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Let G be a simple graph embedded in the surface Σ of Euler characteristic χ(Σ) ≥ 0.

Denote by χe(G), ∆, and g the edge chromatic number, the maximum degree and

the girth of the graph G, respectively. We prove that χe(G) = ∆ if ∆ ≥ 5 and g ≥ 4,

or ∆ ≥ 4 and g ≥ 5, or ∆ ≥ 3 and g ≥ 9. In addition, if χ(Σ) > 0, then χe(G) = ∆

if ∆ ≥ 3 and g ≥ 8.

Let G be a simple graph with the average degree d and the maximum degree ∆.

It is proved that G is not critical if d ≤ 6 and ∆ ≥ 8, or d ≤ 20
3

and ∆ ≥ 9. This

result generalizes earlier results of Vizing[18], Mel’nikov[11], Hind and Zhao[6], and

Yan and Zhao[21]. It also improves a result by Fiorini[5] on the number of edges of

critical graphs for 8 ≤ ∆ ≤ 12.

Given a simple plane graph G, an edge-face k-coloring of G is a function φ : E(G)∪
F (G) 7→ {1, · · · , k} such that, for any two adjacent elements a, b ∈ E(G) ∪ F (G),

φ(a) 6= φ(b). Denote χe(G), χef (G), ∆(G) the edge chromatic number, the edge-

face chromatic number and the maximum degree of G, respectively. We prove that

χef (G) = χe(G) = ∆(G) for any 2-connected simple plane graph G with ∆(G) ≥ 24.
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Chapter 1

Introduction

1.1 Notations and Definitions

Let G = (V,E) be a finite and simple graph where V is the vertex set of G and E is

the edge set of G. We denote δ(G), g(G), ∆(G) the minimum degree, the girth, and

the maximum degree of G, respectively. A k-vertex (or (≥ k)-vertex, (≤ k)-vertex,

respectively) is a vertex of degree k (or ≥ k, ≤ k, respectively). The girth of a graph

is the length of the shortest cycle in the graph. Denote Vk the set of k−vertices in G.

A graph is k-edge colorable if its edges can be colored with k colors in such a way

that adjacent edges receive different colors. The edge chromatic number, denoted by

χe(G), of a graph G is the smallest integer k such that G is k-edge colorable. A

simple graph G is class one if it is ∆-edge colorable, where ∆ is the maximum degree

of G. Otherwise, Vizing’s Theorem [17] guarantees that it is (∆ + 1)-edge colorable,

in which case it is said to be class two.

A critical graph G is a connected graph such that G is class two and G− e is class

one for any edge e of G.

Let L(e) be a color set assigned to an edge e ∈ E(G). G is L-edge colorable if each

edge e can be colored with a color from L(e) such that adjacent edges receive different

colors. In particular, if for each edge e ∈ E(G) and any L(e) with |L(e)| = k, G is

L-edge colorable, we say that G is k-edge choosable. The edge-list chromatic number

of G, denoted by χelist(G), is the smallest integer k such that G is k-edge choosable.

If G is a graph embedded in a surface, we denote F (G) the face set of G.

For a plane graph G and f ∈ F (G), let B(f) be the boundary of the face f . An

element of G is a member of E(G)∪F (G). Any two elements are adjacent if they are
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2 Edge coloring and Edge-face coloring

either adjacent to or incident with each other in the traditional sense. An edge-face

k-coloring of the plane graph G is a function φ : E(G) ∪ F (G) 7→ {1, · · · , k} such

that for any two adjacent elements a, b ∈ E(G)∪F (G), φ(a) 6= φ(b). Denote χef (G)

the edge-face chromatic number of G, i.e., the smallest integer k such that G has an

edge-face k-coloring.

1.2 Adjacency Lemmas

Lemma 1.2.1 (Vizing’s Adjacent Lemma [18]) If H is a critical graph with the max-

imum degree ∆, that is, χe(H) = ∆+1 and χe(H− e) = ∆ for every edge e ∈ E(H),

and if u and v are adjacent vertices of H, where the degree of v is d, then,

(i) if d < ∆, then u is adjacent to at least ∆− d + 1 vertices of degree ∆,

and,

(ii) if d = ∆, then u is adjacent to at least two vertices of degree ∆.

From Vizing’s Adjacent Lemma, we can easily get the following corollary.

Corollary 1.2.2 Let H be a critical graph with maximum degree ∆. Then

(1) every vertex is adjacent to at most one 2-vertex and at least two ∆-vertices;

(2) the sum of the degree of any two adjacent vertices is at least ∆ + 2;

(3) if a vertex is adjacent to a 2-vertex, then the rest of its neighbors are ∆-vertices.

Let x ∈ V (G). Denote N(x) the set of vertices adjacent to x. For V ′ ⊆ V (G),

denote N(V ′) = ∪x∈V ′N(x).

Lemma 1.2.3 (Limin Zhang [25]) Let G be a critical graph with the maximum degree

∆, xy ∈ E(G) and d(x) + d(y) = ∆ + 2. The following hold:

(1) every vertex of N({x, y}) \ {x, y} is a ∆-vertex;

(2) every vertex of N(N({x, y})) \ {x, y} is of degree at least ∆− 1;

(3) if d(x), d(y) < ∆, then every vertex of N(N({x, y})) \ {x, y} is a ∆-vertex.



Chapter 2

Edge Coloring of Embedded

Graphs with Large Girth

2.1 Introduction

In 1965, Vizing [18] proposed the following conjecture:

Conjecture 2.1.1 (Vizing planar graph conjecture) Every planar graph with maxi-

mum degree at least 6 is class one.

And he himself proved a partial result of Conjecture 2.1.1 as follows.

Theorem 2.1.2 (Vizing [18] 1965) Every simple planar graph with the maximum

degree at least 8 is class one.

In 1970, Mel’nikov [11] generalized Theorem 2.1.2 to projective plane and in 1998,

Hind and Zhao further generalized Theorem 2.1.2 to torus and Klein bottle.

For maximum degree ∆ ≤ 5, there are graphs of class two.

Vizing planar graph conjecture seems to be very difficult since ∆ = 6 is so close

to the average degree of planar graphs. The case ∆ = 7 was recently confirmed

independently by Zhang [25] and Sanders and Zhao [16]. The case ∆ = 6 still remains

open.

In [3], Borodin et al. considered the edge-list coloring of embedded graphs with

large girth.

3



4 Edge coloring and Edge-face coloring

Theorem 2.1.3 (Borodin et. al. [3]) Let G be a simple graph with the maximum

degree ∆ and the girth g that is embeddable in a surface Σ of characteristic χ(Σ) ≥ 0.

Then χelist = ∆ in each of the following cases:

(1) ∆ ≥ 5 and g ≥ 5;

(2) ∆ ≥ 4 and g ≥ 6;

(3) ∆ ≥ 3 and g ≥ 10.

In [3], they also pointed out that

We know of no conditions for χe(G) (edge chromatic number of G) to

equal ∆ that are weaker than these.

To respond the above comments, we show in this paper that if the edge-list coloring

is replaced by edge coloring in Theorem 2.1.3, the girth requirement can be weakened.

Theorem 2.1.4 Let G be a simple graph with the maximum degree ∆ and the girth

g that is embeddable in a surface Σ of characteristic χ(Σ) ≥ 0. Then χe = ∆ in each

of the following cases:

(1) ∆ ≥ 5 and g ≥ 4;

(2) ∆ ≥ 4 and g ≥ 5;

(3) ∆ ≥ 3 and g ≥ 9, or, ∆ ≥ 3, g ≥ 8 and χ(Σ) > 0.

The main tools used in the proof of Theorem 2.1.4 are Vizing’s Adjacent Lemma,

Zhang’s Adjacent Lemma, Euler formula and the Euler contribution of faces. We will

first introduce these known results.

2.2 Euler contribution

Let G be a graph embedded in a surface Σ with Euler characteristic χ(Σ). Then, the

Euler contribution of a face f of G is defined as follows:

Φ(f) = 1− d(f)

2
+

∑

v∈V (f)

1

d(v)

where V (f) is the set of vertices on the boundary of the face f .
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Theorem 2.2.1 1 (Lebesgue [10], [13]) Let G be a connected, loopless, bridgeless

graph embedded in a surface Σ with Euler characteristic χ(Σ). Then

∑

f∈F (G)

Φ(f) = χ(Σ). (2.1)

A face is said to be non-negative (positive, zero, respectively) if it has non-negative

(positive, zero, respectively) Euler contribution.

With a simple computation, we may characterize the positive faces and zero faces

of a simple graph with minimum degree at least 3. Since we only need the structure

of non-negative faces of length at least 4 in the proof of our main results, we only list

the non-negative faces of length at least 4 in the following two tables.

Corollary 2.2.2 Let H be a graph embedded in a surface Σ with Euler characteristic

χ(Σ) ≥ 0. Assume that δ(H) ≥ 3 and g(H) ≥ 4 where δ(H) and g(H) are the

minimum degree and the girth of H, respectively. Then, any positive face must be a

face listed in Table 1 and any zero face must be a face listed in Table 2.

dH(f) degree sequence around the face dH(f) degree sequence around the face

5 3, 3, 3, 3, ≤ 5 6 3, 3, 3, 3, 3, 3

4 3, 3, 3, ≤ ∆ 5 3, 3, 3, 3, 6

4 3, 3, 4, ≤ 11 5 3, 3, 3, 4, 4

4 3, 3, 5, ≤ 7 4 4, 4, 4, 4

4 3, 4, 4, ≤ 5 4 3, 3, 4, 12

4 3, 3, 6, 6

4 3, 4, 4, 6

Table 1, Positive Faces Table 2, Zero Faces

2.3 Proof of Theorem 2.1.4

2.3.1 Proof of (1) of Theorem 2.1.4

Let G be a counterexample to (1) of Theorem 2.1.4 with |E(G)| as small as possible.

Then δ(G) ≥ 2 and ∆ ≥ 5.

From Euler formula |V (G)|+ |F (G)| − |E(G)| = χ(Σ), we have

1The theorem presented here is a slightly revised version of Lebesgue Theorem. The original
Theorem was for plane graphs only.



6 Edge coloring and Edge-face coloring

∑

x∈V (G)∪F (G)

(d(x)− 4) = −4χ(Σ) ≤ 0. (2.2)

We call c(x) = d(x)− 4 the initial charge of x for each x ∈ V (G)∪ F (G). We are

going to discharge c(x) according to the following rules:

R1. Every 2-vertex receives 1 from each of its neighbors;

R2. For each 3-vertex adjacent to three (≥ 5) vertices, it receives 1
3

from each of

its neighbors;

R3. For each 3-vertex adjacent to a (≤ 4)-vertex, it receives 1
2

from each of the

other two adjacent vertices.

Denote c′(x) the new charge of x.

(1-1) For each face x ∈ F (G), obviously, c′(x) = c(x) ≥ 4− 4 = 0.

For each 2-vertex x, c′(x) = c(x) + 2 = 0 since, by Corollary 1.2.2-(1), each

2-vertex is adjacent to two ∆-vertices.

For each 3-vertex x adjacent to three (≥ 5)-vertices, c′(x) = c(x) + 3× 1
3

= 0.

For each 3-vertex x adjacent to a (≤ 4)-vertex, by Corollary 1.2.2-(1), x is adjacent

to two ∆-vertices. Therefore, c′(x) = c(x) + 2× 1
2

= 0.

Thus, for each 3-vertex x, c′(x) ≥ 0.

For each 4-vertex x, c′(x) = c(x) = 0.

For each 5-vertex x, if x is adjacent to a 2-vertex, then, by Corollary 1.2.2-(3), the

other neighbors of x are ∆-vertices. Therefore, c′(x) = c(x)− 1 ≥ 0. If x is adjacent

to a 3-vertex, then x is not adjacent to any 2-vertices and is adjacent to at most two

3-vertices by Lemma 1.2.1. Therefore, c′(x) ≥ c(x)− 2× 1
2
≥ 1− 1 = 0.

For each (≥ 6) vertex x, if it is adjacent to a 2-vertex, then the other neighbors

of x are ∆-vertices, therefore, c′(x) = c(x) − 1 ≥ 6 − 4 − 1 = 1. If it is adjacent to

a 3-vertex, then x is not adjacent to any 2-vertices and is adjacent to at most two

3-vertices by Lemma 1.2.1. Therefore, c′(x) ≥ c(x)− 2× 1
2
≥ 6− 4− 1 = 1.

By the above argument, we conclude that

(1-2) c′(x) ≥ 0 for each x ∈ V (G) ∪ F (G). In addition, for each face x of length at

least 5 or for each vertex x of degree at least 6, we have that c′(x) > 0.

If there exists x ∈ V (G) ∪ F (G) such that c′(x) > 0, then, by Equation (2.2), we

have

0 ≥ −4χ(Σ) =
∑

x∈V ∪F

c(x) =
∑

x∈V ∪F

c′(x) > 0.
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A contradiction.

Therefore,

(1-3) c′(x) = 0 for each x ∈ V (G) ∪ F (G).

(1-4) By (1-2) and (1-3), it is easy to see that ∆ = 5 and the length of each face in G

is 4.

(1-5) We claim that there are no 2-vertices in G.

Assume that x is a 2-vertex. Then x is adjacent to two ∆−vertices, say y, z. By

Corollary 1.2.2-(3), y is adjacent to (∆− 1) ∆-vertices. Let w ∈ N(y) \ {x, z}. Note

that d(x) + d(y) = ∆ + 2 and w is not adjacent to x. By Lemma 1.2.3-(2), w is not

adjacent to any ≤ ∆− 2 = 3 vertices. Since d(w) = ∆ = 5, by the discharging rules,

we have that c′(w) = c(w) = 5− 4 = 1 > 0 which contradicts (1-3).

(1-6) We claim that any 3-vertex is adjacent to three 5-vertices.

Assume that a 3-vertex x is adjacent to a (≤ 4)-vertex y. Since d(x) + d(y) ≥
∆ + 2 = 5 + 2 = 7, we have that d(y) = 4. By Lemma 1.2.3-(1), y is adjacent to at

three ∆−vertices. Let z be a ∆-vertex adjacent to y and not adjacent to x. Note

that d(x) + d(y) = ∆ + 2 and d(x), d(y) < ∆. By Lemma 1.2.3, every vertex in

N(z) \ {x, y} ⊆ N(x, y) \ {x, y} is a ∆-vertex. Note that x 6∈ N(z). Hence, z is

adjacent to one 4-vertex and four ∆−vertices. Therefore, c′(z) = c(z) = 5−4 = 1 > 0

which contradicts (1-3).

(1-7) We claim that there are no 3-vertices in G.

Assume that x is a 3-vertex. Then, by (1-6), x is adjacent to three 5-vertices.

Let y ∈ N(x). Then, by Lemma 1.2.1, y is adjacent to at most two 3-vertices, one

of which is x. By R1, y sends 1
3

to x and at most 1
2

to the other 3-vertex (if any).

Therefore, c′(y) ≥ c(y)− 1
3
− 1

2
= 5− 4− 1

3
− 1

2
= 1

6
> 0. A contradiction.

(1-8) By (1-5) and (1-7), it is obvious that the minimum degree of G is at least 4.

According to the discharging rules R1-R3, c′(x) = c(x) ≥ 0. Since now ∆ = 5,

there must exist a vertex x such that c′(x) = c(x) = 5− 4 = 1 > 0 which contradicts

(1-3).

This contradiction completes the proof of (1) of Theorem 2.1.4 .

2.3.2 Proof of (2) of Theorem 2.1.4

Let G be a counterexample to (2) of Theorem 2.1.4 with |E(G)| as small as possible.
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A path v0v1 · · · vr is called to be a subdivided edge of length r if d(vi) = 2 for each

i = 1, · · · , r−1 and both d(v0) > 2 and d(vr) > 2. v0 and vr are called the endvertices

of the subdivided edge. Two subdivided edges are said to be adjacent if they share

at least one endvertex.

Then, it is obvious that

(2-1) δ(G) ≥ 2, ∆ ≥ 4 and G is 2-connected.

(2-2) We claim that the length of any subdivided edge is at most 2 and no two sub-

divided 2-edges are adjacent to each other, because, by Corollary 1.2.2-(1), (3), every

2-vertex is adjacent to two ∆-vertices and every vertex is adjacent to at most one

2-vertex and ∆ ≥ 4.

Denote G the underlying graph of G, the graph obtained from G by replacing

every subdivided 2-edge with a single edge. For each edge e = xy ∈ E(G), denote

ζ(e) the corresponding subdivided edge of e in G . Note that ζ(e) is either e or a

subdivided 2-edge with endvertices x and y.

Then, obviously,

(2-3) δ(G) ≥ 3 and for each v ∈ V (G) ⊆ V (G), dG(v) = dG(v).

(2-4) We claim that the girth of G is at least 4.

Assume that G contains a cycle C of length at most 3. Denote C the corresponding

cycle of C in G. Then, by (2-2), the length of C is at most 4 otherwise there are two

adjacent subdivided 2-edges on the boundary of C. This contradicts the assumption

that the girth of G is at least 5.

(2-5) For each edge e = xy ∈ E(G) with min{dG(x), dG(y)} ≤ ∆ − 1, we claim that

ζ(e) = e, because, by Corollary 1.2.2, any 2-vertex is adjacent to two ∆−vertices.

(2-6) We claim that, in G, any 3-vertex is adjacent to at most one 3-vertex.

Otherwise, assume that the 3-vertex x is adjacent to two 3-vertices y, z. By (2-5),

ζ(xy) = xy and ζ(xz) = xz. By (2-3), x, y, z are all 3-vertices in G. Therefore, in

G, the 3-vertex is adjacent to two 3-vertices. This implies that x is adjacent to at

most one ∆-vertex because ∆(G) ≥ 4, which contradicts Corollary 1.2.2-(1).

(2-7) We claim that for any 4-face f ′ = x1x2x3x4x1 in G, dG(xi) ≥ 4 for each

i = 1, 2, 3, 4.

By way of contradiction, we assume that dG(x1) ≤ 3. Therefore, by (2-3),

dG(x1) = 3. By (2-4), ζ(x1x2) = x1x2 and ζ(x1x4) = x1x4. Since the girth of G

is at least 5, either ζ(x2x3) or ζ(x3x4) is a subdivided 2-edge in G. Without loss
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of generality, we assume that x2x3 is a subdivided 2-edge in G. Then, in G, x2 is

adjacent to a 2-vertex and a 3-vertex. Notice that ∆(G) ≥ 4. By Corollary 1.2.2, it

is impossible.

(2-8) Since χ(Σ) ≥ 0, by Corollary 2.2.2-(1), G must contain non-negative faces.

(2-9) We claim that G contains no positive faces. Therefore, all faces of G are zero

faces.

Assume that G contains a positive face f ′. From Table 1, f ′ is of length either 4

or 5. If f ′ is of length 4, from Table 1, f ′ is adjacent to a 3-vertex which contradicts

(2-7). If f ′ is of length 5, from Table 1, on the boundary of f ′, there exists a 3-vertex

which is adjacent to two 3-vertices. This contradicts (2-6).

(2-10) We claim that each face in G is of length 4 and is adjacent to four 4-vertices.

Therefore, G is 4-regular and the length of each face of G is 4.

Let f ∈ F (G). Then, by (2-9), f is a zero face. By (2-7) and from Table 2, f is

of length 4 and each vertex adjacent to f is of degree 4.

Let f 1 = x1x2x3x4x1 be a 4-face of G. Denote f1 ∈ F (G) the corresponding

face of f 1. Since the girth of G is 5, ζ(xixi+1)(Mod4) is a subdivided 2-edge for some

i = 1, 2, 3, 4. Without loss of generality, assume that ζ(x1x2) is a subdivided 2-edge.

Denote ζ(x1x2) = x1yx2 where dG(y) = 2. Let f 2 = x2x5x6x3x2 be the 4-face of G

adjacent to f 1 and sharing the edge x2x3 (see Figure 1). By (2-2), ζ(x2x5) = x2x5 and

ζ(x2x3) = x2x3. Therefore either ζ(x5x6) or ζ(x3x6) is a subdivided 2-edge. Without

loss of generality, assume that ζ(x5x6) is a subdivided 2-edge. Therefore x5 is adjacent

to a 2-vertex. Note that dG(x2) + dG(y) = ∆ + 2. Since x5 ∈ N(x2, y) \ {x2, y}, by

Lemma 1.2.3, the neighbors of x5 are of degree at least ∆ − 1 ≥ 4 − 1 = 3. This

contradiction completes the proof of (2) of Theorem 2.1.4.

sx4

sx3

sx6

sx1

sx2

cy

sx5

s

s

s

f1

f2

Figure 1
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2.3.3 Proof of (3) of Theorem 2.1.4

Let G be a counterexample to (3) of Theorem 2.1.4 with |E(G)| as small as possible.

Then, by (2), it is obvious that

(3-1) δ(G) ≥ 2, ∆ = 3 and G is 2-connected.

(3-2) We claim that the length of any subdivided edge is at most 2 and no two sub-

divided 2-edges are adjacent to each other, because, by Corollary 1.2.2-(1), (3), every

2-vertex is adjacent to two ∆-vertices and every vertex is adjacent to at most one

2-vertex and ∆ = 3 > 2.

Denote G the underlying graph of G, the graph obtained from G by replacing

every subdivided 2-edge with a single edge. For each edge e = xy ∈ E(G), denote

ζ(e) the corresponding subdivided edge of e in G . Note that ζ(e) is either e or a

subdivided 2-edge with endvertices x and y.

Then, obviously,

(3-3) δ(G) ≥ 3 and for each v ∈ V (G) ⊆ V (G), dG(v) = dG(v) = 3.

(3-4) We claim that the girth of G is at least 6.

Assume that G contains a cycle C of length at most 5. Denote C the corresponding

cycle of C in G. Then, by (3-2), the length of C is at most 7 otherwise there are two

adjacent subdivided 2-edges on the boundary of C. This contradicts the assumption

that the girth of G is at least 8.

(3-5) We claim that χ(Σ) = 0 and the length of each face in G is 6. Therefore, the

girth of G is at least 9.

Otherwise, G has a positive face. From Table 1, we can see that the length of the

positive face is at most 5. This contradicts (3-4). Therefore, G doesn’t contain any

positive faces. Thus, G only contains zero faces. By (3-4) and Table 2, each face of

G is of length 6.

Let f 1 = x1x2x3x4x5x6x1 be a 6-face of G. Denote f1 ∈ F (G) the corresponding

face of f 1. Since the girth of G is at least 9, there are ate least three subdivided

2-edges on the boundary of f1. Since the length of f1 is 6 and, by (3-2), no two

subdivided 2-edges are adjacent, there are exactly three subdivided 2-edges on the

boundary of f1 and any two of them are not adjacent to each other. Without loss of

generality, we assume that ζ(x1x6), ζ(x5x4), ζ(x3x2) are subdivided 2-edges.

Denote f 2 = x5x6y1y2y3y4x5 the face of G adjacent to f 1 sharing the edge x5x6.

We also denote f2 ∈ F (G) the corresponding face of f 2. Since both ζ(x1x6) and
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ζ(x5x4) are subdivided 2-edges. By (3-2), none of ζ(x6y1), ζ(x5y4), ζ(x5x6) is a

subdivided edge. Since the length of f2 is at least 9, f2 must be adjacent to at least

three subdivided 2-edges. Therefore, ζ(y1y2), ζ(y2y3), ζ(y3y4) are all subdivided 2-

edges. Note that ζ(y1y2) and ζ(y2y3) are adjacent to each other. This contradicts

(3-2). The contradiction completes the proof of (3).
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Chapter 3

Edge coloring of graphs with small

average degrees

3.1 Introduction

In 1968, Vizing [20] proposed another well-known conjecture concerning the size of

critical graphs.

Conjecture 3.1.1 If G = (V, E) is a critical simple graph, then

|E| ≥ 1

2
(|V |(∆− 1) + 3).

Conjecture 3.1.1 can be expresses as follows.

If

d < (∆− 1) +
3

|V | ,
then G is not critical.

The best partial result to Conjecture 3.1.1 is the following theorem.

Theorem 3.1.2 (Fiorini [5] 1975) If G = (V, E) is a critical simple graph, then

|E| ≥ 1

4
(|V |(∆ + 1)).

That is, if d < 1
2
(∆ + 1), then G is not critical.

Up to now, Conjecture 3.1.1 is verified for ∆ ≤ 5 (see Beineke and Fiorini [1],

Jacobsen [7], Kayathri [9] and Yap [24]).

The following main theorems of this chapter are motivated by Conjecture 3.1.1

and the theorem of Fiorini (Theorem 3.1.2).

13
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Theorem 3.1.3 Let G be a graph with the maximum degree ∆ ≥ 8 and the average

degree d ≤ 6. Then G is not critical.

Theorem 3.1.4 Let G be a graph with the maximum degree ∆ ≥ 9 and the average

degree d ≤ 20
3
. Then G is not critical.

An immediate corollary of Theorem 3.1.3 is the following theorem.

Theorem 3.1.5 (Vizing [18] 1965, Mel’nikov [11] 1970 and Hind and Zhao [6] 1998)

Let G be a graph which can be embedded on the surface S with the Euler characteristic

cS ≥ 0. If the maximum degree ∆ ≥ 8, then G is class one.

Proof. It follows from the fact that the average degree of each component of G is at

most 6 and Theorem 3.1.3.

Theorem 3.1.4 implies the following theorem due to Yan and Zhao [21].

Theorem 3.1.6 (Yan and Zhao [21] 2000) Let G = (V, E) be a graph embeddable on

the surface S with the Euler characteristic cS = −1. If the maximum degree ∆ ≥ 9,

then G is class one.

Proof.

Let G be a counterexample to the theorem with |E(G)| as small as possible. Then

G is critical.

Let G be the embedding in the surface S. Denote F the set of faces of G. Since

G is simple,

|F | ≤ 2|E|
3

.

Thus, by Euler formula that

|V |+ |F | ≥ |E| − 1.

We have that

|V (G)|+ 2|E(G)|
3

≥ |E(G)| − 1,

|V (G)| ≥ |E(G)|
3

− 1,
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|V (G)|+ 1 ≥ |E(G)|
3

,

6(1 +
1

|V (G)|) ≥
2|E(G)|
|V (G)| .

Therefore,

d =
2|E|
|V | ≤ 6(1 +

1

|V |).

Since G is simple and ∆ ≥ 9, we have that |V | ≥ 10.

Therefore,

d =
2|E|
|V | ≤ 6(1 +

1

|V |) ≤ 6.6 <
20

3
.

This contradicts Theorem 3.1.4.

In 1981, Yap [23] gave some lower bounds on the number of edges of critical graphs

for small maximum degree.

Theorem 3.1.7 (Yap [23] 1981) Let G = (V, E) be a critical graph with the maxi-

mum degree ∆.

(1) If ∆ = 6, then |E| ≥ (9n+1)
4

;

(2) If ∆ = 7, then |E| ≥ 5n
2
.

Applying Theorems 3.1.3 and 3.1.4, we obtain some lower bounds on the number

of edges of critical graphs as follows.

Corollary 3.1.8 Let G be a critical graph.

(1) If ∆ ≥ 8, then |E| ≥ 3|V |+ 1;

(2) If ∆ ≥ 9, then |E| > 10
3
|V |.

Proof. (1) By Theorem 3.1.3,

2|E| > 6|V |.
Therefore,

|E| ≥ 3|V |+ 1.

(2) By Theorem 3.1.4,

2|E| > 20

3
|V |.
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Therefore,

|E| > 10

3
|V |.

Remark: Corollary 3.1.8 strengthens the bound |E| ≥ 1
4
(|V |(∆ + 1)) obtained

by Fiorini [5] for 8 ≤ ∆ ≤ 12.

3.2 An adjacency Lemma

In this section, we prove an adjacency property which will be used in the proofs of

our main theorems.

Lemma 3.2.1 Let G be a critical graph with the maximum degree ∆ ≥ 5 and x be a

3-vertex with N(x) = {u, v, w} ⊆ V∆. Denote my = min{d(z) : z ∈ N(y) \ {x}} for

each y ∈ {u, v, w}. Then, max{mu, mv, mw} ≥ ∆− 1.

Proof. By contradiction, we assume that my ≤ ∆− 2 for each y ∈ {u, v, w}.
Let G′ = G − xw. Then G′ has a ∆−edge coloring φ : E(G) \ {xw} 7→ C =

{1, 2, · · · , ∆}.
The coloring φ of G′ can be regarded as an edge coloring of G with the edge xw

uncolored.

Assume that φ(xu) = 1 and φ(xv) = ∆. For a vertex y in G, denote φ(y) the set

of colors appearing at the edges incident with the vertex y and φ(y) = C \ φ(y).

I. We claim that

|φ(w) ∩ φ(x)| = 1.

Since d(w) = ∆, we have that |φ(w) ∩ {1, ∆}| ≥ 1.

Now assume that |φ(w)∩{1, ∆}| = 2. Then i 6∈ φ(w) for some i ∈ {2, · · · , ∆−1}.
Therefore, the coloring φ can be extended to be a ∆−edge coloring of G by coloring

the edge xw with the color i, a contradiction. Thus |φ(w) ∩ {1, ∆}| = 1. Therefore,

we may assume that φ(w) = {2, 3, · · · , ∆}.
Denote N(u) = {x, u2, u3, · · · , u∆}, N(v) = {x, v1, v2, · · · , v∆−1} and N(w) =

{x, w2, w3, · · · , w∆}. By I, without loss of generality, we may assume that φ(uui+1) =

φ(wwi+1) = i + 1 and φ(vvi) = i for each i = 1, 2, · · · , ∆− 1. An (i− j)φ edge chain

is a connected component of φ−1(i) ∪ φ−1(j). It is easy to see that an (i − j)φ edge
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chain is either a path or an even cycle. For a vertex y of G, if i ∈ φ(y) and j ∈ φ(y),

we denote by Pi,j(y)φ an (i− j)φ edge chain starting from y.

Let φ1,i be the edge-coloring obtained from φ by interchanging colors 1 and i along

P1,i(x)φ and φ∆,i be the edge-coloring obtained from φ by interchanging colors ∆ and

i along P∆,i(x)φ for each i ∈ {2, · · · , ∆− 1}. We also denote φ1, 1 = φ∆, ∆ = φ for

the sake of convenience.

II. We claim that for each color i ∈ φ(w) \ {∆}, any chain P1,i(x)φ ends at w.

Suppose that P1,i(x)φ doesn’t end at w. Since the color 1 6∈ φ(w), P1,i(x)φ doesn’t

contain the vertex w. Therefore, in the coloring φ1,i, the color 1 6∈ φ1,i(x) ∪ φ1,i(w).

Hence, the coloring φ1,i can be extended to be a ∆−edge coloring of G by coloring

the edge xw with the color 1, a contradiction.

III. From II, it is easy to see that for each vertex z 6∈ V \ {x, w} and each k ∈
{2, · · · , ∆−1}, φ(z) = φ1,k(z), φ1,k(x) = {k, ∆} and φ1,k(w) = φ(w)4{1, k}.(A4B

is the symmetric difference of the two sets A and B.)

By applying the argument of II and by III,

IV. we claim that for each k ∈ {2, · · · , ∆ − 1} and each color i ∈ φk(w) \ {∆}, any

chain Pk,i(x)φk
ends at w.

V. We claim that d(ui) = ∆ for each i = {2, · · · , ∆− 1} and d(u∆) = mu ≤ ∆− 2.

By II, in the coloring φ, ui is incident with an edge colored by ∆ and by IV, ui is

incident with an edge colored by k in each coloring φ1, k, for each i ∈ {2, · · · , ∆−1}.
Therefore, by III, {1, · · · , ∆−1} ⊆ φ1, k(ui). Thus, d(ui) ≥ ∆−1. By Lemma 1.2.1,

u is adjacent to at most two minor vertices. Since d(x) = 3 and mu ≤ ∆−2, d(ui) = ∆

for each i = {2, · · · , ∆− 1} and u∆ ≤ ∆− 2.

VI. We claim that for i ∈ {2, · · · , ∆− 1}, P∆,i(x)φ passes through u.

Otherwise, we can interchange colors ∆ and i along P∆,i(x)φ without changing

the color of any edge at u. Let φ′ be the new coloring. Then φ′(xv) = φ′(uui). By

the argument of I - V, d(ui) ≤ ∆− 2, a contradiction.

VII. We claim that for i ∈ {2, · · · , ∆− 1}, P∆,i(x)φ passes through w and d(wi) = ∆

for each i ∈ {2, · · · , ∆} and d(w∆) = mw ≤ ∆− 2.

If we uncolor the edge xu and color the edge xw with 1, we get a new edge-

coloring φ′. Notice that φ(e) = φ′(e) for each edge e ∈ E \ {xu, xw} and therefore,

P∆,i(x)φ = P∆,i(x)φ′ . By applying the argument of V and VI, we can prove this claim.

VIII. We claim that d(vi) = ∆ for each i ∈ {2, · · · , ∆− 1} and d(v1) = mv ≤ ∆− 2.
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By VI and VII, it is easy to see that P∆,i(x)φ passes through the vertex vi and

vi is not an endvertex of the path. Therefore, in the coloring φ, ∆ ∈ φ(vi) and for

each i, k ∈ {2, · · · , ∆− 1}, φ∆,k(vi) = φ(vi). Repeating the argument of VI and VII

with φ∆,k in place of φ shows that Pk,i(x)φ∆,k
passes through the vertex vi for each

i ∈ {2, · · · , ∆ − 1} and each k ∈ {2, · · · , ∆} and therefore, k ∈ φ∆,k(vi) = φ(vk).

Thus, {2, · · · , ∆} ⊆ φ(vi) for each i ∈ {2, · · · , ∆}. Hence, d(vi) ≥ ∆ − 1. By

Lemma 1.2.1, v is adjacent to at most two minor vertices. Since d(x) = 3 and

mv ≤ ∆− 2, d(vi) = ∆ and d(v1) = mv ≤ ∆− 2.

IX. We claim that each P1,i(x)φ passes through the vertex v1 and v1 is not an endvertex

for each i ∈ {2, · · · , ∆− 1}.
Suppose that P1,2(x)φ doesn’t pass through the vertex v1. The in the coloring φ1,2,

the edge vv1 is still colored by the color 1 and the edge xu is colored by 2. Similar to

VIII, we can find that d(v1) = ∆, a contradiction to VIII.

By II, the vertices x and w are the endvertices of the path P1,i(x)φ. Therefore, v1

can not be an endvertex of P1,i(x)φ.

By IX, it is easy to see that d(v1) ≥ ∆− 1. This contradicts VIII.

3.3 Proof of Theorem 3.1.3

Proof.

By contradiction, suppose that G is critical.

Since Theorem 3.1.4 implies Theorem 3.1.3 for ∆ ≥ 9, we only need to prove

Theorem 3.1.3 for ∆ = 8.

Denote c(x) = d(x)− 6 the initial charge of the vertex x.

Since the average degree d ≤ 6, we have that

∑

x∈V (G)

c(x) ≤ 0 (3.1)

with equality if and only if d = 6.

We are going to use discharge method according to the following discharge rules:

(R1) Every 2-vertex receives 2 from each of its neighbors.

(R2) Every 3-vertex receives 1 from each of its neighbors if it is adjacent to three

8-vertices, or, receives 3
2

from each adjacent 8−vertex if it is adjacent to a 7-vertex.
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(R3) Every 4-vertex receives 2
3

from each adjacent 8-vertex if it is adjacent to a

6-vertex, or, receives 1
2

from each of its neighbors otherwise.

(R4) Every 5-vertex receives 1
4

from each adjacent 8-vertex if it is adjacent to a 5-

vertex, or, receives 1
3

from each adjacent 8-vertex if it is adjacent to a 6-vertex, or,

receives 1
5

from each of its neighbors otherwise.

Let c′(x) be the new charge of the vertex x.

I. We claim that c′(x) = 0 for any vertex x with d(x) ≤ 4 and d(x) = 6.

If d(x) = 2, then by Lemma 1.2.1, x is adjacent to two 8-vertices. Therefore, by

(R1), c′(x) = c(x) + 4 = 0.

If d(x) = 3, then x is either adjacent to three 8-vertices or is adjacent to two

8-vertices and one 7-vertices. Therefore, by (R2), c′(x) = 0.

If d(x) = 4, then x is either adjacent to a 6-vertex and three 8-vertices or is

adjacent to four (≥ 7)-vertices. Therefore, by (R3), c′(x) = 0.

If d(x) = 6, it is easy to see that c′(x) = c(x) = 0.

II. For a 5-vertex x, let y ∈ N(x) such that d(y) is the smallest in N(x). Then

c(x) = −1 and by Lemma 1.2.1, d(y) ≥ 5.

(II-1) If d(y) = 5, then, by Lemma 1.2.1, the other neighbors are all 8-vertices.

Therefore, c′(x) = c(x) + 4× 1
4

= 0.

(II-2) If d(y) = 6, then by Lemma 1.2.1, x is adjacent to at most two 6-vertices

and at least three 8-vertices. Therefore, by (R4), c′(x) ≥ c(x) + 3× 1
3

= 0.

(II-3) If d(y) ≥ 7, then by (R4), c′(x) = c(x) + 5× 1
5

= 0.

III. For a 7-vertex x, let y ∈ N(x) such that d(y) is the smallest in N(x). Then

c(x) = 1 and by Lemma 1.2.1, d(y) ≥ 3.

(III-1) If d(y) = 3, then by Lemma 1.2.1, x is adjacent to six 8-vertices. Therefore,

c′(x) = c(x) = 1 > 0.

(III-2) If d(y) = 4, then by Lemma 1.2.1, x is adjacent to at least five 8-vertices

and at most two (≥ 4)-vertices. By (R3) and (R4), c′(x) ≥ c(x)− 2× 1
2

= 0.

(III-3) If d(y) ≥ 5, then by Lemma 1.2.1, x is adjacent to at least four 8-vertices

and at most three (≥ 5)-vertices. Therefore, by (R4), c′(x) ≥ c(x)− 3× 1
5

= 2
5

> 0.

IV. For an 8-vertex x, let y ∈ N(x) such that d(y) is the smallest in N(x). Then

c(x) = 8− 6 = 2 and by Lemma 1.2.1, d(y) ≥ 2.

(IV-1) If d(y) = 2, then by Lemma 1.2.1, the other neighbors of x other than y

are 8-vertices. Therefore, by (R1), c′(x) = c(x)− 2 = 0.
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(IV-2) If d(y) = 3 and y is adjacent to a 7-vertex , then by Lemma 1.2.1, x

is adjacent to seven (≥ 7)-vertices and one 3-vertex. Therefore, by (R2), c′(x) =

c(x)− 3
2
≥ 2− 3

2
= 1

2
> 0.

(IV-3) If d(y) = 3 and no 3-vertex in N(x) is adjacent to a 7-vertex, then by

Lemma 1.2.1, N(x)\{y} ⊆ V8∪V7. Therefore, by (R2) - (R4), c′(x) ≥ c(x)−2×1 ≥ 0

with equality if and if only x is adjacent to two such 3-vertices.

(IV-4) If d(y) = 4 and y is adjacent to a 6-vertex, then by Lemma 1.2.1, x is

adjacent to seven (≥ 6)−vertices and one 4-vertex. Therefore, by (R3), c′(x) =

c(x)− 2
3
≥ 2− 2

3
= 4

3
> 0.

(IV-5) If d(y) = 4 and no 4-vertex in N(x) is adjacent to a 6-vertex, then by

Lemma 1.2.1, x is adjacent to at least five 8-vertices and at most three 4-vertices.

Therefore, by (R3), c′(x) ≥ c(x)− 3× 1
2
≥ 2− 3

2
> 0.

(IV-6) If d(y) = 5, then by Lemma 1.2.1, x is adjacent to at least four 8-vertices

and therefore, is adjacent to at most four 5-vertices. Therefore, c′(x) ≥ c(x)−4× 1
3
≥

2− 4
3

= 2
3

> 0.

(IV-7) If d(y) ≥ 6, then c′(x) = c(x) ≥ 2 > 0 since any (≥ 6)-vertex receives zero

from the adjacent 8-vertices.

By above argument, we conclude that

V. For any vertex x in G, the new charge c′(x) ≥ 0.

By Equation (3.1), we have that

∑

x∈V (G)

c′(x) =
∑

x∈V (G)

c(x) ≤ 0.

VI. Since c′(x) ≥ 0 (by I-IV), we have that
∑

x∈V (G) c′(x) = 0 and therefore, c′(x) = 0

for each vertex x in G.

VII. So, Cases (IV-2), (IV-4), (IV-5), (IV-6), (IV-7) can not happen since c′(x) > 0

for each of these cases and therefore, every 8-vertex is adjacent to a 2-vertex or a

3-vertex.

VIII. We claim that there are no 3-vertices in G.

Let x be a 3-vertex. If x is adjacent to a 7-vertex y, then by (III-1), c′(y) > 0. It

contradicts to VI. Therefore, x is adjacent to three 8-vertices, say x1, x2, x3. By VI

and (IV-3), each of xi is adjacent to exactly two 3-vertices. On the other hand, by

Lemma 3.2.1, one of x1, x2, x3 is adjacent to one 3-vertices and seven ≥ 7-vertices,

a contradiction.
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IX. By VII and VIII, every 8-vertex is adjacent to a 2-vertex.

X. The Final Step.

Let x be a 2-vertex and y1 be a vertex adjacent to x. Let y2 ∈ N(y1) \ {x}
which is not adjacent to x. Then, by Lemma 1.2.1, d(y2) = 8. By the choice of y2

in N(y1), y2x 6∈ E(G) and therefore, by Lemma 1.2.3, N(y2) \ {x} ⊆ V8 ∪ V7 and

c(y2) = c′(y2) = 2 > 0. It contradicts to (VI). This contradiction completes the proof

of Theorem 3.1.3.

3.4 Proof of Theorem 3.1.4

Proof. Suppose that G is critical.

Let c(x) = d(x)− 20
3

be the initial charge of the vertex x.

We are going to discharge according to the following rules.

(R1) Every 2-vertex receives 7
3

from each of the adjacent ∆−vertices.

(R2) Every 3-vertex receives 11
6

from each of the adjacent ∆−vertices if it is adjacent

to a (∆− 1)−vertex.

(R3) If a 3-vertex x is adjacent to three ∆-vertices (described in Lemma 3.2.1), then

x receives 7
3

from each of those adjacent vertices whose neighbors are of degree at

least ∆− 1 except x and receives 2
3

from each of the other adjacent vertices.

(R4) Every 4-vertex receives 8
9

from each of the adjacent ∆-vertices if it is adjacent

to a (∆− 2)-vertex, or, receives 2
3

from each of its adjacent vertices otherwise.

(R5) Every 5-vertex receives 5
12

from each of the adjacent ∆-vertices if it is adjacent

to a (∆−3)-vertex, or, receives 5
9

from each of the adjacent ∆-vertices if it is adjacent

to a (∆− 2)-vertex, or, receives 1
3

from each of the adjacent vertices otherwise.

(R6) Every 6-vertex receives 2
15

from each of the adjacent ∆-vertices if it is adjacent

to a (∆−4)-vertex or, receives 1
6

from each of the adjacent ∆-vertices if it is adjacent

to a (∆−3)-vertex, or, receives 2
9

from each of the adjacent ∆-vertices if it is adjacent

to a (∆− 2)-vertex and not adjacent to any (∆− 3)-vertices, or, receives 1
9

from each

of the adjacent vertices otherwise.

Denote c′(x) the new charge of the vertex x. We are going to show that c′(x) ≥ 0

for every x ∈ V (G).



22 Edge coloring and Edge-face coloring

I. c′(x) = 0 if d(x) = 2 and c′(x) = c(x) > 0 if 7 ≤ d(x) ≤ ∆− 2.

(I-1) If d(x) = 2, then by Lemma 1.2.1, x is adjacent to two ∆−vertices. Therefore,

c′(x) = c(x) + 2× 7
3

= 0.

(I-2) If 7 ≤ d(x) ≤ ∆− 2, then c′(x) = c(x) > 0 since ∆− 2 ≥ 9− 2 ≥ 7 and the

vertex x is not affected by any rules above.

II. For a 3-vertex x, c(x) = 3− 20
3

= −11
3
. Let y ∈ N(x) such that d(y) is the smallest

in N(x). Then, by Lemma 1.2.1, d(y) ≥ ∆− 1.

(II-1) If d(y) = ∆− 1 ≥ 8, then by Lemma 1.2.1, x is adjacent to two ∆-vertices

and, therefore, by (R2), c′(x) = −11
3

+ 2× 11
6

= 0.

(II-2) If d(y) = ∆, then x is adjacent to three ∆-vertices, say x1, x2, x3. Denote

µi = min{d(z) : z ∈ N(xi)\{x} for each i = 1, 2, 3. By Lemma 3.2.1, we may assume

that µ1 ≥ ∆− 1. Therefore, by (R3), c′(x) ≥ c(x) + 7
3

+ 2× 2
3

= 0 with the equality

if and only if µi < ∆− 1 for i = 2, 3.

III. For a 4-vertex x, c(x) = 4− 20
3

= −8
3
. Let y ∈ N(x) such that d(y) is the smallest

in N(x). Then, by Lemma 1.2.1, d(y) ≥ ∆− 2.

(III-1) If d(y) = ∆ − 2, then by Lemma 1.2.1, the other neighbors of x are all of

degree ∆. Therefore, by (R4), c′(x) = −8
3

+ 3× 8
9

= 0.

(III-2) If d(y) ≥ ∆− 1, then by (R4), c′(x) = −8
3

+ 4× 2
3

= 0.

IV. For a 5-vertex x, c(x) = 5− 20
3

= −5
3
. Let y ∈ N(x) such that d(y) is the smallest

in N(x). Then, by Lemma 1.2.1, d(y) ≥ ∆− 3.

(IV-1) If d(y) = ∆− 3, then, by Lemma 1.2.1, the other neighbors of x are all of

degree ∆. Therefore, by (R5), c′(x) = −5
3

+ 4× 5
12

= 0.

(IV-2) If d(y) = ∆ − 2, then, by Lemma 1.2.1, x is adjacent to at least three

∆-vertices. Therefore, by (R5), c′(x) ≥ −5
3

+ 3× 5
9

= 0.

(IV-3) If d(y) ≥ ∆− 1, then, by (R5), c′(x) = −5
3

+ 5× 1
3

= 0.

V. For a 6-vertex x, c(x) = 6− 20
3

= −2
3
. Let y ∈ N(x) such that d(y) is the smallest

in N(x). Then, by Lemma 1.2.1, d(y) ≥ ∆− 4.

(V-1) If d(y) = ∆ − 4, then, by Lemma 1.2.1, the other neighbors of x are all of

degree ∆. Therefore, by (R6), c′(x) = −2
3

+ 5× 2
15

= 0.

(V-2) If d(y) = ∆ − 3, then, by Lemma 1.2.1, x is adjacent to at least four

∆-vertices. Therefore, by (R6), c′(x) ≥ −2
3

+ 4× 1
6

= 0.

(V-3) If d(y) = ∆ − 2, then, by Lemma 1.2.1, x is adjacent to at least three

∆-vertices. Therefore, by (R6), c′(x) ≥ −2
3

+ 3× 2
9

= 0.

(V-4) If d(y) ≥ ∆− 1, then, by (R6), c′(x) = −2
3

+ 6× 1
9

= 0.
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VI. For a (∆ − 1)-vertex x, c(x) ≥ 8 − 20
3

= 4
3
. Let y ∈ N(x) such that d(y) is the

smallest in N(x). Then d(y) ≥ 3. Note that only the last subcases of each of R4, R5

and R6 affects the change of this (∆− 1)-vertex

(VI-1) If d(y) = 3, then, by Lemma 1.2.1, the other neighbors of x are all of degree

∆. Therefore, by (R2), c′(x) = c(x) ≥ 4
3

> 0.

(VI-2) If d(y) = 4, then, by Lemma 1.2.1, x is adjacent to at most two 4-vertices,

therefore, by (R4) - (R6), c′(x) ≥ c(x) − 2 × 2
3

= 0 with equality if x is adjacent to

two 4-vertices and ∆ = 9.

(VI-3) If d(y) = 5, then, by Lemma 1.2.1, x is adjacent to at most three 5-vertices,

therefore, by (R5) and (R6), c′(x) ≥ c(x)− 3× 1
3

= 1
3

> 0.

(VI-4) If d(y) ≥ 6, then, by Lemma 1.2.1, x is adjacent to at most four 6-vertices,

therefore, by (R6), c′(x) ≥ c(x)− 4× 1
9

= 4
9

> 0.

VII. For a ∆-vertex x, c(x) ≥ 9− 20
3

= 7
3
. Let y ∈ N(x) such that d(y) is the smallest

in N(x). Then, by Lemma 1.2.1, d(y) ≥ 2.

Let µ = min{d(z) : z ∈ N(y) \ {x}}. Then µ = d(z) for some z ∈ N(y) \ {x} and

µ + d(y) ≥ ∆ + 2.

(VII-1) If d(y) ≥ 7, then c′(x) = c(x) ≥ 7
3

> 0.

Now we assume that d(y) ≤ 6.

(VII-2) If µ + d(y) = ∆ + 2, then, by Lemma 1.2.3, N(x) \ {y, z} ⊆ V∆. If

d(y) ≤ 4, then d(z) ≥ 7 since ∆ ≥ 9. Therefore, by (I-2) and rules (R1)-(R6), x sends

at most 7
3

to y. Thus. c′(x) ≥ c(x)− 7
3
≥ 7

3
− 7

3
= 0 with equality if and only if ∆ = 9

and d(y) = 2. If 5 ≤ d(y) ≤ 6, then d(z) = ∆ + 2− d(y) ≥ 5. Therefore, by (R5) and

(R6), c′(x) ≥ 7
3
− 2× 5

12
> 0.

Now we assume that µ + d(y) ≥ ∆ + 3.

(VII-3) Let d(y) = 3. then y is adjacent to three ∆-vertices. If N(x) \ {y} ⊆
V∆ ∪ V∆−1, then by (R3), c′(x) ≥ 7

3
− 7

3
= 0 with equality if and only if ∆ = 9.

If there exists a vertex z ∈ N(x)\{y} such that d(z) ≤ ∆−2, then d(z) ≥ 3 and by

Lemma 1.2.1, N(x)\{y, z} ⊆ V∆. Therefore, by (R3) - (R6), c′(x) ≥ 7
3
−2× 2

3
= 1 > 0.

(VII-4) If d(y) = 4, then µ ≥ ∆ − 1. By Lemma 1.2.1, x is adjacent to at most

three 4-vertices. Therefore, by (R4)-(R6), c′(x) ≥ 7
3
− 3× 2

3
= 1

3
> 0.

(VII-5) If d(y) = 5, then µ ≥ ∆ − 2. By Lemma 1.2.1, x is adjacent to at most

four 5-vertices. Therefore, by (R5)-(R6), c′(x) ≥ 7
3
− 4× 5

9
= 1

9
> 0.

(VII-6) If d(y) = 6, then µ ≥ ∆ − 3. By Lemma 1.2.1, x is adjacent to at most

five 6-vertices. Therefore, by (R5)-(R6), c′(x) ≥ 7
3
− 5× 2

9
= 11

9
> 0.
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VIII. From (I)-(VII), we conclude that c′(x) ≥ 0 for each vertex x ∈ V .

Therefore,

0 ≤ ∑

x∈V

c′(x) =
∑

x∈V

c(x) ≤ 0.

Hence,

c′(x) = 0, (3.2)

for each vertex x in G.

IX. From (VII) and Equation (3.2), every ∆-vertex is adjacent to a 2-vertex or a

3-vertex since c′(x) > 0 in each of the cases (VII-1), (VII-4)-(VII-6).

X. We claim that there are no 2-vertices in G.

Let x be a 2-vertex and y1 ∈ N(x). Let y2 ∈ N(y1) \ {x} that is not adjacent

to x. Then, by Lemma 1.2.1, d(y2) = ∆. By the choice of y2 in N(y1), y2x 6∈ E(G)

and therefore, by Lemma 1.2.3, N(y2) \ {x} ⊆ V∆ ∪ V∆−1. Therefore, by (VII-1),

c′(y2) = c(y2) > 0. This contradicts Equation (3.2).

XI. The final step.

By IX and X, every ∆-vertex is adjacent to a 3-vertex. Let y be a 3-vertex

adjacent to x1. Then, by (VII-2) and Equation (3.2), the vertex y is adjacent to

three ∆-vertices, say x1, x2, x3. Denote µi = min{d(z) : z ∈ N(xi) \ {x}} for each

i = 1, 2, 3. By Lemma 3.2.1, we may assume that µ1 ≥ ∆ − 1. Since c′(y) = 0,

by (II-2), we have that both µ2 ≤ ∆ − 2 and µ3 ≤ ∆ − 2. Therefore, x2 sends 2
3

to the 3-vertex y. Denote d(z) = µ2 for some z ∈ N(x2). Then, d(z) ≤ ∆ − 2. By

Lemma 1.2.1, x2 is adjacent to at least ∆− 2 ∆-vertices and two (≤ ∆− 2)-vertices,

which are x and z. By Lemma 1.2.3, for any vertex w ∈ N(z), d(w) + d(z) ≥ ∆ + 3

since y ∈ N(N(z, w)) \ {z, w} and d(y) = 3 < ∆− 1. Therefore, by rules (R3)-(R6),

y2 sends at most 2
3

to z. Since x and z are the only two (≤ ∆− 1)-vertices, we have

that c′(y) ≥ c(y) − 2 × 2
3

= 11
3
− 4

3
> 0. This contradicts to Equation (3.2). This

contradiction completes the proof of Theorem 3.1.4.



Chapter 4

Edge-face chromatic number and

edge chromatic number of simple

plane graphs

4.1 Introduction

All graphs considered in this chapter are finite. For a plane graph G, denote χe(G),

∆(G), δ(G) the edge chromatic number, the maximum degree and the minimum degree

of the graph G, respectively. Let E(G), V (G), F (G) be the edge set, the vertex set

and the face set of G, respectively. For f ∈ F (G), let B(f) be the boundary of the

face f . An element of G is a member of E(G)∪F (G). Any two elements are adjacent

if they are either adjacent to or incident with each other in the traditional sense. An

edge-face k-coloring of the plane graph G is a function φ : E(G)∪F (G) 7→ {1, · · · , k}
such that for any two adjacent elements a, b ∈ E(G) ∪ F (G), φ(a) 6= φ(b). Denote

χef (G) the edge-face chromatic number of G, i.e., the smallest integer k such that G

has an edge-face k-coloring. This problem appears to have first been considered by

Jucovič [8] and Fiamč́ık [4]. In 1975, Mel’nikov [12] made the following conjecture :

Conjecture 4.1.1 (Mel’nikov [12], 1975) For any simple plane graph G, χef (G) ≤
∆(G) + 3.

In [22] and [14], Waller, Sanders and Zhao proved this conjecture independently.

In [2], Borodin proved that for ∆(G) ≥ 10, χef (G) ≤ ∆(G) + 1. Also in [2], Borodin

25
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proposed the following problem: Characterize those simple plane graphs G having

χe(G) = χef (G) = ∆(G).

In this chapter, we investigate the relationship between χe(G) and χef (G) for

2-connected simple plane graphs G.

Vizing [20] showed that an improvement to his edge coloring theorem is possible

for planar graphs with large maximum degree.

Theorem 4.1.2 (Vizing [20]) Let G be a simple planar graph. If ∆(G) ≥ 8, then

χe(G) = ∆(G).

The main results of this chapter are the following theorem.

Theorem 4.1.3 Let k ≥ 24 be an integer and G be a 2-connected simple plane graph.

If χe(G) ≤ k, then χef (G) ≤ k.

The following theorem is a corollary of Theorem 4.1.3 and Theorem 4.1.2.

Theorem 4.1.4 For any 2-connected simple plane graph G with ∆(G) ≥ 24, χef (G) =

∆(G).

4.2 Notation and terminology

A path v0v1 · · · vr is called a subdivided edge of length r if d(vi) = 2 for each i =

1, · · · , r − 1 and both d(v0) > 2 and d(vr) > 2.

Denote C = {1, 2, · · · , k} the color set. Let φ : E(H) ∪ F (H) 7→ C be an edge-

face k-coloring of a plane graph H. For each vertex v ∈ V (H), φ(v) is the set of all

colors used by the edges incident with v.

Let A ⊆ E(H) ∪ F (H). A partial edge-face k-coloring of H on A is a function

φ : A 7→ C such that every pair of adjacent elements in A receive different colors. For

a partial edge-face k-coloring φ of H on A, we denote φ(u) the set of colors used by

the edges in A ∩ E(H) which are incident with the vertex u ∈ V (H).

If there is no confusion, a face is usually denoted by the sequence of vertices that

form the circuit (or cycle) around the face.
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4.3 Euler contribution

Let G be a plane graph. The Euler contribution Φ(f) of a face f in G is defined as

follows:

Φ(f) = 1− d(f)

2
+

∑

v∈B(f)

1

d(v)

where B(f) is the boundary of the face f .

The following theorem by Lebesgue [10] will be applied here for finding some

special configurations in a plane graph.

Theorem 4.3.1 (Lebesgue [10]) Let G be a connected plane graph without loops and

bridges. Then ∑

f∈F (G)

Φ(f) = 2.

Furthermore, there must be a face with a positive Euler contribution.

4.4 Lemmas

In this section, we are going to present two useful lemmas for the preparation of the

proof of our main theorem.

Lemma 4.4.1 Let A and B be two finite sets with the same cardinality n ≥ 2. Then

there exists a one-to-one mapping f from A to B such that f(a) 6= a for any a ∈ A.

Proof. Use induction on n. Denote A = {a1, a2, · · · , an} and B = {b1, b2, · · · , bn}
where a1 6= b1. If n = 2, define the mapping f as follows: f(ai) = bi, i = 1, 2 if

a2 6= b2, or f(a1) = b2, f(a2) = b1 if a2 = b2. Now assume that n ≥ 3. Then by the

induction hypothesis, there is a one-to-one mapping from A \ {a1} to B \ {b1} such

that f(a) 6= a for any a ∈ A \ {a1}. Extend f to the set A by defining f(a1) = b1.

Then f satisfies the requirement.

Lemma 4.4.2 Let G be a simple plane graph and k be a positive integer. Denote

Fs = {f ∈ F (G)|d(f) ≤ k−1
2
} and Es = {uv ∈ E(G)|d(u) + d(v) ≤ k − 1 or d(u) +

d(v) = k and uv is adjacent to a face in Fs}. Let S ⊆ Es ∪ Fs. If there is a partial

edge-face k-coloring of G on [E(G)∪ F (G)] \ S, φ : [E(G)∪ F (G)] \ S 7→ C, then we

can adjust (if necessary) and then extend the coloring φ to be an edge-face k-coloring

of G.



28 Edge coloring and Edge-face coloring

Proof. For e = uv ∈ Es ∩ S, if d(u) + d(v) ≤ k − 1, then there are at least

k− (d(u)− 1+ d(v)− 1)− 2 = k− (d(u)+ d(v)) ≥ k− (k− 1) = 1 colors available for

the uncolored edge e. If d(u) + d(v) = k, remove the color from the face f adjacent to

uv whose length is at most k−1
2

. Then there are at least k− (d(u)−1+d(v)−1)−1 =

k − (d(u) + d(v)) + 1 ≥ k − k + 1 = 1 colors available for the uncolored edge e. We

color this edge first and then color the face f because there are at least k−2× k−1
2

= 1

colors for this face.

For f ∈ Fs ∩ S, there are at least k − 2× d(f) ≥ k − 2× k−1
2

= 1 colors available

for the uncolored face f .

4.5 Proof of Theorem 4.1.3

Let G be a counterexample to Theorem 4.1.3 with |E(G)| as small as

possible.

4.5.1 Operations

The Euler formula is one of the most useful methods in the study for plane graphs.

However, if the minimum vertex degree or the minimum face degree of the graph is

2, the formula may not work effectively. Thus, we have to apply some operations to

eliminate subdivided edges and digons of the graph so that Euler formula may be

applied to the resulting graph that is of minimum vertex degree and minimum face

degree at least 3.

Operation α: replacing each subdivided edge with a single edge.

Operation β: replacing each 2-face with a single edge recursively.

One may repeatedly apply these two operations to G. Since the graph is finite,

with a finite many of operations, the resulting graph will be of minimum vertex degree

and minimum face degree at least 3 (except for the case that G itself is a series parallel

graph)

The operation sequence is recursively defined as follows.

ζ1 = α,

ζ2i = βζ2i−1, ζ2i+1 = αζ2i.



Edge-face chromatic number and edge chromatic number of simple plane graphs 29

For any positive integer q, it is obvious that, for each edge e ∈ E(ζq(G)) with

endvertices x and y, ζ−1
q (e) induces a series parallel subgraph in G with the terminal

vertices x and y.

In the next few subsections, we will study the structure of ζ−1
q (e) in G and we will

also determine the smallest integer q so that ζq(G) is of minimum vertex degree and

the minimum face degree is at least 3.

4.5.2 Reducible and irreducible configurations

Before the study of the structure of ζ−1
q (e), we need a few basic structural results

that will be used frequently in the rest of the chapter.

Proposition 1 (Configuration A) (1) Every subdivided edge of G is of length at most

2. (The vertices u and w are called the terminal vertices of the configuration.)

(2) Let uvw be a subdivided edge of G of length 2. If uw is not an edge of G, then

d(u) ≥ k − 2 and d(w) ≥ k − 2.

s s s sx1 x2 x3 x4

Figure 1

Proof. (1) Assume that P = x1x2x3 · · ·xd is a subdivided edge of length d − 1 ≥ 3

in G . Consider the graph G1 obtained from G by replacing the path x1x2x3 with

one edge x1x3. Then, G1 remains 2-connected and simple and by Theorem 4.1.2,

χe(G1) ≤ k. Let φ be an edge-face k-coloring of G1 with the color set C. Color

the edge x1x2 with the color φ(x1x3). Then, φ can be viewed as a partial edge-face

k-coloring of G on [E(G) ∪ F (G)] \ {x2x3}. Since dG(x2) = dG(x3) = 2, there are at

least k − (dG(x2) + dG(x3) − 2 + 2) = k − 4 ≥ 1 colors of C available for the edge

x2x3. Thus, G has an edge-face k-coloring, a contradiction.

(2) Since uw /∈ E(G), we may replace the path uvw with an edge uw, the result-

ing graph, denoted by G′
1, remains 2-connected and simple and by Theorem 4.1.2,

χe(G
′
1) ≤ k. Hence, G′

1 has an edge-face k-coloring φ. Then, φ can be viewed as a

partial edge-face k-coloring of G on [E(G) ∪ F (G)] \ {uv, vw}.
The coloring φ can be adjusted (if necessary) and then extended to be an edge-face

k-coloring of G if dG(u) ≤ k − 3 or dG(w) ≤ k − 3 by Lemma 4.4.2.
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Proposition 2 G does not contain any of configurations illustrated in Figure 2 where

d(vi) = 2, for each i = 0, 1, 2 and uv1wv2u is a face, and, in (a) uv1wu is a face,

in (b) uv1wv0u is a face.
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Proof. By way of contradiction, we assume that G contains the configuration (a)

or (b). Let G2 = G \ {v1, v2}. Then, G2 remains 2-connected and simple and

χe(G2) ≤ χe(G) ≤ k. Thus, G2 has an edge-face k-coloring: φ : E(G2)∪F (G2) 7→ C.

Denote fuv2w ∈ F (G) the face adjacent to the face uv1wv2u and incident with

the subdivided edge uv2w and denote fuw the face incident with the edge uw in

(a) (or the subdivided edge uv0w in (b)) other than the face bounded by the cir-

cuit uwv1u (or uv1wv0u in (b)). We also use fuv2w and fuw to denote the cor-

responding face in G2. Then, φ can be viewed as a partial edge-face k-coloring

of G on [E(G) ∪ F (G)] \ {uv1, uv2, wv1, wv2, uv1wv2u, uv1wu} in (a) (or on

[E(G) ∪ F (G)] \ {uv1, uv2, wv1, wv2, uv1wv2u, uv1wv0u} in (b))

Let {a, b} ⊆ C\φ(u) and {c, d} ⊆ C\φ(w) since dG2(u) ≤ k−2 and dG2(w) ≤ k−2.

We consider two cases as follows:

Case 1: φ(fuv2w) 6∈ {c, d} ∩ {a, b}. Without loss of generality, we assume that

φ(fuv2w) 6∈ {c, d} and φ(fuv2w) 6= a.

By Lemma 4.4.1, there exists a one-to-one function f : {a, b} 7→ {c, d} such that

f(a) 6= a and f(b) 6= b. We can color uv1, wv1, uv2, wv2 with colors b, f(b), a, f(a),

respectively and then, by Lemma 4.4.2, we can color the faces uv2wv1u and uv1wu

properly. Thus, we obtain an edge-face k-coloring for the graph G. A contradiction.

Case 2: φ(fuv2w) ∈ {c, d} ∩ {a, b}. Without loss of generality, we assume that

a = φ(fuv2w) = c. We consider the following two subcases.

Subcase 2.1: G contains the configuration (a).

Denote e = φ(uw). Remove the color from the edge uw and color it with the color

a. Then color the edges uv1 and wv2 with the color e and color the edges uv2 and

wv1 with b, d respectively. By Lemma 4.4.2, we can further color the faces uv2wv1u

and uv1wu properly. Thus, we obtain an edge-face k-coloring for the graph G. A

contradiction.
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Subcase 2.2: G does not contain the configuration (a).

Then G contains the configuration (b).

Denote g = φ(uv0) and h = φ(wv0). Then g 6= h and a 6∈ {g, h}. Remove the

color g from the edge uv0 and color it with the color a. We first color the edges wv2

and wv1 with colors d and a, respectively. Then color the edge uv2 with a color in

{b, g} \ {d}. And then color the edge uv1 with the remaining color from {b, g} since

a 6∈ {b, g}. By Lemma 4.4.2, we can further color the faces uv2wv1u and uv1wv0u

properly. Thus, we obtain an edge-face k-coloring for the graph G. A contradiction.

Proposition 3 (Configuration B) If G contains a configuration illustrated in Figure

3 where uvwu is a face and d(u) ≥ d(w) and d(v) = 2, then we have the following

two conclusions:

(1) For each partial edge-face k-coloring φ of G on [E(G)∪F (G)] \ {uv, wv, uvwu}
which can be obtained from an edge-face k-coloring of G \ {v}, let e = φ(uw) and

a = φ(f) where f is the face of G incident with the vertex v other than the triangle

face uvwu. Then we have that

(a) |C \ φ(u)| = 1 and consequently, d(u) = k. And

(b) by (a), let b ∈ C \ φ(u). Then φ must satisfy one of the following two cases:

Case 3.1. If b = a, then either a ∈ φ(w) or {a} = C \ φ(w),

or

Case 3.2. If b 6= a, then C \ φ(w) ⊆ {a, b}.
(2)

min{d(u), d(w)} ≥ 4

(that is, d(w) ≥ 4).

(The vertices u and w are called the terminal vertices of the configuration.)
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Proof. I. If one can adjust (if necessary) and then extend the coloring φ to the

uncolored edges uv and vw, then, by Lemma 4.4.2, the partial edge-face k-coloring φ

of G on [E(G) ∪ F (G)] \ {uvwu} can be further extended to the uncolored triangle
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face uvwu. Therefore, we only need to find a way to adjust (if necessary) and then

extend the coloring φ to the uncolored edges uv and vw.

II. If there is a color d ∈ C \ [φ(u) ∪ {a}] and a color c ∈ C \ [φ(w) ∪ {a}] such

that d 6= c, then the coloring φ can be easily extended to the uncolored edges uv and

vw.

III. Assume that |C \ φ(u)| ≥ 2. Then |C \ φ(w)| ≥ 2 because d(u) ≥ d(w). By

II, |[[C \ φ(u)] ∪ [C \ φ(w)]] \ {a}| ≤ 1, otherwise there is a pair of colors described

in II. Therefore, |C \ φ(u)| = |C \ φ(w)| = 2 and a ∈ C \ φ(u) = C \ φ(w). Let

{a, c} = C \ φ(u) = C \ φ(w). Denote e = φ(uw). Remove the color e from the edge

uw and color it with the color a and then color the edges uv and wv with the colors

e, c, respectively. This contradiction implies that |C \ φ(u)| = 1 which is (1)-(a).

IV. Case 3.1. We assume that b = a. If a 6∈ φ(w) and {a} 6= C \ φ(w), then

a ∈ C \ φ(w) and |C \ φ(w)| ≥ 2. Let g ∈ C \ φ(w) and g 6= a. Remove the

color e = φ(uw) from the edge uw and color it with the color a and then color the

edges uv and wv with the colors e and g, respectively. Therefore, either a ∈ φ(w) or

{a} = C \ φ(w).

V. Case 3.2. We assume that b 6= a. Then, C \ φ(w) ⊆ {a, b} otherwise there is a

color h ∈ [C \ φ(w)] \ {a, b} such that {h, b} is a pair of colors described in II.

VI. Part (2) of the proposition can be proved easily by applying the conclusion of

(1)-(b). If d(w) ≤ 3, then a /∈ φ(w) and |C \ φ(w)| = k − (d(w) − 1) ≥ k − 2 > 2.

Obviously, it is neither Case 3.1 nor Case 3.2.

Proposition 4 (Configuration C) If G contains the configuration illustrated in Fig-

ure 4, where d(v1) = d(v2) = 2 and uv1wv2u forms the boundary of a face, then

d(u) = d(w) = k.

(The vertices u and w are called the terminal vertices of the configuration.)
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Proof. By way of contradiction, we assume that d(u) ≤ k − 1. Let G4 = G \ {v1}.
Then G4 remains 2-connected and simple and χe(G4) ≤ χe(G) ≤ k. Let φ : E(G4) ∪
F (G4) 7→ C be an edge-face k-coloring of G4. Then φ can be viewed as a partial

edge-face k-coloring of G on [E(G) ∪ F (G)] \ {uv1, wv1, uv1wv2u}. Denote by fuviw

the face of G which is adjacent to the face uv1wv2u and incident with the subdivided

edge uviw for each i = 1, 2. fuviw is also considered as the corresponding face in G4.

Let {a, b} ⊆ C \φ(u) and c ∈ C \φ(w). Denote d = φ(uv2), e = φ(wv2), f = φ(fuv1w)

and g = φ(fuv2w). We consider the following two cases:

Case 1: c 6= f = φ(fuv1w).

Color the edge wv1 with the color c. If {a, b} 6= {c, f}, then color the edge uv1

with a color from {a, b} \ {c, f}. Since the length of the face uv1wv2u is 4 ≤ k−1
2

,

by Lemma 4.4.2, we can color it properly. Therefore, we get an edge-face k-coloring

for G, a contradiction. Thus, {a, b} = {c, f}. Therefore, d 6= c. Since, in G4, the

faces fuv1w, fuv2w and the edges uv2, wv2 are pairwise adjacent to each other, we have

that |{f, d, e, g}| = 4. Remove the color d from the edge uv2 and color the edge uv1

with the color d and color the edge uv2 with the color f . Since the length of the face

uv1wv2u is 4 ≤ k
2
− 1, by Lemma 4.4.2, we can further color it properly. Therefore,

we get an edge-face k-coloring of G, a contradiction again.

Case 2: c = f = φ(fuv1w).

Since d = φ(uv2) 6= f = φ(fuv1w) = c and f 6= g = φ(fuv2w), we remove the

color e = φ(wv2) from the edge wv2 and color it with the color f and color the edge

wv1 with the color e. If there is a color in {a, b} \ {e, f}, then we can color th

edge uv1 with this color. Therefore, {a, b} = {e, f}. Remove the color d from the

edge uv2 and color it with the color e and color the edge uv1 with the color d. By

Lemma 4.4.2, we may further extend the coloring φ to obtain an edge-face k-coloring

of G, a contradiction again.

Proposition 5 (Configuration D) If G contains the following configuration illus-

trated in Figure 5, where d(vi) = 2, for each i = 1, 2 and the circuit uviwu forms a

boundary of a face, for each i = 1, 2, then

(1) for each edge-face k-coloring φ of G \ {v1, v2} which can be viewed as a partial

edge-face k-coloring of G on [E(G) ∪ F (G)] \ {uv1, uv2, wv1, wv2, uv1wu, uv2wu},
let ai = φ(fi) where fi is the face incident with the vertex vi other than the triangle

face uwviu for each i = 1, 2, we claim that

{a1, a2} = C \ φ(u) = C \ φ(w).
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and consequently,

(2)

d(u) = d(w) = k.
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Proof.

Proof of (1). We first prove that {a1, a2} = C \ φ(u). Notice that |C \ φ(u)| =

k − (dG(u)− 2) ≥ 2. Therefore, it is sufficient to prove that [C \ φ(u)] \ {a1, a2} = ∅.
By way of contradiction, we assume that [C \φ(u)] \ {a1, a2} 6= ∅. Then, |[C \φ(u)] \
{a1, a2}| ≥ 1.

I. If one can extend the partial coloring φ to the uncolored edges uv1, v1w, uv2 and

v2w, then, by Lemma 4.4.2, the coloring φ can be further extended to the uncolored

triangle face uviwu for each i = 1, 2. Therefore, we only need to find a way to adjust

(if necessary) and then to extend the coloring φ to further color the uncolored edges

uv1, v1w, uv2 and v2w.

II. We consider the following two cases:

Case 1: |[C \ φ(u)] \ {a1, a2}| ≥ 2.

Let {b1, b2} ⊆ [C \ φ(u)] \ {a1, a2} and {c1, c2} ⊆ [C \ φ(w)]. By Lemma 4.4.1,

there is a one-to-one function f1 : {a1, a2} 7→ {c1, c2} such that f1(ai) 6= ai for each

i = 1, 2. By Lemma 4.4.1 again, there is a one-to-one function f2 : {f1(a1), f1(a2)} 7→
{b1, b2} such that f2(f1(ai)) 6= f1(ai) for each i = 1, 2. Therefore, we can color the

edges uv1, uv2, wv1 and wv2 with the colors f2(f1(a1)), f2(f1(a2)), f1(a1) and f1(a2),

respectively.

Case 2: |[C \ φ(u)] \ {a1, a2}| = 1.

Notice that |C \ φ(u)| = k − (dG(u) − 2) ≥ 2. Then either a1 ∈ C \ φ(u) or

a2 ∈ C \ φ(u). Without loss of generality, we assume that a1 ∈ C \ φ(u). Let

b ∈ [C \ φ(u)] \ {a1, a2} and {c1, c2} ⊆ C \ φ(w). By Lemma 4.4.1, there is a one-

to-one function f : {b, a2} 7→ {c1, c2} such that f(b) 6= b and f(a2) 6= a2. Therefore,

if a1 6∈ {c1, c2}, we can color the edges uv1, uv2, wv1 and wv2 with the colors b, a1,

f(b) and f(a2), respectively. Therefore, a1 ∈ {c1, c2}. We assume that a1 = c1. Then,
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c2 6= a1. Denote d = φ(uw). Remove the color d from the edge uw and then color it

with the color a1. We further color the edges uv1, uv2, wv1 and wv2 with the colors

d, b, c2, d, respectively.

Therefore, {a1, a2} = C \ φ(u). Similarly, we can prove that {a1, a2} = C \ φ(w).

Proof of (2). By (1), we have that |[C\φ(u)]| = |[C\φ(w)]| = 2 = k−(dG(u)−2) =

k − (dG(w)− 2). Thus, dG(u) = dG(w) = k.

Proposition 6 G does not contain the configuration illustrated in Figure 6 where

d(vi) = 2, i = 1, 2, 3, 4 and uvv1u, uvv2u, vwv3v, vwv4v are faces.
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Proof. By way of contradiction, we assume that G contains this configuration. By

Proposition 5, dG(u) = dG(v) = dG(w) = k. Let G5 = G\{v1, v2, v3, v4}. Then G5 re-

mains 2-connected and simple and χe(G5) ≤ χe(G) ≤ k. Let φ : E(G5)∪F (G5) 7→ C

be an edge-face k-coloring of G5. The coloring φ can be viewed as a partial edge-face k-

coloring of G on [E(G)∪F (G)]\{uv1, uv2, vv1, vv2, vv3, vv4, wv3, wv4, uv1vu, uv2vu,

vv3wv, vv4wv}. Then dG5(v) = k− 4, dG5(u) = dG5(w) = k− 2. Thus |C \ φ(v)| = 4

and |C \ φ(u)| = |C \ φ(w)| = 2. Let {a, b, c, d} = C \ φ(v), {e, f} = C \ φ(u)

and {g, h} = C \ φ(w) where a 6∈ {g, h}. Denote fi the face incident with the

vertex vi other than the triangle incident with the vertex vi and ai = φ(fi) for each

i = 1, 2, 3, 4.

I. By Proposition 5 and Lemma 4.4.2, it is sufficient to find a way to adjust (if

necessary) and then to extend the coloring φ to the edges uv1, uv2, vv1, vv2 such

that the color set of the remaining two colors for the edges vv3, vv4 is not {g, h}.
II. We claim that |{b, c, d} \ {a1, a2}| ≤ 1. Otherwise, assume that {b, c} ∩

{a1, a2} = ∅. Therefore, we may first color the edges uv1, uv2 with the colors e, f

properly. By Lemma 4.4.1, we may further color the edges vv1 and vv2 with the colors

b, c properly. Hence, the remaining two colors for the edges vv3, vv4 are a and d

where {a, d} 6= {g, h} since a 6∈ {g, h}.
III. By II, we may conclude that {a1, a2} ⊂ {b, c, d}. Hence, we may assume

that c = a1 and d = a2.
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IV. If {e, f} ∩ {a1, a2} = ∅, then we may first color the edges vv1, vv2 with

the colors a2 and a1, respectively. By Lemma 4.4.1, we may further color the edges

uv1, uv2 with the colors e, f properly. Here, the remaining two colors for the edges

vv3, vv4 are a and b where {a, b} 6= {g, h} since a 6∈ {g, h}.
Therefore, {e, f} ∩ {a1, a2} 6= ∅. Without loss of generality, we assume that

f = a2. Then, e 6= a2. Denote m = φ(uv). Remove the color m from the edge uv

and color it with the color a2 (= d). Then we color the edges uv1, uv2, vv1, vv2 with

the colors m, e, b, m, respectively. Hence, the remaining two colors for the edges

vv3, vv4 are a and a1 (= c) where {a, a1} 6= {g, h} since a 6∈ {g, h}.

Proposition 7 (Configuration E) Assume that G contains the configuration illus-

trated in Figure 7 where d(v1) = d(v2) = 2, uv1vu, vwv2v are faces and the path

uv1vv2w is on the boundary of a face, say, fuv1vv2w. Then,

d(v) ≥ k − 2.
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Proof. By way of contradiction, we assume that d(v) ≤ k − 3. Let G6 be the

graph obtained from G by removing the two edges vv1 and vv2 and adding one

edge v1v2. Then G6 remains 2-connected and simple and |E(G6)| = |E(G)| − 1 <

|E(G)|. By Theorem 4.1.2, χe(G6) ≤ k. Let φ be an edge-face k-coloring of the

graph G6. The coloring φ can be viewed as a partial edge-face k-coloring of G on

[E(G)∪F (G)] \ {vv1, vv2, uvv1u, vv2wv}. Since dG(v) + dG(vi) ≤ k− 3 + 2 = k− 1

for each i = 1, 2, by Lemma 4.4.2 φ can be extended to the graph G, a contradiction.

Proposition 8 G does not contain the configuration illustrated in Figure 8 where

d(v) = 4, d(v1) = d(v2) = 2 and uv1vu, vwv2v are faces.
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Proof. Let f be the face of G containing the path uv1vw in its boundary. Then,

the graph G \ {v1} has an edge-face k-coloring φ. The coloring φ can be viewed

as a partial edge-face k-coloring of G on [E(G) ∪ F (G)] \ {uv1, vv1, uv1vu} and

let a = φ(f). By Proposition 3, dG(u) = k. We may assume that φ(vv2) 6= a

otherwise we can replace it with another color from the color set C \ φ(v) since

|C \ φ(v)| = k − (dG(v)− 1) = k − 3 ≥ 2. Therefore, it is neither Case 3.1 nor Case

3.2 of Proposition 3 since d(v) = 4 < k − 1.

Proposition 9 From Proposition 1, any subdivided edge of G is of length at most 2.

Let P = uvw or uw be a subdivided edge of G of length at most 2 and f be a face in

G incident with P . Denote G \ P = G \E(P ) if P is of length 1 or G \ P = G \ {v}
if P is of length 2. If G \ P is 2-connected, then we have either

(1)

d(u) + d(w) > k

or

(2)

d(f) ≥ k

2
.

Proof. Assume that both (1) and (2) are false. Let φ be an edge-face k-coloring

of G \ P . The coloring φ can be viewed as a partial edge-face k-coloring of G on

[E(G)∪F (G)]\ [E(P )∪{f}]. Then this coloring φ can be extended to E(P )∪{f} by

Lemma 4.4.2 since the uncolored edges and face are in Es∪Fs defined in Lemma 4.4.2.

4.5.3 The structure of ζ−1
q (e)

With the basic properties of previous subsection, we are ready to determine the

structure of the subgraph ζ−1
q (e) in G, for each positive integer q, and each e ∈

E(ζq(G)).
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4.5.3.1 q = 1

It is obvious that ζ−1
1 (e) must be a subdivided edge of length at most 2 (by Proposi-

tion 1).

4.5.3.2 q = 2

For each e ∈ E(ζ2(G)) with endvertices u and w, if the multiplicity of e in ζ1(G) is

at least 2 then ζ−1
2 (e) must be the union of a few subgraphs J1, · · · , Jt where t ≥ 2 is

the multiplicity of e in ζ1(G), each of which is a subdivided edge of length at most

2 with the endvertices u,w (a Configuration A, by 4.5.3). Hence, by Proposition 2,

ζ−1
2 (e) must be one of the Configurations B, C and D described in Propositions 3, 4

and 5.

4.5.3.3 q = 3

We claim that ζ3(G) = ζ2(G). That is, operations stop at q = 2.

Proof of the Claim. It is sufficient to prove that there are no subdivided edges

of length at least 2 in ζ2(G). By way of contradiction, let P = u0u1 · · · ur be a

subdivided edge of length r ≥ 2 in ζ2(G). Denote e1 = u0u1 and e2 = u1u2. Since

δ(ζ1(G)) ≥ 3, we have that ζ−1
2 (e1) must be the union of a few subgraphs J1, · · · , Jt,

each of which is a subdivided edge of length at most 2 with the endvertices u0, u1 and

ζ−1
2 (e2) must be the union of a few subgraphs I1, · · · , Is, each of which is a subdivided

edge of length at most 2 with the endvertices u1 and u2 where max{s, t} ≥ 2. We

consider the following two cases:

Case 1: Either t = 1 or s = 1. Without loss of generality, we assume that s = 1.

Since s = 1, we have that t ≥ 2. By 4.5.3, ζ−1
2 (e1) is one of the configurations

B, C and D described in Propositions 3, 4, and 5 with the terminal vertices u0 and

u1. On the other hand, by Proposition 2, t ≤ 3. Therefore, dG(u1) ≤ 3 + 1 = 4. If

ζ−1
2 (e1) is Configuration C or D, we must have that dG(u1) = k. Hence, ζ−1

2 (e1) must

be Configuration B. In this case, t = 2 and therefore, dG(u1) = 2 + 1 = 3 < 4. This

contradict (2) of Proposition 3.

Case 2: Both t ≥ 2 and s ≥ 2.

By Proposition 2, we have that t ≤ 3 and s ≤ 3. Therefore, dG(u1) ≤ 3 + 3 =

6 < k. Hence, neither ζ−1
2 (e1) nor ζ−1

2 (e2) is Configuration C or D. Thus, both of

them must be Configuration B. This implies that dG(u1) = 2 + 2 = 4 ≤ k − 3. By
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Proposition 8, ζ−1
2 (u0u1u2) must be Configuration E. By Proposition 7, dG(u1) ≥ k−2,

a contradiction.

Now, we have proved that q = 2, that is, ζ2(G) = ζ3(G) = · · ·. Denote ζ2 = ζ and

ζ(G) = H.

Let f be a face in G. We say that the face f ′ in H is the corresponding face of f if

f ′ can be obtained from f by replacing subdivided edge of length 2 with single edges

in G. In this sense, we also call f to be the corresponding face of f ′.

4.5.4 Some further structures of H

4.5.4.1 Classification of edges of H

By the discussion of the previous subsection, we can see that for each edge e ∈ H,

ζ−1
2 (e) is one of the Configurations B, C and D, otherwise ζ−1

2 (e) is either a single edge

or a single subdivided edge of length 2. Therefore, the edge of H can be partitioned

into three classes:

E3 = {e ∈ E(H) : ζ−1
2 (e) is one of the Configurations B, C and D},

E2 = {e ∈ E(H) : ζ−1
2 (e) is a subdivided edge of length 2},

E1 = {e ∈ E(H) : ζ−1
2 (e) is a subdivided edge of length 1}.

Obviously,

E1 ⊆ E(G), E2 ⊆ E(ζ1(G)), E3 ⊆ E(ζ2(G)) = E(H).

Furthermore, each edge e ∈ E3 is called a B-edge, a C-edge, or, a D-edge if ζ−1(e)

is a B-configuration, a C-configuration, or, a D-configuration, respectively; and, each

edge e ∈ Ei (i = 1, 2) is called an Ei-edge (ζ−1(e) is subdivided edge of length i).

4.5.4.2 Some further structures of H

(I) The relation between dG(v) and dH(v) (v ∈ V (H)) is to be discussed here. We

claim that, for each v ∈ V (H) ⊆ V (G),

dG(v) ≤ 2dH(v) + 1; (4.1)

if dG(v) < k, then dG(v) ≤ 2dH(v); (4.2)
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consequently,

if dG(v) = k, then dH(v) ≥ k − 1

2
; (4.3)

or, equivalently,

if dH(v) <
k − 1

2
, then dG(v) < k. (4.4)

The degrees of a vertex v would be different in the graphs G and H if v is incident

with some B-, C- or D-edges in H. However, by Proposition 6, no vertex is incident

with more than one D-edge. This proves Inequality (4.1). Furthermore, if dG(v) < k,

then by Proposition 5 the vertex v is not incident with any D-edge in H. This proves

Inequality (4.2).

Inequalities (4.3) and (4.4) are immediate consequences of Inequality (4.1).

(II) It is obvious that H is loopless, 2-connected and δ(H) ≥ 3, and every face is of

degree at least 3. Note that the graph H may have some parallel edges, but they do

not form degree 2 faces.

(III) We claim that

if e = uv ∈ E3, then max{dG(u), dG(v)} = k, (4.5)

and,

if max{dH(u), dH(v)} <
k − 1

2
, then e ∈ E1 ∪ E2. (4.6)

Inequality (4.5) is a corollary of Propositions 3, 4 and 5 since ζ−1(e) is a Con-

figuration B, C or D if e ∈ E3. Inequality (4.6) is an immediate consequence of

Inequalities (4.4) and (4.5).

(IV) By Theorem 3.1, a face of H with positive Euler contribution must be in the

following list:
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dH(f) degree sequence around the face

5 3, 3, 3, 3, ≤ 5

4 3, 3, 3, ≤ ∆

4 3, 3, 4, ≤ 11

4 3, 3, 5, ≤ 7

4 3, 4, 4, ≤ 5

3 5, 6, ≤ 7

3 5, 5, ≤ 9

3 4, 7, ≤ 9

3 4, 6, ≤ 11

3 4, 5, ≤ 19

3 4, 4, ≤ ∆

3 3, 11, ≤ 13

3 3, 10, ≤ 14

3 3, 9, ≤ 17

3 3, 8, ≤ 23

3 3, 7, ≤ 41

3 3, ≤ 6, ≤ ∆

A face of H with positive Euler contribution is called a positive face.

With further investigation, we will prove that the length of a positive face in H is

exactly 3 and the maximum degree of the vertices on its boundary is very large (See

(V)).

(V) Let f ′ = x1 · · · xdx1 be a positive face in H . We claim that

(1)

d = 3;

(2)

max{dH(x1), · · · , dH(x3)} ≥ 12;

(3) Let dH(x3) ≥ dH(x2) ≥ dH(x1). Then, dH(x2) ≤ 11 < k−1
2

, dH(x1) ≤ 4 < k−1
2

and dH(x1) + dH(x2) ≤ 14.

Proof of (V) (1) Let f be the corresponding face of f ′ in G. For each 1 ≤ i ≤ d,

since H is 2-connected and δ(H) ≥ 3, it is obvious that either H \ {xi−1xi} or

H \ {xixi+1} remains 2-connected. Therefore, if d ≥ 4, then, by (IV), there exits
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an edge uv adjacent to f ′ with dH(u) ≤ 4 and dH(v) ≤ 5 such that H \ {uv} is 2-

connected. Therefore, G \ E(ζ−1
2 (uv)) is also 2-connected and simple. By Inequality

(6), uv ∈ E1 ∪ E2. Obviously, dG(f) ≤ 2 × dH(f ′) ≤ 2 × 5 = 10 ≤ k−1
2

. By

Inequality (4), we have that dG(u) < k and dG(v) < k and therefore, by Inequality

(2), dG(u) + dG(v) ≤ 2× (dH(u) + dH(v)) ≤ 2× (4 + 5) = 18 < 24 ≤ k. It contradicts

to Proposition 9. Therefore, d = 3.

(2) We may assume that dH(x1) ≤ dH(x2) ≤ dH(x3). By way of contradiction, we

assume that dH(x3) ≤ 11. Then, dH(xi) < k−1
2

and, by Inequality (4), we have that

dG(xi) < k for each i = 1, 2, 3. Therefore, in H, no C-edges or D-edges are incident

with the vertex xi and, by Inequality (6), xixi+1 ∈ E1 ∪ E2 for each i = 1, 2, 3.

Denote by mi the number of B-edges incident with the vertex xi in H. Then

dG(xi) = dH(xi) + mi. It is obvious that either G \ E(ζ−1
2 (x1x2)) is 2-connected and

simple or G \ E(ζ−1
2 (x1x3)) is 2-connected and simple. Without loss of generality,

we assume that G \ E(ζ−1
2 (x1x3)) is 2-connected and simple. Let φ be an edge-face

k-coloring of G \ E(ζ−1
2 (x1x3)). Remove the colors from those edges which have

endvertices xi and a 2-vertex for each i = 1, 3. Notice that there are at least mi

2-vertices adjacent to xi for each i = 1, 2, 3. If ζ−1
2 (x1x3) = x1x3, there are at least

k − (dG(x1) + dG(x3)− 2) + m1 + m3 − 1 = k − (dH(x1) + m1 + dH(x3) + m3 − 2) +

m1 + m2 − 1 = k − (dH(x1) + dH(x3)) + 1 ≥ 24 − 14 + 1 = 11 colors available for

the edge x1x3. If ζ−1
2 (x1x3) = x1x0x3 where dG(x0) = 2. Then φ can be viewed as a

partial edge-face k-coloring of G on [E(G)∪F (G)]\{x1x0, x0x3, f}. Notice that the

uncolored face f is the corresponding face of f ′ whose length is at most 3×2 = 6 and

the uncolored edges are in Es (defined in Lemma 4.4.2). Therefore, by Lemma 4.4.2,

φ can be extended to the graph G. A contradiction.

(3) is obvious by the table of (IV).

Let f ′ = uvwu be a positive face in H with dH(u) ≤ dH(v) ≤ dH(w). The edge

uv is called special and the face in H incident with the special edge uv other than the

face f ′ is also called special with respect to the edge uv.

The strategy and the outline of the remaining part of the proof. We will

re-assign the Euler contribution of the graph H (or, commonly called charge/discharge)

in subsection 4.5.4 as follows: The Euler contribution of every positive face will be

discharged to a special face by crossing a special edge. Consequently, we will show

that, after re-assignment, H will have no face with positive charge. It is obvious that

the new charges of the non-special faces are non-positive. We will prove that the
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new charge of each special face remains non-positive. Notice that each special face

receives some charge from adjacent positive faces sharing special edges.

In order to keep the new charge of a special face non-positive, it is sufficient to

prove that the initial charge of a special face is negative and that the magnitude of its

initial charge is very large. By Theorem 4.3.1, the initial charge (Euler contribution)

of a face is determined by its length and the degrees of the vertices on its boundary.

Therefore, it is sufficient to prove that the length of each special face is large enough

(see (VII)) and that there is enough number of vertices with large degree (see (VIII)).

Some notations:

Denote SPE(H), the set of all special edges of H and SPE1(H), the set of all such

special edges both of whose endvertices are of degree 3 in H. Denote SPE2(H) =

SPE(H) \ SPE1(H)

(VI) For each special edge uv = e ∈ SPE(H) with uvw as the adjacent positive face,

we have that

(1) e ∈ E1 ∪ E2;

(2) For any A ⊆ E(G) ∪ F (G), any partial edge-face k-coloring φ of G on A can

be adjusted and then extended to A ∪ ζ−1(e);

(3) G \ E(ζ−1(e)) is not 2-connected, and the vertex w is the cut-vertex of the

graph G \ E(ζ−1
2 (e));

(4) e ∈ E1.

Proof (VI) (1) It is obvious by Inequality (6) and (V)-(3) that e ∈ E1 ∪ E2.

(2) It is sufficient to show that for each e = uv ∈ Q′, the coloring φ can be adjusted

and then, extended to the edges in E(ζ−1(e)). By (V)-(3), dH(u) ≤ dH(v) ≤ 11 < k−1
2

.

Therefore, by Inequality (4), max{dG(u), dG(v)} < k. Thus, the vertices u, v are

not incident with any C− or D−edges by Prosit ions 4 and 5.

Denote by m1 the number of B-edges incident with u and m2 the number of B-

edges incident with v. Then dG(u) = dH(u) + m1 and dG(v) = dH(v) + m2. Let E ′ =

the set of edges in G with endvertices u and a 2-vertex and E ′′ = the set of edges in

G with endvertices v and a 2-vertex. Notice that, by (V)-(3), dH(u) + dH(v) ≤ 14.

Remove the colors from the edges in E ′ ∪ E ′′ and then color the edges in ζ−1(e)

since there are at most dH(u)−1+dH(v)−1+2 ≤ 14 forbidden colors for each of those

edges. Since e = uv ∈ E1∪E2, there are at most dH(u)− 1 B-edges incident with the

vertex u. Therefore, dG(u) = dH(u) + m1 ≤ dH(u) + dH(u) − 1 ≤ 11 + 11 − 1 = 21

since dH(u) ≤ 11. Similarly, dG(v) = dH(v) + m2 ≤ 21. Therefore, for each edge xy
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in E ′ ∪ E ′′, dG(x) + dG(y) ≤ 2 + 21 = 23 ≤ k − 1. By Lemma 4.4.2, we can recolor

the edges in E ′ ∪ E ′′.

(3) If G \ ζ−1(e) is 2-connected, then it has an edge-face k-coloring φ. By (2),

the coloring φ can be adjusted and then extended to the edges of ζ−1(e). Since

dG(uvw) ≤ 6, by Lemma 4.4.2, the coloring φ can be further extended to the positive

face uvwu and therefore the entire G.

(4) By (1), assume that e ∈ E2. By (3), since G \ ζ−1(e) has a cut-vertex w, it

is impossible that G \ ζ−1(e) has an edge joining u and v. By Inequality (1) and

(V)-(3), one of dG(u) and dG(v) is at most 2 × 4 + 1 = 9 < k − 2. This contradicts

Proposition 1-(2) that the degree of each of {u, v} must be at least k − 2 in G.

(VII) For any special face f ′′, let f be its corresponding face in G. Denote s the

number of special edges in the boundary of f ′′. Then, we claim that

2dH(f ′′) ≥ dG(f) + s; (4.7)

dG(f) ≥ k

2
+ s; (4.8)

dH(f ′′) ≥ k

4
+ s. (4.9)

Proof of (VII) (4.7) Let e ∈ E(f ′′) in H. If ζ−1(e) is not an edge in G, then the

subgraph of G induced by ζ−1(e) must be an Ei-, B-, C-, or D-edge. Thus, the edge

e in H corresponds to a subdivided edge of length 1 or 2 around the boundary of f

in G. By (VI)-(4), every special edge is an original edge in G. Therefore,

dG(f) ≤ 2dH(f ′′)− s.

(4.8) Let uv be a special edge incident with f ′′. By (VI)-(3), G \ {uv} is not

2-connected. Let f ′ = vuw be the positive face adjacent to the special edge e = uv

in H. By (VI)-(3), w is a cut vertex in G \ {e}. Moreover, w separates G \ {e}
into two blocks, say, G′ and G′′, and each block is 2-connected and they share the

face f and the vertex w. Thus, G′ and G′′ both have edge-face k-colorings φ′ and

φ′′ such that φ′(w) ∩ φ′′(w) = ∅. Denote F ′ the set of all faces of G adjacent to

the face f ′′ in H whose corresponding faces in H are positive, and E ′ the set of all

special edges incident with the face f . We remove the colors from the faces and

edges of E ′ ∪ F ′ ∪ {f}. Then we can combine the colorings φ′ and φ′′ into a partial

edge-face-coloring φ of G: φ : [E(G) ∪ F (G)] \ [E ′ ∪ F ′ ∪ {f}] 7→ C .
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If the partial coloring φ can be extended to the special face f , we can further

color the edges in E ′ by (VI)-(2) and the faces in F ′ by Lemma 4.4.2 since by (V),

the length of each positive face is at most 2 × 3 = 6 < k−1
2

. So, the partial coloring

φ can not be extended to the face f .

Obviously,

|E ′ ∪ F ′| ≥ 2s.

Thus, there are at most

2dG(f)− |E ′ ∪ F ′| ≤ 2dG(f)− 2s

forbidden colors for the face f .

Assume that

2dG(f)− 2s ≤ k − 1.

Then there are at least k−(2dG(f)−2s) ≥ 1 colors available for the face f . Therefore,

φ can be extended to the face f . A contradiction. Hence, we must have that

2dG(f)− 2s ≥ k.

(4.9) By Inequalities (4.7) and (4.8), we have that

2dH(f ′′) ≥ dG(f) + s ≥ [
k

2
+ s] + s.

Hence,

dH(f ′′) ≥ k

4
+ s.

(VIII) For each special edge uv ∈ SPE1(H), let f ′ = uvw be the positive face adjacent

to the edge uv. Let u1 be the vertex in H adjacent to u other than v and w, and, v1

be the vertex in H adjacent to v other than u and w. We claim that

max{dH(u1), dH(v1)} ≥ k − 4

2
.
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Proof of (VIII) Notice that dH(u) = dH(v) = 3 since uv ∈ SPE1(H).
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(a) By way of contradiction, we assume that both dH(u1) < k−4
2

and dH(v1) < k−4
2

.

Then, by Inequality (6), the edges uu1 and vv1 are all in E1 ∪ E2 and by (VI)-(4),

uv ∈ E1. Let uu′1 ∈ E(ζ−1(uu1)) and vv′1 ∈ E(ζ−1(vv1)). Note that either u′1 = u1 or

dG(u′1) = 2 and either v′1 = v1 or dG(v′1) = 2. Denote f ′′ the face in H adjacent to

the face f ′ and incident with the edge uw. Denote f1, f2 the corresponding faces of

f ′ and f ′′ in G, respectively.

(b) We claim that both uw ∈ E1 ∪ E2 and vw ∈ E1 ∪ E2.

By way of contradiction, we assume that uw ∈ E3. Since dH(u) ≤ 11 < k−1
2

, by

Inequality (4), dG(u) < k. Therefore ζ−1(uw) must be a B-edge. Let w3 be the only

2-vertex in ζ−1(uw). If w3 is on the boundary of f1. Then, ww3 is adjacent to two

faces with length at most 6 and dG(w3) + dG(u) ≤ 2 + 2 × 11 = 24 ≤ k and uw3 is

also adjacent to two faces with length at most 6. Therefore, by Lemma 4.4.2, any

edge-face k-coloring of the graph G\{w3} can be extended to the graph G. Therefore,

w3 must be on the boundary of f2.

Clearly, G \ {uw} remains 2-connected and simple. Let φ be an edge-face k-

coloring of G \ {uw}. Remove the colors from the edges uu′1, uv and uw3 and from

the face f1. Denote S = {uw, uu1, uv, uw3, f1, uw3wu}. Then φ can be viewed as

a partial edge-face k-coloring of G on [E(G)∪ F (G)] \ S. Obviously, there is at least

one color available for the edge uw and color it. Since S \ {uw} is a subset of Es ∪Fs

defined in Lemma 4.4.2, by Lemma 4.4.2 φ can be adjusted and then extended to

G. This contradiction shows that uw ∈ E1 ∪ E2. Similarly, we can also prove that

vw ∈ E1 ∪ E2.

(c) Note that u1u, uw, uv ∈ E1 ∪ E2. We have dG(u) = dH(u) = 3. Similarly,

dG(v) = dH(v) = 3.

(d) Let ww′
1 ∈ E(ζ−1(uw)) and ww′

2 ∈ E(ζ−1(vw)). Note that either w′
1 = u or

dG(w′
1) = 2, and that either w′

2 = v or dG(w′
2) = 2. By (VI)-(3), G\E(ζ−1

2 (uv)) is not

2-connected. Therefore, G\E(ζ−1
2 (uw)) remains 2-connected and simple. Let φ be an

edge-face k-coloring of the graph G \E(ζ−1
2 (uw)). Remove the colors from the edges

uu′1, uv, vv′1 and vw′
2 (if any). Then, φ can be viewed as a partial edge-face k-coloring

of G with the elements ww′
1, uw′

1, uu′1, uv, vv′1, vw′
2 (if any) and f1 uncolored.

Denote a = φ(ww′
2), b = φ(f2) and c ∈ C \ φ(w). If c 6= b, we can color the edge

ww′
1 with the color c. If c = b, remove the color a from the edge ww′

2 and then color

it with the color b and then color the edge ww′
1 with the color a. The remaining

uncolored elements are the edges uu′1, vv′1, uw′
1 (if any) and vw′

2 (if any) and the face

f1. Notice that these elements are all in Es ∪ Fs defined in Lemma 4.4.2. Therefore,
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φ can be extended to the graph G. A contradiction.

4.5.4.3 Charge and Discharge

Consider Φ, the Euler contribution of H, as the initial charge of the face set of H.

We will reassign a new charge Φ′ to each face of H as follows. Each positive face

f ′ sends its total amount of its Euler contribution Φ(f ′) to the adjacent special face

sharing the special edge with it by crossing the special edge.

We now check the new charge Φ′(f ′).

(a) For each non-special face f ∗ with Φ(f ∗) ≤ 0, the charge remains the same. That

is,

Φ′(f ∗) = Φ(f ∗) ≤ 0.

(b) For each positive face f ′ in H,

Φ′(f ′) = Φ(f ′)− Φ(f ′) = 0,

and if the positive face f ′ is adjacent to a special edge in SPE1, then

Φ(f ′) ≤ 1− 3

2
+ 2× 1

3
+

1

12
=

1

4
.

If the positive face f ′ is adjacent to a special edge in SPE2, then

Φ(f ′) ≤ 1− 3

2
+

1

3
+

1

4
+

1

12
=

1

6
.

In summary, each positive face in H discharges either ≤ 1
6

or ≤ 1
4

to an adjacent

special face sharing the special edge with it by crossing a special edge e ∈ SPE2 or

e ∈ SPE1, respectively.

(c) For each special face f ′, denote r = dH(f ′) and si the number of special edges in

SPEi(H) adjacent to f ′ for each i = 1, 2.

(d) By (VIII), there are at least s1

2
vertices in B(f ′) with degrees at least k−4

2
.

(e) By Inequality (9), we have that

r ≥ k

4
+ (s1 + s2). (4.10)



48 Edge coloring and Edge-face coloring

Therefore

Φ′(f ′) ≤ Φ(f ′) + s1

4
+ s2

6

= 1− r
2

+
∑

v∈BH(f ′)
1

dH(v)
+ s1

4
+ s2

6

≤ 1− r
2

+ [ s1

2
× 2

k−4
+ (r − s1

2
)× 1

3
] + s1

4
+ s2

6
(by (d))

= 1− r
6

+ s1

k−4
+ s1

12
+ s2

6

≤ 1− [ k
24

+ s1+s2

6
] + s1

12
+ s2

6
+ s1

k−4
(by (e))

= 1− k
24
− s1

12
+ s1

k−4

≤ 0 (since k ≥ 24).

Thus,

2 =
∑

f ′∈F (H)

Φ(f ′) =
∑

f ′∈F (H)

Φ′(f ′) ≤ 0

A contradiction.

This completes the proof of Theorem 4.1.3.
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