity 

arising due to sudden failure and identify the failure correctly between the time of 

detection and identification. Moreover wrong identification may lead to a wrong 

reconfiguration of the controller and might perplex the pilot further. 

5.3. Evaluation of Integrated FDII Scheme with adaptive FL threshold 

As discussed in chapter 3, the FDII scheme developed for actuator and sensor failures 

were subjected to piloted experiments in the MFS. The pilot was instructed to maintain 

wings level flight and maintain an altitude within 200 ft and the failure was induced at   

30 sec from the start of simulation. Also the failures were thrown randomly so that pilot 

responds according to his best judgment without having a prior indication of the type of 

failure. The results are divided into two sections covering actuator and sensor failure 

cases. The FDII scheme result summary is expressed in terms of the detection delay, 

isolation delay, identification delay, correct isolation, correct identification and false 

alarms. The actuator failures are categorized as soft (2 deg), medium (5 deg) and hard           

(8 deg). The sensor failure have been formulated by having a small (4 deg/sec) and large      

(8 deg/sec) sensor bias. Also each of these biases is subject to a slow drift (2 sec), 

medium drift (6 sec) and fast drifts (10 sec). These six different cases of sensor failures 

shown in Figure 5-10  are used for the simulator tests. In order to reduce the number of 

experiments a test was carried out with an experienced pilot to choose the best NN for 

upcoming studies. An initial comparison of the Sigma-Pi and EMRAN was done based 

on simulating a hard stabilator failure (8 Deg) to choose among the two networks for the 
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next phase of the study. This was necessary to decrease the number of simulation tests. 

SHL was not used as its performance was poor in most of the earlier cases.  

Run-1 No NN Sigma-Pi EMRAN Sigma-Pi(% Inc/Dec) EMRAN(% Inc/Dec) 

Mean Roll -4.00E-01 -3.26E-01 -3.83E-02 18.49 90.41 

Mean Pitch 1.55E-01 1.29E-01 7.59E-02 16.54 51.01 

Mean Yaw -3.11E-02 -2.93E-02 -3.09E-02 5.56 0.53 

SD Roll 2.29E+00 2.22E+00 1.46E+00 3.27 36.39 

SD Pitch 9.04E-01 8.91E-01 7.83E-01 1.38 13.39 

SD Yaw 1.82E-01 1.74E-01 1.44E-01 4.17 20.94 

      

Run-2 No NN Sigma-Pi EMRAN Sigma-Pi(% Inc/Dec) EMRAN(% Inc/Dec) 

Mean Roll -4.29E-01 -6.17E-02 -3.03E-02 85.62 92.95 

Mean Pitch 1.61E-01 9.35E-02 8.51E-02 42.06 47.31 

Mean Yaw -3.38E-02 -3.39E-02 -3.12E-02 -0.45 7.68 

SD Roll 2.23E+00 1.96E+00 2.00E+00 12.37 10.29 

SD Pitch 8.96E-01 9.56E-01 9.83E-01 -6.67 -9.62 

SD Yaw 1.77E-01 1.78E-01 1.92E-01 -0.84 -8.64 

      

Run-3 No NN Sigma-Pi EMRAN Sigma-Pi(% Inc/Dec) EMRAN(% Inc/Dec) 

Mean Roll -3.64E-01 -3.50E-01 -3.50E-02 3.69 90.37 

Mean Pitch 1.38E-01 1.37E-01 8.10E-02 0.55 41.15 

Mean Yaw -2.80E-02 -2.99E-02 -2.97E-02 -6.89 -6.29 

SD Roll 2.22E+00 2.17E+00 1.94E+00 2.27 13.02 

SD Pitch 8.95E-01 9.12E-01 9.40E-01 -1.86 -5.04 

SD Yaw 1.77E-01 1.77E-01 1.69E-01 0.24 4.59 

Table 5-11 Comparison done for finalizing NN for further studies 

Based on these tests it can be seen that EMRAN has more improvement when compared 

with a no NN case and hence it was frozen to be used for next set of tests on the actuator 

failures. The sensors failures will be carried out for the EMRAN NN alone as the 

objective is to test the FDII scheme. The analysis of failure cases are done in terms of TE 

along the roll, pitch and yaw channels. It is an indication of controller to track desired 

inputs. The other parameter for analysis is the pilot compensation (PC) which is the sum 

of absolute stick activity over the time under consideration. In this analysis of FDII 

algorithms we have considered a time window of 20 sec for monitoring the PC 

immediately after failure. Since it is desirable to have a TE and PC as little as possible so 

the Composite Parameter (CP) denoted byη , which is the absolute of the product of TE 

and PC is the third parameter for a meaningful observation and desirable to be minimum 

for best performance. 
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Figure 5-10 Bias for Sensor Failures 

5.3.1. Analysis of Actuator Failure Cases (Stabilator Failure) 

Two locked types of failures (stabilator/aileron) were selected for conducting the FDII 

flight experiments in the flight simulator. The goal of this study was two folded. Firstly, 

to have a quantitative evaluation of pilot compensation in advent of a failure and 

secondly, to test the FL incorporated FDII scheme in the flight simulator. The study 

provided a means of testing the FDII scheme in a near realistic way in the flight 

simulator. Any pilot activity during the flight experiments induces cross-correlation rates 

and thus helped in evaluating the insensitivity of FDII to disturbances induced. In an 

ideal situation the FDII should be least effected by a pilot activity in failure warning 

systems. Since FDII scheme is built on monitoring cross-correlations rate which cannot 

be isolated when a pilot is in the loop. Any pilot activity is bound to induce coupling and 

thus FDII scheme is susceptible to wrong detection. The FL parameters are tuned 

appropriately to reduce the effect of pilot input. The actuator failure cases were repeated 

5 times to ensure data consistency and repeatability. 
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S.No  Failure  Cases Detection Isolation Identification T/F 

1 2 Deg Left Stab(NO NN) 30.1 31.16 30.22 T  

2 5 Deg Left Stab (NO NN) 30.08 30.1 30.2 T 

3 8 Deg Left Stab (NO NN) 30.06 30.08 30.16 F(Rudder) 

4 2 Deg Right Ail (NO NN) 30.14 30.2 30.24 T 

5 5 Deg Right Ail (NO NN) 30.1 30.24 30.26 T 

6 8 Deg Right Ail (NO NN) 30.08 30.1 30.16 T 

7 2 Deg Left Stab(EMRAN) 30.1 30.14 30.22 T 

8 5 Deg Left Stab (EMRAN) 30.08 30.1 30.2 T 

9 8 Deg Left Stab (EMRAN) 30.06 30.08 30.18 T 

10 2 Deg Right Ail (EMRAN) 30.12 30.34 30.36 T 

11 5 Deg Right Ail (EMRAN) 30.1 30.24 30.26 T 

12 8 Deg Right Ail (EMRAN) 30.18 30.24 30.26 T 

Table 5-12- Actuator Failure FDII results with Adaptive Threshold (Run1) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 2 Deg Left Stab(NO NN) 30.1 30.12 30.22 T 

2 5 Deg Left Stab (NO NN) 30.06 30.08 30.18 T 

3 8 Deg Left Stab (NO NN) 30.06 30.06 30.16 F(Rudder) 

4 2 Deg Right Ail (NO NN) 30.14 31.14 33.34 F(Pitch Sensor) 

5 5 Deg Right Ail (NO NN) 30.12 30.14 30.24 T 

6 8 Deg Right Ail (NO NN) 30.08 30.24 30.26 T 

7 2 Deg Left Stab(EMRAN) 30.1 30.12 30.22 T 

8 5 Deg Left Stab (EMRAN) 30.08 31.1 30.18 T 

9 8 Deg Left Stab (EMRAN) 30.06 30.08 30.18 T 

10 2 Deg Right Ail (EMRAN) 30.12 0.24 30.26 T 

11 5 Deg Right Ail (EMRAN) 30.1 30.2 30.22 T 

12 8 Deg Right Ail (EMRAN) 30.08 30.16 30.18 T 

Table 5-13- Actuator Failure FDII results with Adaptive Threshold (Run2) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 2 Deg Left Stab(NO NN) 30.1 30.14 30.22 T 

2 5 Deg Left Stab (NO NN) 30.08 30.1 30.2 T 

3 8 Deg Left Stab (NO NN) 30.06 30.08 30.18 T 

4 2 Deg Right Ail (NO NN) 30.14 31.14 33.34 F(Pitch Sensor) 

5 5 Deg Right Ail (NO NN) 30.12 30.28 30.3 T 

6 8 Deg Right Ail (NO NN) 30.08 30.24 30.26 T 

7 2 Deg Left Stab(EMRAN) 30.1 30.12 30.22 T 

8 5 Deg Left Stab (EMRAN) 30.08 30.1 30.2 T 

9 8 Deg Left Stab (EMRAN) 30.06 30.1 30.18 T 

10 2 Deg Right Ail (EMRAN) 30.12 30.2 30.22 T 

11 5 Deg Right Ail (EMRAN) 30.1 30.18 30.2 T 

12 8 Deg Right Ail (EMRAN) 30.08 30.16 30.18 T 

Table 5-14- Actuator Failure FDII results with Adaptive Threshold (Run3) 
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S.No  Failure  Cases Detection Isolation Identification T/F 

1 2 Deg Left Stab(NO NN) 30.1 30.14 30.22 T 

2 5 Deg Left Stab (NO NN) 30.08 30.1 30.2 T 

3 8 Deg Left Stab (NO NN) 30.06 30.08 30.18 T 

4 2 Deg Right Ail (NO NN) 30.12 30.28 30.3 T 

5 5 Deg Right Ail (NO NN) 30.1 30.2 30.22 T 

6 8 Deg Right Ail (NO NN) 30.08 30.18 30.2 T 

7 2 Deg Left Stab(EMRAN) 30.1 30.12 30.22 T 

8 5 Deg Left Stab (EMRAN) 30.08 30.1 30.2 T 

9 8 Deg Left Stab (EMRAN) 30.06 30.08 30.18 T 

10 2 Deg Right Ail (EMRAN)  30.18 30.26 30.28 T 

11 5 Deg Right Ail (EMRAN) 30.1 30.18 30.2 T 

12 8 Deg Right Ail (EMRAN) 30.08 30.16 30.18 T 

Table 5-15- Actuator Failure FDII results with Adaptive Threshold (Run4) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 2 Deg Left Stab(NO NN) Undetected Undetected  Undetected  NO DETECTION 

2 5 Deg Left Stab (NO NN) 30.08 30.1 30.2 T 

3 8 Deg Left Stab (NO NN) 30.06 30.1 30.18 T 

4 2 Deg Right Ail (NO NN) 30.14 30.28 30.3 T 

5 5 Deg Right Ail (NO NN) 30.1 30.22 30.24 T 

6 8 Deg Right Ail (NO NN) 30.08 30.16 30.18 T 

7 2 Deg Left Stab(EMRAN) 30.1 30.12 30.18 T 

8 5 Deg Left Stab (EMRAN) 30.08 30.1 30.2 T 

9 8 Deg Left Stab (EMRAN) 30.06 30.08 30.18 T 

10 2 Deg Right Ail (EMRAN) 30.12 30.24 30.26 T 

11 5 Deg Right Ail (EMRAN) 30.1 30.18 30.2 T 

12 8 Deg Right Ail (EMRAN) 30.08 30.16 30.18 T 

Table 5-16- Actuator Failure FDII results with Adaptive Threshold (Run5) 

As shown with Run 1 in Table 5-12, only one case is incorrectly identified. Two cases are 

incorrectly identified in Run2, one in Run 3, none in Run 4 and one case is undetected in 

Run 5. It should be noted that prior to running the piloted experiments, the FDII scheme 

was run on desktop without any pilot and there were no cases of false FDII. The pilot 

input in the experiments has triggered false alarms and detections in these cases. Table 

5-17 shows the summary of FDII tests for actuator failure cases.  

Tests 

Total Failures 

Tested 

Correctly 

FDII 

False  

Detections   

False  

Isolations 

False 

Identifications 

No  

Detections 

Stabilator failure 30 27 0 2 2 1 

Aileron failure 30 28 0 2 2 0 

Table 5-17-Summary of Piloted Tests of Adaptive FDII scheme for Actuator Failure  
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In the subsequent sections a performance evaluation of the FDII schemes is carried out in 

terms of Tracking Error (TE), amount of required pilot activity to accomplish the mission 

profile.  

5.3.1.1. Tracking Error Analysis of Stabilator Failures 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -2.39E-01 -6.87E-02 -4.47E-01 -1.62E-01 -4.47E-01 -6.87E-02 

 Mean Pitch 9.07E-02 4.43E-02 1.80E-01 9.97E-02 3.06E-01 4.43E-02 

Mean Yaw -1.75E-02 -2.00E-02 -3.45E-02 -3.82E-02 -6.11E-02 -2.00E-02 

SD Roll 9.50E-01 8.03E-01 1.67E+00 1.63E+00 3.03E+00 8.03E-01 

SD Pitch 4.17E-01 3.38E-01 6.76E-01 6.70E-01 1.20E+00 3.38E-01 

SD Yaw 1.70E-01 1.68E-01 1.95E-01 2.06E-01 2.72E-01 1.68E-01 

Table 5-18- TE statistics for Left Stabilator (Run1) 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -2.09E-01 -6.38E-02 -4.45E-01 -1.47E-01 -4.45E-01 -6.38E-02 

 Mean Pitch 9.37E-02 3.10E-02 2.04E-01 7.59E-02 3.53E-01 3.10E-02 

Mean Yaw -1.71E-02 -1.54E-02 -3.66E-02 -3.40E-02 -6.56E-02 -1.54E-02 

SD Roll 8.22E-01 7.97E-01 1.66E+00 1.68E+00 3.06E+00 7.97E-01 

SD Pitch 4.01E-01 3.23E-01 7.95E-01 6.70E-01 1.37E+00 3.23E-01 

SD Yaw 1.75E-01 1.70E-01 2.12E-01 2.11E-01 2.96E-01 1.70E-01 

Table 5-19- TE statistics for Left Stabilator (Run2) 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -2.02E-01 -7.51E-02 -4.35E-01 -1.57E-01 -4.35E-01 -7.51E-02 

 Mean Pitch 9.12E-02 3.73E-02 1.93E-01 8.50E-02 4.13E-01 3.73E-02 

Mean Yaw -1.70E-02 -1.75E-02 -3.60E-02 -3.74E-02 -7.69E-02 -1.75E-02 

SD Roll 9.20E-01 7.89E-01 1.65E+00 1.69E+00 2.87E+00 7.89E-01 

SD Pitch 4.19E-01 3.16E-01 7.69E-01 6.82E-01 1.27E+00 3.16E-01 

SD Yaw 1.77E-01 1.70E-01 2.10E-01 2.13E-01 2.79E-01 1.70E-01 

Table 5-20- TE statistics for Left Stabilator (Run3) 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -2.01E-01 -1.18E-01 -4.31E-01 -2.21E-01 -4.31E-01 -1.18E-01 

 Mean Pitch 8.13E-02 5.03E-02 1.75E-01 1.04E-01 3.22E-01 5.03E-02 

Mean Yaw -1.61E-02 -2.08E-02 -3.44E-02 -4.10E-02 -6.33E-02 -2.08E-02 

SD Roll 7.93E-01 7.73E-01 1.65E+00 1.61E+00 2.92E+00 7.73E-01 

SD Pitch 3.43E-01 3.13E-01 6.62E-01 6.40E-01 1.17E+00 3.13E-01 

SD Yaw 1.67E-01 1.69E-01 1.97E-01 2.06E-01 2.70E-01 1.69E-01 

Table 5-21- TE statistics for Left Stabilator (Run4) 
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Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -8.69E-02 -9.09E-02 -4.90E-01 -1.96E-01 -4.90E-01 -9.09E-02 

 Mean Pitch 3.31E-02 4.04E-02 1.94E-01 9.58E-02 3.03E-01 4.04E-02 

Mean Yaw -6.99E-03 -1.76E-02 -3.79E-02 -3.91E-02 -6.04E-02 -1.76E-02 

SD Roll 3.54E-01 7.72E-01 1.51E+00 1.63E+00 3.16E+00 7.72E-01 

SD Pitch 1.78E-01 3.18E-01 6.02E-01 6.61E-01 1.26E+00 3.18E-01 

SD Yaw 1.58E-01 1.69E-01 1.91E-01 2.07E-01 2.87E-01 1.69E-01 

Table 5-22- TE statistics for Left Stabilator (Run5) 

 

 

 

Fig. 5-11-TE for Left Stabilator soft failure (Run1) 
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Fig. 5-1 TE for Left Stabilator Medium failure (Run1) 

 

Fig. 5-2 TE for Left Stabilator hard failure (Run1) 

 

The stabilator failure induces a coupling in roll and pitch with little effect on yaw 

channel. Since the pilot was instructed for a same mission profile therefore the TE results 

can be averaged for the 5 runs for any meaningful conclusion. These are tabulated in 

Table 5-23 for the soft, medium and hard failure. As can be seen for a soft failure (2deg), 

the mean of TE along pitch channel for EMRAN NN is 48% lower than for a no NN 
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case. For the pitch channel it is a 56% lesser than a no NN case. Along the yaw channel 

there is however increases of 22% in the TE compared to a no NN case .Similarly, in case 

of the medium stabilator failure (5 deg), the mean of TE shows a decrease of 52% along 

pitch and 61% along roll channel. The yaw TE increase with EMRAN compared to no 

NN case. For a hard failure (8 deg), however the mean of TE along pitch, roll and yaw 

channel shows a decrease of 88%, 81% and 72% respectively from a no NN case. 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  -1.88E-01 -8.33E-02 -4.50E-01 -1.77E-01 -4.50E-01 -8.33E-02 

 Mean Pitch 7.80E-02 4.06E-02 1.89E-01 9.22E-02 3.40E-01 4.06E-02 

Mean Yaw -1.49E-02 -1.83E-02 -3.59E-02 -3.80E-02 -6.54E-02 -1.83E-02 

SD Roll 7.68E-01 7.87E-01 1.63E+00 1.65E+00 3.01E+00 7.87E-01 

SD Pitch 3.52E-01 3.22E-01 7.01E-01 6.65E-01 1.25E+00 3.22E-01 

SD Yaw 1.69E-01 1.69E-01 2.01E-01 2.09E-01 2.81E-01 1.69E-01 

Table 5-23- Average of 5 runs for Stabilator failure 

 

5.3.1.2. Pilot Activity Analysis 

 

Fig 5-12-Pilot Activity for Left Stabilator Failure (Run1) 
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Figure 5-13 Pilot Activity for Medium Stabilator Failure (Run1) 

 

Fig. 5-14-Pilot Activity for Hard Stabilator Failure (Run1) 

 

  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  1.9914 0.4921 0.9489 0.3878 2.9470 3.0497 

Longitudinal 1.9737 0.1797 0.9776 0.9531 2.0409 1.6669 

Directional 0.0000 0.4323 0.0000 0.0000 2.7738 0.0000 

Table 5-24- Pilot Activity for Left Stabilator Failure (Run 1) 
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  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  1.2450 0.9914 0.1850 1.8606 5.8352 1.9231 

Longitudinal 1.2853 0.8282 1.4829 0.7906 3.6638 0.4619 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-25- Pilot Activity for Left Stabilator Failure (Run 2) 

 

  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  1.3565 1.3148 1.5163 2.6622 4.1735 2.8421 

Longitudinal 0.0798 0.1480 1.4335 1.3242 1.4388 2.0285 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-26- Pilot Activity for Left Stabilator Failure (Run 3) 

 

 2 deg 5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  1.0702 1.1366 2.3505 0.5165 3.8280 1.6925 

Longitudinal 0.8165 0.4364 0.9862 0.3965 1.3527 0.7399 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-27- Pilot Activity for Left Stabilator Failure (Run 4) 

 

  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.6453 0.1718 1.5008 1.3012 4.6993 3.5295 

Longitudinal 0.0000 0.5405 0.6548 1.2617 2.7355 1.2537 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-28- Pilot Activity for Left Stabilator Failure (Run 5) 

 

The average pilot activity for 5 runs of the stabilator failure is shown in Table 5-29. The 

main effect of this type of failure is on the pitch and roll channel. It can be seen that for a 

soft failure EMRAN has 48% lower pilot activity in longitudinal channel than a no NN 

case. Similarly, it is 34% lower in lateral channel. For a medium failure, EMRAN shows 

a decrease in 14% compared to a No NN while mean TE increases along lateral channel 

by 3%. Similarly, for hard failure there is a reduction in pilot activity for EMRAN in 

comparison to a no NN case. It is 45% lower for longitudinal and 39% lower for lateral. 

In general there is a trend of reduced pilot activity and it was corroborated by pilot 

feedback as well. The pilot experienced a reduced workload with EMRAN NN. Yaw 
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channel pilot activity however is very minimal and cannot be concluded for any 

meaningful observation. 

 

  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  1.2617 0.8213 1.3003 1.3457 4.2966 2.6074 

Longitudinal 0.8311 0.4265 1.1070 0.9452 2.2463 1.2302 

Directional 0.0000 0.0865 0.0000 0.0000 0.5548 0.0000 

Table 5-29 Average Pilot Activity for Stabilator Failure 

 

Since the objective of design of the controller required a minimal amount of TE together 

with a little stick activity on behalf of the pilot in advent of failures. So a composite 

parameter (CP) denoted as η is an appropriate indication of the performance index of the 

schemes which is the product of the TE and the PC and is shown below. 

 

TE PCη = ×  

 

The CP for stabilator failures is shown in Table 5-30 for the soft, medium and hard 

failure. The CP has shown a remarkable reduction for an EMRAN augmented scheme 

than a No NN scheme. For example if we look at Run 1, EMRAN shows a reduction in  

η  for the roll and pitch channels. The composite parameter η  reduced by 86% along roll 

and 80% along pitch channel for the soft failure. EMRAN reduced η  by 74% and 45% in 

roll and pitch channel for a medium failure. Similarly, for the hard failure EMRAN have 

reduced the η  by 84% and 87% respectively along the roll and pitch channel. It is also 

observed that there is no appreciable improvement along the yaw channel for the soft and 

medium failures. However, for hard failures there is always an improvement in case of 

EMRAN NN. 
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Composite Parameter (Stabilator)- Run1 

  2 deg  5 deg 8 deg 

CP  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.7161 0.1025 0.8709 0.2250 1.7639 0.2783 

Pitch 0.2696 0.0522 0.3552 0.1948 0.9313 0.1181 

Yaw 0.0175 0.0286 0.0345 0.0382 0.2307 0.0200 

Composite Parameter (Stabilator)- Run2 

 CP  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.4699 0.1271 0.5271 0.4193 3.0404 0.1865 

Pitch 0.2140 0.0566 0.5058 0.1360 1.6473 0.0453 

Yaw 0.0171 0.0154 0.0366 0.0340 0.0656 0.0154 

Composite Parameter (Stabilator)- Run3 

  2 deg  5 deg 8 deg 

CP   No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.4750 0.1738 1.0941 0.5766 2.2495 0.2884 

Pitch 0.0985 0.0428 0.4699 0.1975 1.0077 0.1128 

Yaw 0.0170 0.0175 0.0360 0.0374 0.0769 0.0175 

Composite Parameter (Stabilator)- Run4 

  2 deg  5 deg 8 deg 

CP   No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.4162 0.2524 1.4450 0.3355 2.0822 0.3180 

Pitch 0.1476 0.0723 0.3471 0.1458 0.7580 0.0875 

Yaw 0.0161 0.0208 0.0344 0.0410 0.0633 0.0208 

Composite Parameter (Stabilator)- Run5 

  2 deg  5 deg 8 deg 

 CP  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.1430 0.1065 1.2260 0.4499 2.7941 0.4118 

Pitch 0.0331 0.0622 0.3214 0.2166 1.1308 0.0910 

Yaw 0.0070 0.0176 0.0379 0.0391 0.0604 0.0176 

Table 5-30 Composite Parameter for Stabilator Failure 

 

A lower value of η  is desirable and is also demonstrated from the CP values of the 

stabilator failure results. An average of all the tests is tabulated in Table 5-31 and it can 

be concluded that there is a reduction in CP with EMRAN augmentation in all cases 

along the roll and pitch channel. There is a reduction of 64%, 59% and 87% along the roll 

channel for soft, medium and hard failure respectively. Similarly these values are 59%, 

54% and 91% along the pitch channel. For the yaw channel there is an increase in CP 

i.e.32% and 6% for soft and medium failure respectively. For the hard failure EMRAN 

reduces it by 82%. 
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From the analysis of the CP it can be concluded that EMRAN has improved the perform 

ace consistently and η  is an indication of reduced pilot workload in the advent of a 

failure. For hard failures which require more pilot effort to compensate and maintain a 

level flight EMRAN had reduced the pilot workload considerably. 

 

 2 deg  5 deg 8 deg 

 CP  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.4244 0.1518 1.0342 0.4142 2.3814 0.3006 

Pitch 0.1428 0.0580 0.3984 0.1793 1.1022 0.0906 

Yaw 0.0149 0.0198 0.0359 0.0380 0.1018 0.0183 

Table 5-31 Average CP for Stabilator Failure Cases 

5.3.1.3. FDII Analysis of Stabilator Failures 

The MQEE is the main parameter responsible for detection of actuator failure and it rises 

fast as compared to OQEE. Figure 5-15 shows the MQEE crossing the soft failure UB 

immediately after the failure. However, the hard UB is still not crossed. In case of 

medium and hard failures as shown in Fig. 5-16 and Fig. 5-17 the hard UB is crossed and 

thus a failure detection flag is triggered. The floating bounds on OQEE are however not 

reached to trigger any detection flag.   

  

Figure 5-15 Soft Failure Detection with FL Soft Bound for Stabilator using MQEE 
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Fig. 5-16- Medium Failure Detection with FL Hard Bound for Stabilator using MQEE 

  

Fig. 5-17- Hard Failure Detection with FL Hard Bound for Stabilator using MQEE 

  

Fig. 5-18-No Detection with OQEE for Soft Stabilator Failure 
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Fig. 5-19- No Detection with OQEE for Medium Stabilator Failure 

  

Fig. 5-20- Detection with OQEE for Hard Stabilator Failure 

  

Fig. 5-21-Soft Failure Isolation with 
pq

R  
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Fig. 5-22- Medium Failure Isolation with 
pq

R  

  

Fig. 5-23-Hard Failure Isolation with 
pq

R  

  

Fig. 5-24-Identification of Soft Stabilator Failure with
pq

ω  
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Fig. 5-25- Identification of Medium Stabilator Failure with
pq

ω  

  

Fig. 5-26- Identification of Hard Stabilator Failure with
pq

ω  
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5.3.2. Analysis of Actuator Failure Cases (Aileron Failure) 

5.3.2.1. Tracking Error Analysis 

 

Fig. 5-27- TE for a Soft Aileron failure (Run1) 

 

Fig. 5-28- TE for a Medium Aileron failure (Run1) 
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Fig. 5-29- TE for a Hard Aileron failure (Run1) 

 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.74E-01 4.95E-02 2.66E-01 7.57E-02 2.66E-01 4.95E-02 

 Mean Pitch 6.29E-05 -1.49E-03 -1.16E-03 -1.82E-03 -3.71E-03 -1.49E-03 

Mean Yaw -6.10E-04 -3.43E-04 -9.82E-04 -1.70E-03 -1.80E-03 -3.43E-04 

SD Roll 8.53E-01 8.19E-01 1.41E+00 1.37E+00 2.07E+00 8.19E-01 

SD Pitch 1.43E-01 1.44E-01 1.43E-01 1.44E-01 1.48E-01 1.44E-01 

SD Yaw 1.52E-01 1.53E-01 1.52E-01 1.53E-01 1.54E-01 1.53E-01 

Table 5-32-TE statistics for aileron failure (Run 1) 

 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.24E-01 4.68E-02 2.02E-01 1.90E-01 2.02E-01 4.68E-02 

 Mean Pitch 2.50E-04 -1.90E-03 4.79E-03 -2.64E-03 -7.11E-04 -1.90E-03 

Mean Yaw -4.56E-04 -1.02E-03 -6.82E-04 -2.37E-03 -9.01E-04 -1.02E-03 

SD Roll 7.06E-01 8.18E-01 1.14E+00 2.10E+00 1.79E+00 8.18E-01 

SD Pitch 1.48E-01 1.47E-01 1.52E-01 1.47E-01 1.48E-01 1.47E-01 

SD Yaw 1.58E-01 1.55E-01 1.58E-01 1.55E-01 1.58E-01 1.55E-01 

Table 5-33-TE statistics for aileron failure (Run2) 
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Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.23E-01 6.50E-02 2.01E-01 1.09E-01 2.01E-01 6.50E-02 

 Mean Pitch 2.81E-03 -3.62E-03 8.07E-04 -2.15E-03 -3.76E-04 -3.62E-03 

Mean Yaw -4.37E-04 -5.98E-04 -6.54E-04 -1.40E-03 -6.97E-04 -5.98E-04 

SD Roll 7.09E-01 8.10E-01 1.13E+00 1.33E+00 1.79E+00 8.10E-01 

SD Pitch 1.48E-01 1.47E-01 1.48E-01 1.47E-01 1.48E-01 1.47E-01 

SD Yaw 1.59E-01 1.55E-01 1.58E-01 1.55E-01 1.58E-01 1.55E-01 

Table 5-34-TE statistics for aileron failure (Run3) 

 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.51E-01 3.28E-02 2.55E-01 9.64E-02 2.55E-01 3.28E-02 

 Mean Pitch -2.56E-03 -5.25E-03 -2.29E-03 -2.08E-03 -3.42E-03 -5.25E-03 

Mean Yaw -3.87E-04 -2.53E-04 -1.17E-03 -1.33E-03 -1.69E-03 -2.53E-04 

SD Roll 8.17E-01 5.78E-01 1.34E+00 1.33E+00 1.99E+00 5.78E-01 

SD Pitch 1.47E-01 1.47E-01 1.46E-01 1.47E-01 1.49E-01 1.47E-01 

SD Yaw 1.54E-01 1.55E-01 1.54E-01 1.55E-01 1.56E-01 1.55E-01 

Table 5-35-TE statistics for aileron failure (Run4) 

 

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.54E-01 6.53E-02 2.60E-01 1.15E-01 2.60E-01 6.53E-02 

 Mean Pitch -2.44E-03 -2.02E-03 -3.06E-03 -2.22E-03 -4.64E-03 -2.02E-03 

Mean Yaw -6.58E-04 -5.12E-04 -1.11E-03 -1.43E-03 -1.95E-03 -5.12E-04 

SD Roll 8.20E-01 8.06E-01 1.34E+00 1.32E+00 2.03E+00 8.06E-01 

SD Pitch 1.46E-01 1.47E-01 1.46E-01 1.47E-01 1.49E-01 1.47E-01 

SD Yaw 1.54E-01 1.55E-01 1.54E-01 1.55E-01 1.55E-01 1.55E-01 

Table 5-36-TE statistics for aileron failure (Run5) 

The average of 5 runs for the aileron failure is shown in Table 5-37 . For a soft failure, 

the mean roll TE for EMRAN is 64% lower than no NN case. For a medium failure it is 

51% lower and for a hard failure it is 78% lower than No NN. The mean TE along pitch 

channel increase with EMRAN for the soft, medium and hard failures.  

Tracking Error 2 deg  5 deg 8 deg 

Statistics No NN EMRAN No NN EMRAN No NN EMRAN 

Mean Roll  1.45E-01 5.19E-02 2.37E-01 1.17E-01 2.37E-01 5.19E-02 

 Mean Pitch -3.75E-04 -2.85E-03 -1.80E-04 -2.18E-03 -2.57E-03 -2.85E-03 

Mean Yaw -5.10E-04 -5.46E-04 -9.19E-04 -1.64E-03 -1.41E-03 -5.46E-04 

SD Roll 7.81E-01 7.66E-01 1.27E+00 1.49E+00 1.94E+00 7.66E-01 

SD Pitch 1.46E-01 1.46E-01 1.47E-01 1.46E-01 1.49E-01 1.46E-01 

SD Yaw 1.55E-01 1.55E-01 1.55E-01 1.55E-01 1.56E-01 1.55E-01 

Table 5-37-Average of 5 Runs for Aileron Failure 
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5.3.2.2. Stick Activity Analysis 

The stick activity for 20 seconds after the failure is shown in Table 5-38- Table 5-42. As 

can be seen from Table 5-38 , EMRAN has reduced pilot activity for pitch channel. 

 

 

Figure 5-30 Pilot Activity for Soft Aileron Failure (Run 1) 

 

 

Figure 5-31 Pilot Activity for Medium Aileron Failure (Run 1) 
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Figure 5-32  Pilot Activity for Hard Aileron Failure (Run 1) 

 

  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.24669 0.26045 0 0.85622 1.1329 0.8816 

Longitudinal 0.17477 0.0066015 1.0182 0.741 0.43793 0.66156 

Directional 0 0 0 0 0 0 

Table 5-38- Pilot Activity for Right Aileron Failure (Run 1) 

 

  2 deg  5 deg 8 deg 

 Activity  No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0 0 1.0384 0 0 1.7698 

Longitudinal 0 0.74725 0.1053 0.31267 0.13645 0.30788 

Directional 0 0 0 0 0 0 

Table 5-39- Pilot Activity for Right Aileron Failure (Run 2) 

  2 deg  5 deg 8 deg 

Stick Activity  No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.34459 1.34 0 0 0 0.31442 

Longitudinal 0 0.071806 0.69882 0.3789 0.5996 0.70339 

Directional 0 0 0 0 0 0 

Table 5-40- Pilot Activity for Right Aileron Failure (Run 3) 

 

 2 deg 5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.0089399 0.049124 0.050194 0 0.84842 0 

Longitudinal 0.57014 0.62955 0.49721 0.50048 0.35209 0.78907 

Directional 0 0 0 0 0 0 

Table 5-41- Pilot Activity for Right Aileron Failure (Run 4) 
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  2 deg  5 deg 8 deg 

Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.067996 0 0.3772 0 1.0083 0.20597 

Longitudinal 0.68904 0.033492 0.19058 0.21471 0.77237 0.51599 

Directional 0 0 0 0 0 0 

Table 5-42- Pilot Activity for Right Aileron Failure (Run 5) 

Considering the average pilot activity for the aileron failures as shown in Table 5-43, it 

can be seen that pilot activity is comparable for No NN and EMRAN in longitudinal 

channel. As a general trend EMRAN needs more pilot workload in roll channel. No pilot 

activity is in required in the yaw channel for aileron failure cases. 

 

  2 deg  5 deg 8 deg 

 Stick Activity No NN EMRAN No NN EMRAN No NN EMRAN 

Lateral  0.1336432 0.3299148 0.2931588 0.171244 0.597924 0.634358 

Longitudinal 0.28679 0.2977399 0.502022 0.429552 0.459688 0.595578 

Directional 0 0 0 0 0 0 

Table 5-43 Average Pilot Activity for Aileron Failure Cases 

 

In a similar way as stabilator failure cases the CP is evaluated for the aileron failures and 

is shown in Table 5-44. The roll channel is predominant in aileron failures and much of 

the pilot activity is in this channel for maintaining the mission profile. The EMRAN 

augmentations have shown a definite trend of reducing the η compared to the No NN 

case. For example if we consider Run 1, there is a reduction of 71% for a soft failure, 

47% for a medium failure and 83% for a hard failure along the roll channel. The similar 

trend is for the rest of the failures.  An interesting observation is that the reduction is 

highest for a hard failure except Run2 and it gives a clear indication that EMRAN have 

helped the pilot in dealing with the failure better than when there is No NN. This was also 

subjectively corroborated by the feedback from the pilot while the experiments were 

being conducted. Thus CP is an important parameter in analysis of NN performance 

when there is a pilot in the loop. 
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Run1 

  2 deg  5 deg 8 deg 

CP  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.2167 0.0623 0.2663 0.1404 0.5679 0.0931 

Pitch 0.0001 0.0015 0.0023 0.0032 0.0053 0.0025 

Yaw 0.0006 0.0003 0.0010 0.0017 0.0018 0.0003 

Run2 

Roll  0.1240 0.0468 0.4124 0.1899 0.2023 0.1297 

Pitch 0.0003 0.0033 0.0053 0.0035 0.0008 0.0025 

Yaw 0.0005 0.0010 0.0007 0.0024 0.0009 0.0010 

Run3 

  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.1658 0.1522 0.2007 0.1093 0.2007 0.0855 

Pitch 0.0028 0.0039 0.0014 0.0030 0.0006 0.0062 

Yaw 0.0004 0.0006 0.0007 0.0014 0.0007 0.0006 

Run4 

  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.1519 0.0344 0.2683 0.0964 0.4722 0.0328 

Pitch 0.0040 0.0086 0.0034 0.0031 0.0046 0.0094 

Yaw 0.0004 0.0003 0.0012 0.0013 0.0017 0.0003 

Run5 

  No NN EMRAN No NN EMRAN No NN EMRAN 

Roll  0.1642 0.0653 0.3585 0.1147 0.5228 0.0788 

Pitch 0.0041 0.0021 0.0036 0.0027 0.0082 0.0031 

Yaw 0.0007 0.0005 0.0011 0.0014 0.0019 0.0005 

Table 5-44 Composite Parameter for Aileron Failures 

 

 2 deg 5 deg 8 deg 

CP No NN EMRAN No NN EMRAN No NN EMRAN 

Roll 0.1645 0.0690 0.3065 0.1373 0.3787 0.0848 

Pitch 0.0005 0.0037 0.0003 0.0031 0.0038 0.0046 

Yaw 0.0005 0.0005 0.0009 0.0016 0.0014 0.0005 

Table 5-45 Average Composite Parameter for Aileron Failures 

Considering the average of the CP in Table 5-45 for all the 5 runs of the aileron failures, 

there is a reduction of η along roll channel by 58%, 55% and 77% respectively for a soft, 

medium and hard failure. Along the pitch channel, EMRAN have increased η for the soft, 

medium and hard failure though this increase is minimal for hard failure. For the yaw 

channel EMRAN shows an increase for soft and medium failure but a reverse trend for 

hard failure. It can be concluded that EMRAN greatest contribution is during hard 
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failures when pilot compensation is not sufficient to maintain the mission profile in a 

minimum time. 

5.3.2.3. FDII Analysis of Aileron Failures 

 

  

Figure 5-33- Detection of a soft aileron failure 

 

  

Figure  5-34-Detection of a Medium aileron failure 



 86 

 
 

Figure  5-35- Detection of a soft aileron failure 

 

Isolation of Aileron failure 

  

Figure  5-36- Isolation of a soft Aileron Failure  
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Figure 5-37- Isolation of a Medium Aileron Failure 

  

Figure  5-38- Isolation of a Hard Aileron Failure 

Identification of Aileron failure 

  

Figure  5-39-Identification of soft Aileron failure with 
pq

ω  
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Figure 5-40- Identification of Medium Aileron failure with 
pq

ω  

  

Figure 5-41- Identification of Hard Aileron Failure with
pq

ω  

5.3.3. Analysis of Sensor Failure Cases (Roll Sensor) 

5.3.3.1. Tracking Error Analysis 

The TE statistics for roll sensor failures for the 5 runs are tabulated below in Table 5-46. 

Roll Sensor -Run1 

  SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Mean Roll 1.4544E-04 -1.7799E-02 -1.6920E-02 -1.5761E-02 -8.5170E-04 -1.6501E-02 

Mean Pitch -1.9340E-03 -1.8064E-03 -1.8212E-03 -1.7971E-03 -1.8371E-03 -1.7666E-03 

Mean Yaw 9.8992E-04 7.6659E-04 7.8719E-04 9.4406E-04 6.0538E-04 8.8158E-04 

SD Roll 3.7190E-01 6.7338E-01 3.7344E-01 3.9960E-01 5.1856E-01 3.9903E-01 

SD Pitch 1.4654E-01 1.4662E-01 1.4648E-01 1.4643E-01 1.4646E-01 1.4643E-01 

SD Yaw 1.5566E-01 1.5574E-01 1.5574E-01 1.5562E-01 1.5565E-01 1.5565E-01 
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Roll Sensor -Run2 

Mean Roll -1.3981E-02 -8.4069E-03 -8.0537E-03 -2.0159E-02 -1.3002E-02 -1.6081E-02 

Mean Pitch -1.8307E-03 -1.9189E-03 -2.0157E-03 -1.9060E-03 -1.9783E-03 -1.8779E-03 

Mean Yaw 9.7828E-04 4.8118E-04 7.2537E-04 8.9779E-04 8.8327E-04 9.0807E-04 

SD Roll 6.4619E-01 5.8936E-01 6.8990E-01 4.3785E-01 4.1023E-01 3.3896E-01 

SD Pitch 1.4649E-01 1.4654E-01 1.4724E-01 1.4646E-01 1.4642E-01 1.4642E-01 

SD Yaw 1.5569E-01 1.5580E-01 1.5618E-01 1.5569E-01 1.5568E-01 1.5563E-01 

Roll Sensor -Run3 

Mean Roll -1.1165E-02 -1.4222E-02 -1.8597E-02 -2.2246E-02 -1.7915E-02 -7.3550E-03 

Mean Pitch -1.8173E-03 -1.7986E-03 -1.8074E-03 -1.8008E-03 -1.7877E-03 -1.9331E-03 

Mean Yaw 9.5335E-04 9.7666E-04 7.2640E-04 7.7909E-04 7.4074E-04 5.2124E-04 

SD Roll 3.8061E-01 4.2633E-01 4.4934E-01 4.5874E-01 4.5161E-01 4.5668E-01 

SD Pitch 1.4644E-01 1.4650E-01 1.4645E-01 1.4643E-01 1.4644E-01 1.4639E-01 

SD Yaw 1.5561E-01 1.5562E-01 1.5574E-01 1.5569E-01 1.5569E-01 1.5570E-01 

Roll Sensor -Run4 

Mean Roll -2.6271E-02 -5.4341E-03 -1.6300E-02 -1.7626E-02 -2.1366E-02 -7.7890E-03 

Mean Pitch -1.8490E-03 -1.9416E-03 -1.8343E-03 -1.8264E-03 -1.8745E-03 -1.9378E-03 

Mean Yaw 8.1100E-04 6.8564E-04 8.3262E-04 7.3165E-04 7.5095E-04 7.9093E-04 

SD Roll 4.2492E-01 5.1931E-01 4.8534E-01 5.6613E-01 4.7266E-01 4.1448E-01 

SD Pitch 1.4645E-01 1.4655E-01 1.4642E-01 1.4644E-01 1.4641E-01 1.4642E-01 

SD Yaw 1.5571E-01 1.5566E-01 1.5570E-01 1.5584E-01 1.5587E-01 1.5569E-01 

Roll Sensor -Run5 

Mean Roll -1.5021E-02 -1.7392E-02 -1.3256E-02 -1.2203E-02 3.3891E-03 -1.0074E-02 

Mean Pitch -1.7812E-03 -1.9111E-03 -1.8888E-03 -1.8888E-03 -1.8584E-03 -1.7533E-03 

Mean Yaw 6.6255E-04 7.6744E-04 7.1986E-04 7.4291E-04 4.4932E-04 6.9476E-04 

SD Roll 4.0513E-01 3.4697E-01 4.7920E-01 4.1507E-01 4.4880E-01 5.3449E-01 

SD Pitch 1.4645E-01 1.4653E-01 1.4642E-01 1.4643E-01 1.4644E-01 1.4645E-01 

SD Yaw 1.5564E-01 1.5566E-01 1.5567E-01 1.5561E-01 1.5565E-01 1.5570E-01 

Table 5-46 Tracking Error (TE) statistics for Roll Sensor Failures 

 

5.3.3.2. Stick Activity Roll Sensor Failures 

 

Run1 

Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Lateral  0.9125 1.0010 0.9839 0.8945 0.9125 0.9219 

Longitudinal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Run2 

Lateral  1.0770 0.9013 0.9307 0.9527 1.0770 0.9674 

Longitudinal 0.0000 0.0000 0.2348 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Run3 

Lateral  1.0781 1.1434 0.8290 1.0004 1.0781 0.7446 

Longitudinal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Run4 

Lateral  1.0629 0.8617 0.8185 0.7821 1.0629 0.9983 

Longitudinal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Run5 

Lateral  1.0358 0.8168 0.8349 0.8185 1.0358 1.0075 

Longitudinal 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-47 Stick Activity for Roll Sensor Failures 

Considering the average of stick activity for the roll sensor failures, there is little or no 

activity along the pitch and yaw channels. The pilot compensation is of the same order in 

all the test cases. Clearly, there is no significant workload on the pilot on the onset of 

failures however; this small activity is because of the instrument readings in the cockpit. 

The sensor failure induces a small shift in the horizon indicator and pilot thinks that it is a 

failure. There is no motion cue for the pilot in case of sensor failures but the visual cue 

change at the onset of sensor failure. In order to bring the instrument reading to level 

pilot does a little activity which is typically the stick activity shown in tables.  

 

Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Lateral  1.0333 0.9448 0.8794 0.8896 1.0333 0.9279 

Longitudinal 0.0000 0.0000 0.0470 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-48 Average Stick Activity for Roll Sensor Failures 

5.3.3.3. FDII Analysis of Roll Sensor Failures 

The piloted tests in the flight simulator were performed for a roll sensor failure and Table 

5-49- Table 5-53 shows the FDII results in terms of detection time, isolation time and 

identification time. The FDII has shown to detect, isolate and identify the roll sensor 

failures accurately and there are no cases of false detections, isolations or identifications. 
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S.No  Failure  Cases Detection Isolation Identification T/F 

1 Roll Sensor SFDB 31.92 32.92 33.98 T 

2 Roll Sensor LFDB 31.3 31.3 36.3 T 

3 Roll Sensor SMDB 30.38 31.38 31.92 T 

4 Roll Sensor LMDB 31.88   32.88 33.98  T 

5 Roll Sensor SSDB 30.38 31.38 31.92 T 

6 Roll Sensor LSDB 31.88 32.38 33.98 T 

Table 5-49 FDII results for Roll Sensor Failure (Run1) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Roll Sensor SFDB 31.92 32.92 33.98 T 

2 Roll Sensor LFDB 31.3 32.3 33.9 T 

3 Roll Sensor SMDB 30.38 31.38 31.92 T 

4 Roll Sensor LMDB 31.9 32.92 33.98 T 

5 Roll Sensor SSDB 30.38 31.38 31.90 T 

6 Roll Sensor LSDB 30.38 31.38 31.92 T 

Table 5-50 FDII results for Roll Sensor Failure (Run2) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Roll Sensor SFDB 31.92 32.92 33.98 T 

2 Roll Sensor LFDB 31.3 32.3 45.26 T 

3 Roll Sensor SMDB 30.38 31.38 31.92 T 

4 Roll Sensor LMDB 31.9 32.92 33.98 T 

5 Roll Sensor SSDB 30.38 31.38 31.92 T 

6 Roll Sensor LSDB 31.88 32.88 33.98 T 

Table 5-51 FDII results for Roll Sensor Failure (Run3) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Roll Sensor SFDB 31.92 32.92 33.98 T 

2 Roll Sensor LFDB 31.3 32.3 33.82 T 

3 Roll Sensor SMDB 30.38 31.38 31.92 T 

4 Roll Sensor LMDB 31.9 32.92 33.98 T 

5 Roll Sensor SSDB 30.38 31.38 31.92 T 

6 Roll Sensor LSDB 31.88 32.88 33.98 T 

Table 5-52 FDII results for Roll Sensor Failure (Run4) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Roll Sensor SFDB 31.92 32.92 33.98 T 

2 Roll Sensor LFDB 31.3 32.3 33.82 T 

3 Roll Sensor SMDB 30.38 31.38 31.92 T 

4 Roll Sensor LMDB 31.9 32.92 33.98 T 

5 Roll Sensor SSDB 30.38 31.38 31.92 T 

6 Roll Sensor LSDB 31.08 32.88 33.96 T 

Table 5-53 FDII results for Roll Sensor Failure (Run5) 
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The detection phase consists of monitoring MQEE and OQEE . It can be seen from   

Figure 5-42 that there is no detection with MQEE because of its low sensitivity to sensor 

failures. On the other hand OQEE  detects the roll sensor failure for all the six different 

cases and is shown in Figure 5-43. A roll sensor failure is identified in all the test cases. 

 

Figure 5-42- MQEE for a Roll Sensor Failure 
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Figure 5-43- OQEE for Detection (Plots Zoomed to show detections) 

pq
R is used for isolation of failure and due to its slow rise for roll sensor failure,

pq
R  

doesn’t cross the _pq floating
R bounds. Considering the time 1t∆  after detection of the failure 

for 
pq

R  to build up, the sensor failure is isolated. Once the sensor failure is isolated the 

identification logic monitors the DQEE parameters along roll, pitch and yaw channels. 

Figure 5-46-Figure 5-50 shows DQEE along the three channels for the six different cases 

of the sensor biases. The identification is accurate for all the test cases.  
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Figure 5-44- No crossing of Bounds with Rpq isolates sensor failure 

 

Figure 5-45- Identification of Roll Sensor for SFDB (SF #1) 
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Figure 5-46- Identification of Roll Sensor for LFDB (SF #2) 

 

 

Figure 5-47- Identification of Roll Sensor for SMDB (SF #3) 
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Figure 5-48- Identification of Roll Sensor for LMDB (SF #4) 

 

Figure 5-49- Identification of Roll Sensor for SSDB (SF #5) 
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Figure 5-50- Identification of Roll Sensor for LSDB (SF #6) 

5.3.4. Analysis of Sensor Failure Cases (Pitch Sensor)  

5.3.4.1. Tracking Error Analysis 

 

Pitch Sensor -Run1 

  SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Mean Roll 9.0036E-05 6.0896E-04 4.2043E-05 9.6828E-06 -4.3943E-04 -2.1842E-04 

Mean Pitch -2.1606E-03 -6.2095E-03 -1.9742E-03 -3.1508E-03 3.5100E-04 -3.6489E-04 

Mean Yaw 4.8937E-04 5.5042E-04 4.8006E-04 4.7660E-04 4.4197E-04 4.5988E-04 

SD Roll 2.0407E-01 2.0428E-01 2.0402E-01 2.0408E-01 2.0414E-01 2.0403E-01 

SD Pitch 1.8509E-01 5.2300E-01 1.3444E-01 1.5942E-01 1.2817E-01 1.3937E-01 

SD Yaw 1.5570E-01 1.5575E-01 1.5570E-01 1.5570E-01 1.5570E-01 1.5570E-01 

 

Pitch Sensor -Run2 

Mean Roll -8.7510E-06 5.5668E-04 -1.4299E-04 -2.5965E-04 5.5726E-05 3.4254E-04 

Mean Pitch -1.9799E-03 -4.6385E-03 -7.0681E-04 -7.8591E-04 -1.9935E-03 -5.9891E-03 

Mean Yaw 4.7653E-04 5.3986E-04 4.6484E-04 4.5812E-04 4.8126E-04 4.9809E-04 

SD Roll 2.0410E-01 2.0478E-01 2.0414E-01 2.0409E-01 2.0400E-01 2.0415E-01 

SD Pitch 1.8460E-01 4.3062E-01 1.3464E-01 1.5857E-01 1.2678E-01 1.4158E-01 

SD Yaw 1.5571E-01 1.5578E-01 1.5570E-01 1.5570E-01 1.5570E-01 1.5570E-01 
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Pitch Sensor -Run3 

Mean Roll 1.0105E-04 4.4215E-04 3.8581E-05 1.3771E-04 1.0349E-05 -8.3276E-04 

Mean Pitch -2.1559E-03 1.0287E-03 -1.9741E-03 -2.4602E-03 -1.3941E-03 4.2695E-04 

Mean Yaw 4.8801E-04 4.2418E-04 4.8039E-04 5.0504E-04 4.7531E-04 4.0965E-04 

SD Roll 2.0405E-01 2.0923E-01 2.0403E-01 2.0480E-01 2.0421E-01 2.0414E-01 

SD Pitch 1.8499E-01 4.3140E-01 1.3447E-01 1.7015E-01 1.2511E-01 1.4475E-01 

SD Yaw 1.5570E-01 1.5713E-01 1.5570E-01 1.5592E-01 1.5569E-01 1.5569E-01 

 

Pitch Sensor -Run4 

Mean Roll -5.9238E-05 1.6375E-03 -9.5945E-04 4.5775E-04 1.1304E-04 2.4406E-04 

Mean Pitch -7.6189E-04 -2.1298E-02 1.4583E-03 -4.6523E-03 -2.3883E-03 -4.6560E-03 

Mean Yaw 4.7618E-04 5.8155E-04 3.9907E-04 5.1042E-04 4.8908E-04 4.9325E-04 

SD Roll 2.0406E-01 2.0408E-01 2.0421E-01 2.0395E-01 2.0402E-01 2.0415E-01 

SD Pitch 1.8536E-01 4.8194E-01 1.3386E-01 1.6545E-01 1.3566E-01 1.3949E-01 

SD Yaw 1.5570E-01 1.5582E-01 1.5569E-01 1.5569E-01 1.5570E-01 1.5570E-01 

Pitch Sensor -Run5 

Mean Roll 6.3375E-05 3.1401E-04 1.1177E-04 -1.0990E-04 1.1554E-04 2.3651E-04 

Mean Pitch -1.8984E-03 -2.8262E-04 -2.5161E-03 -6.0421E-04 5.4420E-05 -2.5429E-03 

Mean Yaw 4.8420E-04 5.2992E-04 4.8680E-04 4.7096E-04 4.8129E-04 4.9450E-04 

SD Roll 2.0406E-01 2.0361E-01 2.0427E-01 2.0438E-01 2.0412E-01 2.0413E-01 

SD Pitch 1.9066E-01 5.0708E-01 1.4116E-01 1.6295E-01 1.3127E-01 1.3886E-01 

SD Yaw 1.5571E-01 1.5576E-01 1.5571E-01 1.5570E-01 1.5569E-01 1.5570E-01 

Table 5-54 Tracking Error (TE) statistics of Pitch Sensor Failures 

 

5.3.4.2. Stick Activity Analysis  

The stick activity for pitch sensor failures is shown in Table 5-55. There is a negligible 

activity along lateral and directional channel for all cases. The hardest failure (SF#2) has 

maximum pilot activity in all the test cases. For all other cases the pilot activity is of the 

same order. 
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Table 5-55 Stick Activity for Pitch Sensor Failures 

 

Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Longitudinal 0.6278 8.5067 1.2249 0.8744 0.8714 1.0737 

Lateral 0.0000 0.0393 0.0000 0.0000 0.0027 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Table 5-56 Average Stick Activity for Pitch Sensor Failures 

5.3.4.3. FDII Analysis of pitch sensor failures 

The pitch sensor failure FDII results are tabulated in Table 5-57 - Table 5-61 . In this case 

as well the results are accurate and there are no cases of wrong detection, isolation and 

identification. 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Pitch  Sensor SFDB 30.34 31.34 31.36 T 

2 Pitch  Sensor LFDB 30.36 31.34 31.36 T 

3 Pitch Sensor SMDB 30.36 31.36 45.28 T 

4 Pitch  Sensor LMDB 30.36 31.36 31.38 T 

5 Pitch  Sensor SSDB 30.36 31.36 40.82 T 

6 Pitch Sensor LSDB 30.36 31.36 52.68 T 

Pitch Sensor -Run1 

Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Longitudinal 0.1007 11.2141 0.0029 0.8938 0.9190 0.7252 

Lateral 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0019 0.0000 0.0000 

Pitch Sensor -Run2 

Longitudinal 1.1362 4.2131 0.6610 0.5647 0.2493 0.6178 

Lateral 0.0000 0.0000 0.0000 0.0000 0.0305 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pitch Sensor -Run3 

Longitudinal 0.6846 5.4022 1.0190 0.3033 1.2796 0.7927 

Lateral 0.0000 0.0065 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pitch Sensor -Run4 

Longitudinal 1.1865 7.5150 0.9677 0.7743 1.1865 0.8103 

Lateral 0.0000 0.0200 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Pitch Sensor -Run5 

Longitudinal 1.1865 7.5150 0.9677 0.7743 0.7898 0.8103 

Lateral 0.0000 0.0200 0.0000 0.0000 0.0000 0.0000 

Directional 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 5-57 FDII results for Pitch Sensor Failure (Run1) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Pitch  Sensor SFDB 30.34 31.34 31.36 T 

2 Pitch  Sensor LFDB 30.34 31.34 31.36 T 

3 Pitch Sensor SMDB 30.36 31.36 54.7 T 

4 Pitch  Sensor LMDB 30.36 31.36 31.38 T 

5 Pitch  Sensor SSDB 30.36 31.36 45.26 T 

6 Pitch Sensor LSDB 30.36 31.36 54.2 T 

Table 5-58 FDII results for Pitch Sensor Failure (Run2) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Pitch  Sensor SFDB 30.34 31.34 31.36 T 

2 Pitch  Sensor LFDB 30.34 31.34 31.36 T 

3 Pitch Sensor SMDB 30.36 31.36 44.84 T 

4 Pitch  Sensor LMDB 30.34 31.34 31.36 T 

5 Pitch  Sensor SSDB 30.36 31.36 45.12 T 

6 Pitch Sensor LSDB 30.36 31.36 38.64 T 

Table 5-59 FDII results for Pitch Sensor Failure (Run3) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Pitch  Sensor SFDB 30.34 31.34 31.36 T 

2 Pitch  Sensor LFDB 30.34 31.34 31.36 T 

3 Pitch Sensor SMDB 30.36 31.36 38.54 T 

4 Pitch  Sensor LMDB 30.36 31.36 31.38 T 

5 Pitch  Sensor SSDB 30.36 31.36 61.14 T 

6 Pitch Sensor LSDB 30.36 31.36 44.96 T 

Table 5-60 FDII results for Pitch Sensor Failure (Run4) 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Pitch  Sensor SFDB 30.34 31.34 31.36 T 

2 Pitch  Sensor LFDB 30.34 31.34 31.36 T 

3 Pitch Sensor SMDB 30.36 31.36 43.78 T 

4 Pitch  Sensor LMDB 30.36 31.36 31.38 T 

5 Pitch  Sensor SSDB 30.36 31.36 31.38 T 

6 Pitch Sensor LSDB 30.36 31.36 37.82 T 

Table 5-61 FDII results for Pitch Sensor Failure (Run5) 

 

Figure 5-51 shows MQEE for the pitch sensor failure. It can be seen that it is insensitive 

to the failure except the LFDB which is the most severe sensor failure among the six 

cases. OQEE  has correctly detected the pitch sensor failure and is shown in Figure 5-52. 

The areas in the plots are zoomed near the failure time to show the time at which 

detection occurs.  



 101 

 

Figure 5-51- MQEE for Pitch Sensor Failure 

 

Figure 5-52- OQEE for Pitch Sensor failure (Zoomed to show detections) 
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Figure 5-53 Rpq monitored to isolate the sensor failure 

 

Figure 5-53 shows the typical variation of 
pq

R for the pitch sensor failure cases and it can 

be seen that FL bounds are not crossed for nearly 5 sec after the failure is detected. The 

flag for the sensor failure isolation is thus triggered in the FDII warning system 

algorithm. The FDII algorithm switches the logic to sensor failure identification by 

monitoring the DQEE  



 103 

 

Figure 5-54 Identification of Pitch Sensor failure (SF#1) 

 

Figure 5-55 Identification of Pitch Sensor Failure (SF#2) 
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Figure 5-56 Identification of Pitch Sensor Failure (SF#3) 

 

Figure 5-57 Identification of Pitch Sensor Failure (SF#4) 
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Figure 5-58 Identification of Pitch Sensor Failure (SF#5) 

 

Figure 5-59 Identification of Pitch Sensor Failure (SF #6)  
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5.3.5. Analysis of Sensor Failure Cases (Yaw Sensor) 

5.3.5.1. Tracking Error Analysis 

 

Yaw Sensor -Run1 

  SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Mean Roll -1.6421E-03 -2.1341E-04 -1.4759E-03 -6.7301E-03 -1.4760E-03 1.6956E-03 

Mean Pitch -1.6421E-03 -2.1341E-04 -1.4759E-03 -6.7301E-03 -1.4760E-03 1.6956E-03 

Mean Yaw -1.1979E+00 -2.4136E+00 -9.3007E-01 -1.8499E+00 -6.6375E-01 -1.3262E+00 

SD Roll 1.4298E-01 1.5636E-01 1.4294E-01 1.4547E-01 1.4294E-01 1.4249E-01 

SD Pitch 1.4298E-01 1.5636E-01 1.4294E-01 1.4547E-01 1.4294E-01 1.4249E-01 

SD Yaw 9.4791E-01 1.8981E+00 8.6748E-01 1.7131E+00 6.8316E-01 1.3403E+00 

Yaw Sensor –Run2 

Mean Roll -1.2871E-02 -1.7740E-03 -4.4153E-04 -1.1104E-03 -9.6764E-04 -2.4882E-03 

Mean Pitch -1.2871E-02 -1.7740E-03 -4.4153E-04 -1.1104E-03 -9.6764E-04 -2.4882E-03 

Mean Yaw -1.1732E+00 -2.4010E+00 -9.2860E-01 -1.8535E+00 -6.6318E-01 -1.3348E+00 

SD Roll 1.4767E-01 1.4740E-01 1.4356E-01 1.5010E-01 1.4432E-01 1.4459E-01 

SD Pitch 1.4767E-01 1.4740E-01 1.4356E-01 1.5010E-01 1.4432E-01 1.4459E-01 

SD Yaw 9.5050E-01 1.8604E+00 8.7416E-01 1.7253E+00 6.8619E-01 1.3306E+00 

Yaw Sensor –Run3 

Mean Roll -6.7007E-04 -1.1680E-03 9.5473E-03 4.9286E-04 -1.1467E-03 -1.7731E-03 

Mean Pitch -6.7007E-04 -1.1680E-03 9.5473E-03 4.9286E-04 -1.1467E-03 -1.7731E-03 

Mean Yaw -1.1941E+00 -2.3919E+00 -9.5984E-01 -1.8544E+00 -6.6150E-01 -1.3305E+00 

SD Roll 1.4319E-01 1.4311E-01 1.4949E-01 1.4390E-01 1.4328E-01 1.4296E-01 

SD Pitch 1.4319E-01 1.4311E-01 1.4949E-01 1.4390E-01 1.4328E-01 1.4296E-01 

SD Yaw 9.5086E-01 1.8785E+00 8.6194E-01 1.7177E+00 6.8263E-01 1.3422E+00 

Yaw Sensor –Run4 

Mean Roll -2.3289E-03 -1.9481E-03 -1.3874E-03 -1.1291E-03 -1.8545E-03 -3.9876E-04 

Mean Pitch -2.3289E-03 -1.9481E-03 -1.3874E-03 -1.1291E-03 -1.8545E-03 -3.9876E-04 

Mean Yaw -1.1997E+00 -2.3930E+00 -9.2967E-01 -1.8599E+00 -6.6560E-01 -1.3296E+00 

SD Roll 1.4316E-01 1.4375E-01 1.4314E-01 1.4326E-01 1.4330E-01 1.4343E-01 

SD Pitch 1.4316E-01 1.4375E-01 1.4314E-01 1.4326E-01 1.4330E-01 1.4343E-01 

SD Yaw 9.5006E-01 1.8719E+00 8.6356E-01 1.7151E+00 6.8342E-01 1.3355E+00 

Yaw Sensor –Run 5 

Mean Roll -9.2856E-04 8.3781E-04 -1.3381E-03 -1.0391E-03 -2.8523E-03 -1.8277E-03 

Mean Pitch -9.2856E-04 8.3781E-04 -1.3381E-03 -1.0391E-03 -2.8523E-03 -1.8277E-03 

Mean Yaw -1.1988E+00 -2.3930E+00 -9.2900E-01 -1.8591E+00 -6.6713E-01 -1.3310E+00 

SD Roll 1.4728E-01 1.4388E-01 1.4311E-01 1.4340E-01 1.4318E-01 1.4341E-01 

SD Pitch 1.4728E-01 1.4388E-01 1.4311E-01 1.4340E-01 1.4318E-01 1.4341E-01 

SD Yaw 9.3666E-01 1.8740E+00 8.6482E-01 1.7109E+00 6.9236E-01 1.3381E+00 

Table 5-62 TE statistics for Yaw Sensor Failures 
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5.3.5.2. Stick Activity Analysis 

The pilot activity for the yaw sensor failure cases are shown in Table 5-63 for the 5 runs. 

 

Yaw Sensor -Run1 

Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Longitudinal 0.0000 1.8940 0.0000 1.8262 0.0000 2.3537 

Lateral 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Directional 3.0595 24.3675 0.1311 12.8312 0.4138 2.3343 

Yaw Sensor -Run2 

Longitudinal 1.3499 3.1650 0.0000 2.1896 1.3499 0.6082 

Lateral 0.0000 0.0247 0.0000 0.3769 0.0302 0.0000 

Directional 35.0084 14.9832 2.7477 16.3951 12.2264 9.8777 

Yaw Sensor -Run3 

Longitudinal 0.2927 0.0000 1.5230 0.3324 0.2927 0.0000 

Lateral 0.0747 0.1965 0.0221 0.0250 0.4770 0.0000 

Directional 2.4806 2.2408 17.3698 5.3719 1.0700 1.8829 

Yaw Sensor -Run4 

Longitudinal 0.0000 1.2387 0.0000 0.0000 0.0000 0.7046 

Lateral 0.0708 0.1148 0.0000 0.0453 0.0000 0.1379 

Directional 3.7617 6.3574 4.9926 2.3088 4.5386 10.5153 

Yaw Sensor -Run5 

Longitudinal 0.6370 0.5484 0.0000 0.5762 0.6370 0.3030 

Lateral 0.0000 0.0000 0.1251 0.0836 0.7332 0.0010 

Directional 8.9623 11.5055 5.4615 5.3606 5.0543 5.5852 

Table 5-63 Stick Activity for Yaw Sensor Failures 

 

The average of the pilot activity for the yaw sensor failure cases is shown in Table 5-64. 

There is a definitive trend of pilot activity higher for a large bias than small bias. 

Consider SF#1(SFDB) and SF#2 (LFDB) which differs only in the bias i.e. 4 deg and 8 

deg. The stick activity along longitudinal, lateral and directional channel is higher for 

SF#2 than SF#1 for a fast drifting bias. Similarly, it is higher for SF#4 than SF#3 for a 

medium drifting bias and higher for SF#6 than SF#5 for a slow drifting bias. This pilot 

activity is mainly because of the time delay in detection between the switching of sensors 

with DNN estimates. 
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Stick Activity SF #1 SF #2 SF #3 SF #4 SF #5 SF #6 

Longitudinal 0.4559 1.3692 0.3046 0.9849 0.4559 0.7939 

Lateral 0.0291 0.0672 0.0294 0.1062 0.2481 0.0278 

Directional 10.6545 11.8909 6.1405 8.4535 4.6606 6.0391 

Table 5-64 Average Stick Activity for Yaw Sensor Failures 

5.3.5.3. FDII Analysis of Yaw Sensor Failures 

The FDII results for yaw sensor failure cases are shown in Table 5-65 -Table 5-69. The 

FDII scheme has three cases of wrong isolation and identification.  In first run there is a 

wrong identification for SF #6 (LSDB) being wrongly identified as pitch sensor, a wrong 

isolation as actuator in Run2 & Run4 for SF# 3(LFDB) and consequently rudder failure 

identification. This can be attributed to the hard nature of the sensor failure. The dynamic 

signature of a hard yaw sensor is similar to a rudder failure. 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Yaw  Sensor SFDB 31.54 32.54 32.56 T 

2 Yaw  Sensor LFDB 31.38 32.38 32.4 T 

3 Yaw  Sensor SMDB 33.78 34.78 34.8 T 

4 Yaw  Sensor LMDB 31.72 32.72 32.74 T 

5 Yaw  Sensor SSDB 36.62 37.62 37.64 T 

6 Yaw  Sensor LSDB 28.06 29.06 29.8 F(Pitch) 

Table 5-65 FDII results for Yaw Sensor Failure (Run1) 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Yaw  Sensor SFDB 31.46 32.46 32.48 T 

2 Yaw  Sensor LFDB 31.04 31.12 31.14 F(RUDDER) 

3 Yaw  Sensor SMDB 33.14 34.14 34.16 T 

4 Yaw  Sensor LMDB 31.74 32.74 32.76 T 

5 Yaw  Sensor SSDB 31.64 32.64 33.66 T 

6 Yaw  Sensor LSDB 31.96 32.96 32.98 T 

Table 5-66 FDII results for Yaw Sensor Failure (Run2) 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Yaw  Sensor SFDB 31.48 32.48 32.5 T 

2 Yaw  Sensor LFDB 30.72 31.72 31.74 T 

3 Yaw  Sensor SMDB 31.16 32.16 32.18 T 

4 Yaw  Sensor LMDB 31.14 32.14 32.16 T 

5 Yaw  Sensor SSDB 34.74 35.74 35.8 T 

6 Yaw  Sensor LSDB 33.34 34.74 34.76 T 

Table 5-67 FDII results for Yaw Sensor Failure (Run3) 



 109 

 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Yaw  Sensor SFDB 31.56 32.56 32.58 T 

2 Yaw  Sensor LFDB 30.86 31.46 31.54 F(RUDDER) 

3 Yaw  Sensor SMDB 33.34 34.34 34.42 T 

4 Yaw  Sensor LMDB 31.74 32.74 32.76 T 

5 Yaw  Sensor SSDB 32.6 33.6 33.62 T 

6 Yaw  Sensor LSDB 30.28 31.28 31.62 T 

Table 5-68 FDII results for Yaw Sensor Failure (Run4) 

 

S.No  Failure  Cases Detection Isolation Identification T/F 

1 Yaw  Sensor SFDB 30.22 31.22 31.24 T 

2 Yaw  Sensor LFDB 31.5 32.5 32.52 T 

3 Yaw  Sensor SMDB 30.54 31.54 31.56 T 

4 Yaw  Sensor LMDB 32.98 33.98 34 T 

5 Yaw  Sensor SSDB 34.22 35.72 35.74 T 

6 Yaw  Sensor LSDB 31.18 32.18 32.22 T 

Table 5-69 FDII results for Yaw Sensor Failure (Run5) 

 

 

Figure 5-60 MQEE variation for Yaw Sensor Failure  
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Figure 5-61 OQEE for Detection of Yaw Sensor Failures 

 

Figure 5-62- Isolation of Yaw Sensor Failure with Rrr 
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Tests 

Total Failures 

Tested 

Correctly 

Detected 

False 

 Alarms   

False 

Detections    

False  

Isolations 

False 

 Identifications 

Roll sensor failure 30 30 0 0 0 0 

Pitch Sensor Failure 30 30 0 0 0 0 

Yaw Sensor Failure 30 27 0 0 2 3 

Table 5-70-Summary of Piloted Tests of Sensor Failures with Adaptive FDII scheme 

 

The sensor failures are easily isolated and identified in the piloted experiments. Except 

for the yaw sensor failures all failures are isolated and identified 100% accurately. The 

sensor failures didn’t have any motion cues because of sensor biases. However, the 

instruments in the cockpit reflected this change such as a dipping horizon indicator in 

case of pitch or roll sensor failure. The significant change in instrument reading for the 

tests were for the hardest failure i.e. LFDB (SF#2) which prompted the pilot to correct it. 

In rest of the cases the pilot activity was because of the DNN values not exact as for a 

real sensor and the pilot tries to adjust it. 
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Chapter 6. Conclusion and Recommendations 

6.1. Conclusion 

The MOTUS flight simulator has been successfully interfaced with the Simulink schemes 

in this research effort. This is a novel approach to utilize the aural, visual and motion cues 

of a six-DOF simulator for development and testing of control schemes. Based on the 

feedback from the various experienced pilots flying the F-15 models using this interface, 

it can be concluded that the cues are very much realistic and can supersede desktop 

simulations for many advanced studies. There are a few limitations in using the interface 

for carrying out the simulation studies. The unavailability of an F-15 graphical model in 

the X-plane Version 7.61 deemed it necessary to use an F-4 Phantom aircraft graphics for 

the display and visuals. This assumption didn’t affect the flight experiments as the 

necessary instruments were calibrated to reflect the same values as the Simulink model. 

Secondly, the cockpit of the MFS was not used for the experiments due to limited access 

to the simulator MBC. 

 

The NLDI based control schemes together with NN augmentations have demonstrated 

the earlier trends in the simulator and it corroborated the earlier studies on AFDIA and 

SFDIA using the fixed threshold approach. The pilot in the loop experiments provided a 

new dimension to the performance analysis. The results of piloted experiments in the 

MOTUS flight simulator have demonstrated good results for the FDII scheme for the 

multiple runs of the actuator and sensor failures except for a few false FDIIs. The 

adaptive threshold approach to FDII has quick detection of the failure. The scheme was 

found to be robust to small perturbations arising out of pilot activity. The FDII scheme 

had the best performance for sensor failures particularly along roll and pitch channels 

with no cases of false FDII. However, yaw sensor failures induce coupling along all the 

three channels and therefore is more susceptible to false detection. The actuator failures 

FDII is acceptable as it detected and identified the failure correctly for 90% of the test 

cases. Due to the cross-coupling due to pilot activity there were a few cases of false 

detections and isolations.  
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From the TE results of stabilator failure, it can be concluded that EMRAN showed a good 

performance in hard failures. The average pilot workload was lower in case of EMRAN 

augmentation except one time when it was comparable with No NN. The CP remained 

the best indicator of the performance with EMRAN having lower values compared to the 

No NN test cases. There is a reduction with EMRAN along the roll and pitch channels as 

they are the dominant channel on this type of failure. The performance along yaw didn’t 

show any improvement with EMRAN except for hard failures. In summary EMRAN was 

very helpful to the pilot in terms of reduced workload in this stabilator failure along 

dominant channels. The pilot activity was required mainly along roll and pitch channels 

and the CP give an indication that it required lesser pilot activity on behalf of the pilot to 

compensate for the failure and maintain the mission profile. 

 

Similar trends are observed in FDII tests of aileron failures and as before EMRAN 

performance was better along the dominant channel i.e. roll for this failure. Much of the 

activity for compensating this failure was required along roll. There is a significant 

improvement with EMRAN along the roll channel in terms of TE and reduced pilot 

activity. EMRAN had best performance in the dominant channel and shows little or no 

improvement along the cross channel. 

 

The sensor failure cases didn’t have considerable pilot activity because of no motion 

cues. The pilot activity was due to the visuals (change in instrument readings) which the 

pilot tried to compensate. The hard failure (SF#2) had the maximum pilot activity as it 

gave a substantial instrument error and pilot tried compensating it during the interval the 

sensor readings were replaced by MNNs. The CP was of the same order for sensor 

failures in rest of the test cases.  

 

Based on the tests it can be concluded that composite parameter is a good indication of 

the overall system performance with a pilot in loop. It has shown consistent improvement 

with EMRAN NN augmentations in the dominant channels compared to No NN 

augmentation. The EMRAN performance degraded in cross channels for example in yaw 

channel for aileron failures. It can be concluded from the CP values that the NN 
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augmentation was helpful along the dominant channels to the pilot on the onset of failure. 

One reason for this observation can be attributed to the pilot compensation after failure. 

For example in case of stabilator failure the pilot didn’t compensate in yaw channel and 

therefore showed a decrease in EMRAN performance in CP for this channel. In 

conclusion EMRAN was best for dominant channels particular to a failure and didn’t 

show any appreciable performance in cross channels. 

 

This research covered the overview of the simulation environment set up for flight 

control research at WVU. An overview of architecture and functionality of the 

components of the interface of Simulink with MOTUS motion base flight simulator is 

presented. The pilot in the loop experiments on FDII schemes provided an excellent 

example of the software-hardware setup at the WVU in carrying out advanced simulation 

studies for future. It can be concluded that the FDII scheme developed for an integrated 

sensor/actuator failure with adaptive threshold have shown good performance with 

accurate detections with a pilot in the loop. This interface developed at the flight 

simulator extends the simulation capability from desktop to a more realistic environment.   

6.2. Recommendations 

 

This research study had opened a new arena for testing flight control schemes that are 

simulation dependent for development and analysis. The software-hardware interface 

together with a man in the loop has potential application for carrying out a man-machine 

interaction study in the simulator. This application can be extended to carry out studies of 

pilot behavior while carrying out different maneuvers or counteracting different failures. 

Potential application can be in the field of FDII algorithms with fatigue measurements of 

pilot after failure and estimating the effect of pilot reaction to series of failures.  

 

In this study the actuator and sensor failures were induced separately and there 

were no successive failures (actuator after sensor etc) in the same test. Testing the FDII 

schemes with multiple failures is possible extension to this study and would check the 

robustness of the schemes and will allow further improvement to the FDII approach. 
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Also, we have constrained the pilot mission profile to a level flight based on the trim 

settings at a particular flight condition. The throttle is kept constant throughout the flight 

and the pilot didn’t use any throttle control during the course of experiments. As the first 

step to use the flight simulator there are many assumptions like constant throttle, level 

flight and maintaining constant altitude. The NN have been trained for the particular 

flight scenario and a natural extension would be to accommodate changes in flight 

conditions and reconfiguration of NN algorithms based on changing flight envelopes. A 

more complex mission profile should be tested based as there was unavailability of on 

availability of experienced fighter test pilots. More pilot feedback parameters can be 

devised in order to quantify the pilot assessment of the problem in hand while performing 

these types of simulation studies. 
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