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Abstract 

Comparison of Path-Planning and Search Methods for Unmanned Aerial Vehicles 

Zachary W. Spritzer 

 The main goal of this research effort is develop a simulation environment for 
cooperating UAVs within MATLAB’s SIMULINK.  This is the first step in a process 
that will eventually lead to the implementation of model UAVs on a model battlefield.  
The interest in cooperation of UAVs over the past decade has grown significantly.  This 
is due to several reasons including lower operational cost, lower risk for humans, and 
greater maneuverability.   

This research explores two scenarios.  The first is a scenario in which all of the 
characteristics of a battlefield are known prior to the UAVs being launched.  Three 
prevalent path-planning methods are compared based on calculation speed and 
optimization.  This thesis shows that a visibility graph method leads to the lowest cost 
solution, while the Voronoi diagram method provides a computationally inexpensive 
solution.   

The second scenario is a search and destroy mission where nothing is known 
about the battlefield prior to UAVs launch.  This will consist of the vehicles visiting a set 
of predetermined waypoints until a target is found.  The result of this research produces a 
simulation of cooperating UAVs that shows the potential of fulfilling many realistic 
missions in a battlefield environment.   
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Chapter 1 

Introduction to Cooperating UAVs 

 

1.1 - Introduction to Unmanned Aerial Vehicles 

As technology grows, it is apparent that the use of Unmanned Aerial Vehicles 

(UAVs) will serve a larger purpose in military forces.  The first UAV was developed in 

the 1960s as a supplement to the U-2 spy plane.  The military program for this UAV was 

called Compass Arrow; the military designation for this aircraft was AQM-91A.  Project 

Compass Arrow led to the development of an aircraft that had the capability to operate 

for two hours at 85,000 ft while maintaining subsonic speeds around Mach 0.8.  This 

flight envelope gave the vehicle the ability to survive against threats such as anti-aircraft 

fire.  Like many of the unmanned military aircraft of the 1960s, the AQM-91A was 

launched from a DC-130 aircraft and recovered by parachute1.  In the 1970s, the military 

began to fund programs that would lead to vehicles with a larger flight envelope and 

operational time, which lead to the end of the Compass Arrow project in 1973.  The trend 

of large high altitude UAVs continued into the 1980s including Boeing’s Condor that 

boasted a gross weight of 16,000 lbs with the capability to operate for over 50 hours at an 

altitude of 65,000 ft. 

The Department of Defense changed the trend of large UAVs in the late 1980s by 

establishing the UAV Joint Project Office (JPO). This shifted the focus to the 

development of small, low altitude, and low cost UAVs.  It was clear that the UAV JPO’s 

objective was to give UAVs global acceptance as a low cost disposable aircraft.  These 

new smaller UAVs were designed to replace larger manned aircraft in a battlefield 
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environment.  This led to projects such as the RQ-2 Pioneer, which was used in the 1990s 

in Operation Desert Storm2.  The RQ-2 Pioneer was used primarily for target 

identification and battle damage assessment. It proved to be a great resource instead of 

using manned aircraft because the Pioneer benefited from lower operational cost and 

higher pilot safety.   

As the advantages of using these vehicles for battlefield applications became more 

apparent, several other UAVs were developed including the RQ-1 Predator and the RQ-4 

Global Hawk.  The Predator played an important role in Bosnia as a reconnaissance and 

surveillance platform2.  Both the Predator and the Global Hawk have been invaluable 

resources in recent conflicts such as Operation Enduring Freedom in Afghanistan and 

Operation Iraqi Freedom in Iraq.  In recent years, the military has been developing 

several UAV programs that call for the aircraft to perform more tasks on the battlefield.  

Some of these programs include the modification of the Predator into a search and 

destroy aircraft, the Boeing X-45, and the Northrop Grumman X-47, which are all being 

designed as Unmanned Combat Air Vehicles (UCAVs).   

Some of the many advantages UAVs posses over manned aircraft are excellent 

maneuverability, lower operational cost, large weight savings, dramatically lower human 

risk, and an opportunity to achieve superior coordination3.  With the role of UCAVs 

becoming larger in the military, some of the missions they have the potential of achieving 

are the following: 

• Reconnaissance 

• Communication Jamming 

• Suppression of Enemy Air Defenses 
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• Missile Defense 

• Fixed/Moving Target Attack 

• Air-to-air Combat 

• Search and Destroy 

It is evident that the implementation of multiple UAVs on a battlefield to complete 

these missions has tremendous potential.  In addition to the vehicles becoming 

exceedingly complex, these tasks must be accomplished using superior coordination.  

Clearly, as UAVs and UCAVs take larger roles on the battlefield an enhanced level of 

control is required to operate these aircraft. 

 

1.2 - Research Objectives 

 Along with the growing technology of UAVs comes the need to control and 

coordinate these vehicles.  There are two main objectives of this research; the first is the 

development of a control scheme for a group of cooperating UAVs in a hostile 

environment and the second is the development of a control scheme for a group of 

cooperating UAVs in a search and destroy environment.  The design and simulation of 

both objectives have been performed using Mathworks’ SIMULINK environment in 

MATLAB.  The first objective is using a hostile environment that implies a given number 

of conditions on the battlefield are known prior to launch.  In the second objective a 

search and destroy environment is used in which the only knowledge about the battlefield 

is its area.   

 For the purposes of this research a hostile environment is defined as a battlefield 

that includes several no-fly zones, threats, targets, and UAVs.  No-fly zones can be 
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political boundaries or physical boundaries such as mountains, which are modeled as a 

half-sphere with known location and radius.  In this application the threats are considered 

to be a variety of surface-to-air missiles (SAM) and an anti-aircraft artillery weapon; the 

specifications for these are shown in Table 1.2.117.  The locations, ranges, and probability 

of kill for each threat are known.   

Table 1.2.1 – List of different threats used    

Threat Name Threat Description Threat Range Probability of Kill

KS-19 100 mm Anti-Aircraft Artillery 4000 ft 40%
SA-7 Grail Shoulder Fired SAM 5000 ft 50%

Crotale Rattlesnake Vehicle Fired SAM 10000 ft 80%
V-75 SA-2 Guideline Vehicle Fired SAM 30000 ft 80%  

 

 The targets are a point on the battlefield with known location and value.  The value 

of a target can be in the range of 1-100, which is dependent on how valuable the target is 

to mission completion.  A target can be various areas of interest such as buildings or 

enemy camps.  In addition to the initial conditions of the battlefield described above, the 

initial location, speed, and heading angle of each UAV are also known.  The objective of 

cooperating UAVs in a hostile environment is to minimize the mission completion time 

while maximizing the probability of mission completion.  Many different algorithms for 

the simulation of cooperating UAVs have been developed with this main 

objective3,6,7,10,13,15.   

 There are several steps involved in solving the cooperating UAVs problem.  The 

first step is the generation of possible paths for the UAVs to follow in order to reach the 

targets.  Several methods for the generation of these paths has been tried including the 

use of Delaunay triangulation or Voronoi diagrams7,9,13, a grid7, and a visibility graph5,6,8.  
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A Voronoi diagram is constructed based solely on the locations of the threats and no-fly 

zones.  The grid method involves the overlaying of a grid onto the battlefield.  In contrast 

to both of these methods a visibility graph is based on the ranges of the threats and radii 

of the no-fly zones.  Typically, the next step is assigning costs to all of these paths.  In 

this case there are two costs assigned to each path. The first is the fuel cost, which is 

calculated as the Euclidian distance of each path10.  The second is the cost associated with 

threat risk that is based on whether the path travels inside a threat’s range or a no-fly 

zone’s radius.  In this research if a path travels through a threat’s range a cost 

proportional to that threat’s probability of kill is added to the path, also if a path travels 

through a no-fly zone’s radius a cost of infinity is assigned to that particular path.   

 After costs for all of the paths are assigned, a lowest cost path must be selected for 

each permutation of UAV to target.  This is accomplished through the use of a directed 

graph search algorithm such as Dijkstra’s algorithm7,13.  In a directed graph each segment 

of the graph has a starting point and an ending point. After all of the lowest cost paths 

have been selected for each UAV to travel to each target, they must be transformed into 

flyable paths.  This is needed in order to give an accurate representation of the limitations 

that each UAV faces due to the dynamics of each aircraft.  The final step in this process 

is to assign tasks for each UAV to perform or which target each UAV should visit.  This 

problem was formulated as a Multi-Dimensional Multiple-Choice Knapsack 

Problem5,6,8,11 (MMKP).  The MMKP algorithm assigns each UAV a task leading to the 

global optimal solution for the cost of the mission.   

 The second objective of this research is the simulation of cooperating UAVs in a 

search and destroy environment.  A search and destroy environment is defined such that 
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nothing is known except the area to be searched and the starting position of the UAVs.  

This type of mission has been researched by many people18-24.  The process can be 

broken down into two main steps.  The first step is assigning waypoints to each vehicle 

so that each UAV searches the given area in a serpentine pattern23.  This pattern is used 

because nothing about the battlefield is known prior to launch.  This is referred to as a 

random search in which no area in the battlefield is preferred over another20.  After the 

waypoints for each UAV are defined, the area is then searched until a UAV detects a 

target.   

 The second step in this process is to assign UAVs to perform tasks on the targets as 

they are found.  This is formulated as a market-based bidding procedure, which performs 

the task assignment22.  In this procedure, after a target is detected every vehicle provides 

an estimate of the cost to visit the target.  The vehicles with the lowest estimated costs are 

selected to visit the detected target.   

 As the case in both of the objectives, several tasks need to be performed on the 

targets.  After a potential target is identified or detected, it needs to be classified as a 

target or not a target.  If it is classified as a target, it must be destroyed by a vehicle.  In 

order to determine if the target has been destroyed a battle damage assessment (BDA) 

must be performed.  After all of the necessary tasks are preformed on the targets the 

UAVs are then free to visit other lower value targets or search the rest of the battlefield 

until another target is found or the entire area has been searched. 

 These two objectives must be implemented using the SIMULINK environment in 

MATLAB for the purpose of incorporating six degree of freedom aircraft dynamics.  

SIMULINK provides an extremely proficient environment to simulate dynamic systems, 
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which is especially important given these two objectives.  In both circumstances the need 

to simulate dynamic changes in the environment is desired.  Some of which are the 

changing of target states and the addition or subtraction of vehicles, threats, and targets.  

In addition, MATLAB provides an excellent coding interface similar to C++ and other 

computer languages, but it is designed in a math-oriented environment.  This leads to an 

easier and more user-friendly way to simulate the desired system.  Aside from MATLAB 

being a math oriented environment, the program is preloaded with many mathematical 

programming functions, which proves very beneficial to the research objectives of this 

project.  
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Chapter 2 

Literary Review 

 

2.1 - Review of Path-Planning and Task Allocation Methods 

 There have been several research efforts that take the approach in which everything 

about a battlefield is known prior to the launch of the UAVs.  This has led to many 

different approaches by researchers to solve this problem.  In general, the problem is the 

development of a path-planning algorithm with integrated task allocation.  This algorithm 

must compute a trajectory from the UAV’s present location to a desired future location7.  

In order for a path-planning algorithm to be optimal, it must yield the optimal path for 

each UAV to travel while accounting for two extremely important factors.  These paths 

must be stealthy to avoid known enemy threat locations.  Also, they must be of minimal 

length to minimize the cost of the mission and the time in enemy territory.  This 

algorithm must be coded with software that can be executed on an airborne processor7.   

 Much research has been done in this area especially with the use of Delaney 

triangulation or Voronoi diagrams7,9,13.  In this research a Voronoi diagram is created 

based solely on the locations of static threats.  This method yields paths that are optimal 

between previously known threats.  For every three threats a Delaunay triangulation is 

calculated, which forms a circle that passes through these three points.  The center of the 

circle that is created is called a Voronoi point7.  After all of the Voronoi points in the 

battlefield are defined, lines are drawn connecting these points.  These points are only 

connected if their Delaunay triangle shares a common edge. This process forms a graph 

of connected lines called a Voronoi diagram.  In order to generate paths for the UAVs to 
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travel they must be connected into the diagram using the three closest nodes13.  In 

addition, the targets are connected into the graph in the same fashion.   

 After all of the lines in the diagram have been defined, the cost of traveling along 

those lines must be assigned.  The cost associated with each particular line consists of 

two components, which are the threat proximity cost and the fuel cost9.  This leads to the 

total cost for the line i, Ji, shown in the following equation  

fitii JJJ ,, +=       (2.1.1) 

where Ji,t is the threat cost and Ji,f is the fuel cost of the line i.  The threat cost is 

calculated by finding the exposure of each line to enemy radar and is given by the 

expression13

∑
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14,

111     (2.1.2) 

where N is the number of threats, 1/d4 is the strength of a UAV’s radar signature, which 

is calculated at the 1/6, 1/2, and 5/6 point along each line, and Li is the length of each 

line.  The fuel cost is simply calculated as the length of each line, Li.  These two costs 

yield a final line cost13

fitii JkJkJ ,, )1(* −+=                           (2.1.3) 

where k is between 0 and 1, which allows the total cost to be weighted toward a stealthy 

mission or a low fuel cost mission.   

 After the costs of each line in the diagram have been assigned, a graph search 

method such as Dijkstra’s algorithm can be used to find the lowest cost path from one 

point to any other point in the diagram.  If ‘V’ is the number of vertices in the diagram 

and ‘E’ is the number of edges or lines, then the complexity of solving the algorithm is 
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O(V log(V) + E)7.  In order to use the algorithm the graph must be a weighted and 

directed graph, which requires all of the lines to be assigned a positive cost and a 

direction.  After all of the lines are assigned costs and directions, the lowest cost path 

from one point to another point can be found.  The main concept of Dijkstra’s algorithm 

is to change temporary labels associated with vertices to permanent labels, which gives 

the lowest cost path from a source vertex to another vertex in the graph25.  The 

application of Dijkstra’s algorithm from source vertex v1 to another vertex v2 is outlined 

below: 

Algorithm 2.1.1 

 1.  Set , ( )1vP = ( )1vVT −= , ( ) 01 =vd , ( ) 02 =vpred , ( ) njcjd =  

 2.  Do for all   ( ) Ajv ∈,2

                for other vertices,  ( ) ∞=jd ( ) 1vjpred =   

 3.  Do while  VP ≠

              choose the minimum Ti∈ , ):)(min()( Tjjdid ∈=  

 4.  Update P, and T 

             ,  )(iPP U= )(iTT −=

 5.  Update temp labels, for all )(iAj∈  

              ))(),(min()( ijcidjdjd += , set ( ) ijpred =  

 6.  Go back to step 3 

 7.  Go back to step 2  

 

 
Dijkstra’s algorithm is a time efficient and effective way to search a given directed graph 

for the lowest cost path from a starting point to any other point in the graph.  In this 

application the algorithm is used to find the lowest cost path for each permutation of 
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UAV to target.  Given that these paths are the lowest cost, they are neither the shortest 

possible path nor the safest possible path13.   

 Once these paths have been selected, the dynamic constraints for the aircrafts must 

be implemented in order to give an accurate estimation of each path.  This step is referred 

to as ‘path refinement’ or ‘trajectory generation’.  In order to simplify the model of the 

UAV dynamics the following assumptions are made by Bortoff7. 

• Each UAV flies at a constant altitude. 

• Each UAV flies at a constant speed. 

The constant altitude assumption is used to simplify the numerical complexity of the 

path-planning problem.  The second assumption is made for the purpose of simplifying 

the calculations involved to find the length of each path.  Using this assumption the path 

length can be estimated using Cartesian coordinates.  Both of these assumptions are 

reasonable and simplify the complexity of the problem a great deal.   

 Richards states in a similar manner the aircraft is modeled as a point mass moving 

in a 2-D environment6.  Although the aircraft can be modeled as a point mass, several 

other considerations must be taken into account.  One such consideration is the maximum 

turning rate of the aircraft, which is given in equation 2.1.4. 

maxv
f

=ω           (2.1.4) 

where vmax is the maximum velocity of the aircraft and f is the force applied to the 

aircraft.  Considering these factors a flyable path is constructed for each UAV, in order to 

follow the dynamic constraints of the aircraft such as maintaining an acceptable turning 

rate and appropriate airspeed to avoid stall conditions.  This flyable path is given by a set 
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of points along which the UAV is assigned to travel.  This path is then assigned an 

updated cost based on the dynamic constraints of the aircraft.   

 The final step in the path-planning process takes place after all of the costs for each 

UAV to visit each target using a flyable path are defined.  This step performs a task 

allocation of each UAV that leads to a globally optimal solution for the mission.  The 

task allocation problem is formulated as a Multi-Dimensional Multiple-Choice Knapsack 

Problem (MMKP)8.  The objective of the MMKP problem is to minimize the knapsack 

while satisfying all of the conditions placed on the problem.  In this problem, the 

knapsack is the total mission cost.  The multiple dimensions are the UAVs in which each 

vehicle has a multiple choice of the waypoint to visit.   

 Knapsack problems are an important class of problems that have many various 

applications in fields such as management, business, defense, or any other area in which 

tasks must be scheduled or budgeted11.  The MMKP algorithm is a combination of two 

separate algorithms, the Multiple-Choice Knapsack Problem (MCKP) and the Multiple-

Dimensional Knapsack Problem (MDKP).  The MCKP is a problem in which there are 

multiple resource constraints for the knapsack.  In the MDKP, there are several groups of 

items where one item is selected from each group.  By combining the resource constraints 

from the MCKP with the selection of the different groups from the MDKP an algorithm 

for the MMKP is created.   

 There are two methods for solving an MMKP; one is a method that finds the exact 

solution and the other results in a heuristic solution26.  Finding the exact solution to a 

MMKP is extremely computationally expensive, but can be accomplished using the 

branch and bound with linear programming (BBLP) technique.  The algorithm for 
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solving MMKP using the BBLP technique is formulated as a zero-one knapsack problem.  

This leads to an exhaustive analysis, this technique can be seen in equations 2.1.5 through 

2.1.7 from Bellingham5. 
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where the cost function J is minimized with respect to the constraints in equations 2.1.6 

and 2.1.7.  The number of permutations of vehicle p are numbered Np to Np+1 – 1, with N1 

and NNv+1 = NM +1.  The indices i, j, and p have ranges from 1 to NW, NM, and NV 

respectively.  In the cost equation, cj is a vector of the costs for each permutation and xj is 

a binary decision variable equal to one if the permutation j is selected or zero if the 

permutation is not selected.   

The first constraint guarantees that each waypoint or target is visited the correct 

number of times, which for most cases is one.  The second constraint prevents a vehicle 

from selecting more than one permutation.  In this case each waypoint must be visited 

once and each vehicle may only be assigned one waypoint to visit.  This particular 

algorithm, which leads to an exact solution, is extremely complex but is guaranteed to 

find the optimal solution for the knapsack.  It should be noted that this solution it is not 

feasible to apply to all cases where a solution is desired.  The second method for finding a 

solution to the MMKP is a heuristic method which has been researched by Moser11 and 
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Akbar26.  This particular method as shown by Moser is accomplished using Lagrange 

multipliers.  This method leads to sub-optimal results, which is not a desirable result.   

The path-planning and task allocation process described above leads to a globally 

optimal mission cost.  The resulting mission cost is neither the lowest in fuel cost nor 

stealth cost, but is the best combination of the two.  It can be seen that by using the 

methods described above a near real-time simulation can be created in the SIMULINK 

environment in MATLAB.  From previous research it is apparent that the most 

computationally intense hurdles will be finding a way to limit the calculations required 

for the Dijkstra and the MMKP algorithms. 

 

2.2 - Review of Search Methods 

 The second focus of this research is the development of a simulation in which 

nothing about a battlefield is known prior to the UAVs being deployed.  There have been 

several different approaches to this problem. One approach is a random search in which 

every area of the battlefield is assigned the same value18,19,21-24,.  Another approach is a 

greedy search in which there are more valuable areas of the battlefield than others, thus a 

way of weighting different areas on the battlefield is required20.  For the purpose of this 

research only the first scenario will be considered, due to the fact that previous 

knowledge about the battlefield is accounted for in the previous section. 

 The most notable research effort in the random search approach has taken place at 

the Wright-Patterson Air Force Base in Dayton, OH.  This research has led to a search 

simulation that is implemented in a hierarchical manner with inter-vehicle 

communication explicitly modeled23.  This simulation was created using MATLAB’s 
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SIMULINK environment and is named MultiUAV.  The purpose of MultiUAV is to 

simulate a group of UAVs searching a battlefield and attacking any target that is detected.  

In this simulation the UAVs are modeled as disposable munitions.  These types of 

vehicles are considered to be destroyed once they attack a target.  This search mission is 

generally known as a wide area search munitions weapon system is which all of the 

vehicles operate independently of each other.  Initially the vehicles are released in a 

target area and follow a set of waypoints that are present at the start of the simulation22.  

These waypoints are placed in a serpentine pattern to minimize the time it takes the group 

of UAVs to search the given area.  

 A target is first detected when it passes though the sensor footprint of a UAV.   

When a target is detected the vehicle communicates the location of the target to the rest 

of the group.  A top level controller is then used to determine the task assignment for the 

UAVs.  This controller is implemented using a hierarchical market-based bidding 

procedure, where each aircraft bids on each task that needs to be preformed.  An optimal 

solution is reached with this method by having each UAV evaluate its cost to perform a 

certain task.  This control system is developed as distributed to create a redundant system, 

which is fault tolerant because there is no central decision maker.  All of the vehicles 

arrive at the same decisions; therefore conflict situations are avoided22.  An example of 

this problem is multiple UAVs visiting the same target or a target not being visited at all.  

After the top layer of control has assigned the tasks, the lower layer control system 

performs the trajectory optimization and task management.  

 The initial state of a target in a search mission is not detected.  After a target is 

detected it must be classified.  When a target has been classified as a viable target it must 
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then be attacked. Due to the fact that these aircraft are disposable munitions after a 

vehicle attacks a target it must be eliminated from the group.  If a target has been attacked 

a battle damage assessment (BDA) must be performed to ensure that the target has been 

destroyed21.  The BDA of a target will result in two conclusions, the first being that the 

target has been destroyed and no further action is needed on that target.  The second 

conclusion is that the target has not been destroyed and requires the processes to be 

repeated until the target is destroyed.  In most cases a target needing to be attacked more 

than once is not likely.  The mission is considered complete when the entire battlefield 

has been searched, all of the UAVs have been eliminated, or all of the targets have been 

destroyed.  A market-based bidding procedure with a hierarchical control system is an 

excellent tool that can be used in the creation of a search simulation. 

 

 

 

 

 

 

 

 

 

 

 

 16



 

Chapter 3 

The Path-Planning and Task Allocation Process 

 

3.1 - Path Generation and Path Selection 

 This section will discuss the path generation, path cost assignment, and path 

selection steps in the path-planning and task allocation process used in this research 

effort.  This process is based on a combination of different methods that have been 

discussed in the previous chapter.  The objective is to select a path generation and cost 

assignment method that will lead to optimal results using algorithms that can be executed 

in a real-time manner.  In order to accomplish this objective a Voronoi diagram will be 

used for possible path generation, because it will yield a low number of possible paths.  

This is desired to keep the calculations involved in Dijkstra’s algorithm to a minimum.  

Dijkstra’s algorithm is the most computationally expensive part of the path generation 

and selection process. 

 The first step is the generation of possible paths on which the UAV can travel.  

The use of Voronoi diagrams is an excellent method to perform this step.  This graph 

yields the optimal paths to travel between a set of points.  For this application the set of 

points that must be avoided are the locations of the threats and no-fly zones.  Since the 

Voronoi diagram only uses points, the ranges and radii of the threats and no-fly zones are 

ignored at this time.  A Voronoi diagram is constructed using a method called Delaunay 

triangulation.  As described by Bortoff, this procedure begins with complete knowledge 

of each point to be avoided7.  This can be seen in Figure 3.1.1.   
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Figure 3.1.1 – Locations of the threats and no-fly zones 

 

In this figure the red points are the threats and the black points are the no-fly zones.  For 

every three points there exists a circle that passes through these points.  The Delaunay 

triangulation of these points exists only if there are no points enclosed in this circle.  The 

center of this circle is called a Voronoi point and is visible in Figure 3.1.2. 

 

Voronoi Point

* 

Figure 3.1.2 – Delaunay triangulation and the corresponding Voronoi point 
 

 18



 

After all of the Voronoi points are defined they must be connected in order to 

form the diagram.  This is accomplished by connecting two points if and only if the 

Delaunay triangles associated with these points share a common edge.  This method 

provides optimal results because each line in the diagram is equidistant to the pair of 

corresponding points.  All of these lines and points form a complete Voronoi diagram, 

which can be seen in Figure 3.1.3.    

 
Figure 3.1.3 – Complete Voronoi diagram 

 

Due to the fact that the Voronoi diagram only accounts for the locations of the 

threats and no-fly zones, the UAVs and targets must be manually connected into the 

diagram.  This is done by connecting each UAV and each target to the three closest 

points in the diagram.  The implementation of this is shown in Figure 3.1.4.  In this figure 

the blue points are the UAVs and the green points are the targets. 
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Figure 3.1.4 – Complete Voronoi diagram with UAVs and targets  

 

A function was written in MATLAB named ”vrn_diag_gen“ to perform this 

which can be seen in Appendix A.  The inputs for this function are the initial conditions 

of the battlefield as discussed in Chapter 1, which are the ‘UAVS’, ‘TARGETS’, 

‘ZONES’, and ‘THREATS’ matrices.  The ‘UAVS’ matrix contains the initial x position, y 

position, speed, and altitude of each UAV.  The ‘TARGETS’ matrix contains the initial x 

position and y position of the targets.  The ‘ZONES’ matrix contains the initial x position, 

y position, and radius of each no-fly zone.  The ‘THREATS’ matrix contains the initial x 

position, y position, range and probability of kill of the threats.  Using the positions of the 

threats and no-fly zones an initial Voronoi diagram is created.  This is accomplished 

using the “voronoi” function in MATLAB. This can be seen in Algorithm 3.1.1.  It 

should be noted, that due to the nature of the Voronoi diagram several points around the 

battlefield were added.  This was needed so that the graph would completely encompass 

the area. 
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Algorithm 3.1.1 

 1.  Do for all points (x,y)  

 2.  Find Delaunay triangulation of all points (x1, y1), (x2, y2), (x3, y3) 

         3.  Re-orient triangles so they are clockwise 

 4.  If triangle edges for two points are the same 

    record edge as Voronoi line (x1, y1) and (x2, y2), 

         5.  Delaunay triangle defines a circle  

 6.  If another point is not inside the circle, 

    record point as a Voronoi point (x, y) 

 7.  Go back to step 1 

 

After all of the Voronoi lines and points have been defined the UAVs and targets 

must be connected into the diagram. This is accomplished using the “connect_vrn” 

function.  This function inputs the positions of the UAVs or targets and the Voronoi 

points.  It outputs the lines connecting the UAVs or targets to the three closet points and 

the associated distance of each line created.  This process is outlined in the following: 

Algorithm 3.1.2 

 1.  Do for all points to be connected (xi, yi)  

 2.  Find distance to all points in diagram (xj, yj) 

    ( ) ( )22
ijij yyxxd −+−=      

 3.  Record the closest 3 points (x1, y1), (x2, y2), (x3, y3)  

              and their associated distance d1, d2, d3

 4.  Go back to step 1 

 

Every point, line, and distance associated with this diagram is output from the 

“vrn_diag_gen” function, which are the matrices ‘all_pos’, ‘all_lines_x’, ‘all_lines_y’, 

and ‘all_costs’ respectively. 
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The next step is the initial path selection for each permutation of UAV to target.  

Before this can be calculated the costs of the paths must be updated to account for the 

threats and no-fly zones on the battlefield.  The subsequent equations are used to update 

the cost of each line. 

∞=jc                           (3.1.1) 

FjTij wcwpc
OLD

+= *                (3.1.2) 

where cj is the cost of traveling along line j, pi is the probability of kill of threat i, wT is 

the weighting factor applied to traveling through a threat, and wF is the fuel weighting 

factor.  Equation 3.1.1 shows the modification done to the cost of line j if it passes 

through a no-fly zone, which is shown in Figure 3.1.5.  

 
Figure 3.1.5 – Voronoi line passing through a no-fly zone’s radius   

 

Since entering a no-fly zone is prohibited, a cost of infinity is assigned to that particular 

line.  Figure 3.1.6 shows line j passing through threat i.   
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Figure 3.1.6 – Voronoi line passing through a threat’s range  

 

If this occurs a cost, proportional to the probability of kill of threat i, is added to the cost 

of that line, which can be seen in equation 3.1.2.  The following algorithm is used to 

evaluate if a line passes through a threat or no-fly zone. 

Algorithm 3.1.3 

 1.  For all lines ( )  and ss yx , ( )ff yx ,  

 2.  Find distances associated with that line to an obstacle 

      start of line to center of obstacle, 22
, )()( PscPsccs yyxxd −+−=   

      finish of line to center of obstacle, 22
, )()( PfcPfccf yyxxd −+−=    

      start of line to finish of line, 22
, )()( PfPsPfPsfs yyxxd −+−=  

      point of line perpendicular to obstacle, 
fs

tffsts
ns d

ddd
d

,

2
,

2
,

2
,

, *2
−+

=     

 3.  If fsns dd ,, ≤  and then 0, ≥nsd

     closest distance, 2
,

2
, nscsp ddd −=   

 4.  Else If  cfcs dd ,, ≤
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      closest distance, csp dd ,=  

 5.  Else  

      closest distance, cfp dd ,=  

 6.  Go back to step 2  

 

If the closest point on each line is less than the radius or range of that obstacle the cost of 

that line is updated according to Equation 3.1.1 or 3.1.2. 

After the costs of each line have been updated, Dijkstra’s algorithm is 

implemented to find the lowest cost path from each UAV to each waypoint.  Dijkstra’s 

algorithm is a graph search algorithm that provides the optimal path from a starting node 

to every other node in the graph.  In order for the graph to be searched it must be a 

directed graph, which means that each line of the graph must have a tail, head, and an 

associated cost.  In this research each line in the graph has the ability to travel both from 

tail to head and from head to tail.  The results for Dijkstra’s algorithm are shown in 

Figure 3.1.7. 

 
Figure 3.1.7 – Dijkstra’s algorithm selected paths from each UAV to each target  
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A function was written in MATLAB to perform the path selection named 

“cheapest_paths” and can be found in Appendix A.  The inputs of this function are the 

following matrices: 

• all_pos  

• all_lines_x 

• all_lines_y 

• all_costs 

• UAVS 

• TARGETS 

• ZONES 

• THREATS 

Each of these matrices has been described previously.  To place all of the lines in the 

proper format a function named “set_THC” was written.  This function rearranges the 

lines and their associated costs into the ‘THC’ matrix, where ‘T’ is the tail of the line, ‘H’ 

is the head of the line, and ‘C’ is the cost of traveling along that line.  Algorithm 3.1.4 

shows the implementation of the “set_THC” function. 

Algorithm 3.1.4 

 1.  For all lines Li

 2.  Place cost of Li in  )3,(iTHC

 3.  If tail node is assigned a value 

    place value in  )1,(iTHC

 4.  Else assign the node the lowest unused value 

              place value in  )1,(iTHC

 5.  If head node is assigned a value 

    place value in  )2,(iTHC
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 6.  Else assign the node the lowest unused value 

              place value in  )2,(iTHC

 7.  Go back to step 2 

 

The ‘THC’ matrix is then input into the function “c_assign”, the purpose of this 

function is to assign new costs to each line based on if it enters a no-fly zone’s radius or a 

threat’s range.  This is accomplished using Algorithm 3.1.3.  After the costs for each line 

are updated the ‘THC’ matrix is input into the “dijk” function, which performs Dijkstra’s 

algorithm.  The “dijk” function and its associated functions are from Kay’s matlog, a 

logistics engineering MATLAB toolbox, which is available to download27.  The outline 

of this algorithm is shown in Algorithm 2.1.1.  This function provides the optimal path to 

travel from one node to another node within the graph.  It also gives the cost associated 

with that path.  The optimal paths and their associated costs for each permutation of UAV 

to target are stored in the matrices ‘stored_paths’ and ‘totalcost’ respectively, which are 

output from the function “cheapest_paths”. 

 

3.2 - Path Refinement and Task Allocation 

 This section will discuss the refinement of the initially selected paths and the task 

allocation for the group of UAVs.  Since these selected paths are derived from a Voronoi 

diagram, they rarely travel as close as possible to the outer range of a threat or the outer 

radius of a no-fly zone.  In addition, these paths have sharp corners that might not be 

flyable. These paths also do not account for a change in heading angle.  Clearly, there is a 

need to refine these paths, which requires them to be optimized and developed into 

flyable paths.  The lines in a Voronoi diagram are designed to yield the optimal paths to 
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avoid certain points on a battlefield.  This yields a solution that has a tendency to avoid 

these points as much as possible and in many cases much further than is needed.  After 

these paths have been optimized and developed into flyable paths a task must be assigned 

to each vehicle.  This must yield a solution that leads to mission completion in an optimal 

manner.  The final step in the path-planning process is a task allocation of the UAVs in 

order for them to visit the targets as needed to complete the mission.  This leads to each 

UAV being assigned to visit a certain target along an optimal flyable path, which results 

in a globally optimal mission completion time and probability of mission completion. 

 As stated above, the nature of the Voronoi diagram is to avoid certain points as 

much as possible.  This leads to paths that can be optimized.  These paths can be 

improved by shortening them along the original path.  This is accomplished according to 

whether a chosen path travels inside a threat’s range or a no-fly zone’s radius.  The path 

is first split into several segments, which allows for an improved solution.  The original 

path is then explored to see if it passes through a threat; if it does then the distance at it 

enters the threat is recorded.  The shortened path will be allowed to enter that particular 

threat only that distance.  The shortening of a path is accomplished by analyzing a line 

starting at the UAV’s initial position and ending at the final position.  This line is 

examined to see if it passes through a threat or no-fly zone using Algorithm 3.1.3.    

 This algorithm yields closest point on the line to the position of each threat and no-

fly zone. This distance is compared with the corresponding range or radius associated 

with the obstacle.  If this distance is greater than the range or the allowable entry distance 

of every threat and the radius of every no-fly zone.  That line is recorded as the new 

optimized path.  On the other hand, if the line intersects a threat or no-fly zone then the 
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previous point is evaluated.  This process is repeated until the path has been shortened to 

the original starting point.  An example of this can be seen in Figure 3.2.1. 

 
Figure 3.2.1 – Example of a shortened path   

 

 After an optimized path is found, this path must then be modified to account for the 

flight characteristics of the aircraft.  There are two main changes that need to be made to 

each path.  One is that each corner in the path must be filleted.  This is done according to 

the minimum turn radius of the UAV, which is one kilometer.  In order to fillet the sharp 

corners of the paths, a circle with the desired radius is placed into the corner.  The radius 

of this circle is equal to the minimum turn radius of the aircraft.  The two points on the 

circle tangent to each of the two lines form the fillet, which replaces the point at the 

corner.  An example of this is shown in Figure 3.2.2. 
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Figure 3.2.2 – Example of the filleted corner of a path   

 

 The second modification must be made in order to perform a heading angle change.  

This is done to account for the sudden change in heading angle a UAV experiences when 

its current heading angle and the heading angle proposed by the selected path are vastly 

different.  In order to account for this change, the new path must first travel along a circle 

connected to its current path.  Another circle is then placed connecting the first circle to 

the desired path.  The intersection of these two circles is a transfer point at which the 

UAV leaves the circle connected to its current path and starts to follow the circle on the 

new path.  The radii of these circles are equal to the minimum turn radius of the aircraft.  

These circles are fitted so that the starting point of the path does not change; merely the 

heading angle of the aircraft is corrected.  An example of this can be seen in Figure 3.2.3. 
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Figure 3.2.3 – Example of a heading angle correction 

 

A function was written in MATLAB for the purpose of optimizing these paths and 

making them flyable.  The function called “path_shrtng” can be found in Appendix A.  

This function inputs the matrices ‘stored_paths’, ‘all_pos’, ‘ZONES’, ‘THREATS’, and 

‘HEADING_ANGLE’.  All of these matrices have been described in the previous section 

except ‘HEADING_ANGLE’, which is a vector containing the current heading angles for 

all of the UAVs.  Other inputs to the function are the scalar numbers ‘min_turn’, 

‘split_seg’, ‘nuav’, and ‘ntarg’.  These represent the minimum turn radius of the UAVs, 

the number of segments each line in the original path is split, the number of UAVs, and 

the number of targets.  First this function splits each of the lines in the path into several 

segments as specified by the variable ‘split_seg’.   

 After each line is split the path is shortened using a function called 

“shorten_paths”, which performs the optimization of the paths as described previously 

and is accomplished using Algorithm 3.1.3.  The corners of the path must now be filleted 
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using the function “fillet_path”.  The purpose of this function is to add fillets to the 

corners of the path that are too sharp for the aircraft to follow.  This is outlined in the 

Algorithm 3.2.1: 

Algorithm 3.2.1 

 1.  For all lines Li

 2.  For all points  ),( ii yx

 3.  Set α equal to the angle between and  ),( 11 −− ii yx ),( ii yx

 3.  If ALLOWABLEαα ≤  , ALLOWABLEα  is proportional to the minimum turn radius 

      fillet corner of and  ),( 11 −− ii yx ),( ii yx

  4.  Go back to step 2 

 

 The final step in making the paths flyable is to make the heading angle correction.  

A function “heading_angle_paths” was written for the purpose of accomplishing this 

task.  This process has been described previously and illustrated in the following 

algorithm: 

 

Algorithm 3.2.2 

 1.  For all paths Pi

 2.  If °≥− 30NEWOLD ϕϕ  

      apply heading angle change at beginning of path 

 3.  Else dynamics will handle the change 

 4.  Go back to step 1 

 

After the paths are optimized and made flyable the costs of these paths are updated using 

the function “update_cost”.  These modified paths and updated costs are stored into the 
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‘Shortened_Paths_x’, ‘Shortened_Paths_y’, and the ‘totalcost’ matrices, which are the 

outputs of the “path_shrtng” function. 

 After an optimal flyable path for each permutation of UAV to each target has been 

developed, a task allocation must be performed in order to delegate which target each 

UAV should visit.  These tasks must be allocated to achieve a global minimum mission 

cost as opposed to assigning each UAV its minimum path.  This was formulated as a 

MMKP, which has been described in Chapter 2.  The constraints placed on this problem 

for the purpose of this research are the following: 

• Equal number of UAVs and targets 

• Each target can only be visited once 

• Each UAV can only visit one target 

 These constraints are applied to reduce the complexity of the MMKP algorithm.  

These constraints reduce the number of possible combinations of the task allocation to 

the factorial of the number of UAVs.  The following algorithm was developed to achieve 

an optimal solution in a minimal amount of time, while accounting for the constraints of 

the problem. 

Algorithm 3.2.3 

 1.  Set minimum cost ∞=MCost      

 2.  For  i = 1 to NV! 

 3.  Initialize  0=CCost

 4.  For j to NV

 5.  Find current cost 

      jiCC CostCostCost ,+=  

 6.  Loop to step 4 

 7.  If  <    CCost MCost
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      Assign new minimum tasks and cost  

      , CM TasksTasks = CM CostCost =  

 8.  Go back to step 2 

 
The final optimized, flyable paths are shown in Figure 3.2.4. 

 
Figure 3.2.4 – Allocated tasks for each UAV to visit each target   

 

 A function written in MATLAB to perform this called “mmkp_task_allocation” is 

located in Appendix A.  The inputs of this function are the matrices ‘totalcost’, 

‘Shortened_Paths_x’, ‘Shortened_Paths_y’.  This function finds the solution to the 

MMKP algorithm as stated above and returns the matrices ‘Selected_Paths_x’ and 

‘Selected_Paths_y’.  These matrices contain the x and y locations of an optimized and 

flyable path for each UAV.  These paths are designed such that the mission completion 

time is minimized and the probability of mission completion is maximized.   
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Chapter 4 

Implementation of Six Degree of Freedom Aircraft Dynamics 

 

4.1 - General Overview of Aircraft Dynamics 

 This section will review the dynamics of an aircraft, including a brief overview of 

aircraft forces, moments, equations of motion, and state variable modeling of the aircraft 

dynamics.  To properly define the forces, moments, and the equations of motion that are 

associated with an aircraft, a non-rotating earth fixed axis system must be chosen as an 

initial point of reference.  To derive these equations of motion the following assumptions 

must be made: 

• The aircraft is a rigid body 

• The earth is an inertial reference frame 

• The aircraft mass and mass distributions are constant with respect to time 

• The XZ plane is a plane of symmetry for the aircraft 

• There are negligible gyroscopic effects from the engine 

• The equations of motion are derived with respect to the stability axes 

• There are only small perturbations 

• There are only three primary control surfaces 

 Elevators 

 Ailerons 

 Rudder 

 The equations of motion of an aircraft come directly from Newton’s second law 

with respect to the conservation of linear and angular momentum28.  In order for these 
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equations to be derived they must relate the forces and moments associated with the 

aircraft to the dynamics and movement of the aircraft.  The forces acting on an aircraft 

are modeled as FAX, FAY, and FAZ, which can be seen in Figure 4.1.128.   

 
 
 

Figure 4.1.1 – Aircraft body axis forces and moments   
 

This figure also shows the moments that act on an aircraft that are LA, MA, and NA.  It 

should be noted, all of these forces and moments are with respect to the body axis of the 

aircraft.  Including the forces from thrust, applying Newton’s second law with the 

conservation of linear momentum on an aircraft leads to equations 4.1.1 through 4.1.329. 

TXAXx FFmgWQVRUm ++=+− )( &     (4.1.1) 

TYAYy FFmgWPURVm ++=+− )( &      (4.1.2) 

TZAZz FFmgVPUQWm ++=+− )( &      (4.1.3) 

where m is the mass of the aircraft, U is the velocity in the x direction, V is the velocity in 

the y direction, and W is the velocity in the z direction.  P, Q, and R are the angular 

 35



 

velocities with respect to the x, y, and z axes respectively.  Also, gx, gy, and gz are the 

components of gravity in the x, y, and z directions.   

 In equations 4.1.4 through 4.1.6 Newton’s second law has been applied with the 

conservation of angular momentum, the moments from thrust have been included29. 

TAYYZZXZXZXX LLRQIIPQIRIPI +=−+−− )(&&    (4.1.4) 

TAXZZZXXYY MMRPIPRIIQI +=−+−+ )()( 22&    (4.1.5) 

TAXZXXYYXZZZ NNQrIPQIIPIRI +=+−+− )(&&    (4.1.6) 

IXX , IYY , and IZZ  are the moments of inertia about of the x, y, and z axes.  IXY , IYZ , and 

IXZ  are the products of inertia about the x, y, and z axes.  The above equations form a 

non-linear system of equations that can be solved in terms of U, V, W, P, Q, and R.  

These equations are taken with respect to the body axis of the aircraft.  In order to solve 

these equations they must be described according to a non-rotating earth fixed axis.  This 

is accomplished through the use of Euler angles,ϕ , θ , and φ .  The translation from the 

body axis to the earth axis can be done by using the following steps29. 

1. Consider the earth axis translated parallel to itself so that the origin 

coincides with the origin of the body axis of the aircraft or the CG. 

2. Change the name the earth axis X`Y`Z` to X1Y1Z1. 

3. The axis system X1Y1Z1 is rotated about Z1 by the Euler angle ϕ  to reach 

the axis system X2Y2Z2. 

4. The axis system X2Y2Z2 is rotated about Y2 by the Euler angle θ  to reach 

the axis system X3Y3Z3. 

5. The axis system X3Y3Z3 is rotated about X3 by the Euler angle φ  to reach 

the original axis system XYZ. 
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 An illustration of this is shown in Figure 4.1.229.   

 
 

Figure 4.1.2 – Translation from the earth axis to the body axis 
 

As shown the Euler angle ϕ  is referred to as the heading angle, θ  is the pitch angle, and 

φ  is the bank angle of the aircraft.  Using these angles, an aircraft’s flight path can be 

described in terms of the earth and body axis velocities. 
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  (4.1.7) 

In a similar fashion the angular velocities of the body axis can be expressed in terms of 

the Euler angles. 
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These equations are known as the kinematic equations, which yield the following 

expressions: 

θϕφ sin&& −=p   

  

   (4.1.9) 

φθϕθθ sincoscos && +=q     (4.1.10) 

φθφθϕ sincoscos && −=r   (4.1.11) 

This set of equations coupled with equations 4.1.1 through 4.1.3 and 4.1.4 through 4.1.6 

are the equations of motion for an aircraft.  Due to the fact that most of these values 

cannot be directly measured from the aircraft, they must be transferred into the polar 

coordinatesα , β , and , which are the angle of attack, sideslip angle, and aircraft 

velocity respectively.  This conversion is shown in Figure 4.1.328

V

.   

 
Figure 4.1.3 – Polar axis transformation for equations of motion 
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Using the aerodynamic coefficients the equations of motion then become the following: 
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 From these equations a state variable model of the longitudinal and lateral 

directional dynamics of the aircraft can be built.  These models are of the form 

 and .  The longitudinal dynamics these can be seen in the 

following equations : 

     (4.1.18) 

   

  (4.1.17) 

BuAxx +=& DuCxy +=

30

LongLongLongLongLong uBxAx +=&  

  (4.1.19) LongLongLongLongLong uDxCy +=
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where is a vector containing the states of the systemLongx  α , u , , and q θ ; is Longu

control input Eδ ; and Longy  is a vector containing the ou u s o  the sy tem  tp t f s  Za , α , u , q , 

and θ .  Substituting the state v ctors d matrices yields the following: 
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 (4.1.21) 

 

 All of the longitudinal dimensional stability derivatives used in the above equations 

are shown in Appendix B.  Similarly the lateral directional dynamics are expressed as 

such: 

LatDirLatDirLatDirLatDirLatDir uBxAx +=&      (4.1.22) 

uDxCy LatDirLatDirLatDirLatDirLatDir +=      (4.1.23) 

 

where LatDirx is a vector containing the states of the system β , p  , r , and φ ; is a 

vector containing the control inputs 

LatDiru

 and Aδ Rδ ; and  is a vector containing the  LatDiry

outputs of the system Ya , β , p , r , and φ .  Substituting the lateral directional state 

vectors and matrices yields the following equations: 
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       (4.1.25) 

 The lateral directional dimensional stability derivatives used in these equations can 

be seen in Appendix B.  From this point various control schemes can be designed to 

control the flight characteristics of an aircraft.  A longitudinal control system can be 

implemented to control the pitching rate, pitch angle, airspeed, and altitude of the aircraft.  

Whereas a lateral directional control scheme has the ability to control the yaw rate, roll 

rate, bank angle, and the heading angle.  For the purposes of this research a heading angle 

controller must be designed so the UAV can follow its assigned path. 

 

4.2 - Implementation of Heading Angle Control Scheme 

 After the state equations have been derived to govern the heading angle of the 

aircraft, a control schem

SIMULINK environment in MATLAB.  A simulation designed by Rauw named the 

Beaver aircraft sim

31

allows the user to enter the initial conditions, mass, and other geometric data of the 

aircraft.   
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e must be designed to control it.  This must be done within the 

ulator, provides an excellent way to simulate the dynamics of any 

general aviation aircraft .  This is due to the fact that the user can enter any desired 

aerodynamic coefficients with a user interface that can be seen in Figure 4.2.1.  This also 
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  Figure 4.2.1 – Data entry user interface   

 
 
 
 
 

 
Figure 4.2.2 – The aircraft simulator control system  
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The SIMILINK block shown in Figure 4.2.2 simulates the longitudinal and lateral 

directional dynamics of an aircraft.  This system inputs the control surface deflections of 

e elevators, rudder, and ailerons, and returns the current states of the aircraft.  To give 

e UAV the ability to follow its given path, a control scheme must be designed to govern 

e control surface deflections, which is shown in Figure 4.2.3.   

th

th

th

 
Figure 4.2.3 – The heading angle control scheme 

 

Inside this main scheme is an autopilot controller seen in Figure 4.2.4.  The 

autopilot block inputs the current and desired x and y positions for the aircraft.   

 
Figure 4.2.4 – The aircraft autopilot control block 
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This controller then uses a turn generator to follow the desired path by deflecting 

the proper control surfaces.  The design for this is shown in Figure 4.2.5.  This control 

scheme is an efficient and reliable way to navigate from one waypoint to the next.  

 
Figure 4.2.5 – The autopilot turn generator block 

  

velocity, angle of atta

 The beaver aircraft simulator outputs the state vector of the aircraft which 

contains the x location, y location, z location, ck, sideslip angle, 

pitch rate, yaw rate, roll rate, pitch angle, bank angle, and the heading angle of the 

aircraft.  These states of the aircraft, along with the desired x and y positions, are 

feedbac  into th esign.  In this 

research effort, since no actual UAV dynamics were available, F-4 dynamics were chosen 

due to their benign nature.  The aerodynamics coefficients for an F-4 at subsonic cruise 

used are available in Roskam29.   

 

 

k e aircraft dynamics forming the closed loop control d
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Chapter 5 

Development of a SIMULINK scheme for Cooperating UAVs 

 

5.1 - Implementation of the Path-Planning Process and Aircraft Dynamics 

 The SIMULINK environment not only provides an excellent way of executing 

MATLAB files, but it is advantageous in examining the inputs and outputs of a 

simulation.  In addition, it provides several different ways to visualize the results of a 

simulation.  This section will cover the implementation of the path-planning functions 

discussed in Chapter 3 and the heading angle control scheme discussed in Chapter 4.  A 

SIMULINK file is constructed using a block diagram where each block has an input and 

an output.  Each block contains code that is executed based on its inputs and returns an 

output, which is then sent to another block.  This process is repeated to form a simulation.  

This can be seen in Figure 5.1.1, the main SIMULINK file for this simulation.  

 
Figure 5.1.1 – Main block diagram for cooperating UAVs 
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The central block in this diagram labeled “PATH PLANNING” contains the 

MATLAB code discussed in Chapter 3.  This code is implemented using an S-function, 

which stands for SIMULINK function.  This function allows for the specification of the 

number of inputs and outputs to a block.  Each S-function contains executable code.  

Figure 5.1.2 shows the S-function “path_planning_s” being used, which can also be seen 

in Appendix C.   

 
Figure 5.1.2 – Path planning s-function implementation 

anning_s” another function is called, “path_planning”, which can be 

 

Since the S-function requires that the input and output be single vectors as 

opposed to matrices, the inputs are reshaped and combined into a vector of a fixed size 

using a multiplexer.  A multiplexer combines several vectors and scalars into a single 

vector.  In this case, the vectors ‘UAVS’, ‘TARGETS’, ‘ZONES’, ‘THREATS’, 

‘UAV_HEADING_ANGLE’ and the scalars current time of simulation and current plot 

number are all combined into a single vector.  Also, inside this block the user can control 

if the current conditions of the battlefield are plotted when a replan occurs.  Inside the S-

function “path_pl
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found i

 operate it must be given a 

smooth path instead of the locations of the waypoints.  To accomplish this each waypoint 

must be assigned a time at which the UAV should be visiting it.  This is estimated using 

the constant velocity of the aircraft. Along with the assigned waypoints, the selected 

targets that each UAV is assigned to visit is also output.  This is done so that the targets 

are classified properly.  After the waypoints and there associated times are output from 

the path-planning S-function they are then sent into a look-up table block, which is 

shown in Figure 5.1.3.  This uses linear interpolation to provide a smooth path for the 

autopilot discussed in Chapter 4 to follow.    

n Appendix C.  This function contains several reshape functions that transform the 

inputs into the desired matrix shape to execute the functions defined in Chapter 3.   

 As previously stated, this code yields an optimized, flyable path for each UAV to 

follow.  In order for the heading angle control scheme to

Figure 5.1.3 – Look-up table SIMULINK block 
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5.2 - Management of the No-Fly Zones and Threats  

 In a realistic battlefield environment, the UAVs must have the ability react to 

what is happening around them.  This can include a threat popping up, vehicle entering a 

Also, if a UAV flies inside a no-fly zone’s radius it is assumed that the 

ircraft is lost.  In order to simulate a vehicle interacting with a threat or no-fly zone 

“uav_crash_s” and “uav_intercepted_s”.  

Figure 5.2.1, while the 

“uav_intercepted_s” function can be seen in Figure 5.2.2.   

 

no-fly zone’s radius, or a vehicle entering threat’s range.  If a UAV flies inside a threat’s 

range the threat will fire and based on the probability of kill of the threat that vehicle may 

be destroyed.  

a

several S-functions were written, which are 

These functions compare the current positions of the UAVs with the position and radius 

of each no-fly zone and the position and range of each threat. These functions can be seen 

in Appendix C.   

The outputs of these two functions are vectors containing either zeros or ones.  

The value is a zero if the UAV is still operational or one if the UAV has been destroyed.  

The implementation of the “uav_crash_s” function is shown in 

 
Figure 5.2.1 – Block comparing UAV positions to no-fly zone positions 
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Figure 5.2.2 – Block comparing UAV positions to threat positions 

 

In addition to comparing the current locations of the UAVs to the threats and their 

associated ranges, a random number is generated when a vehicle passes inside a threat’s 

range.  If this number is within the specifications for the probability of kill of that threat 

the vehicle is destroyed.  Otherwise, the vehicle remains operational and continues on its 

current path.  Either way when a threat has fired, it is no longer present on the battlefield 

and will have no further effect on any UAV.  If a threat has fired or a vehicle is 

destroyed, a replan is signaled for the entire group based on the battlefield changing

 5.2.3.   

. 

 Another component of a dynamic battlefield environment is a pop-up threat.  This 

is a threat that is unknown for the initial plan, but is discovered during the simulation.  

The simulation of this occurrence is important because a realistic battlefield will never 

remain constant.  A block was created for the purpose of simulating a pop-up threat, 

which is shown in Figure

 
Figure 5.2.3 – Threats manager  
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These blocks compare the old values of the ‘THREATS’ vector to the new values of the 

vector.  If a change occurs a replan is signaled for the group according to the new 

information.   

 

5.3 - Management of the UAVs and Targets 

 The dynamics of the battlefield extend to the UAVs and targets as well as the 

reats and no-fly zones.  A simulation for cooperating UAVs must have the ability to 

simulat

th

e a vehicle being destroyed or a target changing states, i.e. classified, destroyed, or 

assessed.  These are extremely important when creating a realistic simulation of 

cooperating UAVs.  Whether a UAV is operational or not is controlled by the 

SIMULINK block shown in Figure 5.3.1.   

 
Figure 5.3.1 – UAVs manager  
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These blocks input the vectors from the previous section based if a vehicle entered a 

threat’s range or no-fly zone’s radius.  If these values are all zero then no vehicle is 

destroyed, but if a vehicle is destroyed a replan is signaled.  Also, each vehicle has a 

limited amount of fuel, therefore if a vehicle’s fuel runs out that vehicle is considered lost 

and a replan is signaled. 

 In any battlefield, each target must be acted upon by several UAVs.  The states 

at a target can have are the following: 

n invalid target.  This is implemented with the code contained in the 

SIMULINK block S-function named 

“target classifier_s”, which can be seen in Appendix C.  This calls the function 

“target

th

• Identified 

• Classified as a valid / invalid target 

• Attacked 

• Assessed as destroyed / not destroyed 

Each target must have all of these actions performed on it, except when a target is 

classified as a

shown in Figure 5.3.2.  Inside this block is an 

_

_classifier” that changes the state of a target based on if it is visited.   

 
Figure 5.3.2 – Targets classifier SIMULINK block 
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Every target is initialized to the state of identified not classified.  After a target is 

visited for the first time, a random number is generated.  Based on this number a target is 

either classified as a valid target or classified as an invalid target.  An invalid target is 

immediately deleted and no further action is required.  After a target has been classified 

as a real target it must be attacked.  In order to ensure that the desired target has been 

destroyed, a battle damage assessmen t be preformed.  If the BDA reveals 

that the targ  process is 

repeated until the target has been assessed as destroyed.  For the purpose of this 

and 1.  If that number is less than 

t (BDA) mus

et has not been destroyed the target must be attacked again.  This

simulation a random number is generated between 0 

0.85 the BDA is deemed successful and the target is deleted. 

 In much the same way as a threat can be discovered during the simulation a target 

can pop-up while the UAVs are acting on the current targets.  The SIMULINK block in 

Figure 5.3.3 has the ability to simulate this occurrence.   

 
Figure 5.3.3 – Targets manager 

 

If this happens a replan for the group of UAVs is signaled.  This block compares the old 

values of the ‘TARGETS’ vector to the new value and detects a change.   

 52



 

Due to the nature of the MMKP algorithm outlined in Chapter 3 the number of 

UAVs must be equal to the number of targets.  The code contained in the block shown in 

Figure 5.3.4 calls an S-function named “place_waypoints_s”, which is shown in 

Appendix C.   

 
Figure 5.3.4 – Add waypoints SIMULINK block  

 

This function calls a function that alters the ‘TARGETS’ vector if needed.  If the 

number of UAVs exceeds the number of targets, waypoints are placed at the most 

valuable targets.  This is done to ensure that these targets will be visited the most.  

Otherwise, if the number of UAVs is less than the number of targets, the least valuable 

targets are temporarily deleted until all of the valuable targets have been serviced.  After 

every dynamic reaction a replan for the group of UAVs is signaled, which can be seen in 

figure 5.3.5.  This shows the SIMULINK block that gathers all of the replan signals and 

activates the central path-planning algorithm. 

 
Figure 5.3.5 – Signal replan SIMULINK block 
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Chapter 6 

Comparison with Other Available Path Generation Methods 

 

6.1 - Implementation of Grid and Visibility Graph 

 In addition to the path generation technique presented in Chapter 3, several other 

methods have been used by previous researchers such as a grid7 or a visibility graph5,6,8.  

ed methods.  This is accomplished using the MATLAB code seen in 

se it does 

ot take into account the locations of any no-fly zones or threats when the possible paths 

ted paths are refined into optimized 

flyable paths before the tasks are allocated using the MMKP algorithm. 

These two methods provide an excellent comparison for evaluating the efficiency and 

calculation speed of the Voronoi diagram method.  This is important to evaluate the level 

of optimization and computational complexity.  A simulation is desired that not only has 

real-time application abilities, but also results in an optimal solution for the mission.  This 

can be evaluated by using a grid or a visibility graph.  A grid involves the overlaying of a 

grid on the battlefield.  In a visibility graph every point on the battlefield is entered and 

lines are drawn between these points, if and only if there is a clear line of sight. 

 The overlaying of a grid onto the battlefield provides a simple comparison to the 

more complicat

Appendix D.  An example of this is shown in Figure 6.1.1.  After the grid has been 

generated the same path-planning process is used that has been described in Chapter 3.  

The UAVs and targets positions are connected into the grid through the three closest 

nodes.  Dijkstra’s algorithm is then implemented to find the lowest cost path for each 

permutation of UAV to target.  This method can provide different results becau

n

are generated.  In the same fashion as before, the selec
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Figure 6.1.1 – Grid path generation   

 

 A visibility graph provides a completely different comparison than the previous two 

methods.  There are several advantages and disadvantages with this method.  The major 

disadvantage is the computational complexity that it brings to Dijkstra’s algorithm.  The 

MATLAB code written to implement this method can be seen in Appendix D.  An 

example of a visibility graph is shown in Figure 6.1.2.   

 
Figure 6.1.2 – Visibility graph path generation  
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 It is apparent from the graph that the complexity greatly exceeds the other two 

possible path generation methods, which is a large hindrance on finding the lowest cost 

path for each UAV to each target.  Also, it should be noted that a safety factor of 10% of 

each threat’s range and no-fly zone’s radius was used in creation of these paths.  As 

opposed to the previous two methods, the UAV and target locations are included in the 

generation of these possible paths.  In theory this approach should yield an already 

optimized solution.  This is because it is an exhaustive search as opposed to approximate 

solutions.   

 Some of the advantages of a visibility graph are that is provides a more complete 

possible path solution.  This leads to fewer calculations after Dijkstra’s algorithm.  Due to 

the fact that this path will be the shortest possible path, it will not have to be optimized 

during the refinement step, but these paths still need to be made flyable.  These paths are 

defined according to  radii of the no-fly 

zones, ranges of the threats, positions of the UAVs, and positions of the targets.  Since 

the rad

 line does not, it is recorded as a possible line of travel.  

Clearly

 points on the battlefield, which are the outer lying

ii and ranges are spherical the points must be placed at equal intervals along this 

sphere.  This leads to the paths passing as close as possible to a threat or no-fly zone 

penetrating it.   

 The generation of the visibility lines in this graph is accomplished using 

Algorithm 3.1.3.  After every point is generated, they are exhaustively searched to every 

other point to see if the line connecting the two points passes through a threat’s range or 

no-fly zone’s radius.  If the

, this process leads to the generation of paths that cannot be optimized.   
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6.2 - Comparison of the Path Generation Methods 

 To evaluate the original Voronoi based method for path generation it must be 

compar

e difficult to draw any 

conclusions on which method is more effective.  The comparison between these methods 

is shown in Table 6.2.1, which shows the total calculation time and total simulation time 

it took to complete the mission.     

Table 6.2.1

ed with the two methods discussed in the previous section.  The comparison of 

these methods involves the evaluation of several factors. 

• Calculation time of each replan 

• Total estimated cost of each replan 

• Simulation time at which each replan occurred  

• Total Number of replans needed to complete the mission   

• Total mission completion time (simulation and calculation) 

Each method was used with the same initial conditions of the battlefield.  In addition, for 

comparison purposes, all of the random variables involved in classifying a target were 

removed.  If these variables were left in place it would b

 – Comparison of total simulation time for possible path generation methods   

Grid 180 1778
Voronoi Diagram 174 1918
Visibilty Graph 176 1715

Path Generation 
Method

Total Time 
(sec)

Simulaiton 
Time (sec)

 

 

It should be noted for the purpose of this comparison no targets were placed 

inside of a threat’s range.  Although the simulation is setup to allow this, it would have 

introduced randomness into the results, which is undesirable.  To perform a fair and 

 57



 

unbiased comp ctly the same, 

which are shown in Figure 6.2.1.   

arison the initial conditions of the battlefield must be exa

 

 
Figure 6.2.1 – Initial conditions of the battlefield 

 

In addition, all of the pop-up targets and threats were removed to ensure a fair 

comparison.  These particular conditions were chosen because no UAV can travel 

directly to a target.  This ensures that each path generation method is used instead of a 
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UAV traveling along a straight line to a target.  Each UAV was given the same initial 

heading angle, cruise speed, and altitude, which are zero degrees, 130 meters per second, 

and two kilometers.  The cruise speed and altitude of each UAV are held constant 

throughout the simulation.   

To understand what occurred during the simulation every time a replan is signaled 

a figure is plotted showing the current positions of everything on the battlefield as well as 

the assigned paths for each UAV.  In these the blue represents the UAVs positions and 

selected paths, the green points are the targets positions, the black circles are the no-fly 

zones and the red represents the threats positions and ranges.   

Figures 6.2.2 -6.2.22 shows the figures plotted for the grid 

Voronoi diagram path generation, and the visibility graph path generation from top to 

bottom.  I  to the 

MATLAB command line, so that a log of the simulation can be kep

logs can be seen for the grid, Voronoi diagram, and visibility graph path generation in 

Figures 6.2.23, 6.2.24, and 6.2.25 respectively.  Table 6.2.2 shows the purpose of each 

replan, Table 6.2.3 shows what point in the simulation each replan is signaled.  Table 

6.2.4 contains the actual calculation time for each replan, while Table 6.2.5 show the 

assigned minimum cost for the current mission.  This information was recorded to 

provide more in-depth comparison between the three methods.  

 

 

path generation, the 

n addition to a figure being plotted the current action is printed

t.  These simulation 
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Table 6.2.2 – Current actions for path generation methods 

ied by UAV 4
15 Ta by UAV 2
16 Ta AV 3 a by UAV 2
17 Target 3 assessed by UAV 2 Target 5 identified by UAV 2 Target 5 attacked by UAV 2
18 Target 5 identified by UAV 1 Target 5 classified by UAV 2 Target 1 classified by UAV 4
19 Target 5 classified by UAV 1 Target 5 attacked by UAV 3 Target 5 assessed by UAV 3
20 Target 5 attacked by UAV 1 Target 5 assessed by UAV 3 Target 1 attacked by UAV 4
21 Target 5 assessed by UAV 1 Target 1 assessed by UAV 1 Target 1 assessed by UAV 1

Grid Voronoi Diagram Visibility Graph

Replan Current Action Current Action Current Action
1 Initial Plan Initial Plan Initial Plan
2 Target 2 identified by UAV 4 Target 2 identified by UAV 4 Target 2 identified by UAV4
3 Target 2 classified by UAV 4 Target 4 identifed by UAV 3 Target 2 classified by UAV 4
4 Target 1 identified by UAV 3 Target 4 classifed by UAV 3 Target 2 attacked by UAV 4
5 Target 1 classified by UAV 3 Target 4 attacked by UAV 3 Target 2 assessed by UAV 4
6 Target 3 identified by UAV 3 Target 4 assessed by UAV 3 Target 3 identified by UAV 1
7 Target 3 classified by UAV 2 Target 3 identified by UAV 2 Target 3 classified by UAV 1
8 Target 4 identified by UAV 1 Target 3 classified by UAV 2 Target 4 identified by UAV 3
9 Target 4 classified by UAV 1 Target 3 attacked by UAV 2 Target 4 classified by UAV 3

10 Target 2 attacked by UAV 4 Target 3 assessed by UAV 2 Target 3 attacked by UAV 1
11 Target 4 attacked by UAV 1 Target 2 classified by UAV 4 Target 3 assessed by UAV 1
12 Target 4 assessed by UAV 1 Target 2 attacked by UAV 1 Target 4 attacked by UAV 3
13 Target 1 attacked by UAV 4 Target 2 assessed by UAV 1 Target 4 assessed by UAV 3
14 Target 3 attacked by UAV 2 Target 1 identified by UAV 4 Target 1 identif

rget 1 assessed by UAV 4 Target 1 classified by UAV 4 Target 5 identified 
rget 2 assessed by U Target 1 cked by UAV 1 Target 5 classified tta

 

 

 

Table 6.2.3 – Time when replan is signaled for path generation methods   

1250

7 1399 1479 1368
8 1425 1519 1388
9 1441 1562 1404

10 1459 1602 1412
11 1510 1647 1453
12 1525 1661 1467
13 1561 1706 1482
14 1573 1770 1537
15 1618 1786 1555
16 1626 1794 1571
17 1678 1806 1617
18 1703 1822 1628
19 1719 1841 1663
20 1763 1856 1705
21 1778 1918 1715

Grid Voronoi Diagram Visibility Graph

Replan Signaled (sec) Signaled (sec) Signaled (sec)
1 0 0 0
2 1308 1370 1188
3 1324 1379 1203
4 1354 1394
5 1370 1439 1265
6 1384 1455 1353
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Table 6.2.4 – Actual replan calculation times for path generation methods   

Grid Voronoi Diagram Visibility Graph

Replan Calculation (sec) Calculation (sec) Calculation (sec)
1 1.64 0.74 1.02
2 0.45 0.16 0.92
3 0.44 0.19 0.94
4 0.47 0.14 0.94
5 0.49 0.19 0.92
6 0.47 0.14 0.89
7 0.47 0.17 0.92
8 0.48 0.19 0.89
9 0.45 0.22 0.91

10 0.49 0.20 0.95
11 0.50 0.16 0.89
12 0.50 0.17 0.92
13 0.45 0.20 0.94
14 0.52 0.16 0.89
15 0.48 0.13 0.89
16 0.48 0.13 0.92
17 0.45 0.13 0.91
18 0.44 0.13 0.89
19 0.45 0.13 0.94
20 0.38 0.16 0.91
21 1.53 0.75 1.00     

 

Table 6.2.5 – Replan current total cost for path generation methods   

7 41.09 93.59 69.02
8 24.48 63.48 51.62
9 26.23 48.19 47.65

10 72.32 118.42 64.86
11 33.66 83.59 49.77
12 68.71 86.81 49.91
13 47.51 91.15 180.55
14 62.22 29.24 136.57
15 86.03 25.05 127.41
16 140.27 25.15 79.28
17 155.51 31.89 35.40
18 140.31 38.50 44.53
19 191.50 35.25 113.20
20 100.05 128.07 80.06
21 2096.80 2207.80 2204.10

Grid Voronoi Diagram Visibility Graph

Replan Totalcost (m) Totalcost (m) Totalcost (m)
1 2968.30 2623.10 2266.30
2 57.23 48.04 199.40
3 53.51 55.71 202.11
4 26.04 78.14 92.23
5 33.60 31.63 146.79
6 33.62 61.39 61.00
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Figure 6.2.2 – 1  replan of the simulation for all three methods st
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Figure 6.2.3 – 2  replan of the simulation for all three methods nd
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Figure 6.2.4 – 3  replan of the simulation for all three methods rd
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Figure 6.2.5 – 4  replan of the simulation for all three methods th
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Figure 6.2.6 – 5  replan of the simulation for all three methods th
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Figure 6.2.7 – 6  replan of the simulation for all three methods th
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Figure 6.2.8 – 7  replan of the simulation for all three methods th
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Figure 6.2.9 – 8  replan of the simulation for all three methods th
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Figure 6.2.10 – 9  replan of the simulation for all three methods th
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Figure 6.2.11 – 10  replan of the simulation for all three methods th
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Figure 6.2.12 – 11  replan of the simulation for all three methods th
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Figure 6.2.13 – 12  replan of the simulation for all three methods th
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Figure 6.2.14 – 13  replan of the simulation for all three methods th
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Figure 6.2.15 – 14  replan of the simulation for all three methods th
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Figure 6.2.16 – 15th replan of the simulation for all three methods 
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Figure 6.2.17 – 16  replan of the simulation for all three methods th
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Figure 6.2.18 – 17  replan of the simulation for all three methods th
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Figure 6.2.19 – 18  replan of the simulation for all three methods th
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Figure 6.2.20 – 19  replan of the simulation for all three methods th
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Figure 6.2.21 – 20th replan of the simulation for all three methods 



 

 

 

 
Figure 6.2.22 – 21  replan of the simulation for all three methods st
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Figure 6.2.23 – Log of the simulation for the grid method 

 

 
 
 

 
Figure 6.2.24 – Log of the simulation for the Voronoi diagram method 
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Figure 6.2.25 – Log of the simulation for the visibility graph method 
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Chapter 7 

Implementation and Discussion of Search Scheme in SIMULINK 

 

7.1 - Implementation of a SIMULINK Based Search Scheme 

 As discussed previously, there are two types of cooperating UAV problems.  One 

has been covered in the preceding chapters, a bombing type UAV that has knowledge of 

the entire battlefield before launch.  For the purpose of this research effort, that type of 

vehicle is the main concentration.  This will eventually be developed into model aircraft.  

The other type of UAV of interest to the Air Force is a disposable UAV, such as the 

Predator.  These UAVs will perform a search and destroy mission.  It is evident from 

inspection of any war that both s portant. 

 The search and destroy mission starts with the assumption that everything about an 

area is unknown, except the position of the UAVs and the size of the area.  The only goal 

of these inexpensive vehicles is to search s.  Unlike the other 

mission where there are no-fly zones and th ats to be avoided.  This scenario is mainly 

for the suppression of enemy defenses or any other mission in which an area needs to be 

cleared.  Essentially, the threats and the targets become one in the same.  For simplicity 

each target is assumed to be incapable of destroying a vehicle.  This assumption is made 

because if a target is con AV, not giving

the vehicle a chance to communicate the information it has gathered. 

 Due to these assumptions about the battlefield the original control scheme needed 

 be completely redesigned.  The SIMULINK scheme for this is shown in Figure 7.1.1.  

cenarios are extremely realistic and im

 out and destroy target

re

sidered a threat it would immediately attack the U  

to
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In this control system, the general architecture stays the same with a central path-

planning block that contains the main g algorithms.   decision makin

 
Figure 7.1.1 – Search control scheme in SIMULINK 

 
 

 Also, the heading angle control design and the UAV manager stayed the same.  All 

of the other blocks were either replaced or removed.  Instead of a targets manager, a 

targets and waypoints interchangeably for each vehicle.   

targets and waypoints manager was created.  It was designed this way to assign the 
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Figure 7.1.2 – Serpentine search pattern  

 

 These waypoints were assigned such that the field is searched using a serpentine 

pattern, an example of this can be seen in Figure 7.1.2.  This allows the entire area to be 

searched efficiently.  This was accomplished by assigning each UAV to visit a point 

directly across from it.  After that point the path sweeps around to search another area of 

the battlefield traveling the opposite direction.  This process is repeated until the entire 

area is searched.   

 During the search of this area a target can be discovered, when this happens a 

number of vehicles must be assigned to perform an action on this target.  A target in a 

search and destroy mission can have 5 states. 

• Undetected 

• Detected  

• Classified as a valid / invalid target 

• Attacked 
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• Assessed as destroyed / not destroyed 

This is similar to the previous case but with the addition of the first state, undetected, 

since there is not knowledge of the battlefield a target cannot be identified, merely 

detected.  A target is considered detected if it travels within 1,000 meters of the vehicle.  

In order for the target to change to any other state it must be within 10 meters of the 

vehicle.  This is the same distance that the UAV must travel within a waypoint for the 

vehicle to be assigned to its next waypoint.  The implementation of this in SIMULINK is 

shown in Figure 7.1.3. 

 
Figure 7.1.3 – Detect targets and waypoints SIMULINK block  

 

 In much the same fashion as before, if a target changes states, UAV becomes lost, 

or a waypoint is visited a replan is signaled for the entire group of vehicles.  If a target 

changes states, an appropriate number of vehicles are sent to the target to perform all of 

the needed tasks.  This decision is made by the central path-planning block shown in 

igure 7.1.4.  F
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Figure 7.1.4 – Path planning SIMULINK block 

 

reach each target are straight lines.

are ass plished by using the previously 

shortes

continues on its curren is assigned a path it is then input into the 

 

Appendix E, is called, w of waypoints for each UAV to follow.  The 

and the size of the area to be searched.  This function yields the locations of the 

“uav_detect_waypoints_s”   The first calls a function 

 Since there are no threats or no-fly zones the possible paths for each UAV to take to 

  The only modification that must be made before tasks 

igned is each path must be flyable.  This is accom

mentioned method in Algorithm 3.2.2.  After each path is flyable the UAVs with the 

t paths are selected to visit the target.  If a vehicle is not assigned to visit a target it 

t path.  After each vehicle 

same heading angle autopilot designed in Chapter 4. 

Upon initialization of the battlefield a function named “waypoint_gen”, seen in 

hich defines the set 

inputs of this function are the number, position, the minimum turn radius of the UAVs, 

waypoints that each vehicle is assigned to visit.   

The block seen in Figure 7.1.3 calls two S-functions, “uav_detect_targets_s” and 

, both are located in Appendix E.
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“uav_detect_target”, which inputs the current location of each UAV, the location of each 

t, and the state of each target.  This function compares the positions to evaluate if the 

t should change states and if required it changes the state.  The output of this 

targe

targe

function is the updated target states.  The second S-function calls 

comp

wayp t to the UAV.   

which

of the  to this block which calls the “path_planning_search” 

“uav_detect_waypoints”, which evaluates if a waypoint has been visited.  This function 

ares the current locations of the UAVs to the locations of the waypoints.  If a 

oint is visited, the function assigns the next waypoin

The central path-planning block calls the S-function “path_planning_search_s”, 

 is shown in Appendix E.  This function is invoked when a replan is signaled.  All 

 current information is input

function.  This function contains the following algorithm: 

Algorithm 7.1.1 

1.  If ta rget i is present 

 3.  Assign NTASKS UAVs to visit target 

 

 ned to visit a target 

 5.  Go back to step 1    

 

This s.  

can fo

 

 2.  Calculate flyable path for each UAV to target i 

     NTASKS is current state of the target 

4.  If UAV not assig

      continue to current waypoint  

assigns each UAV a path based on its current waypoints or a target changing state

The heading angle control system designed previously is then applied so that each UAV 

llow the selected path. 
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7.2 - Results of a Search Simulation 

To visualize the results of the simulation a similar method was adapted to that in 

ter 6.  Each time an action occurs on

 

Chap  the battlefield and a replan is signaled, a figure 

urrent 

7.2.1 

been int.  In addition, a 

simul

 

is plotted that shows the current position and path for each UAV as well as the c

position of the detected targets.  The first several of these replans are shown in Figures 

- 7.2.6.  In the figures shown a target is detected and destroyed.  After the target has 

destroyed the UAVs proceed to their next assigned waypo

statement was printed to the command line of MATLAB for the purpose of keeping a 

ation log, which is shown in Figure 7.2.7. 

 

 

 
Figure 7.2.1 – 1st replan for search simulation 
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Figure 7.2.2 – 2nd replan for search simulation 

 
 

 

 

 

 

 
Figure 7.2.3 – 3  replan for search simulation rd
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Figure 7.2.4 – rch simulation 

 

4th replan for sea
 
 
 

 
 

 
Figure 7.2.5 – 5  replan for search simulation th
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Figure 7.2.6 – 6th replan for search simulation 

 
 
 

 
 

 
 
 

 
Figure 7.2.7 – Log for search simulation 

 

 
 

 
 

 

 

 94



 

Chapter 8 

Conclusions and Recommendations 

 

nto a real battlefield.  The importance of these vehicles is becoming increasingly 

ed more in real world applications such as the war in Iraq to 

vehicles are the way of the future.  

 

different researchers have attempted this problem as shown in Chapter 2.  

eplan and avoid obstacles in a 

 

 

 firing of a threat.  In a realistic battlefield 

cenario, if a vehicle cannot react properly to the environment it is inhabiting it serves no 

   

on must have the capability to find, classify, destroy, 

t.  This must be accomplished 

omputations, which this paper shows can be accomplished.  The three 

ented in this document are grid, Voronoi diagram, and 

ds.   

 

8.1 - Conclusions 

 This research is the first step in the process of implementing cooperating UAVs

o

apparent.  UAVs are being us

searching missions in Afghanistan.  Clearly, these 

They have lower operational cost, present less risk of loss of human life, and far greater 

maneuverability capabilities.   

 As has been presented in this thesis, the cooperating UAVs problem is exceedingly

complex.  Many 

This paper presents simulations that have the ability to r

battlefield environment, as well as a pure search and destroy mission.  The simulation

discussed can react to a dynamic environment such as targets popping up, threats popping

up, classifying targets, loss of a UAV, and

s

purpose.

 Any cooperating UAV simulati

and perform a battle damage assessment on each targe

using real-time c

path generation methods pres

visibility graph.  Chapter 6 provides a comparison of these metho
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 In the example, several factors must be compared to determine the best solution to 

visibility graph method provided superior results for the cost of the 

ater and the grid method was 31% 

had a lower total simulation time than the other two 

 method.  

imal method of the three.   

erage of the individual replan calculations the Voronoi diagram 

a 76% decrease from the visibility graph method, while the decrease 

e grid method.  This difference becomes less evident when comparing the 

e of the simulation, which the Voronoi diagram method is 1% less 

ibility graph method and 3% less than the grid method.  

While the individual replan computation time is significantly reduced by using the 

diagram method, the optimization of the simulation suffers.  From these 

t the visibility graph provides best results, 

haustive solution as opposed to an approximate solution.  If 

ity is low, the visibility graph should be used.  As the complexity 

ases, this method is not feasible and the Voronoi diagram method 

.  For the given in scenario in Chapter 6, it is the conclusion that the 

ible reasons for error involved in the gathering of this data.  

ror in recording the total calculation time of the simulation, which 

ge of 5%.  Another source of error could be the calculation time of 

the problem.  The 

initial plan, the Voronoi diagram method was 16% gre

greater.  The visibility graph also 

methods, 3.6% less than the grid method and 12% less than the Voronoi diagram

This shows that the visibility graph is the opt

 Comparing the av

method provided 

was 38% for th

total calculation tim

than the vis

 

Voronoi 

comparisons one may draw the conclusion tha

which is because it is an ex

the battlefield complex

of the battlefield incre

should be used

visibility graph method would be the best option. 

 There are several poss

These are human er

could be in the ran
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each replan.  Each time this was calculated the computer could be running different 

ing processor speed. 

rol scheme to simulate a search and destroy mission was 

l in a 

n is to search out targets on a battlefield when there is no prior 

 of the given area.  These vehicles must clear the battlefield of targets using a 

procedure to assign each UAV a task to accomplish the desired 

s this desired mission by 

get. 

alistic, but in order to build model aircraft that 

lations it must be coded on an airborne processor.  To choose the 

ust be clearly defined. The grid and Voronoi diagram 

ic environment, while the visibility graph would be 

 a static environment.  Initially, a search and destroy mission with 

ucing threats and no-fly zones 

 could include the addition of timing 

r a 3-D environment, into the simulation.  In 

 the initial steps necessary to implement cooperating 

 

processes that could result in vary

 In addition, a cont

designed.  This simulation was created to show the other purpose of UAVs.  The goa

search and destroy missio

knowledge

market-based bidding 

mission.  Chapter 7 shows a simulation that accomplishe

destroying the given tar

   

8.2 - Recommendations 

 Both of the above scenarios are re

can perform these simu

proper method the battlefield m

methods lend themselves to a dynam

better applicable toward

no obstacles would be easier to implement before introd

into the problem.  Some topics of future research

constraints, collision avoidance, o

conclusion, this thesis has presented

UAVs on a model battlefield. 
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Path Generation Related Functions 

g_gen 

Authored by Zachary Spritzer and Matthew Lechliter  

n [all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS) 

is the  
n 

Vs, and  

he number of Targets, the first row 
d row is the y position of 

es, the first 

e of 

s the number of Threats, the first row 
he 

 

ts, 
e x position and 

ere n is the number of all of the lines 
e ending point's  

s the starting point's 

 targets.  The first row is the ending point's  
th line and the second row is the starting point's 
the line. 

 of the lines 
costs for all of the 

HREATS(1,:)])+25; 
REATS(1,:)])-25; 

,THREATS(2,:)])+25; 
:),THREATS(2,:)])-25; 

PTS=[ZONES([1,2],:) THREATS([1,2],:) ... 

 
Vrn_Dia
 
%
 
unctiof

 
%INPUTS: 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row 
%initial x position of the UAVs, the second row is the initial y positio
%of the UAVs, the third row is the initial altitude of the UA
%the fourth row is the intial Velocity of the UAVs. 
% 
%TARGETS - is a 2xn matrix where n is t
%is the x position of the targets and the secon
%the targets. 
% 
%ZONES - is a 3xn matrix where n is the number of No-Fly Zon
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or rang
%the no-fly zones. 
% 
%T
%is

HREATS - is a 4xn matrix where n i
 the x position of the threats, the second row is the y position of t

%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats. 
% 
%OUTPUTS: 
% 
%all_pos - is a 2xn matrix where n is the number of unique voronoi poin
%u
%th

av points, and target points.  Where the first row is th
e second row is the y position of all of these unique points. 

% 
%all_lines_x - is a 2xn matrix wh
%for the voronoi, uavs, and targets.  The first row is th
%x position for the nth line and the second row i
%
%

x position for the nthe line. 
 

rix where n is the number of all of the lines %all_lines_y - is a 2xn mat
%for the voronoi, uavs, and
%y position for the n
%y position for the n
% 
%all_costs - is a 1xn row where n is the number of all
%
%

for the voronoi, uavs, and targets.  This row is the 
lines of all_lines_x and all_lines_y 

 
max_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),T

RGETS(1,:),UAVS(1,:),ZONES(1,:),THmin_x=min([TA
max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:)

RGETS(2,:),UAVS(2,:),ZONES(2,min_y=min([TA
 
VRN
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    [(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ... 
);(min_x)*ones(1,4)] ... 
);(min_y)*ones(1,4)] ... 

x);(max_y)*ones(1,4)]]; 

PTS(1,:),VRNPTS(2,:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Connecting UAV's into voronoi  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
onnecting the targets into the voronoi 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
,targy]=connect_vrn(vxyn,TARGETS([1,2],:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
voronoi line costs 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
x,2); 

(1,nvlines); 

cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2); 
 

%%%%%%%%%%%%%% 
tacking unique positions, lines for x and y, and costs of those lines 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)]; 
([1,2],:) vx([1,2],:) targx([1,2],:)]; 

y([1,2],:) targy([1,2],:)]; 
cost_vrn(1,:) line_cost_targ(1,:)]; 

i 

ronoi(x,y,arg3,arg4) 

ORONOI(X,Y) plots the Voronoi diagram for the points X,Y. 
finity are unbounded and  

instead of 
omputing it via DELAUNAY.  

ec') plots the diagram with color and linestyle 
pecified and returns handles to the line objects created in H. 

    [(((max_y-min_y)*[1:4]/4)+min_y
    [(((max_x-min_x)*[1:4]/4)+min_x
    [(((max_x-min_x)*[1:4]/4)+min_
 
 
[vx,vy] = voronoi(VRN
 
%%%
%Taking unique numbers from vx and vy 
%
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]),'rows'); 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%
[line_cost_
 
%%%%%%%%%%%%%%%%
%C
%%%%%%%%%%%%%%%%%%%
[line_cost_targ,targx
 
%%%%%%%%%%%%
%Generation for 
%%%%
nvlines=size(v
line_cost_vrn=zeros
for i=1:nvlines, 
    line_
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%S
%%%%%%%%%%%%%%%%
all_pos=[UAVS([
all_lines_x=[uavx
all_lines_y=[uavy([1,2],:) v
all_costs=[line_cost_uav(1,:) line_
 
 
 
Vorono
 
function [vxx,vy] = vo
%VORONOI Voronoi diagram. 
%   V
%   Cells that contain a point at in
%   are not plotted. 
% 
%   VORONOI(X,Y,TRI) uses the triangulation TRI 
%   c
% 
%   H = VORONOI(...,'LineSp
%   s
% 
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%   [VX,VY] = VORONOI(...) returns the vertices of the Voronoi 

agram. 

r the topology of the voronoi diagram, i.e. the vertices for 
e function VORONOIN as follows:  

         [V,C] = VORONOIN([X(:) Y(:)]) 

IN, DELAUNAY, CONVHULL. 

   Copyright 1984-2002 The MathWorks, Inc.  
2/06/05 20:05:17 $ 

se 

y are all clockwise 
t = x(tri); yt=y(tri); 

 + ... 
yt(:,2)); 

,[1 2]) = tri(bt,[2 1]); 

,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)  
oronoi edge if E(i,j)  

)); 
u(E')); 

,:),x,y); 
circle(tri(vv,:),x,y); 

x = [c1(:,1) c2(:,1)].'; 
y = [c1(:,2) c2(:,2)].'; 

%   edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') creates the 
%   Voronoi di
% 
%   Fo
%   each voronoi cell, use th
% 
%
% 
%   See also VORONO
 
%
%   $Revision: 1.15 $  $Date: 200
 
error(nargchk(2,4,nargin)); 
 
if nargin==2, 
  tri = delaunay(x,y); 
  ls = ''; 
elseif nargin==3, 
  if isstr(arg3), 
    tri = delaunay(x,y); 
    ls = arg3; 
  el
    tri = arg3; 
    ls = ''; 
  end 
else 

 = arg3;   tri
  ls = arg4; 
nd e

 
% re-orient the triangles so that the
x
ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ... 
     xt(:,2).*(yt(:,3)-yt(:,1))

t(:,1)-     xt(:,3).*(y
bt = find(ot<0); 
tri(bt
 

 = prod(size(x)); n
ntri = size(tri,1); 

= (1:ntri)'; t 
T = sparse(tri,tri(:
E = (T & T').*T; % V
 

,j,v] = find(triu(E[i
[i,j,vv] = find(tri

i(vc1 = circle(tr
c2 = 
 
v
v
 
if nargout<2 
  if isempty(ls), 
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    co = get(gcf,'defaultaxescolororder'); 
r',co(1,:)); 

  [l,c,m,msg] = colstyle(ls); error(msg) 

end 

ax(x(:)) min(y(:)) max(y(:))]) 

lse 

nd 

nction c = circle(tri,x,y) 
for circumcircles 

ngle in TRI. 

; x3 = x(tri(:,3)); 
)); y3 = y(tri(:,3)); 

11 .* (x2+x1) + a12 .* (y2+y1); 

t = a11.*a22 - a21.*a12; 

ints that are either the same 

 find(idet == 0); 
nts 

delta = sqrt(eps); 

)-0.5); 
x3(d) = x3(d) + delta*(rand(size(d))-0.5); 

d(size(d))-0.5); 
y3(d) = y3(d) + delta*(rand(size(d))-0.5); 

2-y1; 

b1 = a11 .* (x2+x1) + a12 .* (y2+y1); 
a22 .* (y3+y1); 

nd 

    h = plot(vx,vy,'-',x,y,'.','colo
  else 
  
    if isempty(m), m = '.'; end 
    h = plot(vx,vy,ls,x,y,[c m]); 
  
  if ~ishold, 
    view(2), axis([min(x(:)) m
  end 
  if nargout==1, vxx = h; end 
e
  vxx = vx; 
e
 
fu
%CIRCLE Return center and radius 
%   C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:) 
%   ycenter(:) radius(:)] for each tria
 
% Reference: Watson, p32. 
x = x(:); y = y(:); 
 
x1 = x(tri(:,1)); x2 = x(tri(:,2))
y1 = y(tri(:,1)); y2 = y(tri(:,2
 
% Set equation for center of each circumcircle:  
%    [a11 a12;a21 a22]*[x;y] = [b1;b2] * 0.5; 
 
a11 = x2-x1; a12 = y2-y1; 
a21 = x3-x1; a22 = y3-y1; 
 
b1 = a
b2 = a21 .* (x3+x1) + a22 .* (y3+y1); 
 
% Solve the 2-by-2 equation explicitly 
ide
 
% Add small random displacement to po
% or on a line. 
d =
if ~isempty(d), % Add small random displacement to poi
  
  x1(d) = x1(d) + delta*(rand(size(d))-0.5); 
  x2(d) = x2(d) + delta*(rand(size(d)
  
  y1(d) = y1(d) + delta*(rand(size(d))-0.5); 
  y2(d) = y2(d) + delta*(ran
  
  a11 = x2-x1; a12 = y
  a21 = x3-x1; a22 = y3-y1; 
  
  b2 = a21 .* (x3+x1) + 
  idet = a11.*a22 - a21.*a12; 
e
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idet = 0.5 ./ idet; 
 
xcenter = ( a22.*b1 - a12.*b2) .* idet; 
ycenter = (-a21.*b1 + a11.*b2) .* idet; 

(y1-ycenter).^2; 

Matthew Lechliter  

ion [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS) 

Inputs: 

lumn defining all of the unique x 
onoi diagram or grid and the second column defining 
ositions of the voronoi diagram or grid. 

VS - is a 2xn matrix with the first row defining the x position of the 
UAV and the second row defining the y position of the UAV. 

 
 the cost of the lines of connecting  

the UAV's into the voronoi diagram or grid 
 
uavx - is a 2xn matrix with first row defining ending point and second row 

oordinates. 

w defining ending point and second row 
efining starting point for the y coordinates. 

vxynpts=size(vxyn,1); 

avy=zeros(2,nuav*3); 

1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);        

  mdu=sort(du,2); 

du(1,i)); 

      uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2); 
      uavx(2,3*(k-1)+i)=UAVS(1,k); 
      uavy(2,3*(k-1)+i)=UAVS(2,k); 

du(1,i); 

 
radius = (x1-xcenter).^2 + 
 
c = [xcenter ycenter radius]; 
 
 
 
Connect_Vrn 
 
%Authored by Zachary Spritzer and 
 
funct
 
%
% 
%vxyn - is a nx2 matrix with first co
%positions of the vor
%all of the unique y p
% 
%UA
%
% 
%Outputs: 
%
%line_cost_uav - is a vector containing
%
%
%
%defining starting point for the x c
% 
%uavy - is a 2xn matrix with first ro
%d
nuav=size(UAVS,2); 
n
du=zeros(1,nvxynpts-1); 
uavx=zeros(2,nuav*3); 
u
line_cost_uav=zeros(1,nuav*3); 
for k=1:nuav, 
    for j=2:nvxynpts, 
        du(
    end 
  
    for i=1:3, 
        mdu_loc=find(du==m
        uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1); 
  
  
  
        line_cost_uav(1,3*(k-1)+i)=m
    end 
end 
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Path Selection Related Functions 

uthored by Zachary Spritzer and Matthew Lechliter  

nction  
lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

 

all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
 target points.  Where the first row is the x position and 

the second row is the y position of all of these unique points. 

of all of the lines 
for the voronoi, uavs, and targets.  The first row is the ending point's  

th line and the second row is the starting point's 

the lines 
 and targets.  The first row is the ending point's  

 point's 
osition for the nthe line. 

all_costs - is a 1xn row where n is the number of all of the lines 
gets.  This row is the costs for all of the 

lines of all_lines_x and all_lines_y. 

UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
of the UAVs, the second row is the initial y position 

 the third row is the initial altitude of the UAVs, and  
w is the intial Velocity of the UAVs. 

s a 2xn matrix where n is the number of Targets, the first row 
ets and the second row is the y position of 

 - is a 3xn matrix where n is the number of No-Fly Zones, the first 
e no-fly zones, the second row is the y 

y zones, and the third row is the radius or range of 
zones. 

 - is a 4xn matrix where n is the number of Threats, the first row 
e threats, the second row is the y position of the 

 third row is the range of the threats, and the fourth row is 
el of danger of the threats. 

ber of uavs times the 

 
Cheapest_Paths 
 
%A
 
fu
[stored_paths,totalcost]=cheapest_paths(all_pos,all_
S,THREATS) 
%
%INPUTS: 
%  
%
%uav points, and
%
% 
%all_lines_x - is a 2xn matrix where n is the number 
%
%x position for the n
%x position for the nthe line. 
% 
%all_lines_y - is a 2xn matrix where n is the number of all of 
%for the voronoi, uavs,
%y position for the nth line and the second row is the starting
%y p
% 
%
%for the voronoi, uavs, and tar
%
% 
%
%initial x position 
%of the UAVs,
%the fourth ro
% 
%TARGETS - i
%is the x position of the targ
%the targets. 
% 
%ZONES
%row is the x position of th
%position of the no-fl
%the no-fly 
% 
%THREATS
%is the x position of th
%threats, the
%the lev
% 
%OUTPUTS: 
% 
%stored_paths - is a mxn matrix where m is the num
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%number of targets and n is the length of the longest path.  The first row 
r the first uav and the last row being the last 

v. The paths are output by node numbers coming from 
ementation of dijkstra's algorithm. 

st - is a mxn matrix where m is the number of uavs and n is the 
sible paths for each uav.  The element (m,n) of this matrix 

ost for the mth uav to take the nth path. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
s algorithm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nt for all lines 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
he reverse of the THC matrix onto the end, so that the  

erse of the lines is possible 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HC=[THC(:,[1,2,3]); THC(:,[2,1,3])]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
S,2); 

zeros(nuav,ntarg); 

j + 1); 
paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]); 

the y position of all of these unique points. 

%being the first path fo
%path for the last ua
%the impl
%  
%totalco
%number of pos
%is the c
 
%
%Making THC matrix for dijkstra'
%%%%%%%
[THC
 
%%%%%
%Cost Assignme
%%%%%%%%%%%%%%%
[THC]= c_assign(all_pos,THC,ZONES,THREATS); 
 
%%%%%%%%%
%Adding t
%rev
%
T
 
%%%%%%%%%%%%%%%%%%%%%%%

Implementing Dijkstra's algorithm %
%%%%%%%%

uav=size(UAVn
ntarg=size(TARGETS,2); 

 = list2adj(THC); A
totalcost=
for i=1:nuav, 
    for j=1:ntarg, 
        [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) - 
        stored_
    end 
end 
 
 
 
Set_THC 
 
%Authored by Zachary Spritzer, Matthew Lechliter, and Elena Lucci  
 

sts) function [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_co
% 
%INPUTS: 
%  
%all_pos - is a 2xn matrix where n is the number of unique voronoi points, 

get points.  Where the first row is the x position and %uav points, and tar
he second row is %t

% 
%all_lines_x - is a 2xn matrix where n is the number of all of the lines 
%for the voronoi, uavs, and targets.  The first row is the ending point's  
%x position for the nth line and the second row is the starting point's 

 109



 

%x position for the nthe line. 
% 
%all_lines_y - is a 2xn matrix where n is the number of all of the lines 

 the voronoi, uavs, and targets.  The first row is the ending point's  

here n is the number of all of the lines 
r the voronoi, uavs, and targets.  This row is the costs for all of the 

_lines_y. 
 

 

o no-fly zones and 
reats. 

C=zeros(size(all_lines_x,2),3); 

00)); 
  if  any(P)  
      num=find(P); 

  

 else 

          tz=(fix((i./2))+1); 

on [THC]= c_assign(all_pos,THC,ZONES,THREATS) 

i points, 
et points.  Where the first row is the x position and 

nd row is the y position of all of these unique points. 

%for
%y position for the nth line and the second row is the starting point's 
%y position for the nthe line. 
% 
%all_costs - is a 1xn row w
%fo
%lines of all_lines_x and all
%
%OUTPUTS: 
% 
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second 
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. With updated costs due t
%th
 
 
 
TH
THC(:,3)=all_costs(:); 
for i=1:(2*size(all_lines_x,2)) 
    P=(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) & 
(round(all_pos(2,:)*100)==round(all_lines_y(i)*1
  
  
        if (rem(i,2))~=0 
            bz=((fix(i./2))+1); 
            THC(bz,1)=num;
        else THC((i/2),2)=num; 
        end 
   
        if (rem(i,2))~=0 
  
            THC(tz,1)=i; 
        else THC((i/2),2)=i; 
        end 
    end       
end 
 
 
 
 
C_assign 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
functi
% 
%INPUTS: 
%  
%all_pos - is a 2xn matrix where n is the number of unique vorono
%uav points, and targ
%the seco
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% 
%THC - is a nx3 matrix where n is the number of po
%the first column is the tail of the line or starting point, the second 

ssible lines to be chosen 

nd the third column 

ES - is a 3xn matrix where n is the number of No-Fly Zones, the first 

 no-fly zones. 
 
THREATS - is a 4xn matrix where n is the number of Threats, the first row 

 of the 
 row is 

OUTPUTS: 
 
THC - is a nx3 matrix where n is the number of possible lines to be chosen 
the first column is the tail of the line or starting point, the second 

With updated costs due to no-fly zones and 

nes=size(ZONES,2); 

1:szthc, 
  start=THC(i,1);finish=THC(i,2); 

ES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2)); 
 SN=(SC^2+SF^2-FC^2)/(2*SF); 

  if SC<FC,PC=SC; 
          else 

ONES(3,j),THC(i,3)=1e30*THC(i,3); 

HREATS(2,j)-all_pos(2,start))^2)); 
=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-all_pos(2,finish))^2)); 

N=(SC^2+SF^2-FC^2)/(2*SF); 
      if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
      else 

        if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3); 

%column is the head of the line or the ending point, a
%is the cost of the line. 
% 
%ZON
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 
%the
%
%
%is the x position of the threats, the second row is the y position
%threats, the third row is the range of the threats, and the fourth
%the level of danger of the threats. 
% 
%
%
%
%
%column is the head of the line or the ending point, and the third column 
%is the cost of the line. 
%threats. 
szthc=size(THC,1); 
nzo
nthrts=size(THREATS,2); 
 
for i=
  
    SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-all_pos(2,start))^2)); 
    for j=1:nzones, 
        SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2)); 
        FC=sqrt(((ZON
       
        if SN<SF & SN>0,PC=sqrt(SC^2-SN^2); 
        else 
          
  
                PC=FC; 
            end 
        end 
        if PC < Z
        end 
    end 
    for j=1:nthrts, 
        SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((T
        FC
        S
  
  
            if SC<FC,PC=SC; 
            else 
                PC=FC; 
            end 
        end 
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        end 
    end    
end        
 
 
 
Dijk 
 
function [D,P] = dijk(A,s,t) 

K Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm. 
 [D,P] = dijk(A,s,t) 
     A = n x n node-node weighted adjacency matrix of arc lengths 

N => Arc (i,j) exists with 0 weight) 

s 

       = [] (default), paths to all nodes 
     D = |s| x |t| matrix of shortest path distances from 's' to 't' 

D(i,j) = distance from node 'i' to node 'j'  

    index of the predecessor to node 'j' on the path from 's(i)' to 
 is 'j' not on path to 's(i)' 

         (use PRED2PATH to convert P to paths) 
       = path from 's' to 't', if |s| = |t| = 1 
 

ular matrix, then computationally intensive node 
not needed since graph is acyclic (triangularity is a  

o be acyclic) 

ow 
d and P now represents successor indices) 

k Flows, 

ersion 6 19-Sep-2002 

***************** 

 upper triangular 

%DIJ
%
%
%         (Note: A(i,j) = 0   => Arc (i,j) does not exist; 
%                A(i,j) = Na
%     s = FROM node indices 
%       = [] (default), paths from all node
%     t = TO node indices 
%
%
%       = [D(i,j)], where 
%     P = |s| x n matrix of predecessor indices, where P(i,j) is the 
%     
%         'j',where P(i,i) = 0 and P(i,j) = NaN
%
%
%
%  (If A is a triang

   selection step %
%   sufficient, but not a necessary, condition for a graph t

   and A can have non-negative elements) %
% 

  (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is n%
%   transpose
% 
%  (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Networ
%   Prentice-Hall, 1993, p. 109.) 
 

ht (c) 1994-2002 by Michael G. Kay % Copyrig
Matlog V% 

 
***% Input Error Checking **********************************

error(nargchk(1,3,nargin)) 
 

cA] = size(A); [n,
 
if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end 
if nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); end 
 

any(any(tril(A) ~= 0))       % A isif ~
   isAcyclic = 1; 
elseif ~any(any(triu(A) ~= 0))   % A is lower triangular 
   isAcyclic = 2; 
else                             % Graph may not be acyclic 

 = 0;    isAcyclic
 end
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if n ~= cA 
   error('A must be a square matrix'); 

' must be an integer between 1 and ',num2str(n)]); 
) 
n integer between 1 and ',num2str(n)]); 

r Checking) ************************************************ 

e to speed-up FIND for sparse A 

); Di(j) = 0; 

ical(zeros(length(t),1)); 

- 1; 
cyclic == 2 

 = 1:n; 
nLab = logical(ones(n,1)); 

 
  

 end  % Change from NaN to indicate no pred 

 & ~all(isLab) 

Di(j); 
tion 

[Dj,jj] = min(Di(isUnLab)); 
jj); 

UnLab(jj) = []; 
0; 

< n, isLab = isLab | (j == t); end 

,Aj] = find(A(:,j)); 
isnan(Aj)) = 0; 

 Increment node index for upper triangular A 

elseif ~isAcyclic & any(any(A < 0)) 
   error('A must be non-negative'); 
elseif any(s < 1 | s > n) 
   error(['''s'
elseif any(t < 1 | t > n
   error(['''t'' must be a
end 
% End (Input Erro
 
A = A';    % Use transpos
 
D = zeros(length(s),length(t)); 
if nargout > 1, P = NaN*ones(length(s),n); end 
 
for i = 1:length(s) 
   j = s(i); 
    
   Di = Inf*ones(n,1
    
   isLab = log
   if isAcyclic ==  1 
      nLab = j 
   elseif isA
      nLab = n - j; 
   else 
      nLab = 0; 
      UnLab
      isU
   end
  
   if nargout > 1, P(i,s(i)) = 0;
    
   while nLab < n
      if isAcyclic 
         Dj = 
      else % Node selec
         
         j = UnLab(
         
         isUnLab(j) = 
      end 
       
      nLab = nLab + 1; 
      if length(t) 
       
      [jA,kA
      Aj(
             
      if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end 
       
      if nargout > 1, P(i,jA(Dk < Di(jA))) = j; end 
      Di(jA) = min(Di(jA),Dk); 
       
      if isAcyclic == 1       %
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         j = j + 1; 
      elseif isAcyclic == 2   % Decrement node index for lower triangular A 

1 & length(s) == 1 & length(t) == 1 

jkstra Functions

         j = j - 1; 
      end 
   end 
   D(i,:) = Di(t)'; 
end 
 
if nargout > 
   P = pred2path(P,s,t); 
End 
 
Additional Di  

n [i,j,c] = adj2list(A) 
J2LIST Node-node weighted adjacency matrix to arc list representation. 

st(A) 
     A = m x m node-node weighted adjacency matrix of arc lengths 
   IJC = n x 2-3 matrix arc list [i j c], where 
     i = n-element vector of arc tails nodes 

ent vector of arc head nodes 
     c = n-element vector of arc weights 

 Note: All A(i,j) = A(j,i) => [i -j c] (symmetric A) 

       A(i,j) = NaN => Arc (i,j) exists with 0 weight 
er for [i,j,c] = FIND(C); c(ISNAN(c)) = 0) 

******************************* 
A,cA] = size(A); 

ror('''A'' must be a square matrix.'); 

************* 

,j,c] = find(A); 
 issym, j = -j; end 

nd 

 isint(x,TolInt) 
 True for integer elements (within tolerance). 

 
functio
%AD
%     IJC = adj2list(A) 
% [i,j,c] = adj2li
%
%
%
%     j = n-elem
%
% 
%
%       A(i,j) = 0   => Arc (i,j) does not exist 
%
%       Wrapp
% 
% See also LIST2INCID, LIST2ADJ, and ADJ2INCID 
 
% Copyright (c) 1994-2002 by Michael G. Kay 
% Matlog Version 6 19-Sep-2002 
 
% Input Error Checking ***********************
[r
if rA ~= cA 
   er
end 
% End (Input Error Checking) ***********************************
 
if all(all(triu(A)==tril(A)')), A = triu(A); issym = 1; else issym = 0; end 
 
[i
if
c(isnan(c)) = 0; 
 
if nargout == 1 
   i = [i j c]; 
e
 
 
 
function y =
%ISINT
%      y = isint(x,TolInt) 
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%        = abs(x-round(x)) < TolInt 

. Kay 

ing ****************************************************** 

 < 2 | isempty(TolInt), TolInt = 0.01*sqrt(eps); end 

(x-round(x)) < TolInt; 

weighted adjacency matrix representation. 
 = list2adj(IJC,m,spA) 

c u l], where 
i = n-element vector of arc tails nodes 

mber of arcs 
       = (default) ONES(n,1) 
     u = (optional) ignored 

     m = (optional) scalar size of A if greater than max{max(i),max(abs(j))}  
 matrix if n <= spA x m x m 

1 (default), A sparse if 10% arc density 

) c(k)] -> A[i(k),j(k)]  = c(k) 
 -> A[i(k),-j(k)] = c(k) and 

        A[-j(k),i(k)] = c(k) 

 in A 
 c(k) = 0 => A(i(k),j(k)) = NaN 

); 

************************************************* 

nd 

j = abs(j); 

% TolInt = integer tolerance 
%        = [0.01*sqrt(eps)], default 
 
% Copyright (c) 1994-2002 by Michael G
% Matlog Version 6 19-Sep-2002 
 
% Input Error Check
error(nargchk(1,2,nargin)); 
if nargin
% End (Input Error Checking) ************************************************ 
 
y = abs
 
 
 
function A = list2adj(IJC,m,spA) 
%LIST2ADJ Arc list to node-node 
%     A
%   IJC = n x 2-5 matrix arc list [i j 
%     
%     j = n-element vector of arc head nodes 
%     c = (optional) n-element vector of arc costs, where n = nu
%
%
%     l = (optional) ignored 
%
%   spA = (optional) make A sparse

       = 1, always make A sparse %
%       = 0.
%       = 0, always make A full matrix 
%     A = m x m node-node weighted adjacency matrix 

 %
% Transforms: If j(k) > 0, then [i(k) j(k

             If j(k) < 0, then [i(k) j(k) c(k)]%
%                                           
% 

te: Weights of any duplicate arcs added together% No
      %

%       Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m
% 

 See also LIST2INCID, ADJ2LIST, and ADJ2INCID %
 

 Michael G. Kay % Copyright (c) 1994-2002 by
% Matlog Version 6 19-Sep-2002 
 
% Input Error Checking *****
error(nargchk(1,3,nargin)) 
 
[n,cIJC] = size(IJC); 
if cIJC < 2 | cIJC > 5, error('IJC must be a 2-3 column matrix.'), e
 
[i,j,c] = mat2vec(IJC); 
if isempty(c), c = ones(n,1); end 
 

gn = sign(j); js
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minIJ = min(min([i j])); 
if isempty(minIJ) | minIJ < 1 | any(~isint(i)) | any(~isint(j)) 

 and ''j'' must be nonzero integers.'); 
nd 

 m = max(max([i j])); 
 j])) 

j))}.'); 
nd 

''spA'' must be non-negative scalar.'); 

nput Error Checking) ************************************************ 

 any(jsgn < 0)      % Add elements from undirected arcs 

)]; 
[j; i(jsgn < 0)]; 

0)]; 

==0) = NaN; 

 = full(A); end 

X(:,1),X(:,2),...] = mat2vec(X) 

y) 

right (c) 1994-2002 by Michael G. Kay 
ion 6 19-Sep-2002 

nput Error Checking ****************************************************** 

nd (Input Error Checking) ************************************************ 

 num2cell(X,1); 

ert predecessor indices to shortest paths from node 's' to 't'. 
s,t) 

   error('All elements of ''i''
e
 
if nargin < 2 | isempty(m) 
  
elseif length(m(:)) ~= 1 | ~isint(m) | m < max(max([i
   error('''n'' must be >= max{max(i),max(abs(
e
 
if nargin < 3 | isempty(spA) 
   spA = 0.1; 
elseif length(spA(:)) ~= 1 | spA < 0 
   error('
end 
% End (I
 
if
   jsgn(jsgn < 0 & i == j) = 1; 
   i = [i; j(jsgn < 0
   j = 
   c = [c; c(jsgn < 
end 
 
c(c
A = sparse(i,j,c,m,m); 
 
if n > spA * m * m, A
 
 
 
function varargout = mat2vec(X) 
%MAT2VEC Convert columns of matrix to vectors. 
% [
% 
% (Additional output vectors assigned as empt
 
% Copy
% Matlog Vers
 
% I
if ~isnumeric(X) 
   error('X must be numeric.') 
end 
% E
 
varargout = cell(1,max(1,nargout)); 
X =
varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(X,2))); 
 
 
 
function rte = pred2path(P,s,t) 
%PRED2PATH Conv
%   rte = pred2path(P,
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%     P = |s| x n matrix of predecessor indices (from DIJK) 

odes 
f paths (or routes) from 's' to 't', where 

 rte{i,j} = path from s(i) to t(j) 
exists from s(i) to t(j) 

d with output of DIJK) 

y Michael G. Kay 
og Version 6 19-Sep-2002 

********************************************** 
rgchk(1,3,nargin)); 

, s = (1:n)'; else s = s(:); end 
 t = (1:n)'; else t = t(:); end 

r between 1 and ',num2str(n)]); 

''t'' must be an integer between 1 and ',num2str(n)]); 

) ************************************************ 

s] = find(P==0); 

 == 1 
    si = 1; 

 

:length(t) 
t(j); 

; 

e tj ~= 0 
 tj < 1 | tj > n 

         error('Invalid element of P matrix found.') 

%     s = FROM node indices 
%       = [] (default), paths from all nodes 
%     t = TO node indices 
%       = [] (default), paths to all n
%   rte = |s| x |t| cell array o
%        
%                  = [], if no path 
% 
% (Use
 
% Copyright (c) 1994-2002 b
% Matl
 
% Input Error Checking ********
error(na
 
[rP,n] = size(P); 
 
if nargin < 2 | isempty(s)
if nargin < 3 | isempty(t),
 
if any(P < 0 | P > n) 
   error(['Elements of P must be integers between 1 and ',num2str(n)]); 
elseif any(s < 1 | s > n) 
   error(['''s'' must be an intege
elseif any(t < 1 | t > n) 
   error(['
end 
% End (Input Error Checking
 
rte = cell(length(s),length(t)); 
 
[ans,idx
 
for i = 1:length(s) 
%    if rP
%   
%    else 
%       si = s(i); 
%       if si < 1 | si > rP 
%          error('Invalid P matrix.') 
%       end
%    end 
   si = find(idxs == s(i)); 
   for j = 1
      tj = 
      if tj == s(i) 
         r = tj; 
      elseif P(si,tj) == 0 
         r = []
      else 
         r = tj; 
         whil
            if
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            end 
            r = [P(si,tj) r]; 
            tj = P(si,tj); 
         end 
         r(1) = []; 
      end 

rte{i,j} = r; 

1 | t > n | round(t) ~= t 
ment found prior to reaching ''s'''); 

[P(t) rte]; 

h Refinement Related Functions

      
   end 
end 
 
if length(s) == 1 & length(t) == 1 
   rte = rte{:}; 
end 
 
%rte = t; 
while 0%t ~= s 
   if t < 
      error('Invalid ''pred'' ele
   end 
   rte = 
   t = P(t); 
end 
 
 
 
Pat  

liter  

n 
lcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m

ber of uavs times the 
 path.  The first row 

last 
ming from 

ber of unique voronoi points, 
w is the x position and 

e unique points. 

HREATS - is a 4xn matrix where n is the number of Threats, the first row 
threats, the second row is the y position of the 

he fourth row is 

 
Path_Shrtng 
 

zer and Matthew Lech%Authored by Zachary Sprit
 

tiofunc
[Shortened_Paths_x,Shortened_Paths_y,tota

DING_ANGLE) in_turn,split_seg,nuav,ntarg,HEA
 
%INPUTS: 

 %
%stored_paths - is a mxn matrix where m is the num
%number of targets and n is the length of the longest
%being the first path for the first uav and the last row being the 
%path for the last uav. The paths are output by node numbers co

e implementation of dijkstra's algorithm. %th
%  
%all_pos - is a 2xn matrix where n is the num

first ro%uav points, and target points.  Where the 
%the second row is the y position of all of thes
% 
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first 
%row is the x position of the no-fly zones, the second row is the y 
%position of the no-fly zones, and the third row is the radius or range of 

o-fly zones. %the n
% 
%T
%is the x position of the 
%threats, the third row is the range of the threats, and t
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%the level of danger of the threats. 
% 
%min_turn - minimum turning radius for the UAVs 
% 
%split_seg - number of segments to Split the voronoi lines into for the  
%purpose of a more near-optimal solution 

v - number of UAVs 
 

f targets 

ortened_Paths - is a nxmx2 matrix where n is the length of the longest 
ber of targets.   

he element (nxmx1) x position of the mth uav at point n.  The element  

he cost for the mth uav to take the nth path. 

longest 
h and m is the number of UAVs multiplied by the number of targets.   

The element (nxmx1) x position of the mth uav at point n.  The element  
(nxmx2) y position of the mth uav at point n.   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
oronoi lines into more segments for the purpose of a more  

near-optimal solution 
%%%%%%%%%%%%%%%%%%%%%%% 

pths=size(stored_paths,2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%% 

hs-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))'; 
y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
plit_seg)+1),nuav*ntarg); 

split_seg)+1),nuav*ntarg); 

%  
%nua
%
%ntarg - number o
 
%OUTPUTS: 
% 
%Sh
%path and m is the number of UAVs multiplied by the num
%T
%(nxmx2) y position of the mth uav at point n.  
%  
%totalcost - is a mxn matrix where m is the number of uavs and n is the 
%number of possible paths for each uav.  The element (m,n) of this matrix 
%is t
% 
%Stored_Pos - is a nxmx2 matrix where n is the length of the 
%pat
%
%
 
 
%
%Splitting the v
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sz
  

lit_vect=[(0:(1/split_seg):(1- 1/split_seg))]'; sp
 

%%%%%%
%Finding the corresponding x and y coordinates  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Stored_Pos_x=ones(szpths,nuav*ntarg); 
Stored_Pos_y=ones(szpths,nuav*ntarg); 

ed_paths(:,szpths+1)=0; stor
for i=1:nuav*ntarg, 
    mnz=min(find(stored_paths(i,:)==0)); 
    Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))'; 

2,stored_paths(i,1:mnz-1))';     Stored_Pos_y(1:mnz-1,i)=all_pos(
  Stored_Pos_x(mnz:end,i)=ones((szpt  

    Stored_Pos_
     
end  
 
%
Stored_Pos_x_new=ones((((szpths-1)*s

(szpths-1)*Stored_Pos_y_new=ones(((
ntarg, for k=1:nuav*

      j=1;   
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    for i=1:(szpths -1), 

tored_Pos_x(i,k)); 

Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k)); 

t_seg)+1),k)=Stored_Pos_x(szpths,k); 
),k)=Stored_Pos_y(szpths,k); 

_end=ones(500,1)*Stored_Pos_x(szpths,:); 
aths_y_end=ones(500,1)*Stored_Pos_y(szpths,:); 

_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end]; 
nd]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Shortening the paths 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
:,i)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 fillets into the shortened paths 

v*ntarg, 

s_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%% 

ened_Paths_y(:,((i-1)*ntarg)+j)]=... 
     heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-

DING_ANGLE(i,1),72); 
  end 

hs_x=[]; 
hortened_Paths_y=[]; 
r j=1:size(Shortened_Paths_x_old,1)-1, 

          Stored_Pos_x_new([j:(j + (split_seg -1))],k)= 
ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-S
          Stored_Pos_y_new([j:(j + (split_seg -1))],k)= 
ones(split_seg,1)*
          j=j+ split_seg; 
    end 
    Stored_Pos_x_new((((szpths-1)*spli
    Stored_Pos_y_new((((szpths-1)*split_seg)+1
end 
 
 
Shortened_Paths_x
Shortened_P
Shortened
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_e
 
 
 
 
%
%
%
for i=1:nuav*ntarg, 

    
[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten
:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y((

end 
 
%%%%%
%Putting
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:nua
    
[Shortened_Path
)],min_turn); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%
%Adding initial path based on heading angle 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nuav, 
    for j=1:ntarg, 
        [Shortened_Paths_x(:,((i-1)*ntarg)+j),Short
       
1)*ntarg)+j)],min_turn,HEA
  
end 
 
 
Shortened_Paths_x_old=Shortened_Paths_x; 
Shortened_Paths_y_old=Shortened_Paths_y; 
Shortened_Pat
S
fo
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    if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) & 
Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:), 

_y_old(j,:); 
      break 

ened_Paths_x_old(j,:); 

  end 

%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%s
sp_perm=size(Shortened_Paths_x,2); 
ermcost=zeros(nuav*ntarg,1); 

r z=1:szsp_perm, 
hs_y(:,z)],THREATS); 

nd 

y Zachary Spritzer and Matthew Lechliter  

f the 
e element (nxmx2) y position of the mth uav at 

n is the number of No-Fly Zones, the first 
f the no-fly zones, the second row is the y 

 no-fly zones, and the third row is the radius or range of 

x where n is the number of Threats, the first row 
ts, the second row is the y position of the 
range of the threats, and the fourth row is 

r of the threats. 

 - is a nxmx2 matrix where n is the length of the longest 
path and m is the number of UAVs.  The element (n mx1) x position of the 

%mth uav at point n.  The element (nxmx2) y position f the mth uav at 
%point n. This matrix is the original matrix without th  voronoi segements 
%split up. 
% 

        Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:); 
        Shortened_Paths_y(j,:)=Shortened_Paths
  
    else 
       Shortened_Paths_x(j,:)=Short
       Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
  
end 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Updating the Costs 
%%%
z
p
 
 
fo
    [permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Pat
e
totalcost=reshape(permcost,ntarg,nuav)'; 
 
 
 
Shorten_Paths 
 
%Authored b
 
function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y) 
 
%INPUTS: 
% 
%sp - is a nxmx2 matrix where n is the length of the longest 

e number of UAVs.  The element (nxmx1) x position o%path and m is th
%mth uav at point n.  Th
%point n. 
% 

ere %Z - is a 3xn matrix wh
the x position o%row is 

%position of the
%the no-fly zones. 
% 
%T - is a 4xn matri
%is the x position of the threa

row is the %threats, the third 
vel of dange%the le

% 
spo%

% x
 o
e
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%OUTPUTS: 
% 
%shr - is a nxmx2 matrix where n is the length of the longest 
%path and m is the number of UAVs.  The element (n mx1) x position of the 
%mth uav at point n.  The element (nxmx2) y position f the mth uav at 
%point n. 
spo=[spo_x,spo_y]; 
sp=[sp_x,sp_y]; 
SC=0;FC=0;SF=0;SN=0; 
for j=1:size(T,2), 
    PC=[]; 
    for i=1:size(spo,1)-1, 
        SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^
        FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1 ))^2)); 
        SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-s (i,2))^2)); 
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<SF & SN>0 
            PC(i)=sqrt(SC^2-SN^2); 
        else 
            if SC<FC 
                PC(i)=SC; 
            else 
                PC(i)=FC; 
            end 
        end 
        mPC=min(PC); 

        end 
    end 
end 
 
ZT=[Z([1:3],:) T([1:3],:)]; 
szzt=size(ZT,2); 
szsp=size(sp,1); 
shr=ones(szsp,2); 
for i=1:2, 
    shr(:,i)=sp(szsp,i); 
end 
shr(1,:)=sp(1,:); 
a=1; 
PC=zeros(1,szzt); 
while shr(a,:)~=sp(szsp,:), 
    for i=1:szsp, 
        if shr(a,:)==sp(i,:) 
            pck=i; 
            break 
        end 
    end 
    for i=szsp:-1:pck+1, 
        SF=sqrt(((shr(a,1)-sp(i,1))^2)+((shr(a,2)-sp(i,2))^2)); 
        for j=1:szzt, 
            SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a ))^2)); 
            FC=sqrt(((ZT(1,j)-sp(i,1))^2)+((ZT(2,j)-sp(i,2 ^2)); 
            SN=(SC^2+SF^2-FC^2)/(2*SF); 
            if SN<SF & SN>0 

x
 o

2)); 
,2
po

        if  mPC< T(3,j), 
            T(3,j)=mPC*.995; 

,2
))
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                PC(1,j)=sqrt(SC^2-SN^2); 
  
  

          else 
              if SC<FC 

    
    
                    PC(1,j)=FC; 
    
    
        end 
    
            a=a+1; 
    
    
        end 
    end 
end 
shr_x=shr(:,1); 
sh
 
 
 
Fillet_Path 
 
%Aut
 
function [Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn) 

INPUTS: 

 
% the number o he mber of targets.   
%The element (nxmx1) x position of the mth uav at point n.  The element  
%(nxmx2) y  th av a
% 
%m nim rning radius for the U
 
%OUTPUTS: 
% 
%Shortened_Paths_fillet - is a nxmx2 m n is the length of the  
% ges ath with the addition of fillets ((2*old size)-1) and m is the  
%numbe of UAVs multiplied be gets.  The element (nxmx1)  
% sition of the mth uav at e e t (nxm 2) y position of  
%the mth uav at point n.

hortene
hortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1); 

rtened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2); 
Shortened_Paths_fillet(1,:)=
 
fillet_counter=2; 
for j=2:size(Shortened_Path
    if Shortened_Paths(j,:)==Shortened_Paths(j+1,:), 
        break 
    end 
    start=Shortened_Paths(j-1,:); 

                PC(1,j)=SC; 
            else 

            end 
        end 

    if PC(1,:)>ZT(3,:), 

        shr(a,:)=sp(i,:); 
        break 

r_y=shr(:,2); 

hored by Matthew Lechliter  

 
%
% 
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest

path and m is f UAVs multiplied by t nu

 position of e mth u t point n.   

in_turn - mi um tu AVs 

atrix where 
lon t p

r  by the num r of tar
x po point n.  Th lemen x

   
 
 
S d_Paths_fillet=Shortened_Paths*0; 
S
Sho

Shortened_Paths(1,:); 

s,1)-1, 
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    middle=Shortened_Paths(j,:); 
    finish=Shortened_Paths(
    SM=sqrt(sum((middle-start).^2)); 
    MF=sqrt(sum(((finish-middle).^2))); 
    SF=sqrt(sum(((finish-sta
    alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF)); 
    Fillet=min_turn/tan(alpha/2); 
    if Fillet>=SM 
        Shortened_Paths_fillet(f Paths(j-1,:); 
    else 
        Shortened_Paths_fille d aths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM
    end 
    if Fillet>=MF, 
        Shortened_Paths_fillet(fille , s(j+1,:); 

  else 
      Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-

    fillet_counter=fillet_counter+2; 
end 
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1); 
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2); 
 
 
Heading_Angle_Paths 
 
%Authored by Matthew Lechliter  
 
function 
[Shortened_Paths_heading_angle_x,Shortened_Paths_heading_angle_y]=heading_angle_paths(Shortened_
Pa ADING_ANGLE,nu
 
warning off MATLAB:divideByZero 
 
if HEADING_ANGL
    HEADING_ANGLE=pi*2+HEADING_ANGLE; 
en
 
delta_x = Shorten o d_ aths(1,1);  
de a_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);  

EW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x))); 
if delta_x>=0 & delta_y>=0, 
    NEW_HEADING_ANGLE=NEW_HEADING_A E; 
end 
if delta_x<0 & delta_y>=0, 
    NEW_HEADING_ANGLE=pi-NEW_HEADING_ NGLE; 
end 
if delta_x<0 & delta_y<0, 
    NEW_HEADING_ANGLE=pi+NEW_HEADING NGLE; 
end 
if delta_x>=0 & delta_y<0, 
    NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE; 
end 
 

j+1,:); 

rt).^2))); 

illet_counter,:)=Shortened_

t(fillet_counter,:)=Shortene _P
-Fillet)/SM); 

t_counter+1 :)=Shortened_Path
  
  
Shortened_Paths(j,:))*(Fillet/MF); 
    end 

ths,min_turn,HE m_segs); 

E < 0, 

d 

ed_Paths(2,1) - Sh rtene P
lt

 
N

NGL

A

_A
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% x and y are the initial positions of the UAV 
x=Shortened_Paths(1,1); 
y=Shortened_Paths(1,2); 
 
% Rotated heading angle 
ROTATED_HEADING_ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE; 
 
% Rotated NEW_HEADING_ANGLE is 0 degrees 
ROTATED_NEW_HEADING_ANGLE=0; 
 
% This section ensures that ROTATED_HEADING_ NGLE is between -pi and pi 
if abs(ROTATED_HEADING_ANGLE) > pi 
    if ROTATED_HEADING_ANGLE > 0 
        ROTATED_HEADING_ANGLE = ROTATED ADING_ANGLE-2*pi; 
    else 
        ROTATED_HEADING_ANGLE = ROTATED ADING_ANGLE+2*pi; 
    end   
end 
 
if abs(ROTATED_HEADING_ANGLE) < p
    small_ang=1; 
else 
    small_ang=0; 
    %  Equation found by numerical methods, used to f  the location of the 
    %  first point to break from the old path onto the first circle 
    
init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))^3+0.020254038*(abs(R
OTATED_HEADING_ANGLE)/pi*(2*min_turn))^2 231718*(abs(ROTATED_HEADING_ANGL
E)/pi*(2*min_turn)); 
     
    %  xu and yu are the coordinates of the first point t breaks from the 
    %  old path and onto the new path following the circles 
    xu = x+init_dist*cos(ROTATED_HEADING_ANG ; 
    yu = y+init_dist*sin(ROTATED_HEADING_ANGLE); 
     
     
    if ROTATED_HEADING_ANGLE >= 0 
        ccw = -1; 
    else  
        ccw = 1; 
    end 
     
    %  Finds the locations of the center of both circles, sed on whether 
    %  the angle made by the intersection of the old an  heading angles 
    %  is positive or negative 
     
    xc1 = (x+min_turn*cos(ROTATED_NEW_HEAD G_ANGLE + ccw*.5*pi)); 
    yc1 = (y+min_turn*sin(ROTATED_NEW_HEADI G_ANGLE + ccw*.5*pi)); 
     
    xc2 = (xu+min_turn*cos(ROTATED_HEADING_ NGLE - ccw*.5*pi)); 

ING_A LE - ccw*.5*pi)); 

  % dx_c2 and dy_c2 are the delta x and delta y between the position of the 
 break off point and the center of the first circle 

  dx_c2 = xu - xc2;  

A

_HE

_HE

i/5.5 

ind

+0.629

hat 

LE)

 ba
d new

IN
N

A
NG    yc2 = (yu+min_turn*sin(ROTATED_HEAD

     
  
    % center of the first
  
    dy_c2 = yu - yc2;  
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  % the break off point and center of the first circle 
dy_c2)/abs(dx_c2))); 

=0, 

  if dx_c2<0 & dy_c2>=0, 

d 

d 

 

nter of the final circle and the center of the first circle  

  dy_cc = (yc1 - yc2);  
   
  % cc_angle is the angle made by the horizon (x-axis) and the line between 

 the center of the final circle and the center of the first circle  

, 
ngle=cc_angle; 

  end 
 dy_cc>=0, 

y_cc<0, 
le; 

  if ccw == 1 
s(ROTATED_HEADING_ANGLE)>pi/2 

          cc_point = (2*pi-cc_angle); 

e); 

w*(c2_angle); 

oint = ccw*(cc_angle); 
  c2_point = ccw*(2*pi-c2_angle); 

      end 

   

    % c2_angle is the angle made by the horizon (x-axis) and the line between 
  
    c2_angle=(atan(abs(
    if dx_c2>=0 & dy_c2>
        c2_angle=c2_angle; 
    end 
  
        c2_angle=pi-c2_angle; 
    en
    if dx_c2<0 & dy_c2<0, 
        c2_angle=pi+c2_angle; 
    en
    if dx_c2>=0 & dy_c2<0, 
        c2_angle=2*pi-c2_angle; 
    end
     
    % dx_cc and dy_cc are the delta x and delta y between the position of the 
    % ce
    dx_cc = (xc1 - xc2);  
  
  
  
    % the position of
    cc_angle=(atan(abs(dy_cc)/abs(dx_cc))); 
    if dx_cc>=0 & dy_cc>=0
        cc_a
  
    if dx_cc<0 &
        cc_angle=pi-cc_angle; 
    end 
    if dx_cc<0 & dy_cc<0, 
        cc_angle=pi+cc_angle; 
    end 
    if dx_cc>=0 & d
        cc_angle=2*pi-cc_ang
    end  
     
  
        if ab
  
            c2_point = -(2*pi-c2_angle); 
        else 
            cc_point = (2*pi-cc_angle); 
            c2_point = (c2_angl
        end 
    else 
        if abs(ROTATED_HEADING_ANGLE)>pi/2 
            cc_point = ccw*(cc_angle); 
            c2_point = -1*cc
        else 
            cc_p
          
  
    end 
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    counter = 1; 
    for i = (ccw*2*pi/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle 

ter)=min_turn*sin(i)+xc2; 
 min_turn*cos(i)+yc2; 

y_c1)/abs(dx_c1))); 
_c1>=0 & dy_c1>=0, 

      c1_angle=c1_angle; 

1<0 & dy_c1>=0, 
      c1_angle=pi-c1_angle; 

angle; 

*pi; 

; 
_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2) 

urn*sin(i)+xc1; 
c1(1,counter) = min_turn*cos(i)+yc1; 

 counter + 1; 

otation back to original coordinates 
pol(xu - x,yu - y); 

ANGLE; 
ol2cart(t,r); 

 x; 
) = y; 

ding_angle_y_temp(2) = yu_temp + y; 

ol2cart(t,r);  
d_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) = 

emp + x); 
      Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) = 
_c2_temp + y); 

  end 

   

      [t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y); 

        x_c2(1,coun
        y_c2(1,counter) =
        counter = counter + 1; 
    end 
     
    dx_c1 = x - xc1;  
    dy_c1 = y - yc1;  
     
    c1_angle=(atan(abs(d
    if dx
  
    end 
    if dx_c
  
    end 
    if dx_c1<0 & dy_c1<0, 
        c1_angle=pi+c1_
    end 
    if dx_c1>=0 & dy_c1<0, 
        c1_angle=2*pi-c1_angle; 
    end 
     
    cc_angle=cc_angle+ccw
     
    counter = 1
    for i = (-ccw*2*pi/num
        x_c1(1,counter)=min_t
        y_
        counter =
    end 
     
    %  R
    [t,r] = cart2
    t = t + NEW_HEADING_
    [xu_temp,yu_temp] = p
 
    Shortened_Paths_heading_angle_x_temp(1) =
    Shortened_Paths_heading_angle_y_temp(1
    Shortened_Paths_heading_angle_x_temp(2) = xu_temp + x; 
    Shortened_Paths_hea
     
    for i = 1:size(x_c2,2) 
        [t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y); 
        t = t + NEW_HEADING_ANGLE; 
        [x_c2_temp,y_c2_temp] = p
        Shortene
(x_c2_t
  
(y
  
     
  
    for i = 1:size(x_c1,2) 
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        t = t + NEW_HEADING_ANGLE; 
        [x_c1_temp,y_c1_temp] = pol2cart(t,r);  
        Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) = 

 x); 
      Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) = 

p + y); 

nd 

  sze = size(Shortened_Paths,1); 
heading_angle_x=ones(sze,1)*Shortened_Paths(end,1); 

angle_y=ones(sze,1)*Shortened_Paths(end,2); 
   

(Shortened_Paths_heading_angle_x_temp,2); 

ened_Paths_heading_angle_x([1:szpts],1)=Shortened_Paths_heading_angle_x_temp'; 
  Shortened_Paths_heading_angle_x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1); 

p'; 
tened_Paths([1:sze-szpts],2); 

d_Paths(:,2); 

zer and Matthew Lechliter  

date_cost(Shortened_Paths,THREATS) 

x2 matrix where n is the length of the longest 
ultiplied by the number of targets.   

 the mth uav at point n.  The element  

 the range of the threats, and the fourth row is 
the level of danger of the threats. 

ated with the nth UAV going to the mth TARGET 

ortened_Paths,1)-1; 
TS,2); 

(x_c1_temp +
  
(y_c1_tem
    end 
e
 
if small_ang==0, 
  
    Shortened_Paths_
    Shortened_Paths_heading_
  
    szpts=size
     
    Short
  
    Shortened_Paths_heading_angle_y([1:szpts],1)=Shortened_Paths_heading_angle_y_tem
    Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shor
else 
    Shortened_Paths_heading_angle_x=Shortened_Paths(:,1); 
    Shortened_Paths_heading_angle_y=Shortene
End 
 
 
 
 
 
Update_Cost 
 
%Authored by Zachary Sprit
 
function [permcost]=up
 
%INPUTS: 
% 
%Shortened_Paths - is a nxm
%path and m is the number of UAVs m
%The element (nxmx1) x position of
%(nxmx2) y position of the mth uav at point n.   
% 
%THREATS - is a 4xn matrix where n is the number of Threats, the first row 
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is
%
 
%OUTPUTS: 
% 
%permcost - cost associ
 
 
szsp_num=size(Sh
nthrts=size(THREA
permcost=0; 
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for i=1:szsp_num, 
1);start_y=Shortened_Paths(i,2); 

  finish_x=Shortened_Paths(i+1,1);finish_y=Shortened_Paths(i+1,2); 
tart_x)^2)+((finish_y-start_y)^2)); 

=sqrt(((THREATS(1,j)-start_x)^2)+((THREATS(2,j)-finish_y)^2)); 
-finish_x)^2)+((THREATS(2,j)-finish_y)^2)); 

SF & SN>0,PC=sqrt(SC^2-SN^2); 

      end 
 < THREATS(3,j),SF=SF+(THREATS(4,j)*100); 

cost=permcost+SF; 

location Related Functions

    start_x=Shortened_Paths(i,
  
    SF=sqrt(((finish_x-s
    for j=1:nthrts, 
        SC
        FC=sqrt(((THREATS(1,j)
        SN=(SC^2+SF^2-FC^2)/(2*SF); 
        if SN<
        else 
            if SC<FC,PC=SC; 
            else 
                PC=FC; 
            end 
  
        if PC
        end 
    end 
    perm
end 
 
 
 
Task Al  

nction 
aths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

UTS: 

cost - is a mxn matrix where m is the number of uavs and n is the 
ber of possible paths for each uav.  The element (m,n) of this matrix 

is the cost for the mth uav to take the nth path. 

trix where n is the length of the longest 

f the mth uav at point n.  The element  
point n.  

TPUTS: 
 
Selected_Pos - is a nxmx2 matrix where n is the length of the longest 

 is the number of UAVs.  The element (nxmx1) x position of the 
point n.  The element (nxmx2) y position of the mth uav at 

 

 
%Authored by Zachary Spritzer and Matthew Lechliter  
 

P_Task_Allocation MMK
 
fu
[Selected_P
s_y,nuav) 
 
%INP
% 
%total
%num
%
% 
%Shortened_Paths - is a nxmx2 ma
%path and m is the number of UAVs multiplied by the number of targets.   
%The element (nxmx1) x position o

2) y position of the mth uav at %(nxmx
% 

 - number of UAVs %nuav
 

OU%
%
%
%path and m

mth uav at %
%point n.   
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%%%%%
%MMKP algorithm 
%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%% 
lts from mmkp 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ros(size(Shortened_Paths_x,1),nuav); 
ize(Shortened_Paths_x,1),nuav); 

_x(:,(nuav)*(i-1)+bestcomb(1,i)); 
b(1,i)); 

ucci  

=mmkp_new(totalcost) 

ost - is a nxm matrix where n is the total number of uav's and m is 
paths. Where the element nxm is the cost 
ng target or path "m". 

 1xn row with n equal to the number or uav's where each 
f the row represents which path the uav should select to give the 

al solution. 

st - is a scalar number which is sum of the optimal costs for all 
the uav's paths. 

st(i,C_new(j,i)); 

b=C_new(j,:);  
ncost = sc; 

d 
nd 

 
 
 

 [bestcomb,mincost]=mmkp_new(totalcost); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Taking the resu
%%%%%
 
Selected_Paths_x=ze
Selected_Paths_y=zeros(s
for i=1:nuav, 
    Selected_Paths_x(:,i)=Shortened_Paths
    Selected_Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcom
End 
 
 
 
MMKP_New 
 
%Authored by Zachary Spritzer, Matthew Lechliter, and Elena L
 
function [bestcomb,mincost]
%Inputs: 
% 
%totalc
%the total number of targets or 
%associated with uav "n" choosi
% 
%Outputs: 
% 
%bestcomb - is a
%element o
%optim
% 
%minco
%
nuav=size(totalcost,1); 
mincost=inf; 
C_new=perms(1:nuav); 
for j=1:size(C_new,1), 
    sc=0; 
    for i=1:nuav, 
        sc=sc+totalco
    end 
    if sc < mincost  
        bestcom
        mi
    en
e
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Appendix B 
  

 
 

 
 
 
 
 
 

 

 

 Longitudinal Dimensional and Lateral Directional Stability Derivatives 
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Longitudinal Dimensional Stability Derivatives 
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Modified Longitudinal Dimensional Statbility Derivatives 
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 Lateral Directional Dimensional Stability Derivatives 
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Modified Lateral Directional Dimensional Statbility Derivatives 

XX

XZ

I
I

ZZ

XZ

I
IB =1  =  and Given: A1

1

'

U
Y

Y p
p =    1

1

' −=
U
YY r

r
1

'

U
Y

Y β
β =      

1U
1    'Y =φ

cosg Θ

1UAδ
' YY Aδ=    

1URδ
' YY Rδ=  

111 BA−β
1' LNA

L
+

= ββ   
111 BAp −

1 LNA pp'L
+

=   
111 BAr −

1'L rr=  LNA +

11

1'

1
LNAL AA

A −
+

= δδ
δ   

BA 11

1' LNAL RR
R 1 BA−

+
= δδ

δ   1' NLB
N

+
= ββ

β  
111 BA−

11

1' NLB
N p

p

+
=

11

1'

1 BA
NLBN rr

r −
+

=   
11

1'

1 BA
NLBN AA

A −
+

= δδ
δ  

1 BA
p

−
  

11

'

1 BA
N R −

=δ   1 ββ YUY     1 pp YUY  

)1( ' +YU   '' = YUY

1 N RR + δδ '' = '' =

r cosΘ− gφφ      
''

 
 

 

LB ' '

1
'

1
'

1
''

AA YUY δδ ='' =rY 1

'
1 RR YUY δδ =  

 

 
 

 133



 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Appendix C  
 

Simulation Implementation MATLAB Files 
 
 

 
 
 
 

 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 134



 

Initialization and Display Functions 
 
Define_Battlefield 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 

ction [UAVS,TARGETS,THREATS,ZONES,n_uav,n_fun targ,n_zones,n_threats]=define_battlefield 

,9); 
os(4,9); 

              1                                       

                                              
                       1                                       

                                                             
tion','                                      1                                      

                     
                           1                                       

,'7','8','9','10','11','12','13','14','15');                                                                                   

26;   
 positions'); 

i)]=ginput(1); 

FontSize',12,'Color','b'); 

V ; 

itions'); 

70','80','90','100'); 

2,i),'x','Color',[0,.4,0]); 
S(2,i),{i},'FontSize',12,'Color',[0,0.4,0]); 

5 200]); 

 
UAVS=zeros(4

RGETS=zerTA
THREATS=zeros(4,15); 
ZONES=zeros(3,10); 
 
n_uav=menu('Enter the number of UAVs for this simulation','                        
',... 

2','3','4','5','6','7','8','9');                                                                            '
n_targ=menu('Enter the number of TARGETs for this simulation','               
',... 

              '2','3','4','5','6','7','8','9');                                                                      
zones=menu('Enter the number of NO-FLY ZONEs for this simulan_

',...    
          '2','3','4','5','6','7','8','9','10');                                                                       
    n_threats=menu('Enter the number of THREATs for this simulation','       

',...      
2','3','4','5','6'    '

 
 
 

l_UAV=0.Ve
menu('Using the crosshairs and clicking on the plot','Place UAVs at desired
axis([5 200 5 200]); 
grid on; 
 
for i=1:n_uav 
    [UAVS(1,i),UAVS(2,
    plot(UAVS(1,i),UAVS(2,i),'bd'); 
    text(UAVS(1,i)+5,UAVS(2,i),{i},'
    axis([5 200 5 200]); 
    grid on; 

=2;     UAVS(3,i)
    UAVS(4,i)=Vel_UA
    hold on; 
end 
 
hold on; 
 
menu('Using the crosshairs and clicking on the plot','Place TARGETs at desired pos
for i=1:n_targ 
    tar=menu('Select Target Value - Scale 10-100','10','20','30','40','50','60','
    TARGETS(3,i)=10*tar; 
    TARGETS(4,i)=1; 

]=ginput(1);     [TARGETS(1,i),TARGETS(2,i)
    plot(TARGETS(1,i),TARGETS(

ETS(1,i)+5,TARGET    text(TARG
200     axis([5 
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    grid on; 
    hold on; 
end 
 
hold on; 

airs and clicking on the plot','Place NO-FLY ZONEs at desired positions'); 

  [ZONES(1,i),ZONES(2,i)]=ginput(1); 
 200]); 

:1)'*2*pi; 

_nfz,y_nfz,'k'); 

e THREATs at desired positions'); 
; 

r i=1:n_threats 
Type','KS-19 100mm AntiAircraft Artillery - Range 4000 meters, 40% 

robability of Kill',... 
Man-Portable SAM - Range 5000 meters, 50% Probabilty of Kill',... 

AM - Range 10,000 meters, 80% Probability of Kill',... 
0 meters, 80% Probabilty of Kill'); 

REATS(3,i)=4; 
HREATS(4,i)=.4; 

  end 
  if thr == 2 
      THREATS(3,i)=5; 

  if thr == 3 
i)=10; 

      THREATS(4,i)=.8; 

  if thr == 4 

S(1,i),THREATS(2,i)]=ginput(1); 
lot(THREATS(1,i),THREATS(2,i),'r*'); 

REATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r') 

 on; 
 = (1/32:1/32:1)'*2*pi; 

EATS(1,i); 
reat = THREATS(3,i)*cos(t_threat)+THREATS(2,i); 

,'r.'); 

 
menu('Using the crossh
 
for i=1:n_zones 
    ZONES(3,i)=9; 
  
    axis([5 200 5
    grid on; 
    t_nfz = (1/16:1/16
    x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i); 
    y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i); 
    fill(x
end 
 
menu('Using the crosshairs and clicking on the plot','Plac
hold on
 
fo
    thr=menu('Select Threat 
P
        'SA-7 Grail - 
        'Crotale S
        'SA-2 - Range 30,00
    if thr == 1 
        TH
        T
  
  
  
        THREATS(4,i)=.5; 

  end   
  
        THREATS(3,
  
    end 
  
        THREATS(3,i)=30; 
        THREATS(4,i)=.8; 
    end 
    [THREAT
    p
    text(TH
    axis([5 200 5 200]); 
    grid
    t_threat
    x_threat = THREATS(3,i)*sin(t_threat)+THR
    y_th
    plot(x_threat,y_threat
    hold on; 
end 
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Display_Initial_S 

ls the calls to  

ializeSizes(T); % Initialization 

ulate outputs 

flags 

rror(['Unhandled flag = ',num2str(flag)]); % Error handling 

=====================================  
 initializes the states, sample  

========================== 

te the sizes structure. 
zes = simsizes; 
 Load the sizes structure with the initialization information. 

= 0; 
zes.NumDiscStates= 0; 

; 
zes.NumInputs=     36+36+30+60; 
zes.DirFeedthrough=1; 
zes.NumSampleTimes=1; 

with the sizes information. 
s = simsizes(sizes); 

0 = []; % No continuous states 

r = []; % No state ordering 

 End of mdlInitializeSizes. 
========================================== 

 Function mdlOutputs performs the calculations. 
======================================================== 

utputs(u) 

of mdlOutputs. 

 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function contro
% S-function routines at each simulation stage. 
switch flag, 
 
   case 0 
     [sys,x0,str,ts] = mdlInit
 
   case 3 
     mdlOutputs(u); % Calc
 
   case { 1, 2, 4, 9 } 
     sys = []; % Unused 
 
   otherwise 
     e
end; 
 
%=========================
% Function mdlInitializeSizes
% times, state ordering strings (str), and sizes structure. 
%====================================
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to crea
si
%
sizes.NumContStates
si
sizes.NumOutputs=    0
si
si
si
% Load the sys vector 
sy
% 
x
%  
st
%  
ts = [T 0]; % Inherited sample time 
%
%====================
%
%======
function mdlO
 
 
display_initial(u); 
 
% End 
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Display_Initial 

d Matthew Lechliter  

nction display_initial(u) 

AVS=u([1:4*9],1); 

=4*9; 

+1:a+3*10]); 
eshape(ZONES,3,10); 
; 

ATS=reshape(THREATS,4,15); 

s(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26 
V %d exists at location %d x, location %d y, altitude %d km, and is flying at %d m/s. 

  i,round(UAVS(1,i)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000))); 

r i=1:9 

, location %d y , and with an estimated value 

)>0  
one %d exists at location %d x, location %d y, and with a radius of %d km. 

,i)),round(ZONES(2,i)),round(ZONES(3,i)))); 

f abs(sum(THREATS(:,i)))>0  
ts at location %d x, location %d y, with a range of %d km, and has a 

ability of kill of %d%%. \n',... 

nd(THREATS(1,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100))); 

 
%Authored by Zachary Spritzer an
 
fu
 
U
UAVS=reshape(UAVS,4,9); 
a
TARGETS=u([a+1:a+4*9]); 
TARGETS=reshape(TARGETS,4,9); 
a=a+4*9; 
ZONES=u([a
ZONES=r
a=a+3*10
THREATS=u([a+1:a+4*15]); 
THRE
 
for i=1:9 
    if ab
        disp(sprintf('UA
\n',... 
          
   end 
end 
 
fo
    if abs(sum(TARGETS(:,i)))>0  
        disp(sprintf('Target %d indicated to be at location %d x
of %d. \n',... 
            i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,i)))); 
   end 
end 
 
for i=1:10 
    if abs(sum(ZONES(:,i))
        disp(sprintf('No-Fly Z
\n',... 
            i,round(ZONES(1
   end 
end 
 
for i=1:15 
    i
        disp(sprintf('Threat %d exis
prob
            
i,rou
   end 
end 
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Plot_UAV 
 
%Authored by Zachary Spritzer and Matthew Lechliter  

nction 
ETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi

g,threats_existing) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Plotting results 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
gure(n_plots); 

 for i=1:2, 

  for i=1:size(UAVS,2) 

 
          text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b'); 

ETS(2,i),'x','Color',[0,.4,0]); 
+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]); 

1:size(THREATS,2) 
hreats_existing(1,i)==1 

S(2,i),'r*'); 
xt(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r') 

          axis([5 200 5 200]); 
          hold on; 

  end 

REATS(1,i); 
 = THREATS(3,i)*cos(t_threat)+THREATS(2,i); 

r i=1:2, 

d 

 
fu
plot_uav(UAVS,TARG
n
%
%
%%%%%%%%%%%
fi
hold on; 
%
%     subplot(1,2,i), 
  
        if uavs_existing(1,i)==1 
            plot(UAVS(1,i),UAVS(2,i),'bd');
  
            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    for i=1:size(TARGETS,2) 
        if targ_existing(1,i)==1 
            plot(TARGETS(1,i),TARG
            text(TARGETS(1,i)
            axis([5 200 5 200]); 
            hold on; 
        end 
    end 
    for i=
        if t
            plot(THREATS(1,i),THREAT
            te
  
  
        end 
  
    hold on; 

 end  %
 

Plotting Threats and range %
for i=1:size(THREATS,2) 
    if threats_existing(1,i)==1 
        t_threat = (1/32:1/32:1)'*2*pi; 

t = THREATS(3,i)*sin(t_threat)+TH        x_threa
   y_threat     

%         fo
%             subplot(1,2,i), 

   plot(x_threat,y_threat,'r.');hold on;          
%         en
    end 
end 
 
%Plotting No fly Zones 
for i=1:size(ZONES,2) 
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    t_nfz = (1/16:1/16:1)'*2*pi; 
NES(3,i)*sin(t_nfz)+ZONES(1,i); 

or i=1:2, 
         subplot(1,2,i), 

h_x,1) 

_path_y(i,:),'b-');hold on; 

thod');hold on; 

0]);hold on; 
 xlabel('Kilometers') 

nd 

unctions

    x_nfz = ZO
    y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i); 
%     f
%
        fill(x_nfz,y_nfz,'k');hold on; 
%     end 
end 
 
 
%Plotting shortened paths 
for i=1:size(uav_pat
%     subplot(1,2,2), 
    plot(uav_path_x(i,:),uav
end 
 
% subplot(1,2,2), 
title('Voronoi Diagram Me
% for i=1:2, 
%     subplot(1,2,i), 
    axis([-25 250 -25 25
       
    ylabel('Kilometers') 
% e
 
 
 
Path Planning Related F  

 and Matthew Lechliter  

th_planning_s(t,x,u,flag,T) 
itch function controls the calls to  

 S-function routines at each simulation stage. 

 case 0 
   [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 

or handling 

========================================  
 the states, sample  
sizes structure. 

======================================= 

 
Path_Planning_S 
 

Authored by Zachary Spritzer%
 
function [sys,x0,str,ts] = pa

 Dispatch the flag. The sw%
%
switch flag, 
 
  
  
 
   case 3 
     sys = mdlOutputs(u); % Calculate outputs 
 
   case { 1, 2, 4, 9 } 
     sys = []; % Unused flags 
 
   otherwise 
     error(['Unhandled flag = ',num2str(flag)]); % Err
end; 
 
%======================
% Function mdlInitializeSizes initializes
% times, state ordering strings (str), and 
%=======================
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function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 

 Load the sizes structure with the initialization information. 
; 

zes.NumDiscStates= 0; 

+9; 
edthrough=1; 

1; 

rited sample time 
s. 

========================================== 

s = mdlOutputs(u) 

th_planning(in) 

_long=reshape(TARGETS_long,4,9); 

S_long=reshape(THREATS_long,4,15); 
in(163); 

s=in(164); 
EADING_ANGLE=in([165:173]); 

1:9 
  if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26 

 end 
nd 

AVS]=filter_zeros(UAVS_long,9); 

sizes = simsizes; 
%
sizes.NumContStates= 0
si
sizes.NumOutputs=    9*100*4+9; 
sizes.NumInputs=     36+36+30+60+1+1
sizes.DirFe
sizes.NumSampleTimes=
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inhe
% End of mdlInitializeSize
%====================
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sy
 
[sys]=path_planning(u); 
 
% End of mdlOutputs. 
 
 
 
Path_Planning 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
function [out]=pa
 
UAVS_long=in([1:36],1); 
UAVS_long=reshape(UAVS_long,4,9); 
TARGETS_long=in([37:72]); 
TARGETS
ZONES_long=in([73:102]); 
ZONES_long=reshape(ZONES_long,3,10); 
THREATS_long=in([103:162]); 
THREAT
TIME=
n_plot
H
 
uavs_existing=zeros(1,9); 
for i=
  
        uavs_existing(1,i)=1; 
  
e
[U
n_uav=size(UAVS,2); 
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targ_existing=zeros(1,9); 
for i=1:9 

RGETS_temp]=filter_zeros(TARGETS_long,9); 
S=[TARGETS_temp(1,:);TARGETS_temp(2,:)]; 

filter_zeros(ZONES_long,10); 

s(1,15); 

HREATS_long(3,i)~=0 
g(1,i)=1; 

HREATS]=filter_zeros(THREATS_long,15); 

.15*THREATS_REAL(3,:); 

_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS); 
_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

ortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m
EADING_ANGLE); 

ected_Paths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA

path_y,n_plots,
ats_existing); 

nd 

n at time %d. \n',round(TIME))); 

r i=1:n_uav, 
  for j=1:n_targ, 

    if TARGETS_long(3,i)~=0, 
        targ_existing(1,i)=1; 
   end 
end 
[TA
TARGET
n_targ=size(TARGETS,2); 
 
[ZONES]=
n_zones=size(ZONES,2); 
 
threats_existing=zero
for i=1:15 
    if T
        threats_existin
   end 
end 
[T
n_threats=size(THREATS,2); 
 
ZONES_REAL=ZONES; 
THREATS_REAL=THREATS; 
 
ZONES(3,:)=1.15*ZONES_REAL(3,:); 
THREATS(3,:)=1
 
 
 
 
split_seg=10; 
min_turn=1; 
[all_pos,all_lines_x,all_lines
[stored_paths,totalcost]=cheapest_paths(all_pos,all
S,THREATS); 
[Sh
in_turn,split_seg,n_uav,n_targ,H
[Sel
s_y,n_uav); 
[uav
VS,min_turn*2); 
 
if n_plots~=0, 
    
plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_path_x,uav_
uavs_existing,targ_existing,thre
e
 
disp(sprintf('Path Planning ra
 
bestcomb=zeros(1,9); 
fo
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        if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) & 
d(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10) 

          break 

  end 

Making into vector 
av_x=zeros(9,100); 

zeros(9,100); 

; 
ze(uav_path_x,2); 

ter=1; 
r i=1:9, 

th])=uav_path_x(counter,:); 
      uav_y(i,[1:szpath])=uav_path_y(counter,:); 

])=time_uav(counter,:)+TIME; 
itude_uav(counter,:); 

ter=counter+1; 

p=[]; 

,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)]; 

sys_temp,selected_targets']; 

thew Lechliter  

s(sum(A_long(:,i)))>0 & abs(sum(A_long(:,i)))~=0.26 
unter)=A_long(:,i); 

ounter+1; 

_convert 

thored by Zachary Spritzer and Matthew Lechliter  

_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast) 

roun
            bestcomb(1,i)=j; 
  
        end 
  
end 
 
%
u
uav_y=zeros(9,100); 
uav_time=
uav_alt=zeros(9,100); 
selected_targets=zeros(9,1)
szpath=si
coun
fo
    if uavs_existing(1,i)==1 
        selected_targets(i,1)=bestcomb(1,counter); 
        uav_x(i,[1:szpa
  
        uav_time(i,[1:szpath
        uav_alt(i,[1:szpath])=alt
        coun
    end 
end 
sys_tem
for i=1:9; 
    sys_temp=[sys_temp
end 
out=[
 
 
 
Filter_Zeros 
 
%Authored by Zachary Spritzer and Mat
 
function [A]=filter_zeros(A_long,n) 
 
A=[]; 
counter=1; 
for i=1:n 
    if ab
        A(:,co
        counter=c
   end 
end 
 
 
 
VRT_sim
 
%Au
 
function [uav_path
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% 
%INPUTS: 
% 
%shr - is a nxmx2 matrix where n is the length of the longest 

the 

s the initial y position 
UAVs, the third row is the initial altitude of the UAVs, and  

 fourth row is the intial Velocity of the UAVs. 

 
OUTPUTS: 

%uav_path_x - is a mxn matrix where m is the number of uavs and m is the 
%length of the longest path. These are the x coordinat  the paths. 
% 
%uav_path_y - is a mxn matrix where m is the number of uavs and m is the 
%length of the longest path. These are the y coordinat  the paths. 
% 
%time_uav - is a mxn matrix where m is the number  uavs and m is the 
%length of the longest path. These values correspond to the time at which 
%the uavs are at coordinates x and y in uav_path_x an  uav_path_y. 
% 
%altitude_uav - is a mxn matrix where m is the numb of uavs and m is the 
%length of the longest path. These values correspond to the altitudes that 
%the uavs are at when they are at coordinates x and y  uav_path_x and 
%uav_path_y. 
% 
%Threat_range_vrt - is a 1xn vector where n is the number of threats, where 
%the first row is the range of the threats at the altitud ere the uavs 
%are flying. 
% 
%Zone_range_vrt - is a 1xn vector where n is the num er of zones, where 
%the first row is the range of the zones at the altitude here the uavs 
%are flying. 
 
nuav=size(shr_x,2); 
szshrpth=size(shr_x,1); 
shr_x=[[shr_x];[shr_x(szshrpth,:)]]; 
shr_y=[[shr_y];[shr_y(szshrpth,:)]]; 
uav_path_x=zeros(nuav,szshrpth+1); 
uav_path_y=zeros(nuav,szshrpth+1); 
for i=1:nuav, 
    for j=1:szshrpth, 
        if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j  | j==szshrpth, 
            lst_pnt_x=shr_x(j,i); 
            nxtlst_pnt_x=shr_x(j-1,i); 
            lst_pnt_y=shr_y(j,i); 
            nxtlst_pnt_y=shr_y(j-1,i); 
            dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+(( t_pnt_y-nxtlst_pnt_y)^2)); 
            last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(d tpast/dist_pnts)); 
            last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(d tpast/dist_pnts)); 
            uav_path_x(i,[j+1:szshrpth+1])=last_x; 

%path and m is the number of UAVs.  The element (nxmx1) x position of 
%mth uav at point n.  The element (nxmx2) y position of the mth uav at 
%point n. 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row i
%of the 
%the
% 
%
%
% 

es of

es of

of

d

er 

 in

e wh

b
 w

,i)]

ls
is
is
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            uav_path_y(i,[j+1:szshrpth+1])=last_y; 
            uav_path_x(i,j)=shr_x(j,i); 
            uav_path_y(i,j)=shr_y(j,i); 
            break 
        else 
            uav_path_x(i,j)=shr_x(j,i); 
            uav_path_y(i,j)=shr_y(j,i); 
        end 
    end 
end 
 
%Initializing matrixes 
time_uav_temp=zeros(nuav,szshrpth+1); 
time_uav=zeros(nuav,szshrpth+1); 
altitude_uav=zeros(nuav,szshrpth+1); 
 
%Time matrix 
for i=1:nuav, 
    for j=1:szshrpth, 
        shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_ av_path_y(i,j)-uav_path_y(i,j+1))^2); 
        time_uav_temp(i,j+1)=shr_dist(i,j)/UAV
    end 
    time_uav(i,[2:szshr
    for j=2:szshrpth+1, 
        time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j  
    end 
end 
 
time_uav=time_uav*1.01; 
 
%Altitude matrix 
for i=1:nuav, 
    for j=1:szshrpth+1, 
        altitude_uav(i,j)=UAVS(3,i); 
    end 
end 
 
 
 
No-Fly Zone Related Functions

path_x(i,j+1))^2+(u
S(4,i); 

pth+1])=sum(time_uav_temp(i,:)); 

);

 
 
UAV_Crash_S 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 

zeSizes(T); % Initialization 
       

 Calculate outputs 

        [sys,x0,str,ts] = mdlInitiali
  
    case 3 
        sys = mdlOutputs(u); %
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=========================================================  
  

========================================================= 
 

ith the initialization information. 

scStates= 0; 

DirFeedthrough=1; 

s. 
====================================== 

ns. 
=============================== 

); 

,9); 
),3,10); 

(9,1); 

r i=1:9, 
for j=1:10, 

    case { 1, 2, 4, 9 } 
      sys = []; % Unused flags   

         
    otherwise 

 Error handling         error(['Unhandled flag = ',num2str(flag)]); %
end; 
 
%=====
% Function mdlInitializeSizes initializes the states, sample

 times, state ordering strings (str), and sizes structure. %
%=====
function [sys,x0,str,ts] = mdlInitializeSizes(T)

 Call function simsizes to create the sizes structure. %
sizes = simsizes; 
% Load the sizes structure w
izes.NumContStates= 0; s

sizes.NumDi
sizes.NumOutputs=    9; 

NumInputs=     57; sizes.
izes.s

sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  

e ordering str = []; % No stat
%  

ple time ts = [T 0]; % Inherited sam
e% End of mdlInitializeSiz

%========================
% Function mdlOutputs performs the calculatio

==============%=================
function sys = mdlOutputs(u
 
 

s]=uav_crash(u); [sy
 

nd of mdlOutputs. % E
 
 
 
UAV_Crash 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
function [sys]=uav_crash(u) 
 
uav_pos=reshape(u([1:27],1),3
one_pos=reshape(u([28:57],1z

 
av_shot_down=zerosu

 
fo
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        dist_uav_zone=sqrt(((uav_pos(1,i)-zone_pos(1,j))^2)+((uav_pos(2,i)-zone_pos(2,j))^2)); 
      if dist_uav_zone < zone_pos(3,j), 

      end 

nd 

  
            uav_shot_down(i,1)=1; 
  
    end 
e
sys=[uav_shot_down]; 
 
 
 
Threat Related Functions 
 
UAV_Intercepted_S 
 
%Authored by Zachary Spritzer and Matthew Lechliter  

nction [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T) 
itch function controls the calls to  

ion routines at each simulation stage. 

 0 
,str,ts] = mdlInitializeSizes(T); % Initialization 

      sys = mdlOutputs(u); % Calculate outputs 

 2, 4, 9 } 

rwise 
ror(['Unhandled flag = ',num2str(flag)]); % Error handling 

===========================================  
 Function mdlInitializeSizes initializes the states, sample  

es structure. 
============================================ 

nction [sys,x0,str,ts] = mdlInitializeSizes(T) 
ate the sizes structure. 

sizes; 
 the initialization information. 

umDiscStates= 0; 
.NumOutputs=    24; 

zes.NumSampleTimes=1; 
 the sizes information. 

 

r = []; % No state ordering 
  

 
fu
% Dispatch the flag. The sw
% S-funct
switch flag, 
     
    case
        [sys,x0
         
    case 3 
  
         
    case { 1,
        sys = []; % Unused flags 
         
    othe
        er
end; 
 
%===================
%
% times, state ordering strings (str), and siz
%==================
fu
% Call function simsizes to cre
sizes = sim
% Load the sizes structure with
sizes.NumContStates= 0; 
sizes.N
sizes
sizes.NumInputs=     87; 
sizes.DirFeedthrough=1; 
si
% Load the sys vector with
sys = simsizes(sizes); 
%
x0 = []; % No continuous states 
%  
st
%
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ts = [T 0]; % Inherited sample time 
 End of mdlInitializeSizes. 

===================================================== 
dlOutputs performs the calculations. 

====================================================== 

ion [sys]=uav_intercepted(u) 

reat_pos=reshape(u([28:87],1),4,15); 

os(9,1); 
s(15,1); 

(((uav_pos(1,i)-threat_pos(1,j))^2)+((uav_pos(2,i)-threat_pos(2,j))^2)); 
v_threat < threat_pos(3,j), 

eats_fired(j,1)=1; 
uav_chance=rand; 

  if uav_chance <= threat_pos(4,j), 
              uav_shot_down(i,1)=1; 

hreats_fired]; 

elated Functions

%
%=========
% Function m
%========
function sys = mdlOutputs(u); 
 
 
[sys]=uav_intercepted(u); 
 
% End of mdlOutputs. 
 
 
 
UAV_Intercepted 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
funct
 
uav_pos=reshape(u([1:27],1),3,9); 
th
 
uav_shot_down=zer
threats_fired=zero
for i=1:9, 
    for j=1:15, 
        dist_uav_threat=sqrt
        if dist_ua
            thr
            
          
  
            end 
        end 
    end 
end 
sys=[uav_shot_down; t
             
 
 
Target R  

,T) 
witch function controls the calls to  

nction routines at each simulation stage. 

 
Target_Classifier_S 
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 

rget_classifier_s(t,x,u,flagfunction [sys,x0,str,ts] = ta
atch the flag. The s% Disp

fu% S-
switch flag, 
     
    case 0 

 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization        
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    case 3 
      sys = mdlOutputs(u); % Calculate outputs 
       

, 4, 9 } 
      sys = []; % Unused flags 

  otherwise 
['Unhandled flag = ',num2str(flag)]); % Error handling 

======================================================  
unction mdlInitializeSizes initializes the states, sample  

============ 

. 
s = simsizes; 

States= 0; 
s.NumOutputs=    36; 

or with the sizes information. 
 = simsizes(sizes); 

herited sample time 
nd of mdlInitializeSizes. 

========= 

================== 
ction sys = mdlOutputs(u); 

rget_Classifier 

nction [sys]=target_classifier(u) 

  
  
    case { 1, 2
  
         
  
        error(
end; 
 
%========
% F
% times, state ordering strings (str), and sizes structure. 
%==================================================
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure
size
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDisc
size
sizes.NumInputs=     100; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vect
sys
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % In
% E
%=====================================================
% Function mdlOutputs performs the calculations. 
%============================================
fun
 
 
[sys]=target_classifier(u); 
 
 
% End of mdlOutputs. 
 
 
 
Ta
 
%Authored by Zachary Spritzer and Matthew Lechliter  
 
fu
 
 
TARGETS_OLD=u([1:36],1); 
TARGETS_OLD=reshape(TARGETS_OLD,4,9); 
 

 149



 

END_OF_PATH=u([37:45],1); 

ETS=u([46:54],1); 

ARGETS_REAL=u([55:90],1); 
e(TARGETS_REAL,4,9); 

00,1)); 

_complete=size(uav_complete,2); 
ction=0; 

ocation(SELECTED_TARGETS(uav_complete(1,i),1)); 
L(4,target_real_location); 

TS_REAL(4,target_real_location) < 4, 
REAL(4,target_real_location)=TARGETS_REAL(4,target_real_location)+1; 

      target_present=rand; 

arget %d (value %d) indentified as a target at time %d by UAV %d. \n',... 

 %d by UAV %d.',... 
S_REAL(3,target_real_location),clock,uav_complete(1,i))); 

d.\n',... 

      TARGETS_REAL(:,target_real_location)=0; 

  end 

GETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end 

ation),clock,uav_complete(1,i))); end 
  if action==4,  

on),clock,uav_complete(1,i))); 
      else 

RGETS_REAL(3,target_real_location),clock,uav_complete(1,i))); 

(sum(TARGETS_REAL))==0, 

 
SELECTED_TARG
 
T
TARGETS_REAL=reshap
 
target_location=u([91:99],1); 
 
clock=round(u(1
 
uav_complete=find(END_OF_PATH==1); 
nuav
a
for i=1:nuav_complete, 
    target_real_location=target_l
    action=TARGETS_REA
    if TARGE
        TARGETS_
    else 
        TARGETS_REAL(:,target_real_location)=0; 
    end 
    if action==1,  
  
        if target_present <= 1.1, 
            disp(sprintf('T
            target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));  
        else 
            disp(sprintf('Target %d (value %d) indentified as NOT a target at time
            target_real_location,TARGET
            disp(sprintf('Target %d has been removed from target status at time %
            target_real_location,clock)); 
      
        end 
  
    if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',... 
            target_real_location,TAR
    if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',... 
            target_real_location,TARGETS_REAL(3,target_real_loc
  
        target_destroyed=rand; 
        if target_destroyed <= 1.1, 
            disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',... 
                target_real_location,TARGETS_REAL(3,target_real_locati
  
            disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',... 
                target_real_location,TA
            TARGETS_REAL(4,target_real_location)=3; 
        end 
    end 
end 
 
if sum
    TARGETS_REAL(:,1)=[4 2 3 1]'; 
end 
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sys=reshape(TARGETS_REAL,36,1); 
 
 
 
Place_Waypoints_S 

Authored by Zachary Spritzer and Matthew Lechliter  

nts_s(t,x,u,flag,T) 
witch function controls the calls to  
ch simulation stage. 

  case 0 

dlOutputs(u); % Calculate outputs 
       

1, 2, 4, 9 } 

       
ise 

; % Error handling 
nd; 

===========================================  
 Function mdlInitializeSizes initializes the states, sample  

e ordering strings (str), and sizes structure. 
================= 

on [sys,x0,str,ts] = mdlInitializeSizes(T) 
 Call function simsizes to create the sizes structure. 

. 

gh=1; 

 the sizes information. 

ple time 
nd of mdlInitializeSizes. 

======================================== 
unction mdlOutputs performs the calculations. 

========================================== 
tion sys = mdlOutputs(u); 

 
%
 

nction [sys,x0,str,ts] =place_waypoifu
% Dispatch the flag. The s

 S-function routines at ea%
switch flag, 
     
  
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = m
  
    case { 
        sys = []; % Unused flags 
  
    otherw
        error(['Unhandled flag = ',num2str(flag)])
e
 
%===================
%
% times, stat
%=============================================
functi
%
sizes = simsizes; 
% Load the sizes structure with the initialization information
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    9*4+9; 
sizes.NumInputs=     9*4+9*4; 
sizes.DirFeedthrou
sizes.NumSampleTimes=1; 
% Load the sys vector with
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sam
% E
%======================
% F
%====================
func
 
 
[sys]=place_waypoints(u); 
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% End of mdlOutputs. 
 
 
 
Place_Waypoints 

Authored by Zachary Spritzer and Matthew Lechliter  

nction [sys]=place_waypoints(u) 

AVS=u([1:36],1); 

avs_existing=zeros(1,9); 

AVS(:,i)))~=0.26 

); 
0; 

rgets_location=zeros(1,9); 

um(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26 

s(sum(TARGETS_REAL(:,i)))>0  
g=n_targ+1; 

:n_uav 
 

olumn=find(A==B(1,size(B,2))); 
ARGETS(1,i) = TARGETS_REAL(1,Column(1,1)); 

,1)); 

ETS_REAL(4,Column(1,1)); 
      targets_location(1,i)=Column(1,1); 

; 

lse 

 
AL(:,i)))>0 

TARGETS_REAL(:,i); 
ets_location(1,counter)=i; 

  counter=counter+1; 

 
%
 
fu
 
U
UAVS=reshape(UAVS,4,9); 
 
 
u
for i=1:9 
    if abs(sum(UAVS(:,i)))>0 & abs(sum(U
        uavs_existing(1,i)=1; 
   end 
end 
 
TARGETS_REAL=u([37:72],1); 
TARGETS_REAL=reshape(TARGETS_REAL,4,9
n_uav=0;n_targ=
 
TARGETS=zeros(4,9); 
ta
for i=1:9 
    if abs(s
        n_uav=n_uav+1; 
    end 
    if ab
        n_tar
    end 
end 
 
if n_uav < n_targ 
    for i = 1
        A=TARGETS_REAL(3,:);
        B=sort(A); 
        C
        T
        TARGETS(2,i) = TARGETS_REAL(2,Column(1
        TARGETS(3,i) = TARGETS_REAL(3,Column(1,1)); 
        TARGETS(4,i) = TARG
  
        TARGETS_REAL(3,Column(1,1))=0
    end 
e
    counter=1; 
    for i=1:9
        if abs(sum(TARGETS_RE
            TARGETS(:,counter)=
            targ
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        end 
    end 
end 

  for i=1:(n_uav-n_targ) 

      Column=find(A==B(1,size(B,2))); 
S(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1)); 
S(2,n_targ+i) = i*.01+TARGETS_REAL(2,Column(1,1)); 

ETS(3,n_targ+i) = 0; 

n(1,i+n_targ)=Column(1,1); 
  end 

S,2))]; 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
if n_uav > n_targ 
  
        A=TARGETS_REAL(3,:); 
        B=sort(A); 
  
        TARGET
        TARGET
        TARG
        TARGETS(4,n_targ+i) = 0; 
        TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1)); 
        targets_locatio
  
end 
TARGETS=[TARGETS,zeros(4,9-size(TARGET
 
 
sys=[reshape(TARGETS,36,1);targets_location']; 
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Grid Related Functions 

g. The switch function controls the calls to  
ge. 

nitializeSizes(T); % Initialization 

alculate outputs 

, 9 } 
 Unused flags 

g)]); % Error handling 

==================================================  
 mdlInitializeSizes initializes the states, sample  

tate ordering strings (str), and sizes structure. 
========================================================== 
 [sys,x0,str,ts] = mdlInitializeSizes(T) 

 Call function simsizes to create the sizes structure. 
zes = simsizes; 

Times=1; 
the sizes information. 

0 = []; % No continuous states 
  
r = []; % No state ordering 

 sample time 

============================================================== 
n mdlOutputs performs the calculations. 

lanning_grid(u); 

 
Path_Planning_Grid_S 
 
%Authored by Zachary Spritzer  
 
function [sys,x0,str,ts] = path_planning_grid_s(t,x,u,flag,T) 
% Dispatch the fla
% S-function routines at each simulation sta
switch flag, 
 
   case 0 
     [sys,x0,str,ts] = mdlI
 
   case 3 
     sys = mdlOutputs(u); % C
 
   case { 1, 2, 4
     sys = []; %
 
   otherwise 
     error(['Unhandled flag = ',num2str(fla
end; 
 
%============
% Function
% times, s
%====
function
%
si
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    9*100*4+9; 
sizes.NumInputs=     36+36+30+60+1+1+9; 
sizes.DirFeedthrough=1; 
sizes.NumSample
% Load the sys vector with 
sys = simsizes(sizes); 
% 
x
%
st
%  

 = [T 0]; % Inheritedts
% End of mdlInitializeSizes. 
%
% Functio
%============================================================== 
function sys = mdlOutputs(u) 
 
[sys]=path_p
 
% End of mdlOutputs 
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Path_Planning_Grid 
 
%Authored by Zachary Spritzer  
 
function [out]=path_planning_grid(in) 
 
UAVS_long=in([1:36],1); 
UAVS_long=reshape(UAVS_long,4,9); 
TARGETS_long=in([37:72]); 
TARGETS_long=reshape(TARGETS_long,4,9); 

NES_long=in([73:102]); 

ots=in(164); 

 abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26 

AVS]=filter_zeros(UAVS_long,9); 
VS,2); 

d 

mp(2,:)]; 
arg=size(TARGETS,2); 

reats_existing=zeros(1,15); 
r i=1:15 

  if THREATS_long(3,i)~=0 

HREATS; 

ZO
ZONES_long=reshape(ZONES_long,3,10); 
THREATS_long=in([103:162]); 
THREATS_long=reshape(THREATS_long,4,15); 
TIME=in(163); 
n_pl
HEADING_ANGLE=in([165:173]); 
 
uavs_existing=zeros(1,9); 
for i=1:9 
    if
        uavs_existing(1,i)=1; 
   end 
end 
[U
n_uav=size(UA
 
targ_existing=zeros(1,9); 
for i=1:9 
    if TARGETS_long(3,i)~=0, 
        targ_existing(1,i)=1; 
   en
end 
[TARGETS_temp]=filter_zeros(TARGETS_long,9); 
TARGETS=[TARGETS_temp(1,:);TARGETS_te
n_t
 
[ZONES]=filter_zeros(ZONES_long,10); 
n_zones=size(ZONES,2); 
 
th
fo
  
        threats_existing(1,i)=1; 
   end 
end 
[THREATS]=filter_zeros(THREATS_long,15); 
n_threats=size(THREATS,2); 
 
ZONES_REAL=ZONES; 
THREATS_REAL=T
 
ZONES(3,:)=1.15*ZONES_REAL(3,:); 
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THREATS(3,:)=1.15*THREATS_REAL(3,:); 
 
 
 
 
split_seg=10; 
min_turn=1; 
sz_grid=20; 
[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES,THREATS,sz_grid); 

tored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE
,THREATS); 
hortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m

ask_allocation(totalcost,Shortened_Paths_x,Shortened_Path

av_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA
 

L,THREATS_long,uav_path_x,uav_path_y,n_plots,
isting,targ_existing,threats_existing); 

isp(sprintf('Path Planning ran at time %d. \n',round(TIME))); 

==round(TARGETS(1,j)*10) & 

zeros(9,100); 
y=zeros(9,100); 

av_time=zeros(9,100); 
av_alt=zeros(9,100); 

x,2); 

      selected_targets(i,1)=bestcomb(1,counter); 
      uav_x(i,[1:szpath])=uav_path_x(counter,:); 

th])=uav_path_y(counter,:); 

av_alt(i,[1:szpath])=altitude_uav(counter,:); 

  end 
 

mp=[]; 
r i=1:9; 

[s
S
[S
in_turn,split_seg,n_uav,n_targ,HEADING_ANGLE); 
[Selected_Paths_x,Selected_Paths_y]=mmkp_t
s_y,n_uav); 
[uav_path_x,u
VS,min_turn*2);
if n_plots~=0, 
    
plot_uav(UAVS_long,TARGETS_long,ZONES_REA
uavs_ex
end 
 
d
 
bestcomb=zeros(1,9); 
for i=1:n_uav, 
    for j=1:n_targ, 
        if round(Selected_Paths_x(end,i)*10)
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10) 
            bestcomb(1,i)=j; 
            break 
        end 
    end 
end 
 
%Making into vector 
uav_x=
uav_
u
u
selected_targets=zeros(9,1); 
szpath=size(uav_path_
counter=1; 
for i=1:9, 
    if uavs_existing(1,i)==1 
  
  
        uav_y(i,[1:szpa
        uav_time(i,[1:szpath])=time_uav(counter,:)+TIME; 
        u
        counter=counter+1; 
  
end
sys_te
fo
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    sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)]; 
nd 
ut=[sys_temp,selected_targets']; 

 
Grid_Gen 
 
%Authored by Zachary Spritzer  
 
function 
[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES,THREATS,sz_grid) 
 
%INPUTS: 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of t UAVs, and  
%the fourth row is the intial Velocity of the 
% 
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row 
%is the x position of the ta

the targets. 
 
ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first 
row is the x position of the no-fly zones, the second row is the y 
position of the no-fly zones, and the third row is the radius or range of 
the no-fly zones. 
 
THREATS - is a 4xn matrix where n is the number of Threats, the first row 
is the x position of the threats, the second row is the y position of the 
threats, the third row is the range of the threats, and the fourth row is 
the level of danger of the threats. 
 
OUTPUTS: 
 
all_pos - is a 2xn matrix where n is the number of unique voronoi points, 
uav points, and target points.  Where the first row is the x position and 
the second row is the y position of all of these unique points. 
 
all_lines_x - is a 2xn matrix where n is the number of all of the lines 
for the voronoi, uavs, and targets.  The first row is the ending point's  
x position for the nth line and the second row is the starting point's 
x position for the nthe line. 
 
all_lines_y - is a 2xn matrix where n is the number of all of the lines 
for the voronoi, uavs, and targets.  The first row is the ending point's  
y position for the nth line and the second row is the starting point's 
y position for the nthe line. 
 
all_costs - is a 1xn row where n is the number of all of the lines 
for the voronoi, uavs, and targets.  This row is the costs for all of the 

ax_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+10; 
AVS(1,:),ZONES(1,:),THREATS(1,:)])-10; 

e
o
 
 

he 
UAVs. 

rgets and the second row is the y position of 
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%lines of all_lines_x and all_lines_y 
 
m
min_x=min([TARGETS(1,:),U
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max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+10; 
(2,:),ZONES(2,:),THREATS(2,:)])-10; 

%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ting Grid points 

rid_x_pnts=min_x+(((max_x-min_x)*[0:(sz_grid-1)])/(sz_grid-1)); 
nts=min_y+(((max_y-min_y)*[0:(sz_grid-1)])/(sz_grid-1)); 

  vxyn(1,[(i-1)*sz_grid+1:(i-1)*sz_grid+sz_grid])=grid_x_pnts; 
rid+1:(i-1)*sz_grid+sz_grid])=ones(1,sz_grid)*grid_y_pnts(1,i); 

 Grid Lines 

ros(2,(sz_lines)*2); 
y=vx; 

rid-1)])=grid_x_pnts(1,[2:sz_grid]); 
_grid-1)])=grid_x_pnts(1,[1:(sz_grid-1)]); 

d_y_pnts(1,i); 
-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*grid_y_pnts(1,i); 

_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-

2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-

rid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-

2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-
grid-1)]); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
onnecting UAV's into grid  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ost_uav,uavx,uavy]=connect_vrn(vxyn',UAVS([1,2],:)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
vlines=size(vx,2); 
ne_cost_vrn=zeros(1,nvlines); 
r i=1:nvlines, 

x(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2); 
nd 

min_y=min([TARGETS(2,:),UAVS
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Generating Grid 
%%%%%%%
 
%Genera
vxyn=zeros(2,sz_grid^2); 
g
grid_y_p
for i=1:sz_grid, 
  
    vxyn(2,[(i-1)*sz_g
end 
 
%Generating
sz_lines=(sz_grid-1)*sz_grid; 
vx=ze
v
for i=1:sz_grid, 
    vx(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_g
    vx(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz
    vy(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*gri
    vy(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid
 
    vx(1,[(i-1)*((sz
1)*grid_x_pnts(1,i); 
    vx(2,[(i-1)*((sz_grid-1)*
1)*grid_x_pnts(1,i); 
    vy(1,[(i-1)*((sz_grid-1)*2)+(sz_g
1)*2])=grid_y_pnts(1,[2:(sz_grid)]); 
    vy(2,[(i-1)*((sz_grid-1)*
1)*2])=grid_y_pnts(1,[1:(sz_
     
end 
 
%%%%%%%%%%%%%%%%
%C
%%%%%%%%%%%%%%%%%%%%%
[line_c
 
%%%%%%%%%%%%%%%%%%%%%
%Connecting the targets into the grid 
%%%%%%%%%%%%%%%%%%%%%%%%%
[line_cost_targ,targx,targy]=connect_vrn(vxyn',TARGETS([1,2],:)); 
 
%
%Generation for grid line costs 
%
n
li
fo
    line_cost_vrn(1,i)=sqrt((v
e
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Stacking unique positions, lines for x and y, and costs of those lines 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ll_pos=[UAVS([1,2],:) vxyn([1,2],:) TARGETS([1,2],:)]; 

,:) targx([1,2],:)]; 
y([1,2],:)]; 
rn(1,:) line_cost_targ(1,:)]; 

%
%%%%%%%%%%%%%%%%%%%%%
a
all_lines_x=[uavx([1,2],:) vx([1,2]
all_lines_y=[uavy([1,2],:) vy([1,2],:) targ
all_costs=[line_cost_uav(1,:) line_cost_v
 
 
 
Visibility Related Functions 
 
Path_Planning_Vis_S 
 
%Authored by Zachary Spritzer  

th_planning__vis_s(t,x,u,flag,T) 
atch the flag. The switch function controls the calls to  

function routines at each simulation stage. 
itch flag, 

zeSizes(T); % Initialization 

 
s = mdlOutputs(u); % Calculate outputs 

 case { 1, 2, 4, 9 } 

 otherwise 
 ',num2str(flag)]); % Error handling 

==================================  
the states, sample  

ering strings (str), and sizes structure. 
=================================== 

izes structure with the initialization information. 
ContStates= 0; 

umDiscStates= 0; 
.NumOutputs=    9*100*4+9; 

zes.NumInputs=     36+36+30+60+1+1+9; 
zes.DirFeedthrough=1; 

; 
zes information. 

 
function [sys,x0,str,ts] = pa
% Disp
% S-
sw
 
   case 0 
     [sys,x0,str,ts] = mdlInitiali
 
   case 3
     sy
 
  
     sys = []; % Unused flags 
 
  
     error(['Unhandled flag =
end; 
 
%============================
% Function mdlInitializeSizes initializes 
% times, state ord
%===========================
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the s
sizes.Num
sizes.N
sizes
si
si
sizes.NumSampleTimes=1
% Load the sys vector with the si
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
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ts = [T 0]; % Inherited sample time 

=================================================== 
e calculations. 

================= 

ing_Vis_Graph 

pritzer  

:36],1); 
eshape(UAVS_long,4,9); 

ong=in([37:72]); 

ATS_long,4,15); 

); 
ANGLE=in([165:173]); 

sting=zeros(1,9); 

 & abs(sum(UAVS_long(:,i)))~=0.26 

]=filter_zeros(UAVS_long,9); 
v=size(UAVS,2); 

ng(1,i)=1; 

ARGETS_temp]=filter_zeros(TARGETS_long,9); 
ARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)]; 

GETS,2); 

nes=size(ZONES,2); 

s(1,15); 
r i=1:15 

  if THREATS_long(3,i)~=0 

% End of mdlInitializeSizes. 
%===========
% Function mdlOutputs performs th
%=============================================
function sys = mdlOutputs(u) 
 
[sys]=path_planning_vis_graph(u); 
 
% End of mdlOutputs. 
 
 
 
Path_Plann
 
%Authored by Zachary S
 
function [out]=path_planning_vis_graph(in) 
 
UAVS_long=in([1
UAVS_long=r
TARGETS_l
TARGETS_long=reshape(TARGETS_long,4,9); 
ZONES_long=in([73:102]); 
ZONES_long=reshape(ZONES_long,3,10); 
THREATS_long=in([103:162]); 
THREATS_long=reshape(THRE
TIME=in(163); 
n_plots=in(164
HEADING_
 
uavs_exi
for i=1:9 
    if abs(sum(UAVS_long(:,i)))>0
        uavs_existing(1,i)=1; 
   end 
end 
[UAVS
n_ua
 
targ_existing=zeros(1,9); 
for i=1:9 
    if TARGETS_long(3,i)~=0, 
        targ_existi
   end 
end 
[T
T
n_targ=size(TAR
 
[ZONES]=filter_zeros(ZONES_long,10); 
n_zo
 
threats_existing=zero
fo
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        threats_existing(1,i)=1; 

nd 
HREATS]=filter_zeros(THREATS_long,15); 

_threats=size(THREATS,2); 

=ZONES; 
HREATS_REAL=THREATS; 

ONES(3,:)=1.15*ZONES_REAL(3,:); 
S(3,:)=1.15*THREATS_REAL(3,:); 

lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES,THREATS,points); 
_y,all_costs,UAVS,TARGETS,ZO

paths,all_pos,ZONES,THREAT

,Shortened_Paths_x,Shortened_Path

v_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA
); 

av_path_x,uav_path_y,n_plots,

Making into vector 
os(9,100); 

   end 
e
[T
n
 
ZONES_REAL
T
 
Z
THREAT
 
split_seg=10; 

urn=1; min_t
points=8; 

_pos,all_[all
[stored_paths,totalcost]=cheapest_paths_vis(all_pos,all_lines_x,all_lines

S,THREATS); NE
 

d_[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng_vis(store
S,min_turn,n_uav,n_targ,HEADING_ANGLE); 

location(totalcost[Selected_Paths_x,Selected_Paths_y]=mmkp_task_al
,n_uav); s_y

[ua
VS,min_turn*2

_plots~=0, if n
    

,uplot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long
existing,targ_existing,threats_existing); uavs_

end 
 

(sprintf('Path Planning ran at time %d. \n',round(TIME))); disp
 
bestcomb=zeros(1,9); 
for i=1:n_uav, 

or j=1:n_targ,     f
        if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) & 
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10) 
            bestcomb(1,i)=j; 
            break 

      end   
    end 
end 
 
%
uav_x=zer
uav_y=zeros(9,100); 

,100); uav_time=zeros(9
uav_alt=zeros(9,100); 
selected_targets=zeros(9,1); 
szpath=size(uav_path_x,2); 
counter=1; 
for i=1:9, 
    if uavs_existing(1,i)==1 
        selected_targets(i,1)=bestcomb(1,counter); 
        uav_x(i,[1:szpath])=uav_path_x(counter,:); 
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        uav_y(i,[1:szpath])=uav_path_y(counter,:); 
        uav_time(i,[1:szpath])=time_uav(counter,:)+TIME; 

nter,:); 

; 

alt(i,:),uav_time(i,:)]; 

temp,selected_targets']; 

  

_lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES,THREATS,points); 

HREATS,2); 
ONES,2); 

ros(2,points*(n_threats+n_zones)); 

%%%%%%%%%%%%%%%%%%%%%%%%% 
erating all the points on each No-Fly Zone and Threat 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

zones, 
NES(3,i)*1.15*sin(t)+ZONES(1,i); 

ZONES(3,i)*1.15*cos(t)+ZONES(2,i); 
:(i-1)*points+points])=x'; 

  all_pos(2,[(i-1)*points+1:(i-1)*points+points])=y'; 

r i=1:n_threats, 
ATS(3,i)*1.15*sin(t)+THREATS(1,i); 

+THREATS(2,i); 
_pos(1,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=x'; 

  all_pos(2,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=y'; 
nd 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Adding UAV and Target positions into all_pos  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

) all_pos(1,:) TARGETS(1,:);UAVS(2,:) all_pos(2,:) TARGETS(2,:)]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Generating visibilty lines 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        uav_alt(i,[1:szpath])=altitude_uav(cou
        counter=counter+1; 
    end 
end 
sys_temp=[]
for i=1:9; 
    sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_
end 
out=[sys_
 
 
 
Vis_line_gen 
 
%Authored by Zachary Spritzer
 
function 
[all_pos,all
 
 
 
n_threats=size(T
n_zones=size(Z
n_uav=size(UAVS,2); 
n_targets=size(TARGETS,2); 
all_pos=ze
 
%%%%%%%%%%%%%%%%%%%%%%%%%%
%Gen
%%%%%%%%%
t=(1/points:1/points:1)'*2*pi; 
for i=1:n_
    x=ZO
    y=
    all_pos(1,[(i-1)*points+1
  
end 
 
fo
    x=THRE
    y=THREATS(3,i)*1.15*cos(t)
    all
  
e
 
%
%
%
all_pos=[UAVS(1,:
 
 
%%%%%%%%%%%%%%%%%
%
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ZONES_
n_zones_threats=size(ZONES_THREATS,2); 
a=1; 

THREATS=[ZONES([1:3],:) THREATS([1:3],:)]; 

r i=1:size(all_pos,2), 

1,i)-all_pos(1,j))^2)+((all_pos(2,i)-all_pos(2,j))^2)); 
hreats , 
ES_THREATS(1,k)-all_pos(1,i))^2)+((ZONES_THREATS(2,k)-

ll_pos(2,i))^2)); 
HREATS(2,k)-

); 
              if SN<SF & SN>0 
                  PC(1,k)=sqrt(SC^2-SN^2); 

                  if SC<FC 

          if PC(1,:)>ZONES_THREATS(3,:), 
); 

_y(1,a)=all_pos(2,j); 
ll_pos(2,i); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
isibilty lines 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Since there is an equal weight assigned to each line within a threat there 

ing a threat 
ill not how long a UAV is in the 

(all_lines_x,2); 
all_lines_x(1,i)-all_lines_x(2,i))^2+(all_lines_y(1,i)-all_lines_y(2,i))^2);  

st]=path_shrtng_vis(stored_paths,all_pos,ZONES,THREAT
av,ntarg,HEADING_ANGLE) 

fo
    for j=1:size(all_pos,2), 
        if i~=j, 
            SF=sqrt(((all_pos(
            for k=1:n_zones_t
                SC=sqrt(((ZON
a
                FC=sqrt(((ZONES_THREATS(1,k)-all_pos(1,j))^2)+((ZONES_T
all_pos(2,j))^2)); 
                SN=(SC^2+SF^2-FC^2)/(2*SF
  
  
                else 
  
                        PC(1,k)=SC; 
                    else 
                        PC(1,k)=FC; 
                    end 
                end 
            end 
  
                all_lines_x(1,a)=all_pos(1,j
                all_lines_x(2,a)=all_pos(1,i); 
                all_lines
                all_lines_y(2,a)=a
                a=a+1; 
           end 
        end 
    end 
end 
 
 
%%%%
%Generating straight line cost for v
%%%
%
%is no additional weighting needed for these lines since enter
%is associated with a probability of k
%threat's range. 
for i=1:size
    all_costs(1,i)=sqrt((
end 
 
 
 
Path_shrtng_vis 
 
%Authored by Zachary Spritzer  
 
function 
[Shortened_Paths_x,Shortened_Paths_y,totalco
S,min_turn,nu
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%INPUTS: 
% 
%stored_paths - is a mxn matrix where m is the number of uavs times the 

e longest path.  The first row 

ut by node numbers coming from 

n matrix where n is the number of unique voronoi points, 
 

 - is a 3xn matrix where n is the number of No-Fly Zones, the first 
s the x position of the no-fly zones, the second row is the y 

ition of the no-fly zones, and the third row is the radius or range of 
the no-fly zones. 

ATS - is a 4xn matrix where n is the number of Threats, the first row 

 - number of segments to Split the voronoi lines into for the  
ution 

AVs 

argets 

OUTPUTS: 

ere n is the length of the longest 
of UAVs multiplied by the number of targets.   

h uav at point n.  The element  
t n.  

totalcost - is a mxn matrix where m is the number of uavs and n is the 
 matrix 

 where n is the length of the longest 
Vs multiplied by the number of targets.   

he mth uav at point n.  The element  
 uav at point n.   

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
d_Pos_x=ones(szpths,nuav*ntarg); 
_Pos_y=ones(szpths,nuav*ntarg); 
_paths(:,szpths+1)=0; 

%number of targets and n is the length of th
%being the first path for the first uav and the last row being the last 
%path for the last uav. The paths are outp
%the implementation of dijkstra's algorithm. 
%  
%all_pos - is a 2x
%uav points, and target points.  Where the first row is the x position and
%the second row is the y position of all of these unique points. 
% 
%ZONES
%row i
%pos
%
% 
%THRE
%is the x position of the threats, the second row is the y position of the 
%threats, the third row is the range of the threats, and the fourth row is 
%the level of danger of the threats. 
% 
%min_turn - minimum turning radius for the UAVs 
% 
%split_seg
%purpose of a more near-optimal sol
%  
%nuav - number of U
% 
%ntarg - number of t
 
%
% 
%Shortened_Paths - is a nxmx2 matrix wh
%path and m is the number 
%The element (nxmx1) x position of the mt
%(nxmx2) y position of the mth uav at poin
%  
%
%number of possible paths for each uav.  The element (m,n) of this
%is the cost for the mth uav to take the nth path. 
% 
%Stored_Pos - is a nxmx2 matrix
%path and m is the number of UA
%The element (nxmx1) x position of t
%(nxmx2) y position of the mth
 
 
 
szpths=size(stored_paths,2); 
%%%%%%%%%%%%%%%%%
%Finding the corresponding x and y coordinates  
%%%%%%%%%%%%%%%%%
Store
Stored
stored
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for i=1:nuav*ntarg, 
in(find(stored_paths(i,:)==0)); 

ed_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))'; 
ed_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))'; 
ed_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))'; 
ed_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))'; 

d  

szpths,:); 
es(500,1)*Stored_Pos_y(szpths,:); 
_Pos_x;Shortened_Paths_x_end]; 

y;Shortened_Paths_y_end]; 

%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
i=1:nuav, 

ntarg, 
y(:,((i-1)*ntarg)+j)]=... 

  heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-
j)],min_turn,HEADING_ANGLE(i,1),72); 

ned_Paths_x_old=Shortened_Paths_x; 
ths_y_old=Shortened_Paths_y; 

ened_Paths_y=[]; 
r j=1:size(Shortened_Paths_x_old,1)-1, 

; 

ths_x(j,:)=Shortened_Paths_x_old(j,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%s
d_Paths_x,2); 

mcost=zeros(nuav*ntarg,1); 

ermcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)],THREATS); 

arg,nuav)'; 

    mnz=m
    Stor
    Stor
    Stor
    Stor
en
 

hortened_Paths_x_end=ones(500,1)*Stored_Pos_x(S
Shortened_Paths_y_end=on
Shortened_Paths_x=[Stored
Shortened_Paths_y=[Stored_Pos_
 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Adding initial path based on heading angle 
%%%%%%%
for 
    for j=1:
        [Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_
          
1)*ntarg)+
    end 
end 
 
 
Shorte
Shortened_Pa
Shortened_Paths_x=[]; 
Short
fo
    if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) & 
Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:), 
        Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:)
        Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
        break 
    else 
       Shortened_Pa
       Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:); 
    end 
end 
 
 
%%%%%%%%%%%%%
%Updating the Costs 
%%%%%%%%%%%%%%%%%%%%%%%%%
zsp_perm=size(Shortene
per
 
 
for z=1:szsp_perm, 
    [p
end 
totalcost=reshape(permcost,nt
 

 166



 

     
         
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Appendix E 
 

 and Destroy MATLAB Files  Search
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Path Planning Related Functions 
 
Path_Planning_Search_S 
 
%Authored by Zachary Spritzer  
 

ts]function [sys,x0,str,  = path_planning_search_s(t,x,u,flag,T) 

cture. 
============================ 

izes(T) 
es to create the sizes structure. 

tructure with the initialization information. 
States= 0; 

iscStates= 0; 
Outputs=    9*100*4+9; 

umInputs=     36+36+180*3+9+1+81+1; 
.DirFeedthrough=1; 

information. 

 = [T 0]; % Inherited sample time 

============================================================== 

================== 

]=path_planning_search(u); 

% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
 
   case 0 
     [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
 
   case 3 

tputs      sys = mdlOutputs(u); % Calculate ou
 
   case { 1, 2, 4, 9 } 
     sys = []; % Unused flags 
 
   otherwise 

Error handling      error(['Unhandled flag = ',num2str(flag)]); % 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes stru

========%==========================
] = mdlInitializeSfunction [sys,x0,str,ts

siz% Call function sim
sizes = simsizes; 

es s% Load the siz
ontsizes.NumC

Dsizes.Num
umsizes.N

.Nsizes
izess

sizes.NumSampleTimes=1; 
th the sizes % Load the sys vector wi

ys = simsizes(sizes); s
% 

% No continuous states x0 = []; 
  %

str = []; % No state ordering 
%  
ts
% End of mdlInitializeSizes. 
%
% Function mdlOutputs performs the calculations. 
%============================================
function sys = mdlOutputs(u) 
 
[sys
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Path_Planning_Search 
 
%Authored by Zachary Spritze
 

r  

=path_planning_search(in) 

ETS=reshape(in([37:72],1),4,9); 

,1)=UAVS(1,i); 
      Selected_paths_y(i,1)=UAVS(2,i); 
      for j=1:20, 

j,i)==0, 
2:100])=waypoints_x(j,i); 

              Selected_paths_y(i,[2:100])=waypoints_y(j,i); 

          end 

  end 

  num_target_visits=zeros(9,1); 

function [out]
 
UAV
TARG

S=reshape(in([1:36],1),4,9); 

uav_action=reshape(in([73:153],1),9,9); 
waypoints_x=reshape(in([154:333],1),20,9); 
waypoints_y=reshape(in([334:513],1),20,9); 
waypoints_checked=reshape(in([514:693],1),20,9); 
HEADING_ANGLE=in([694:702],1); 
n_plots=in(703,1); 
TIME=round(in(7
disp(sprintf('Path 

04,1)); 
Planning Search ran at %d. \n',TIME)) 

 uavs_existing=zeros(9,1);
for i=1:9, 
    if UAVS(3,i)~=0, 
        uavs_existing(i,1)=1; 
    end 
end 
 
targets_present=zeros(9,1); 
for
    i

 i=1:9, 
f TARGETS(4,i)~=0, 
  targets_present(i,1)=1;       

    end 
 end

n_targ=sum(targets_present(:,1)); 
 
Selected_paths_x=zeros(9,100); 
Selected_paths_y=zeros(9,100); 
 
%If no targets are present 
for i=1:9, 
    if uavs_existing(i,1)~
        Selected_paths_x(i

=0, 

  
  
            if waypoints_checked(
                Selected_paths_x(i,[
  
                break 
  
        end 
  
end 
 
 
%If targets are present     
if sum(targets_present(:,1))~=0, 
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    visit_target_costs=zeros(9,9); 
ths_x_temp=zeros(9*9,100); 

,100); 

1:9 
vs_existing(i,1)~=0, 

    Selected_paths_x_temp((j-1)*9+i,1)=UAVS(1,j);    
       Selected_paths_y_temp((j-1)*9+i,1)=UAVS(2,j); 

          Selected_paths_x_temp((j-1)*9+i,[2:100])=TARGETS(1,i);    
 Selected_paths_y_temp((j-1)*9+i,[2:100])=TARGETS(2,i); 

ths_x_temp((j-1)*9+i,:),Selected_paths_y_temp((j-1)*9+i,:)]=... 
              heading_angle_paths([Selected_paths_x_temp((j-1)*9+i,:);Selected_paths_y_temp((j-

        ,1,HEADING_ANGLE(j,1),72); 
                   
                    %Defining Costs 
                    for n=1:99, 
                        visit_target_costs(j,i)=visit_target_cos sqrt(((Selected_paths_x_temp((j-1)*9+i,n)-
Selected_paths_x_temp((j-1)*9+i,n+1))^2)+... 
                            ((Selected_paths_y_temp((j-1)*9+i, -Selected_paths_y_temp((j-1)*9+i,n+1))^2)); 
                    end  
                end 
            end  
            num_target_visits(i,1)=4-TARGETS(4,i); 
            visit_target_costs_temp=round(visit_target_costs*100); 
            uav_to_target=round(sort(visit_target_costs(:, )); 
            for k=1:num_target_visits(i,1); 
                if uav_action(j,i)==0, 
                    uav_assignment(find(visit_target_costs_t p(:,i)==uav_to_target(k)),1)=i; 
                end 
            end 
        end 
    end 
    for i=1:9, 
        if uav_assignment(i,1)~=0, 
            Selected_paths_x(i,:)=Selected_paths_x_temp i-1)*9+uav_assignment(i,1),:); 
            Selected_paths_y(i,:)=Selected_paths_y_temp((i-1)*9+uav_assignment(i,1),:); 
        end 
    end 
end 
 
[uav_path_x,uav_path_y,time_uav,altitude_uav]=path times(Selected_paths_x,Selected_paths_y,UAVS,0.
5,uavs_existing); 
time_uav=time_uav+ones(size(time_uav,1),size(time ,2))*TIME; 
if n_plots~=0, 
    plot_uav(UAVS,TARGETS,uav_path_x,uav_path_ ,n_plots,uavs_existing,targets_present); 
end 
 
 
sys_temp=[]; 
for i=1:9; 
    sys_temp=[sys_temp,uav_path_x(i,:),uav_path_y(i,:),altitude_uav(i,:),time_uav(i,:),uavs_existing(i,1)]; 

    Selected_pa
    Selected_paths_y_temp=zeros(9*9
    uav_assignment=zeros(9,1); 
     
    for i=1:9, 
        if targets_present(i,1)==1, 
            for j=
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end 
 
out=[sys_temp]; 
 
 
 
% End of mdlOutput
 
 
 
 
Path_Times 
 
%Authored by Zachary Spritzer  
 
function 
[uav_path_x,uav_pa _paths_y,UAVS,di
stpast,uavs_existing) 
% 
%INPUTS: 
% 
%Selected_paths_x - is a n*m matrix where n=9 and m=90 path length. 
% 
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the  
%initial x position of the UAVs, the second row is the initial y position 
%of the UAVs, the third row is the initial altitude of the UAVs, and  
%the fourth row is the intial Velocity of the UAVs. 
% 
% 
%OUTPUTS: 
% 
%uav_path_x - is a mxn matrix where m is the number of uavs and n
%length of the longest path. These are the x coordinates of the paths. 
% 
%uav_path_y - is a mxn matrix where m is the number of uavs and n is the 
%length of the longest path. These are the y coordinates of the paths. 
% 
%time_uav - is a mxn matrix where m is the number of uavs and n is
%length of the longest path. These values correspond to the time at w
%the uavs are at coordinates x and y in uav_path_x a uav_path_y. 
% 
%altitude_uav - is a mxn matrix where m is the numb of uavs and n is the 

hese values correspond to the altitudes that 
avs are at when they are at coordinates x and y in uav_path_x and 
ath_y. 

av_path_x=zeros(9,100); 
av_path_y=zeros(9,100); 

 

r i=1:9, 
    if uavs_existing(i,1)~=0, 
        for j=1:100, 
            if Selected_paths_x(i,j+1) == Selected_paths_x(i,j+2) & Selected_paths_y(i,j+1) == 
Selected_paths_y(i,j+2), 
                lst_pnt_x=Selected_paths_x(i,j+1); 
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                nxtlst_pnt_x=Selected_paths_x(i,j); 
                lst_pnt_y=Selected_paths_y(i,j+1); 
                nxtlst_pnt_y=Selected_paths_y(i,j); 
                dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2)); 
                last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts)); 
                last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distpast/dist_pnts)); 
                uav_path_x(i,[j+1:100])=last_x; 
                uav_path_y(i,[j+1:100])=last_y; 
                uav_path_x(i,j)=Selected_paths_x(i,j); 
                uav_path_y(i,j)=Selected_paths_y(i,j); 
                break 
            else 
                uav_path_x(i,j)=Selected_paths_x(i,j); 
                uav_path_y(i,j)=Selected_paths_y(i,j); 
            end 
        end 
    end 
end 
 
%Initializing matrixes 
time_uav=zeros(9,100); 
time_uav_temp=zeros(9,100); 
 
%Time matrix 
for i=1:9, 
    if uavs_existing(i,1)~=0, 
        for j=1:98, 
            if uav_path_x(i,j) == uav_path_x(i,j+1) & uav_path_y(i,j) == uav_path_y(i,j+1), 
                break 
             end    
             shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)-uav_path_y(i,j+1))^2); 
             time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i); 
         end 
      
        time_uav(i,[2:100])=sum(time_uav_temp(i,:)); 
         
        for j=2:100, 
            time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j); 
        end 
    end 
end 
time_uav=time_uav*1.01; 
 
%Altitude matrix 
altitude_uav=zeros(9,100); 
 
for i=1:9, 
    altitude_uav(i,:)=UAVS(3,i); 
end 
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Waypoint_Gen 
 
%Authored by Zachary Spritzer  
 
function 
[waypoint_x_pos,waypoint_y_pos,waypoint_pos_checked,waypoint_start]=waypoint_gen(UAVS,grid_lim
its,search_rad,n_uav) 
 
%Limits of the battlefield 
min_x=grid_limits(1,1); 
max_x=grid_limits(1,2); 
min_y=grid_limits(1,3); 
max_y=grid_limits(1,4); 
 
%Number of points equal to the in increments of the search radius of the 
%vehicles from min to max y 
gridypnts=min_y:search_rad*2:max_y; 
 
 
n_waypoints=2*ceil(size(gridypnts,2)/n_uav); 
 
waypoint_x_pos=zeros(9,n_waypoints); 
waypoint_y_pos=zeros(9,n_waypoints); 
waypoint_x_pos(1:n_uav,1)=min_x; 
waypoint_x_pos(1:n_uav,2)=max_x; 
n_points=0; 
n_uav_points=0; 
 
%Generating orignial x and y points 
while n_points<size(gridypnts,2), 
    for j=1:n_uav, 
        n_points=n_points+1; 
        if n_points>size(gridypnts,2),break;end 
        waypoint_y_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=ones(1,2)*gridypnts(1,n_points); 
        if n_uav_points>=1, 
            
waypoint_x_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=[waypoint_x_pos(j,n_uav_points*2),waypoint_
x_pos(j,n_uav_points*2-1)]; 
        end     
    end 
    n_uav_points=n_uav_points+1; 
end 
 
%Adding corners to the paths with the minimum turn radius 
waypoint_x_pos_temp=zeros(9,20); 
waypoint_y_pos_temp=zeros(9,20); 
for i=1:9, 
    n_temp_points=1; 
    for j=1:n_waypoints-1, 
        if (waypoint_x_pos(i,j) == waypoint_x_pos(i,j+1)) & (waypoint_y_pos(i,j) ~= 
waypoint_y_pos(i,j+1)), 
            waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j); 
            waypoint_y_pos_temp(i,n_temp_points)=waypoint_y_pos(i,j); 
            n_temp_points=n_temp_points+1; 
            if waypoint_x_pos(i,j) == min_x, 
                waypoint_x_pos_temp(i,n_temp_points)=min_x-((waypoint_y_pos(i,j+1)-waypoint_y_pos(i,j))); 
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                waypoint_y_pos_temp(i,n_temp_points)=((waypoint_y_pos(i,j+1)-
waypoint_y_pos(i,j))/2)+waypoint_y_pos(i,j); 
            else 
                waypoint_x_pos_temp(i,n_temp_points)=max_x+(waypoint_y_pos(i,j+1)-waypoint_y_pos(i,j)); 
                waypoint_y_pos_temp(i,n_temp_points)=((waypoint_y_pos(i,j+1)-
waypoint_y_pos(i,j))/2)+waypoint_y_pos(i,j); 
            end 
            n_temp_points=n_temp_points+1; 
            waypoint_x_pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_x_pos(i,j+1:n_waypoints); 
            waypoint_y_pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_y_pos(i,j+1:n_waypoints); 
        else 
            waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j); 
            waypoint_y_pos_temp(i,n_temp_points)=waypoint_y_pos(i,j); 
            n_temp_points=n_temp_points+1; 
        end 
    end 
end 
 
figure(102) 
hold on 
plot(waypoint_x_pos_temp(1,1:14),waypoint_y_pos_temp(1,1:14),'r') 
plot(waypoint_x_pos_temp(2,1:14),waypoint_y_pos_temp(2,1:14),'k') 
plot(waypoint_x_pos_temp(3,1:11),waypoint_y_pos_temp(3,1:11),'c') 
plot(waypoint_x_pos_temp(4,1:11),waypoint_y_pos_temp(4,1:11),'g') 
plot(waypoint_x_pos_temp(5,1:11),waypoint_y_pos_temp(5,1:11),'b') 
plot(waypoint_x_pos_temp(6,1:11),waypoint_y_pos_temp(6,1:11),'m') 
for i=1:6 
    plot(UAVS(1,i),UAVS(2,i),'b*'); 
end 
axis([-15 65 -5 55]) 
xlabel('Kilometers') 
ylabel('Kilometers') 
hold off 
 
waypoint_x_pos=waypoint_x_pos_temp; 
waypoint_y_pos=waypoint_y_pos_temp; 
waypoint_start=zeros(2,9); 
waypoint_start(1,:)=waypoint_x_pos(:,2)'; 
waypoint_start(2,:)=waypoint_y_pos(:,2)'; 
waypoint_start=reshape(waypoint_start,18,1); 
 
waypoint_x_pos_temp=reshape(waypoint_x_pos',20*9,1); 
waypoint_y_pos_temp=reshape(waypoint_y_pos',20*9,1); 
n_waypoints=size(waypoint_x_pos,2); 
waypoint_x_pos=zeros(20*9,1); 
waypoint_y_pos=zeros(20*9,1); 
waypoint_pos_checked=zeros(20,9); 
waypoint_pos_checked(1,:)=1; 
waypoint_pos_checked=reshape(waypoint_pos_checked,20*9,1); 
 
for i=1:9 
    waypoint_x_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_x_pos_temp((i-1)*n_waypoints+1:(i-
1)*n_waypoints+n_waypoints,1); 
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    waypoint_y_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_y_pos_temp((i-1)*n_waypoints+1:(i-
1)*n_waypoints+n_waypoints,1);  
end 
         
         
         
         
         
         
         
         
 
Target and Waypoint Related Functions 
 
UAV_Detect_Target_S 
 
%Authored by Zachary Spritzer  
 
function [sys,x0,str,ts] =uav_detect_target_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    36+81+1; 
sizes.NumInputs=     36+36+1+81; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
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str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
 
 
[sys]=uav_detect_target(u); 
 
% End of mdlOutputs. 
 
UAV_Detect_Target 
 
%Authored by Zachary Spritzer  
 
function [sys]=uav_detect_target(u) 
 
uav_pos=reshape(u([1:36],1),4,9); 
target_pos=reshape(u([37:72],1),4,9); 
target_pos_old=target_pos; 
clock=round(u(73,1)); 
uav_action=reshape(u([74:154],1),9,9); 
 
uavs_existing=zeros(9,1); 
for i=1:9, 
    if uav_pos(3,i)~=0, 
        uavs_existing(i,1)=1; 
    end 
end 
 
targets_present=zeros(9,1); 
for i=1:9, 
    if target_pos(1,i)~=0, 
        targets_present(i,1)=1; 
    end 
end 
 
for i=1:9, 
    if uavs_existing(i,1)~=0, 
        for j=1:9, 
            if targets_present(j,1)~=0, 
                dist_uav_target=sqrt(((uav_pos(1,i)-target_pos(1,j))^2)+((uav_pos(2,i)-target_pos(2,j))^2)); 
                if dist_uav_target < 1 & uav_action(i,j)==0, 
                    action=target_pos(4,j); 
                    if action==0, 
                        disp(sprintf('Target %d (value %d) indentified at time %d by UAV %d. \n',... 
                            j,target_pos(3,j),clock,i));  
                        target_pos(4,j)=1;  
                    end 
                    if dist_uav_target < 0.1 & uav_action(i,j)==0, 
                        if action==1,  
                            target_present=rand; 
                            if target_present <= .9, 
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                                disp(sprintf('Target %d (value %d) indentified as a target at time %d by UAV %d. \n',... 
                                    j,target_pos(3,j),clock,i));  
                                target_pos(4,j)=2;  
                            else 
                                disp(sprintf('Target %d (value %d) indentified as NOT a target at time %d by UAV 
%d.',... 
                                    j,target_pos(3,j),clock,i)); 
                                disp(sprintf('Target %d has been removed from target status at time %d.\n',... 
                                    j,clock)); 
                                target_pos(:,j)=0; 
                            end 
                        end 
                        if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV 
%d. \n',... 
                                j,target_pos(3,j),clock,i));  
                            target_pos(4,j)=3;     
                        end 
                        if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV 
%d. \n',... 
                                j,target_pos(3,j),clock,i));  
                            target_pos(4,j)=4;      
                        end 
                        if action==4,  
                            target_destroyed=rand; 
                            if target_destroyed <= .85, 
                                disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',... 
                                    j,target_pos(3,j),clock,i)); 
                                target_pos(:,j)=0; 
                            else 
                                disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. 
\n',... 
                                    j,target_pos(3,j),clock,i)); 
                                target_pos(4,j)=3; 
                            end 
                        end 
                    end  
                end  
            end 
        end 
    end 
end 
 
plan=(target_pos_old~=target_pos); 
replan=sum(sum(plan)); 
 
sys=[reshape(target_pos,36,1);replan;reshape(uav_action,9*9,1)]; 
             
 
UAV_Detect_Waypoints_S 
 
%Authored by Zachary Spritzer  
 
function [sys,x0,str,ts] =uav_detect_waypoints_s(t,x,u,flag,T) 
% Dispatch the flag. The switch function controls the calls to  
% S-function routines at each simulation stage. 
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switch flag, 
     
    case 0 
        [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization 
         
    case 3 
        sys = mdlOutputs(u); % Calculate outputs 
         
    case { 1, 2, 4, 9 } 
        sys = []; % Unused flags 
         
    otherwise 
        error(['Unhandled flag = ',num2str(flag)]); % Error handling 
end; 
 
%==============================================================  
% Function mdlInitializeSizes initializes the states, sample  
% times, state ordering strings (str), and sizes structure. 
%============================================================== 
function [sys,x0,str,ts] = mdlInitializeSizes(T) 
% Call function simsizes to create the sizes structure. 
sizes = simsizes; 
% Load the sizes structure with the initialization information. 
sizes.NumContStates= 0; 
sizes.NumDiscStates= 0; 
sizes.NumOutputs=    180*3+1; 
sizes.NumInputs=     36+180*3; 
sizes.DirFeedthrough=1; 
sizes.NumSampleTimes=1; 
% Load the sys vector with the sizes information. 
sys = simsizes(sizes); 
% 
x0 = []; % No continuous states 
%  
str = []; % No state ordering 
%  
ts = [T 0]; % Inherited sample time 
% End of mdlInitializeSizes. 
%============================================================== 
% Function mdlOutputs performs the calculations. 
%============================================================== 
function sys = mdlOutputs(u); 
[sys]=uav_detect_waypoints(u); 
% End of mdlOutputs. 
 
 
 
UAV_Detect_Waypoints 
 
%Authored by Zachary Spritzer  
 
function [sys]=uav_detect_waypoints(u) 
 
uav_pos=reshape(u([1:36],1),4,9); 
waypoint_x=reshape(u([37:216],1),20,9); 
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waypoint_y=reshape(u([217:396],1),20,9); 
waypoints_checked=reshape(u([397:576],1),20,9); 
waypoints_checked_old=waypoints_checked; 
 
for i=1:9, 
    for j=1:20, 
        if waypoints_checked(j,i) == 1, 
            dist_uav_waypoint=sqrt(((uav_pos(1,i)-waypoint_x(j+1,i))^2)+((uav_pos(2,i)-
waypoint_y(j+1,i))^2)); 
            if dist_uav_waypoint < .1, 
                waypoints_checked(j+1,i)=1; 
            end 
            break 
        end 
    end 
end 
                
plan=(waypoints_checked_old~=waypoints_checked); 
replan=sum(sum(plan)); 
       
sys=[reshape(waypoint_x,180,1);reshape(waypoint_y,180,1);reshape(waypoints_checked,180,1);replan]; 
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