WestVirginiaUniversity
THE RESEARCH REPOSITORY @ WVU

Graduate Theses, Dissertations, and Problem Reports

2004

Comparison of path-planning and search methods for
cooperating unmanned aerial vehicles

Zachary Wilson Spritzer
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Spritzer, Zachary Wilson, "Comparison of path-planning and search methods for cooperating unmanned
aerial vehicles" (2004). Graduate Theses, Dissertations, and Problem Reports. 1463.
https://researchrepository.wvu.edu/etd/1463

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.


https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1463?utm_source=researchrepository.wvu.edu%2Fetd%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Comparison of Path-Planning and Search Methods
For Cooperating Unmanned Aerial Vehicles

Zachary Wilson Spritzer

Thesis Submitted to the
College of Engineering and Mineral Resources
at West Virginia University
In Partial Fulfillment of the Requirements
For the Degree of

Master of Science
in
Aerospace Engineering

Marcello Napolitano, Ph. D., Chair
Gary Morris, Ph. D.
Jacky Prucz, Ph. D.

Department of Mechanical and Aerospace Engineering
Morgantown, West Virginia
2004

Keywords: Unmanned Aerial Vehicles, Path Planning, Task Allocation



Abstract
Comparison of Path-Planning and Search Methods for Unmanned Aerial Vehicles
Zachary W. Spritzer

The main goal of this research effort is develop a simulation environment for
cooperating UAVs within MATLAB’s SIMULINK. This is the first step in a process
that will eventually lead to the implementation of model UAVs on a model battlefield.
The interest in cooperation of UAVs over the past decade has grown significantly. This
is due to several reasons including lower operational cost, lower risk for humans, and
greater maneuverability.

This research explores two scenarios. The first is a scenario in which all of the
characteristics of a battlefield are known prior to the UAVs being launched. Three
prevalent path-planning methods are compared based on calculation speed and
optimization. This thesis shows that a visibility graph method leads to the lowest cost
solution, while the Voronoi diagram method provides a computationally inexpensive
solution.

The second scenario is a search and destroy mission where nothing is known
about the battlefield prior to UAVs launch. This will consist of the vehicles visiting a set
of predetermined waypoints until a target is found. The result of this research produces a
simulation of cooperating UAVs that shows the potential of fulfilling many realistic
missions in a battlefield environment.



Acknowledgements

I would like to thank everyone that has made this document possible. Most
importantly | like to thank my family, Nancy and Mark, which have helped me
tremendously. Also, | would like to thank my girlfriend Cortney who helped me through
the long nights. To my friends graduate school has been an interesting journey thanks for
making it fun and to the Dave Matthews Band for giving me something good to listen to
while working.

I would like to thank my committee chair Dr. Marcello Napolitano for all of his
guidance and help over the last several years; it has proved to be invaluable. 1 also would
like to also thank my committee members Dr. Jacky Prucz and Dr. Gary Morris for their
assistance.

Finally, 1 would like to thank everyone that I’ve worked with over the course of
the last year and half in the aerolab Matt Lechliter, Jennifer Hazelton, and Srikanth
Gururajan, and to the people upstairs Elena Lucci, Dr. Giampero Campa, Dr. Mario

George Perhinschi, and Dr. Brad Seanor. Thank you.



Table of Contents
Title Page
Abstract
Acknowledgements
Table of Contents
List of Tables
List of Figures
Nomenclature
Chapter 1: Introduction to Cooperating UAVS
1.1  History of UAVs
1.2 Research Objectives
Chapter 2: Literary Review
2.1  Review of Path-Planning and Task Allocation Methods
2.2 Review of Search Methods
Chapter 3: The Path-Planning and Task Allocation Process
3.1  Path Generation and Path Selection
3.2 Path Refinement and Task Allocation
Chapter 4: Implementation of Six Degree of Freedom Aircraft Dynamics
4.1 General Overview of Aircraft Dynamics
4.2 Implementation of Heading Angle Control Scheme
Chapter 5: Development of a SIMULINK scheme for Cooperating UAVs
5.1 Implementation of the Path-Planning Process
5.2 Management of the No-Fly Zones and Threats
5.3  Management of the UAVs and Targets
Chapter 6: Comparison with Other Available Path Generation Methods
6.1 Implementation of Grid and Visibility Graph
6.2  Comparison of the Path Generation Methods
Chapter 7: Discussion and Implementation of Search Scheme in SIMULINK
7.1  Theoretical Approach
7.2 Implementation and Discussion of Search Scheme
Chapter 8: Conclusions and Recommendations
8.1  Conclusions
8.2  Recommendations
References
Appendix A - Path-Planning and Task Allocation MATLAB Files
Appendix B - Stability Derivatives
Appendix C - Simulation Implementation MATLAB Files
Appendix D - Grid and Visibility Graph MATLAB Files
Appendix E - Search and Destroy MATLAB Files

17
26

34
41

45
48
50

52
57

85
91

95
97
98
102
131
134
154
167



List of Tables

Table 1.2.1 — List of different threats used

Table 6.2.1 — Total simulation time for possible path generation methods
Table 6.2.2 — Current actions for path generation methods

Table 6.2.3 — Time when replan is signaled for path generation methods
Table 6.2.4 — Actual replan calculation times for path generation methods

Table 6.2.5 — Replan current total cost for path generation methods

57

60

60

61

61



List of Figures

Figure 3.1.1 — Locations of the threats and no-fly zones

Figure 3.1.2 — Delaunay triangulation and the corresponding Voronoi point
Figure 3.1.3 — Complete VVoronoi diagram

Figure 3.1.4 — Complete Voronoi diagram with UAVs and targets
Figure 3.1.5 — VVoronoi line passing through a no-fly zone’s radius
Figure 3.1.6 — VVoronoi line passing through a threat’s range
Figure 3.1.7 — Dijkstra’s algorithm selected paths from each UAV to each target
Figure 3.2.1 — Example of a shortened path

Figure 3.2.2 — Example of the filleted corner of a path

Figure 3.2.3 — Example of a heading angle correction

Figure 3.2.4 — Allocated tasks for each UAV to visit each target
Figure 4.1.1 — Aircraft body axis forces and moments

Figure 4.1.2 — Translation from the earth axis to the body axis
Figure 4.1.3 — Polar axis transformation for equations of motion
Figure 4.2.1 — Aircraft dynamics user interface

Figure 4.2.2 — The aircraft simulator control system

Figure 4.2.3 — The heading angle control scheme

Figure 4.2.4 — The autopilot control block

Figure 4.2.5 — The turn generator block

Figure 5.1.1 — Main block diagram for cooperating UAVs

Figure 5.1.2 — Path planning s-function implementation

Figure 5.1.3 — Look-up table SIMULINK block

18

18

19

20

22

23

28

29

30

33

35

37

38

42

42

43

43

44

45

46

47

Vi



Figure 5.2.1 — Block comparing UAV positions to no-fly zone positions
Figure 5.2.2 — Block comparing UAV positions to threat positions
Figure 5.2.3 — Threat manager

Figure 5.3.1 — UAVs manager

Figure 5.3.2 — Targets classifier SIMULINK block

Figure 5.3.3 — Targets manager

Figure 5.3.4 — Add waypoints SIMULINK block

Figure 5.3.5 — Signal replan SIMULINK block

Figure 6.1.1 — Grid path generation

Figure 6.1.2 — Visibility graph path generation

Figure 6.2.1 — Initial conditions of the battlefield

Figure 6.2.2 — 1% replan of the simulation for all three methods
Figure 6.2.3 — 2" replan of the simulation for all three methods
Figure 6.2.4 — 3" replan of the simulation for all three methods
Figure 6.2.5 — 4" replan of the simulation for all three methods
Figure 6.2.6 — 5" replan of the simulation for all three methods
Figure 6.2.7 — 6" replan of the simulation for all three methods
Figure 6.2.8 — 7" replan of the simulation for all three methods
Figure 6.2.9 — 8" replan of the simulation for all three methods
Figure 6.2.10 — 9" replan of the simulation for all three methods
Figure 6.2.11 — 10" replan of the simulation for all three methods
Figure 6.2.12 — 11" replan of the simulation for all three methods

Figure 6.2.13 — 12" replan of the simulation for all three methods

48

49

49

50

51

52

53

53

55

55

58

62

63

64

65

66

67

68

69

70

71

72

73

vii



Figure 6.2.14 — 13" replan of the simulation for all three methods
Figure 6.2.15— 14™ replan of the simulation for all three methods
Figure 6.2.16 — 15" replan of the simulation for all three methods
Figure 6.2.17 — 16" replan of the simulation for all three methods
Figure 6.2.18 — 17" replan of the simulation for all three methods
Figure 6.2.19 — 18" replan of the simulation for all three methods
Figure 6.2.20 — 19" replan of the simulation for all three methods
Figure 6.2.21 — 20" replan of the simulation for all three methods
Figure 6.2.22 — 21% of the simulation for all three methods
Figure 6.2.23 — Log of the simulation for the grid method

Figure 6.2.24 — Log of the simulation for the VVoronoi Diagram method
Figure 6.2.25 — Log of the simulation for the visibility graph method
Figure 7.1.1 — Search control scheme in SIMULINK

Figure 7.1.2 — Serpentine search pattern

Figure 7.1.3 — Detect targets and waypoints SIMULINK block
Figure 7.1.4 — Path planning SIMULINK block

Figure 7.2.1 — 1% replan for search simulation

Figure 7.2.2 — 2" replan for search simulation

Figure 7.2.3 — 3" replan for search simulation

Figure 7.2.4 — 4" replan for search simulation

Figure 7.2.5 — 5" replan for search simulation

Figure 7.2.6 — 6" replan for search simulation

Figure 7.2.7 — Log for search simulation

74

75

76

7

78

79

80

81

82

83

84

86

87

88

89

91

92

92

93

93

94

94

viii



Nomenclature

English Units Description

Ji - Total cost for line i

Jit - Threat cost for line i

Jif - Fuel cost of line i

L - Length of line i

k - Weighting factor

V - Number of vertices in VVoronoi diagram
E - Number of edges in VVoronoi diagram
Vi - Starting vertex in Dijkstra’s Algorithm
V2 - Finishing vertex in Dijkstra’s Algorithm
Vo m/s Maximum speed

f N Maximum g force for the aircraft

J - Total cost in MMKP algorithm

Cj - Cost of choice j

Xj - Binary decision variable

Vij - Vehicle constraint

Wi - Vehicle constraint value

Pi - Probability of kill of threat

W - Weighting factor of threat

X km X position of object

y km Y position of object

d km Distance of a line



dS,C

Costwm
Costc
Ny
Fax
Fay
Faz

La

Na

Ox

Oy

km

km

km

km

km

Nm

Nm

Nm

m/s

m/s

m/s

m/s

m/s

m/s

Distance start of line to center of threat
Distance finish of line to center of threat
Distance start to finish of line
Distance parallel to threat
Distance closest point on line
Mission Cost

Current Cost

Number of vehicles

Force along the x axis

Force along the y axis

Force along the z axis
Moment around the x axis
Moment around the y axis
Moment around the z axis
Mass of aircraft

Velocity along x axis
Velocity along y axis
Velocity along z axis
Velocity around x axis
Velocity around y axis
Velocity around z axis
Gravity along x axis

Gravity along y axis



J:

Ixx
lyy
Izz
Ixz
Ixy

lyz

Q)

N/m?
N/m?
N/m?
N/m?
N/m?
N/m?

N/m?

degrees

degrees

degrees

degrees

degrees
degrees
degrees

degrees

Gravity along z axis
Moment of inertia x axis
Moment of inertia y axis
Moment of inertia z axis
Product of inertia x and z
Product of inertia x and y
Product of inertia y and z

Local dynamic pressure

Area

Description

Maximum turn rate of vehicle
Euler angle for heading

Euler angle for pitch

Euler angle for bank
Angle of attack

Sideslip angle

Aileron deflection angle
Rudder deflection angle

Elevator deflection angle

Xi



Chapter 1

Introduction to Cooperating UAVs

1.1 - Introduction to Unmanned Aerial Vehicles

As technology grows, it is apparent that the use of Unmanned Aerial Vehicles
(UAVs) will serve a larger purpose in military forces. The first UAV was developed in
the 1960s as a supplement to the U-2 spy plane. The military program for this UAV was
called Compass Arrow; the military designation for this aircraft was AQM-91A. Project
Compass Arrow led to the development of an aircraft that had the capability to operate
for two hours at 85,000 ft while maintaining subsonic speeds around Mach 0.8. This
flight envelope gave the vehicle the ability to survive against threats such as anti-aircraft
fire. Like many of the unmanned military aircraft of the 1960s, the AQM-91A was
launched from a DC-130 aircraft and recovered by parachute®. In the 1970s, the military
began to fund programs that would lead to vehicles with a larger flight envelope and
operational time, which lead to the end of the Compass Arrow project in 1973. The trend
of large high altitude UAVs continued into the 1980s including Boeing’s Condor that
boasted a gross weight of 16,000 Ibs with the capability to operate for over 50 hours at an
altitude of 65,000 ft.

The Department of Defense changed the trend of large UAVs in the late 1980s by
establishing the UAV Joint Project Office (JPO). This shifted the focus to the
development of small, low altitude, and low cost UAVSs. It was clear that the UAV JPO’s
objective was to give UAVs global acceptance as a low cost disposable aircraft. These

new smaller UAVs were designed to replace larger manned aircraft in a battlefield



environment. This led to projects such as the RQ-2 Pioneer, which was used in the 1990s
in Operation Desert Storm?. The RQ-2 Pioneer was used primarily for target
identification and battle damage assessment. It proved to be a great resource instead of
using manned aircraft because the Pioneer benefited from lower operational cost and
higher pilot safety.

As the advantages of using these vehicles for battlefield applications became more
apparent, several other UAVs were developed including the RQ-1 Predator and the RQ-4
Global Hawk. The Predator played an important role in Bosnia as a reconnaissance and
surveillance platform? Both the Predator and the Global Hawk have been invaluable
resources in recent conflicts such as Operation Enduring Freedom in Afghanistan and
Operation lraqgi Freedom in Irag. In recent years, the military has been developing
several UAV programs that call for the aircraft to perform more tasks on the battlefield.
Some of these programs include the modification of the Predator into a search and
destroy aircraft, the Boeing X-45, and the Northrop Grumman X-47, which are all being
designed as Unmanned Combat Air Vehicles (UCAVS).

Some of the many advantages UAVs posses over manned aircraft are excellent
maneuverability, lower operational cost, large weight savings, dramatically lower human
risk, and an opportunity to achieve superior coordination®. With the role of UCAVs
becoming larger in the military, some of the missions they have the potential of achieving
are the following:

e Reconnaissance
e Communication Jamming

e Suppression of Enemy Air Defenses



e Missile Defense

e Fixed/Moving Target Attack

e Air-to-air Combat

e Search and Destroy

It is evident that the implementation of multiple UAVs on a battlefield to complete

these missions has tremendous potential. In addition to the vehicles becoming
exceedingly complex, these tasks must be accomplished using superior coordination.
Clearly, as UAVs and UCAVs take larger roles on the battlefield an enhanced level of

control is required to operate these aircraft.

1.2 - Research Objectives

Along with the growing technology of UAVs comes the need to control and
coordinate these vehicles. There are two main objectives of this research; the first is the
development of a control scheme for a group of cooperating UAVs in a hostile
environment and the second is the development of a control scheme for a group of
cooperating UAVs in a search and destroy environment. The design and simulation of
both objectives have been performed using Mathworks” SIMULINK environment in
MATLAB. The first objective is using a hostile environment that implies a given number
of conditions on the battlefield are known prior to launch. In the second objective a
search and destroy environment is used in which the only knowledge about the battlefield
IS its area.

For the purposes of this research a hostile environment is defined as a battlefield

that includes several no-fly zones, threats, targets, and UAVs. No-fly zones can be



political boundaries or physical boundaries such as mountains, which are modeled as a
half-sphere with known location and radius. In this application the threats are considered
to be a variety of surface-to-air missiles (SAM) and an anti-aircraft artillery weapon; the
specifications for these are shown in Table 1.2.1*". The locations, ranges, and probability
of kill for each threat are known.

Table 1.2.1 — List of different threats used

Threat Name Threat Description Threat Range] Probability of Kill
KS-19 100 mm Anti-Aircraft Artillery 4000 ft 40%
SA-7 Gralil Shoulder Fired SAM 5000 ft 50%
Crotale Rattlesnake Vehicle Fired SAM 10000 ft 80%
V-75 SA-2 Guideline Vehicle Fired SAM 30000 ft 80%

The targets are a point on the battlefield with known location and value. The value
of a target can be in the range of 1-100, which is dependent on how valuable the target is
to mission completion. A target can be various areas of interest such as buildings or
enemy camps. In addition to the initial conditions of the battlefield described above, the
initial location, speed, and heading angle of each UAV are also known. The objective of
cooperating UAVSs in a hostile environment is to minimize the mission completion time
while maximizing the probability of mission completion. Many different algorithms for
the simulation of cooperating UAVs have been developed with this main
objective3’6’7’10’13'15.

There are several steps involved in solving the cooperating UAVs problem. The
first step is the generation of possible paths for the UAVs to follow in order to reach the
targets. Several methods for the generation of these paths has been tried including the

79,13

use of Delaunay triangulation or Voronoi diagrams”®*3, a grid’, and a visibility graph®®®.



A Voronoi diagram is constructed based solely on the locations of the threats and no-fly
zones. The grid method involves the overlaying of a grid onto the battlefield. In contrast
to both of these methods a visibility graph is based on the ranges of the threats and radii
of the no-fly zones. Typically, the next step is assigning costs to all of these paths. In
this case there are two costs assigned to each path. The first is the fuel cost, which is
calculated as the Euclidian distance of each path®®. The second is the cost associated with
threat risk that is based on whether the path travels inside a threat’s range or a no-fly
zone’s radius. In this research if a path travels through a threat’s range a cost
proportional to that threat’s probability of kill is added to the path, also if a path travels
through a no-fly zone’s radius a cost of infinity is assigned to that particular path.

After costs for all of the paths are assigned, a lowest cost path must be selected for
each permutation of UAV to target. This is accomplished through the use of a directed

graph search algorithm such as Dijkstra’s algorithm’*3

. In a directed graph each segment
of the graph has a starting point and an ending point. After all of the lowest cost paths
have been selected for each UAV to travel to each target, they must be transformed into
flyable paths. This is needed in order to give an accurate representation of the limitations
that each UAV faces due to the dynamics of each aircraft. The final step in this process
is to assign tasks for each UAV to perform or which target each UAV should visit. This
problem was formulated as a Multi-Dimensional Multiple-Choice Knapsack
Problem®®®! (MMKP). The MMKP algorithm assigns each UAV a task leading to the
global optimal solution for the cost of the mission.

The second objective of this research is the simulation of cooperating UAVS in a

search and destroy environment. A search and destroy environment is defined such that



nothing is known except the area to be searched and the starting position of the UAVSs.

This type of mission has been researched by many people®?*.

The process can be
broken down into two main steps. The first step is assigning waypoints to each vehicle
so that each UAV searches the given area in a serpentine pattern®®. This pattern is used
because nothing about the battlefield is known prior to launch. This is referred to as a
random search in which no area in the battlefield is preferred over another®. After the
waypoints for each UAV are defined, the area is then searched until a UAV detects a
target.

The second step in this process is to assign UAVSs to perform tasks on the targets as
they are found. This is formulated as a market-based bidding procedure, which performs
the task assignment?. In this procedure, after a target is detected every vehicle provides
an estimate of the cost to visit the target. The vehicles with the lowest estimated costs are
selected to visit the detected target.

As the case in both of the objectives, several tasks need to be performed on the
targets. After a potential target is identified or detected, it needs to be classified as a
target or not a target. If it is classified as a target, it must be destroyed by a vehicle. In
order to determine if the target has been destroyed a battle damage assessment (BDA)
must be performed. After all of the necessary tasks are preformed on the targets the
UAVs are then free to visit other lower value targets or search the rest of the battlefield
until another target is found or the entire area has been searched.

These two objectives must be implemented using the SIMULINK environment in

MATLAB for the purpose of incorporating six degree of freedom aircraft dynamics.

SIMULINK provides an extremely proficient environment to simulate dynamic systems,



which is especially important given these two objectives. In both circumstances the need
to simulate dynamic changes in the environment is desired. Some of which are the
changing of target states and the addition or subtraction of vehicles, threats, and targets.
In addition, MATLAB provides an excellent coding interface similar to C++ and other
computer languages, but it is designed in a math-oriented environment. This leads to an
easier and more user-friendly way to simulate the desired system. Aside from MATLAB
being a math oriented environment, the program is preloaded with many mathematical
programming functions, which proves very beneficial to the research objectives of this

project.



Chapter 2

Literary Review

2.1 - Review of Path-Planning and Task Allocation Methods

There have been several research efforts that take the approach in which everything
about a battlefield is known prior to the launch of the UAVs. This has led to many
different approaches by researchers to solve this problem. In general, the problem is the
development of a path-planning algorithm with integrated task allocation. This algorithm
must compute a trajectory from the UAV’s present location to a desired future location’.
In order for a path-planning algorithm to be optimal, it must yield the optimal path for
each UAV to travel while accounting for two extremely important factors. These paths
must be stealthy to avoid known enemy threat locations. Also, they must be of minimal
length to minimize the cost of the mission and the time in enemy territory. This
algorithm must be coded with software that can be executed on an airborne processor’.

Much research has been done in this area especially with the use of Delaney

triangulation or Voronoi diagrams’®*2,

In this research a VVoronoi diagram is created
based solely on the locations of static threats. This method yields paths that are optimal
between previously known threats. For every three threats a Delaunay triangulation is
calculated, which forms a circle that passes through these three points. The center of the
circle that is created is called a Voronoi point’. After all of the \Voronoi points in the
battlefield are defined, lines are drawn connecting these points. These points are only

connected if their Delaunay triangle shares a common edge. This process forms a graph

of connected lines called a VVoronoi diagram. In order to generate paths for the UAVs to



travel they must be connected into the diagram using the three closest nodes®. In
addition, the targets are connected into the graph in the same fashion.

After all of the lines in the diagram have been defined, the cost of traveling along
those lines must be assigned. The cost associated with each particular line consists of
two components, which are the threat proximity cost and the fuel cost’. This leads to the
total cost for the line i, J;, shown in the following equation

Ji=Ji +Ji (2.1.2)
where Ji; is the threat cost and Ji; is the fuel cost of the line i. The threat cost is
calculated by finding the exposure of each line to enemy radar and is given by the

expression™

o 1 1 1
Jui=L + + (2.1.2)
" ;[d“é,.,, d4%,i,j d45|,JJ

B
where N is the number of threats, 1/d* is the strength of a UAV’s radar signature, which
is calculated at the 1/6, 1/2, and 5/6 point along each line, and L; is the length of each
line. The fuel cost is simply calculated as the length of each line, L;. These two costs
yield a final line cost™
J,=k*J, +(1-Kk)J, (2.1.3)
where k is between 0 and 1, which allows the total cost to be weighted toward a stealthy
mission or a low fuel cost mission.
After the costs of each line in the diagram have been assigned, a graph search
method such as Dijkstra’s algorithm can be used to find the lowest cost path from one
point to any other point in the diagram. If “V’ is the number of vertices in the diagram

and ‘E’ is the number of edges or lines, then the complexity of solving the algorithm is



O(V log(V) + E)’. In order to use the algorithm the graph must be a weighted and
directed graph, which requires all of the lines to be assigned a positive cost and a
direction. After all of the lines are assigned costs and directions, the lowest cost path
from one point to another point can be found. The main concept of Dijkstra’s algorithm
is to change temporary labels associated with vertices to permanent labels, which gives
the lowest cost path from a source vertex to another vertex in the graph®. The
application of Dijkstra’s algorithm from source vertex v; to another vertex v, is outlined
below:

Algorithm 2.1.1

1 SetP=(v,), T=V -(v,), d(v,)=0, pred(v,)=0, d(j)=c,
2. Doforall(v,, j)e A
d(j)=co for other vertices, pred(j)=v,
3. Do whileP #V
choose the minimumieT, d(i)=min(d(j): jeT)
4. Update P,and T
P=PUC(G), T=T-()
5. Update temp labels, for all j € A(i)
d(j)=min(d(j),d(i) +c;), set pred(j)=i
6. Go back to step 3
7. Go back to step 2

Dijkstra’s algorithm is a time efficient and effective way to search a given directed graph

for the lowest cost path from a starting point to any other point in the graph. In this

application the algorithm is used to find the lowest cost path for each permutation of

10



UAV to target. Given that these paths are the lowest cost, they are neither the shortest
possible path nor the safest possible path®.

Once these paths have been selected, the dynamic constraints for the aircrafts must
be implemented in order to give an accurate estimation of each path. This step is referred
to as ‘path refinement’ or ‘trajectory generation’. In order to simplify the model of the
UAV dynamics the following assumptions are made by Bortoff’.

e Each UAV flies at a constant altitude.

e Each UAV flies at a constant speed.
The constant altitude assumption is used to simplify the numerical complexity of the
path-planning problem. The second assumption is made for the purpose of simplifying
the calculations involved to find the length of each path. Using this assumption the path
length can be estimated using Cartesian coordinates. Both of these assumptions are
reasonable and simplify the complexity of the problem a great deal.

Richards states in a similar manner the aircraft is modeled as a point mass moving
in a 2-D environment®. Although the aircraft can be modeled as a point mass, several
other considerations must be taken into account. One such consideration is the maximum

turning rate of the aircraft, which is given in equation 2.1.4.

w=— (2.1.4)
where Vpax IS the maximum velocity of the aircraft and f is the force applied to the
aircraft. Considering these factors a flyable path is constructed for each UAV, in order to

follow the dynamic constraints of the aircraft such as maintaining an acceptable turning

rate and appropriate airspeed to avoid stall conditions. This flyable path is given by a set

11



of points along which the UAV is assigned to travel. This path is then assigned an
updated cost based on the dynamic constraints of the aircraft.

The final step in the path-planning process takes place after all of the costs for each
UAV to visit each target using a flyable path are defined. This step performs a task
allocation of each UAV that leads to a globally optimal solution for the mission. The
task allocation problem is formulated as a Multi-Dimensional Multiple-Choice Knapsack
Problem (MMKP)®. The objective of the MMKP problem is to minimize the knapsack
while satisfying all of the conditions placed on the problem. In this problem, the
knapsack is the total mission cost. The multiple dimensions are the UAVs in which each
vehicle has a multiple choice of the waypoint to visit.

Knapsack problems are an important class of problems that have many various
applications in fields such as management, business, defense, or any other area in which
tasks must be scheduled or budgeted**. The MMKP algorithm is a combination of two
separate algorithms, the Multiple-Choice Knapsack Problem (MCKP) and the Multiple-
Dimensional Knapsack Problem (MDKP). The MCKP is a problem in which there are
multiple resource constraints for the knapsack. Inthe MDKP, there are several groups of
items where one item is selected from each group. By combining the resource constraints
from the MCKP with the selection of the different groups from the MDKP an algorithm
for the MMKP is created.

There are two methods for solving an MMKP; one is a method that finds the exact
solution and the other results in a heuristic solution?®®. Finding the exact solution to a
MMKP is extremely computationally expensive, but can be accomplished using the

branch and bound with linear programming (BBLP) technique. The algorithm for

12



solving MMKP using the BBLP technique is formulated as a zero-one knapsack problem.
This leads to an exhaustive analysis, this technique can be seen in equations 2.1.5 through

2.1.7 from Bellingham®.

J=)c;x (2.1.5)
j=1

NM

D VX =w, (2.1.6)

j=1

Npa-1

DX = (2.1.7)

where the cost function J is minimized with respect to the constraints in equations 2.1.6
and 2.1.7. The number of permutations of vehicle p are numbered Ny to Np+1 — 1, with N3
and Nny+1 = Ny +1. The indices i, j, and p have ranges from 1 to Nw, Ny, and Ny
respectively. In the cost equation, c; is a vector of the costs for each permutation and X; is
a binary decision variable equal to one if the permutation j is selected or zero if the
permutation is not selected.

The first constraint guarantees that each waypoint or target is visited the correct
number of times, which for most cases is one. The second constraint prevents a vehicle
from selecting more than one permutation. In this case each waypoint must be visited
once and each vehicle may only be assigned one waypoint to visit. This particular
algorithm, which leads to an exact solution, is extremely complex but is guaranteed to
find the optimal solution for the knapsack. It should be noted that this solution it is not
feasible to apply to all cases where a solution is desired. The second method for finding a

solution to the MMKP is a heuristic method which has been researched by Moser'* and

13



Akbar®®. This particular method as shown by Moser is accomplished using Lagrange
multipliers. This method leads to sub-optimal results, which is not a desirable result.

The path-planning and task allocation process described above leads to a globally
optimal mission cost. The resulting mission cost is neither the lowest in fuel cost nor
stealth cost, but is the best combination of the two. It can be seen that by using the
methods described above a near real-time simulation can be created in the SIMULINK
environment in MATLAB. From previous research it is apparent that the most
computationally intense hurdles will be finding a way to limit the calculations required

for the Dijkstra and the MMKP algorithms.

2.2 - Review of Search Methods

The second focus of this research is the development of a simulation in which
nothing about a battlefield is known prior to the UAVs being deployed. There have been
several different approaches to this problem. One approach is a random search in which

every area of the battlefield is assigned the same value®*%*:%*

. Another approach is a
greedy search in which there are more valuable areas of the battlefield than others, thus a
way of weighting different areas on the battlefield is required”®. For the purpose of this
research only the first scenario will be considered, due to the fact that previous
knowledge about the battlefield is accounted for in the previous section.

The most notable research effort in the random search approach has taken place at
the Wright-Patterson Air Force Base in Dayton, OH. This research has led to a search

simulation that is implemented in a hierarchical manner with inter-vehicle

communication explicitly modeled®. This simulation was created using MATLAB’s

14



SIMULINK environment and is named MultiUAV. The purpose of MultiUAV is to
simulate a group of UAVSs searching a battlefield and attacking any target that is detected.
In this simulation the UAVs are modeled as disposable munitions. These types of
vehicles are considered to be destroyed once they attack a target. This search mission is
generally known as a wide area search munitions weapon system is which all of the
vehicles operate independently of each other. Initially the vehicles are released in a
target area and follow a set of waypoints that are present at the start of the simulation®.
These waypoints are placed in a serpentine pattern to minimize the time it takes the group
of UAVs to search the given area.

A target is first detected when it passes though the sensor footprint of a UAV.
When a target is detected the vehicle communicates the location of the target to the rest
of the group. A top level controller is then used to determine the task assignment for the
UAVs. This controller is implemented using a hierarchical market-based bidding
procedure, where each aircraft bids on each task that needs to be preformed. An optimal
solution is reached with this method by having each UAV evaluate its cost to perform a
certain task. This control system is developed as distributed to create a redundant system,
which is fault tolerant because there is no central decision maker. All of the vehicles
arrive at the same decisions; therefore conflict situations are avoided®’. An example of
this problem is multiple UAVs visiting the same target or a target not being visited at all.
After the top layer of control has assigned the tasks, the lower layer control system
performs the trajectory optimization and task management.

The initial state of a target in a search mission is not detected. After a target is

detected it must be classified. When a target has been classified as a viable target it must

15



then be attacked. Due to the fact that these aircraft are disposable munitions after a
vehicle attacks a target it must be eliminated from the group. If a target has been attacked
a battle damage assessment (BDA) must be performed to ensure that the target has been
destroyed”. The BDA of a target will result in two conclusions, the first being that the
target has been destroyed and no further action is needed on that target. The second
conclusion is that the target has not been destroyed and requires the processes to be
repeated until the target is destroyed. In most cases a target needing to be attacked more
than once is not likely. The mission is considered complete when the entire battlefield
has been searched, all of the UAVs have been eliminated, or all of the targets have been
destroyed. A market-based bidding procedure with a hierarchical control system is an

excellent tool that can be used in the creation of a search simulation.

16



Chapter 3

The Path-Planning and Task Allocation Process

3.1 - Path Generation and Path Selection

This section will discuss the path generation, path cost assignment, and path
selection steps in the path-planning and task allocation process used in this research
effort. This process is based on a combination of different methods that have been
discussed in the previous chapter. The objective is to select a path generation and cost
assignment method that will lead to optimal results using algorithms that can be executed
in a real-time manner. In order to accomplish this objective a Voronoi diagram will be
used for possible path generation, because it will yield a low number of possible paths.
This is desired to keep the calculations involved in Dijkstra’s algorithm to a minimum.
Dijkstra’s algorithm is the most computationally expensive part of the path generation
and selection process.

The first step is the generation of possible paths on which the UAV can travel.
The use of Voronoi diagrams is an excellent method to perform this step. This graph
yields the optimal paths to travel between a set of points. For this application the set of
points that must be avoided are the locations of the threats and no-fly zones. Since the
Voronoi diagram only uses points, the ranges and radii of the threats and no-fly zones are
ignored at this time. A Voronoi diagram is constructed using a method called Delaunay
triangulation. As described by Bortoff, this procedure begins with complete knowledge

of each point to be avoided’. This can be seen in Figure 3.1.1.

17



Kilometers
g

40

20+

L L L L L L L L L J
20 40 60 a0 100 120 140 160 180 200
Kilometers

Figure 3.1.1 — Locations of the threats and no-fly zones

In this figure the red points are the threats and the black points are the no-fly zones. For
every three points there exists a circle that passes through these points. The Delaunay
triangulation of these points exists only if there are no points enclosed in this circle. The

center of this circle is called a Voronoi point and is visible in Figure 3.1.2.

2007 \oronoi Point

Kilometers
2

20 40 60 80 100 120 140 160 180 200
Kilometers

Figure 3.1.2 — Delaunay triangulation and the corresponding VVoronoi point

18



After all of the Voronoi points are defined they must be connected in order to
form the diagram. This is accomplished by connecting two points if and only if the
Delaunay triangles associated with these points share a common edge. This method
provides optimal results because each line in the diagram is equidistant to the pair of
corresponding points. All of these lines and points form a complete VVoronoi diagram,

which can be seen in Figure 3.1.3.

200 : T ' g
180
T = § "

140 i ey A

120 = e x‘

Kilometers
=]
o
*

e S
400

20

L 1 L L I L | e I Ll J
20 40 &0 80 100 120 140 160 180 200
Kilometers

Figure 3.1.3 — Complete VVoronoi diagram

Due to the fact that the Voronoi diagram only accounts for the locations of the
threats and no-fly zones, the UAVs and targets must be manually connected into the
diagram. This is done by connecting each UAV and each target to the three closest
points in the diagram. The implementation of this is shown in Figure 3.1.4. In this figure

the blue points are the UAVs and the green points are the targets.

19



200

180 y Lo . ._‘ - 4

80— *

140}

Kilometers
o a
3 =1 g =]
*

£
(=]
T

[
(=3
T

20 40 &0 80 100 120 140 160 180 200
Kilometers

Figure 3.1.4 — Complete VVoronoi diagram with UAVs and targets

A function was written in MATLAB named “vrn_diag_gen“ to perform this
which can be seen in Appendix A. The inputs for this function are the initial conditions
of the battlefield as discussed in Chapter 1, which are the ‘UAVS’, ‘TARGETS’,
‘ZONES’, and ‘“THREATS’ matrices. The ‘UAVS’ matrix contains the initial x position, y
position, speed, and altitude of each UAV. The ‘TARGETS’ matrix contains the initial x
position and y position of the targets. The ‘ZONES’ matrix contains the initial x position,
y position, and radius of each no-fly zone. The ‘THREATS’ matrix contains the initial x
position, y position, range and probability of kill of the threats. Using the positions of the
threats and no-fly zones an initial VVoronoi diagram is created. This is accomplished
using the “voronoi’” function in MATLAB. This can be seen in Algorithm 3.1.1. It
should be noted, that due to the nature of the VVoronoi diagram several points around the
battlefield were added. This was needed so that the graph would completely encompass

the area.

20



Algorithm 3.1.1

Do for all points (x,y)
Find Delaunay triangulation of all points (x4, y1), (X2, ¥2), (X3, Y3)

Re-orient triangles so they are clockwise

M w0 p R

If triangle edges for two points are the same

record edge as VVoronoi line (x1, y1) and (xz, y2),

o

Delaunay triangle defines a circle

6. If another point is not inside the circle,
record point as a VVoronoi point (x, y)

7. Go back to step 1

After all of the Voronoi lines and points have been defined the UAVs and targets
must be connected into the diagram. This is accomplished using the “connect_vrn”
function. This function inputs the positions of the UAVs or targets and the Voronoi
points. It outputs the lines connecting the UAVs or targets to the three closet points and
the associated distance of each line created. This process is outlined in the following:

Algorithm 3.1.2

1. Do for all points to be connected (x; Vi)

2. Find distance to all points in diagram (x;, y;)

d =\/(X,- _Xi)2+(yi _yi)2

3. Record the closest 3 points (X1, Y1), (X2, Y2), (X3, ¥3)

and their associated distance di, do, d3
4. Go back to step 1

Every point, line, and distance associated with this diagram is output from the
“vrn_diag_gen” function, which are the matrices ‘all_pos’, ‘all_lines_x’, ‘all_lines_y’,

and ‘all_costs’ respectively.

21



The next step is the initial path selection for each permutation of UAV to target.
Before this can be calculated the costs of the paths must be updated to account for the
threats and no-fly zones on the battlefield. The subsequent equations are used to update
the cost of each line.

C. = oo (3.1.1)

C.=Pp *W, +C._ W, (3.1.2)

J Jop

where ¢j is the cost of traveling along line j, p; is the probability of kill of threat i, wr is
the weighting factor applied to traveling through a threat, and we is the fuel weighting
factor. Equation 3.1.1 shows the modification done to the cost of line j if it passes

through a no-fly zone, which is shown in Figure 3.1.5.

Kilometers
=
(=]

136

134

132

130~ !
a5 100 105 110 115 120 125

Kilometers

Figure 3.1.5 — VVoronoi line passing through a no-fly zone’s radius

Since entering a no-fly zone is prohibited, a cost of infinity is assigned to that particular

line. Figure 3.1.6 shows line j passing through threat i.

22



85+

&0

=
o

Kilometers

4
o
T

65

60

55

105 110 115 120 125 130 135 140
Kilometers

Figure 3.1.6 — VVoronoi line passing through a threat’s range

If this occurs a cost, proportional to the probability of kill of threat i, is added to the cost
of that line, which can be seen in equation 3.1.2. The following algorithm is used to
evaluate if a line passes through a threat or no-fly zone.

Algorithm 3.1.3

1. Forall lines (x,,y,) and (x;,y,)

2. Find distances associated with that line to an obstacle

start of line to center of obstacle, d, . = \/(xc —Xpg )+ (Y. = Vps)®

finish of line to center of obstacle, d, . = \/(xc ~Xpe )+ (Y. = Vi )P

start of line to finish of line, d, ; = \/(xps ~Xpe )2+ (Yps = Yer)°

2 2 2
ds,t + ds,f _df,t

2*d,,

point of line perpendicular to obstacle, d, , =

3. Ifd,, <d,; and d,, >0then

s,n —

closest distance, d, =/d, —dZ,

4. ElseIf d, <d,

,C

23



closest distance, d , =d

,C

5. Else

closest distance, d, =d

6. Go back to step 2

If the closest point on each line is less than the radius or range of that obstacle the cost of
that line is updated according to Equation 3.1.1 or 3.1.2.

After the costs of each line have been updated, Dijkstra’s algorithm is
implemented to find the lowest cost path from each UAV to each waypoint. Dijkstra’s
algorithm is a graph search algorithm that provides the optimal path from a starting node
to every other node in the graph. In order for the graph to be searched it must be a
directed graph, which means that each line of the graph must have a tail, head, and an
associated cost. In this research each line in the graph has the ability to travel both from
tail to head and from head to tail. The results for Dijkstra’s algorithm are shown in
Figure 3.1.7.

200

180

®

140

8

Kilometers
2

8

40/

20 40 B0 80 100 120 140 160 180 200
Kilometers

Figure 3.1.7 — Dijkstra’s algorithm selected paths from each UAV to each target

24



A function was written in MATLAB to perform the path selection named

“cheapest_paths™ and can be found in Appendix A. The inputs of this function are the

following matrices:

all_pos
all_lines_x
all_lines_y
all_costs
UAVS
TARGETS
ZONES

THREATS

Each of these matrices has been described previously. To place all of the lines in the

proper format a function named “set THC” was written. This function rearranges the

lines and their associated costs into the ‘“THC’ matrix, where ‘T’ is the tail of the line, ‘H’

is the head of the line, and ‘C’ is the cost of traveling along that line. Algorithm 3.1.4

shows the implementation of the “set THC”” function.

1. For all lines L;

2. Place cost of L in THC(i,3)

3. If tail node is assigned a value
place value in THC(i,1)

4. Else assign the node the lowest unused value
place value in THC (i,1)

5. If head node is assigned a value

place value in THC (i,2)

Algorithm 3.1.4

25



6. Else assign the node the lowest unused value

place value in THC (i,2)
7. Go back to step 2

The *“THC’ matrix is then input into the function “c_assign™, the purpose of this
function is to assign new costs to each line based on if it enters a no-fly zone’s radius or a
threat’s range. This is accomplished using Algorithm 3.1.3. After the costs for each line
are updated the “THC’ matrix is input into the “dijk’ function, which performs Dijkstra’s
algorithm. The “dijk function and its associated functions are from Kay’s matlog, a
logistics engineering MATLAB toolbox, which is available to download”’. The outline
of this algorithm is shown in Algorithm 2.1.1. This function provides the optimal path to
travel from one node to another node within the graph. It also gives the cost associated
with that path. The optimal paths and their associated costs for each permutation of UAV
to target are stored in the matrices ‘stored_paths’ and ‘totalcost’ respectively, which are

output from the function “cheapest_paths”.

3.2 - Path Refinement and Task Allocation

This section will discuss the refinement of the initially selected paths and the task
allocation for the group of UAVSs. Since these selected paths are derived from a VVoronoi
diagram, they rarely travel as close as possible to the outer range of a threat or the outer
radius of a no-fly zone. In addition, these paths have sharp corners that might not be
flyable. These paths also do not account for a change in heading angle. Clearly, there is a
need to refine these paths, which requires them to be optimized and developed into

flyable paths. The lines in a VVoronoi diagram are designed to yield the optimal paths to

26



avoid certain points on a battlefield. This yields a solution that has a tendency to avoid
these points as much as possible and in many cases much further than is needed. After
these paths have been optimized and developed into flyable paths a task must be assigned
to each vehicle. This must yield a solution that leads to mission completion in an optimal
manner. The final step in the path-planning process is a task allocation of the UAVS in
order for them to visit the targets as needed to complete the mission. This leads to each
UAYV being assigned to visit a certain target along an optimal flyable path, which results
in a globally optimal mission completion time and probability of mission completion.

As stated above, the nature of the Voronoi diagram is to avoid certain points as
much as possible. This leads to paths that can be optimized. These paths can be
improved by shortening them along the original path. This is accomplished according to
whether a chosen path travels inside a threat’s range or a no-fly zone’s radius. The path
is first split into several segments, which allows for an improved solution. The original
path is then explored to see if it passes through a threat; if it does then the distance at it
enters the threat is recorded. The shortened path will be allowed to enter that particular
threat only that distance. The shortening of a path is accomplished by analyzing a line
starting at the UAV’s initial position and ending at the final position. This line is
examined to see if it passes through a threat or no-fly zone using Algorithm 3.1.3.

This algorithm yields closest point on the line to the position of each threat and no-
fly zone. This distance is compared with the corresponding range or radius associated
with the obstacle. If this distance is greater than the range or the allowable entry distance
of every threat and the radius of every no-fly zone. That line is recorded as the new

optimized path. On the other hand, if the line intersects a threat or no-fly zone then the

27



previous point is evaluated. This process is repeated until the path has been shortened to

the original starting point. An example of this can be seen in Figure 3.2.1.

200 200

180 180 -

160 160 -
140} 140+
120 120 -

100 | 100 -

Kilometers
Kilometers

60 60 -

40 | 40 -

20 4 . 20 4 .

1 L 1 L
50 100 150 200 50 100 150 200
Kilometers Kilometers

Figure 3.2.1 — Example of a shortened path

After an optimized path is found, this path must then be modified to account for the
flight characteristics of the aircraft. There are two main changes that need to be made to
each path. One is that each corner in the path must be filleted. This is done according to
the minimum turn radius of the UAV, which is one kilometer. In order to fillet the sharp
corners of the paths, a circle with the desired radius is placed into the corner. The radius
of this circle is equal to the minimum turn radius of the aircraft. The two points on the
circle tangent to each of the two lines form the fillet, which replaces the point at the

corner. An example of this is shown in Figure 3.2.2.

28



175 T T T T T 175
170 B 170
165 B 1685
160 B 160
155 B 155

150 150

Kilometers
Kilometers

145 145

140 B 140
135 B 135

130 B 130

125 B 125

120 Le L L 1 L 1 120 [ L 1 1 1 1
120 130 140 150 160 170 120 130 140 150 160 170
Kilometers Kilometers

Figure 3.2.2 — Example of the filleted corner of a path

The second modification must be made in order to perform a heading angle change.
This is done to account for the sudden change in heading angle a UAV experiences when
its current heading angle and the heading angle proposed by the selected path are vastly
different. In order to account for this change, the new path must first travel along a circle
connected to its current path. Another circle is then placed connecting the first circle to
the desired path. The intersection of these two circles is a transfer point at which the
UAYV leaves the circle connected to its current path and starts to follow the circle on the
new path. The radii of these circles are equal to the minimum turn radius of the aircraft.
These circles are fitted so that the starting point of the path does not change; merely the

heading angle of the aircraft is corrected. An example of this can be seen in Figure 3.2.3.

29



36 T T T T 36

35+ 35+ B
= / 34 L i

w v
g z
g 33 B g 33 B
S S
2 <
32t E 32t E
S 8 31t g
30 . . . ‘ 30 ‘ . . .
20 21 27 23 24 25 20 21 22 23 24 25

Kilometers Kilometers

Figure 3.2.3 — Example of a heading angle correction

A function was written in MATLAB for the purpose of optimizing these paths and
making them flyable. The function called “path_shrtng” can be found in Appendix A.
This function inputs the matrices ‘stored_paths’, ‘all_pos’, ‘ZONES’, ‘THREATS’, and
‘HEADING_ANGLE’. All of these matrices have been described in the previous section
except ‘HEADING_ANGLE’, which is a vector containing the current heading angles for
all of the UAVs. Other inputs to the function are the scalar numbers *min_turn’,
‘split_seg’, ‘nuav’, and ‘ntarg’. These represent the minimum turn radius of the UAVS,
the number of segments each line in the original path is split, the number of UAVs, and
the number of targets. First this function splits each of the lines in the path into several
segments as specified by the variable “split_seg’.

After each line is split the path is shortened using a function called
“shorten_paths™, which performs the optimization of the paths as described previously

and is accomplished using Algorithm 3.1.3. The corners of the path must now be filleted

30



using the function “fillet_path”. The purpose of this function is to add fillets to the
corners of the path that are too sharp for the aircraft to follow. This is outlined in the
Algorithm 3.2.1:

Algorithm 3.2.1

1. For all lines L;

N

For all points (x;,Y;)

Set « equal to the angle between (x; ,,y; ;) and (x;,V,)

W w

If @ <au owmsie » Xaciowsse 1S Proportional to the minimum turn radius
fillet corner of (x,,,y;,)and (x;,y;)

4. Go back to step 2

The final step in making the paths flyable is to make the heading angle correction.
A function “heading_angle_paths™ was written for the purpose of accomplishing this
task. This process has been described previously and illustrated in the following

algorithm:

Algorithm 3.2.2

1. For all paths P;

2. If o5 — Ppew = 30°

apply heading angle change at beginning of path
3. Else dynamics will handle the change
4. Go back to step 1

After the paths are optimized and made flyable the costs of these paths are updated using

the function “update_cost™. These modified paths and updated costs are stored into the

31



‘Shortened_Paths_x’, ‘Shortened Paths_y’, and the ‘totalcost’ matrices, which are the
outputs of the “path_shrtng” function.

After an optimal flyable path for each permutation of UAV to each target has been
developed, a task allocation must be performed in order to delegate which target each
UAYV should visit. These tasks must be allocated to achieve a global minimum mission
cost as opposed to assigning each UAV its minimum path. This was formulated as a
MMKP, which has been described in Chapter 2. The constraints placed on this problem
for the purpose of this research are the following:

e Equal number of UAVs and targets
e Each target can only be visited once
e Each UAV can only visit one target

These constraints are applied to reduce the complexity of the MMKP algorithm.
These constraints reduce the number of possible combinations of the task allocation to
the factorial of the number of UAVs. The following algorithm was developed to achieve
an optimal solution in a minimal amount of time, while accounting for the constraints of
the problem.

Algorithm 3.2.3

Set minimum cost Cost,, =
For i =1to Ny!
Initialize Cost, =0

For j to Ny

a > w N oE

Find current cost

Cost, =Cost; + Cost; ;

6. Loop to step 4
7. If Cost. < Cost,,

32



Assign new minimum tasks and cost

Tasks,, =Tasks., Cost,, =Cost.

8. Go back to step 2

The final optimized, flyable paths are shown in Figure 3.2.4.

200 o 3

180
160} .‘ + )
140 - .

Kilometers
e -
£ [+2] =] (=] ]
(=] (=] < (=] (=]
T T T T
.l
\

v ]
(=]
¥

1 1 1 | 1 1 1 1 | i
20 40 60 80 100 120 140 160 180 200
Kilometers

Figure 3.2.4 — Allocated tasks for each UAV to visit each target

A function written in MATLAB to perform this called “mmkp_task_allocation™ is
located in Appendix A. The inputs of this function are the matrices ‘totalcost’,
‘Shortened_Paths_x’, ‘Shortened_Paths_y’. This function finds the solution to the
MMKP algorithm as stated above and returns the matrices ‘Selected Paths x’ and
‘Selected _Paths_y’. These matrices contain the x and y locations of an optimized and
flyable path for each UAV. These paths are designed such that the mission completion

time is minimized and the probability of mission completion is maximized.

33



Chapter 4

Implementation of Six Degree of Freedom Aircraft Dynamics

4.1 - General Overview of Aircraft Dynamics
This section will review the dynamics of an aircraft, including a brief overview of

aircraft forces, moments, equations of motion, and state variable modeling of the aircraft
dynamics. To properly define the forces, moments, and the equations of motion that are
associated with an aircraft, a non-rotating earth fixed axis system must be chosen as an
initial point of reference. To derive these equations of motion the following assumptions
must be made:

e The aircraft is a rigid body

e The earth is an inertial reference frame

e The aircraft mass and mass distributions are constant with respect to time

e The XZ plane is a plane of symmetry for the aircraft

e There are negligible gyroscopic effects from the engine

e The equations of motion are derived with respect to the stability axes

e There are only small perturbations

e There are only three primary control surfaces

=  Elevators
= Ailerons
=  Rudder

The equations of motion of an aircraft come directly from Newton’s second law

with respect to the conservation of linear and angular momentum®. In order for these

34



equations to be derived they must relate the forces and moments associated with the
aircraft to the dynamics and movement of the aircraft. The forces acting on an aircraft

are modeled as Fax, Fay, and Faz, which can be seen in Figure 4.1.1%,

Figure 4.1.1 — Aircraft body axis forces and moments

This figure also shows the moments that act on an aircraft that are La, Ma, and Na. It
should be noted, all of these forces and moments are with respect to the body axis of the
aircraft. Including the forces from thrust, applying Newton’s second law with the

conservation of linear momentum on an aircraft leads to equations 4.1.1 through 4.1.3%.

m@U -VR +WQ)=mg, + F,, + F, (4.1.1)
m( —UR+WP)=mg, + F,, + Fy, (4.1.2)
mW —-UQ +VP)=mg, +F,, +F, (4.1.3)

where m is the mass of the aircraft, U is the velocity in the x direction, V is the velocity in

the y direction, and W is the velocity in the z direction. P, Q, and R are the angular

35



velocities with respect to the X, y, and z axes respectively. Also, gy, gy, and g, are the
components of gravity in the x, y, and z directions.
In equations 4.1.4 through 4.1.6 Newton’s second law has been applied with the

conservation of angular momentum, the moments from thrust have been included®.

i P=1oR=1,,PQ+(l, —1,,)RQ =L, +L, (4.1.4)
lyQ+ (I =12)PR+1,, (PP =R*) =M, + M, (4.1.5)
I, R=1 P+ (ly =l )PQ+1,,Qr =N, + N, (4.1.6)

Ixx , Ivyy, and Izz are the moments of inertia about of the X, y, and z axes. Ixy, lyz, and
Ixz are the products of inertia about the X, y, and z axes. The above equations form a
non-linear system of equations that can be solved in terms of U, V, W, P, Q, and R.
These equations are taken with respect to the body axis of the aircraft. In order to solve
these equations they must be described according to a non-rotating earth fixed axis. This
is accomplished through the use of Euler angles,¢, 8, and ¢. The translation from the
body axis to the earth axis can be done by using the following steps®.
1. Consider the earth axis translated parallel to itself so that the origin
coincides with the origin of the body axis of the aircraft or the CG.
2. Change the name the earth axis X'Y Z" to X;Y1Z;.
3. The axis system X;Y1Z; is rotated about Z; by the Euler angle ¢ to reach
the axis system X,Y»Z,.
4. The axis system X,Y»Z, is rotated about Y, by the Euler angle & to reach
the axis system X3Y3Zs.
5. The axis system X3Y3Z3 is rotated about X3 by the Euler angle ¢ to reach

the original axis system XYZ.

36



An illustration of this is shown in Figure 4.1.2%.

N Y1

\,tf _ y Y2and Y3

- 1{ h

o
L - fl,r e
g ‘\L
Z (i P |
¥ Flight Path ¢
z3 v
Bo dj’ Fixed Z1 and Z2
Axis System
Earth Fixed

Azxis System

Figure 4.1.2 — Translation from the earth axis to the body axis

As shown the Euler angle ¢ is referred to as the heading angle, @ is the pitch angle, and
¢ is the bank angle of the aircraft. Using these angles, an aircraft’s flight path can be

described in terms of the earth and body axis velocities.

U, cosep —sing Of cosd 0 sind|1 O 0 U
V, |=|sing cosep O 0 1 0 ||0 cosg -sing|V (4.1.7)
W, 0 0 1|{-sin@ 0 cos@||0 sing cos¢ |W

In a similar fashion the angular velocities of the body axis can be expressed in terms of

the Euler angles.

37



p] [1 0 0 é
q|=[0 cosg singcosd |0 (4.1.8)
r 0 —sing cos¢gcosd || ¢

These equations are known as the kinematic equations, which vyield the following

expressions:

p=¢d—gpsind (4.1.9)
q=6cosf +¢pcossin g (4.1.10)
I = c0s 6 cos ¢ — 0sin ¢ (4.1.11)

This set of equations coupled with equations 4.1.1 through 4.1.3 and 4.1.4 through 4.1.6
are the equations of motion for an aircraft. Due to the fact that most of these values
cannot be directly measured from the aircraft, they must be transferred into the polar

coordinatesa , #, and V , which are the angle of attack, sideslip angle, and aircraft

velocity respectively. This conversion is shown in Figure 4.1.3%,

+Y and Y=

v

r
F 3

£z

+Z ¥

Figure 4.1.3 — Polar axis transformation for equations of motion

38



Using the aerodynamic coefficients the equations of motion then become the following:

;@GS .
V = - Co, + g(cos g cos@sin a cos f + (4.1.12)
sin ¢ cos @sin S —sin @ cos a cos )
. . gs
a=q-tan g(pcosa +rsinag)———C, +
mv cos / (4.1.13)
g (cos @ cos g cos a +sin 4sin a)
V cos
y qs g .
p=psina—-rcosa+——C, +=-cosfBcosdsing -
my v (4.1.14)

3sin S (cos @ cos ¢gsin o —sin cos «)

1
)=—T l(@—pr)+1,, (F+ +
p |xx [ XY (q p ) XZ( pq) (4115)

ar(ly —15)+1,(q* —r?)+ashC,]
6= [0 (p+ar) + 1,y (F - pa) +
Iy, v (4.1.16)
rp(l,; =l )+ 1y (r? = p?)+ascC, ]
F =l (p—ar) + 1, G+ pr)+
l,, v (4.1.17)
PA(lyx — Iy )+ va(p2 _qz)"‘q_San]

From these equations a state variable model of the longitudinal and lateral
directional dynamics of the aircraft can be built. These models are of the form

X=Ax+Bu andy=Cx+Du. The longitudinal dynamics these can be seen in the

following equations™:

Xiong = A

Long X

4B U (4.1.18)

Long “*Long Long ~ Long

yLong = CLong X + D (4119)

Long Long u Long

39



where x, . is a vector containing the states of the system «, u, g, and 8; u,,is
control inputs, ; and y . is a vector containing the outputs of the system a,, «, u, d,

and @. Substituting the state vectors and matrices yields the following:

@l |z, z, Z, Z,|a] |z,
Tl Xe Xu 00 X B ] X, g | (41.20)
G| |[M, M, M, M,lal M,
0 O 0 1 0|0 0
a,| [z, z, z, Z,] Z;, |
a E
a 1 0 0 0} 0
ul={o0 1 0 0 ] +| 0 |[6:] (4.1.21)
q 0 0 1 o0f, 0
6] |0 0 0 1 0 |

All of the longitudinal dimensional stability derivatives used in the above equations
are shown in Appendix B. Similarly the lateral directional dynamics are expressed as

such:

XLatDir = ALatDir XLa'[Dir + BLatDir uLatDir (4122)

yLatDir = C LatDir XLatDir + DLatDir u LatDir (4123)

where X, IS @ vector containing the states of the system g,p , r,and ¢; u . IS @
vector containing the control inputs 6, and o;; and y ., IS @ vector containing the

outputs of the system a,, B, p, r, and ¢. Substituting the lateral directional state

vectors and matrices yields the following equations:

40



Bl 1Y, Yo Y Y B8] Y, Y,

A LA LRI L (4.1.24)
Pl [N, N, N, 0fr| [N, N, [

¢ 0 1 tand 0| g 0 0

fa ] Y, Y, Y, Yﬂﬂ Y, Y, ]

B 1 0 0 0 0 0|

pl=f0 1 0 0 f+ 0 0 {5’*} (4.1.25)
r 0 0 1 ’ 0 o F"

4] |0 0 0 1] 0 0 |

The lateral directional dimensional stability derivatives used in these equations can
be seen in Appendix B. From this point various control schemes can be designed to
control the flight characteristics of an aircraft. A longitudinal control system can be
implemented to control the pitching rate, pitch angle, airspeed, and altitude of the aircraft.
Whereas a lateral directional control scheme has the ability to control the yaw rate, roll
rate, bank angle, and the heading angle. For the purposes of this research a heading angle

controller must be designed so the UAV can follow its assigned path.

4.2 - Implementation of Heading Angle Control Scheme

After the state equations have been derived to govern the heading angle of the
aircraft, a control scheme must be designed to control it. This must be done within the
SIMULINK environment in MATLAB. A simulation designed by Rauw named the
Beaver aircraft simulator, provides an excellent way to simulate the dynamics of any
general aviation aircraft®’. This is due to the fact that the user can enter any desired
aerodynamic coefficients with a user interface that can be seen in Figure 4.2.1. This also
allows the user to enter the initial conditions, mass, and other geometric data of the

aircraft.

41



Dizcrete Time General Monlinear Aircraft Model [mazk] [link]

The first input containg the wind velacity and acceleration.

The zecond input containg external forces and maments in body axis.
The third input containg the deflections of elevatars, ailerons, rudder
and, flaps. For a list of outputs look under the mask.

NE : The Intemational measurement system [MES) iz adopted.

Parameters
Geometry, Mazs, T [cbar b S Iz Iy Iz Jup Jxz Juz m T]

Aerodynamic D-Force Derivatives : [CO0 CDa COg COde COik]
|[D.D205 03 00 -01]

Aerodynamic L-Force Denvatives : [CLO CLla Clg Clde CLik]
[0 375 18 0 04

Aerodynamic v-Moment Derivatives : [Cril Cra Crg Crnde Crinik]
|[D.D25 04 27 0 -0.5%8

Aerodynamic v-Force Denivatives : [Cr0 Cvb Cv'p Cy'r Cv'da C'dr]
|[D 068 0 0 00160 0.095]

Aerodynamic #-moment Derivatives ; [CI0 Clb Clp Cir Clda Cldr]
|[D 016 -034 013 -0.013 0.008]

Aerodynamic Z-moment Derivatives ; [Cnll Chb Chp Chr Cnda Chdr]

|[D 0125 -0036 -0270 0001 -D.0BE]

Initial Condition <0 [v alpha beta p g r psi theta phi ke ye H]

|[UA\-"S[4,‘I 1000 -0.003073020 000 O-0.003073020 UAVS[1.1)

o]

Cancel | Help | |

Figure 4.2.1 — Data entry user interface

»5]
Ll
| yatm
] ¥
vad1
=]
| yaaz
Adrdata group yad3 Gotod
- - [ydl]
2 i L ED -
deflect b =E| Lasro
Aerodynamics Fiaars
roup (Beaver
@ greup (| i =Dj
P Fhi ext
L :
Gravity »=
Gravity forces Farav
-
o | Fwind » 3
g PO =
Wind farces Fusind
-
i
Add + sort
AT | ¥ 1)
-

: moments > » Ty x
O v O
umind ol bl ol | ot

Aircraft equations bel
of motion (Beaven
=]
—
Input Output
Signals Signals
BEAVER, level 2 (main level)
.0, Rauw
Froms

Figure 4.2.2 — The aircraft simulator control

system

42



The SIMILINK block shown in Figure 4.2.2 simulates the longitudinal and lateral
directional dynamics of an aircraft. This system inputs the control surface deflections of
the elevators, rudder, and ailerons, and returns the current states of the aircraft. To give
the UAV the ability to follow its given path, a control scheme must be designed to govern

the control surface deflections, which is shown in Figure 4.2.3.

ind

>
Discrate
Time
o ® bl s W) General g—pe
L : 4 E_pfrare Ajreraft = &
pos_des Stal_: a : actuator Model piu uE R =®
) A i ::;Xé ol —
rud L
U WE 3
i -T- wa e, H » -
Autopilot —
elevators DT-F3 2 : |
b4
;

Figure 4.2.3 — The heading angle control scheme

Inside this main scheme is an autopilot controller seen in Figure 4.2.4. The

autopilot block inputs the current and desired x and y positions for the aircraft.

w1 2 &8 12])

Ie{pos_des

w_d
w{=ens

turn_generatar

Figure 4.2.4 — The aircraft autopilot control block

43



This controller then uses a turn generator to follow the desired path by deflecting
the proper control surfaces. The design for this is shown in Figure 4.2.5. This control

scheme is an efficient and reliable way to navigate from one waypoint to the next.

i) 029 \.r
- .alpha,beta
den(s) deniz) | P tp
IR IRz tpoct | par
erivative fipdotZpqr D )
d
{1 ]
theta_d
o H
psi_d
Trigonome i
Function Atanz
Y
deftax
it
\? x_sens e U
_desired sans
deftay
pos_des
}:_desined ¥_sens
Ea

it

Figure 4.2.5 — The autopilot turn generator block

The beaver aircraft simulator outputs the state vector of the aircraft which
contains the x location, y location, z location, velocity, angle of attack, sideslip angle,
pitch rate, yaw rate, roll rate, pitch angle, bank angle, and the heading angle of the
aircraft. These states of the aircraft, along with the desired x and y positions, are
feedback into the aircraft dynamics forming the closed loop control design. In this
research effort, since no actual UAV dynamics were available, F-4 dynamics were chosen
due to their benign nature. The aerodynamics coefficients for an F-4 at subsonic cruise

used are available in Roskam?®.

44



Chapter 5

Development of a SIMULINK scheme for Cooperating UAVs

5.1 - Implementation of the Path-Planning Process and Aircraft Dynamics

The SIMULINK environment not only provides an excellent way of executing

MATLAB files, but it is advantageous in examining the inputs and outputs of a

simulation. In addition, it provides several different ways to visualize the results of a

simulation. This section will cover the implementation of the path-planning functions

discussed in Chapter 3 and the heading angle control scheme discussed in Chapter 4. A

SIMULINK file is constructed using a block diagram where each block has an input and

an output. Each block contains code that is executed based on its inputs and returns an

output, which is then sent to another block. This process is repeated to form a simulation.

This can be seen in Figure 5.1.1, the main SIMULINK file for this simulation.

‘ Plat Simulation I

Double-click
for WRT infa

Run after Simulation
has Complatad

LA M AGER = |t
Ut Dot [ UawsTHREAT |
‘_l e

wa CRASH

ZOMES

SIGNAL REPLAN |

LAk T

— s
——

F Y

THREATS hiaMAGER

-
—————— I THREATS
THREATS Uay SELECTED TARGETS|

™ anp
S AT POINTS
TARGETS ~| UAW OPTIMAL PATHS
R TARGETS
TARGETS haNAGER ﬂ—l TG Eg
I 1

(AIRCRAFT DY NAMICS LAS POSITIONS

UtArsTHR EAT

U&s INTERCEFTED

THREATS

Figure 5.1.1 — Main block diagram for cooperating UAVs

45



The central block in this diagram labeled “PATH PLANNING™ contains the
MATLAB code discussed in Chapter 3. This code is implemented using an S-function,
which stands for SIMULINK function. This function allows for the specification of the
number of inputs and outputs to a block. Each S-function contains executable code.
Figure 5.1.2 shows the S-function “path_planning_s’ being used, which can also be seen

in Appendix C.

0

HAE Enable

(Z ————pof
Ji (
TARGETS

G

ZOMES

4 ) —wi

THREATS

L& OPTIMAL PATHS

O T

'\_‘ —_—
Cl—}—p'- U SELECTED TARGETS
ALOT Aplb—p

Figure 5.1.2 — Path planning s-function implementation

Since the S-function requires that the input and output be single vectors as
opposed to matrices, the inputs are reshaped and combined into a vector of a fixed size
using a multiplexer. A multiplexer combines several vectors and scalars into a single
vector. In this case, the vectors ‘UAVS’, ‘TARGETS’, ‘ZONES’, ‘THREATS’,
‘UAV_HEADING_ANGLE’ and the scalars current time of simulation and current plot
number are all combined into a single vector. Also, inside this block the user can control
if the current conditions of the battlefield are plotted when a replan occurs. Inside the S-

function “path_planning_s” another function is called, “path_planning™, which can be

46



found in Appendix C. This function contains several reshape functions that transform the
inputs into the desired matrix shape to execute the functions defined in Chapter 3.

As previously stated, this code yields an optimized, flyable path for each UAV to
follow. In order for the heading angle control scheme to operate it must be given a
smooth path instead of the locations of the waypoints. To accomplish this each waypoint
must be assigned a time at which the UAV should be visiting it. This is estimated using
the constant velocity of the aircraft. Along with the assigned waypoints, the selected
targets that each UAYV is assigned to visit is also output. This is done so that the targets
are classified properly. After the waypoints and there associated times are output from
the path-planning S-function they are then sent into a look-up table block, which is
shown in Figure 5.1.3. This uses linear interpolation to provide a smooth path for the

autopilot discussed in Chapter 4 to follow.

Poszitions

J Feshape

Times Look-up Table Trajectony

¥Y¥TrY
b 4

Clock

Htrajectony

I Feshape

Positions

¥ !FF

¥, ¥, Z, time o i SuEn s = .__l'__"
imes ok-up Table Trajectony i L
o
| Reshaps Clack
“ ' trajectony
.
Positions
g Times Look-up Table Trajectory forr
G R | Clock

Ztrajectony

Constant

Figure 5.1.3 — Look-up table SIMULINK block

47

P

km2m

0s_des



5.2 - Management of the No-Fly Zones and Threats

In a realistic battlefield environment, the UAVs must have the ability react to
what is happening around them. This can include a threat popping up, vehicle entering a
no-fly zone’s radius, or a vehicle entering threat’s range. If a UAV flies inside a threat’s
range the threat will fire and based on the probability of kill of the threat that vehicle may
be destroyed. Also, if a UAV flies inside a no-fly zone’s radius it is assumed that the
aircraft is lost. In order to simulate a vehicle interacting with a threat or no-fly zone
several S-functions were written, which are “uav_crash_s” and “uav_intercepted s”.
These functions compare the current positions of the UAVs with the position and radius
of each no-fly zone and the position and range of each threat. These functions can be seen
in Appendix C.

The outputs of these two functions are vectors containing either zeros or ones.
The value is a zero if the UAV is still operational or one if the UAV has been destroyed.
The implementation of the “uav_crash_s” function is shown in Figure 5.2.1, while the

“uav_intercepted_s” function can be seen in Figure 5.2.2.

uav_crazh_s

LA vz ZOME

Figure 5.2.1 — Block comparing UAV positions to no-fly zone positions

48



uaw_intercepted_s

THREATS THREATS FIRED

Figure 5.2.2 — Block comparing UAV positions to threat positions

In addition to comparing the current locations of the UAVs to the threats and their
associated ranges, a random number is generated when a vehicle passes inside a threat’s
range. If this number is within the specifications for the probability of Kill of that threat
the vehicle is destroyed. Otherwise, the vehicle remains operational and continues on its
current path. Either way when a threat has fired, it is no longer present on the battlefield
and will have no further effect on any UAV. If a threat has fired or a vehicle is
destroyed, a replan is signaled for the entire group based on the battlefield changing.

Another component of a dynamic battlefield environment is a pop-up threat. This
is a threat that is unknown for the initial plan, but is discovered during the simulation.
The simulation of this occurrence is important because a realistic battlefield will never
remain constant. A block was created for the purpose of simulating a pop-up threat,

which is shown in Figure 5.2.3.

h 4

()

THREATS DETECT THREAT CHANGE HREATS_MANAGER_REPLAN
o THREATS OLD
THREATS NEN |+ o 1
((Z_»——W| THREATS FIRED THREATS NEW
THREATS FIRED
THREATS
& THREATS_WRT

Figure 5.2.3 — Threats manager

49



These blocks compare the old values of the “THREATS’ vector to the new values of the
vector. If a change occurs a replan is signaled for the group according to the new

information.

5.3 - Management of the UAVs and Targets

The dynamics of the battlefield extend to the UAVs and targets as well as the
threats and no-fly zones. A simulation for cooperating UAVs must have the ability to
simulate a vehicle being destroyed or a target changing states, i.e. classified, destroyed, or
assessed. These are extremely important when creating a realistic simulation of
cooperating UAVs. Whether a UAV is operational or not is controlled by the

SIMULINK block shown in Figure 5.3.1.

: LA Colurmin ’
: LA Calumn ’
: LA Calumn ’

L L
> LA Calumn

b 4
-

¥
+

¥
+

¥
+

Ua POSITIONS NEW

LA Colurmn -+ fiuS_ e AGER_RER LAH

Uy POSITIONS

LA DO

b
+

¥
+

¥
+

h

+|

Figure 5.3.1 — UAVs manager

50



These blocks input the vectors from the previous section based if a vehicle entered a
threat’s range or no-fly zone’s radius. If these values are all zero then no vehicle is
destroyed, but if a vehicle is destroyed a replan is signaled. Also, each vehicle has a
limited amount of fuel, therefore if a vehicle’s fuel runs out that vehicle is considered lost
and a replan is signaled.
In any battlefield, each target must be acted upon by several UAVs. The states

that a target can have are the following:

e Identified

e Classified as a valid / invalid target

e Attacked

e Assessed as destroyed / not destroyed
Each target must have all of these actions performed on it, except when a target is
classified as an invalid target. This is implemented with the code contained in the
SIMULINK block shown in Figure 5.3.2. Inside this block is an S-function named
“target_classifier_s”, which can be seen in Appendix C. This calls the function

“target_classifier’” that changes the state of a target based on if it is visited.

-
~{=h

—_
R, L
TARGETS WATH WAy POINTS

Fed

& END_OF F'ATH_ £
[onmmorpm=—1 ] |

| U/ SELECTED_TARGETS ool
TARGET

CLASSIFIER
-
L
2

TARGETS LOCATION ﬂ\
{ T

: CLASSIFIED TARGETS
e

¥

¥
|

h 4
|
=1

TARGETS WITHOUT WAy POINTS

DETECT TARGET CHANGE TARGETS_CLASSIFIER_REPLAN

¥

Figure 5.3.2 — Targets classifier SIMULINK block

51



Every target is initialized to the state of identified not classified. After a target is
visited for the first time, a random number is generated. Based on this number a target is
either classified as a valid target or classified as an invalid target. An invalid target is
immediately deleted and no further action is required. After a target has been classified
as a real target it must be attacked. In order to ensure that the desired target has been
destroyed, a battle damage assessment (BDA) must be preformed. If the BDA reveals
that the target has not been destroyed the target must be attacked again. This process is
repeated until the target has been assessed as destroyed. For the purpose of this
simulation a random number is generated between 0 and 1. If that number is less than
0.85 the BDA is deemed successful and the target is deleted.

In much the same way as a threat can be discovered during the simulation a target
can pop-up while the UAVs are acting on the current targets. The SIMULINK block in

Figure 5.3.3 has the ability to simulate this occurrence.

B %
h 1y
TARGETS

¥

DETECT TARGET CHANGE B TARGETS_MANAGER_REFLAN

B TARGETS_OLO. TARGETS_HE

g:l—ymnems_um

TARGETS NEW

Figure 5.3.3 — Targets manager

If this happens a replan for the group of UAVSs is signaled. This block compares the old

values of the “TARGETS’ vector to the new value and detects a change.

52



Due to the nature of the MMKP algorithm outlined in Chapter 3 the number of
UAVs must be equal to the number of targets. The code contained in the block shown in
Figure 5.3.4 calls an S-function named “place_waypoints_s”, which is shown in

Appendix C.

=

—— 1)
TARGETS WITH WiavFOINTS

ED

TARGETS_LOCATION

place_waypaoints_=

TARGETS WITHOUT
WAYPOINTS

Figure 5.3.4 — Add waypoints SIMULINK block

This function calls a function that alters the ‘“TARGETS’ vector if needed. If the
number of UAVs exceeds the number of targets, waypoints are placed at the most
valuable targets. This is done to ensure that these targets will be visited the most.
Otherwise, if the number of UAVSs is less than the number of targets, the least valuable
targets are temporarily deleted until all of the valuable targets have been serviced. After
every dynamic reaction a replan for the group of UAVSs is signaled, which can be seen in
figure 5.3.5. This shows the SIMULINK block that gathers all of the replan signals and

activates the central path-planning algorithm.

Display Initial
Eiattlefield Settings

Bl i

| UAWS_MANAGER_REPLAN -

REPLAN

| TARGETS_CLASSIFIER_REPLAN oo

Figure 5.3.5 — Signal replan SIMULINK block

53



Chapter 6

Comparison with Other Available Path Generation Methods

6.1 - Implementation of Grid and Visibility Graph

In addition to the path generation technique presented in Chapter 3, several other
methods have been used by previous researchers such as a grid or a visibility graph®®®,
These two methods provide an excellent comparison for evaluating the efficiency and
calculation speed of the Voronoi diagram method. This is important to evaluate the level
of optimization and computational complexity. A simulation is desired that not only has
real-time application abilities, but also results in an optimal solution for the mission. This
can be evaluated by using a grid or a visibility graph. A grid involves the overlaying of a
grid on the battlefield. In a visibility graph every point on the battlefield is entered and
lines are drawn between these points, if and only if there is a clear line of sight.

The overlaying of a grid onto the battlefield provides a simple comparison to the
more complicated methods. This is accomplished using the MATLAB code seen in
Appendix D. An example of this is shown in Figure 6.1.1. After the grid has been
generated the same path-planning process is used that has been described in Chapter 3.
The UAVs and targets positions are connected into the grid through the three closest
nodes. Dijkstra’s algorithm is then implemented to find the lowest cost path for each
permutation of UAV to target. This method can provide different results because it does
not take into account the locations of any no-fly zones or threats when the possible paths

are generated. In the same fashion as before, the selected paths are refined into optimized

flyable paths before the tasks are allocated using the MMKP algorithm.

54



Kilometers
8

40|

I . -:I 1 - T 1 - ~ 1
20 40 60 80 100 120 140 160 180 200
Kilometers

Figure 6.1.1 — Grid path generation

A visibility graph provides a completely different comparison than the previous two
methods. There are several advantages and disadvantages with this method. The major
disadvantage is the computational complexity that it brings to Dijkstra’s algorithm. The
MATLAB code written to implement this method can be seen in Appendix D. An

example of a visibility graph is shown in Figure 6.1.2.

200

ha - @ =
= b= < =1
T T T T

Kilometers
=]
o

60

40+

201

20 40 B0 80 100 1i{) 140 160 180 200
Kilometers

Figure 6.1.2 — Visibility graph path generation

55



It is apparent from the graph that the complexity greatly exceeds the other two
possible path generation methods, which is a large hindrance on finding the lowest cost
path for each UAV to each target. Also, it should be noted that a safety factor of 10% of
each threat’s range and no-fly zone’s radius was used in creation of these paths. As
opposed to the previous two methods, the UAV and target locations are included in the
generation of these possible paths. In theory this approach should yield an already
optimized solution. This is because it is an exhaustive search as opposed to approximate
solutions.

Some of the advantages of a visibility graph are that is provides a more complete
possible path solution. This leads to fewer calculations after Dijkstra’s algorithm. Due to
the fact that this path will be the shortest possible path, it will not have to be optimized
during the refinement step, but these paths still need to be made flyable. These paths are
defined according to points on the battlefield, which are the outer lying radii of the no-fly
zones, ranges of the threats, positions of the UAVSs, and positions of the targets. Since
the radii and ranges are spherical the points must be placed at equal intervals along this
sphere. This leads to the paths passing as close as possible to a threat or no-fly zone
penetrating it.

The generation of the visibility lines in this graph is accomplished using
Algorithm 3.1.3. After every point is generated, they are exhaustively searched to every
other point to see if the line connecting the two points passes through a threat’s range or
no-fly zone’s radius. If the line does not, it is recorded as a possible line of travel.

Clearly, this process leads to the generation of paths that cannot be optimized.

56



6.2 - Comparison of the Path Generation Methods
To evaluate the original Voronoi based method for path generation it must be

compared with the two methods discussed in the previous section. The comparison of
these methods involves the evaluation of several factors.

e Calculation time of each replan

e Total estimated cost of each replan

e Simulation time at which each replan occurred

e Total Number of replans needed to complete the mission

e Total mission completion time (simulation and calculation)
Each method was used with the same initial conditions of the battlefield. In addition, for
comparison purposes, all of the random variables involved in classifying a target were
removed. If these variables were left in place it would be difficult to draw any
conclusions on which method is more effective. The comparison between these methods
is shown in Table 6.2.1, which shows the total calculation time and total simulation time
it took to complete the mission.

Table 6.2.1 — Comparison of total simulation time for possible path generation methods

Path Generation Total Time | Simulaiton

Method (sec) Time (sec)
Grid 180 1778
Voronoi Diagram 174 1918
Visibilty Graph 176 1715

It should be noted for the purpose of this comparison no targets were placed
inside of a threat’s range. Although the simulation is setup to allow this, it would have

introduced randomness into the results, which is undesirable. To perform a fair and

57



unbiased comparison the initial conditions of the battlefield must be exactly the same,

which are shown in Figure 6.2.1.

Initial Conditions

250 T T T
200+ =
515
. agmaes A8 ]
(w2 e
L .'.u.-.,.'. ATV % 4 |
150 5, * 1. x 3
0 4o . @E R
L R £ ok
z ® 22
o4 @
¢ 3
50 =
052
&1
ok 8
1 I 1 | 1
0 50 100 150 200 250
Kilometers
uay 1 exists at location 29 x, location 22 v, altitude 2 km, and is flying at 130 m/s.
uav 2 exists at Tocation 22 x, Jocation 42 ¥, altitude 2 km, and is flying at 130 m/s.
uav 3 exists at location 16 x, location 65 y, altitude 2 km, and is flwing at 130 m/s.
uav 4 exists at Tocation 10 x, Jocation 82 ¥, altitude 2 km, and is flying at 130 m/s.
Target 1 indicated to be at location 132 x,” location 179 v , and with an estimated walue of 70.
Target 2 indicated to be at Tocation 127 x, Tocatjon 165 % , and with an estimated walue of 80.
Target 3 indicated to be at location 168 x, Jocation 145 % , and with an estimated wvalue of 100,
Target 4 indicated to be at Tocation 167 x, Tocatjon 153 % , and with an estimated walue of 20.
Target 5 indicated to be at location 173 x, location 188 ¥ , and with an estimated value of 40.
Mo-Fly Zone 1 exists at Jocation 6% x, location 172 y, and with a radius of 9 km.
Mo-Fly Zone 2 exists at location 100 x, Jlocation 139 y, and with a radius of 9 km.
Mo-Fly Zone 3 exists at Jocation 151 x, Jocation 98 y, and with a radius of 9 km.
Mo-Fly Zone 4 exists at location 107 x, Tlocation 86 ¥y, and with a radius of 9 km.
Mo-Fly Zone 5 exists at Jocation 60 x, Jocation 120 y, and with a radius of 9 km.
Threat 1 exists at location 83 x, location 145 v, with a range of 10 km, and has a probability of ki1l of B0%.
Threat 2 exists at location 93 x, location 116 v, with a range of 10 km, and has a probability of k111 of S0%.
Threat 3 exists at Jocation 145 x, Tocation 120y, with a range of 10 km, and has a probability of ki1l of 80%.
Threat 4 exists at location 111 x, location 166 ¥, with a range of 10 km, and has a probability of ki1l of S0%.
Threat 5 exists at Jocation 121 x, location 136 ¥, with a range of 5 km, and has a probability of kill of 50%.
Threat & exists at location 158 x, Tlocation 167 v, with a range of 5 km, and has a probability of k111 of 5S0%.
Figure 6.2.1 — Initial conditions of the battlefield
In addition, all of the pop-up targets and threats were removed to ensure a fair
comparison. These particular conditions were chosen because no UAV can travel

directly to a target. This ensures that each path generation method is used instead of a

58



UAV traveling along a straight line to a target. Each UAV was given the same initial
heading angle, cruise speed, and altitude, which are zero degrees, 130 meters per second,
and two kilometers. The cruise speed and altitude of each UAV are held constant
throughout the simulation.

To understand what occurred during the simulation every time a replan is signaled
a figure is plotted showing the current positions of everything on the battlefield as well as
the assigned paths for each UAV. In these the blue represents the UAVSs positions and
selected paths, the green points are the targets positions, the black circles are the no-fly
zones and the red represents the threats positions and ranges.

Figures 6.2.2 -6.2.22 shows the figures plotted for the grid path generation, the
Voronoi diagram path generation, and the visibility graph path generation from top to
bottom. In addition to a figure being plotted the current action is printed to the
MATLAB command line, so that a log of the simulation can be kept. These simulation
logs can be seen for the grid, Voronoi diagram, and visibility graph path generation in
Figures 6.2.23, 6.2.24, and 6.2.25 respectively. Table 6.2.2 shows the purpose of each
replan, Table 6.2.3 shows what point in the simulation each replan is signaled. Table
6.2.4 contains the actual calculation time for each replan, while Table 6.2.5 show the
assigned minimum cost for the current mission. This information was recorded to

provide more in-depth comparison between the three methods.

59



Table 6.2.2 — Current actions for path generation methods

Grid

Voronoi Diagram

Visibility Graph

Replan

Current Action

Current Action

Current Action

=

Initial Plan

Initial Plan

Initial Plan

Target 2 identified by UAV 4

Target 2 identified by UAV 4

Target 2 identified by UAV4

Target 2 classified by UAV 4

Target 4 identifed by UAV 3

Target 2 classified by UAV 4

Target 1 identified by UAV 3

Target 4 classifed by UAV 3

Target 2 attacked by UAV 4

Target 1 classified by UAV 3

Target 4 attacked by UAV 3

Target 2 assessed by UAV 4

Target 3 identified by UAV 3

Target 4 assessed by UAV 3

Target 3 identified by UAV 1

Target 3 classified by UAV 2

Target 3 identified by UAV 2

Target 3 classified by UAV 1

Target 4 identified by UAV 1

Target 3 classified by UAV 2

Target 4 identified by UAV 3

(o] Neo] EN] Kep] K431 F-N [O%] LN

Target 4 classified by UAV 1

Target 3 attacked by UAV 2

Target 4 classified by UAV 3

=
o

Target 2 attacked by UAV 4

Target 3 assessed by UAV 2

Target 3 attacked by UAV 1

=
=

Target 4 attacked by UAV 1

Target 2 classified by UAV 4

Target 3 assessed by UAV 1

=
N

Target 4 assessed by UAV 1

Target 2 attacked by UAV 1

Target 4 attacked by UAV 3

=
w

Target 1 attacked by UAV 4

Target 2 assessed by UAV 1

Target 4 assessed by UAV 3

[N
S

Target 3 attacked by UAV 2

Target 1 identified by UAV 4

Target 1 identified by UAV 4

=
(&)

Target 1 assessed by UAV 4

Target 1 classified by UAV 4

Target 5 identified by UAV 2

=
]

Target 2 assessed by UAV 3

Target 1 attacked by UAV 1

Target 5 classified by UAV 2

[EN
~

Target 3 assessed by UAV 2

Target 5 identified by UAV 2

Target 5 attacked by UAV 2

=
[ee]

Target 5 identified by UAV 1

Target 5 classified by UAV 2

Target 1 classified by UAV 4

=
©

Target 5 classified by UAV 1

Target 5 attacked by UAV 3

Target 5 assessed by UAV 3

N
o

Target 5 attacked by UAV 1

Target 5 assessed by UAV 3

Target 1 attacked by UAV 4

N
=

Target 5 assessed by UAV 1

Target 1 assessed by UAV 1

Target 1 assessed by UAV 1

Table 6.2.3 — Time when replan is signaled for path generation methods

Grid Voronoi Diagram Visibility Graph
Replan | Signaled (sec) Signaled (sec) Signaled (sec)

1 0 0 0

2 1308 1370 1188
3 1324 1379 1203
4 1354 1394 1250
5 1370 1439 1265
6 1384 1455 1353
7 1399 1479 1368
8 1425 1519 1388
9 1441 1562 1404
10 1459 1602 1412
11 1510 1647 1453
12 1525 1661 1467
13 1561 1706 1482
14 1573 1770 1537
15 1618 1786 1555
16 1626 1794 1571
17 1678 1806 1617
18 1703 1822 1628
19 1719 1841 1663
20 1763 1856 1705
21 1778 1918 1715

60



Table 6.2.4 — Actual replan calculation times for path generation methods

Grid Voronoi Diagram Visibility Graph
Replan | Calculation (sec) | Calculation (sec) Calculation (sec)
1 1.64 0.74 1.02
2 0.45 0.16 0.92
3 0.44 0.19 0.94
4 0.47 0.14 0.94
5 0.49 0.19 0.92
6 0.47 0.14 0.89
7 0.47 0.17 0.92
8 0.48 0.19 0.89
9 0.45 0.22 0.91
10 0.49 0.20 0.95
11 0.50 0.16 0.89
12 0.50 0.17 0.92
13 0.45 0.20 0.94
14 0.52 0.16 0.89
15 0.48 0.13 0.89
16 0.48 0.13 0.92
17 0.45 0.13 0.91
18 0.44 0.13 0.89
19 0.45 0.13 0.94
20 0.38 0.16 0.91
21 1.53 0.75 1.00

Table 6.2.5 — Replan current total cost for path generation methods

Grid Voronoi Diagram Visibility Graph
Replan Totalcost (m) Totalcost (m) Totalcost (m)
1 2968.30 2623.10 2266.30
2 57.23 48.04 199.40
3 53.51 55.71 202.11
4 26.04 78.14 92.23
5 33.60 31.63 146.79
6 33.62 61.39 61.00
7 41.09 93.59 69.02
8 24.48 63.48 51.62
9 26.23 48.19 47.65
10 72.32 118.42 64.86
11 33.66 83.59 49.77
12 68.71 86.81 49.91
13 47.51 91.15 180.55
14 62.22 29.24 136.57
15 86.03 25.05 127.41
16 140.27 25.15 79.28
17 155.51 31.89 35.40
18 140.31 38.50 44.53
19 191.50 35.25 113.20
20 100.05 128.07 80.06
21 2096.80 2207.80 2204.10

61



Grid Method

250

200

Kilometers

L L 1 L I
0 50 100 150 200 250
Kilometers

oronoi Diagram Method

Kilometers
2

] 50 100 150 200 250
Kilometers

isibility Graph Method
250

+ 3

Kilometers
2

] 50 100 150 200 250
Kilometers

Figure 6.2.2 — 1% replan of the simulation for all three methods



Grid Method

170 J > 3

S

Kilometers
2
T
N\
X
e

140} = -

: L I
110 120 130 140 150 160 170 180 190 200

Vforonol Diagram Method

7o -

3

Kilometers

140}

130+

. 1 . i
120 130 140 1£| 160 170 180
Kilonfeters

Visibility Graph Method

170F

2

Kilometers

bE L T -

120k L L v & F s g - —L T—
120 130 140 150 160 170 180 180
Kilometers.

Figure 6.2.3 — 2" replan of the simulation for all three methods



Grid Method

190
180 4
. = 3 ____
170 " .
ko4 3 sy 6
g & e
+ 160
§
2 "
150} =
_‘/
140} i el
¢+ 5
130+ - i ;
1 - —L 4 I' - - L
120 130 140 1 160 170 180
Kilomeﬁrs
‘Voronoi Diagram Method
1851
180 \
% 4
e,
170} 7
\ * 6
£ 165 ¢ o\ -
[ 1 P
&
g 160}
155}
& ] 23
150
o 2
1451 : 1
P S R
120 2 130 140 150 160 170 180
Kilometers
Visibility Graph Method
190
180+ 4
170
* 4 43 ”
160
I:
[
& 5 o= 2
% 1501
2
) S o
140} 3 _’__,_.-' -~
e ‘5 ~% 3
b e ‘
1204 : p a8 @ & | i :
110 120 130 140 150 160 170 180 190
Kilometers

Figure 6.2.4

— 3" replan of the simulation for all three methods

64



=
=]
T

Kilometers
2
T

140}

Grid Method

B

170+

g

Kilometers

140 -

I F L I L !
120 130 140 150 160 170 180 180

Kilometers

‘Voronoi Diagram Method

180+

170+

Kilometers
@
=1

T

140

130+

Figure 6.2.5

2 \ ' .
120 130 140 150 160 170 180 150
Kilometers

Visibility Graph Method

k. - - Lt L i 4 i
120 130 140 150 160 170 180 190
Kilometers

— 4" replan of the simulation for all three methods

65



Figure 6.2.6 — 5" replan of the simulation for all three methods

Kilometers
]
T

140

Grid Method

170

Kilometers

140},

=
o

Kilometers
2

140

: L I
110 120 130 140 150 160 170
Kilometers

Voronoi Diagram Method

23

L - - i L : - L 4 L
120 130 140 150 160 170 180
Kilageters

isibility Graph Method

L4 1 ¥ 1 1 1
120 130 140 150 160 170 180
Kilorfeters

180

66



Kilometers

Kilometers

Kilometers

S

Figure 6.2.7

g

140}

Grid Method

200

=
o

@
=
T

140+ .+

130+

I L I
150 160 170

Kilometers

I
140

Veronol Diagram Method

170

1401

130f

150 160 170
Kilometers

130 140 180

Visibility Graph Method

&
LS

190

120

I i
160 170
Kilometers

150 180

— 6" replan of the simulation for all three methods



Grid Method

180+

=1
=]
T
w

Kilometers
g

150 e 1

140+

(] S L i A .
120 130 140 150 160 170 180
Kilometers

‘Voronoi Diagram Method

Kilometers
3 3
T T
)

@

53

7 . * . 1 1 1
120 130 140 150 160 170 180
Kilometers

Visibility Graph Method

1701

Kilometers
3
T

140

5 1 1 . 1 1 1
120 130 140 150 160 170 180 150
Kilometers

Figure 6.2.8 — 7" replan of the simulation for all three methods

68



=
=]

Kilometers
2

200

180

180

170

Kilometers

150

130

120

200

180

B
o

Kilometers

150

140

Grid Method

160~

4 R
2 51
"2
120 130 140 150 160 170 180
Kilometers
Veronol Diagram Method
I 4
) 7
4
= 4 1 g o
* B
2
3
e 2 3
14017
L . _ - I 1 \ i
120 130 150 160 170 180 190 200
Kilometers
Visibifty Graph Method
4
§ % B
-‘ 2 ’
o 33
—t 2
I. '6 4 L 1 - 4 i
120 130 150 160 170 180 180
Kilometers

Figure 6.2.9 — 8"

replan of the simulation for all three methods

69



Grid Method

170+

Kilometers

ol

L L - ‘I L 4 ' s
120 130 140 150 160 170 180
Kilometers

Voronoi Diagram Method

Kilometers
[}
w

taop "

130 L1 o L PR R L L .
120 130 140 150 160 170 180 190
Kilometers

Visibility Graph Method

Kifometers
+
o

140F"-,
5

i ' L 1 1 1 L
130 140 150 160 170 180 190
Kilometers

Figure 6.2.10 — 9" replan of the simulation for all three methods

70



180

180

170

Kilometers

160

150

=
=

Kilometers
]

140

140

Grid Method

¢ 3
4
* (-]
4 ‘ <
s 43
Q-5 2
=
x 2
i * 5
120 130 140 150 160 170 180
Kilometers
‘Voronoi Diagram Method
f 3
11
/ : 3
4 s 4 * “IG
¢ 2
i % B
120 130 140 150 160 170 180 190
Kilometers
Visibility Graph Method
= 4
4]
ot * 6
3
3
iy 21
5
130 140 150 160 170 180 150
Kilometers

Figure 6.2.11 — 10" replan of the simulation for all three methods

71



170+

Kilometers
3
T

140f "

Grid Method

Kilometers
B

140f """

L ai® e | L
120 130 140 150 160 170 180
Kilometers

‘Voronoi Diagram Method

Kilometers

120 9 430 140 150 160 170 180
Kilometers

Visibility Graph Method

32

T
-

Figure 6.2.12 — 11" replan of the simulation for all three methods

I I I L L
120 130 140 150 160 170 180

Kilometers

I
180

72



Grid Method

200
190
.f‘ 4
180} /
1 /
. 8
£ 1ok h
[E) . 8 !
& L 2
2 1 <« v
160
||III
4 1
150+ ‘-)5
2
3
1aof 2
L
120 130 140 150 160 170 180 190
Kilometers
‘Voronoi Diagram Method
190+
3
185+
180 ¥ 4
3
175
21701
k-
. * 6
5 g5t /
= 165 % J 12 7S
160 b 4
1551
> 2
150
1451
T i i 1 | 1 1 L
120 130 140 150 160 170 180 190
Kilometers
Visibility Graph Method
m.
180
o 3
4
180 1
v 2
£ 1701
k] * 6
5 B ;
2
160
jo 53
150+ |
III
’
1401 o
B
130 L 1 - * 1 1 1 1
130 140 150 160 170 180
Kilometers

Figure 6.2.13 — 12" replan of the simulation for all three methods

73



Grid Method

190
f 4
L ¢ 4
180 1
/
T T :
3 v AR T TR
4 % -
160 -
s / )
150
o 2
1401
t # 5
120 130 140 150 160 170 180 190
Kilometers
‘Voronoi Diagram Method
190+
= 2
1851
180
1 ; 3
175F
70} -
51
5 .| 1 . B
gL O 4 2
=
160
155+
150
1451
a0f
120 130 140 150 160 170 180 190
Kilometers
Visibility Graph Method
zm_
190+
# 2
4
180+ y
. 1 2
E 170 ) g %
g '
2 ’ T s
160 R
150+ 5 2
1401 "+, &S 1
5
130l i Ly s i 1 f i 1
130 140 150 160 170 180 190
Kilometers

Figure 6.2.14 — 13" replan of the simulation for all three methods



b=
=
T

Kilometers

2

77/ S

Grid Method

Kilometers

1 & 1 L i
120 130 140 150 160 170 180

‘Voronoi Diagram Method

Kilometers

i i
130 140 150 160 170 180
Kilometers

Visibility Graph Method

140F" """

I
190

Figure 6.2.15 — 14" replan of the simulation for all three methods

' L 21 I ' I
120 130 140 150 160 170

Kilometers

180

75



Grid Method

Kilometers

s i 1 = * . 1 1 1
120 130 140 150 160 170 180 180
Kilometers

‘Voronoi Diagram Method

Kilometers
]
g
T

i ! i ! ;
130 140 150 160 170 180 190
Kilometers

Wisibliity Graph Method

e

=
=3
T

Kilometers
@
=1
T
o

140,

130

1 * 1 1
130 140 150 160 170 180 190
Kilometers

Figure 6.2.16 — 15" replan of the simulation for all three methods



Grid Method

Kilometers
A
w
o

130 i Lok i 1
120 130 140 150 160 170 180 180

Kilometers

‘Voronoi Diagram Method

Kilometers
3
T
—
=
= -

Lt e o 4

170+

' ; ' i i
120 130 140 150 160 170 180 190 200
Kilometers

Visibility Graph Method

~Hilometers
=
(=]
T

140L" - . : . L L
130 140 150 160 170 180
Kilometers

Figure 6.2.17 — 16" replan of the simulation for all three methods



Grid Method

170+

Kilometers
-

s L ; | i i
120 130 140 150 160 170 180 180
Kilometers

‘Voronoi Diagram Method

Ll S

Kilometers
e ¥ 3

| i i I
130 140 150 160 170 180 180
Kilometers

Visibility Graph Method

m_
190+
¥ 22
180+
L ¢ 3

b
2 -
§ 170 LY -
= %oug g

160 L

150+

130 140 150 160 170 180 190
Kilometers

Figure 6.2.18 — 17" replan of the simulation for all three methods

78



170

Kilometers

160

150

140

130

g

Kilometers

205

200

185

190

185

180

Kilometers

175

170

165

Figure 6.2.19 — 18" replan of the simulation for all three methods

Grid Method

=
=]

I i S
{
4
f s 8
. 3 7
AAAAA b 2
a5
[ L i A i L L 4
120 130 140 150 160 170 180
Kilometers
‘Voronoi Diagram Method
133
|‘II 1
o1
o -,
R -
120 130 140 150 160 170 180 180 200
Kilometers
Visibilty Graph Method
2
_ 4 3
X 1
L X
N " 6
\ i 3
130 140 150 160 170 180 180
Kilometers

79



Grid Method

=
=1
T

Kilometers
3
T

P IR

: . : - 1
120 130 140 150 160 170 180 180
Klometers

‘Voronoi Diagram Method

Kilometers
2
T

=
[

| | : | i L
120 130 140 150 160 170 180 180
Kilometers

Wisibliity Graph Method

200+

180+

Kilometers

170+ L4 1
160

150

130 140 150 160 170 180 190
Kilometers

Figure 6.2.20 — 19" replan of the simulation for all three methods

80



Grid Method

Kilometers
+
[=1}

Kilometers

‘Voronoi Diagram Method

Kilometers
A

T

120 130 140 150 160 170 180 190 200
Kilometers

Visibility Graph Method

8
§-y

Kilometers

o
[

L i i . ;
130 140 150 160 170 180
Kilometers

Figure 6.2.21 — 20" replan of the simulation for all three methods

81



Grid Method

250

Kilometers

] 50 100 150 200 250
Kilometers

oronoi Diagram Method

250

Kilometers

] 50 100 150 200 250
Kilometers

Visibility Graph Method

250

Kilometers

] 50 100 150 200 250
Kilometers

Figure 6.2.22 — 21% replan of the simulation for all three methods

82



uay 1 exists at location 29 x, location 22 y, altitude 2 km, and is flying at 130 m/s.
uay 2 exists at location 22 x, location 42 i, altitude 2 km, and s flying at 130 m/s.
uay 3 exists at Jocation 16 x, location 65 y, altitude 2 km, and is flying at 130 m/s.
uay 4 exists at Tocation 10 x, Tocation 82 v, altitude 2 km, and s flying at 130 mss.
Target 1 indicated to be at location 132 x,” location 179 v , and with an estimated walue of 70.
Target 2 indicated to be at location 127 x, location 165 % , and with an estimated walue of 80.
Target 3 indicated to be at location 168 x, location 145 v , and with an estimated wvalue of 100.
Target 4 indicated to be at location 167 x, location 153 % , and with an estimated walue of 90.
Target 5 indicated to be at location 173 x, location 188 % , and with an estimated walue of 40.
Mo-Fly Zone 1 exists at location 69 x, Tocation 172 w, and with a radius of 9 km.
Mo-Fly Zone 2 exists at Jlocation 100 x, location 139 y, and with a radius of 9 km.
Mo-Fly Zone 3 exists at Jlocation 151 =, location 98 y, and with a radius of 9@ km.
Mo-Fly Zone 4 exists at location 107 x, location 86 ¥, and with a radius of 9 km.
Mo-Fly Zone 5 exists at Jocation 60 x, Tocation 120 ¥y, and with a radius of & km.
Threat 1 exists at location 83 x, Jocation 145 w, with a range of 10 km, and has a probability of k111 of 80%.
Threat 2 exists at locatjon 93 x, Tocation 116 ¥, with a range of 10 km, and has a probability of ki11 of 80%.
Threat 3 exists at locatjon 145 x, locatijon 120 v, with a range of 10 km, and has a probability of ki1l of 80%.
Threat 4 exists at location 111 x, location 166 ¥, with a range of 10 km, and has a probability of kill of S0%.
Threat 5 exists at locatjon 121 x, locatjon 136 ¥, with a range of 5 km, and has a probability of ki1l of 50%.
Threat & exists at location 158 x, location 167 ¥, with a range of 5 km, and has a probability of ki11 of 50%.
Target 2 (value 80) identified as a target at time 1308 by uav 4.
Target 2 (walue 80) classified not attacked at time 1324 gy uay 4.
Target 1 t(value 70) ddentified as a target at time 1354 by uav 3.
Target 1 (walue 70) classified not attacked at time 1370 gy uay 3.
Target 3 (walue 100) ddentified as a target at time 1384 bg uay 2.
Target 3 tvalue 100) classified not attacked at time 1398 by Uav 2.
Target 4 (value 90) fdentified as a target at time 1425 bg uay 1.
Target 4 (value 90) classified not attacked at time 1441 by uav 1.
Target 2 fvalue 80) attacked not assested at time 1459 by Uav 4.
Target 4 (value 90) attacked not assested at time 1510 by uav 1.
Target 4 (value 0) assested as destroyed at time 1525 bg uav 1.
Target 1 (value 70) attacked not assested at time 1561 g uay 4.
Target 3 (walue 1000 attacked not assested at time 1573 by uav 2.
Target 1 tvalue 0) assested as destroyed at time 1618 by Uiy 4.
Target 2 (walue 0) assested as destroyed at time 1626 hy Uav 3.
Target 3 (walue 0) assested as destroyed at time 1678 hy uav 2.
Target 5 f(value 40) ddentified as a target at time 1703 by uav 1.
Target 5 (walue 40) classified not attacked at time 1719 gy uay 1.
Target 5 (walue 40) attacked not assested at time 1763 by Uav 1.
Target 3 (value 0) assested as destroyed at time 1778 by Uawv 1.
Figure 6.2.23 — Log of the simulation for the grid method
uav 1 exists at Jlocation 29 x, Jocation 22 y, altitude 2 km, and is flying at 130 m/s.
uay 2 exists at location 22 x, Jocation 42 y, altitude 2 km, and is flying at 130 m/s.
uay 3 exists at Jocation 16 x, location 65 v, altitude 2 km, and is flying at 130 m/s.
uav 4 exists at location 10 x, location 82 y, altitude 2 km, and is flying at 130 m/s.
Target 1 indicated to be at Jocation 132 x, location 179 v , and with an estimated walue of 70.
Target 2 indicated to be at Jocation 127 x, Tocation 165 ¥ , and with an estimated walue of 80.
Target 3 indicated to be at Jocation 168 x, location 145 % , and with an estimated walue of 100.
Target 4 indicated to be at Jocation 167 x, location 153 % , and with an estimated walue of 90.
Target 5 indicated to be at location 173 x, Tocation 188 ¥ , and with an estimated walue of 40.
Mo-Fly Zone 1 exists at Jocation 69 x, Tlocation 172 y, and with a radius of 9 km.
Mo-Fly Zone 2 exists at location 100 x, Jocation 139 w, and with a radius of 9@ km.
Mo-Fly Zone 3 exists at Jocation 151 x, Jocation 98 y, and with a radius of 9 km.
Mo-Fly Zone 4 exists at Jocation 107 x, location 86 y, and with a radius of 9 km.
Mo-Fly Zone 5 exists at location 60 x, Jocation 120 v, and with a radius of 9@ km.
Threat 1 exists at Tocation 83 x, locatijon 145 vy, with a range of 10 km, and has a probability of ki1l of 80%.
Threat 2 exists at Tocation 93 x, location 116 ¥, with a range of 10 km, and has a probability of ki1l of 80%.
Threat 3 exists at location 145 x, location 120 y, with a range of 10 km, and has a probability of kill of S0x.
Threat 4 exists at Tocation 111 x, Jocation 166 ¥, with a range of 10 km, and has a probability of kill of S0%.
Threat 5 exists at Tocation 121 x, Jocation 136 ¥, with a range of 5 km, and has a probability of ki1l of 50%.
Threat & exists at location 138 x, location 167 ¥, with a range of 5 km, and has a probability of ki11 of 50%.
Target 2 (walue 80) jdentified as a target at time 1370 by uav 4.
Target 4 (value 90) dentified as a target at time 1379 by uav 3.
Target 4 (walue 90) classified not attacked at time 1394 gy uay 3.
Target 4 (walue 90) attacked not assested at time 1439 by Uav 3.
Target 4 f{wvalue 0) assested as destroyed at time 1455 by uav 3.
Target 3 (walue 100) ddentified as a Target at time 1479 bg uay 2.
Target 3 (walue 100) classified not attacked at time 1519 by uav 2.
Target 3 (value 100) attacked not assested at time 1562 by Uav 2.
Target 3 (walue 0) assested as destroyed at time 1602 by Uav 2.
Target 2 (walue 80) classified not attacked at time 1647 by UAv 4.
Target 2 (walue B0) attacked not assested at time 1861 by Uav 1.
Target 2 (walue 0) assested as destroyed at time 1706 by uav 1.
Target 1 (value 70) ddentified as a target at time 1770 by uav 4.
Target 1 (walue 70) classified not attacked at time 1786 gy uay 4.
Target 1 (walue 70) attacked not assested at time 1794 bg uay 1.
Target 5 {wvalue 40) fdentified as a target at time 1806 uay 2.
Target 5 (walue 40) classified not attacked at time 1822 by uav 2.
Target 5 (walue 40) attacked not assested at time 1841 by Uav 3.
Target 5 f{walue 0) assested as destroyed at time 1856 by uav 3.
Target 1 (walue 0) assested as destroyed at time 1918 by uav 1.

Figure 6.2.24 — Log of the simulation for the VVoronoi diagram method

83



sy 1

a2

Ay 3

sy 4

Target
Target
Target
Target
Target
Mo—F 1y
Mo-F 1y
Mo-F 1y
Mo-F 1y
Mo—F Ty
Threat
Threat
Threat
Threat
Threat
Threat
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target

exists at
exists at
exists at
exists at

1
2
3
4
5

indicated to be at location 132 x, location 179
indicated to be at location 127 %, location 165
indicated to be at location 168 x, location 145
indicated to be at location 167 x, location 153

location 29 x, location 22 v, altitude 2 km, and s flying at 130 m/s.

location 22 x, location 42 %, altitude 2 km, and s flying at 130 m/s.

location 16 x, location 65 ¥, altitude 2 km, and is flying at 130 m/s.

Tocation 10 x, location 82 ¥, altitude 2 km, and is flying at 130 m/s.

, and with an estimated wvalue of 70.
, and with an estimated wvalue of 80.
, and with an estimated wvalue of 100.
, and with an estimated value of 90.

e

indicated to be at location 173 x, location 188 ¥y and with an estimated wvalue of 40.

Zone 1 exists at location 69 x, location 172 y, and with a radius of 9 km.

Zone 2 exists at Jocation 100 x, Tocation 139 vy, and with a radius of 9 km.
Zone 3 exists at Jocation 151 x, Tocation 98 v, and with a radius of 9 km.
Zone 4 exists at location 107 x, location 86 ¥, and with a radius of 9 km.
Zone 5 exists at Jocation 60 x, Jocation 120 ¥y, and with a radius of @ km

1

2
3
4
5
4]
2
2
2
2
3
3
4
4
3
3
4
4
1
5
5
5
1
5
1
1

exists
exists
exists
exists
exists
exists
Cwalue
Cwalue
fvalue
Cwalue
Cwalue
Cwalue
Cwalue
fvalue
Cwalue
Cwalue
Cwalue
Cwalue
(value
Cwalue
Cwalue
Cwalue
Cwalue
Cwalue
Cwalue
Cwalue

at Jocation 83 x, Jocation 145 v, with a range of 10 km, and has a probability of kill of 80%.
at Tocation 93 x, location 116 ¥, with a range of 10 km, and has a probability of ki11 of 80%.

at Tocation 145 x, location 120 vy, with a range of 10 km, and has a probability of ki1l of 80%.
at location 111 x, location 166 ¥, with a range of 10 km, and has a probability of ki11 of S50x.

at Jocation 121 x, location 136 vy, with a range of 5 km, and has a probability of ki1l of 50%.
at Tocation 158 x, location 167 vy, with a range of 5 km, and has a probability of ki11 of 50%.
800 ddentified as a target at time 1187 by uav 4.
80) classified not attacked at time 1203 gy uay 4,
80) attacked not assested at time 1250 by LAV 4.

0) assested as destroyed at time 1265 by uav 4.
100) ddentified as a Target at time 1353 by uav 1.
100) classified not attacked at time 1368 gy uay 1.
900 jdentified as a target at time 1388 bg uay 3.
90) classified not attacked at time 1404 by LAV 3.
100) attacked not assested at time 1412 by uayv 1.
0) assested as destroyed at time 1452 by Uav 1.

900 attacked not assested at time 1467 gy UAv 3.

0) assested as destroyed at time 1482 by uav 3.

700 ddentified as a target at time 1537 by Uav 4.
40) Jdentified as a target at time 1555 by uav 2.
40) classified not attacked at time 1571 gy uay 2.
40) attacked not assested at time 1617 by Uav 2.
700 classified not attacked at time 1628 by LAy 4.
0) assested as destroyed at time 1663 by UAv 3.

700 attacked not assested at time 1705 gy UAy 4.

0) assested as destroyed at time 1715 by uav 1.

Figure 6.2.25 — Log of the simulation for the visibility graph method

84



Chapter 7

Implementation and Discussion of Search Scheme in SIMULINK

7.1 - Implementation of a SIMULINK Based Search Scheme

As discussed previously, there are two types of cooperating UAV problems. One
has been covered in the preceding chapters, a bombing type UAV that has knowledge of
the entire battlefield before launch. For the purpose of this research effort, that type of
vehicle is the main concentration. This will eventually be developed into model aircraft.
The other type of UAV of interest to the Air Force is a disposable UAV, such as the
Predator. These UAVs will perform a search and destroy mission. It is evident from
inspection of any war that both scenarios are extremely realistic and important.

The search and destroy mission starts with the assumption that everything about an
area is unknown, except the position of the UAVs and the size of the area. The only goal
of these inexpensive vehicles is to search out and destroy targets. Unlike the other
mission where there are no-fly zones and threats to be avoided. This scenario is mainly
for the suppression of enemy defenses or any other mission in which an area needs to be
cleared. Essentially, the threats and the targets become one in the same. For simplicity
each target is assumed to be incapable of destroying a vehicle. This assumption is made
because if a target is considered a threat it would immediately attack the UAV, not giving
the vehicle a chance to communicate the information it has gathered.

Due to these assumptions about the battlefield the original control scheme needed

to be completely redesigned. The SIMULINK scheme for this is shown in Figure 7.1.1.

85



In this control system, the general architecture stays the same with a central path-

planning block that contains the main decision making algorithms.

Initial Pozitions of LALSE,

Targets, Mo-Fly Zones, and Threats FlotSimulating

Run after Simulation

Uszer Defined Battlefield has Complated

Ay MANAGER

SIGHAL REPLAN

e

UAWS ' P LS

AIRCRAFT
_ ; .
| TARGETS & WAYPOINTS LS OPTIMAL PATH —p DYHAMICS

DETECT TARGETS 3
b T E T
TAREERS A MAYROINTS

i MAYPOINTS

WAYPOINTS

DETECT TARGETS
EUWAYPOINTS

Figure 7.1.1 — Search control scheme in SIMULINK

Also, the heading angle control design and the UAV manager stayed the same. All
of the other blocks were either replaced or removed. Instead of a targets manager, a
targets and waypoints manager was created. It was designed this way to assign the

targets and waypoints interchangeably for each vehicle.

86



50

40

(%)
=1
T

Kilometers

[+ ]
<

1 1 1 1 1 1 | 1
-10 0 10 20 30 40 50 60
Kilometers

Figure 7.1.2 — Serpentine search pattern

These waypoints were assigned such that the field is searched using a serpentine
pattern, an example of this can be seen in Figure 7.1.2. This allows the entire area to be
searched efficiently. This was accomplished by assigning each UAV to visit a point
directly across from it. After that point the path sweeps around to search another area of
the battlefield traveling the opposite direction. This process is repeated until the entire
area is searched.

During the search of this area a target can be discovered, when this happens a
number of vehicles must be assigned to perform an action on this target. A target in a
search and destroy mission can have 5 states.

e Undetected
e Detected
e Classified as a valid / invalid target

e Attacked

87



e Assessed as destroyed / not destroyed
This is similar to the previous case but with the addition of the first state, undetected,
since there is not knowledge of the battlefield a target cannot be identified, merely
detected. A target is considered detected if it travels within 1,000 meters of the vehicle.
In order for the target to change to any other state it must be within 10 meters of the
vehicle. This is the same distance that the UAV must travel within a waypoint for the
vehicle to be assigned to its next waypoint. The implementation of this in SIMULINK is

shown in Figure 7.1.3.

Q:I—bTARGETs_VRT

LAWS | .
]
TARGETS uav_detect_target_s o TARGETS_MANAGER_REFLAN |
| = —‘ g 1)
TARGETS &WAYPOINTS
uav_detect waypoints_=
b WUATPOINT S _MANAGER_REFPLAN

WAYPOINTS

Figure 7.1.3 — Detect targets and waypoints SIMULINK block

In much the same fashion as before, if a target changes states, UAV becomes lost,
or a waypoint is visited a replan is signaled for the entire group of vehicles. If a target
changes states, an appropriate number of vehicles are sent to the target to perform all of
the needed tasks. This decision is made by the central path-planning block shown in

Figure 7.1.4.

88



Enable

UAWE

(2 —m
TARGETS &
WATYPOINTS

uAYS OPTIMAL PATH

FLOT

(B—s

¥

Figure 7.1.4 — Path planning SIMULINK block

Since there are no threats or no-fly zones the possible paths for each UAV to take to
reach each target are straight lines. The only modification that must be made before tasks
are assigned is each path must be flyable. This is accomplished by using the previously
mentioned method in Algorithm 3.2.2. After each path is flyable the UAVs with the
shortest paths are selected to visit the target. If a vehicle is not assigned to visit a target it
continues on its current path. After each vehicle is assigned a path it is then input into the
same heading angle autopilot designed in Chapter 4.

Upon initialization of the battlefield a function named “waypoint_gen”, seen in
Appendix E, is called, which defines the set of waypoints for each UAV to follow. The
inputs of this function are the number, position, the minimum turn radius of the UAVS,
and the size of the area to be searched. This function yields the locations of the
waypoints that each vehicle is assigned to visit.

The block seen in Figure 7.1.3 calls two S-functions, “uav_detect_targets _s” and

“uav_detect waypoints_s’, both are located in Appendix E. The first calls a function

89



“uav_detect_target”, which inputs the current location of each UAV, the location of each
target, and the state of each target. This function compares the positions to evaluate if the
target should change states and if required it changes the state. The output of this
function is the wupdated target states. The second S-function calls
“uav_detect_waypoints”, which evaluates if a waypoint has been visited. This function
compares the current locations of the UAVs to the locations of the waypoints. If a
waypoint is visited, the function assigns the next waypoint to the UAV.

The central path-planning block calls the S-function “path_planning_search_s,
which is shown in Appendix E. This function is invoked when a replan is signaled. All
of the current information is input to this block which calls the “path_planning_search™
function. This function contains the following algorithm:

Algorithm 7.1.1

1. If target i is present
2. Calculate flyable path for each UAV to target i
3. Assign Nrasks UAVS to visit target
Nrasks IS current state of the target
4. If UAV not assigned to visit a target
continue to current waypoint
5. Go back to step 1

This assigns each UAV a path based on its current waypoints or a target changing states.
The heading angle control system designed previously is then applied so that each UAV

can follow the selected path.

90



7.2 - Results of a Search Simulation

To visualize the results of the simulation a similar method was adapted to that in
Chapter 6. Each time an action occurs on the battlefield and a replan is signaled, a figure
is plotted that shows the current position and path for each UAV as well as the current
position of the detected targets. The first several of these replans are shown in Figures
7.2.1-7.2.6. In the figures shown a target is detected and destroyed. After the target has
been destroyed the UAVs proceed to their next assigned waypoint. In addition, a
statement was printed to the command line of MATLAB for the purpose of keeping a

simulation log, which is shown in Figure 7.2.7.

Search and Destroy Method

10k 8
I
4 4
B
5_
5
B 3
s |
0_ 4
_5. L ! 1 L iE |
0 10 20 20 40 50

Kilometers

Figure 7.2.1 — 1* replan for search simulation

91



Kilometers

Kilometers

Search and Destroy Method

15
10+ f T &
| )
noe
q
W4
5 |
4l
?’?\l o
\/
\ 2
()
0 |
5 | 1 1 1 I 1
0 10 20 30 40 50
Kilometers
Figure 7.2.2 — 2" replan for search simulation
Search and Destroy Method
15
10 &
1 5
st =
|
|
& 5
0 1
5 | 1 1 1 I 1
0 10 20 30 40 50

Kilometers

Figure 7.2.3 — 3" replan for search simulation

92



Kilometers

Search and Destroy Method

75F
7_
i ¢ 5
65 \
\
6 \
\ /
55 N7 S
{ 00— 3 3
2 \
s st \
5
¥ 45
4
35 fee 0 2
Wl L=
25
1 1 1 1 1 1 1 1 1
1 12 13 14 15 16 17 18 19
Kilometers
. th . .
Figure 7.2.4 — 47 replan for search simulation
Search and Destroy Method
?_
6.5F ?I 5
\
1I
B '1
iII
55 \ 5
%— G = e 3 4
| e —_—
5 I|l
45+
4
35 —— 5
10 1 12 13 14 15 16 17 18 19
Kilometers

Figure 7.2.5 — 5" replan for search simulation

93



Target

exists at
exists at
exists at
exists at
exists at
exists at
1 (walue
1 fwalue
1 fwalue
1 fwalue
1 {walue

Kilometers
o

Search and Destroy Method

|
15
Kilometers

20 25

Figure 7.2.6 — 6" replan for search simulation

1000 classified not attacked at time 121

5
Tocation 0O x,
Jocation 0O x,
Tocation 0 x,
location 0 x,
Jocation 0 x,
Tocation 0O x,
10070 detected

location
location
location
location
location
Tocation

0y,
2 v,
4y,
g v,
8y,
10 v,

altitude 2 km, and is flying
altitude 2 km, and is flying
altitude 2 km, and is flying
altitude 2 km, and is flying
altitude 2 km, and is flying

at
at
at
at
at

130 myfs.
130 mfs.
130 mes.
130 my=s.

130 mss

altitude 2 km, and s flying at 130 m/ss.

at time 91 by Uav 4.

1001 classified as a target at time 119 bg sy 4.
¥

Uy 3.

1007} attacked not assested at time 122 by Uav 3.
100} assested as destroyed at time 126 by Uav 5.

Figure 7.2.7 — Log for search simulation

94



Chapter 8

Conclusions and Recommendations

8.1 - Conclusions

This research is the first step in the process of implementing cooperating UAVsS
onto a real battlefield. The importance of these vehicles is becoming increasingly
apparent. UAVSs are being used more in real world applications such as the war in lIraq to
searching missions in Afghanistan. Clearly, these vehicles are the way of the future.
They have lower operational cost, present less risk of loss of human life, and far greater
maneuverability capabilities.

As has been presented in this thesis, the cooperating UAVs problem is exceedingly
complex. Many different researchers have attempted this problem as shown in Chapter 2.
This paper presents simulations that have the ability to replan and avoid obstacles in a
battlefield environment, as well as a pure search and destroy mission. The simulation
discussed can react to a dynamic environment such as targets popping up, threats popping
up, classifying targets, loss of a UAV, and firing of a threat. In a realistic battlefield
scenario, if a vehicle cannot react properly to the environment it is inhabiting it serves no
purpose.

Any cooperating UAV simulation must have the capability to find, classify, destroy,
and perform a battle damage assessment on each target. This must be accomplished
using real-time computations, which this paper shows can be accomplished. The three
path generation methods presented in this document are grid, Voronoi diagram, and

visibility graph. Chapter 6 provides a comparison of these methods.

95



In the example, several factors must be compared to determine the best solution to
the problem. The visibility graph method provided superior results for the cost of the
initial plan, the Voronoi diagram method was 16% greater and the grid method was 31%
greater. The visibility graph also had a lower total simulation time than the other two
methods, 3.6% less than the grid method and 12% less than the VVoronoi diagram method.
This shows that the visibility graph is the optimal method of the three.

Comparing the average of the individual replan calculations the Voronoi diagram
method provided a 76% decrease from the visibility graph method, while the decrease
was 38% for the grid method. This difference becomes less evident when comparing the
total calculation time of the simulation, which the Voronoi diagram method is 1% less
than the visibility graph method and 3% less than the grid method.

While the individual replan computation time is significantly reduced by using the
Voronoi diagram method, the optimization of the simulation suffers. From these
comparisons one may draw the conclusion that the visibility graph provides best results,
which is because it is an exhaustive solution as opposed to an approximate solution. If
the battlefield complexity is low, the visibility graph should be used. As the complexity
of the battlefield increases, this method is not feasible and the VVoronoi diagram method
should be used. For the given in scenario in Chapter 6, it is the conclusion that the
visibility graph method would be the best option.

There are several possible reasons for error involved in the gathering of this data.
These are human error in recording the total calculation time of the simulation, which

could be in the range of 5%. Another source of error could be the calculation time of

96



each replan. Each time this was calculated the computer could be running different
processes that could result in varying processor speed.

In addition, a control scheme to simulate a search and destroy mission was
designed. This simulation was created to show the other purpose of UAVs. The goal in a
search and destroy mission is to search out targets on a battlefield when there is no prior
knowledge of the given area. These vehicles must clear the battlefield of targets using a
market-based bidding procedure to assign each UAV a task to accomplish the desired
mission. Chapter 7 shows a simulation that accomplishes this desired mission by

destroying the given target.

8.2 - Recommendations

Both of the above scenarios are realistic, but in order to build model aircraft that
can perform these simulations it must be coded on an airborne processor. To choose the
proper method the battlefield must be clearly defined. The grid and Voronoi diagram
methods lend themselves to a dynamic environment, while the visibility graph would be
better applicable toward a static environment. Initially, a search and destroy mission with
no obstacles would be easier to implement before introducing threats and no-fly zones
into the problem. Some topics of future research could include the addition of timing
constraints, collision avoidance, or a 3-D environment, into the simulation. In
conclusion, this thesis has presented the initial steps necessary to implement cooperating

UAVs on a model battlefield.

97



References

[1] B.S. Papadales, R.T. Leitner, “New Trends in High Altitude Unmanned Aircraft”,
W.J. Schafer Associates, Inc., 1992.

[2] J.P. Nalepka, M.M. Duquette, “A Multi-purpose Simulation Environment for UAV
Research”, Austin, TX, AIAA Modeling and Simulation Technologies Conference,
August 2003.

[3] T.M. McLain, “Coordinated Control of Unmanned Air Vehicles”, Wright-Patterson
Air Force Base, OH, Air Vehicles Directorate, 1999.

[4] P.R. Chandler, M. Pachter, D. Swaroop, J.M. Fowler, J.K. Howlett, S. Rasmussen, C.
Schumacher, K. Nygard, “Complexity in UAV Cooperative Control”, Anchorage,
AK, American Control Conference, May 2002.

[5] J. Bellingham, M. Tillerson, A. Richards, J.P. How, “Multi-task Allocation and Path
Planning for Cooperating UAVs”, Conference on Coordination, Control and
Optimization, November 2001.

[6] A. Richards, J. Bellingham, M. Tillerson, J. How, “Co-ordination and Control of
Multiple UAVs”, Monterey, CA, AIAA Guidance, Navigation, and Control
Conference, August 2002.

[7] S.A. Bortoff, “Path-Planning for Unmanned Air Vehicles”, Dayton, OH, AFRL /
VAAD, 1999.

[8] A. Richards, J. Bellingham, M. Tillerson, J. How, “Coordination and Control of
Multiple UAVs”, Monterey, CA, AIAA Guidance, Navigation, and Control

Conference, August 2002.

98



[9] S. Li, J.D. Boskovic, S. Seereeram, R. Prasanth, J. Amin, R.K. Mehra, R.W. Beard,
T.W. McLain, “Autonomous Hierarchical Control of Multiple Unmanned Combat
Air Vehicles (UCAVs)”, Anchorage, AK, American Control Conference, May
2002.

[10] P.R. Chandler, M. Pachter, S.R. Rasmussen, C. Schumacher, “Distributed Control
for Multiple UAVs with Strongly Coupled Tasks”, Austin, TX, AIAA Guidance,
Navigation, and Control Conference, August 2003.

[11] M. Moser, D.P. Jokanovic, N. Shiratori, “An Algorithm for the Multidimensional
Multiple-Choice Knapsack Problem”, IEICE Trans. Fundamentals, VVol. E80-A, No.
3, March 1997, pp. 582-589

[12] W. Kang, A. Sparks, “Task Assignment in the Cooperative Control of Multiple
UAVs”, Austin, TX, AIAA Guidance, Navigation, and Control Conference, August
2003.

[13] T.W. McLain, R.W. Beard, “Trajectory Planning for Coordinated Rendezvous of
Unmanned Air Vehicles”, Denver, CO, AIAA Guidance, Navigation, and Control
Conference, 2000.

[14] S. Rasmussen, P. Chandler, J.W. Mitchell, C. Schumacher, A. Sparks, “Optimal vs.
Heuristic Assignment of Cooperative Autonomous Unmanned Air Vehicles”,
Austin, TX, AIAA Guidance, Navigation, and Control Conference, August 2003.

[15] G. Chen, J.B. Cruz, Jr., “Genetic Algorithm for Task Allocation in UAV
Cooperative Control”, Austin, TX, AIAA Guidance, Navigation, and Control

Conference, August 2003.

99



[16] P.R. Chandler, M. Pachter, S.R. Rasmussen, C. Schumacher, “Multiple Task
Assignment for a UAV Team”, Monterey, CA, AIAA Guidance, Navigation, and
Control Conference, August 2002.

[17] J. Pike, “Iragi Air Defense Equipment”, GlobalSecurity.org, December 2002.

[18] S.J. Rasmussen, C. Schumacher, P.R. Chandler, “Investigation of Single vs. Multiple
Task Tour Assignments for UAV Cooperative Control”, Monterey, CA, AIAA
Guidance, Navigation, and Control Conference, August 2002.

[19] J.W. Curtis, R. Murphey, “Simultaneous Area Search and Task Assignment for a
Team of Cooperative Agents”, Austin, TX, AIAA Guidance, Navigation, and
Control Conference, August 2003.

[20] M.L. Baum, K.M. Passino, “A Search-Theoretic Approach to Cooperative Control
for Uninhabited Air Vehicles”, Monterey, CA, AIAA Guidance, Navigation, and
Control Conference, August 2002.

[21] G.L. Slater, “Cooperation Between UAVs in a Search and Destroy Mission”, Austin,
TX, AIAA Guidance, Navigation, and Control Conference, August 2003.

[22] P.R. Chandler, M. Pachter, “Hierarchical Control for Autonomous Teams”,
Montreal, Canada, AIAA Guidance, Navigation, and Control Conference, August
2001.

[23] S. Rasmussen, J.W. Mitchell, C. Schulz, C. Schumacher, P. Chandler, “A Multiple
UAV Simulation for Researchers”, Austin, TX, AIAA Modeling and Simulation
Technologies Conference, August 2003.

[24] D.Enns, D. Bugajski, S. Pratt, “Guidance and Control for Cooperative Search”,

Anchorage, AK, American Control Conference, May 2002.

100



[25] G.Hui, http://www.ece.northwestern.edu/~guanghui/Transportation/spt/section3 1,

Northwestern University, Chicago, IL, 1995.

[26] M.M. Akbar, E.G. Manning, G.C. Shoja, S. Khan, “Heuristic Solutions for the
Multiple-Choice Multi-Dimension Knapsack Problem”, Victoria, BC, Canada,
Department of CD, PANDA Lab, Uvic, 2002.

[27] M.G. Kay, http://www.ie.ncsu.edu/kay/matlog/, “Matlog: Logistics Engineering

MATLAB Toolbox”, Department of Industrial Engineering, North Carolina State
University, Raleigh, NC, 2003.

[28] B. Seanor, “Flight Testing of a Remotely Piloted Vehicle for Aircraft Parameter
Estimation Purposes”, Dissertation West Virginia University, MAE Department,
Morgantown, WV, 2002.

[29] J. Roskam, “Airplane Flight Dynamics and Automatic Flight Controls”, Design,
Analysis and Reseach Corporation, Lawrence, KS, 1995, pgs. 1-34.

[30] B.L. Stevens, F.L. Lewis, “Aircraft Control and Simulation”, John Wiley & Sons,
Inc., New York, NY, 1992. pgs. 94, 103-109.

[31] M.O. Rauw, http://home.wanadoo.nl/dutchroll/author.html, “The Flight Dynamics

and Control Toolbox”, BL, Haarlem, Netherlands1992.

101



Appendix A

Path-Planning and Task Allocation MATLAB Files

102



Path Generation Related Functions

Vrn_Diag_gen

%Authored by Zachary Spritzer and Matthew Lechliter

function [all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS, TARGETS,ZONES,THREATS)

%INPUTS:

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVSs.

%

%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
%the targets.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%x position for the nth line and the second row is the starting point's

%x position for the nthe line.

%

%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y

max_x=max([TARGETS(L,),UAVS(L,:),ZONES(1,:), THREATS(L,:)])+25:
min_x=min([TARGETS(L,:),UAVS(1,:),ZONES(L,)), THREATS(1,:)])-25;
max_y=max([TARGETS(2,.),UAVS(2,:),ZONES(2,:), THREATS(2,:)])+25;
min_y=min([TARGETS(2,:),UAVS(2,:),ZONES(2,.), THREATS(2,:)])-25;

VRNPTS=[ZONES([1,2],:) THREATS([1,2],:) ...

103



[(((max_y-min_y)*[1:4])/4)+min_y);(min_x)*ones(1,4)] ...
[(((max_y-min_y)*[1:4])/4)+min_y);(min_x)*ones(1,4)] ...
[(((max_x-min_x)*[1:4]/4)+min_x);(min_y)*ones(1,4)] ...
[(((max_x-min_x)*[1:4]/4)+min_x);(max_y)*ones(1,4)]];

[vx,vy] = voronoi(VRNPTS(1,:),VRNPTS(2,));

%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % % %% %% %% % %% % %% % %% %% %
%Taking unique numbers from vx and vy

%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% %% %% % %% %% % %% %
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]), rows";

%%%%%%%6%%%%6%% % %% % %% % %% % %% % % %% %% % % %% %% %% % %690 % %% %% % %% Y%
%Connecting UAV's into voronoi
%%%%%%%%%%%%%% %% % %% % %% % %% % % %% % %% %% %% %% %% %% % %% %% % %% %
[line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],));

9%6%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Connecting the targets into the voronoi

%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
[line_cost_targ,targx,targy]=connect_vrn(vxyn,TARGETS([1,2],:));

%%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Generation for voronoi line costs
%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
nvlines=size(vx,2);
line_cost_vrn=zeros(1,nvlines);
for i=1:nvlines,
line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,))*2+(vy(1,i)-vy(2,i))"2);
end
%%%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Stacking unique positions, lines for x and y, and costs of those lines
%%%%%%%% %% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
all_pos=[UAVS([1,2],:) vxyn(;,[1,2])' TARGETS([1,2],)];
all_lines_x=[uavx([1,2],:) vx([1,2],) targx([1,2],))];
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],))];
all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,:)];

Voronoi

function [vxx,vy] = voronoi(x,y,arg3,arg4)

%VORONOI Voronoi diagram.

% VORONOI(X,Y) plots the Voronoi diagram for the points X,Y.
% Cells that contain a point at infinity are unbounded and

% are not plotted.

%

% VORONOI(X,Y,TRI) uses the triangulation TRI instead of

% computing it via DELAUNAY.

%

% H=VORONOI(...,'LineSpec") plots the diagram with color and linestyle
% specified and returns handles to the line objects created in H.

%

104



% [VX,VY]=VORONOI(...) returns the vertices of the VVoronoi
% edges in VX and VY so that plot(VX,VY,-',X,Y,"") creates the
% Voronoi diagram.

%

% For the topology of the voronoi diagram, i.e. the vertices for
% each voronoi cell, use the function VORONOIN as follows:

%

% [V,C] = VORONOIN([X() YD

%

% See also VORONOIN, DELAUNAY, CONVHULL.

% Copyright 1984-2002 The MathWorks, Inc.
% $Revision: 1.15$ $Date: 2002/06/05 20:05:17 $

error(nargchk(2,4,nargin));

if nargin==2,
tri = delaunay(x,y);
Is=";
elseif nargin==3,
if isstr(arg3),
tri = delaunay(x,y);

Is = arg3;
else
tri = arg3;
Is=";
end
else
tri = arg3;
Is = arg4;
end

% re-orient the triangles so that they are all clockwise

xt = x(tri); yt=y(tri);

ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ...
xt(;,2).*(yt(:,3)-yt(:,1)) + ...
Xt(:,3).*(yt(:,1)-yt(:,2));

bt = find(ot<0);

tri(bt,[1 2]) = tri(bt,[2 1]);

n = prod(size(x));

ntri = size(tri,1);

t = (L:ntri);

T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)
E=(T & T).*T; % Voronoi edge if E(i,j)

[i,j,v] = find(triu(E));
[i,j,vv] = find(triu(E");
cl = circle(tri(v,:),x,y);
c2 = circle(tri(vv,),x,y);

vx = [c1(;,1) c2(;,1)].;
vy = [c1(;,2) c2(:,2)].";

if nargout<2
if isempty(ls),

105



co = get(gcf,'defaultaxescolororder");
h = plot(vx,vy,-' x,y," ", 'color',co(1,:));
else
[1,c,m,msg] = colstyle(ls); error(msg)
if isempty(m), m=""; end
h = plot(vx,vy,ls,x,y,[c m]);
end
if ~ishold,

view(2), axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))])

end

if nargout==1, vxx = h; end
else

VXX = VX;
end

function c¢ = circle(tri,x,y)

%CIRCLE Return center and radius for circumcircles
% C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:)
% ycenter(:) radius(:)] for each triangle in TRI.

% Reference: Watson, p32.
X=X();y =y

x1 = x(tri(;,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3));
y1=y(triC:,1)); y2 = y(tri(:,2)); y3 = y(tri(:,3));

% Set equation for center of each circumcircle:

% [allal2;a21 a22]*[x;y] = [b1;b2] * 0.5;

all = x2-x1; al2 = y2-y1,
a2l = x3-x1; a22 = y3-y1,

bl =all.* (x2+x1) + al2 .* (y2+yl);
b2 = a21 * (x3+x1) + a22 .* (y3+yl);

% Solve the 2-by-2 equation explicitly
idet = all.*a22 - a21.*al2;

% Add small random displacement to points that are either the same

% or on a line.
d = find(idet == 0);

if ~isempty(d), % Add small random displacement to points

delta = sqrt(eps);
x1(d) = x1(d) + delta*(rand(size(d))-0.5);
x2(d) = x2(d) + delta*(rand(size(d))-0.5);
x3(d) = x3(d) + delta*(rand(size(d))-0.5);
y1(d) = y1(d) + delta*(rand(size(d))-0.5);
y2(d) = y2(d) + delta*(rand(size(d))-0.5);
y3(d) = y3(d) + delta*(rand(size(d))-0.5);
all = x2-x1; al2 = y2-y1;
a2l = x3-x1; a22 = y3-y1;
bl =all.* (x2+x1) + al2 .* (y2+yl);
b2 =a21 .* (x3+x1) + a22 .* (y3+yl);
idet = all.*a22 - a21.*al2;

end

106



idet = 0.5 ./ idet;

xcenter = (a22.*bl - a12.*b2) .* idet;
ycenter = (-a21.*b1 + al11.*b2) .* idet;

radius = (x1-xcenter).”2 + (y1-ycenter).”2;

¢ = [xcenter ycenter radius];

Connect_Vrn
%Authored by Zachary Spritzer and Matthew Lechliter
function [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS)

%Inputs:
%
%vxyn - is a nx2 matrix with first column defining all of the unique x
%positions of the voronoi diagram or grid and the second column defining
%eall of the unique y positions of the voronoi diagram or grid.
%
%UAVS - is a 2xn matrix with the first row defining the x position of the
%UAYV and the second row defining the y position of the UAV.
%
%0Outputs:
%
%Iline_cost_uav - is a vector containing the cost of the lines of connecting
%the UAV's into the voronoi diagram or grid
%
%uavx - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the x coordinates.
%
%uavy - is a 2xn matrix with first row defining ending point and second row
%defining starting point for the y coordinates.
nuav=size(UAVS,?2);
nvxynpts=size(vxyn,1);
du=zeros(1,nvxynpts-1);
uavx=zeros(2,nuav*3);
uavy=zeros(2,nuav*3);
line_cost_uav=zeros(1,nuav*3);
for k=1:nuav,
for j=2:nvxynpts,
du(l,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))*2+(UAVS(2,k)-vxyn(j,2))"2);
end
mdu=sort(du,2);
for i=1:3,
mdu_loc=find(du==mdu(1,i));
uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1);
uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2);
uavx(2,3*(k-1)+i)=UAVS(1,k);
uavy(2,3*(k-1)+i)=UAVS(2,k);
line_cost_uav(1,3*(k-1)+i)=mdu(l,i);
end
end

107



Path Selection Related Functions

Cheapest_Paths
%Authored by Zachary Spritzer and Matthew Lechliter

function
[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, UAVS, TARGETS,ZONE
S,THREATYS)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%x position for the nth line and the second row is the starting point's

%x position for the nthe line.

%

%eall_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVSs, the second row is the initial y position
%of the UAVSs, the third row is the initial altitude of the UAVSs, and

%the fourth row is the intial Velocity of the UAVS.

%

%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
Y%the targets.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%stored_paths - is a mxn matrix where m is the number of uavs times the

108



%number of targets and n is the length of the longest path. The first row
%being the first path for the first uav and the last row being the last

%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

9%6%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Making THC matrix for dijkstra's algorithm

%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %Yo
[THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs);

%%%%%%%6%%%6%6%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% % %% %% Y%
%Cost Assignment for all lines

%%%%%%%%%%% %% %% %% %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% %% %
[THC]= c_assign(all_pos, THC,ZONES,THREATS);

9%6%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %Yo
%Adding the reverse of the THC matrix onto the end, so that the

%reverse of the lines is possible

%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
THC=[THC(:,[1,2,3]); THC(;,[2,1,3])];

%%%%%%%6%%%%%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% % %% %% %
%Implementing Dijkstra's algorithm
%%%%%%%6%%%% %% % %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% % %% %% %
nuav=size(UAVS,2);
ntarg=size(TARGETS,2);
A = list2adj(THC);
totalcost=zeros(nuav,ntarg);
for i=1:nuav,
for j=1:ntarg,
[totalcost(i,]),path] = dijk(A,i,size(all_pos,2) - j + 1);
stored_paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]);
end
end

Set_THC
%Authored by Zachary Spritzer, Matthew Lechliter, and Elena Lucci

function [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's
%x position for the nth line and the second row is the starting point's

109



%x position for the nthe line.

%

%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's
%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y.

%

%OUTPUTS:

%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
Y%threats.

THC=zeros(size(all_lines_x,2),3);
THC(:,3)=all_costs(:);
for i=1:(2*size(all_lines_x,2))
P=(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) &
(round(all_pos(2,:)*100)==round(all_lines_y(i)*100));
if any(P)
num=find(P);
if (rem(i,2))~=0
bz=((fix(i./2))+1);
THC(bz,1)=num;
else THC((i/2),2)=num;
end
else
if (rem(i,2))~=0
tz=(fix((i./2))+1);
THC(tz,1)=i;
else THC((i/2),2)=i;
end
end
end

C_assign
%Authored by Zachary Spritzer and Matthew Lechliter

function [THC]= c_assign(all_pos, THC,ZONES, THREATS)

%

%INPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

110



%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is

%the level of danger of the threats.

%

%OUTPUTS:

%

%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due to no-fly zones and
Y%threats.

szthc=size(THC,1);

nzones=size(ZONES,2);

nthrts=size(THREATS,?2);

for i=1:szthc,
start=THC(i,1);finish=THC(i,2);
SF=sqrt(((all_pos(1,finish)-all_pos(1,start))*2)+((all_pos(2,finish)-all_pos(2,start))"2));
for j=1:nzones,
SC=sqrt(((ZONES(1,j)-all_pos(1,start))*2)+((ZONES(2,j)-all_pos(2,start))"2));
FC=sqgrt(((ZONES(1,j)-all_pos(1,finish))*2)+((ZONES(2,j)-all_pos(2,finish))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else
if SC<FC,PC=SC;
else
PC=FC;
end
end
if PC < ZONES(3,j), THC(i,3)=1e30*THC(i,3);
end
end
for j=1:nthrts,
SC=sqrt(((THREATS(1,j)-all_pos(1,start))2)+((THREATS(2,j)-all_pos(2,start))"2));
FC=sqrt(((THREATS(1,j)-all_pos(1,finish))*2)+((THREATS(2,j)-all_pos(2,finish))*2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else
if SC<FC,PC=SC;
else
PC=FC;
end
end
if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3);

111



end
end
end

Dijk

function [D,P] = dijk(A,s,t)

%DIJK Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.
% [D,P] = dijk(A,s,t)

% A =nxnnode-node weighted adjacency matrix of arc lengths

% (Note: A(i,j) =0 => Arc (i,j) does not exist;

% A(i,j) = NaN => Arec (i,j) exists with 0 weight)
% s=FROM node indices
% =[] (default), paths from all nodes

% t=TO node indices

% =[] (default), paths to all nodes

% D =|s| x |t| matrix of shortest path distances from 's' to 't'

%  =[D(i,j)], where D(i,j) = distance from node 'i' to node 'j'

% P =|s| x n matrix of predecessor indices, where P(i,j) is the

% index of the predecessor to node 'j' on the path from 's(i)' to

% 'j',where P(i,i) = 0 and P(i,j) = NaN is 'j' not on path to 's(i)'

% (use PRED2PATH to convert P to paths)

%  =pathfrom's'to't,if|s|=|t|=1

%

% (If A is a triangular matrix, then computationally intensive node
% selection step not needed since graph is acyclic (triangularity is a
% sufficient, but not a necessary, condition for a graph to be acyclic)
% and A can have non-negative elements)

%

% (If |s|] >> |t], then DIJK is faster if DIJK(A't,s) used, where D is now
% transposed and P now represents successor indices)

%

% (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows,
% Prentice-Hall, 1993, p. 109.)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking B R R e S R R o S S S S S R S S S S e S T

error(nargchk(1,3,nargin))
[n,cA] = size(A);

if nargin < 2 | isempty(s), s = (1:n)'; else s =s(:); end
if nargin < 3 | isempty(t), t = (1:n)’; else t = t(:); end

if ~any(any(tril(A) ~=0)) % A is upper triangular
isAcyclic = 1;

elseif ~any(any(triu(A) ~= 0)) % A is lower triangular
isAcyclic = 2;

else % Graph may not be acyclic
isAcyclic = 0;

end

112



ifn~=cA
error('A must be a square matrix’);
elseif ~isAcyclic & any(any(A < 0))
error('A must be non-negative');
elseifany(s<1|s>n)
error(["'s" must be an integer between 1 and ',num2str(n)]);
elseifany(t<1|t>n)

end

% End (Input Error Checking) B L R b S S S S S o o e o 2 S 2

A=A, % Use transpose to speed-up FIND for sparse A

D = zeros(length(s),length(t));
if nargout > 1, P = NaN*ones(length(s),n); end

for i = 1:length(s)
j=s();

Di = Inf*ones(n,1); Di(j) = 0;

isLab = logical(zeros(length(t),1));
if isAcyclic ==

nLab=j-1;
elseif isAcyclic == 2

nLab =n-j;
else

nLab = 0;

UnLab = 1:n;

isUnLab = logical(ones(n,1));
end

if nargout > 1, P(i,s(i)) = 0; end % Change from NaN to indicate no pred

while nLab < n & ~all(isLab)
if isAcyclic
Dj = Di(j);
else % Node selection
[Dj,ji] = min(Di(isUnLab));
J = UnLab(jj);
UnLab(jj) = [I;
isUnLab(j) = 0;
end

nLab = nLab + 1;
if length(t) < n, isLab = isLab | (j == t); end

A KA AJ] = find(A(:.)));
Aj(isnan(Aj)) = 0;

if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end

if nargout > 1, P(i,JA(Dk < Di(jA))) = ; end
Di(jA) = min(Di(jA),Dk);

if isAcyclic==1 % Increment node index for upper triangular A

113



=i+
elseif isAcyclic == 2 % Decrement node index for lower triangular A
i=i-L
end
end
D(i,:) = Di(t)";
end
if nargout > 1 & length(s) == 1 & length(t) ==
P = pred2path(P,s,t);
End

Additional Dijkstra Functions

function [i,j,c] = adj2list(A)

%ADJ2LIST Node-node weighted adjacency matrix to arc list representation.
% 1C =adj2list(A)

% [i,j,c] = adj2list(A)

% A =mx m node-node weighted adjacency matrix of arc lengths
% 1JC =n x 2-3 matrix arc list [i j c], where

% i =n-element vector of arc tails nodes

% j = n-element vector of arc head nodes

% ¢ = n-element vector of arc weights

%

% Note: All A(i,j) = AQj,i) => [i -j c] (symmetric A)

%  A(i,j) =0 => Arc (i,j) does not exist

%  A(i,j) = NaN => Arc (i,j) exists with 0 weight

%  Wrapper for [i,j,c] = FIND(C); c(ISNAN(c)) = 0)

%

% See also LIST2INCID, LIST2ADJ, and ADJ2INCID

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking *#**#kkksdokdksdokdksdokdkbbokkkdokokrx * * *
[rA,cA] = size(A);
if rA~=cA
error("A" must be a square matrix.");
end

% End (Input Error Checking) B R b b S S S S o o S 2 S 2 S

if all(all(triu(A)==tril(A)")), A = triu(A); issym = 1, else issym = 0; end

[i,j,c] = find(A);
if issym, j = -j; end
c(isnan(c)) = 0;

if nargout ==
i=[ijcl;
end

function y = isint(x, Tollnt)
%ISINT True for integer elements (within tolerance).
% y=isint(x,Tollnt)

114



% = abs(x-round(x)) < Tollnt
% TolInt = integer tolerance
% =[0.01*sqrt(eps)], default

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking *#***#kkkskokkksdokdksdokdkbbokkk bk * * *
error(nargchk(1,2,nargin));
if nargin < 2 | isempty(Tollnt), Tollnt = 0.01*sqrt(eps); end

% End (Input Error Checking) B R S S S S o S o 2 S 2 S

y = abs(x-round(x)) < Tollint;

function A = list2adj(1JC,m,spA)

%LIST2ADJ Arc list to node-node weighted adjacency matrix representation.
% A= list2adj(1JC,m,spA)

% 1JC =nx 2-5 matrix arc list [i j c u I], where

% i=n-element vector of arc tails nodes

% j = n-element vector of arc head nodes

% ¢ = (optional) n-element vector of arc costs, where n = number of arcs
% = (default) ONES(n,1)

% u = (optional) ignored

% | = (optional) ignored

% m = (optional) scalar size of A if greater than max{max(i),max(abs(j))}
% spA = (optional) make A sparse matrix if n <=spAxmxm

% =1, always make A sparse

%  =0.1 (default), A sparse if 10% arc density

% =0, always make A full matrix

% A =mx m node-node weighted adjacency matrix

%

% Transforms: If j(k) > 0, then [i(k) j(k) c(k)] -> A[i(k),j(K)] = c(k)
% If j(k) < 0, then [i(K) j(k) c(k)] -> A[i(k),-j(k)] = c(k) and
% AL-(k),i(k)] = c(k)

%

% Note: Weights of any duplicate arcs added together in A
%  c(k) =0=>A(i(k),j(k)) = NaN

%  Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m);
%

% See also LIST2INCID, ADJ2LIST, and ADJ2INCID

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error ChECklng *hkkhkhkhhkkkhkhkkhhkhkkhhkhhkhkkihkhkkhhkhkhkhkihkhkhhkkikhhkhhhkhhkkihkhkihkhhhkihkhiikik

error(nargchk(1,3,nargin))

[n,clJC] = size(1JC);
if clJC < 2| clJC > 5, error('1JC must be a 2-3 column matrix."), end

[i,j,c] = mat2vec(1JC);
if isempty(c), ¢ = ones(n,1); end

jsgn =sign(j); j = abs(j);

115



minlJ = min(min(i j1));
if isempty(minlJ) | minlJ < 1| an_y(~isint(i)) | any(~isint(j))

error('All elements of "i" and "j" must be nonzero integers.");
end

if nargin < 2 | isempty(m)
m = max(max([i j]));

elseif length(m(:)) ~= 1| ~isint(m) | m < max(max([i j]))
error("'n" must be >= max{max(i),max(abs(j))}.");

end

if nargin < 3 | isempty(spA)
SpA =0.1;
elseif length(spA(:)) ~=1|spA <0
error("spA" must be non-negative scalar.");
end

% End (Input Error Checking) * *x ialsiaieisiaiaiae

if any(jsgn < 0)
jsgn(jsgn <0 & i==j) =1,
i =[i; j(sgn < 0)];
i=10;iGsgn < 0)];
¢ = [c; c(sgn < 0)];

end

c(c==0) = NaN;
A = sparse(i,j,c,m,m);

if n>spA*m*m, A =full(A); end

function varargout = mat2vec(X)

%MAT2VEC Convert columns of matrix to vectors.
% [X(:,1),X(:,2),...] = mat2vec(X)

%

% (Additional output vectors assigned as empty)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Add elements from undirected arcs

% Input Error Checking ***#*xktdoksokkbkksiortirtir
if ~isnumeric(X)

error('"X must be numeric.")
end

* k% * * *

% End (Input Error ChECklng) *hkkkhkkhhkhkkhhkkkhhkkhhkhkkhhkkhhkhkihkhkhhkhkhhkihkhkhhkkhkhhkihkhhhkkihkhiixkx

varargout = cell(1,max(1,nargout));
X = num2cell(X,1);

varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(X,2)));

function rte = pred2path(P,s,t)

%PRED2PATH Convert predecessor indices to shortest paths from node 's' to 't'.

% rte = pred2path(P,s,t)

116



% P =|s| x n matrix of predecessor indices (from DIJK)

% s=FROM node indices

% =[] (default), paths from all nodes

% t=TO node indices

% =[] (default), paths to all nodes

% rte = |s| x |t| cell array of paths (or routes) from 's' to 't', where
% rte{i,j} = path from s(i) to t(j)

% =[], if no path exists from s(i) to t(j)

%

% (Used with output of DIJK)

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error CheCkIng *kkkkkhhkkhkkhhkkhhkhkkhhkkhhkhkkhhkkkhhkkhkhhkihkhhhkikhhkhhhdhhkhhhihkhkkhhihkiiikkik

error(nargchk(1,3,nargin));
[rP,n] = size(P);

if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end
if nargin < 3 | isempty(t), t = (1:n)"; else t = t(:); end

ifany(P<0|P>n)
error(['Elements of P must be integers between 1 and ',num2str(n)]);
elseifany(s<1|s>n)
error([™s" must be an integer between 1 and ',num2str(n)]);
elseifany(t<1|t>n)
error([™t" must be an integer between 1 and ‘,num2str(n)]);
end
% End (Input Error Checking) * *x ishalaishiaisiaiaisiaisisiaiaisiaisisiaiaisiaiaisiaiaisiaials

rte = cell(length(s),length(t));
[ans,idxs] = find(P==0);

for i = 1:length(s)

% ifrP ==

% si=1;

% else

%  si=s(i);

% ifsi<l|si>rP

% error(‘Invalid P matrix.")
% end

% end

si = find(idxs == s(i));
for j = 1:length(t)
tj = t();
if tj ==s(i)
r=tj;
elseif P(si,tj) == 0
r=1I;
else
r=1j;
whiletj~=0
iftj<l|tj>n
error('Invalid element of P matrix found.")

117



end
r = [P(si,tj) r];

tj = P(si,4j);
end
r(1) = [I;
end
ree{i,j} =r;
end
end

if length(s) == 1 & length(t) ==
rte = rte{:};
end

Y%rte = t;
while 0%t ~=s
ift<1|t>n]|round(t) ~=t
error('Invalid "pred" element found prior to reaching "s™);

end
rte = [P(t) rte];
t=P();

end

Path Refinement Related Functions

Path_Shrtng
%Authored by Zachary Spritzer and Matthew Lechliter

function
[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES, THREATS,m
in_turn,split_seg,nuav,ntarg, HEADING_ANGLE)

%INPUTS:

%

%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%Dbeing the first path for the first uav and the last row being the last

%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the X position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is

118



%the level of danger of the threats.

%

%min_turn - minimum turning radius for the UAVs

%

%split_seg - number of segments to Split the voronoi lines into for the
%purpose of a more near-optimal solution

%

%nuav - number of UAVs

%

%ntarg - number of targets

%OUTPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

%

%Stored_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%%%0%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Splitting the voronoi lines into more segments for the purpose of a more

%near-optimal solution

9%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %Yo
szpths=size(stored_paths,2);

split_vect=[(0:(1/split_seq):(1- 1/split_seg))]’;

%%%%%%%6%%%6%%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% % %% % %%
%Finding the corresponding x and y coordinates
%%%%%%%6%%%%%%% %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% %% % %% %
Stored_Pos_x=ones(szpths,nuav*ntarg);
Stored_Pos_y=ones(szpths,nuav*ntarg);
stored_paths(:,szpths+1)=0;
for i=1:nuav*ntarg,
mnz=min(find(stored_paths(i,:)==0));
Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))";
Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))’;
Stored_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))’;
Stored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))";

end

%6%%%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
Stored_Pos_x_new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
Stored_Pos_y _new=ones((((szpths-1)*split_seg)+1),nuav*ntarg);
for k=1:nuav*ntarg,
=L

119



for i=1:(szpths -1),
Stored_Pos_x_new([j:(j + (split_seg -1))],k)=
ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-Stored_Pos_x(i,k));
Stored_Pos_y_new([j:(j + (split_seg -1))].k)=
ones(split_seg,1)*Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k));
j=j+ split_seg;
end
Stored_Pos_x_new((((szpths-1)*split_seg)+1),k)=Stored _Pos_x(szpths,k);
Stored_Pos_y new((((szpths-1)*split_seg)+1),k)=Stored_Pos_y(szpths,k);
end

Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:);
Shortened_Paths_y end=ones(500,1)*Stored_Pos_y(szpths,:);
Shortened_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end];
Shortened_Paths_y=[Stored_Pos_y new;Shortened_Paths_y end];

%%%%%%% %% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% % %% %% %% %% % %% %
%Shortening the paths

%9%%%%%%% %% % %% %% %% %% %% % %% % %% %% %% % %% %% %% % %% %% %% % %% %% %
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
(:,),ZONES, THREATS,Stored_Pos_x(:,i),Stored_Pos_y(:,i));
end

%6%%%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Putting fillets into the shortened paths

%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i
)], min_turn);
end

%%%%%%%6%%%%%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %% % %% % %% %% %
%Adding initial path based on heading angle
%%%%%%%%%%%%% % %% % %% % %% % %% % % %% % %% %% %% %% %% %% % %% %% % %% %
for i=1:nuav,

for j=1:ntarg,

[Shortened _Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-1)*ntarg)+j)]=...
heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-

1)*ntarg)+j)],min_turn,HEADING_ANGLE(i,1),72);

end
end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y old=Shortened_Paths_y;
Shortened_Paths_x=[];
Shortened_Paths_y=[];

for j=1:size(Shortened_Paths x_old,1)-1,

120



if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
Shortened_Paths_y_old(j,:)==Shortened_Paths_y old(j+1,:),
Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
break
else
Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
end
end

%%%%%%% %% %% %% %% %% %% % %% % %% % %% % %% % %% %% %% % %% %% %% %% % %% %
%Updating the Costs

%%%%%%%% %% % %% % %% % %% % %% % %% % % %% %% % %% %% %% % %% % %% % % %% %% Y6s
zsp_perm=size(Shortened_Paths_x,2);

permcost=zeros(nuav*ntarg,1);

for z=1:szsp_perm,
[permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)], THREATYS);

end

totalcost=reshape(permcost,ntarg,nuav)';

Shorten_Paths
%Authored by Zachary Spritzer and Matthew Lechliter
function [shr_x,shr_y]=shorten_paths(sp_x,sp_v,Z,T,Spo_X,Spo_Y)

%INPUTS:

%

%sp - is a nxmx2 matrix where n is the length of the longest

%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.

%

%Z - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the X position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%T - is a 4xn matrix where n is the number of Threats, the first row

%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%spo - is a nxmx2 matrix where n is the length of the longest

%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n. This matrix is the original matrix without the voronoi segements
%split up.

%

121



%OUTPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.
spo=[spo_x,spo_y];
sp=[sp_x,sp_yl;
SC=0;FC=0;SF=0;SN=0;
for j=1:size(T,2),
PC=[];
for i=1:size(spo,1)-1,
SC=sart(((T(1,))-spo(i,1))*2)+((T(2.))-spo(i,2))"2));
FC=sqrt(((T(L.)-spo(i+1,1))*2)+((T(2,j)-spo(i+1,2))"2));
SF=sgrt(((spo(i+1,1)-spo(i,1))*2)+((spo(i+1,2)-spo(i,2))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0
PC(i)=sqrt(SC"2-SN"2);
else
if SC<FC
PC(i)=SC;
else
PC(i)=FC;
end
end
mPC=min(PC);
if mPC<T(3,j),
T(3,j)=mPC*.995;
end
end
end

ZT=[Z([1:3],:) T([1:3],)];
szzt=size(ZT,2);
szsp=size(sp,1);
shr=ones(szsp,2);
fori=1:2,
shr(:,i)=sp(szsp,i);
end
shr(1,:)=sp(1,:);
a=1;
PC=zeros(1,szzt);
while shr(a,:)~=sp(szsp,:),
for i=1:szsp,
if shr(a,:)==sp(i,:)
pck=i;
break
end
end
for i=szsp:-1:pck+1,
SF=sqrt(((shr(a,1)-sp(i,1))"2)+((shr(a,2)-sp(i,2))"2));
for j=1:szzt,
SC=sqrt(((ZT(1,j)-shr(a,1))*2)+((ZT(2,j)-shr(a,2))*2));
FC=sqrt(((ZT(1,))-sp(i,1))"2)+((ZT(2.))-sp(i,2))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0

122



PC(1,j)=sqrt(SC"2-SN"2);
else
if SC<FC
PC(1,j)=SC;
else
PC(1,j)=FC;
end
end
end
if PC(1,:)>ZT(3,),
a=at+l;
shr(a,:)=sp(i,:);
break
end
end
end
shr_x=shr(;,1);
shr_y=shr(;,2);

Fillet_Path

%Authored by Matthew Lechliter

function [Shortened_Paths_fillet x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn)

%INPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%min_turn - minimum turning radius for the UAVs

%OUTPUTS:

%

%Shortened_Paths_fillet - is a nxmx2 matrix where n is the length of the
%Ilongest path with the addition of fillets ((2*old size)-1) and m is the
%number of UAVs multiplied by the number of targets. The element (hxmx1)
%x position of the mth uav at point n. The element (nxmx2) y position of
%the mth uav at point n.

Shortened_Paths_fillet=Shortened_Paths*0;
Shortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1);
Shortened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2);
Shortened_Paths_fillet(1,:)=Shortened_Paths(1,:);

fillet_counter=2;
for j=2:size(Shortened_Paths,1)-1,
if Shortened_Paths(j,:)==Shortened_Paths(j+1,:),
break
end
start=Shortened_Paths(j-1,:);

123



middle=Shortened_Paths(j,:);
finish=Shortened_Paths(j+1,:);
SM=sqgrt(sum((middle-start).*2));
MF=sqgrt(sum(((finish-middle)."2)));
SF=sqgrt(sum(((finish-start).”2)));
alpha=acos((SM"2+MF"2-SF"2)/(2*SM*MF));
Fillet=min_turn/tan(alpha/2);
if Fillet>=SM
Shortened _Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:);
else
Shortened_Paths_fillet(fillet_counter,:)=Shortened_Paths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM-Fillet)/SM);
end
if Fillet>=MF,
Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j+1,:);
else
Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-
Shortened_Paths(j,:))*(Fillet/ MF);
end
fillet_counter=fillet_counter+2;
end
Shortened_Paths_fillet x=Shortened_Paths_fillet(:,1);
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);

Heading_Angle_Paths
%Authored by Matthew Lechliter

function
[Shortened_Paths_heading_angle_x,Shortened_Paths_heading_angle_y]=heading_angle_paths(Shortened_
Paths,min_turn,HEADING_ANGLE,num_segs);

warning off MATLAB:divideByZero

if HEADING_ANGLE <0,
HEADING_ANGLE=pi*2+HEADING_ANGLE;
end

delta_x = Shortened_Paths(2,1) - Shortened_Paths(1,1);
delta_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);

NEW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x)));

if delta x>=0 & delta_y>=0,
NEW_HEADING_ANGLE=NEW_HEADING_ANGLE;

end

if delta_x<0 & delta_y>=0,
NEW_HEADING_ANGLE=pi-NEW_HEADING_ANGLE;

end

if delta_x<0 & delta_y<0,
NEW_HEADING_ANGLE=pi+NEW_HEADING_ANGLE;

end

if delta_x>=0 & delta_y<0,
NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE;

end

124



% x and y are the initial positions of the UAV
x=Shortened_Paths(1,1);
y=Shortened_Paths(1,2);

% Rotated heading angle
ROTATED_HEADING_ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE;

% Rotated NEW_HEADING_ANGLE is 0 degrees
ROTATED_NEW_HEADING_ANGLE=0;

% This section ensures that ROTATED _HEADING_ANGLE is between -pi and pi
if abs(ROTATED_HEADING_ANGLE) > pi
if ROTATED_HEADING_ANGLE >0
ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE-2*pi;
else
ROTATED_HEADING_ANGLE = ROTATED_HEADING_ANGLE+2*pi;
end
end

if abs(ROTATED_HEADING_ANGLE) < pi/5.5
small_ang=1;
else
small_ang=0;
% Equation found by numerical methods, used to find the location of the
% first point to break from the old path onto the first circle

init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))"3+0.020254038*(abs(R
OTATED_HEADING_ANGLE)/pi*(2*min_turn))"2+0.629231718*(abs(ROTATED_HEADING_ANGL
E)/pi*(2*min_turn));

% xu and yu are the coordinates of the first point that breaks from the
% old path and onto the new path following the circles

Xu = x+init_dist*cos(ROTATED_HEADING_ANGLE);

yu = y+init_dist*sin(ROTATED_HEADING_ANGLE);

if ROTATED_HEADING_ANGLE >=0

ccw =-1;
else

ccw =1;
end

% Finds the locations of the center of both circles, based on whether
% the angle made by the intersection of the old and new heading angles
% is positive or negative

xcl = (x+min_turn*cos(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));
ycl = (y+min_turn*sin(ROTATED_NEW_HEADING_ANGLE + ccw*.5*pi));

xc2 = (xu+min_turn*cos(ROTATED_HEADING_ANGLE - ccw*.5*pi));
yc2 = (yu+min_turn*sin(ROTATED_HEADING_ANGLE - ccw*.5*pi));

% dx_c2 and dy_c2 are the delta x and delta y between the position of the
% center of the first break off point and the center of the first circle
dx_c2 = xu - Xc2;

dy c2 =yu-yc2;

125



% c2_angle is the angle made by the horizon (x-axis) and the line between
% the break off point and center of the first circle
c2_angle=(atan(abs(dy_c2)/abs(dx_c2)));
if dx_c2>=0 & dy_c2>=0,
c2_angle=c2_angle;
end
if dx_c2<0 & dy c2>=0,
c2_angle=pi-c2_angle;
end
if dx_c2<0 & dy ¢2<0,
c2_angle=pi+c2_angle;
end
if dx_c2>=0 & dy_c2<0,
c2_angle=2*pi-c2_angle;
end

% dx_cc and dy_cc are the delta x and delta y between the position of the
% center of the final circle and the center of the first circle

dx_cc = (xcl - xc2);

dy cc = (ycl - yc2);

% cc_angle is the angle made by the horizon (x-axis) and the line between
% the position of the center of the final circle and the center of the first circle
cc_angle=(atan(abs(dy_cc)/abs(dx_cc)));
if dx_cc>=0 & dy_cc>=0,
cc_angle=cc_angle;
end
if dx_cc<0 & dy_cc>=0,
cc_angle=pi-cc_angle;
end
if dx_cc<0 & dy_cc<0,
cc_angle=pi+cc_angle;
end
if dx_cc>=0 & dy_cc<0,
cc_angle=2*pi-cc_angle;
end

ifccw==1
if abs(ROTATED_HEADING_ANGLE)>pi/2
cc_point = (2*pi-cc_angle);
c2_point = -(2*pi-c2_angle);
else
cc_point = (2*pi-cc_angle);
c2_point = (c2_angle);
end
else
if abs(ROTATED_HEADING_ANGLE)>pi/2
cc_point = ccw*(cc_angle);
c2_point = -1*ccw*(c2_angle);
else
cc_point = ccw*(cc_angle);
c2_point = ccw*(2*pi-c2_angle);
end
end

126



counter = 1;

for i = (ccw*2*pi/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle
X_c2(1,counter)=min_turn*sin(i)+xc2;
y_c2(1,counter) = min_turn*cos(i)+yc2;
counter = counter + 1,

end

dx_cl =x-xcl;
dy cl=y-ycl,;

cl_angle=(atan(abs(dy_c1)/abs(dx_c1)));
if dx_c1>=0 & dy_c1>=0,
cl_angle=cl_angle;
end
if dx_c1<0 & dy_c1>=0,
cl _angle=pi-c1_angle;
end
if dx_c1<0 & dy c1<0,
cl angle=pi+cl_angle;
end
if dx_c1>=0 & dy_c1<0,
cl _angle=2*pi-c1l_angle;
end

cc_angle=cc_angle+ccw™*pi;

counter = 1;

for i = (-ccw*2*pi/num_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2)
x_c1(1,counter)=min_turn*sin(i)+xcl;
y_c1(1,counter) = min_turn*cos(i)+ycl;
counter = counter + 1,

end

% Rotation back to original coordinates
[t,r] = cart2pol(xu - X,yu - y);

t=t+ NEW_HEADING_ANGLE;
[xu_temp,yu_temp] = pol2cart(t,r);

Shortened_Paths_heading_angle_x_temp(1) = x;
Shortened Paths_heading_angle_y temp(1) = y;
Shortened Paths_heading_angle x_temp(2) = xu_temp + X;
Shortened Paths_heading_angle_y temp(2) = yu_temp +v;

for i = 1:size(x_c2,2)
[t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y);
t=t+ NEW_HEADING_ANGLE;
[x_c2_temp,y_c2_temp] = pol2cart(t,r);
Shortened_Paths_heading_angle x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =
(x_c2_temp +x);
Shortened_Paths_heading_angle_y temp(size(Shortened_Paths_heading_angle_y temp,2)+1) =
(y_c2_temp +y);
end

for i = 1l:size(x_c1,2)
[t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y);

127



t=t+ NEW_HEADING_ANGLE;
[x_cl_temp,y cl_temp] = pol2cart(t,r);
Shortened_Paths_heading_angle x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =
(x_cl_temp +x);
Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y temp,2)+1) =
(y_cl_temp +y);
end
end

if small_ang==0,
sze = size(Shortened_Paths,1);
Shortened_Paths_heading_angle_x=ones(sze,1)*Shortened_Paths(end,1);
Shortened_Paths_heading_angle_y=ones(sze,1)*Shortened_Paths(end,2);

szpts=size(Shortened_Paths_heading_angle_x_temp,2);

Shortened Paths_heading_angle x([1:szpts],1)=Shortened Paths_heading_angle_x_temp';
Shortened Paths_heading_angle_x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1);
Shortened Paths_heading_angle_y([1:szpts],1)=Shortened Paths_heading_angle_y temp';
Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],2);
else
Shortened_Paths_heading_angle_x=Shortened_Paths(:,1);
Shortened_Paths_heading_angle_y=Shortened_Paths(:,2);
End

Update_Cost
%Authored by Zachary Spritzer and Matthew Lechliter
function [permcost]=update_cost(Shortened_Paths, THREATS)

%INPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%OUTPUTS:
%
%permcost - cost associated with the nth UAV going to the mth TARGET

szsp_num=size(Shortened_Paths,1)-1;
nthrts=size(THREATS,?2);
permcost=0;

128



for i=1:szsp_num,
start_x=Shortened_Paths(i,1);start_y=Shortened_Paths(i,2);
finish_x=Shortened_Paths(i+1,1);finish_y=Shortened_Paths(i+1,2);
SF=sqrt(((finish_x-start_x)"2)+((finish_y-start_y)"2));
for j=1:nthrts,
SC=sqrt(((THREATS(1,j)-start_x)"2)+((THREATS(2,j)-finish_y)"2));
FC=sgrt(((THREATS(1,j)-finish_x)*2)+((THREATS(2,j)-finish_y)"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0,PC=sqrt(SC"2-SN"2);
else
if SC<FC,PC=SC;
else
PC=FC;
end
end
if PC < THREATS(3,j),SF=SF+(THREATS(4,j)*100);
end
end
permcost=permcost+SF;
end

Task Allocation Related Functions

%Authored by Zachary Spritzer and Matthew Lechliter

MMKP_Task_Allocation

function
[Selected_Paths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path
S_y,nuav)

%INPUTS:

%

Y%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%nuav - number of UAVs

%OUTPUTS:

%

%Selected Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVS. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.

129



%%%%%%%%% %% %% %% %% %% % %% % %% % %% % %% % % %% % %% % %% %% %% %% % %% %

%MMKEP algorithm

%%%%%%%%%%%%%%% %% %% %% % %% %% % %% %% %% % %% %% %% % %% %% %% % %% %

[bestcomb,mincost]J=mmkp_new(totalcost);

%%%%%%% %% %% %% %% %% %% %% %% % %% % %% %% %% % %% %% % %% %% %% %% %% %%

%Taking the results from mmkp

%%%%%%% %% %% %% %% %% %% %% %% % %% % %% %% %% % %% %% % %% %% %% %% % %% %

Selected_Paths_x=zeros(size(Shortened_Paths_x,1),nuav);

Selected_Paths_y=zeros(size(Shortened_Paths_x,1),nuav);

for i=1:nuav,
Selected_Paths_x(:,i)=Shortened_Paths_x(:,(nuav)*(i-1)+bestcomb(1,i));
Selected_Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcomb(1,i));

End

MMKP_New
%Authored by Zachary Spritzer, Matthew Lechliter, and Elena Lucci

function [bestcomb,mincost]J=mmkp_new(totalcost)
%Inputs:
%
Y%totalcost - is a nxm matrix where n is the total number of uav's and m is
%the total number of targets or paths. Where the element nxm is the cost
%associated with uav "n" choosing target or path "m".
%
%0Outputs:
%
%Dbestcomb - is a 1xn row with n equal to the number or uav's where each
%element of the row represents which path the uav should select to give the
%optimal solution.
%
%mincost - is a scalar number which is sum of the optimal costs for all
%the uav's paths.
nuav=size(totalcost,1);
mincost=inf;
C_new=perms(1:nuav);
for j=1:size(C_new,1),
sc=0;
for i=1:nuav,
sc=sc+totalcost(i,C_new(j,i));
end
if sc < mincost
bestcomb=C_new(j,:);
mincost = sc;
end
end

130



Appendix B

Longitudinal Dimensional and Lateral Directional Stability Derivatives

131



Longitudinal Dimensional Stability Derivatives

_ qls (CTxu + 2CTxl)

X, = ~&S(Cp, +2Cy) (sec™) X, = (sec™)
mU, muU,
—a - -0,SC
X = 4,5(Cp, —Cu) (ft'SeC_Z) X . :&(ft.sec‘z)
a %
m m
7 - ~S(CuL+2C0) (oo 7z = Z5Cu0 +Col) (4 002
muU,
—G.SCC, . —-0,ScC
= q,5¢C,, (ft-SEC_l) Zq :M(ft.sec‘l)
2muU, 2mu,
2, =—35CE (f.5ec?) M, =B Cu £ 20m) (11 o)
m UlIYY
MTU _ qISC (CMTu +2CMT1) (ﬁ:,l 'Secil) Ma — qlsCCMa (SeC72)
Ul vy
. — on2
M., :M(Se(j?) M, _ B5C Cue. (sec™)
” 21,,U,
- g,ScC
M, :M(sec’z) M, _ 5 Twg (sec™)
» 21,,U,

Modified Longitudinal Dimensional Statbility Derivatives

X, =gcosy, + X, X, =X, X, =-0cosy,
X=X Z,gl:gsm;/ﬁza 7. - Z,
u,-Z, Uu,-2Z,
. U +Z . —gsi ,

Zq: ! q Zazw Z&E: ZéE
Ul_Zd Ul_Zd l_Zd
M, =M,Z +M, M,=M,Z, +M, M,=M,Z, +M,

M,=M,Z, Mg=M,Zs+M,
Z,=U,Z, -gsiny, Z,=UY, Y, =U,(Z,-1)
Z,=U,Z,+gcosy, Ze=UZ,

Lateral Directional Dimensional Stability Derivatives

qlsCYﬂ -2 qleCYp A
Y, =—"(ft-sec Yo =——(ft-sec
p=— ) > = omu, ( )
Y, _ G,ShCy (ft-sec™) Y, _ 85Cva (ft-sec™)
2mU; A m

132



YbR =M(ft.sec’2)
m
g.Sbh*C
L, _—ql ' (sec™)
21 U,
I—b‘A qlstLéA (SeC—Z)
IXX
Td,ShC
N, _ (sec?)
IZZ
g.Sh°C
) ') (sec™)
21,,U,
N, = SCha (sec™?)

IZZ

r

N(SR

_&SCy, (sec”

IXX
_ g,Sh*C
21,,U,
qleC

XX

g,ShC
IZZ
qlsb C
21,,U,
0, ShCy =

IZZ

‘)
Lr (secfl)
AR (sec7?)

=——(sec™?)

" (sec™)

NR (sec?)

Modified Lateral Directional Dimensional Statbility Derivatives

T 1AB,

Y74

Given: A = D and B, =%~
XX
Y
Y, =&
Ul
N
Y, =l
oA Ul
C AN L,
" 1-AB
— AIN(SR +L(§R
" 1-AB
N2 BN,
1-AB,
Y, =U.y,
Y, =U,Y, —gcos®,

133



Appendix C

Simulation Implementation MATLAB Files

134



Initialization and Display Functions

Define_Battlefield
%Authored by Zachary Spritzer and Matthew Lechliter
function [UAVS, TARGETS, THREATS,ZONES,n_uav,n_targ,n_zones,n_threats]=define_battlefield

UAVS=zeros(4,9);
TARGETS=zeros(4,9);
THREATS=zeros(4,15);
ZONES=zeros(3,10);

n_uav=menu('Enter the number of UAVs for this simulation',’ 1
'2''3,4'5''6','7''8''9"),

n_targ=menu('Enter the number of TARGETS for this simulation',’ 1
23,456,789,

n_zones=menu('Enter the number of NO-FLY ZONEs for this simulation’,’ 1
I2l,l3l,l4l,l5l7l6l’I7l,l8l,I9I7I10I);

n_threats=menu('Enter the number of THREATS for this simulation',’ 1

..'2','3','4','5','6','7','8','9','10','11','12','13','14','15');

Vel_UAV=0.26;

menu('Using the crosshairs and clicking on the plot','Place UAVs at desired positions");
axis([5 200 5 200]);

grid on;

for i=1:n_uav
[UAVS(1,i),UAVS(2,i)]=ginput(1);
plot(UAVS(1,i),UAVS(2,i),'bd");
text(UAVS(L,i)+5,UAVS(2,i){i},'FontSize',12,'Color','b");
axis([5 200 5 200]);
grid on;
UAVS(3,i)=2;
UAVS(4,i)=Vel_UAV ;
hold on;

end

hold on;

menu('Using the crosshairs and clicking on the plot','Place TARGETS at desired positions");
for i=1:n_targ
tar=menu('Select Target Value - Scale 10-100','10','20','30",'40",'50','60",'70",'80",'90",'100");
TARGETS(3,i)=10*tar;
TARGETS(4,i)=1;
[TARGETS(,i), TARGETS(2,i)]=ginput(1);
plot(TARGETS(1,i), TARGETS(2,i),'x','Color',[0,.4,0]);
text(TARGETS(L,i)+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);
axis([5 200 5 200]);

135



grid on;
hold on;
end

hold on;

menu('Using the crosshairs and clicking on the plot','Place NO-FLY ZONEs at desired positions");

for i=1:n_zones
ZONES(3,i)=9;

[ZONES(1,i),ZONES(2,i)]=ginput(1);

axis([5 200 5 200]);
grid on;

t nfz = (1/16:1/16:1)*2*pi;
x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);

fill(x_nfz,y_nfz,'k";
end

menu('Using the crosshairs and clicking on the plot','Place THREATS at desired positions");

hold on;

for i=1:n_threats

thr=menu('Select Threat Type','KS-19 100mm AntiAircraft Artillery - Range 4000 meters, 40%

Probability of Kill',...

'SA-7 Grail - Man-Portable SAM - Range 5000 meters, 50% Probabilty of Kill',...
‘Crotale SAM - Range 10,000 meters, 80% Probability of Kill',...
'SA-2 - Range 30,000 meters, 80% Probabilty of Kill');

if thr ==
THREATS(3,i)=4;

THREATS(4,i)=.4;

end
if thr ==
THREATS(3,i)=5;

THREATS(4,i)=.5;

end
if thr ==

THREATS(3,i)=10;
THREATS(4,i)=.8;

end
if thr ==

THREATS(3,i)=30;
THREATS(4,i)=.8;

end

[THREATS(L,i), THREATS(2,i)]=ginput(1);
plot(THREATS(L,i), THREATS(2,i),™);
text(THREATS(L,i)+5, THREATS(2,i),{i}, FontSize',12,'Color’, )

axis([5 200 5 200]);
grid on;

t_threat = (1/32:1/32:1)'*2*pi;

x_threat = THREATS(3,i)*sin(t_threat)+ THREATS(L,i);
y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);
plot(x_threat,y threat,'r.";

hold on;
end

136



Display_lInitial_S
%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = [1; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 0;

sizes.Numlnputs=  36+36+30+60;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str =[]; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%
function mdlOutputs(u)

display_initial(u);

% End of mdIOutputs.

137



Display_Initial
%Authored by Zachary Spritzer and Matthew Lechliter
function display_initial(u)

UAVS=u([1:4*9],1);
UAVS=reshape(UAVS,4,9);

a=4*9;

TARGETS=u([a+1:a+4*9]);
TARGETS=reshape(TARGETS,4,9);
a=a+4*9;

ZONES=u([a+1:a+3*10]);
ZONES=reshape(ZONES,3,10);
a=a+3*10;
THREATS=u([a+1:a+4*15]);
THREATS=reshape(THREATS,4,15);

fori=1:9
if abs(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26
disp(sprintf(UAV %d exists at location %d x, location %d vy, altitude %d km, and is flying at %d m/s.
\n',...
i,round(UAVS(1,1)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000)));
end
end

for i=1:9
if abs(sum(TARGETS(:,1)))>0
disp(sprintf(‘'Target %d indicated to be at location %d x, location %d y , and with an estimated value
of %d. \n',...
i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,1))));
end
end

fori=1:10
if abs(sum(ZONES(:,i)))>0
disp(sprintf('No-Fly Zone %d exists at location %d X, location %d y, and with a radius of %d km.

\n',...
i,round(ZONES(1,i)),round(ZONES(2,i)),round(ZONES(3,i))));
end
end
fori=1:15

if abs(sum(THREATS(:,i)))>0
disp(sprintf(‘Threat %d exists at location %d X, location %d y, with a range of %d km, and has a
probability of kill of %d%%. \n',...

i,round(THREATS(L,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100)));

end
end

138



Plot UAV
%Authored by Zachary Spritzer and Matthew Lechliter

function
plot_uav(UAVS, TARGETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi
ng,threats_existing)
%%%% %% %% %% % %% %% %% %% % %% %% %% % %% % %% %% %% %% % %% % %% % %%
%Plotting results
%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
figure(n_plots);
hold on;
% for i=1:2,
%  subplot(1,2,i),
for i=1:size(UAVS,2)
if uavs_existing(1,i)==1
plot(UAVS(1,i),UAVS(2,i),'bd");
text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b");
axis([5 200 5 200]);
hold on;
end
end
for i=1:size(TARGETS,2)
if targ_existing(1,i)==1
plot(TARGETS(1,i),TARGETS(2,i),'x','Color',[0,.4,0]);
text(TARGETS(L,i)+5, TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);
axis([5 200 5 200]);
hold on;
end
end
for i=1:size(THREATS,2)
if threats_existing(1,i)==1
plot(THREATS(L,i), THREATS(2,i),'r*");
text(THREATS(1,i)+5, THREATS(2,i),{i},'FontSize',12,'Color’,'r")
axis([5 200 5 200]);
hold on;
end
end
hold on;
% end

%Plotting Threats and range
for i=1:size(THREATS,2)
if threats_existing(1,i)==1
t_threat = (1/32:1/32:1)*2*pi;
X_threat = THREATS(3,i)*sin(t_threat)+ THREATS(L,i);
y_threat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);

% for i=1:2,
% subplot(1,2,i),
plot(x_threat,y threat,'r.");hold on;
% end
end
end

%Plotting No fly Zones
for i=1:size(ZONES,2)

139



t_nfz = (1/16:1/16:1)*2*pi;
x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);
% fori=1:2,
% subplot(1,2,i),
fill(x_nfz,y_nfz,'k");hold on;
% end
end

%Plotting shortened paths

for i=1:size(uav_path_x,1)

% subplot(1,2,2),
plot(uav_path_x(i,:),uav_path_y(i,:),'b-");hold on;

end

% subplot(1,2,2),
title("Voronoi Diagram Method');hold on;
% for i=1:2,
% subplot(1,2,i),
axis([-25 250 -25 250]);hold on;
xlabel('Kilometers")
ylabel('Kilometers")
% end

Path Planning Related Functions

Path_Planning_S
%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] = path_planning_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = [I; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

140



function [sys,x0,str,ts] = mdlinitializeSizes(T)

% Call function simsizes to create the sizes structure.

sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*100*4+9;

sizes.Numlnputs=  36+36+30+60+1+1+9;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.

sys = simsizes(sizes);

%

X0 = []; % No continuous states

%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time

% End of mdlinitializeSizes.

%
% Function mdlOutputs performs the calculations.
%
function sys = mdlOutputs(u)

[sys]=path_planning(u);

% End of mdlOutputs.

Path_Planning
%Authored by Zachary Spritzer and Matthew Lechliter
function [out]=path_planning(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS long,4,9);
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS long,4,9);
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS_long,4,15);
TIME=in(163);

n_plots=in(164);
HEADING_ANGLE=in([165:173]);

uavs_existing=zeros(1,9);
fori=1:9
if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26
uavs_existing(1,i)=1;
end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_uav=size(UAVS,2);

141



targ_existing=zeros(1,9);
for i=1:9
if TARGETS_long(3,i)~=0,
targ_existing(1,i)=1;
end
end

[TARGETS_temp]=filter_zeros(TARGETS long,9);
TARGETS=[TARGETS temp(1,:);TARGETS_temp(2,.)];

n_targ=size(TARGETS,2);

[ZONES]=filter_zeros(ZONES long,10);
n_zones=size(ZONES,2);

threats_existing=zeros(1,15);
for i=1:15

if THREATS_long(3,i)~=0

threats_existing(1,i)=1;

end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,)=1.15*ZONES_REAL(3,’);
THREATS(3,:)=1.15*THREATS_REAL(3,);

split_seg=10;
min_turn=1;

[all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES, THREATYS);

[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, UAVS, TARGETS,ZONE

S,THREATS);

[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES, THREATS,m

in_turn,split_seg,n_uav,n_targ, HEADING_ANGLE);

[Selected_Paths_x,Selected_Paths y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

S_y,n_uav);

[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected Paths_x,Selected_Paths_y,UA

VS,min_turn*2);

if n_plots~=0,

plot_uav(UAVS_long, TARGETS long,ZONES_REAL,THREATS long,uav_path_x,uav_path_y,n_plots,

uavs_existing,targ_existing,threats_existing);
end

disp(sprintf(‘Path Planning ran at time %d. \n',round(TIMEY)));

bestcomb=zeros(1,9);
for i=1:n_uav,
for j=1:n_targ,

142



if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
bestcomb(1,i)=j;
break
end
end
end

%Making into vector
uav_x=zeros(9,100);
uav_y=zeros(9,100);
uav_time=zeros(9,100);
uav_alt=zeros(9,100);
selected_targets=zeros(9,1);
szpath=size(uav_path_x,2);
counter=1,
for i=1:9,
if uavs_existing(1,i)==1
selected_targets(i,1)=bestcomb(1,counter);
uav_x(i,[1:szpath])=uav_path_x(counter,:);
uav_y(i,[1:szpath])=uav_path_y(counter,:);
uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
uav_alt(i,[1:szpath])=altitude_uav(counter,:);
counter=counter+1;
end
end
sys_temp=[];
for i=1:9;
sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,)];
end
out=[sys_temp,selected targets'];

Filter_Zeros
%Authored by Zachary Spritzer and Matthew Lechliter
function [A]=filter_zeros(A_long,n)

A=[];
counter=1;
fori=1:n
if abs(sum(A_long(:,i)))>0 & abs(sum(A_long(:,i)))~=0.26
A(:,counter)=A_long(:,i);
counter=counter+1;
end
end

VRT_sim_convert

%Authored by Zachary Spritzer and Matthew Lechliter

function [uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast)

143



%

%INPUTS:

%

%shr - is a nxmx2 matrix where n is the length of the longest

%path and m is the number of UAVs. The element (nxmx1) x position of the
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVSs.

%

%

%OUTPUTS:

%

%uav_path_x - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These are the x coordinates of the paths.

%

%uav_path_y - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These are the y coordinates of the paths.

%

%time_uav - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These values correspond to the time at which
%the uavs are at coordinates x and y in uav_path_x and uav_path_y.

%

%altitude_uav - is a mxn matrix where m is the number of uavs and m is the
%Ilength of the longest path. These values correspond to the altitudes that
%the uavs are at when they are at coordinates x and y in uav_path_x and
%uav_path_y.

%

%Threat_range_vrt - is a 1xn vector where n is the number of threats, where
%ithe first row is the range of the threats at the altitude where the uavs
Y%are flying.

%

%Zone_range_vrt - is a 1xn vector where n is the number of zones, where
%ithe first row is the range of the zones at the altitude where the uavs

%eare flying.

nuav=size(shr_x,2);
szshrpth=size(shr_x,1);
shr_x=[[shr_x];[shr_x(szshrpth,:)]];
shr_y=[[shr_y];[shr_y(szshrpth,:)]];
uav_path_x=zeros(nuav,szshrpth+1);
uav_path_y=zeros(nuav,szshrpth+1);
for i=1:nuav,
for j=1:szshrpth,
if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j,i)] | j==szshrpth,
Ist_pnt_x=shr_x(j,i);
nxtlst_pnt_x=shr_x(j-1,i);
Ist_pnt_y=shr_y(j,i);
nxtlst_pnt_y=shr_y(j-1,i);
dist_pnts=sqrt(((Ist_pnt_x-nxtlst_pnt_x)"2)+((Ist_pnt_y-nxtlst_pnt_y)"2));
last_ x=Ist_pnt_x+((Ist_pnt_x-nxtlst_pnt X)*(distpast/dist_pnts));
last_y=Ist_pnt_y+((Ist_pnt_y-nxtlst_pnt y)*(distpast/dist_pnts));
uav_path_x(i,[j+1:szshrpth+1])=last_x;

144



uav_path_y(i,[j+1:szshrpth+1])=last_y;
uav_path_x(i,j)=shr_x(j,i);
uav_path_y(i,j)=shr_y(j,i);
break

else
uav_path_x(i,j)=shr_x(j,i);
uav_path_y(i,j)=shr_y(j,D);

end

end
end

%lnitializing matrixes
time_uav_temp=zeros(nuav,szshrpth+1);
time_uav=zeros(nuav,szshrpth+1);
altitude_uav=zeros(nuav,szshrpth+1);

%Time matrix
for i=1:nuav,
for j=1:szshrpth,
shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))"2+(uav_path_y(i,j)-uav_path_y(i,j+1))"2);
time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);
end
time_uav(i,[2:szshrpth+1])=sum(time_uav_temp(i,:));
for j=2:szshrpth+1,
time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
end
end

time_uav=time_uav*1.01;

%Altitude matrix
for i=1:nuav,
for j=1:szshrpth+1,
altitude_uav(i,j)=UAVS(3,i);
end
end

No-Fly Zone Related Functions

UAV Crash_S

%Authored by Zachary Spritzer and Matthew Lechliter
function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag, T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

145



case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9;

sizes.Numlnputs= 57;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 =[]; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdllnitializeSizes.

%
% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=uav_crash(u);

% End of mdlOutputs.

UAV_Crash
%Authored by Zachary Spritzer and Matthew Lechliter
function [sys]=uav_crash(u)

uav_pos=reshape(u([1:27],1),3,9);
zone_pos=reshape(u([28:57],1),3,10);

uav_shot_down=zeros(9,1);

for i=1:9,
for j=1:10,

146



dist_uav_zone=sqrt(((uav_pos(1,i)-zone_pos(1,j))*2)+((uav_pos(2,i)-zone_pos(2,j))*2));

if dist_uav_zone < zone_pos(3,j),
uav_shot_down(i,1)=1;
end
end
end
sys=[uav_shot_down];

Threat Related Functions

UAV _Intercepted_S
%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs=  24;

sizes.Numlnputs=  87;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str =[]; % No state ordering

%

147



ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%
% Function mdlOutputs performs the calculations.
%
function sys = mdlOutputs(u);

[sys]=uav_intercepted(u);

% End of mdlOutputs.

UAV _Intercepted
%Authored by Zachary Spritzer and Matthew Lechliter
function [sys]=uav_intercepted(u)

uav_pos=reshape(u([1:27],1),3,9);
threat_pos=reshape(u([28:87],1),4,15);

uav_shot_down=zeros(9,1);
threats_fired=zeros(15,1);
for i=1:9,
for j=1:15,
dist_uav_threat=sqrt(((uav_pos(1,i)-threat_pos(1,j))"2)+((uav_pos(2,i)-threat_pos(2,j))"2));
if dist_uav_threat < threat_pos(3,j),
threats_fired(j,1)=1;
uav_chance=rand;
if uav_chance <= threat_pos(4,j),
uav_shot_down(i,1)=1;
end
end
end
end
sys=[uav_shot_down; threats_fired];

Target Related Functions

Target_Classifier_S

%Authored by Zachary Spritzer and Matthew Lechliter
function [sys,x0,str,ts] = target_classifier_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

148



case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%
function [sys,x0,str,ts] = mdllnitializeSizes(T)

% Call function simsizes to create the sizes structure.

sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs=  36;

sizes.Numlnputs=  100;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.

sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdllnitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=target_classifier(u);

% End of mdlOutputs.

Target_Classifier
%Authored by Zachary Spritzer and Matthew Lechliter
function [sys]=target_classifier(u)

TARGETS_OLD=u([1:36],1);
TARGETS_OLD=reshape(TARGETS_OLD,4,9);

149



END_OF PATH=u([37:45],1);
SELECTED_TARGETS=u([46:54],1);

TARGETS_REAL=u([55:90],1);
TARGETS_REAL=reshape(TARGETS_REAL 4,9);

target_location=u([91:99],1);
clock=round(u(100,1));

uav_complete=find(END_OF_PATH==1);
nuav_complete=size(uav_complete,2);
action=0;
for i=1:nuav_complete,
target_real_location=target_location(SELECTED_TARGETS(uav_complete(1,i),1));
action=TARGETS_REAL (4,target_real_location);
if TARGETS_REAL (4,target_real_location) < 4,
TARGETS_REAL(4,target_real_location)=TARGETS_REAL(4,target_real_location)+1;
else
TARGETS_REAL(: target_real location)=0;
end
if action==1,
target_present=rand,;
if target_present <=1.1,
disp(sprintf(‘'Target %d (value %d) indentified as a target at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL (3,target_real_location),clock,uav_complete(1,i)));
else
disp(sprintf(‘Target %d (value %d) indentified as NOT a target at time %d by UAV %d.",...
target_real_location, TARGETS_REAL(3,target_real location),clock,uav_complete(1,i)));
disp(sprintf(‘Target %d has been removed from target status at time %d.\n',...
target_real_location,clock));
TARGETS_REAL(: target_real location)=0;
end
end
if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL (3,target_real location),clock,uav_complete(1,i))); end
if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL (3 target_real_location),clock,uav_complete(1,i))); end
if action==4,
target_destroyed=rand;
if target_destroyed <= 1.1,
disp(sprintf(‘Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
target_real_location,TARGETS_REAL(3,target_real location),clock,uav_complete(1,i)));
else
disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',...
target_real_location, TARGETS_REAL(3,target_real location),clock,uav_complete(1,i)));
TARGETS_REAL (4,target_real_location)=3;
end
end
end

if sum(sum(TARGETS_REAL))==0,

TARGETS REAL(;,1)=[4231];
end

150



sys=reshape(TARGETS_REAL,36,1);

Place_Waypoints_S
%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] =place_waypoints_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*4+9;

sizes.Numlnputs=  9*4+9%4;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 =[]; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlinitializeSizes.

%
% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=place_waypoints(u);

151



% End of mdIOutputs.

Place_Waypoints
%Authored by Zachary Spritzer and Matthew Lechliter
function [sys]=place_waypoints(u)

UAVS=u([1:36],1);
UAVS=reshape(UAVS,4,9);

uavs_existing=zeros(1,9);
fori=1:9
if abs(sum(UAVS(:,1)))>0 & abs(sum(UAVS(;,i)))~=0.26
uavs_existing(1,i)=1;
end
end

TARGETS_REAL=u([37:72],1);
TARGETS_REAL=reshape(TARGETS_REAL,4,9);
n_uav=0;n_targ=0;

TARGETS=zeros(4,9);
targets_location=zeros(1,9);
fori=1:9
if abs(sum(UAVS(:,1)))>0 & abs(sum(UAVS(:,i)))~=0.26
n_uav=n_uav+1;
end
if abs(sum(TARGETS_REAL(:,i)))>0
n_targ=n_targ+1;
end
end

if n_uav <n_targ
fori=1:n_uav
A=TARGETS_REAL(3,);
B=sort(A);
Column=find(A==B(1,size(B,2)));
TARGETS(1,i) = TARGETS_REAL(1,Column(1,1));
TARGETS(2,i) = TARGETS_REAL(2,Column(1,1));
TARGETS(3,i) = TARGETS_REAL(3,Column(1,1));
TARGETS(4,i) = TARGETS_REAL(4,Column(1,1));
targets_location(1,i)=Column(1,1);
TARGETS_REAL(3,Column(1,1))=0;
end
else
counter=1,
fori=1:9
if abs(sum(TARGETS_REAL(:,i)))>0
TARGETS(:,counter)=TARGETS_REAL(:,);
targets_location(1,counter)=i;
counter=counter+1,;

152



end
end
end

if n_uav > n_targ
for i=1:(n_uav-n_targ)
A=TARGETS_REAL(3,);
B=sort(A);
Column=find(A==B(1,size(B,2)));
TARGETS(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1));
TARGETS(2,n_targ+i) = i*.01+TARGETS_REAL(2,Column(1,1));
TARGETS(3,n_targ+i) = 0;
TARGETS(4,n_targ+i) = 0;
TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1));
targets_location(1,i+n_targ)=Column(1,1);
end
end
TARGETS=[TARGETS,zeros(4,9-size(TARGETS,2))];

sys=[reshape(TARGETS,36,1);targets_location'];

153



Appendix D

Grid and Visibility Graph MATLAB Files

154



Grid Related Functions

Path_Planning_Grid_S
%Authored by Zachary Spritzer

function [sys,x0,str,ts] = path_planning_grid_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = [1; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdllnitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*100*4+9;
sizes.Numlnputs=  36+36+30+60+1+1+9;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%
function sys = mdlOutputs(u)

[sys]=path_planning_grid(u);

% End of mdlOutputs

155



Path_Planning_Grid
%Authored by Zachary Spritzer
function [out]=path_planning_grid(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS long,4,9);
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS_long,4,9);
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS long,4,15);
TIME=in(163);

n_plots=in(164);
HEADING_ANGLE=in([165:173]);

uavs_existing=zeros(1,9);
for i=1:9
if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26
uavs_existing(1,i)=1;
end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_uav=size(UAVS,2);

targ_existing=zeros(1,9);
fori=1:9

if TARGETS_long(3,i)~=0,

targ_existing(1,i)=1;

end
end
[TARGETS_temp]=filter_zeros(TARGETS _long,9);
TARGETS=[TARGETS_temp(1,:); TARGETS_temp(2,))];
n_targ=size(TARGETS,2);

[ZONES]=filter_zeros(ZONES long,10);
n_zones=size(ZONES,?2);

threats_existing=zeros(1,15);
fori=1:15

if THREATS_long(3,i)~=0

threats_existing(1,i)=1;

end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,:)=1.15*ZONES_REAL(3,:);

156



THREATS(3,:)=1.15*THREATS_REAL(3,);

split_seg=10;
min_turn=1;
sz_grid=20;

[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES, THREATS,sz_grid);

[stored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs, UAVS, TARGETS,ZONE

S, THREATS);

[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES, THREATS,m

in_turn,split_seg,n_uav,n_targ,HEADING_ANGLE);

[Selected_Paths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

S_y,n_uav);

[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA

VS,min_turn*2);
if n_plots~=0,

plot_uav(UAVS long, TARGETS long,ZONES_REAL,THREATS long,uav_path_x,uav_path_y,n_plots,

uavs_existing,targ_existing,threats_existing);
end

disp(sprintf(‘'Path Planning ran at time %d. \n',round(TIME)));

bestcomb=zeros(1,9);
for i=1:n_uav,
for j=1:n_targ,

if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)

bestcomb(1,i)=j;
break
end
end
end

%Making into vector

uav_x=zeros(9,100);

uav_y=zeros(9,100);

uav_time=zeros(9,100);

uav_alt=zeros(9,100);

selected_targets=zeros(9,1);

szpath=size(uav_path_x,2);

counter=1,

for i=1:9,

if uavs_existing(1,i)==1
selected_targets(i,1)=bestcomb(1,counter);
uav_x(i,[1:szpath])=uav_path_x(counter,:);
uav_y(i,[1:szpath])=uav_path_y(counter,:);
uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
uav_alt(i,[1:szpath])=altitude_uav(counter,:);
counter=counter+1;
end

end

sys_temp=[[;

for i=1:9;

157



sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,)];
end
out=[sys_temp,selected_targetsT;

Grid_Gen
%Authored by Zachary Spritzer

function
[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES, THREATS,sz_grid)

%INPUTS:

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVSs, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVS.

%

%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the targets and the second row is the y position of
Y%the targets.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%OUTPUTS:

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%x position for the nth line and the second row is the starting point's

%x position for the nthe line.

%

%all_lines_y - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's

%y position for the nth line and the second row is the starting point's

%y position for the nthe line.

%

%all_costs - is a 1xn row where n is the number of all of the lines

%for the voronoi, uavs, and targets. This row is the costs for all of the
%lines of all_lines_x and all_lines_y

max_x=max([TARGETS(L,:),UAVS(L,:),ZONES(1,:), THREATS(L,:)])+10;
min_x=min([TARGETS(L,:),UAVS(1,:),ZONES(L,:), THREATS(L,:)])-10;

158



max_y=max([TARGETS(2,.),UAVS(2,:),ZONES(2,:), THREATS(2,:)])+10;
min_y=min([TARGETS(2,:),UAVS(2,:),ZONES(2,:), THREATS(2,:)])-10;

%6%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Generating Grid
%%%0%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%

%Generating Grid points
vXxyn=zeros(2,sz_grid"2);
grid_x_pnts=min_x+(((max_x-min_x)*[0:(sz_grid-1)])/(sz_grid-1));
grid_y_pnts=min_y+(((max_y-min_y)*[0:(sz_grid-1)])/(sz_grid-1));
for i=1:sz_grid,
vxyn(1,[(i-1)*sz_grid+1:(i-1)*sz_grid+sz_grid])=grid_x_pnts;
vxyn(2,[(i-1)*sz_grid+1:(i-1)*sz_grid+sz_grid])=ones(1,sz_grid)*grid_y_pnts(1,i);
end

%Generating Grid Lines

sz_lines=(sz_grid-1)*sz_grid;

vx=zeros(2,(sz_lines)*2);

VY=VX;

for i=1:sz_grid,
VX(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=grid_x_pnts(1,[2:5z_grid]);
vX(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=grid_x_pnts(1,[1:(sz_grid-1)]);
vy(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*grid_y_pnts(1,i);
vy(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*grid_y_pnts(1,i);

vX(1,[(i-1)*((sz_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-
1)*grid_x_pnts(1,i);
vX(2,[(i-1)*((sz_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-
1)*grid_x_pnts(1,i);
vy(1,[(i-1)*((sz_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-
1)*2])=grid_y pnts(1,[2:(sz_grid)]);
vy(2,[(i-1)*((sz_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-
1)*2])=grid_y_pnts(1,[1:(sz_grid-1)]);

end

%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Connecting UAV's into grid

%6%%0%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
[line_cost_uav,uavx,uavy]=connect_vrn(vxyn',UAVS([1,2],));

9%6%%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Connecting the targets into the grid

%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
[line_cost_targ,targx,targy]=connect_vrn(vxyn' . TARGETS([1,2],:));

%%%%%%%6%%%% %% % %% % %% % %% % %% % % %% %% % %% %% % %% % %% % %% % %% %% %
%Generation for grid line costs
%%%%%%%6%%%%%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% % %% %% %
nvlines=size(vx,2);
line_cost_vrn=zeros(1,nvlines);
for i=1:nvlines,

line_cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))*2+(vy(1,i)-vy(2,i))"2);
end

159



%%%%%%%%%%%%% %% %% %% % %% % %% % %% % %% % % %% % %% % %% %% %% %% % %% %

%Stacking unique positions, lines for x and y, and costs of those lines

%%%%%%% %% %% %% %% %% %% %% % %% %% % %% %% %% % %% %% %% % %% %% % %% %% %

all_pos=[UAVS([1,2],:) vxyn([1,2],:) TARGETS([1,2],)];
all_lines_x=[uavx([1,2],:) vx([1,2],) targx([1,2],))];
all_lines_y=[uavy([1,2],:) vy([1,2],:) targy([1,2],))];

all_costs=[line_cost_uav(1,:) line_cost_vrn(1,:) line_cost_targ(1,.)];

Visibility Related Functions

Path_Planning_Vis_S
%Authored by Zachary Spritzer

function [sys,x0,str,ts] = path_planning__vis_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = [1; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 9*100*4+9;
sizes.Numlnputs=  36+36+30+60+1+1+9;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str =[]; % No state ordering

%

160



ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%
% Function mdlOutputs performs the calculations.
%
function sys = mdlOutputs(u)

[sys]=path_planning_vis_graph(u);

% End of mdlOutputs.

Path_Planning_Vis_Graph
%Authored by Zachary Spritzer
function [out]=path_planning_vis_graph(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS long,4,9);
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS_long,4,9);
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS long,4,15);
TIME=in(163);

n_plots=in(164);
HEADING_ANGLE=in([165:173]);

uavs_existing=zeros(1,9);
fori=1:9
if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26
uavs_existing(1,i)=1;
end
end
[UAVS]=filter_zeros(UAVS_long,9);
n_uav=size(UAVS,2);

targ_existing=zeros(1,9);
fori=1:9

if TARGETS_long(3,i)~=0,

targ_existing(1,i)=1;

end
end
[TARGETS_temp]=filter_zeros(TARGETS _long,9);
TARGETS=[TARGETS_temp(1,:); TARGETS_temp(2,))];
n_targ=size(TARGETS,2);

[ZONES]=filter_zeros(ZONES long,10);
n_zones=size(ZONES,?2);

threats_existing=zeros(1,15);

for i=1:15
if THREATS long(3,i)~=0

161



threats_existing(1,i)=1;
end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,:)=1.15*ZONES_REAL(3,.);
THREATS(3,)=1.15*THREATS_REAL(3,’);

split_seg=10;
min_turn=1;
points=8;

[all_pos,all_lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES, THREATS,points);
[stored_paths,totalcost]=cheapest_paths_vis(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZO

NES,THREATS);

[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng_vis(stored_paths,all_pos,ZONES, THREAT

S,min_turn,n_uav,n_targ,HEADING_ANGLE);

[Selected_Paths_x,Selected_Paths y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

S_y,n_uav);

[uav_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA

VS, min_turn*2);
if n_plots~=0,

plot_uav(UAVS_long, TARGETS_long,ZONES_REAL,THREATS long,uav_path_x,uav_path_y,n_plots,

uavs_existing,targ_existing,threats_existing);
end

disp(sprintf(‘Path Planning ran at time %d. \n',round(TIME)));

bestcomb=zeros(1,9);
for i=1:n_uav,
for j=1:n_targ,

if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)

bestcomb(1,i)=j;
break
end
end
end

%Making into vector
uav_x=zeros(9,100);
uav_y=zeros(9,100);
uav_time=zeros(9,100);
uav_alt=zeros(9,100);
selected_targets=zeros(9,1);
szpath=size(uav_path_x,2);
counter=1,
for i=1:9,
if uavs_existing(1,i)==1
selected_targets(i,1)=bestcomb(1,counter);
uav_x(i,[1:szpath])=uav_path_x(counter,:);

162



uav_y(i,[1:szpath])=uav_path_y(counter,:);
uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
uav_alt(i,[1:szpath])=altitude_uav(counter,:);
counter=counter+1;
end
end
sys_temp=[[;
for i=1:9;
sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,))];
end
out=[sys_temp,selected_targets';

Vis_line_gen
%Authored by Zachary Spritzer

function
[all_pos,all_lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES, THREATS,points);

n_threats=size(THREATS,2);
n_zones=size(ZONES,2);
n_uav=size(UAVS,2);
n_targets=size(TARGETS,2);
all_pos=zeros(2,points*(n_threats+n_zones));

%%%%%%%%% %% %% % %% % %% % %% % %% % %% % %% % %% %% %% % %% %% %% %% % %% %
%Generating all the points on each No-Fly Zone and Threat
%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
t=(1/points:1/points:1)*2*pi;
for i=1:n_zones,

X=ZONES(3,i)*1.15*sin(t)+ZONES(1,i);

y=ZONES(3,i)*1.15*cos(t)+ZONES(2,i);

all_pos(1,[(i-1)*points+1:(i-1)*points+points])=x;

all_pos(2,[(i-1)*points+1:(i-1)*points+points])=y’";
end

for i=1:n_threats,
Xx=THREATS(3,i)*1.15*sin(t)+ THREATS(1,i);
y=THREATS(3,i)*1.15*cos(t)+ THREATS(2,i);
all_pos(1,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=x";
all_pos(2,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=y’;
end

%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Adding UAV and Target positions into all_pos

%6%%0%%6%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
all_pos=[UAVS(1,)) all_pos(1,:) TARGETS(1,:);UAVS(2,)) all_pos(2,:) TARGETS(2,))];

%%%%% %% %% %% %% %% %% % %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %
%Generating visibilty lines
%%%%% %% %% %% % %% % %% % %% %% % %% % %% % %% % %% % %% % %% % %% % %% % %% % %

163



ZONES_THREATS=[ZONES([1:3],:) THREATS([1:3],:)];
n_zones_threats=size(ZONES_THREATS,2);
a=1;
for i=1:size(all_pos,2),
for j=1:size(all_pos,2),
if i~=j,
SF=sqrt(((all_pos(1,i)-all_pos(1,j))*2)+((all_pos(2,i)-all_pos(2,j))*2));
for k=1:n_zones_threats ,
SC=sqrt(((ZONES_THREATS(1,k)-all_pos(1,i))*2)+((ZONES_THREATS(2,k)-
all_pos(2,i))"2));
FC=sqrt(((ZONES_THREATS(1,k)-all_pos(1,j))*2)+((ZONES_THREATS(2,k)-
all_pos(2,))"2));
SN=(SC"2+SF"2-FC"2)/(2*SF);
if SN<SF & SN>0
PC(1,k)=sqrt(SC"2-SN"2);
else
if SC<FC
PC(1,k)=SC;
else
PC(1,k)=FC;
end
end
end
if PC(1,:)>ZONES_THREATS(3,2),
all_lines_x(1,a)=all_pos(1,j);
all_lines_x(2,a)=all_pos(1,i);
all_lines_y(1,a)=all_pos(2,j);
all_lines_y(2,a)=all_pos(2,i);
a=a+l;
end
end
end
end

%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %Yo

%Generating straight line cost for visibilty lines

%%%%%%%6%%%%%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %% % %% % %% %% %

%Since there is an equal weight assigned to each line within a threat there

%is no additional weighting needed for these lines since entering a threat

%is associated with a probability of kill not how long a UAV is in the

%threat's range.

for i=1:size(all_lines_x,2);
all_costs(1,i)=sqrt((all_lines_x(1,i)-all_lines_x(2,i))*2+(all_lines_y(1,i)-all_lines_y(2,i))"2);

end

Path_shrtng_vis
%Authored by Zachary Spritzer
function

[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng_vis(stored_paths,all_pos,ZONES, THREAT
S,min_turn,nuav,ntarg, HEADING_ANGLE)

164



%INPUTS:

%

%stored_paths - is a mxn matrix where m is the number of uavs times the
%number of targets and n is the length of the longest path. The first row
%Dbeing the first path for the first uav and the last row being the last

%path for the last uav. The paths are output by node numbers coming from
%the implementation of dijkstra's algorithm.

%

%all_pos - is a 2xn matrix where n is the number of unique voronoi points,
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.

%

%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the no-fly zones.

%

%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.

%

%min_turn - minimum turning radius for the UAVs

%

%split_seg - number of segments to Split the voronoi lines into for the
%purpose of a more near-optimal solution

%

%nuav - number of UAVs

%

%ntarg - number of targets

%OUTPUTS:

%

%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

%

%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is the cost for the mth uav to take the nth path.

%

%Stored_Pos - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y position of the mth uav at point n.

szpths=size(stored_paths,2);
%%%%%%%6%%%%%%% %% % %% % %% % %% % % %% %% % %% %% %% %% %690 % %% % %% %% %
%Finding the corresponding x and y coordinates

%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% %% %
Stored_Pos_x=ones(szpths,nuav*ntarg);

Stored_Pos_y=ones(szpths,nuav*ntarg);

stored_paths(:,szpths+1)=0;

165



for i=1:nuav*ntarg,
mnz=min(find(stored_paths(i,:)==0));
Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))’;
Stored_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))’;
Stored_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1));
Stored_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1));
end

Shortened_Paths_x_end=ones(500,1)*Stored_Pos_x(szpths,:);
Shortened_Paths_y_end=ones(500,1)*Stored_Pos_y(szpths,:);
Shortened_Paths_x=[Stored_Pos_x;Shortened_Paths x_end];
Shortened_Paths_y=[Stored_Pos_y;Shortened_Paths_y end];

%%%%%%%6%%%%6%% % %% % %% % %% % %% % % %% %% % %% %% % %% % %690 % %% %% % %% %
%Adding initial path based on heading angle
%%%%%%%%%%% %% % %% % %% % %% % %% % % %% %% % %% %% %% %% %% % %% % %% % %%
for i=1:nuav,

for j=1:ntarg,

[Shortened _Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-1)*ntarg)+j)]=...
heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-

1)*ntarg)+j)],min_turn,HEADING_ANGLE(i,1),72);

end
end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y old=Shortened_Paths_y;
Shortened_Paths_x=[];
Shortened_Paths_y=[];
for j=1:size(Shortened_Paths x_old,1)-1,
if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
Shortened_Paths_y_old(j,:)==Shortened_Paths_y old(j+1,:),
Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
break
else
Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
Shortened_Paths_y(j,:)=Shortened_Paths_y old(j,:);
end
end

%%%%%%%% %% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
%Updating the Costs

%%%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% % %S
zsp_perm=size(Shortened_Paths_x,2);

permcost=zeros(nuav*ntarg,1);

for z=1:szsp_perm,
[permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(;,z)], THREATYS);

end

totalcost=reshape(permcost,ntarg,nuav)';

166



Appendix E

Search and Destroy MATLAB Files

167



Path Planning Related Functions

Path_Planning_Search_S
%Authored by Zachary Spritzer

function [sys,x0,str,ts] = path_planning_search_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = [1; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs=  9*100*4+9;
sizes.Numinputs=  36+36+180*3+9+1+81+1;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str = []; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u)

[sys]=path_planning_search(u);

168



Path_Planning_Search
%Authored by Zachary Spritzer
function [out]=path_planning_search(in)

UAVS=reshape(in([1:36],1),4,9);
TARGETS=reshape(in([37:72],1),4,9);
uav_action=reshape(in([73:153],1),9,9);
waypoints_x=reshape(in([154:333],1),20,9);
waypoints_y=reshape(in([334:513],1),20,9);
waypoints_checked=reshape(in([514:693],1),20,9);
HEADING_ANGLE=in([694:702],1);
n_plots=in(703,1);
TIME=round(in(704,1));
disp(sprintf('Path Planning Search ran at %d. \n', TIME))
uavs_existing=zeros(9,1);
for i=1:9,

if UAVS(3,i)~=0,

uavs_existing(i,1)=1;

end

end

targets_present=zeros(9,1);
for i=1:9,
if TARGETS(4,i)~=0,
targets_present(i,1)=1;
end
end
n_targ=sum(targets_present(:,1));

Selected_paths_x=zeros(9,100);
Selected_paths_y=zeros(9,100);

%If no targets are present
for i=1:9,
if uavs_existing(i,1)~=0,
Selected_paths_x(i,1)=UAVS(1,i);
Selected_paths_y(i,1)=UAVS(2,i);
for j=1:20,
if waypoints_checked(j,i)==0,
Selected_paths_x(i,[2:100])=waypoints_x(j,i);
Selected_paths_y(i,[2:100])=waypoints_y(j,i);
break
end
end
end
end

%If targets are present
if sum(targets_present(;,1))~=0,
num_target_visits=zeros(9,1);

169



visit_target_costs=zeros(9,9);
Selected_paths_x_temp=zeros(9*9,100);
Selected_paths_y temp=zeros(9*9,100);
uav_assignment=zeros(9,1);

for i=1:9,
if targets_present(i,1)==1,
for j=1:9
if uavs_existing(i,1)~=0,
Selected_paths_x_temp((j-1)*9+i,1)=UAVS(L,));
Selected_paths_y_temp((j-1)*9+i,1)=UAVS(2,));
Selected_paths_x_temp((j-1)*9+i,[2:100])=TARGETS(1,i);
Selected_paths_y_temp((j-1)*9+i,[2:100])=TARGETS(2,i);

[Selected_paths_x_temp((j-1)*9+i,:),Selected_paths_y_temp((j-1)*9+i,:)]=...
heading_angle_paths([Selected_paths_x_temp((j-1)*9+i,:);Selected_paths_y_temp((j-
1)*9+i,:)]...
,1,HEADING_ANGLE(j,1),72);

%Defining Costs
for n=1:99,
visit_target_costs(j,i)=visit_target_costs(j,i)+sqrt(((Selected_paths x_temp((j-1)*9+i,n)-
Selected_paths_x_temp((j-1)*9+i,n+1))"2)+...
((Selected_paths_y_temp((j-1)*9+i,n)-Selected_paths_y_temp((j-1)*9+i,n+1))"2));
end
end
end
num_target_visits(i,1)=4-TARGETS(4,i);
visit_target_costs_temp=round(visit_target costs*100);
uav_to_target=round(sort(visit_target costs(:,i)*100));
for k=1:num_target_visits(i,1);
if uav_action(j,i)==0,
uav_assignment(find(visit_target_costs_temp(;,i)==uav_to_target(k)),1)=i;
end
end
end
end
for i=1:9,
if uav_assignment(i,1)~=0,
Selected_paths_x(i,;)=Selected_paths_x_temp((i-1)*9+uav_assignment(i,1),:);
Selected_paths_y(i,:)=Selected_paths_y temp((i-1)*9+uav_assignment(i,1),:);
end
end
end

[uav_path_x,uav_path_y,time_uav,altitude_uav]=path_times(Selected_paths_x,Selected paths_y,UAVS,0.
5,uavs_existing);
time_uav=time_uav-+ones(size(time_uav,1),size(time_uav,2))*TIME;
if n_plots~=0,
plot_uav(UAVS, TARGETS,uav_path_x,uav_path_y,n_plots,uavs_existing,targets_present);
end

sys_temp=[];
for i=1:9;
sys_temp=[sys_temp,uav_path_x(i,:),uav_path_y(i,:),altitude_uav(i,:),time_uav(i,:),uavs_existing(i,1)];

170



end

out=[sys_temp];

% End of mdlOutputs.

Path_Times
%Authored by Zachary Spritzer

function

[uav_path_x,uav_path_y,time_uav,altitude_uav]=path_times(Selected paths_x,Selected paths_y,UAVS,di

stpast,uavs_existing)

%

%INPUTS:

%

%Selected paths_x - is a n*m matrix where n=9 and m=90 path length.

%

%UAVS - is a 4xn matrix where n is number of UAVS, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVS, the third row is the initial altitude of the UAVs, and

%the fourth row is the intial Velocity of the UAVSs.

%

%

%OUTPUTS:

%

%uav_path_x - is a mxn matrix where m is the number of uavs and n is the
%Ilength of the longest path. These are the x coordinates of the paths.

%

%uav_path_y - is a mxn matrix where m is the number of uavs and n is the
%Ilength of the longest path. These are the y coordinates of the paths.

%

%time_uav - is a mxn matrix where m is the number of uavs and n is the
%Ilength of the longest path. These values correspond to the time at which
%the uavs are at coordinates x and y in uav_path_x and uav_path_y.

%

%altitude_uav - is a mxn matrix where m is the number of uavs and n is the
%Ilength of the longest path. These values correspond to the altitudes that
%the uavs are at when they are at coordinates x and y in uav_path_x and
%uav_path_y.

uav_path_x=zeros(9,100);
uav_path_y=zeros(9,100);

for i=1:9,
if uavs_existing(i,1)~=0,
for j=1:100,

if Selected_paths_x(i,j+1) == Selected_paths_x(i,j+2) & Selected paths_y(i,j+1) ==

Selected_paths_y(i,j+2),
Ist_pnt_x=Selected paths_x(i,j+1);

171



nxtlst_pnt_x=Selected paths_x(i,j);
Ist_pnt_y=Selected_paths_y(i,j+1);
nxtlst_pnt_y=Selected paths_y(i,j);
dist_pnts=sqrt(((Ist_pnt_x-nxtlst_pnt_x)"2)+((Ist_pnt_y-nxtlst_pnt_y)"2));
last_x=lIst_pnt_x+((Ist_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts));
last_y=Ist_pnt_y+((Ist_pnt_y-nxtlst_pnt_y)*(distpast/dist_pnts));
uav_path_x(i,[j+1:100])=last_x;
uav_path_y(i,[j+1:100])=last_y;
uav_path_x(i,j)=Selected_paths_x(i,j);
uav_path_y(i,j)=Selected_paths_y(i,j);
break

else
uav_path_x(i,j)=Selected_paths_x(i,j);
uav_path_y(i,j)=Selected_paths_y(i,j);

end

end
end
end

%Initializing matrixes
time_uav=zeros(9,100);
time_uav_temp=zeros(9,100);

%Time matrix
for i=1:9,
if uavs_existing(i,1)~=0,
for j=1:98,
if uav_path_x(i,j) == uav_path_x(i,j+1) & uav_path_y(i,j) == uav_path_y(i,j+1),
break
end
shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path x(i,j+1))"2+(uav_path_y(i,j)-uav_path_y(i,j+1))"2);
time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);
end

time_uav(i,[2:100])=sum(time_uav_temp(i,:));

for j=2:100,
time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
end
end
end
time_uav=time_uav*1.01;

%Altitude matrix
altitude_uav=zeros(9,100);

for i=1:9,

altitude_uav(i,:)=UAVS(3,i);
end

172



Waypoint_Gen
%Authored by Zachary Spritzer

function
[waypoint_x_pos,waypoint_y_pos,waypoint_pos_checked,waypoint_start]=waypoint_gen(UAVS,grid_lim
its,search_rad,n_uav)

%L.imits of the battlefield
min_x=grid_limits(1,1);
max_x=grid_limits(1,2);
min_y=grid_limits(1,3);
max_y=grid_limits(1,4);

%Number of points equal to the in increments of the search radius of the
%vehicles from min to max y
gridypnts=min_y:search_rad*2:max_y;

n_waypoints=2*ceil(size(gridypnts,2)/n_uav);

waypoint_x_pos=zeros(9,n_waypoints);
waypoint_y pos=zeros(9,n_waypoints);
waypoint_x_pos(1:n_uav,1)=min_x;
waypoint_x_pos(1:n_uav,2)=max_X;
n_points=0;

n_uav_points=0;

%Generating orignial x and y points
while n_points<size(gridypnts,2),
for j=1:n_uav,
n_points=n_points+1;
if n_points>size(gridypnts,2),break;end
waypoint_y_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=ones(1,2)*gridypnts(1,n_points);
if n_uav_points>=1,

waypoint_x_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=[waypoint_x_pos(j,n_uav_points*2),waypoint_
X_pos(j,n_uav_points*2-1)];
end
end
n_uav_points=n_uav_points+1;
end

%Adding corners to the paths with the minimum turn radius
waypoint_x_pos_temp=zeros(9,20);
waypoint_y pos_temp=zeros(9,20);
for i=1:9,
n_temp_points=1;
for j=1:n_waypoints-1,
if (waypoint_x_pos(i,j) == waypoint_x_pos(i,j+1)) & (waypoint_y_pos(i,j) ~=
waypoint_y_pos(i,j+1)),
waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j);
waypoint_y pos_temp(i,n_temp_points)=waypoint_y pos(i,j);
n_temp_points=n_temp_points+1;
if waypoint_x_pos(i,j) == min_x,
waypoint_x_pos_temp(i,n_temp_points)=min_x-((waypoint_y_pos(i,j+1)-waypoint_y pos(i,j)));

173



waypoint_y_pos_temp(i,n_temp_points)=((waypoint_y_pos(i,j+1)-
waypoint_y pos(i,j))/2)+waypoint_y pos(i,j);
else
waypoint_x_pos_temp(i,n_temp_points)=max_x+(waypoint_y_pos(i,j+1)-waypoint_y pos(i,j));
waypoint_y pos_temp(i,n_temp_points)=((waypoint_y pos(i,j+1)-
waypoint_y pos(i,j))/2)+waypoint_y pos(i,j);
end
n_temp_points=n_temp_points+1;
waypoint_x_pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_x_pos(i,j+1:n_waypoints);
waypoint_y pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_y_pos(i,j+1:n_waypoints);
else
waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j);
waypoint_y pos_temp(i,n_temp_points)=waypoint_y pos(i,j);
n_temp_points=n_temp_points+1;
end
end
end

figure(102)
hold on
plot(waypoint_x_pos_temp(1,1:14),waypoint_y_pos_temp(1,1:14),'r")
plot(waypoint_x_pos_temp(2,1:14),waypoint_y_pos_temp(2,1:14),'k")
plot(waypoint_x_pos_temp(3,1:11),waypoint_y pos_temp(3,1:11),'c")
plot(waypoint_x_pos_temp(4,1:11),waypoint_y pos_temp(4,1:11),'g")
plot(waypoint_x_pos_temp(5,1:11),waypoint_y pos_temp(5,1:11),'b")
plot(waypoint_x_pos_temp(6,1:11),waypoint_y pos_temp(6,1:11),'m")
for i=1:6

plot(UAVS(1,i),UAVS(2,i),'b*");
end
axis([-15 65 -5 55])
xlabel('Kilometers")
ylabel('Kilometers")
hold off

waypoint_x_pos=waypoint_X_pos_temp;
waypoint_y pos=waypoint_y pos_temp;
waypoint_start=zeros(2,9);
waypoint_start(1,:)=waypoint_x_pos(:,2)’;
waypoint_start(2,:)=waypoint_y pos(:,2)’;
waypoint_start=reshape(waypoint_start,18,1);

waypoint_x_pos_temp=reshape(waypoint_x_pos',20*9,1);
waypoint_y pos_temp=reshape(waypoint_y pos',20*9,1);
n_waypoints=size(waypoint_x_pos,2);
waypoint_x_pos=zeros(20*9,1);

waypoint_y pos=zeros(20*9,1);
waypoint_pos_checked=zeros(20,9);
waypoint_pos_checked(1,:)=1;
waypoint_pos_checked=reshape(waypoint_pos_checked,20*9,1);

for i=1:9

waypoint_x_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_x_pos_temp((i-1)*n_waypoints+1:(i-
1)*n_waypoints+n_waypoints,1);

174



waypoint_y_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_y_pos_temp((i-1)*n_waypoints+1:(i-

1)*n_waypoints+n_waypoints,1);
end

Target and Waypoint Related Functions

UAV_Detect_Target_S
%Authored by Zachary Spritzer

function [sys,x0,str,ts] =uav_detect_target s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdllnitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 36+81+1;

sizes.Numlnputs=  36+36+1+81;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states

%

175



str =[]; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);

[sys]=uav_detect_target(u);

% End of mdIOutputs.
UAV_Detect_Target
%Authored by Zachary Spritzer
function [sys]=uav_detect_target(u)

uav_pos=reshape(u([1:36],1),4,9);
target_pos=reshape(u([37:72],1),4,9);
target_pos_old=target_pos;
clock=round(u(73,1));
uav_action=reshape(u([74:154],1),9,9);

uavs_existing=zeros(9,1);
for i=1:9,
if uav_pos(3,i)~=0,
uavs_existing(i,1)=1;
end
end

targets_present=zeros(9,1);
for i=1:9,
if target_pos(1,i)~=0,
targets_present(i,1)=1;
end
end

for i=1:9,
if uavs_existing(i,1)~=0,
for j=1:9,
if targets_present(j,1)~=0,

dist_uav_target=sqrt(((uav_pos(1,i)-target_pos(1,j))*2)+((uav_pos(2,i)-target_pos(2,j))"2));
if dist_uav_target <1 & uav_action(i,j)==0,

action=target_pos(4.j);
if action==0,

disp(sprintf(‘Target %d (value %d) indentified at time %d by UAV %d. \n',...
jtarget_pos(3,j),clock,i));

target_pos(4,j)=1;
end

if dist_uav_target < 0.1 & uav_action(i,j)==0,

if action==1,
target_present=rand;
if target_present <= .9,

176



disp(sprintf('Target %d (value %d) indentified as a target at time %d by UAV %d. \n',...
j.target_pos(3,j),clock,i));
target_pos(4,j)=2;
else
disp(sprintf('Target %d (value %d) indentified as NOT a target at time %d by UAV
%d.',...
j.target_pos(3,j),clock,i));
disp(sprintf('Target %d has been removed from target status at time %d.\n',...
j,clock));
target_pos(:,j)=0;
end
end
if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV
%d. \n',...
j,target_pos(3,j),clock,i));
target_pos(4,j)=3;
end
if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV
%d. \n',...
j,target_pos(3,j),clock,i));
target_pos(4,j)=4;
end
if action==4,
target_destroyed=rand,;
if target_destroyed <= .85,
disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
j.target_pos(3,j),clock,i));
target_pos(:,j)=0;
else
disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d.
\n',...
j.target_pos(3,j),clock,i));
target_pos(4,j)=3;
end
end
end
end
end
end
end
end

plan=(target_pos_old~=target_pos);
replan=sum(sum(plan));

sys=[reshape(target_pos,36,1);replan;reshape(uav_action,9*9,1)];

UAV_Detect_Waypoints_S
%Authored by Zachary Spritzer
function [sys,x0,str,ts] =uav_detect_waypoints_s(t,x,u,flag,T)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

177



switch flag,

case 0
[sys,x0,str,ts] = mdlinitializeSizes(T); % Initialization

case 3
sys = mdlOutputs(u); % Calculate outputs

case{1,2,4,9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%

% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.

%

function [sys,x0,str,ts] = mdlInitializeSizes(T)

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 180*3+1,;

sizes.Numlnputs=  36+180*3;
sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1,;

% Load the sys vector with the sizes information.
sys = simsizes(sizes);

%

X0 = []; % No continuous states
%

str =[]; % No state ordering

%

ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.

%

% Function mdlOutputs performs the calculations.

%

function sys = mdlOutputs(u);
[sys]=uav_detect waypoints(u);
% End of mdlOutputs.

UAV_Detect_Waypoints
%Authored by Zachary Spritzer
function [sys]=uav_detect_waypoints(u)

uav_pos=reshape(u([1:36],1),4,9);
waypoint_x=reshape(u([37:216],1),20,9);

178



waypoint_y=reshape(u([217:396],1),20,9);
waypoints_checked=reshape(u([397:576],1),20,9);
waypoints_checked_old=waypoints_checked;

for i=1:9,
for j=1:20,
if waypoints_checked(j,i) == 1,
dist_uav_waypoint=sqrt(((uav_pos(1,i)-waypoint_x(j+1,i))*2)+((uav_pos(2,i)-
waypoint_y(j+1,i))"2));
if dist_uav_waypoint < .1,
waypoints_checked(j+1,i)=1;
end
break
end
end
end

plan=(waypoints_checked_old~=waypoints_checked);
replan=sum(sum(plan));

sys=[reshape(waypoint_x,180,1);reshape(waypoint_y,180,1);reshape(waypoints_checked,180,1);replan];

179



	Comparison of path-planning and search methods for cooperating unmanned aerial vehicles
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1 - Introduction to Cooperating UAVs
	1.1 - Introduction to Unmanned Aerial Vehicles
	1.2 - Research Objectives

	Chapter 2 - Literary Review
	2.1 - Review of Path-Planning and Task Allocation Methods
	2.2 - Review of Search Methods

	Chapter 3 - The Path-Planning and Task Allocation Process
	3.1 - Path Generation and Path Selection
	3.2 - Path Refinement and Task Allocation

	Chapter 4 - Implementation of Six Degree of Freedom Aircraft Dynamics
	4.1 - General Overview of Aircraft Dynamics
	4.2 - Implementation of Heading Angle Control Scheme

	Chapter 5 - Development of a SIMULINK Scheme for Cooperating UAVs
	5.1 - Implementation of Path-Planning Process and Aircraft Dynamics
	5.2 - Management of the No-Fly Zones and Threats
	5.3 - Management of the UAVs and Targets

	Chapter 6 - Comparison with Other Available Path Generation Methods
	6.1 - Implementation of Grid and Visibility Graph
	6.2 - Comparison of the Path Generation Methods

	Chapter 7 - Implementation and Discussion of Search Scheme in SIMULINK
	7.1 - Implementation of a SIMULINK Based Search Scheme
	7.2 - Results of a Search Simulation

	Chapter 8 - Conclusions and Recommendations
	8.1 - Conclusions
	8.2 - Recommendations

	References
	Appendix A - Path-Planning and Task Allocation MATLAB Files
	Appendix B - Longitudinal Dimensional and Lateral Directional Stability Derivatives
	Appendix C - Simulation Implementation MATLAB Files
	Appendix D - Grid and Visibility Graph MATLAB Files
	Appendix E - Search and Destroy MATLAB Files

		John.Hagen@mail.wvu.edu
	2004-04-20T15:57:45-0400
	West Virginia University Libraries
	John H. Hagen
	I am approving this document




