
Graduate Theses, Dissertations, and Problem Reports

2004

Comparison of path-planning and search methods for Comparison of path-planning and search methods for

cooperating unmanned aerial vehicles cooperating unmanned aerial vehicles

Zachary Wilson Spritzer
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Spritzer, Zachary Wilson, "Comparison of path-planning and search methods for cooperating unmanned
aerial vehicles" (2004). Graduate Theses, Dissertations, and Problem Reports. 1463.
https://researchrepository.wvu.edu/etd/1463

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1463?utm_source=researchrepository.wvu.edu%2Fetd%2F1463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Comparison of Path-Planning and Search Methods
For Cooperating Unmanned Aerial Vehicles

Zachary Wilson Spritzer

Thesis Submitted to the
College of Engineering and Mineral Resources

at West Virginia University
In Partial Fulfillment of the Requirements

For the Degree of

Master of Science
in

Aerospace Engineering

Marcello Napolitano, Ph. D., Chair
Gary Morris, Ph. D.
Jacky Prucz, Ph. D.

Department of Mechanical and Aerospace Engineering
Morgantown, West Virginia

2004

Keywords: Unmanned Aerial Vehicles, Path Planning, Task Allocation

Abstract

Comparison of Path-Planning and Search Methods for Unmanned Aerial Vehicles

Zachary W. Spritzer

 The main goal of this research effort is develop a simulation environment for
cooperating UAVs within MATLAB’s SIMULINK. This is the first step in a process
that will eventually lead to the implementation of model UAVs on a model battlefield.
The interest in cooperation of UAVs over the past decade has grown significantly. This
is due to several reasons including lower operational cost, lower risk for humans, and
greater maneuverability.

This research explores two scenarios. The first is a scenario in which all of the
characteristics of a battlefield are known prior to the UAVs being launched. Three
prevalent path-planning methods are compared based on calculation speed and
optimization. This thesis shows that a visibility graph method leads to the lowest cost
solution, while the Voronoi diagram method provides a computationally inexpensive
solution.

The second scenario is a search and destroy mission where nothing is known
about the battlefield prior to UAVs launch. This will consist of the vehicles visiting a set
of predetermined waypoints until a target is found. The result of this research produces a
simulation of cooperating UAVs that shows the potential of fulfilling many realistic
missions in a battlefield environment.

Acknowledgements

 I would like to thank everyone that has made this document possible. Most

importantly I like to thank my family, Nancy and Mark, which have helped me

tremendously. Also, I would like to thank my girlfriend Cortney who helped me through

the long nights. To my friends graduate school has been an interesting journey thanks for

making it fun and to the Dave Matthews Band for giving me something good to listen to

while working.

 I would like to thank my committee chair Dr. Marcello Napolitano for all of his

guidance and help over the last several years; it has proved to be invaluable. I also would

like to also thank my committee members Dr. Jacky Prucz and Dr. Gary Morris for their

assistance.

 Finally, I would like to thank everyone that I’ve worked with over the course of

the last year and half in the aerolab Matt Lechliter, Jennifer Hazelton, and Srikanth

Gururajan, and to the people upstairs Elena Lucci, Dr. Giampero Campa, Dr. Mario

George Perhinschi, and Dr. Brad Seanor. Thank you.

 iii

Table of Contents
Title Page i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Tables v
List of Figures vi
Nomenclature ix
Chapter 1: Introduction to Cooperating UAVs

1.1 History of UAVs 1
1.2 Research Objectives 3

Chapter 2: Literary Review
2.1 Review of Path-Planning and Task Allocation Methods 8
2.2 Review of Search Methods 14

Chapter 3: The Path-Planning and Task Allocation Process
3.1 Path Generation and Path Selection 17
3.2 Path Refinement and Task Allocation 26

Chapter 4: Implementation of Six Degree of Freedom Aircraft Dynamics
4.1 General Overview of Aircraft Dynamics 34
4.2 Implementation of Heading Angle Control Scheme 41

Chapter 5: Development of a SIMULINK scheme for Cooperating UAVs
5.1 Implementation of the Path-Planning Process 45
5.2 Management of the No-Fly Zones and Threats 48
5.3 Management of the UAVs and Targets 50

Chapter 6: Comparison with Other Available Path Generation Methods
6.1 Implementation of Grid and Visibility Graph 52
6.2 Comparison of the Path Generation Methods 57

Chapter 7: Discussion and Implementation of Search Scheme in SIMULINK
7.1 Theoretical Approach 85
7.2 Implementation and Discussion of Search Scheme 91

Chapter 8: Conclusions and Recommendations
8.1 Conclusions 95
8.2 Recommendations 97

References 98
Appendix A - Path-Planning and Task Allocation MATLAB Files 102
Appendix B - Stability Derivatives 131
Appendix C - Simulation Implementation MATLAB Files 134
Appendix D - Grid and Visibility Graph MATLAB Files 154
Appendix E - Search and Destroy MATLAB Files 167

 iv

List of Tables

Table 1.2.1 – List of different threats used 4

Table 6.2.1 – Total simulation time for possible path generation methods 57

Table 6.2.2 – Current actions for path generation methods 60

Table 6.2.3 – Time when replan is signaled for path generation methods 60

Table 6.2.4 – Actual replan calculation times for path generation methods 61

Table 6.2.5 – Replan current total cost for path generation methods 61

 v

List of Figures

Figure 3.1.1 – Locations of the threats and no-fly zones 18

Figure 3.1.2 – Delaunay triangulation and the corresponding Voronoi point 18

Figure 3.1.3 – Complete Voronoi diagram 19

Figure 3.1.4 – Complete Voronoi diagram with UAVs and targets 20

Figure 3.1.5 – Voronoi line passing through a no-fly zone’s radius 22

Figure 3.1.6 – Voronoi line passing through a threat’s range 23

Figure 3.1.7 – Dijkstra’s algorithm selected paths from each UAV to each target 24

Figure 3.2.1 – Example of a shortened path 28

Figure 3.2.2 – Example of the filleted corner of a path 29

Figure 3.2.3 – Example of a heading angle correction 30

Figure 3.2.4 – Allocated tasks for each UAV to visit each target 33

Figure 4.1.1 – Aircraft body axis forces and moments 35

Figure 4.1.2 – Translation from the earth axis to the body axis 37

Figure 4.1.3 – Polar axis transformation for equations of motion 38

Figure 4.2.1 – Aircraft dynamics user interface 42

Figure 4.2.2 – The aircraft simulator control system 42

Figure 4.2.3 – The heading angle control scheme 43

Figure 4.2.4 – The autopilot control block 43

Figure 4.2.5 – The turn generator block 44

Figure 5.1.1 – Main block diagram for cooperating UAVs 45

Figure 5.1.2 – Path planning s-function implementation 46

Figure 5.1.3 – Look-up table SIMULINK block 47

 vi

Figure 5.2.1 – Block comparing UAV positions to no-fly zone positions 48

Figure 5.2.2 – Block comparing UAV positions to threat positions 49

Figure 5.2.3 – Threat manager 49

Figure 5.3.1 – UAVs manager 50

Figure 5.3.2 – Targets classifier SIMULINK block 51

Figure 5.3.3 – Targets manager 52

Figure 5.3.4 – Add waypoints SIMULINK block 53

Figure 5.3.5 – Signal replan SIMULINK block 53

Figure 6.1.1 – Grid path generation 55

Figure 6.1.2 – Visibility graph path generation 55

Figure 6.2.1 – Initial conditions of the battlefield 58

Figure 6.2.2 – 1st replan of the simulation for all three methods 62

Figure 6.2.3 – 2nd replan of the simulation for all three methods 63

Figure 6.2.4 – 3rd replan of the simulation for all three methods 64

Figure 6.2.5 – 4th replan of the simulation for all three methods 65

Figure 6.2.6 – 5th replan of the simulation for all three methods 66

Figure 6.2.7 – 6th replan of the simulation for all three methods 67

Figure 6.2.8 – 7th replan of the simulation for all three methods 68

Figure 6.2.9 – 8th replan of the simulation for all three methods 69

Figure 6.2.10 – 9th replan of the simulation for all three methods 70

Figure 6.2.11 – 10th replan of the simulation for all three methods 71

Figure 6.2.12 – 11th replan of the simulation for all three methods 72

Figure 6.2.13 – 12th replan of the simulation for all three methods 73

 vii

Figure 6.2.14 – 13th replan of the simulation for all three methods 74

Figure 6.2.15– 14th replan of the simulation for all three methods 75

Figure 6.2.16 – 15th replan of the simulation for all three methods 76

Figure 6.2.17 – 16th replan of the simulation for all three methods 77

Figure 6.2.18 – 17th replan of the simulation for all three methods 78

Figure 6.2.19 – 18th replan of the simulation for all three methods 79

Figure 6.2.20 – 19th replan of the simulation for all three methods 80

Figure 6.2.21 – 20th replan of the simulation for all three methods 81

Figure 6.2.22 – 21st of the simulation for all three methods 82

Figure 6.2.23 – Log of the simulation for the grid method 83

Figure 6.2.24 – Log of the simulation for the Voronoi Diagram method 83

Figure 6.2.25 – Log of the simulation for the visibility graph method 84

Figure 7.1.1 – Search control scheme in SIMULINK 86

Figure 7.1.2 – Serpentine search pattern 87

Figure 7.1.3 – Detect targets and waypoints SIMULINK block 88

Figure 7.1.4 – Path planning SIMULINK block 89

Figure 7.2.1 – 1st replan for search simulation 91

Figure 7.2.2 – 2nd replan for search simulation 92

Figure 7.2.3 – 3rd replan for search simulation 92

Figure 7.2.4 – 4th replan for search simulation 93

Figure 7.2.5 – 5th replan for search simulation 93

Figure 7.2.6 – 6th replan for search simulation 94

Figure 7.2.7 – Log for search simulation 94

 viii

Nomenclature

English Units Description

Ji - Total cost for line i

Ji,t - Threat cost for line i

Ji,f - Fuel cost of line i

Li - Length of line i

k - Weighting factor

V - Number of vertices in Voronoi diagram

E - Number of edges in Voronoi diagram

v1 - Starting vertex in Dijkstra’s Algorithm

v2 - Finishing vertex in Dijkstra’s Algorithm

maxv m/s Maximum speed

f N Maximum g force for the aircraft

J - Total cost in MMKP algorithm

cj - Cost of choice j

xj - Binary decision variable

Vij - Vehicle constraint

wi - Vehicle constraint value

pi - Probability of kill of threat

w - Weighting factor of threat

x km X position of object

y km Y position of object

d km Distance of a line

 ix

ds,c km Distance start of line to center of threat

df,c km Distance finish of line to center of threat

ds,f km Distance start to finish of line

ds,n km Distance parallel to threat

dp km Distance closest point on line

CostM - Mission Cost

CostC - Current Cost

NV - Number of vehicles

FAX N Force along the x axis

FAY N Force along the y axis

FAZ N Force along the z axis

LA Nm Moment around the x axis

MA Nm Moment around the y axis

NA Nm Moment around the z axis

m kg Mass of aircraft

U m/s Velocity along x axis

V m/s Velocity along y axis

W m/s Velocity along z axis

P m/s Velocity around x axis

Q m/s Velocity around y axis

R m/s Velocity around z axis

gx N Gravity along x axis

gy N Gravity along y axis

 x

gz N Gravity along z axis

IXX N/m2 Moment of inertia x axis

IYY N/m2 Moment of inertia y axis

IZZ N/m2 Moment of inertia z axis

IXZ N/m2 Product of inertia x and z

IXY N/m2 Product of inertia x and y

IYZ N/m2 Product of inertia y and z

q N/m2 Local dynamic pressure

S m2 Area

Greek Units Description

ω km Maximum turn rate of vehicle

ϕ degrees Euler angle for heading

θ degrees Euler angle for pitch

φ degrees Euler angle for bank

α degrees Angle of attack

β degrees Sideslip angle

Aδ degrees Aileron deflection angle

Rδ degrees Rudder deflection angle

Eδ degrees Elevator deflection angle

 xi

Chapter 1

Introduction to Cooperating UAVs

1.1 - Introduction to Unmanned Aerial Vehicles

As technology grows, it is apparent that the use of Unmanned Aerial Vehicles

(UAVs) will serve a larger purpose in military forces. The first UAV was developed in

the 1960s as a supplement to the U-2 spy plane. The military program for this UAV was

called Compass Arrow; the military designation for this aircraft was AQM-91A. Project

Compass Arrow led to the development of an aircraft that had the capability to operate

for two hours at 85,000 ft while maintaining subsonic speeds around Mach 0.8. This

flight envelope gave the vehicle the ability to survive against threats such as anti-aircraft

fire. Like many of the unmanned military aircraft of the 1960s, the AQM-91A was

launched from a DC-130 aircraft and recovered by parachute1. In the 1970s, the military

began to fund programs that would lead to vehicles with a larger flight envelope and

operational time, which lead to the end of the Compass Arrow project in 1973. The trend

of large high altitude UAVs continued into the 1980s including Boeing’s Condor that

boasted a gross weight of 16,000 lbs with the capability to operate for over 50 hours at an

altitude of 65,000 ft.

The Department of Defense changed the trend of large UAVs in the late 1980s by

establishing the UAV Joint Project Office (JPO). This shifted the focus to the

development of small, low altitude, and low cost UAVs. It was clear that the UAV JPO’s

objective was to give UAVs global acceptance as a low cost disposable aircraft. These

new smaller UAVs were designed to replace larger manned aircraft in a battlefield

 1

environment. This led to projects such as the RQ-2 Pioneer, which was used in the 1990s

in Operation Desert Storm2. The RQ-2 Pioneer was used primarily for target

identification and battle damage assessment. It proved to be a great resource instead of

using manned aircraft because the Pioneer benefited from lower operational cost and

higher pilot safety.

As the advantages of using these vehicles for battlefield applications became more

apparent, several other UAVs were developed including the RQ-1 Predator and the RQ-4

Global Hawk. The Predator played an important role in Bosnia as a reconnaissance and

surveillance platform2. Both the Predator and the Global Hawk have been invaluable

resources in recent conflicts such as Operation Enduring Freedom in Afghanistan and

Operation Iraqi Freedom in Iraq. In recent years, the military has been developing

several UAV programs that call for the aircraft to perform more tasks on the battlefield.

Some of these programs include the modification of the Predator into a search and

destroy aircraft, the Boeing X-45, and the Northrop Grumman X-47, which are all being

designed as Unmanned Combat Air Vehicles (UCAVs).

Some of the many advantages UAVs posses over manned aircraft are excellent

maneuverability, lower operational cost, large weight savings, dramatically lower human

risk, and an opportunity to achieve superior coordination3. With the role of UCAVs

becoming larger in the military, some of the missions they have the potential of achieving

are the following:

• Reconnaissance

• Communication Jamming

• Suppression of Enemy Air Defenses

 2

• Missile Defense

• Fixed/Moving Target Attack

• Air-to-air Combat

• Search and Destroy

It is evident that the implementation of multiple UAVs on a battlefield to complete

these missions has tremendous potential. In addition to the vehicles becoming

exceedingly complex, these tasks must be accomplished using superior coordination.

Clearly, as UAVs and UCAVs take larger roles on the battlefield an enhanced level of

control is required to operate these aircraft.

1.2 - Research Objectives

 Along with the growing technology of UAVs comes the need to control and

coordinate these vehicles. There are two main objectives of this research; the first is the

development of a control scheme for a group of cooperating UAVs in a hostile

environment and the second is the development of a control scheme for a group of

cooperating UAVs in a search and destroy environment. The design and simulation of

both objectives have been performed using Mathworks’ SIMULINK environment in

MATLAB. The first objective is using a hostile environment that implies a given number

of conditions on the battlefield are known prior to launch. In the second objective a

search and destroy environment is used in which the only knowledge about the battlefield

is its area.

 For the purposes of this research a hostile environment is defined as a battlefield

that includes several no-fly zones, threats, targets, and UAVs. No-fly zones can be

 3

political boundaries or physical boundaries such as mountains, which are modeled as a

half-sphere with known location and radius. In this application the threats are considered

to be a variety of surface-to-air missiles (SAM) and an anti-aircraft artillery weapon; the

specifications for these are shown in Table 1.2.117. The locations, ranges, and probability

of kill for each threat are known.

Table 1.2.1 – List of different threats used

Threat Name Threat Description Threat Range Probability of Kill

KS-19 100 mm Anti-Aircraft Artillery 4000 ft 40%
SA-7 Grail Shoulder Fired SAM 5000 ft 50%

Crotale Rattlesnake Vehicle Fired SAM 10000 ft 80%
V-75 SA-2 Guideline Vehicle Fired SAM 30000 ft 80%

 The targets are a point on the battlefield with known location and value. The value

of a target can be in the range of 1-100, which is dependent on how valuable the target is

to mission completion. A target can be various areas of interest such as buildings or

enemy camps. In addition to the initial conditions of the battlefield described above, the

initial location, speed, and heading angle of each UAV are also known. The objective of

cooperating UAVs in a hostile environment is to minimize the mission completion time

while maximizing the probability of mission completion. Many different algorithms for

the simulation of cooperating UAVs have been developed with this main

objective3,6,7,10,13,15.

 There are several steps involved in solving the cooperating UAVs problem. The

first step is the generation of possible paths for the UAVs to follow in order to reach the

targets. Several methods for the generation of these paths has been tried including the

use of Delaunay triangulation or Voronoi diagrams7,9,13, a grid7, and a visibility graph5,6,8.

 4

A Voronoi diagram is constructed based solely on the locations of the threats and no-fly

zones. The grid method involves the overlaying of a grid onto the battlefield. In contrast

to both of these methods a visibility graph is based on the ranges of the threats and radii

of the no-fly zones. Typically, the next step is assigning costs to all of these paths. In

this case there are two costs assigned to each path. The first is the fuel cost, which is

calculated as the Euclidian distance of each path10. The second is the cost associated with

threat risk that is based on whether the path travels inside a threat’s range or a no-fly

zone’s radius. In this research if a path travels through a threat’s range a cost

proportional to that threat’s probability of kill is added to the path, also if a path travels

through a no-fly zone’s radius a cost of infinity is assigned to that particular path.

 After costs for all of the paths are assigned, a lowest cost path must be selected for

each permutation of UAV to target. This is accomplished through the use of a directed

graph search algorithm such as Dijkstra’s algorithm7,13. In a directed graph each segment

of the graph has a starting point and an ending point. After all of the lowest cost paths

have been selected for each UAV to travel to each target, they must be transformed into

flyable paths. This is needed in order to give an accurate representation of the limitations

that each UAV faces due to the dynamics of each aircraft. The final step in this process

is to assign tasks for each UAV to perform or which target each UAV should visit. This

problem was formulated as a Multi-Dimensional Multiple-Choice Knapsack

Problem5,6,8,11 (MMKP). The MMKP algorithm assigns each UAV a task leading to the

global optimal solution for the cost of the mission.

 The second objective of this research is the simulation of cooperating UAVs in a

search and destroy environment. A search and destroy environment is defined such that

 5

nothing is known except the area to be searched and the starting position of the UAVs.

This type of mission has been researched by many people18-24. The process can be

broken down into two main steps. The first step is assigning waypoints to each vehicle

so that each UAV searches the given area in a serpentine pattern23. This pattern is used

because nothing about the battlefield is known prior to launch. This is referred to as a

random search in which no area in the battlefield is preferred over another20. After the

waypoints for each UAV are defined, the area is then searched until a UAV detects a

target.

 The second step in this process is to assign UAVs to perform tasks on the targets as

they are found. This is formulated as a market-based bidding procedure, which performs

the task assignment22. In this procedure, after a target is detected every vehicle provides

an estimate of the cost to visit the target. The vehicles with the lowest estimated costs are

selected to visit the detected target.

 As the case in both of the objectives, several tasks need to be performed on the

targets. After a potential target is identified or detected, it needs to be classified as a

target or not a target. If it is classified as a target, it must be destroyed by a vehicle. In

order to determine if the target has been destroyed a battle damage assessment (BDA)

must be performed. After all of the necessary tasks are preformed on the targets the

UAVs are then free to visit other lower value targets or search the rest of the battlefield

until another target is found or the entire area has been searched.

 These two objectives must be implemented using the SIMULINK environment in

MATLAB for the purpose of incorporating six degree of freedom aircraft dynamics.

SIMULINK provides an extremely proficient environment to simulate dynamic systems,

 6

which is especially important given these two objectives. In both circumstances the need

to simulate dynamic changes in the environment is desired. Some of which are the

changing of target states and the addition or subtraction of vehicles, threats, and targets.

In addition, MATLAB provides an excellent coding interface similar to C++ and other

computer languages, but it is designed in a math-oriented environment. This leads to an

easier and more user-friendly way to simulate the desired system. Aside from MATLAB

being a math oriented environment, the program is preloaded with many mathematical

programming functions, which proves very beneficial to the research objectives of this

project.

 7

Chapter 2

Literary Review

2.1 - Review of Path-Planning and Task Allocation Methods

 There have been several research efforts that take the approach in which everything

about a battlefield is known prior to the launch of the UAVs. This has led to many

different approaches by researchers to solve this problem. In general, the problem is the

development of a path-planning algorithm with integrated task allocation. This algorithm

must compute a trajectory from the UAV’s present location to a desired future location7.

In order for a path-planning algorithm to be optimal, it must yield the optimal path for

each UAV to travel while accounting for two extremely important factors. These paths

must be stealthy to avoid known enemy threat locations. Also, they must be of minimal

length to minimize the cost of the mission and the time in enemy territory. This

algorithm must be coded with software that can be executed on an airborne processor7.

 Much research has been done in this area especially with the use of Delaney

triangulation or Voronoi diagrams7,9,13. In this research a Voronoi diagram is created

based solely on the locations of static threats. This method yields paths that are optimal

between previously known threats. For every three threats a Delaunay triangulation is

calculated, which forms a circle that passes through these three points. The center of the

circle that is created is called a Voronoi point7. After all of the Voronoi points in the

battlefield are defined, lines are drawn connecting these points. These points are only

connected if their Delaunay triangle shares a common edge. This process forms a graph

of connected lines called a Voronoi diagram. In order to generate paths for the UAVs to

 8

travel they must be connected into the diagram using the three closest nodes13. In

addition, the targets are connected into the graph in the same fashion.

 After all of the lines in the diagram have been defined, the cost of traveling along

those lines must be assigned. The cost associated with each particular line consists of

two components, which are the threat proximity cost and the fuel cost9. This leads to the

total cost for the line i, Ji, shown in the following equation

fitii JJJ ,, += (2.1.1)

where Ji,t is the threat cost and Ji,f is the fuel cost of the line i. The threat cost is

calculated by finding the exposure of each line to enemy radar and is given by the

expression13

∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
++=

N

j jijiji
iit ddd

LJ
1 ,,

6
54

,,
2
14

,,
6
14,

111 (2.1.2)

where N is the number of threats, 1/d4 is the strength of a UAV’s radar signature, which

is calculated at the 1/6, 1/2, and 5/6 point along each line, and Li is the length of each

line. The fuel cost is simply calculated as the length of each line, Li. These two costs

yield a final line cost13

fitii JkJkJ ,,)1(* −+= (2.1.3)

where k is between 0 and 1, which allows the total cost to be weighted toward a stealthy

mission or a low fuel cost mission.

 After the costs of each line in the diagram have been assigned, a graph search

method such as Dijkstra’s algorithm can be used to find the lowest cost path from one

point to any other point in the diagram. If ‘V’ is the number of vertices in the diagram

and ‘E’ is the number of edges or lines, then the complexity of solving the algorithm is

 9

O(V log(V) + E)7. In order to use the algorithm the graph must be a weighted and

directed graph, which requires all of the lines to be assigned a positive cost and a

direction. After all of the lines are assigned costs and directions, the lowest cost path

from one point to another point can be found. The main concept of Dijkstra’s algorithm

is to change temporary labels associated with vertices to permanent labels, which gives

the lowest cost path from a source vertex to another vertex in the graph25. The

application of Dijkstra’s algorithm from source vertex v1 to another vertex v2 is outlined

below:

Algorithm 2.1.1

 1. Set , ()1vP = ()1vVT −= , () 01 =vd , () 02 =vpred , () njcjd =

 2. Do for all () Ajv ∈,2

 for other vertices, () ∞=jd () 1vjpred =

 3. Do while VP ≠

 choose the minimum Ti∈ ,):)(min()(Tjjdid ∈=

 4. Update P, and T

 ,)(iPP U=)(iTT −=

 5. Update temp labels, for all)(iAj∈

))(),(min()(ijcidjdjd += , set () ijpred =

 6. Go back to step 3

 7. Go back to step 2

Dijkstra’s algorithm is a time efficient and effective way to search a given directed graph

for the lowest cost path from a starting point to any other point in the graph. In this

application the algorithm is used to find the lowest cost path for each permutation of

 10

UAV to target. Given that these paths are the lowest cost, they are neither the shortest

possible path nor the safest possible path13.

 Once these paths have been selected, the dynamic constraints for the aircrafts must

be implemented in order to give an accurate estimation of each path. This step is referred

to as ‘path refinement’ or ‘trajectory generation’. In order to simplify the model of the

UAV dynamics the following assumptions are made by Bortoff7.

• Each UAV flies at a constant altitude.

• Each UAV flies at a constant speed.

The constant altitude assumption is used to simplify the numerical complexity of the

path-planning problem. The second assumption is made for the purpose of simplifying

the calculations involved to find the length of each path. Using this assumption the path

length can be estimated using Cartesian coordinates. Both of these assumptions are

reasonable and simplify the complexity of the problem a great deal.

 Richards states in a similar manner the aircraft is modeled as a point mass moving

in a 2-D environment6. Although the aircraft can be modeled as a point mass, several

other considerations must be taken into account. One such consideration is the maximum

turning rate of the aircraft, which is given in equation 2.1.4.

maxv
f

=ω (2.1.4)

where vmax is the maximum velocity of the aircraft and f is the force applied to the

aircraft. Considering these factors a flyable path is constructed for each UAV, in order to

follow the dynamic constraints of the aircraft such as maintaining an acceptable turning

rate and appropriate airspeed to avoid stall conditions. This flyable path is given by a set

 11

of points along which the UAV is assigned to travel. This path is then assigned an

updated cost based on the dynamic constraints of the aircraft.

 The final step in the path-planning process takes place after all of the costs for each

UAV to visit each target using a flyable path are defined. This step performs a task

allocation of each UAV that leads to a globally optimal solution for the mission. The

task allocation problem is formulated as a Multi-Dimensional Multiple-Choice Knapsack

Problem (MMKP)8. The objective of the MMKP problem is to minimize the knapsack

while satisfying all of the conditions placed on the problem. In this problem, the

knapsack is the total mission cost. The multiple dimensions are the UAVs in which each

vehicle has a multiple choice of the waypoint to visit.

 Knapsack problems are an important class of problems that have many various

applications in fields such as management, business, defense, or any other area in which

tasks must be scheduled or budgeted11. The MMKP algorithm is a combination of two

separate algorithms, the Multiple-Choice Knapsack Problem (MCKP) and the Multiple-

Dimensional Knapsack Problem (MDKP). The MCKP is a problem in which there are

multiple resource constraints for the knapsack. In the MDKP, there are several groups of

items where one item is selected from each group. By combining the resource constraints

from the MCKP with the selection of the different groups from the MDKP an algorithm

for the MMKP is created.

 There are two methods for solving an MMKP; one is a method that finds the exact

solution and the other results in a heuristic solution26. Finding the exact solution to a

MMKP is extremely computationally expensive, but can be accomplished using the

branch and bound with linear programming (BBLP) technique. The algorithm for

 12

solving MMKP using the BBLP technique is formulated as a zero-one knapsack problem.

This leads to an exhaustive analysis, this technique can be seen in equations 2.1.5 through

2.1.7 from Bellingham5.

∑
=

=
MN

j
jj xcJ

1
 (2.1.5)

i

N

j
jij wxV

M

≥∑
=1

 (2.1.6)

1
11

=∑
−

=

+p

p

N

Nj
jx (2.1.7)

where the cost function J is minimized with respect to the constraints in equations 2.1.6

and 2.1.7. The number of permutations of vehicle p are numbered Np to Np+1 – 1, with N1

and NNv+1 = NM +1. The indices i, j, and p have ranges from 1 to NW, NM, and NV

respectively. In the cost equation, cj is a vector of the costs for each permutation and xj is

a binary decision variable equal to one if the permutation j is selected or zero if the

permutation is not selected.

The first constraint guarantees that each waypoint or target is visited the correct

number of times, which for most cases is one. The second constraint prevents a vehicle

from selecting more than one permutation. In this case each waypoint must be visited

once and each vehicle may only be assigned one waypoint to visit. This particular

algorithm, which leads to an exact solution, is extremely complex but is guaranteed to

find the optimal solution for the knapsack. It should be noted that this solution it is not

feasible to apply to all cases where a solution is desired. The second method for finding a

solution to the MMKP is a heuristic method which has been researched by Moser11 and

 13

Akbar26. This particular method as shown by Moser is accomplished using Lagrange

multipliers. This method leads to sub-optimal results, which is not a desirable result.

The path-planning and task allocation process described above leads to a globally

optimal mission cost. The resulting mission cost is neither the lowest in fuel cost nor

stealth cost, but is the best combination of the two. It can be seen that by using the

methods described above a near real-time simulation can be created in the SIMULINK

environment in MATLAB. From previous research it is apparent that the most

computationally intense hurdles will be finding a way to limit the calculations required

for the Dijkstra and the MMKP algorithms.

2.2 - Review of Search Methods

 The second focus of this research is the development of a simulation in which

nothing about a battlefield is known prior to the UAVs being deployed. There have been

several different approaches to this problem. One approach is a random search in which

every area of the battlefield is assigned the same value18,19,21-24,. Another approach is a

greedy search in which there are more valuable areas of the battlefield than others, thus a

way of weighting different areas on the battlefield is required20. For the purpose of this

research only the first scenario will be considered, due to the fact that previous

knowledge about the battlefield is accounted for in the previous section.

 The most notable research effort in the random search approach has taken place at

the Wright-Patterson Air Force Base in Dayton, OH. This research has led to a search

simulation that is implemented in a hierarchical manner with inter-vehicle

communication explicitly modeled23. This simulation was created using MATLAB’s

 14

SIMULINK environment and is named MultiUAV. The purpose of MultiUAV is to

simulate a group of UAVs searching a battlefield and attacking any target that is detected.

In this simulation the UAVs are modeled as disposable munitions. These types of

vehicles are considered to be destroyed once they attack a target. This search mission is

generally known as a wide area search munitions weapon system is which all of the

vehicles operate independently of each other. Initially the vehicles are released in a

target area and follow a set of waypoints that are present at the start of the simulation22.

These waypoints are placed in a serpentine pattern to minimize the time it takes the group

of UAVs to search the given area.

 A target is first detected when it passes though the sensor footprint of a UAV.

When a target is detected the vehicle communicates the location of the target to the rest

of the group. A top level controller is then used to determine the task assignment for the

UAVs. This controller is implemented using a hierarchical market-based bidding

procedure, where each aircraft bids on each task that needs to be preformed. An optimal

solution is reached with this method by having each UAV evaluate its cost to perform a

certain task. This control system is developed as distributed to create a redundant system,

which is fault tolerant because there is no central decision maker. All of the vehicles

arrive at the same decisions; therefore conflict situations are avoided22. An example of

this problem is multiple UAVs visiting the same target or a target not being visited at all.

After the top layer of control has assigned the tasks, the lower layer control system

performs the trajectory optimization and task management.

 The initial state of a target in a search mission is not detected. After a target is

detected it must be classified. When a target has been classified as a viable target it must

 15

then be attacked. Due to the fact that these aircraft are disposable munitions after a

vehicle attacks a target it must be eliminated from the group. If a target has been attacked

a battle damage assessment (BDA) must be performed to ensure that the target has been

destroyed21. The BDA of a target will result in two conclusions, the first being that the

target has been destroyed and no further action is needed on that target. The second

conclusion is that the target has not been destroyed and requires the processes to be

repeated until the target is destroyed. In most cases a target needing to be attacked more

than once is not likely. The mission is considered complete when the entire battlefield

has been searched, all of the UAVs have been eliminated, or all of the targets have been

destroyed. A market-based bidding procedure with a hierarchical control system is an

excellent tool that can be used in the creation of a search simulation.

 16

Chapter 3

The Path-Planning and Task Allocation Process

3.1 - Path Generation and Path Selection

 This section will discuss the path generation, path cost assignment, and path

selection steps in the path-planning and task allocation process used in this research

effort. This process is based on a combination of different methods that have been

discussed in the previous chapter. The objective is to select a path generation and cost

assignment method that will lead to optimal results using algorithms that can be executed

in a real-time manner. In order to accomplish this objective a Voronoi diagram will be

used for possible path generation, because it will yield a low number of possible paths.

This is desired to keep the calculations involved in Dijkstra’s algorithm to a minimum.

Dijkstra’s algorithm is the most computationally expensive part of the path generation

and selection process.

 The first step is the generation of possible paths on which the UAV can travel.

The use of Voronoi diagrams is an excellent method to perform this step. This graph

yields the optimal paths to travel between a set of points. For this application the set of

points that must be avoided are the locations of the threats and no-fly zones. Since the

Voronoi diagram only uses points, the ranges and radii of the threats and no-fly zones are

ignored at this time. A Voronoi diagram is constructed using a method called Delaunay

triangulation. As described by Bortoff, this procedure begins with complete knowledge

of each point to be avoided7. This can be seen in Figure 3.1.1.

 17

Figure 3.1.1 – Locations of the threats and no-fly zones

In this figure the red points are the threats and the black points are the no-fly zones. For

every three points there exists a circle that passes through these points. The Delaunay

triangulation of these points exists only if there are no points enclosed in this circle. The

center of this circle is called a Voronoi point and is visible in Figure 3.1.2.

Voronoi Point

*

Figure 3.1.2 – Delaunay triangulation and the corresponding Voronoi point

 18

After all of the Voronoi points are defined they must be connected in order to

form the diagram. This is accomplished by connecting two points if and only if the

Delaunay triangles associated with these points share a common edge. This method

provides optimal results because each line in the diagram is equidistant to the pair of

corresponding points. All of these lines and points form a complete Voronoi diagram,

which can be seen in Figure 3.1.3.

Figure 3.1.3 – Complete Voronoi diagram

Due to the fact that the Voronoi diagram only accounts for the locations of the

threats and no-fly zones, the UAVs and targets must be manually connected into the

diagram. This is done by connecting each UAV and each target to the three closest

points in the diagram. The implementation of this is shown in Figure 3.1.4. In this figure

the blue points are the UAVs and the green points are the targets.

 19

Figure 3.1.4 – Complete Voronoi diagram with UAVs and targets

A function was written in MATLAB named ”vrn_diag_gen“ to perform this

which can be seen in Appendix A. The inputs for this function are the initial conditions

of the battlefield as discussed in Chapter 1, which are the ‘UAVS’, ‘TARGETS’,

‘ZONES’, and ‘THREATS’ matrices. The ‘UAVS’ matrix contains the initial x position, y

position, speed, and altitude of each UAV. The ‘TARGETS’ matrix contains the initial x

position and y position of the targets. The ‘ZONES’ matrix contains the initial x position,

y position, and radius of each no-fly zone. The ‘THREATS’ matrix contains the initial x

position, y position, range and probability of kill of the threats. Using the positions of the

threats and no-fly zones an initial Voronoi diagram is created. This is accomplished

using the “voronoi” function in MATLAB. This can be seen in Algorithm 3.1.1. It

should be noted, that due to the nature of the Voronoi diagram several points around the

battlefield were added. This was needed so that the graph would completely encompass

the area.

 20

Algorithm 3.1.1

 1. Do for all points (x,y)

 2. Find Delaunay triangulation of all points (x1, y1), (x2, y2), (x3, y3)

 3. Re-orient triangles so they are clockwise

 4. If triangle edges for two points are the same

 record edge as Voronoi line (x1, y1) and (x2, y2),

 5. Delaunay triangle defines a circle

 6. If another point is not inside the circle,

 record point as a Voronoi point (x, y)

 7. Go back to step 1

After all of the Voronoi lines and points have been defined the UAVs and targets

must be connected into the diagram. This is accomplished using the “connect_vrn”

function. This function inputs the positions of the UAVs or targets and the Voronoi

points. It outputs the lines connecting the UAVs or targets to the three closet points and

the associated distance of each line created. This process is outlined in the following:

Algorithm 3.1.2

 1. Do for all points to be connected (xi, yi)

 2. Find distance to all points in diagram (xj, yj)

 () ()22
ijij yyxxd −+−=

 3. Record the closest 3 points (x1, y1), (x2, y2), (x3, y3)

 and their associated distance d1, d2, d3

 4. Go back to step 1

Every point, line, and distance associated with this diagram is output from the

“vrn_diag_gen” function, which are the matrices ‘all_pos’, ‘all_lines_x’, ‘all_lines_y’,

and ‘all_costs’ respectively.

 21

The next step is the initial path selection for each permutation of UAV to target.

Before this can be calculated the costs of the paths must be updated to account for the

threats and no-fly zones on the battlefield. The subsequent equations are used to update

the cost of each line.

∞=jc (3.1.1)

FjTij wcwpc
OLD

+= * (3.1.2)

where cj is the cost of traveling along line j, pi is the probability of kill of threat i, wT is

the weighting factor applied to traveling through a threat, and wF is the fuel weighting

factor. Equation 3.1.1 shows the modification done to the cost of line j if it passes

through a no-fly zone, which is shown in Figure 3.1.5.

Figure 3.1.5 – Voronoi line passing through a no-fly zone’s radius

Since entering a no-fly zone is prohibited, a cost of infinity is assigned to that particular

line. Figure 3.1.6 shows line j passing through threat i.

 22

Figure 3.1.6 – Voronoi line passing through a threat’s range

If this occurs a cost, proportional to the probability of kill of threat i, is added to the cost

of that line, which can be seen in equation 3.1.2. The following algorithm is used to

evaluate if a line passes through a threat or no-fly zone.

Algorithm 3.1.3

 1. For all lines () and ss yx , ()ff yx ,

 2. Find distances associated with that line to an obstacle

 start of line to center of obstacle, 22
,)()(PscPsccs yyxxd −+−=

 finish of line to center of obstacle, 22
,)()(PfcPfccf yyxxd −+−=

 start of line to finish of line, 22
,)()(PfPsPfPsfs yyxxd −+−=

 point of line perpendicular to obstacle,
fs

tffsts
ns d

ddd
d

,

2
,

2
,

2
,

, *2
−+

=

 3. If fsns dd ,, ≤ and then 0, ≥nsd

 closest distance, 2
,

2
, nscsp ddd −=

 4. Else If cfcs dd ,, ≤

 23

 closest distance, csp dd ,=

 5. Else

 closest distance, cfp dd ,=

 6. Go back to step 2

If the closest point on each line is less than the radius or range of that obstacle the cost of

that line is updated according to Equation 3.1.1 or 3.1.2.

After the costs of each line have been updated, Dijkstra’s algorithm is

implemented to find the lowest cost path from each UAV to each waypoint. Dijkstra’s

algorithm is a graph search algorithm that provides the optimal path from a starting node

to every other node in the graph. In order for the graph to be searched it must be a

directed graph, which means that each line of the graph must have a tail, head, and an

associated cost. In this research each line in the graph has the ability to travel both from

tail to head and from head to tail. The results for Dijkstra’s algorithm are shown in

Figure 3.1.7.

Figure 3.1.7 – Dijkstra’s algorithm selected paths from each UAV to each target

 24

A function was written in MATLAB to perform the path selection named

“cheapest_paths” and can be found in Appendix A. The inputs of this function are the

following matrices:

• all_pos

• all_lines_x

• all_lines_y

• all_costs

• UAVS

• TARGETS

• ZONES

• THREATS

Each of these matrices has been described previously. To place all of the lines in the

proper format a function named “set_THC” was written. This function rearranges the

lines and their associated costs into the ‘THC’ matrix, where ‘T’ is the tail of the line, ‘H’

is the head of the line, and ‘C’ is the cost of traveling along that line. Algorithm 3.1.4

shows the implementation of the “set_THC” function.

Algorithm 3.1.4

 1. For all lines Li

 2. Place cost of Li in)3,(iTHC

 3. If tail node is assigned a value

 place value in)1,(iTHC

 4. Else assign the node the lowest unused value

 place value in)1,(iTHC

 5. If head node is assigned a value

 place value in)2,(iTHC

 25

 6. Else assign the node the lowest unused value

 place value in)2,(iTHC

 7. Go back to step 2

The ‘THC’ matrix is then input into the function “c_assign”, the purpose of this

function is to assign new costs to each line based on if it enters a no-fly zone’s radius or a

threat’s range. This is accomplished using Algorithm 3.1.3. After the costs for each line

are updated the ‘THC’ matrix is input into the “dijk” function, which performs Dijkstra’s

algorithm. The “dijk” function and its associated functions are from Kay’s matlog, a

logistics engineering MATLAB toolbox, which is available to download27. The outline

of this algorithm is shown in Algorithm 2.1.1. This function provides the optimal path to

travel from one node to another node within the graph. It also gives the cost associated

with that path. The optimal paths and their associated costs for each permutation of UAV

to target are stored in the matrices ‘stored_paths’ and ‘totalcost’ respectively, which are

output from the function “cheapest_paths”.

3.2 - Path Refinement and Task Allocation

 This section will discuss the refinement of the initially selected paths and the task

allocation for the group of UAVs. Since these selected paths are derived from a Voronoi

diagram, they rarely travel as close as possible to the outer range of a threat or the outer

radius of a no-fly zone. In addition, these paths have sharp corners that might not be

flyable. These paths also do not account for a change in heading angle. Clearly, there is a

need to refine these paths, which requires them to be optimized and developed into

flyable paths. The lines in a Voronoi diagram are designed to yield the optimal paths to

 26

avoid certain points on a battlefield. This yields a solution that has a tendency to avoid

these points as much as possible and in many cases much further than is needed. After

these paths have been optimized and developed into flyable paths a task must be assigned

to each vehicle. This must yield a solution that leads to mission completion in an optimal

manner. The final step in the path-planning process is a task allocation of the UAVs in

order for them to visit the targets as needed to complete the mission. This leads to each

UAV being assigned to visit a certain target along an optimal flyable path, which results

in a globally optimal mission completion time and probability of mission completion.

 As stated above, the nature of the Voronoi diagram is to avoid certain points as

much as possible. This leads to paths that can be optimized. These paths can be

improved by shortening them along the original path. This is accomplished according to

whether a chosen path travels inside a threat’s range or a no-fly zone’s radius. The path

is first split into several segments, which allows for an improved solution. The original

path is then explored to see if it passes through a threat; if it does then the distance at it

enters the threat is recorded. The shortened path will be allowed to enter that particular

threat only that distance. The shortening of a path is accomplished by analyzing a line

starting at the UAV’s initial position and ending at the final position. This line is

examined to see if it passes through a threat or no-fly zone using Algorithm 3.1.3.

 This algorithm yields closest point on the line to the position of each threat and no-

fly zone. This distance is compared with the corresponding range or radius associated

with the obstacle. If this distance is greater than the range or the allowable entry distance

of every threat and the radius of every no-fly zone. That line is recorded as the new

optimized path. On the other hand, if the line intersects a threat or no-fly zone then the

 27

previous point is evaluated. This process is repeated until the path has been shortened to

the original starting point. An example of this can be seen in Figure 3.2.1.

Figure 3.2.1 – Example of a shortened path

 After an optimized path is found, this path must then be modified to account for the

flight characteristics of the aircraft. There are two main changes that need to be made to

each path. One is that each corner in the path must be filleted. This is done according to

the minimum turn radius of the UAV, which is one kilometer. In order to fillet the sharp

corners of the paths, a circle with the desired radius is placed into the corner. The radius

of this circle is equal to the minimum turn radius of the aircraft. The two points on the

circle tangent to each of the two lines form the fillet, which replaces the point at the

corner. An example of this is shown in Figure 3.2.2.

 28

Figure 3.2.2 – Example of the filleted corner of a path

 The second modification must be made in order to perform a heading angle change.

This is done to account for the sudden change in heading angle a UAV experiences when

its current heading angle and the heading angle proposed by the selected path are vastly

different. In order to account for this change, the new path must first travel along a circle

connected to its current path. Another circle is then placed connecting the first circle to

the desired path. The intersection of these two circles is a transfer point at which the

UAV leaves the circle connected to its current path and starts to follow the circle on the

new path. The radii of these circles are equal to the minimum turn radius of the aircraft.

These circles are fitted so that the starting point of the path does not change; merely the

heading angle of the aircraft is corrected. An example of this can be seen in Figure 3.2.3.

 29

Figure 3.2.3 – Example of a heading angle correction

A function was written in MATLAB for the purpose of optimizing these paths and

making them flyable. The function called “path_shrtng” can be found in Appendix A.

This function inputs the matrices ‘stored_paths’, ‘all_pos’, ‘ZONES’, ‘THREATS’, and

‘HEADING_ANGLE’. All of these matrices have been described in the previous section

except ‘HEADING_ANGLE’, which is a vector containing the current heading angles for

all of the UAVs. Other inputs to the function are the scalar numbers ‘min_turn’,

‘split_seg’, ‘nuav’, and ‘ntarg’. These represent the minimum turn radius of the UAVs,

the number of segments each line in the original path is split, the number of UAVs, and

the number of targets. First this function splits each of the lines in the path into several

segments as specified by the variable ‘split_seg’.

 After each line is split the path is shortened using a function called

“shorten_paths”, which performs the optimization of the paths as described previously

and is accomplished using Algorithm 3.1.3. The corners of the path must now be filleted

 30

using the function “fillet_path”. The purpose of this function is to add fillets to the

corners of the path that are too sharp for the aircraft to follow. This is outlined in the

Algorithm 3.2.1:

Algorithm 3.2.1

 1. For all lines Li

 2. For all points),(ii yx

 3. Set α equal to the angle between and),(11 −− ii yx),(ii yx

 3. If ALLOWABLEαα ≤ , ALLOWABLEα is proportional to the minimum turn radius

 fillet corner of and),(11 −− ii yx),(ii yx

 4. Go back to step 2

 The final step in making the paths flyable is to make the heading angle correction.

A function “heading_angle_paths” was written for the purpose of accomplishing this

task. This process has been described previously and illustrated in the following

algorithm:

Algorithm 3.2.2

 1. For all paths Pi

 2. If °≥− 30NEWOLD ϕϕ

 apply heading angle change at beginning of path

 3. Else dynamics will handle the change

 4. Go back to step 1

After the paths are optimized and made flyable the costs of these paths are updated using

the function “update_cost”. These modified paths and updated costs are stored into the

 31

‘Shortened_Paths_x’, ‘Shortened_Paths_y’, and the ‘totalcost’ matrices, which are the

outputs of the “path_shrtng” function.

 After an optimal flyable path for each permutation of UAV to each target has been

developed, a task allocation must be performed in order to delegate which target each

UAV should visit. These tasks must be allocated to achieve a global minimum mission

cost as opposed to assigning each UAV its minimum path. This was formulated as a

MMKP, which has been described in Chapter 2. The constraints placed on this problem

for the purpose of this research are the following:

• Equal number of UAVs and targets

• Each target can only be visited once

• Each UAV can only visit one target

 These constraints are applied to reduce the complexity of the MMKP algorithm.

These constraints reduce the number of possible combinations of the task allocation to

the factorial of the number of UAVs. The following algorithm was developed to achieve

an optimal solution in a minimal amount of time, while accounting for the constraints of

the problem.

Algorithm 3.2.3

 1. Set minimum cost ∞=MCost

 2. For i = 1 to NV!

 3. Initialize 0=CCost

 4. For j to NV

 5. Find current cost

 jiCC CostCostCost ,+=

 6. Loop to step 4

 7. If < CCost MCost

 32

 Assign new minimum tasks and cost

 , CM TasksTasks = CM CostCost =

 8. Go back to step 2

The final optimized, flyable paths are shown in Figure 3.2.4.

Figure 3.2.4 – Allocated tasks for each UAV to visit each target

 A function written in MATLAB to perform this called “mmkp_task_allocation” is

located in Appendix A. The inputs of this function are the matrices ‘totalcost’,

‘Shortened_Paths_x’, ‘Shortened_Paths_y’. This function finds the solution to the

MMKP algorithm as stated above and returns the matrices ‘Selected_Paths_x’ and

‘Selected_Paths_y’. These matrices contain the x and y locations of an optimized and

flyable path for each UAV. These paths are designed such that the mission completion

time is minimized and the probability of mission completion is maximized.

 33

Chapter 4

Implementation of Six Degree of Freedom Aircraft Dynamics

4.1 - General Overview of Aircraft Dynamics

 This section will review the dynamics of an aircraft, including a brief overview of

aircraft forces, moments, equations of motion, and state variable modeling of the aircraft

dynamics. To properly define the forces, moments, and the equations of motion that are

associated with an aircraft, a non-rotating earth fixed axis system must be chosen as an

initial point of reference. To derive these equations of motion the following assumptions

must be made:

• The aircraft is a rigid body

• The earth is an inertial reference frame

• The aircraft mass and mass distributions are constant with respect to time

• The XZ plane is a plane of symmetry for the aircraft

• There are negligible gyroscopic effects from the engine

• The equations of motion are derived with respect to the stability axes

• There are only small perturbations

• There are only three primary control surfaces

 Elevators

 Ailerons

 Rudder

 The equations of motion of an aircraft come directly from Newton’s second law

with respect to the conservation of linear and angular momentum28. In order for these

 34

equations to be derived they must relate the forces and moments associated with the

aircraft to the dynamics and movement of the aircraft. The forces acting on an aircraft

are modeled as FAX, FAY, and FAZ, which can be seen in Figure 4.1.128.

Figure 4.1.1 – Aircraft body axis forces and moments

This figure also shows the moments that act on an aircraft that are LA, MA, and NA. It

should be noted, all of these forces and moments are with respect to the body axis of the

aircraft. Including the forces from thrust, applying Newton’s second law with the

conservation of linear momentum on an aircraft leads to equations 4.1.1 through 4.1.329.

TXAXx FFmgWQVRUm ++=+−)(& (4.1.1)

TYAYy FFmgWPURVm ++=+−)(& (4.1.2)

TZAZz FFmgVPUQWm ++=+−)(& (4.1.3)

where m is the mass of the aircraft, U is the velocity in the x direction, V is the velocity in

the y direction, and W is the velocity in the z direction. P, Q, and R are the angular

 35

velocities with respect to the x, y, and z axes respectively. Also, gx, gy, and gz are the

components of gravity in the x, y, and z directions.

 In equations 4.1.4 through 4.1.6 Newton’s second law has been applied with the

conservation of angular momentum, the moments from thrust have been included29.

TAYYZZXZXZXX LLRQIIPQIRIPI +=−+−−)(&& (4.1.4)

TAXZZZXXYY MMRPIPRIIQI +=−+−+)()(22& (4.1.5)

TAXZXXYYXZZZ NNQrIPQIIPIRI +=+−+−)(&& (4.1.6)

IXX , IYY , and IZZ are the moments of inertia about of the x, y, and z axes. IXY , IYZ , and

IXZ are the products of inertia about the x, y, and z axes. The above equations form a

non-linear system of equations that can be solved in terms of U, V, W, P, Q, and R.

These equations are taken with respect to the body axis of the aircraft. In order to solve

these equations they must be described according to a non-rotating earth fixed axis. This

is accomplished through the use of Euler angles,ϕ , θ , and φ . The translation from the

body axis to the earth axis can be done by using the following steps29.

1. Consider the earth axis translated parallel to itself so that the origin

coincides with the origin of the body axis of the aircraft or the CG.

2. Change the name the earth axis X`Y`Z` to X1Y1Z1.

3. The axis system X1Y1Z1 is rotated about Z1 by the Euler angle ϕ to reach

the axis system X2Y2Z2.

4. The axis system X2Y2Z2 is rotated about Y2 by the Euler angle θ to reach

the axis system X3Y3Z3.

5. The axis system X3Y3Z3 is rotated about X3 by the Euler angle φ to reach

the original axis system XYZ.

 36

 An illustration of this is shown in Figure 4.1.229.

Figure 4.1.2 – Translation from the earth axis to the body axis

As shown the Euler angle ϕ is referred to as the heading angle, θ is the pitch angle, and

φ is the bank angle of the aircraft. Using these angles, an aircraft’s flight path can be

described in terms of the earth and body axis velocities.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

W
V
U

W
V
U

φφ
φφ

θθ

θθ
ϕϕ
ϕϕ

cossin0
sincos0
001

cos0sin
010

sin0cos

100
0cossin
0sincos

1

1

1

 (4.1.7)

In a similar fashion the angular velocities of the body axis can be expressed in terms of

the Euler angles.

 37

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ϕ
θ
φ

θφφ
θφφ

&

&

&

coscossin0
cossincos0
001

r
q
p

 (4.1.8)

These equations are known as the kinematic equations, which yield the following

expressions:

θϕφ sin&& −=p

 (4.1.9)

φθϕθθ sincoscos && +=q (4.1.10)

φθφθϕ sincoscos && −=r (4.1.11)

This set of equations coupled with equations 4.1.1 through 4.1.3 and 4.1.4 through 4.1.6

are the equations of motion for an aircraft. Due to the fact that most of these values

cannot be directly measured from the aircraft, they must be transferred into the polar

coordinatesα , β , and , which are the angle of attack, sideslip angle, and aircraft

velocity respectively. This conversion is shown in Figure 4.1.328

V

.

Figure 4.1.3 – Polar axis transformation for equations of motion

 38

Using the aerodynamic coefficients the equations of motion then become the following:

)coscossinsincossin βαθβθφ −

cossincos(cos βαθφ ++= gC
m
SqV

WD
&

 (4.1.12)

)sinsincoscos(cos
cos

cos
)sincos(tan

αθαφθ

ααβα

+

+−+−=

g

CSqrpq L&

 (4.1.13)

β

β

V

mV

)cossinsincos(cossin

sθ incoscoscossin

αθαφθβ

φβααβ

−

−++−=

V
g

V
gC

mV
Sqrp

WY
&

 (4.1.14)

])()(

)()([1

22
XXI (4.1.1)

lYZZZYY

XZXY

SbCqrqIIIqr

pqrIprqIp

+−+−

+++−= &&&
5

])()(

)()([1

22
mXZXXZZ

YZXY
YY

CcSqprIIIrp

pqrIqrpI
I

q

+−+−

+−++= &&&
 (4.1.16)

])()(

)()([1

22
nXYYYXX

YZXZ
ZZ

SbCqqpIIIpq

prqIqrpI
I

r

+−+−

+++−= &&&

 From these equations a state variable model of the longitudinal and lateral

directional dynamics of the aircraft can be built. These models are of the form

 and . The longitudinal dynamics these can be seen in the

following equations :

 (4.1.18)

 (4.1.17)

BuAxx +=& DuCxy +=

30

LongLongLongLongLong uBxAx +=&

 (4.1.19) LongLongLongLongLong uDxCy +=

 39

where is a vector containing the states of the systemLongx α , u , , and q θ ; is Longu

control input Eδ ; and Longy is a vector containing the ou u s o the sy tem tp t f s Za , α , u , q ,

and θ . Substituting the state v ctors d matrices yields the following:

u

qu Z

MM
XX

ZZZ

q
u

αα δ

α

θα ⎤⎡⎤⎡⎤

⎢
⎢

⎡

=
⎥
⎥

⎤

⎢
⎢

'

''

''''

&

&

&

e an

E

E

E

M
X

q
u

MM
X

Z

δ

θθ
δ

δ

θα

θ

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

+

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢

⎢

⎣
⎥

⎥

⎦
⎢

⎢

⎣

⎡

00100

0
'

'

''

'''

&

 (4.1.20)

[]E
qu

[]E

Z E
Z

q
u

ZZZZ

q
u

a

δ

θ

α

θ

α
δαααα

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
0

1000
0100
0010
0001

''''''''''

 (4.1.21)

 All of the longitudinal dimensional stability derivatives used in the above equations

are shown in Appendix B. Similarly the lateral directional dynamics are expressed as

such:

LatDirLatDirLatDirLatDirLatDir uBxAx +=& (4.1.22)

uDxCy LatDirLatDirLatDirLatDirLatDir += (4.1.23)

where LatDirx is a vector containing the states of the system β , p , r , and φ ; is a

vector containing the control inputs

LatDiru

 and Aδ Rδ ; and is a vector containing the LatDiry

outputs of the system Ya , β , p , r , and φ . Substituting the lateral directional state

vectors and matrices yields the following equations:

 40

⎥
⎤

⎢
⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Arp

rp

RA

RA

NN
LL
YY

r
p

NNN
LLL

YYYY

r
p

δ
δ

φ

β

θφ

β

δδ

δδ

β

φβ

000tan10
0
0

''

''

'''

''''

&

&

&

&

 (4.1.24)
⎦⎣

⎥⎢⎥⎢⎥⎢⎥⎢

Rrp RA δδβ

'''''

⎡

⎥
⎥

⎥
⎥

⎦

⎤

⎢
⎢

⎢
⎢

⎣

⎡

⎥

⎥

⎦

⎤

⎢

⎢

⎣

⎡

⎥
⎥

⎥
⎥

⎦

⎤

⎢
⎢

⎢
⎢

⎣

⎡

⎥
⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

R

A

rpY RA
YY

p

YYYY

r

a

δ

φ

β

φ

β
δδφβ

00
00

00

000
100

001

''''''''''''

 (4.1.25)

 The lateral directional dimensional stability derivatives used in these equations can

be seen in Appendix B. From this point various control schemes can be designed to

control the flight characteristics of an aircraft. A longitudinal control system can be

implemented to control the pitching rate, pitch angle, airspeed, and altitude of the aircraft.

Whereas a lateral directional control scheme has the ability to control the yaw rate, roll

rate, bank angle, and the heading angle. For the purposes of this research a heading angle

controller must be designed so the UAV can follow its assigned path.

4.2 - Implementation of Heading Angle Control Scheme

 After the state equations have been derived to govern the heading angle of the

aircraft, a control schem

SIMULINK environment in MATLAB. A simulation designed by Rauw named the

Beaver aircraft sim

31

allows the user to enter the initial conditions, mass, and other geometric data of the

aircraft.

⎥
⎦

⎤
⎢
⎣⎥
⎥

⎢
⎢+

⎥
⎥

⎢
⎢
⎥
⎥

⎢
⎢=

⎥
⎥

r
p

δ
000010

0

0
1

e must be designed to control it. This must be done within the

ulator, provides an excellent way to simulate the dynamics of any

general aviation aircraft . This is due to the fact that the user can enter any desired

aerodynamic coefficients with a user interface that can be seen in Figure 4.2.1. This also

 41

 Figure 4.2.1 – Data entry user interface

Figure 4.2.2 – The aircraft simulator control system

 42

The SIMILINK block shown in Figure 4.2.2 simulates the longitudinal and lateral

directional dynamics of an aircraft. This system inputs the control surface deflections of

e elevators, rudder, and ailerons, and returns the current states of the aircraft. To give

e UAV the ability to follow its given path, a control scheme must be designed to govern

e control surface deflections, which is shown in Figure 4.2.3.

th

th

th

Figure 4.2.3 – The heading angle control scheme

Inside this main scheme is an autopilot controller seen in Figure 4.2.4. The

autopilot block inputs the current and desired x and y positions for the aircraft.

Figure 4.2.4 – The aircraft autopilot control block

 43

This controller then uses a turn generator to follow the desired path by deflecting

the proper control surfaces. The design for this is shown in Figure 4.2.5. This control

scheme is an efficient and reliable way to navigate from one waypoint to the next.

Figure 4.2.5 – The autopilot turn generator block

velocity, angle of atta

 The beaver aircraft simulator outputs the state vector of the aircraft which

contains the x location, y location, z location, ck, sideslip angle,

pitch rate, yaw rate, roll rate, pitch angle, bank angle, and the heading angle of the

aircraft. These states of the aircraft, along with the desired x and y positions, are

feedbac into th esign. In this

research effort, since no actual UAV dynamics were available, F-4 dynamics were chosen

due to their benign nature. The aerodynamics coefficients for an F-4 at subsonic cruise

used are available in Roskam29.

k e aircraft dynamics forming the closed loop control d

 44

Chapter 5

Development of a SIMULINK scheme for Cooperating UAVs

5.1 - Implementation of the Path-Planning Process and Aircraft Dynamics

 The SIMULINK environment not only provides an excellent way of executing

MATLAB files, but it is advantageous in examining the inputs and outputs of a

simulation. In addition, it provides several different ways to visualize the results of a

simulation. This section will cover the implementation of the path-planning functions

discussed in Chapter 3 and the heading angle control scheme discussed in Chapter 4. A

SIMULINK file is constructed using a block diagram where each block has an input and

an output. Each block contains code that is executed based on its inputs and returns an

output, which is then sent to another block. This process is repeated to form a simulation.

This can be seen in Figure 5.1.1, the main SIMULINK file for this simulation.

Figure 5.1.1 – Main block diagram for cooperating UAVs

 45

The central block in this diagram labeled “PATH PLANNING” contains the

MATLAB code discussed in Chapter 3. This code is implemented using an S-function,

which stands for SIMULINK function. This function allows for the specification of the

number of inputs and outputs to a block. Each S-function contains executable code.

Figure 5.1.2 shows the S-function “path_planning_s” being used, which can also be seen

in Appendix C.

Figure 5.1.2 – Path planning s-function implementation

anning_s” another function is called, “path_planning”, which can be

Since the S-function requires that the input and output be single vectors as

opposed to matrices, the inputs are reshaped and combined into a vector of a fixed size

using a multiplexer. A multiplexer combines several vectors and scalars into a single

vector. In this case, the vectors ‘UAVS’, ‘TARGETS’, ‘ZONES’, ‘THREATS’,

‘UAV_HEADING_ANGLE’ and the scalars current time of simulation and current plot

number are all combined into a single vector. Also, inside this block the user can control

if the current conditions of the battlefield are plotted when a replan occurs. Inside the S-

function “path_pl

 46

found i

 operate it must be given a

smooth path instead of the locations of the waypoints. To accomplish this each waypoint

must be assigned a time at which the UAV should be visiting it. This is estimated using

the constant velocity of the aircraft. Along with the assigned waypoints, the selected

targets that each UAV is assigned to visit is also output. This is done so that the targets

are classified properly. After the waypoints and there associated times are output from

the path-planning S-function they are then sent into a look-up table block, which is

shown in Figure 5.1.3. This uses linear interpolation to provide a smooth path for the

autopilot discussed in Chapter 4 to follow.

n Appendix C. This function contains several reshape functions that transform the

inputs into the desired matrix shape to execute the functions defined in Chapter 3.

 As previously stated, this code yields an optimized, flyable path for each UAV to

follow. In order for the heading angle control scheme to

Figure 5.1.3 – Look-up table SIMULINK block

 47

5.2 - Management of the No-Fly Zones and Threats

 In a realistic battlefield environment, the UAVs must have the ability react to

what is happening around them. This can include a threat popping up, vehicle entering a

Also, if a UAV flies inside a no-fly zone’s radius it is assumed that the

ircraft is lost. In order to simulate a vehicle interacting with a threat or no-fly zone

“uav_crash_s” and “uav_intercepted_s”.

Figure 5.2.1, while the

“uav_intercepted_s” function can be seen in Figure 5.2.2.

no-fly zone’s radius, or a vehicle entering threat’s range. If a UAV flies inside a threat’s

range the threat will fire and based on the probability of kill of the threat that vehicle may

be destroyed.

a

several S-functions were written, which are

These functions compare the current positions of the UAVs with the position and radius

of each no-fly zone and the position and range of each threat. These functions can be seen

in Appendix C.

The outputs of these two functions are vectors containing either zeros or ones.

The value is a zero if the UAV is still operational or one if the UAV has been destroyed.

The implementation of the “uav_crash_s” function is shown in

Figure 5.2.1 – Block comparing UAV positions to no-fly zone positions

 48

Figure 5.2.2 – Block comparing UAV positions to threat positions

In addition to comparing the current locations of the UAVs to the threats and their

associated ranges, a random number is generated when a vehicle passes inside a threat’s

range. If this number is within the specifications for the probability of kill of that threat

the vehicle is destroyed. Otherwise, the vehicle remains operational and continues on its

current path. Either way when a threat has fired, it is no longer present on the battlefield

and will have no further effect on any UAV. If a threat has fired or a vehicle is

destroyed, a replan is signaled for the entire group based on the battlefield changing

 5.2.3.

.

 Another component of a dynamic battlefield environment is a pop-up threat. This

is a threat that is unknown for the initial plan, but is discovered during the simulation.

The simulation of this occurrence is important because a realistic battlefield will never

remain constant. A block was created for the purpose of simulating a pop-up threat,

which is shown in Figure

Figure 5.2.3 – Threats manager

 49

These blocks compare the old values of the ‘THREATS’ vector to the new values of the

vector. If a change occurs a replan is signaled for the group according to the new

information.

5.3 - Management of the UAVs and Targets

 The dynamics of the battlefield extend to the UAVs and targets as well as the

reats and no-fly zones. A simulation for cooperating UAVs must have the ability to

simulat

th

e a vehicle being destroyed or a target changing states, i.e. classified, destroyed, or

assessed. These are extremely important when creating a realistic simulation of

cooperating UAVs. Whether a UAV is operational or not is controlled by the

SIMULINK block shown in Figure 5.3.1.

Figure 5.3.1 – UAVs manager

 50

These blocks input the vectors from the previous section based if a vehicle entered a

threat’s range or no-fly zone’s radius. If these values are all zero then no vehicle is

destroyed, but if a vehicle is destroyed a replan is signaled. Also, each vehicle has a

limited amount of fuel, therefore if a vehicle’s fuel runs out that vehicle is considered lost

and a replan is signaled.

 In any battlefield, each target must be acted upon by several UAVs. The states

at a target can have are the following:

n invalid target. This is implemented with the code contained in the

SIMULINK block S-function named

“target classifier_s”, which can be seen in Appendix C. This calls the function

“target

th

• Identified

• Classified as a valid / invalid target

• Attacked

• Assessed as destroyed / not destroyed

Each target must have all of these actions performed on it, except when a target is

classified as a

shown in Figure 5.3.2. Inside this block is an

_

_classifier” that changes the state of a target based on if it is visited.

Figure 5.3.2 – Targets classifier SIMULINK block

 51

Every target is initialized to the state of identified not classified. After a target is

visited for the first time, a random number is generated. Based on this number a target is

either classified as a valid target or classified as an invalid target. An invalid target is

immediately deleted and no further action is required. After a target has been classified

as a real target it must be attacked. In order to ensure that the desired target has been

destroyed, a battle damage assessmen t be preformed. If the BDA reveals

that the targ process is

repeated until the target has been assessed as destroyed. For the purpose of this

and 1. If that number is less than

t (BDA) mus

et has not been destroyed the target must be attacked again. This

simulation a random number is generated between 0

0.85 the BDA is deemed successful and the target is deleted.

 In much the same way as a threat can be discovered during the simulation a target

can pop-up while the UAVs are acting on the current targets. The SIMULINK block in

Figure 5.3.3 has the ability to simulate this occurrence.

Figure 5.3.3 – Targets manager

If this happens a replan for the group of UAVs is signaled. This block compares the old

values of the ‘TARGETS’ vector to the new value and detects a change.

 52

Due to the nature of the MMKP algorithm outlined in Chapter 3 the number of

UAVs must be equal to the number of targets. The code contained in the block shown in

Figure 5.3.4 calls an S-function named “place_waypoints_s”, which is shown in

Appendix C.

Figure 5.3.4 – Add waypoints SIMULINK block

This function calls a function that alters the ‘TARGETS’ vector if needed. If the

number of UAVs exceeds the number of targets, waypoints are placed at the most

valuable targets. This is done to ensure that these targets will be visited the most.

Otherwise, if the number of UAVs is less than the number of targets, the least valuable

targets are temporarily deleted until all of the valuable targets have been serviced. After

every dynamic reaction a replan for the group of UAVs is signaled, which can be seen in

figure 5.3.5. This shows the SIMULINK block that gathers all of the replan signals and

activates the central path-planning algorithm.

Figure 5.3.5 – Signal replan SIMULINK block

 53

Chapter 6

Comparison with Other Available Path Generation Methods

6.1 - Implementation of Grid and Visibility Graph

 In addition to the path generation technique presented in Chapter 3, several other

methods have been used by previous researchers such as a grid7 or a visibility graph5,6,8.

ed methods. This is accomplished using the MATLAB code seen in

se it does

ot take into account the locations of any no-fly zones or threats when the possible paths

ted paths are refined into optimized

flyable paths before the tasks are allocated using the MMKP algorithm.

These two methods provide an excellent comparison for evaluating the efficiency and

calculation speed of the Voronoi diagram method. This is important to evaluate the level

of optimization and computational complexity. A simulation is desired that not only has

real-time application abilities, but also results in an optimal solution for the mission. This

can be evaluated by using a grid or a visibility graph. A grid involves the overlaying of a

grid on the battlefield. In a visibility graph every point on the battlefield is entered and

lines are drawn between these points, if and only if there is a clear line of sight.

 The overlaying of a grid onto the battlefield provides a simple comparison to the

more complicat

Appendix D. An example of this is shown in Figure 6.1.1. After the grid has been

generated the same path-planning process is used that has been described in Chapter 3.

The UAVs and targets positions are connected into the grid through the three closest

nodes. Dijkstra’s algorithm is then implemented to find the lowest cost path for each

permutation of UAV to target. This method can provide different results becau

n

are generated. In the same fashion as before, the selec

 54

Figure 6.1.1 – Grid path generation

 A visibility graph provides a completely different comparison than the previous two

methods. There are several advantages and disadvantages with this method. The major

disadvantage is the computational complexity that it brings to Dijkstra’s algorithm. The

MATLAB code written to implement this method can be seen in Appendix D. An

example of a visibility graph is shown in Figure 6.1.2.

Figure 6.1.2 – Visibility graph path generation

 55

 It is apparent from the graph that the complexity greatly exceeds the other two

possible path generation methods, which is a large hindrance on finding the lowest cost

path for each UAV to each target. Also, it should be noted that a safety factor of 10% of

each threat’s range and no-fly zone’s radius was used in creation of these paths. As

opposed to the previous two methods, the UAV and target locations are included in the

generation of these possible paths. In theory this approach should yield an already

optimized solution. This is because it is an exhaustive search as opposed to approximate

solutions.

 Some of the advantages of a visibility graph are that is provides a more complete

possible path solution. This leads to fewer calculations after Dijkstra’s algorithm. Due to

the fact that this path will be the shortest possible path, it will not have to be optimized

during the refinement step, but these paths still need to be made flyable. These paths are

defined according to radii of the no-fly

zones, ranges of the threats, positions of the UAVs, and positions of the targets. Since

the rad

 line does not, it is recorded as a possible line of travel.

Clearly

 points on the battlefield, which are the outer lying

ii and ranges are spherical the points must be placed at equal intervals along this

sphere. This leads to the paths passing as close as possible to a threat or no-fly zone

penetrating it.

 The generation of the visibility lines in this graph is accomplished using

Algorithm 3.1.3. After every point is generated, they are exhaustively searched to every

other point to see if the line connecting the two points passes through a threat’s range or

no-fly zone’s radius. If the

, this process leads to the generation of paths that cannot be optimized.

 56

6.2 - Comparison of the Path Generation Methods

 To evaluate the original Voronoi based method for path generation it must be

compar

e difficult to draw any

conclusions on which method is more effective. The comparison between these methods

is shown in Table 6.2.1, which shows the total calculation time and total simulation time

it took to complete the mission.

Table 6.2.1

ed with the two methods discussed in the previous section. The comparison of

these methods involves the evaluation of several factors.

• Calculation time of each replan

• Total estimated cost of each replan

• Simulation time at which each replan occurred

• Total Number of replans needed to complete the mission

• Total mission completion time (simulation and calculation)

Each method was used with the same initial conditions of the battlefield. In addition, for

comparison purposes, all of the random variables involved in classifying a target were

removed. If these variables were left in place it would b

 – Comparison of total simulation time for possible path generation methods

Grid 180 1778
Voronoi Diagram 174 1918
Visibilty Graph 176 1715

Path Generation
Method

Total Time
(sec)

Simulaiton
Time (sec)

It should be noted for the purpose of this comparison no targets were placed

inside of a threat’s range. Although the simulation is setup to allow this, it would have

introduced randomness into the results, which is undesirable. To perform a fair and

 57

unbiased comp ctly the same,

which are shown in Figure 6.2.1.

arison the initial conditions of the battlefield must be exa

Figure 6.2.1 – Initial conditions of the battlefield

In addition, all of the pop-up targets and threats were removed to ensure a fair

comparison. These particular conditions were chosen because no UAV can travel

directly to a target. This ensures that each path generation method is used instead of a

 58

UAV traveling along a straight line to a target. Each UAV was given the same initial

heading angle, cruise speed, and altitude, which are zero degrees, 130 meters per second,

and two kilometers. The cruise speed and altitude of each UAV are held constant

throughout the simulation.

To understand what occurred during the simulation every time a replan is signaled

a figure is plotted showing the current positions of everything on the battlefield as well as

the assigned paths for each UAV. In these the blue represents the UAVs positions and

selected paths, the green points are the targets positions, the black circles are the no-fly

zones and the red represents the threats positions and ranges.

Figures 6.2.2 -6.2.22 shows the figures plotted for the grid

Voronoi diagram path generation, and the visibility graph path generation from top to

bottom. I to the

MATLAB command line, so that a log of the simulation can be kep

logs can be seen for the grid, Voronoi diagram, and visibility graph path generation in

Figures 6.2.23, 6.2.24, and 6.2.25 respectively. Table 6.2.2 shows the purpose of each

replan, Table 6.2.3 shows what point in the simulation each replan is signaled. Table

6.2.4 contains the actual calculation time for each replan, while Table 6.2.5 show the

assigned minimum cost for the current mission. This information was recorded to

provide more in-depth comparison between the three methods.

path generation, the

n addition to a figure being plotted the current action is printed

t. These simulation

 59

Table 6.2.2 – Current actions for path generation methods

ied by UAV 4
15 Ta by UAV 2
16 Ta AV 3 a by UAV 2
17 Target 3 assessed by UAV 2 Target 5 identified by UAV 2 Target 5 attacked by UAV 2
18 Target 5 identified by UAV 1 Target 5 classified by UAV 2 Target 1 classified by UAV 4
19 Target 5 classified by UAV 1 Target 5 attacked by UAV 3 Target 5 assessed by UAV 3
20 Target 5 attacked by UAV 1 Target 5 assessed by UAV 3 Target 1 attacked by UAV 4
21 Target 5 assessed by UAV 1 Target 1 assessed by UAV 1 Target 1 assessed by UAV 1

Grid Voronoi Diagram Visibility Graph

Replan Current Action Current Action Current Action
1 Initial Plan Initial Plan Initial Plan
2 Target 2 identified by UAV 4 Target 2 identified by UAV 4 Target 2 identified by UAV4
3 Target 2 classified by UAV 4 Target 4 identifed by UAV 3 Target 2 classified by UAV 4
4 Target 1 identified by UAV 3 Target 4 classifed by UAV 3 Target 2 attacked by UAV 4
5 Target 1 classified by UAV 3 Target 4 attacked by UAV 3 Target 2 assessed by UAV 4
6 Target 3 identified by UAV 3 Target 4 assessed by UAV 3 Target 3 identified by UAV 1
7 Target 3 classified by UAV 2 Target 3 identified by UAV 2 Target 3 classified by UAV 1
8 Target 4 identified by UAV 1 Target 3 classified by UAV 2 Target 4 identified by UAV 3
9 Target 4 classified by UAV 1 Target 3 attacked by UAV 2 Target 4 classified by UAV 3

10 Target 2 attacked by UAV 4 Target 3 assessed by UAV 2 Target 3 attacked by UAV 1
11 Target 4 attacked by UAV 1 Target 2 classified by UAV 4 Target 3 assessed by UAV 1
12 Target 4 assessed by UAV 1 Target 2 attacked by UAV 1 Target 4 attacked by UAV 3
13 Target 1 attacked by UAV 4 Target 2 assessed by UAV 1 Target 4 assessed by UAV 3
14 Target 3 attacked by UAV 2 Target 1 identified by UAV 4 Target 1 identif

rget 1 assessed by UAV 4 Target 1 classified by UAV 4 Target 5 identified
rget 2 assessed by U Target 1 cked by UAV 1 Target 5 classified tta

Table 6.2.3 – Time when replan is signaled for path generation methods

1250

7 1399 1479 1368
8 1425 1519 1388
9 1441 1562 1404

10 1459 1602 1412
11 1510 1647 1453
12 1525 1661 1467
13 1561 1706 1482
14 1573 1770 1537
15 1618 1786 1555
16 1626 1794 1571
17 1678 1806 1617
18 1703 1822 1628
19 1719 1841 1663
20 1763 1856 1705
21 1778 1918 1715

Grid Voronoi Diagram Visibility Graph

Replan Signaled (sec) Signaled (sec) Signaled (sec)
1 0 0 0
2 1308 1370 1188
3 1324 1379 1203
4 1354 1394
5 1370 1439 1265
6 1384 1455 1353

 60

Table 6.2.4 – Actual replan calculation times for path generation methods

Grid Voronoi Diagram Visibility Graph

Replan Calculation (sec) Calculation (sec) Calculation (sec)
1 1.64 0.74 1.02
2 0.45 0.16 0.92
3 0.44 0.19 0.94
4 0.47 0.14 0.94
5 0.49 0.19 0.92
6 0.47 0.14 0.89
7 0.47 0.17 0.92
8 0.48 0.19 0.89
9 0.45 0.22 0.91

10 0.49 0.20 0.95
11 0.50 0.16 0.89
12 0.50 0.17 0.92
13 0.45 0.20 0.94
14 0.52 0.16 0.89
15 0.48 0.13 0.89
16 0.48 0.13 0.92
17 0.45 0.13 0.91
18 0.44 0.13 0.89
19 0.45 0.13 0.94
20 0.38 0.16 0.91
21 1.53 0.75 1.00

Table 6.2.5 – Replan current total cost for path generation methods

7 41.09 93.59 69.02
8 24.48 63.48 51.62
9 26.23 48.19 47.65

10 72.32 118.42 64.86
11 33.66 83.59 49.77
12 68.71 86.81 49.91
13 47.51 91.15 180.55
14 62.22 29.24 136.57
15 86.03 25.05 127.41
16 140.27 25.15 79.28
17 155.51 31.89 35.40
18 140.31 38.50 44.53
19 191.50 35.25 113.20
20 100.05 128.07 80.06
21 2096.80 2207.80 2204.10

Grid Voronoi Diagram Visibility Graph

Replan Totalcost (m) Totalcost (m) Totalcost (m)
1 2968.30 2623.10 2266.30
2 57.23 48.04 199.40
3 53.51 55.71 202.11
4 26.04 78.14 92.23
5 33.60 31.63 146.79
6 33.62 61.39 61.00

 61

Figure 6.2.2 – 1 replan of the simulation for all three methods st

 62

Figure 6.2.3 – 2 replan of the simulation for all three methods nd

 63

Figure 6.2.4 – 3 replan of the simulation for all three methods rd

 64

Figure 6.2.5 – 4 replan of the simulation for all three methods th

 65

Figure 6.2.6 – 5 replan of the simulation for all three methods th

 66

Figure 6.2.7 – 6 replan of the simulation for all three methods th

 67

Figure 6.2.8 – 7 replan of the simulation for all three methods th

 68

Figure 6.2.9 – 8 replan of the simulation for all three methods th

 69

Figure 6.2.10 – 9 replan of the simulation for all three methods th

 70

Figure 6.2.11 – 10 replan of the simulation for all three methods th

 71

Figure 6.2.12 – 11 replan of the simulation for all three methods th

 72

Figure 6.2.13 – 12 replan of the simulation for all three methods th

 73

Figure 6.2.14 – 13 replan of the simulation for all three methods th

 74

Figure 6.2.15 – 14 replan of the simulation for all three methods th

 75

 76

Figure 6.2.16 – 15th replan of the simulation for all three methods

 77

Figure 6.2.17 – 16 replan of the simulation for all three methods th

 78

Figure 6.2.18 – 17 replan of the simulation for all three methods th

 79

Figure 6.2.19 – 18 replan of the simulation for all three methods th

 80

Figure 6.2.20 – 19 replan of the simulation for all three methods th

 81

Figure 6.2.21 – 20th replan of the simulation for all three methods

Figure 6.2.22 – 21 replan of the simulation for all three methods st

 82

Figure 6.2.23 – Log of the simulation for the grid method

Figure 6.2.24 – Log of the simulation for the Voronoi diagram method

 83

Figure 6.2.25 – Log of the simulation for the visibility graph method

 84

Chapter 7

Implementation and Discussion of Search Scheme in SIMULINK

7.1 - Implementation of a SIMULINK Based Search Scheme

 As discussed previously, there are two types of cooperating UAV problems. One

has been covered in the preceding chapters, a bombing type UAV that has knowledge of

the entire battlefield before launch. For the purpose of this research effort, that type of

vehicle is the main concentration. This will eventually be developed into model aircraft.

The other type of UAV of interest to the Air Force is a disposable UAV, such as the

Predator. These UAVs will perform a search and destroy mission. It is evident from

inspection of any war that both s portant.

 The search and destroy mission starts with the assumption that everything about an

area is unknown, except the position of the UAVs and the size of the area. The only goal

of these inexpensive vehicles is to search s. Unlike the other

mission where there are no-fly zones and th ats to be avoided. This scenario is mainly

for the suppression of enemy defenses or any other mission in which an area needs to be

cleared. Essentially, the threats and the targets become one in the same. For simplicity

each target is assumed to be incapable of destroying a vehicle. This assumption is made

because if a target is con AV, not giving

the vehicle a chance to communicate the information it has gathered.

 Due to these assumptions about the battlefield the original control scheme needed

 be completely redesigned. The SIMULINK scheme for this is shown in Figure 7.1.1.

cenarios are extremely realistic and im

 out and destroy target

re

sidered a threat it would immediately attack the U

to

 85

In this control system, the general architecture stays the same with a central path-

planning block that contains the main g algorithms. decision makin

Figure 7.1.1 – Search control scheme in SIMULINK

 Also, the heading angle control design and the UAV manager stayed the same. All

of the other blocks were either replaced or removed. Instead of a targets manager, a

targets and waypoints interchangeably for each vehicle.

targets and waypoints manager was created. It was designed this way to assign the

 86

Figure 7.1.2 – Serpentine search pattern

 These waypoints were assigned such that the field is searched using a serpentine

pattern, an example of this can be seen in Figure 7.1.2. This allows the entire area to be

searched efficiently. This was accomplished by assigning each UAV to visit a point

directly across from it. After that point the path sweeps around to search another area of

the battlefield traveling the opposite direction. This process is repeated until the entire

area is searched.

 During the search of this area a target can be discovered, when this happens a

number of vehicles must be assigned to perform an action on this target. A target in a

search and destroy mission can have 5 states.

• Undetected

• Detected

• Classified as a valid / invalid target

• Attacked

 87

• Assessed as destroyed / not destroyed

This is similar to the previous case but with the addition of the first state, undetected,

since there is not knowledge of the battlefield a target cannot be identified, merely

detected. A target is considered detected if it travels within 1,000 meters of the vehicle.

In order for the target to change to any other state it must be within 10 meters of the

vehicle. This is the same distance that the UAV must travel within a waypoint for the

vehicle to be assigned to its next waypoint. The implementation of this in SIMULINK is

shown in Figure 7.1.3.

Figure 7.1.3 – Detect targets and waypoints SIMULINK block

 In much the same fashion as before, if a target changes states, UAV becomes lost,

or a waypoint is visited a replan is signaled for the entire group of vehicles. If a target

changes states, an appropriate number of vehicles are sent to the target to perform all of

the needed tasks. This decision is made by the central path-planning block shown in

igure 7.1.4. F

 88

Figure 7.1.4 – Path planning SIMULINK block

reach each target are straight lines.

are ass plished by using the previously

shortes

continues on its curren is assigned a path it is then input into the

Appendix E, is called, w of waypoints for each UAV to follow. The

and the size of the area to be searched. This function yields the locations of the

“uav_detect_waypoints_s” The first calls a function

 Since there are no threats or no-fly zones the possible paths for each UAV to take to

 The only modification that must be made before tasks

igned is each path must be flyable. This is accom

mentioned method in Algorithm 3.2.2. After each path is flyable the UAVs with the

t paths are selected to visit the target. If a vehicle is not assigned to visit a target it

t path. After each vehicle

same heading angle autopilot designed in Chapter 4.

Upon initialization of the battlefield a function named “waypoint_gen”, seen in

hich defines the set

inputs of this function are the number, position, the minimum turn radius of the UAVs,

waypoints that each vehicle is assigned to visit.

The block seen in Figure 7.1.3 calls two S-functions, “uav_detect_targets_s” and

, both are located in Appendix E.

 89

“uav_detect_target”, which inputs the current location of each UAV, the location of each

t, and the state of each target. This function compares the positions to evaluate if the

t should change states and if required it changes the state. The output of this

targe

targe

function is the updated target states. The second S-function calls

comp

wayp t to the UAV.

which

of the to this block which calls the “path_planning_search”

“uav_detect_waypoints”, which evaluates if a waypoint has been visited. This function

ares the current locations of the UAVs to the locations of the waypoints. If a

oint is visited, the function assigns the next waypoin

The central path-planning block calls the S-function “path_planning_search_s”,

 is shown in Appendix E. This function is invoked when a replan is signaled. All

 current information is input

function. This function contains the following algorithm:

Algorithm 7.1.1

1. If ta rget i is present

 3. Assign NTASKS UAVs to visit target

 ned to visit a target

 5. Go back to step 1

This s.

can fo

 2. Calculate flyable path for each UAV to target i

 NTASKS is current state of the target

4. If UAV not assig

 continue to current waypoint

assigns each UAV a path based on its current waypoints or a target changing state

The heading angle control system designed previously is then applied so that each UAV

llow the selected path.

 90

7.2 - Results of a Search Simulation

To visualize the results of the simulation a similar method was adapted to that in

ter 6. Each time an action occurs on

Chap the battlefield and a replan is signaled, a figure

urrent

7.2.1

been int. In addition, a

simul

is plotted that shows the current position and path for each UAV as well as the c

position of the detected targets. The first several of these replans are shown in Figures

- 7.2.6. In the figures shown a target is detected and destroyed. After the target has

destroyed the UAVs proceed to their next assigned waypo

statement was printed to the command line of MATLAB for the purpose of keeping a

ation log, which is shown in Figure 7.2.7.

Figure 7.2.1 – 1st replan for search simulation

 91

Figure 7.2.2 – 2nd replan for search simulation

Figure 7.2.3 – 3 replan for search simulation rd

 92

Figure 7.2.4 – rch simulation

4th replan for sea

Figure 7.2.5 – 5 replan for search simulation th

 93

Figure 7.2.6 – 6th replan for search simulation

Figure 7.2.7 – Log for search simulation

 94

Chapter 8

Conclusions and Recommendations

nto a real battlefield. The importance of these vehicles is becoming increasingly

ed more in real world applications such as the war in Iraq to

vehicles are the way of the future.

different researchers have attempted this problem as shown in Chapter 2.

eplan and avoid obstacles in a

 firing of a threat. In a realistic battlefield

cenario, if a vehicle cannot react properly to the environment it is inhabiting it serves no

on must have the capability to find, classify, destroy,

t. This must be accomplished

omputations, which this paper shows can be accomplished. The three

ented in this document are grid, Voronoi diagram, and

ds.

8.1 - Conclusions

 This research is the first step in the process of implementing cooperating UAVs

o

apparent. UAVs are being us

searching missions in Afghanistan. Clearly, these

They have lower operational cost, present less risk of loss of human life, and far greater

maneuverability capabilities.

 As has been presented in this thesis, the cooperating UAVs problem is exceedingly

complex. Many

This paper presents simulations that have the ability to r

battlefield environment, as well as a pure search and destroy mission. The simulation

discussed can react to a dynamic environment such as targets popping up, threats popping

up, classifying targets, loss of a UAV, and

s

purpose.

 Any cooperating UAV simulati

and perform a battle damage assessment on each targe

using real-time c

path generation methods pres

visibility graph. Chapter 6 provides a comparison of these metho

 95

 In the example, several factors must be compared to determine the best solution to

visibility graph method provided superior results for the cost of the

ater and the grid method was 31%

had a lower total simulation time than the other two

 method.

imal method of the three.

erage of the individual replan calculations the Voronoi diagram

a 76% decrease from the visibility graph method, while the decrease

e grid method. This difference becomes less evident when comparing the

e of the simulation, which the Voronoi diagram method is 1% less

ibility graph method and 3% less than the grid method.

While the individual replan computation time is significantly reduced by using the

diagram method, the optimization of the simulation suffers. From these

t the visibility graph provides best results,

haustive solution as opposed to an approximate solution. If

ity is low, the visibility graph should be used. As the complexity

ases, this method is not feasible and the Voronoi diagram method

. For the given in scenario in Chapter 6, it is the conclusion that the

ible reasons for error involved in the gathering of this data.

ror in recording the total calculation time of the simulation, which

ge of 5%. Another source of error could be the calculation time of

the problem. The

initial plan, the Voronoi diagram method was 16% gre

greater. The visibility graph also

methods, 3.6% less than the grid method and 12% less than the Voronoi diagram

This shows that the visibility graph is the opt

 Comparing the av

method provided

was 38% for th

total calculation tim

than the vis

Voronoi

comparisons one may draw the conclusion tha

which is because it is an ex

the battlefield complex

of the battlefield incre

should be used

visibility graph method would be the best option.

 There are several poss

These are human er

could be in the ran

 96

each replan. Each time this was calculated the computer could be running different

ing processor speed.

rol scheme to simulate a search and destroy mission was

l in a

n is to search out targets on a battlefield when there is no prior

 of the given area. These vehicles must clear the battlefield of targets using a

procedure to assign each UAV a task to accomplish the desired

s this desired mission by

get.

alistic, but in order to build model aircraft that

lations it must be coded on an airborne processor. To choose the

ust be clearly defined. The grid and Voronoi diagram

ic environment, while the visibility graph would be

 a static environment. Initially, a search and destroy mission with

ucing threats and no-fly zones

 could include the addition of timing

r a 3-D environment, into the simulation. In

 the initial steps necessary to implement cooperating

processes that could result in vary

 In addition, a cont

designed. This simulation was created to show the other purpose of UAVs. The goa

search and destroy missio

knowledge

market-based bidding

mission. Chapter 7 shows a simulation that accomplishe

destroying the given tar

8.2 - Recommendations

 Both of the above scenarios are re

can perform these simu

proper method the battlefield m

methods lend themselves to a dynam

better applicable toward

no obstacles would be easier to implement before introd

into the problem. Some topics of future research

constraints, collision avoidance, o

conclusion, this thesis has presented

UAVs on a model battlefield.

 97

References

, “New Trends in High Altitude Unmanned Aircraft”,

, 1992.

 Duquette, “A Multi-purpose Simulation Environment for UAV

Research”, Austin, TX, AIAA Modeling and Simulation Technologies Conference,

ed Air Vehicles”, Wright-Patterson

 Force Base, OH, Air Vehicles Directorate, 1999.

owlett, S. Rasmussen, C.

Schumacher, K. Nygard, “Complexity in UAV Cooperative Control”, Anchorage,

 J. Bellingham, M. Tillerson, A. Richards, J.P. How, “Multi-task Allocation and Path

s”, Conference on Coordination, Control and

dination and Control of

s”, Monterey, CA, AIAA Guidance, Navigation, and Control

ugust 2002.

anned Air Vehicles”, Dayton, OH, AFRL /

, J. Bellingham, M. Tillerson, J. How, “Coordination and Control of

A, AIAA Guidance, Navigation, and Control

[1] B.S. Papadales, R.T. Leitner

W.J. Schafer Associates, Inc.

[2] J.P. Nalepka, M.M.

August 2003.

[3] T.M. McLain, “Coordinated Control of Unmann

Air

[4] P.R. Chandler, M. Pachter, D. Swaroop, J.M. Fowler, J.K. H

AK, American Control Conference, May 2002.

[5]

Planning for Cooperating UAV

Optimization, November 2001.

[6] A. Richards, J. Bellingham, M. Tillerson, J. How, “Co-or

Multiple UAV

Conference, A

[7] S.A. Bortoff, “Path-Planning for Unm

VAAD, 1999.

[8] A. Richards

Multiple UAVs”, Monterey, C

Conference, August 2002.

 98

[9] S. Li, J.D. Boskovic, S. Seereeram, R. Prasanth, J. Amin, R.K. Mehra, R.W. Beard,

T.W. McLain, “Autonomous Hierarchical Control of Multiple Unmanned Combat

Air Vehicles (UCAVs)”, Anchorage, AK, American Control Conference, May

2002.

. Chandler, M. Pachter, S.R. Rasmussen, C. Schumacher, “Distributed Control

ltiple UAVs with Strongly Coupled Tasks”, Austin, TX, AIAA Guidance,

gation, and Control Conference, August 2003.

m for the Multidimensional

Multiple-Choice Knapsack Problem”, IEICE Trans. Fundamentals, Vol. E80-A, No.

] W. Kang, A. Sparks, “Task Assignment in the Cooperative Control of Multiple

 Control Conference, August

2003.

 Coordinated Rendezvous of

, Navigation, and Control

A. Sparks, “Optimal vs.

anned Air Vehicles”,

ference, August 2003.

 Allocation in UAV

avigation, and Control

[10] P.R

for Mu

Navi

[11] M. Moser, D.P. Jokanovic, N. Shiratori, “An Algorith

3, March 1997, pp. 582-589

[12

UAVs”, Austin, TX, AIAA Guidance, Navigation, and

[13] T.W. McLain, R.W. Beard, “Trajectory Planning for

Unmanned Air Vehicles”, Denver, CO, AIAA Guidance

Conference, 2000.

[14] S. Rasmussen, P. Chandler, J.W. Mitchell, C. Schumacher,

Heuristic Assignment of Cooperative Autonomous Unm

Austin, TX, AIAA Guidance, Navigation, and Control Con

[15] G. Chen, J.B. Cruz, Jr., “Genetic Algorithm for Task

Cooperative Control”, Austin, TX, AIAA Guidance, N

Conference, August 2003.

 99

[16] P.R. Chandler, M. Pachter, S.R. Rasmussen, C. Schumacher, “Multiple Task

uidance, Navigation, and

t”, GlobalSecurity.org, December 2002.

tive Control”, Monterey, CA, AIAA

s Area Search and Task Assignment for a

20] M.L. Baum, K.M. Passino, “A Search-Theoretic Approach to Cooperative Control

ce, August 2002.

ration Between UAVs in a Search and Destroy Mission”, Austin,

rol Conference, August 2003.

P.R. Chandler, M. Pachter, “Hierarchical Control for Autonomous Teams”,

Montreal, Canada, AIAA Guidance, Navigation, and Control Conference, August

.

her, P. Chandler, “A Multiple

IAA Modeling and Simulation

l for Cooperative Search”,

002.

Assignment for a UAV Team”, Monterey, CA, AIAA G

Control Conference, August 2002.

[17] J. Pike, “Iraqi Air Defense Equipmen

[18] S.J. Rasmussen, C. Schumacher, P.R. Chandler, “Investigation of Single vs. Multiple

Task Tour Assignments for UAV Coopera

Guidance, Navigation, and Control Conference, August 2002.

[19] J.W. Curtis, R. Murphey, “Simultaneou

Team of Cooperative Agents”, Austin, TX, AIAA Guidance, Navigation, and

Control Conference, August 2003.

[

for Uninhabited Air Vehicles”, Monterey, CA, AIAA Guidance, Navigation, and

Control Conferen

[21] G.L. Slater, “Coope

TX, AIAA Guidance, Navigation, and Cont

[22]

2001

[23] S. Rasmussen, J.W. Mitchell, C. Schulz, C. Schumac

UAV Simulation for Researchers”, Austin, TX, A

Technologies Conference, August 2003.

[24] D.Enns, D. Bugajski, S. Pratt, “Guidance and Contro

Anchorage, AK, American Control Conference, May 2

 100

[25] G.Hui, http://www.ece.northwestern.edu/~guanghui/Transportation/spt/section3_1,

Manning, G.C. Shoja, S. Khan, “Heuristic Solutions for the

em”, Victoria, BC, Canada,

] M.G. Kay, http://www.ie.ncsu.edu/kay/matlog/

Northwestern University, Chicago, IL, 1995.

[26] M.M. Akbar, E.G.

Multiple-Choice Multi-Dimension Knapsack Probl

Department of CD, PANDA Lab, Uvic, 2002.

[27 , “Matlog: Logistics Engineering

ring, North Carolina State

versity, Raleigh, NC, 2003.

8] B. Seanor, “Flight Testing of a Remotely Piloted Vehicle for Aircraft Parameter

Dissertation West Virginia University, MAE Department,

Airplane Flight Dynamics and Automatic Flight Controls”, Design,

each Corporation, Lawrence, KS, 1995, pgs. 1-34.

ewis, “Aircraft Control and Simulation”, John Wiley & Sons,

rk, NY, 1992. pgs. 94, 103-109.

e.wanadoo.nl/dutchroll/author.html

MATLAB Toolbox”, Department of Industrial Enginee

Uni

[2

Estimation Purposes”,

Morgantown, WV, 2002.

[29] J. Roskam, “

Analysis and Res

[30] B.L. Stevens, F.L. L

Inc., New Yo

[31] M.O. Rauw, http://hom , “The Flight Dynamics

 Control Toolbox”, BL, Haarlem, Netherlands1992. and

 101

Appendix A

Path-Planning and Task Allocation MATLAB Files

 102

Path Generation Related Functions

g_gen

Authored by Zachary Spritzer and Matthew Lechliter

n [all_pos,all_lines_x,all_lines_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS)

is the
n

Vs, and

he number of Targets, the first row
d row is the y position of

es, the first

e of

s the number of Threats, the first row
he

ts,
e x position and

ere n is the number of all of the lines
e ending point's

s the starting point's

 targets. The first row is the ending point's
th line and the second row is the starting point's
the line.

 of the lines
costs for all of the

HREATS(1,:)])+25;
REATS(1,:)])-25;

,THREATS(2,:)])+25;
:),THREATS(2,:)])-25;

PTS=[ZONES([1,2],:) THREATS([1,2],:) ...

Vrn_Dia

%

unctiof

%INPUTS:
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row
%initial x position of the UAVs, the second row is the initial y positio
%of the UAVs, the third row is the initial altitude of the UA
%the fourth row is the intial Velocity of the UAVs.
%
%TARGETS - is a 2xn matrix where n is t
%is the x position of the targets and the secon
%the targets.
%
%ZONES - is a 3xn matrix where n is the number of No-Fly Zon
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or rang
%the no-fly zones.
%
%T
%is

HREATS - is a 4xn matrix where n i
 the x position of the threats, the second row is the y position of t

%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%OUTPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique voronoi poin
%u
%th

av points, and target points. Where the first row is th
e second row is the y position of all of these unique points.

%
%all_lines_x - is a 2xn matrix wh
%for the voronoi, uavs, and targets. The first row is th
%x position for the nth line and the second row i
%
%

x position for the nthe line.

rix where n is the number of all of the lines %all_lines_y - is a 2xn mat
%for the voronoi, uavs, and
%y position for the n
%y position for the n
%
%all_costs - is a 1xn row where n is the number of all
%
%

for the voronoi, uavs, and targets. This row is the
lines of all_lines_x and all_lines_y

max_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),T

RGETS(1,:),UAVS(1,:),ZONES(1,:),THmin_x=min([TA
max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:)

RGETS(2,:),UAVS(2,:),ZONES(2,min_y=min([TA

VRN

 103

 [(((max_y-min_y)*[1:4]/4)+min_y);(min_x)*ones(1,4)] ...
);(min_x)*ones(1,4)] ...
);(min_y)*ones(1,4)] ...

x);(max_y)*ones(1,4)]];

PTS(1,:),VRNPTS(2,:));

%%

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%
Connecting UAV's into voronoi

%%%
uav,uavx,uavy]=connect_vrn(vxyn,UAVS([1,2],:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
onnecting the targets into the voronoi

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
,targy]=connect_vrn(vxyn,TARGETS([1,2],:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
voronoi line costs

%%%
x,2);

(1,nvlines);

cost_vrn(1,i)=sqrt((vx(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2);

%%%%%%%%%%%%%%
tacking unique positions, lines for x and y, and costs of those lines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1,2],:) vxyn(:,[1,2])' TARGETS([1,2],:)];
([1,2],:) vx([1,2],:) targx([1,2],:)];

y([1,2],:) targy([1,2],:)];
cost_vrn(1,:) line_cost_targ(1,:)];

i

ronoi(x,y,arg3,arg4)

ORONOI(X,Y) plots the Voronoi diagram for the points X,Y.
finity are unbounded and

instead of
omputing it via DELAUNAY.

ec') plots the diagram with color and linestyle
pecified and returns handles to the line objects created in H.

 [(((max_y-min_y)*[1:4]/4)+min_y
 [(((max_x-min_x)*[1:4]/4)+min_x
 [(((max_x-min_x)*[1:4]/4)+min_

[vx,vy] = voronoi(VRN

%%%
%Taking unique numbers from vx and vy
%
[vxyn]= 1e-6*unique(round(1e6*[vx(:),vy(:)]),'rows');

%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%
[line_cost_

%%%%%%%%%%%%%%%%
%C
%%%%%%%%%%%%%%%%%%%
[line_cost_targ,targx

%%%%%%%%%%%%
%Generation for
%%%%
nvlines=size(v
line_cost_vrn=zeros
for i=1:nvlines,
 line_
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%S
%%%%%%%%%%%%%%%%
all_pos=[UAVS([
all_lines_x=[uavx
all_lines_y=[uavy([1,2],:) v
all_costs=[line_cost_uav(1,:) line_

Vorono

function [vxx,vy] = vo
%VORONOI Voronoi diagram.
% V
% Cells that contain a point at in
% are not plotted.
%
% VORONOI(X,Y,TRI) uses the triangulation TRI
% c
%
% H = VORONOI(...,'LineSp
% s
%

 104

% [VX,VY] = VORONOI(...) returns the vertices of the Voronoi

agram.

r the topology of the voronoi diagram, i.e. the vertices for
e function VORONOIN as follows:

 [V,C] = VORONOIN([X(:) Y(:)])

IN, DELAUNAY, CONVHULL.

 Copyright 1984-2002 The MathWorks, Inc.
2/06/05 20:05:17 $

se

y are all clockwise
t = x(tri); yt=y(tri);

 + ...
yt(:,2));

,[1 2]) = tri(bt,[2 1]);

,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)
oronoi edge if E(i,j)

));
u(E'));

,:),x,y);
circle(tri(vv,:),x,y);

x = [c1(:,1) c2(:,1)].';
y = [c1(:,2) c2(:,2)].';

% edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') creates the
% Voronoi di
%
% Fo
% each voronoi cell, use th
%
%
%
% See also VORONO

%
% $Revision: 1.15 $ $Date: 200

error(nargchk(2,4,nargin));

if nargin==2,
 tri = delaunay(x,y);
 ls = '';
elseif nargin==3,
 if isstr(arg3),
 tri = delaunay(x,y);
 ls = arg3;
 el
 tri = arg3;
 ls = '';
 end
else

 = arg3; tri
 ls = arg4;
nd e

% re-orient the triangles so that the
x
ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ...
 xt(:,2).*(yt(:,3)-yt(:,1))

t(:,1)- xt(:,3).*(y
bt = find(ot<0);
tri(bt

 = prod(size(x)); n
ntri = size(tri,1);

= (1:ntri)'; t
T = sparse(tri,tri(:
E = (T & T').*T; % V

,j,v] = find(triu(E[i
[i,j,vv] = find(tri

i(vc1 = circle(tr
c2 =

v
v

if nargout<2
 if isempty(ls),

 105

 co = get(gcf,'defaultaxescolororder');
r',co(1,:));

 [l,c,m,msg] = colstyle(ls); error(msg)

end

ax(x(:)) min(y(:)) max(y(:))])

lse

nd

nction c = circle(tri,x,y)
for circumcircles

ngle in TRI.

; x3 = x(tri(:,3));
)); y3 = y(tri(:,3));

11 .* (x2+x1) + a12 .* (y2+y1);

t = a11.*a22 - a21.*a12;

ints that are either the same

 find(idet == 0);
nts

delta = sqrt(eps);

)-0.5);
x3(d) = x3(d) + delta*(rand(size(d))-0.5);

d(size(d))-0.5);
y3(d) = y3(d) + delta*(rand(size(d))-0.5);

2-y1;

b1 = a11 .* (x2+x1) + a12 .* (y2+y1);
a22 .* (y3+y1);

nd

 h = plot(vx,vy,'-',x,y,'.','colo
 else

 if isempty(m), m = '.'; end
 h = plot(vx,vy,ls,x,y,[c m]);

 if ~ishold,
 view(2), axis([min(x(:)) m
 end
 if nargout==1, vxx = h; end
e
 vxx = vx;
e

fu
%CIRCLE Return center and radius
% C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:)
% ycenter(:) radius(:)] for each tria

% Reference: Watson, p32.
x = x(:); y = y(:);

x1 = x(tri(:,1)); x2 = x(tri(:,2))
y1 = y(tri(:,1)); y2 = y(tri(:,2

% Set equation for center of each circumcircle:
% [a11 a12;a21 a22]*[x;y] = [b1;b2] * 0.5;

a11 = x2-x1; a12 = y2-y1;
a21 = x3-x1; a22 = y3-y1;

b1 = a
b2 = a21 .* (x3+x1) + a22 .* (y3+y1);

% Solve the 2-by-2 equation explicitly
ide

% Add small random displacement to po
% or on a line.
d =
if ~isempty(d), % Add small random displacement to poi

 x1(d) = x1(d) + delta*(rand(size(d))-0.5);
 x2(d) = x2(d) + delta*(rand(size(d)

 y1(d) = y1(d) + delta*(rand(size(d))-0.5);
 y2(d) = y2(d) + delta*(ran

 a11 = x2-x1; a12 = y
 a21 = x3-x1; a22 = y3-y1;

 b2 = a21 .* (x3+x1) +
 idet = a11.*a22 - a21.*a12;
e

 106

idet = 0.5 ./ idet;

xcenter = (a22.*b1 - a12.*b2) .* idet;
ycenter = (-a21.*b1 + a11.*b2) .* idet;

(y1-ycenter).^2;

Matthew Lechliter

ion [line_cost_uav,uavx,uavy]=connect_vrn(vxyn,UAVS)

Inputs:

lumn defining all of the unique x
onoi diagram or grid and the second column defining
ositions of the voronoi diagram or grid.

VS - is a 2xn matrix with the first row defining the x position of the
UAV and the second row defining the y position of the UAV.

 the cost of the lines of connecting

the UAV's into the voronoi diagram or grid

uavx - is a 2xn matrix with first row defining ending point and second row

oordinates.

w defining ending point and second row
efining starting point for the y coordinates.

vxynpts=size(vxyn,1);

avy=zeros(2,nuav*3);

1,j-1)=sqrt((UAVS(1,k)-vxyn(j,1))^2+(UAVS(2,k)-vxyn(j,2))^2);

 mdu=sort(du,2);

du(1,i));

 uavy(1,3*(k-1)+i)=vxyn(mdu_loc+1,2);
 uavx(2,3*(k-1)+i)=UAVS(1,k);
 uavy(2,3*(k-1)+i)=UAVS(2,k);

du(1,i);

radius = (x1-xcenter).^2 +

c = [xcenter ycenter radius];

Connect_Vrn

%Authored by Zachary Spritzer and

funct

%
%
%vxyn - is a nx2 matrix with first co
%positions of the vor
%all of the unique y p
%
%UA
%
%
%Outputs:
%
%line_cost_uav - is a vector containing
%
%
%
%defining starting point for the x c
%
%uavy - is a 2xn matrix with first ro
%d
nuav=size(UAVS,2);
n
du=zeros(1,nvxynpts-1);
uavx=zeros(2,nuav*3);
u
line_cost_uav=zeros(1,nuav*3);
for k=1:nuav,
 for j=2:nvxynpts,
 du(
 end

 for i=1:3,
 mdu_loc=find(du==m
 uavx(1,3*(k-1)+i)=vxyn(mdu_loc+1,1);

 line_cost_uav(1,3*(k-1)+i)=m
 end
end

 107

Path Selection Related Functions

uthored by Zachary Spritzer and Matthew Lechliter

nction
lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

all_pos - is a 2xn matrix where n is the number of unique voronoi points,
 target points. Where the first row is the x position and

the second row is the y position of all of these unique points.

of all of the lines
for the voronoi, uavs, and targets. The first row is the ending point's

th line and the second row is the starting point's

the lines
 and targets. The first row is the ending point's

 point's
osition for the nthe line.

all_costs - is a 1xn row where n is the number of all of the lines
gets. This row is the costs for all of the

lines of all_lines_x and all_lines_y.

UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
of the UAVs, the second row is the initial y position

 the third row is the initial altitude of the UAVs, and
w is the intial Velocity of the UAVs.

s a 2xn matrix where n is the number of Targets, the first row
ets and the second row is the y position of

 - is a 3xn matrix where n is the number of No-Fly Zones, the first
e no-fly zones, the second row is the y

y zones, and the third row is the radius or range of
zones.

 - is a 4xn matrix where n is the number of Threats, the first row
e threats, the second row is the y position of the

 third row is the range of the threats, and the fourth row is
el of danger of the threats.

ber of uavs times the

Cheapest_Paths

%A

fu
[stored_paths,totalcost]=cheapest_paths(all_pos,all_
S,THREATS)
%
%INPUTS:
%
%
%uav points, and
%
%
%all_lines_x - is a 2xn matrix where n is the number
%
%x position for the n
%x position for the nthe line.
%
%all_lines_y - is a 2xn matrix where n is the number of all of
%for the voronoi, uavs,
%y position for the nth line and the second row is the starting
%y p
%
%
%for the voronoi, uavs, and tar
%
%
%
%initial x position
%of the UAVs,
%the fourth ro
%
%TARGETS - i
%is the x position of the targ
%the targets.
%
%ZONES
%row is the x position of th
%position of the no-fl
%the no-fly
%
%THREATS
%is the x position of th
%threats, the
%the lev
%
%OUTPUTS:
%
%stored_paths - is a mxn matrix where m is the num

 108

%number of targets and n is the length of the longest path. The first row
r the first uav and the last row being the last

v. The paths are output by node numbers coming from
ementation of dijkstra's algorithm.

st - is a mxn matrix where m is the number of uavs and n is the
sible paths for each uav. The element (m,n) of this matrix

ost for the mth uav to take the nth path.

%%
s algorithm

%%
]=set_THC(all_pos,all_lines_x,all_lines_y,all_costs);

%%
nt for all lines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%
he reverse of the THC matrix onto the end, so that the

erse of the lines is possible
%%
HC=[THC(:,[1,2,3]); THC(:,[2,1,3])];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%
S,2);

zeros(nuav,ntarg);

j + 1);
paths((i-1)*ntarg+j,[1:size(path,2)])=path(1,[1:size(path,2)]);

the y position of all of these unique points.

%being the first path fo
%path for the last ua
%the impl
%
%totalco
%number of pos
%is the c

%
%Making THC matrix for dijkstra'
%%%%%%%
[THC

%%%%%
%Cost Assignme
%%%%%%%%%%%%%%%
[THC]= c_assign(all_pos,THC,ZONES,THREATS);

%%%%%%%%%
%Adding t
%rev
%
T

%%%%%%%%%%%%%%%%%%%%%%%

Implementing Dijkstra's algorithm %
%%%%%%%%

uav=size(UAVn
ntarg=size(TARGETS,2);

 = list2adj(THC); A
totalcost=
for i=1:nuav,
 for j=1:ntarg,
 [totalcost(i,j),path] = dijk(A,i,size(all_pos,2) -
 stored_
 end
end

Set_THC

%Authored by Zachary Spritzer, Matthew Lechliter, and Elena Lucci

sts) function [THC]=set_THC(all_pos,all_lines_x,all_lines_y,all_co
%
%INPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique voronoi points,

get points. Where the first row is the x position and %uav points, and tar
he second row is %t

%
%all_lines_x - is a 2xn matrix where n is the number of all of the lines
%for the voronoi, uavs, and targets. The first row is the ending point's
%x position for the nth line and the second row is the starting point's

 109

%x position for the nthe line.
%
%all_lines_y - is a 2xn matrix where n is the number of all of the lines

 the voronoi, uavs, and targets. The first row is the ending point's

here n is the number of all of the lines
r the voronoi, uavs, and targets. This row is the costs for all of the

_lines_y.

o no-fly zones and
reats.

C=zeros(size(all_lines_x,2),3);

00));
 if any(P)
 num=find(P);

 else

 tz=(fix((i./2))+1);

on [THC]= c_assign(all_pos,THC,ZONES,THREATS)

i points,
et points. Where the first row is the x position and

nd row is the y position of all of these unique points.

%for
%y position for the nth line and the second row is the starting point's
%y position for the nthe line.
%
%all_costs - is a 1xn row w
%fo
%lines of all_lines_x and all
%
%OUTPUTS:
%
%THC - is a nx3 matrix where n is the number of possible lines to be chosen
%the first column is the tail of the line or starting point, the second
%column is the head of the line or the ending point, and the third column
%is the cost of the line. With updated costs due t
%th

TH
THC(:,3)=all_costs(:);
for i=1:(2*size(all_lines_x,2))
 P=(round(all_pos(1,:)*100)== round(all_lines_x(i)*100)) &
(round(all_pos(2,:)*100)==round(all_lines_y(i)*1

 if (rem(i,2))~=0
 bz=((fix(i./2))+1);
 THC(bz,1)=num;
 else THC((i/2),2)=num;
 end

 if (rem(i,2))~=0

 THC(tz,1)=i;
 else THC((i/2),2)=i;
 end
 end
end

C_assign

%Authored by Zachary Spritzer and Matthew Lechliter

functi
%
%INPUTS:
%
%all_pos - is a 2xn matrix where n is the number of unique vorono
%uav points, and targ
%the seco

 110

%
%THC - is a nx3 matrix where n is the number of po
%the first column is the tail of the line or starting point, the second

ssible lines to be chosen

nd the third column

ES - is a 3xn matrix where n is the number of No-Fly Zones, the first

 no-fly zones.

THREATS - is a 4xn matrix where n is the number of Threats, the first row

 of the
 row is

OUTPUTS:

THC - is a nx3 matrix where n is the number of possible lines to be chosen
the first column is the tail of the line or starting point, the second

With updated costs due to no-fly zones and

nes=size(ZONES,2);

1:szthc,
 start=THC(i,1);finish=THC(i,2);

ES(1,j)-all_pos(1,finish))^2)+((ZONES(2,j)-all_pos(2,finish))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);

 if SC<FC,PC=SC;
 else

ONES(3,j),THC(i,3)=1e30*THC(i,3);

HREATS(2,j)-all_pos(2,start))^2));
=sqrt(((THREATS(1,j)-all_pos(1,finish))^2)+((THREATS(2,j)-all_pos(2,finish))^2));

N=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else

 if PC < THREATS(3,j),THC(i,3)=(THREATS(4,j)*100)+THC(i,3);

%column is the head of the line or the ending point, a
%is the cost of the line.
%
%ZON
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of
%the
%
%
%is the x position of the threats, the second row is the y position
%threats, the third row is the range of the threats, and the fourth
%the level of danger of the threats.
%
%
%
%
%
%column is the head of the line or the ending point, and the third column
%is the cost of the line.
%threats.
szthc=size(THC,1);
nzo
nthrts=size(THREATS,2);

for i=

 SF=sqrt(((all_pos(1,finish)-all_pos(1,start))^2)+((all_pos(2,finish)-all_pos(2,start))^2));
 for j=1:nzones,
 SC=sqrt(((ZONES(1,j)-all_pos(1,start))^2)+((ZONES(2,j)-all_pos(2,start))^2));
 FC=sqrt(((ZON

 if SN<SF & SN>0,PC=sqrt(SC^2-SN^2);
 else

 PC=FC;
 end
 end
 if PC < Z
 end
 end
 for j=1:nthrts,
 SC=sqrt(((THREATS(1,j)-all_pos(1,start))^2)+((T
 FC
 S

 if SC<FC,PC=SC;
 else
 PC=FC;
 end
 end

 111

 end
 end
end

Dijk

function [D,P] = dijk(A,s,t)

K Shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm.
 [D,P] = dijk(A,s,t)
 A = n x n node-node weighted adjacency matrix of arc lengths

N => Arc (i,j) exists with 0 weight)

s

 = [] (default), paths to all nodes
 D = |s| x |t| matrix of shortest path distances from 's' to 't'

D(i,j) = distance from node 'i' to node 'j'

 index of the predecessor to node 'j' on the path from 's(i)' to
 is 'j' not on path to 's(i)'

 (use PRED2PATH to convert P to paths)
 = path from 's' to 't', if |s| = |t| = 1

ular matrix, then computationally intensive node
not needed since graph is acyclic (triangularity is a

o be acyclic)

ow
d and P now represents successor indices)

k Flows,

ersion 6 19-Sep-2002

 upper triangular

%DIJ
%
%
% (Note: A(i,j) = 0 => Arc (i,j) does not exist;
% A(i,j) = Na
% s = FROM node indices
% = [] (default), paths from all node
% t = TO node indices
%
%
% = [D(i,j)], where
% P = |s| x n matrix of predecessor indices, where P(i,j) is the
%
% 'j',where P(i,i) = 0 and P(i,j) = NaN
%
%
%
% (If A is a triang

 selection step %
% sufficient, but not a necessary, condition for a graph t

 and A can have non-negative elements) %
%

 (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is n%
% transpose
%
% (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Networ
% Prentice-Hall, 1993, p. 109.)

ht (c) 1994-2002 by Michael G. Kay % Copyrig
Matlog V%

% Input Error Checking *******************************

error(nargchk(1,3,nargin))

cA] = size(A); [n,

if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end
if nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); end

any(any(tril(A) ~= 0)) % A isif ~
 isAcyclic = 1;
elseif ~any(any(triu(A) ~= 0)) % A is lower triangular
 isAcyclic = 2;
else % Graph may not be acyclic

 = 0; isAcyclic
 end

 112

if n ~= cA
 error('A must be a square matrix');

' must be an integer between 1 and ',num2str(n)]);
)
n integer between 1 and ',num2str(n)]);

r Checking) **

e to speed-up FIND for sparse A

); Di(j) = 0;

ical(zeros(length(t),1));

- 1;
cyclic == 2

 = 1:n;
nLab = logical(ones(n,1));

 end % Change from NaN to indicate no pred

 & ~all(isLab)

Di(j);
tion

[Dj,jj] = min(Di(isUnLab));
jj);

UnLab(jj) = [];
0;

< n, isLab = isLab | (j == t); end

,Aj] = find(A(:,j));
isnan(Aj)) = 0;

 Increment node index for upper triangular A

elseif ~isAcyclic & any(any(A < 0))
 error('A must be non-negative');
elseif any(s < 1 | s > n)
 error(['''s'
elseif any(t < 1 | t > n
 error(['''t'' must be a
end
% End (Input Erro

A = A'; % Use transpos

D = zeros(length(s),length(t));
if nargout > 1, P = NaN*ones(length(s),n); end

for i = 1:length(s)
 j = s(i);

 Di = Inf*ones(n,1

 isLab = log
 if isAcyclic == 1
 nLab = j
 elseif isA
 nLab = n - j;
 else
 nLab = 0;
 UnLab
 isU
 end

 if nargout > 1, P(i,s(i)) = 0;

 while nLab < n
 if isAcyclic
 Dj =
 else % Node selec

 j = UnLab(

 isUnLab(j) =
 end

 nLab = nLab + 1;
 if length(t)

 [jA,kA
 Aj(

 if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end

 if nargout > 1, P(i,jA(Dk < Di(jA))) = j; end
 Di(jA) = min(Di(jA),Dk);

 if isAcyclic == 1 %

 113

 j = j + 1;
 elseif isAcyclic == 2 % Decrement node index for lower triangular A

1 & length(s) == 1 & length(t) == 1

jkstra Functions

 j = j - 1;
 end
 end
 D(i,:) = Di(t)';
end

if nargout >
 P = pred2path(P,s,t);
End

Additional Di

n [i,j,c] = adj2list(A)
J2LIST Node-node weighted adjacency matrix to arc list representation.

st(A)
 A = m x m node-node weighted adjacency matrix of arc lengths
 IJC = n x 2-3 matrix arc list [i j c], where
 i = n-element vector of arc tails nodes

ent vector of arc head nodes
 c = n-element vector of arc weights

 Note: All A(i,j) = A(j,i) => [i -j c] (symmetric A)

 A(i,j) = NaN => Arc (i,j) exists with 0 weight
er for [i,j,c] = FIND(C); c(ISNAN(c)) = 0)

A,cA] = size(A);

ror('''A'' must be a square matrix.');

,j,c] = find(A);
 issym, j = -j; end

nd

 isint(x,TolInt)
 True for integer elements (within tolerance).

functio
%AD
% IJC = adj2list(A)
% [i,j,c] = adj2li
%
%
%
% j = n-elem
%
%
%
% A(i,j) = 0 => Arc (i,j) does not exist
%
% Wrapp
%
% See also LIST2INCID, LIST2ADJ, and ADJ2INCID

% Copyright (c) 1994-2002 by Michael G. Kay
% Matlog Version 6 19-Sep-2002

% Input Error Checking ***********************
[r
if rA ~= cA
 er
end
% End (Input Error Checking) ***********************************

if all(all(triu(A)==tril(A)')), A = triu(A); issym = 1; else issym = 0; end

[i
if
c(isnan(c)) = 0;

if nargout == 1
 i = [i j c];
e

function y =
%ISINT
% y = isint(x,TolInt)

 114

% = abs(x-round(x)) < TolInt

. Kay

ing **

 < 2 | isempty(TolInt), TolInt = 0.01*sqrt(eps); end

(x-round(x)) < TolInt;

weighted adjacency matrix representation.
 = list2adj(IJC,m,spA)

c u l], where
i = n-element vector of arc tails nodes

mber of arcs
 = (default) ONES(n,1)
 u = (optional) ignored

 m = (optional) scalar size of A if greater than max{max(i),max(abs(j))}
 matrix if n <= spA x m x m

1 (default), A sparse if 10% arc density

) c(k)] -> A[i(k),j(k)] = c(k)
 -> A[i(k),-j(k)] = c(k) and

 A[-j(k),i(k)] = c(k)

 in A
 c(k) = 0 => A(i(k),j(k)) = NaN

);

nd

j = abs(j);

% TolInt = integer tolerance
% = [0.01*sqrt(eps)], default

% Copyright (c) 1994-2002 by Michael G
% Matlog Version 6 19-Sep-2002

% Input Error Check
error(nargchk(1,2,nargin));
if nargin
% End (Input Error Checking) **

y = abs

function A = list2adj(IJC,m,spA)
%LIST2ADJ Arc list to node-node
% A
% IJC = n x 2-5 matrix arc list [i j
%
% j = n-element vector of arc head nodes
% c = (optional) n-element vector of arc costs, where n = nu
%
%
% l = (optional) ignored
%
% spA = (optional) make A sparse

 = 1, always make A sparse %
% = 0.
% = 0, always make A full matrix
% A = m x m node-node weighted adjacency matrix

 %
% Transforms: If j(k) > 0, then [i(k) j(k

 If j(k) < 0, then [i(k) j(k) c(k)]%
%
%

te: Weights of any duplicate arcs added together% No
 %

% Wrapper for c(c==0) = NaN; A = SPARSE(i,j,c,m,m
%

 See also LIST2INCID, ADJ2LIST, and ADJ2INCID %

 Michael G. Kay % Copyright (c) 1994-2002 by
% Matlog Version 6 19-Sep-2002

% Input Error Checking *****
error(nargchk(1,3,nargin))

[n,cIJC] = size(IJC);
if cIJC < 2 | cIJC > 5, error('IJC must be a 2-3 column matrix.'), e

[i,j,c] = mat2vec(IJC);
if isempty(c), c = ones(n,1); end

gn = sign(j); js

 115

minIJ = min(min([i j]));
if isempty(minIJ) | minIJ < 1 | any(~isint(i)) | any(~isint(j))

 and ''j'' must be nonzero integers.');
nd

 m = max(max([i j]));
 j]))

j))}.');
nd

''spA'' must be non-negative scalar.');

nput Error Checking) **

 any(jsgn < 0) % Add elements from undirected arcs

)];
[j; i(jsgn < 0)];

0)];

==0) = NaN;

 = full(A); end

X(:,1),X(:,2),...] = mat2vec(X)

y)

right (c) 1994-2002 by Michael G. Kay
ion 6 19-Sep-2002

nput Error Checking **

nd (Input Error Checking) **

 num2cell(X,1);

ert predecessor indices to shortest paths from node 's' to 't'.
s,t)

 error('All elements of ''i''
e

if nargin < 2 | isempty(m)

elseif length(m(:)) ~= 1 | ~isint(m) | m < max(max([i
 error('''n'' must be >= max{max(i),max(abs(
e

if nargin < 3 | isempty(spA)
 spA = 0.1;
elseif length(spA(:)) ~= 1 | spA < 0
 error('
end
% End (I

if
 jsgn(jsgn < 0 & i == j) = 1;
 i = [i; j(jsgn < 0
 j =
 c = [c; c(jsgn <
end

c(c
A = sparse(i,j,c,m,m);

if n > spA * m * m, A

function varargout = mat2vec(X)
%MAT2VEC Convert columns of matrix to vectors.
% [
%
% (Additional output vectors assigned as empt

% Copy
% Matlog Vers

% I
if ~isnumeric(X)
 error('X must be numeric.')
end
% E

varargout = cell(1,max(1,nargout));
X =
varargout(1,1:min(nargout,size(X,2))) = X(1,1:min(nargout,size(X,2)));

function rte = pred2path(P,s,t)
%PRED2PATH Conv
% rte = pred2path(P,

 116

% P = |s| x n matrix of predecessor indices (from DIJK)

odes
f paths (or routes) from 's' to 't', where

 rte{i,j} = path from s(i) to t(j)
exists from s(i) to t(j)

d with output of DIJK)

y Michael G. Kay
og Version 6 19-Sep-2002

**
rgchk(1,3,nargin));

, s = (1:n)'; else s = s(:); end
 t = (1:n)'; else t = t(:); end

r between 1 and ',num2str(n)]);

''t'' must be an integer between 1 and ',num2str(n)]);

) **

s] = find(P==0);

 == 1
 si = 1;

:length(t)
t(j);

;

e tj ~= 0
 tj < 1 | tj > n

 error('Invalid element of P matrix found.')

% s = FROM node indices
% = [] (default), paths from all nodes
% t = TO node indices
% = [] (default), paths to all n
% rte = |s| x |t| cell array o
%
% = [], if no path
%
% (Use

% Copyright (c) 1994-2002 b
% Matl

% Input Error Checking ********
error(na

[rP,n] = size(P);

if nargin < 2 | isempty(s)
if nargin < 3 | isempty(t),

if any(P < 0 | P > n)
 error(['Elements of P must be integers between 1 and ',num2str(n)]);
elseif any(s < 1 | s > n)
 error(['''s'' must be an intege
elseif any(t < 1 | t > n)
 error(['
end
% End (Input Error Checking

rte = cell(length(s),length(t));

[ans,idx

for i = 1:length(s)
% if rP
%
% else
% si = s(i);
% if si < 1 | si > rP
% error('Invalid P matrix.')
% end
% end
 si = find(idxs == s(i));
 for j = 1
 tj =
 if tj == s(i)
 r = tj;
 elseif P(si,tj) == 0
 r = []
 else
 r = tj;
 whil
 if

 117

 end
 r = [P(si,tj) r];
 tj = P(si,tj);
 end
 r(1) = [];
 end

rte{i,j} = r;

1 | t > n | round(t) ~= t
ment found prior to reaching ''s''');

[P(t) rte];

h Refinement Related Functions

 end
end

if length(s) == 1 & length(t) == 1
 rte = rte{:};
end

%rte = t;
while 0%t ~= s
 if t <
 error('Invalid ''pred'' ele
 end
 rte =
 t = P(t);
end

Pat

liter

n
lcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m

ber of uavs times the
 path. The first row

last
ming from

ber of unique voronoi points,
w is the x position and

e unique points.

HREATS - is a 4xn matrix where n is the number of Threats, the first row
threats, the second row is the y position of the

he fourth row is

Path_Shrtng

zer and Matthew Lech%Authored by Zachary Sprit

tiofunc
[Shortened_Paths_x,Shortened_Paths_y,tota

DING_ANGLE) in_turn,split_seg,nuav,ntarg,HEA

%INPUTS:

 %
%stored_paths - is a mxn matrix where m is the num
%number of targets and n is the length of the longest
%being the first path for the first uav and the last row being the
%path for the last uav. The paths are output by node numbers co

e implementation of dijkstra's algorithm. %th
%
%all_pos - is a 2xn matrix where n is the num

first ro%uav points, and target points. Where the
%the second row is the y position of all of thes
%
%ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
%row is the x position of the no-fly zones, the second row is the y
%position of the no-fly zones, and the third row is the radius or range of

o-fly zones. %the n
%
%T
%is the x position of the
%threats, the third row is the range of the threats, and t

 118

%the level of danger of the threats.
%
%min_turn - minimum turning radius for the UAVs
%
%split_seg - number of segments to Split the voronoi lines into for the
%purpose of a more near-optimal solution

v - number of UAVs

f targets

ortened_Paths - is a nxmx2 matrix where n is the length of the longest
ber of targets.

he element (nxmx1) x position of the mth uav at point n. The element

he cost for the mth uav to take the nth path.

longest
h and m is the number of UAVs multiplied by the number of targets.

The element (nxmx1) x position of the mth uav at point n. The element
(nxmx2) y position of the mth uav at point n.

%%
oronoi lines into more segments for the purpose of a more

near-optimal solution
%%%%%%%%%%%%%%%%%%%%%%%

pths=size(stored_paths,2);

%%%

%%%%%%%%%%%%%%

hs-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))';
y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))';

%%
plit_seg)+1),nuav*ntarg);

split_seg)+1),nuav*ntarg);

%
%nua
%
%ntarg - number o

%OUTPUTS:
%
%Sh
%path and m is the number of UAVs multiplied by the num
%T
%(nxmx2) y position of the mth uav at point n.
%
%totalcost - is a mxn matrix where m is the number of uavs and n is the
%number of possible paths for each uav. The element (m,n) of this matrix
%is t
%
%Stored_Pos - is a nxmx2 matrix where n is the length of the
%pat
%
%

%
%Splitting the v
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sz

lit_vect=[(0:(1/split_seg):(1- 1/split_seg))]'; sp

%%%%%%
%Finding the corresponding x and y coordinates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Stored_Pos_x=ones(szpths,nuav*ntarg);
Stored_Pos_y=ones(szpths,nuav*ntarg);

ed_paths(:,szpths+1)=0; stor
for i=1:nuav*ntarg,
 mnz=min(find(stored_paths(i,:)==0));
 Stored_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))';

2,stored_paths(i,1:mnz-1))'; Stored_Pos_y(1:mnz-1,i)=all_pos(
 Stored_Pos_x(mnz:end,i)=ones((szpt

 Stored_Pos_

end

%
Stored_Pos_x_new=ones((((szpths-1)*s

(szpths-1)*Stored_Pos_y_new=ones(((
ntarg, for k=1:nuav*

 j=1;

 119

 for i=1:(szpths -1),

tored_Pos_x(i,k));

Stored_Pos_y(i,k)+split_vect*(Stored_Pos_y(i+1,k)-Stored_Pos_y(i,k));

t_seg)+1),k)=Stored_Pos_x(szpths,k);
),k)=Stored_Pos_y(szpths,k);

_end=ones(500,1)*Stored_Pos_x(szpths,:);
aths_y_end=ones(500,1)*Stored_Pos_y(szpths,:);

_Paths_x=[Stored_Pos_x_new;Shortened_Paths_x_end];
nd];

%%
Shortening the paths
%%

_paths(Shortened_Paths_x(:,i),Shortened_Paths_y
:,i));

%%
 fillets into the shortened paths

v*ntarg,

s_x(:,i),Shortened_Paths_y(:,i)]=fillet_path([Shortened_Paths_x(:,i),Shortened_Paths_y(:,i

%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%

ened_Paths_y(:,((i-1)*ntarg)+j)]=...
 heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-

DING_ANGLE(i,1),72);
 end

hs_x=[];
hortened_Paths_y=[];
r j=1:size(Shortened_Paths_x_old,1)-1,

 Stored_Pos_x_new([j:(j + (split_seg -1))],k)=
ones(split_seg,1)*Stored_Pos_x(i,k)+split_vect*(Stored_Pos_x(i+1,k)-S
 Stored_Pos_y_new([j:(j + (split_seg -1))],k)=
ones(split_seg,1)*
 j=j+ split_seg;
 end
 Stored_Pos_x_new((((szpths-1)*spli
 Stored_Pos_y_new((((szpths-1)*split_seg)+1
end

Shortened_Paths_x
Shortened_P
Shortened
Shortened_Paths_y=[Stored_Pos_y_new;Shortened_Paths_y_e

%
%
%
for i=1:nuav*ntarg,

[Shortened_Paths_x(:,i),Shortened_Paths_y(:,i)]=shorten
:,i),ZONES,THREATS,Stored_Pos_x(:,i),Stored_Pos_y((

end

%%%%%
%Putting
%%%
for i=1:nua

[Shortened_Path
)],min_turn);
end

%%%%%%%%%%%%%%%%%%%%%%%%
%Adding initial path based on heading angle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nuav,
 for j=1:ntarg,
 [Shortened_Paths_x(:,((i-1)*ntarg)+j),Short

1)*ntarg)+j)],min_turn,HEA

end

Shortened_Paths_x_old=Shortened_Paths_x;
Shortened_Paths_y_old=Shortened_Paths_y;
Shortened_Pat
S
fo

 120

 if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:),

_y_old(j,:);
 break

ened_Paths_x_old(j,:);

 end

%%%%%%%%%%%%%%

%%s
sp_perm=size(Shortened_Paths_x,2);
ermcost=zeros(nuav*ntarg,1);

r z=1:szsp_perm,
hs_y(:,z)],THREATS);

nd

y Zachary Spritzer and Matthew Lechliter

f the
e element (nxmx2) y position of the mth uav at

n is the number of No-Fly Zones, the first
f the no-fly zones, the second row is the y

 no-fly zones, and the third row is the radius or range of

x where n is the number of Threats, the first row
ts, the second row is the y position of the
range of the threats, and the fourth row is

r of the threats.

 - is a nxmx2 matrix where n is the length of the longest
path and m is the number of UAVs. The element (n mx1) x position of the

%mth uav at point n. The element (nxmx2) y position f the mth uav at
%point n. This matrix is the original matrix without th voronoi segements
%split up.
%

 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:);
 Shortened_Paths_y(j,:)=Shortened_Paths

 else
 Shortened_Paths_x(j,:)=Short
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Updating the Costs
%%%
z
p

fo
 [permcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Pat
e
totalcost=reshape(permcost,ntarg,nuav)';

Shorten_Paths

%Authored b

function [shr_x,shr_y]=shorten_paths(sp_x,sp_y,Z,T,spo_x,spo_y)

%INPUTS:
%
%sp - is a nxmx2 matrix where n is the length of the longest

e number of UAVs. The element (nxmx1) x position o%path and m is th
%mth uav at point n. Th
%point n.
%

ere %Z - is a 3xn matrix wh
the x position o%row is

%position of the
%the no-fly zones.
%
%T - is a 4xn matri
%is the x position of the threa

row is the %threats, the third
vel of dange%the le

%
spo%

% x
 o
e

 121

%OUTPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest
%path and m is the number of UAVs. The element (n mx1) x position of the
%mth uav at point n. The element (nxmx2) y position f the mth uav at
%point n.
spo=[spo_x,spo_y];
sp=[sp_x,sp_y];
SC=0;FC=0;SF=0;SN=0;
for j=1:size(T,2),
 PC=[];
 for i=1:size(spo,1)-1,
 SC=sqrt(((T(1,j)-spo(i,1))^2)+((T(2,j)-spo(i,2))^
 FC=sqrt(((T(1,j)-spo(i+1,1))^2)+((T(2,j)-spo(i+1))^2));
 SF=sqrt(((spo(i+1,1)-spo(i,1))^2)+((spo(i+1,2)-s (i,2))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0
 PC(i)=sqrt(SC^2-SN^2);
 else
 if SC<FC
 PC(i)=SC;
 else
 PC(i)=FC;
 end
 end
 mPC=min(PC);

 end
 end
end

ZT=[Z([1:3],:) T([1:3],:)];
szzt=size(ZT,2);
szsp=size(sp,1);
shr=ones(szsp,2);
for i=1:2,
 shr(:,i)=sp(szsp,i);
end
shr(1,:)=sp(1,:);
a=1;
PC=zeros(1,szzt);
while shr(a,:)~=sp(szsp,:),
 for i=1:szsp,
 if shr(a,:)==sp(i,:)
 pck=i;
 break
 end
 end
 for i=szsp:-1:pck+1,
 SF=sqrt(((shr(a,1)-sp(i,1))^2)+((shr(a,2)-sp(i,2))^2));
 for j=1:szzt,
 SC=sqrt(((ZT(1,j)-shr(a,1))^2)+((ZT(2,j)-shr(a))^2));
 FC=sqrt(((ZT(1,j)-sp(i,1))^2)+((ZT(2,j)-sp(i,2 ^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<SF & SN>0

x
 o

2));
,2
po

 if mPC< T(3,j),
 T(3,j)=mPC*.995;

,2
))

 122

 PC(1,j)=sqrt(SC^2-SN^2);

 else
 if SC<FC

 PC(1,j)=FC;

 end

 a=a+1;

 end
 end
end
shr_x=shr(:,1);
sh

Fillet_Path

%Aut

function [Shortened_Paths_fillet_x,Shortened_Paths_fillet_y]=fillet_path(Shortened_Paths,min_turn)

INPUTS:

% the number o he mber of targets.
%The element (nxmx1) x position of the mth uav at point n. The element
%(nxmx2) y th av a
%
%m nim rning radius for the U

%OUTPUTS:
%
%Shortened_Paths_fillet - is a nxmx2 m n is the length of the
% ges ath with the addition of fillets ((2*old size)-1) and m is the
%numbe of UAVs multiplied be gets. The element (nxmx1)
% sition of the mth uav at e e t (nxm 2) y position of
%the mth uav at point n.

hortene
hortened_Paths_fillet(:,1)=Shortened_Paths(size(Shortened_Paths,1),1);

rtened_Paths_fillet(:,2)=Shortened_Paths(size(Shortened_Paths,1),2);
Shortened_Paths_fillet(1,:)=

fillet_counter=2;
for j=2:size(Shortened_Path
 if Shortened_Paths(j,:)==Shortened_Paths(j+1,:),
 break
 end
 start=Shortened_Paths(j-1,:);

 PC(1,j)=SC;
 else

 end
 end

 if PC(1,:)>ZT(3,:),

 shr(a,:)=sp(i,:);
 break

r_y=shr(:,2);

hored by Matthew Lechliter

%
%
%Shortened_Paths - is a nxmx2 matrix where n is the length of the longest

path and m is f UAVs multiplied by t nu

 position of e mth u t point n.

in_turn - mi um tu AVs

atrix where
lon t p

r by the num r of tar
x po point n. Th lemen x

S d_Paths_fillet=Shortened_Paths*0;
S
Sho

Shortened_Paths(1,:);

s,1)-1,

 123

 middle=Shortened_Paths(j,:);
 finish=Shortened_Paths(
 SM=sqrt(sum((middle-start).^2));
 MF=sqrt(sum(((finish-middle).^2)));
 SF=sqrt(sum(((finish-sta
 alpha=acos((SM^2+MF^2-SF^2)/(2*SM*MF));
 Fillet=min_turn/tan(alpha/2);
 if Fillet>=SM
 Shortened_Paths_fillet(f Paths(j-1,:);
 else
 Shortened_Paths_fille d aths(j-1,:)+(Shortened_Paths(j,:)-
Shortened_Paths(j-1,:))*((SM
 end
 if Fillet>=MF,
 Shortened_Paths_fillet(fille , s(j+1,:);

 else
 Shortened_Paths_fillet(fillet_counter+1,:)=Shortened_Paths(j,:)+(Shortened_Paths(j+1,:)-

 fillet_counter=fillet_counter+2;
end
Shortened_Paths_fillet_x=Shortened_Paths_fillet(:,1);
Shortened_Paths_fillet_y=Shortened_Paths_fillet(:,2);

Heading_Angle_Paths

%Authored by Matthew Lechliter

function
[Shortened_Paths_heading_angle_x,Shortened_Paths_heading_angle_y]=heading_angle_paths(Shortened_
Pa ADING_ANGLE,nu

warning off MATLAB:divideByZero

if HEADING_ANGL
 HEADING_ANGLE=pi*2+HEADING_ANGLE;
en

delta_x = Shorten o d_ aths(1,1);
de a_y = Shortened_Paths(2,2) - Shortened_Paths(1,2);

EW_HEADING_ANGLE=(atan(abs(delta_y)/abs(delta_x)));
if delta_x>=0 & delta_y>=0,
 NEW_HEADING_ANGLE=NEW_HEADING_A E;
end
if delta_x<0 & delta_y>=0,
 NEW_HEADING_ANGLE=pi-NEW_HEADING_ NGLE;
end
if delta_x<0 & delta_y<0,
 NEW_HEADING_ANGLE=pi+NEW_HEADING NGLE;
end
if delta_x>=0 & delta_y<0,
 NEW_HEADING_ANGLE=2*pi-NEW_HEADING_ANGLE;
end

j+1,:);

rt).^2)));

illet_counter,:)=Shortened_

t(fillet_counter,:)=Shortene _P
-Fillet)/SM);

t_counter+1 :)=Shortened_Path

Shortened_Paths(j,:))*(Fillet/MF);
 end

ths,min_turn,HE m_segs);

E < 0,

d

ed_Paths(2,1) - Sh rtene P
lt

N

NGL

A

_A

 124

% x and y are the initial positions of the UAV
x=Shortened_Paths(1,1);
y=Shortened_Paths(1,2);

% Rotated heading angle
ROTATED_HEADING_ANGLE=HEADING_ANGLE-NEW_HEADING_ANGLE;

% Rotated NEW_HEADING_ANGLE is 0 degrees
ROTATED_NEW_HEADING_ANGLE=0;

% This section ensures that ROTATED_HEADING_ NGLE is between -pi and pi
if abs(ROTATED_HEADING_ANGLE) > pi
 if ROTATED_HEADING_ANGLE > 0
 ROTATED_HEADING_ANGLE = ROTATED ADING_ANGLE-2*pi;
 else
 ROTATED_HEADING_ANGLE = ROTATED ADING_ANGLE+2*pi;
 end
end

if abs(ROTATED_HEADING_ANGLE) < p
 small_ang=1;
else
 small_ang=0;
 % Equation found by numerical methods, used to f the location of the
 % first point to break from the old path onto the first circle

init_dist=0.082565052*(abs(ROTATED_HEADING_ANGLE)/pi*(2*min_turn))^3+0.020254038*(abs(R
OTATED_HEADING_ANGLE)/pi*(2*min_turn))^2 231718*(abs(ROTATED_HEADING_ANGL
E)/pi*(2*min_turn));

 % xu and yu are the coordinates of the first point t breaks from the
 % old path and onto the new path following the circles
 xu = x+init_dist*cos(ROTATED_HEADING_ANG ;
 yu = y+init_dist*sin(ROTATED_HEADING_ANGLE);

 if ROTATED_HEADING_ANGLE >= 0
 ccw = -1;
 else
 ccw = 1;
 end

 % Finds the locations of the center of both circles, sed on whether
 % the angle made by the intersection of the old an heading angles
 % is positive or negative

 xc1 = (x+min_turn*cos(ROTATED_NEW_HEAD G_ANGLE + ccw*.5*pi));
 yc1 = (y+min_turn*sin(ROTATED_NEW_HEADI G_ANGLE + ccw*.5*pi));

 xc2 = (xu+min_turn*cos(ROTATED_HEADING_ NGLE - ccw*.5*pi));

ING_A LE - ccw*.5*pi));

 % dx_c2 and dy_c2 are the delta x and delta y between the position of the
 break off point and the center of the first circle

 dx_c2 = xu - xc2;

A

_HE

_HE

i/5.5

ind

+0.629

hat

LE)

 ba
d new

IN
N

A
NG yc2 = (yu+min_turn*sin(ROTATED_HEAD

 % center of the first

 dy_c2 = yu - yc2;

 125

 % the break off point and center of the first circle
dy_c2)/abs(dx_c2)));

=0,

 if dx_c2<0 & dy_c2>=0,

d

d

nter of the final circle and the center of the first circle

 dy_cc = (yc1 - yc2);

 % cc_angle is the angle made by the horizon (x-axis) and the line between

 the center of the final circle and the center of the first circle

,
ngle=cc_angle;

 end
 dy_cc>=0,

y_cc<0,
le;

 if ccw == 1
s(ROTATED_HEADING_ANGLE)>pi/2

 cc_point = (2*pi-cc_angle);

e);

w*(c2_angle);

oint = ccw*(cc_angle);
 c2_point = ccw*(2*pi-c2_angle);

 end

 % c2_angle is the angle made by the horizon (x-axis) and the line between

 c2_angle=(atan(abs(
 if dx_c2>=0 & dy_c2>
 c2_angle=c2_angle;
 end

 c2_angle=pi-c2_angle;
 en
 if dx_c2<0 & dy_c2<0,
 c2_angle=pi+c2_angle;
 en
 if dx_c2>=0 & dy_c2<0,
 c2_angle=2*pi-c2_angle;
 end

 % dx_cc and dy_cc are the delta x and delta y between the position of the
 % ce
 dx_cc = (xc1 - xc2);

 % the position of
 cc_angle=(atan(abs(dy_cc)/abs(dx_cc)));
 if dx_cc>=0 & dy_cc>=0
 cc_a

 if dx_cc<0 &
 cc_angle=pi-cc_angle;
 end
 if dx_cc<0 & dy_cc<0,
 cc_angle=pi+cc_angle;
 end
 if dx_cc>=0 & d
 cc_angle=2*pi-cc_ang
 end

 if ab

 c2_point = -(2*pi-c2_angle);
 else
 cc_point = (2*pi-cc_angle);
 c2_point = (c2_angl
 end
 else
 if abs(ROTATED_HEADING_ANGLE)>pi/2
 cc_point = ccw*(cc_angle);
 c2_point = -1*cc
 else
 cc_p

 end

 126

 counter = 1;
 for i = (ccw*2*pi/num_segs:ccw*2*pi/num_segs:cc_point+c2_point)+pi/2-c2_angle

ter)=min_turn*sin(i)+xc2;
 min_turn*cos(i)+yc2;

y_c1)/abs(dx_c1)));
_c1>=0 & dy_c1>=0,

 c1_angle=c1_angle;

1<0 & dy_c1>=0,
 c1_angle=pi-c1_angle;

angle;

*pi;

;
_segs:-ccw*2*pi/num_segs:(cc_angle-c1_angle))-(cc_angle-pi/2)

urn*sin(i)+xc1;
c1(1,counter) = min_turn*cos(i)+yc1;

 counter + 1;

otation back to original coordinates
pol(xu - x,yu - y);

ANGLE;
ol2cart(t,r);

 x;
) = y;

ding_angle_y_temp(2) = yu_temp + y;

ol2cart(t,r);
d_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =

emp + x);
 Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) =
_c2_temp + y);

 end

 [t,r] = cart2pol(x_c1(i) - x,y_c1(i) - y);

 x_c2(1,coun
 y_c2(1,counter) =
 counter = counter + 1;
 end

 dx_c1 = x - xc1;
 dy_c1 = y - yc1;

 c1_angle=(atan(abs(d
 if dx

 end
 if dx_c

 end
 if dx_c1<0 & dy_c1<0,
 c1_angle=pi+c1_
 end
 if dx_c1>=0 & dy_c1<0,
 c1_angle=2*pi-c1_angle;
 end

 cc_angle=cc_angle+ccw

 counter = 1
 for i = (-ccw*2*pi/num
 x_c1(1,counter)=min_t
 y_
 counter =
 end

 % R
 [t,r] = cart2
 t = t + NEW_HEADING_
 [xu_temp,yu_temp] = p

 Shortened_Paths_heading_angle_x_temp(1) =
 Shortened_Paths_heading_angle_y_temp(1
 Shortened_Paths_heading_angle_x_temp(2) = xu_temp + x;
 Shortened_Paths_hea

 for i = 1:size(x_c2,2)
 [t,r] = cart2pol(x_c2(i) - x,y_c2(i) - y);
 t = t + NEW_HEADING_ANGLE;
 [x_c2_temp,y_c2_temp] = p
 Shortene
(x_c2_t

(y

 for i = 1:size(x_c1,2)

 127

 t = t + NEW_HEADING_ANGLE;
 [x_c1_temp,y_c1_temp] = pol2cart(t,r);
 Shortened_Paths_heading_angle_x_temp(size(Shortened_Paths_heading_angle_x_temp,2)+1) =

 x);
 Shortened_Paths_heading_angle_y_temp(size(Shortened_Paths_heading_angle_y_temp,2)+1) =

p + y);

nd

 sze = size(Shortened_Paths,1);
heading_angle_x=ones(sze,1)*Shortened_Paths(end,1);

angle_y=ones(sze,1)*Shortened_Paths(end,2);

(Shortened_Paths_heading_angle_x_temp,2);

ened_Paths_heading_angle_x([1:szpts],1)=Shortened_Paths_heading_angle_x_temp';
 Shortened_Paths_heading_angle_x([szpts+1:sze],1)=Shortened_Paths([1:sze-szpts],1);

p';
tened_Paths([1:sze-szpts],2);

d_Paths(:,2);

zer and Matthew Lechliter

date_cost(Shortened_Paths,THREATS)

x2 matrix where n is the length of the longest
ultiplied by the number of targets.

 the mth uav at point n. The element

 the range of the threats, and the fourth row is
the level of danger of the threats.

ated with the nth UAV going to the mth TARGET

ortened_Paths,1)-1;
TS,2);

(x_c1_temp +

(y_c1_tem
 end
e

if small_ang==0,

 Shortened_Paths_
 Shortened_Paths_heading_

 szpts=size

 Short

 Shortened_Paths_heading_angle_y([1:szpts],1)=Shortened_Paths_heading_angle_y_tem
 Shortened_Paths_heading_angle_y([szpts+1:sze],1)=Shor
else
 Shortened_Paths_heading_angle_x=Shortened_Paths(:,1);
 Shortened_Paths_heading_angle_y=Shortene
End

Update_Cost

%Authored by Zachary Sprit

function [permcost]=up

%INPUTS:
%
%Shortened_Paths - is a nxm
%path and m is the number of UAVs m
%The element (nxmx1) x position of
%(nxmx2) y position of the mth uav at point n.
%
%THREATS - is a 4xn matrix where n is the number of Threats, the first row
%is the x position of the threats, the second row is the y position of the
%threats, the third row is
%

%OUTPUTS:
%
%permcost - cost associ

szsp_num=size(Sh
nthrts=size(THREA
permcost=0;

 128

for i=1:szsp_num,
1);start_y=Shortened_Paths(i,2);

 finish_x=Shortened_Paths(i+1,1);finish_y=Shortened_Paths(i+1,2);
tart_x)^2)+((finish_y-start_y)^2));

=sqrt(((THREATS(1,j)-start_x)^2)+((THREATS(2,j)-finish_y)^2));
-finish_x)^2)+((THREATS(2,j)-finish_y)^2));

SF & SN>0,PC=sqrt(SC^2-SN^2);

 end
 < THREATS(3,j),SF=SF+(THREATS(4,j)*100);

cost=permcost+SF;

location Related Functions

 start_x=Shortened_Paths(i,

 SF=sqrt(((finish_x-s
 for j=1:nthrts,
 SC
 FC=sqrt(((THREATS(1,j)
 SN=(SC^2+SF^2-FC^2)/(2*SF);
 if SN<
 else
 if SC<FC,PC=SC;
 else
 PC=FC;
 end

 if PC
 end
 end
 perm
end

Task Al

nction
aths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

UTS:

cost - is a mxn matrix where m is the number of uavs and n is the
ber of possible paths for each uav. The element (m,n) of this matrix

is the cost for the mth uav to take the nth path.

trix where n is the length of the longest

f the mth uav at point n. The element
point n.

TPUTS:

Selected_Pos - is a nxmx2 matrix where n is the length of the longest

 is the number of UAVs. The element (nxmx1) x position of the
point n. The element (nxmx2) y position of the mth uav at

%Authored by Zachary Spritzer and Matthew Lechliter

P_Task_Allocation MMK

fu
[Selected_P
s_y,nuav)

%INP
%
%total
%num
%
%
%Shortened_Paths - is a nxmx2 ma
%path and m is the number of UAVs multiplied by the number of targets.
%The element (nxmx1) x position o

2) y position of the mth uav at %(nxmx
%

 - number of UAVs %nuav

OU%
%
%
%path and m

mth uav at %
%point n.

 129

%%%%%
%MMKP algorithm
%%%%%%%%%%

%%

%%%

%%%
lts from mmkp

%%

ros(size(Shortened_Paths_x,1),nuav);
ize(Shortened_Paths_x,1),nuav);

_x(:,(nuav)*(i-1)+bestcomb(1,i));
b(1,i));

ucci

=mmkp_new(totalcost)

ost - is a nxm matrix where n is the total number of uav's and m is
paths. Where the element nxm is the cost
ng target or path "m".

 1xn row with n equal to the number or uav's where each
f the row represents which path the uav should select to give the

al solution.

st - is a scalar number which is sum of the optimal costs for all
the uav's paths.

st(i,C_new(j,i));

b=C_new(j,:);
ncost = sc;

d
nd

 [bestcomb,mincost]=mmkp_new(totalcost);

%%
%Taking the resu
%%%%%

Selected_Paths_x=ze
Selected_Paths_y=zeros(s
for i=1:nuav,
 Selected_Paths_x(:,i)=Shortened_Paths
 Selected_Paths_y(:,i)=Shortened_Paths_y(:,(nuav)*(i-1)+bestcom
End

MMKP_New

%Authored by Zachary Spritzer, Matthew Lechliter, and Elena L

function [bestcomb,mincost]
%Inputs:
%
%totalc
%the total number of targets or
%associated with uav "n" choosi
%
%Outputs:
%
%bestcomb - is a
%element o
%optim
%
%minco
%
nuav=size(totalcost,1);
mincost=inf;
C_new=perms(1:nuav);
for j=1:size(C_new,1),
 sc=0;
 for i=1:nuav,
 sc=sc+totalco
 end
 if sc < mincost
 bestcom
 mi
 en
e

 130

Appendix B

 Longitudinal Dimensional and Lateral Directional Stability Derivatives

 131

Longitudinal Dimensional Stability Derivatives

)(sec)2(111 −+−
=

CCSqX DDu)(sec)2(1

1

11 −+−
=

mU
CCSqX TxTxu

Tu
mUu

1

)sec(21 −⋅
−

= ft
m
SCq

X E

E

Dδ
δ)sec()(211 −⋅

−−
= ftCCSqX LDα

mα

)sec()(211 −⋅
+−

= ft
m

CCSqZ DLα
α)(sec)2(11 +−

=
CCSqZ LLu

u
1−

mU

1

)sec(
2

1

1

1 −⋅
−

= ft
mU

CcSq
Z Lq

q)sec(
2 1mUα&

11 −⋅= ftLα& − CcSqZ

)sec(21 −⋅= ftZ ELδ − SCq)sec()2(11 +
=

CCSqM MMu
u

11 −− ⋅ft
IU

mEδ

1 YY

)sec()2(11 −−+ CCcSq)(sec 21 −=
YY

M

I
CcSq α

1

⋅ft
YY

 Mα 11=
IU

M MTMTu
Tu

)(sec
2

1

1

2
1 −=

UI
CcSqM

YY

Mα
α

&
&)(sec 21 −=

YY
T Iα

CcSq MTα M

)(sec
2

1

1

2
1 −=

UI
CcSq

M
YY

Mq
q)(sec 21 −=

YY

EM
E I

CcSq δ
δ M

Modified Longitudinal Dimensional Statbility Derivatives

 uu XX ='
1

' cosγθ gX −= αα γ XgX += 1
' cos

EE XX δδ ='

α

αγ

&ZU
Zg

− α&ZU
ZZ u

u −
=

1

' αZ +
=

1

1' sin

α&1 ZU
Zq −

=
ZU q+1'

α

δ
δ

&ZU
ZZ E

E −
=

1

'
α

θ
γ

&ZU
gZ
−

−
=' sin

1

1

αααα MZMM += '' & uu α&

'' '

uMZMM += '

&

gZU +=

qqq MZMM += ''
α& '

EEE MZMM δδαδ += '
θαθ ZMM &=

'
1

''
uu YUZ =)1('

1
'' −= qq ZUY 11 sinγαα

'''

''' gZUZ −=
'

1
''

EE ZUZ δδ =11 θθZ cosγ

 Lateral Directional Dimensional Stability Derivatives

)sec(
2

1

1

1 −⋅= ft
mU
SbCq

Y Yp
P)sec(21 −⋅ft

SCq Yβ =Yβ m

)sec(21 −⋅= ft
m

SCqY AY
A

δ
δ)sec(

2 1mUr
1−⋅= ft 1SbCq YrY

 132

)(sec 21 −=
XX

L

I
SbCq

L β
β)sec(21 −⋅=Y Rδ ft

m
 SCq RYδ

)(sec 11 −=L Lp
2CSbq

)(sec
2

1

1

2
1 −

UI
CSbq

XX

Lr =Lr2 1UI XX
p

)(sec 21 −= ALSbCqL δ)(sec 21 −=
XX

R
R I

SbCqL δ
δ

XX
A Iδ

)(sec 21 −= NSbCq
N β)(sec 21 −=

ZZ

NT
T I

SbCq
N β

β
Iβ

ZZ

)(sec 11 −=
CSbq np

2

)(sec
2

1

1

2
1 −=

UI
CSbqN

ZZ

nr
r

2 1UI ZZ

 N p

)(sec 21 −= ANSbCqN δ)(sec 21 −=
ZZ

RN
R I

SbCqN δ
δ

ZZ
A Iδ

Modified Lateral Directional Dimensional Statbility Derivatives

XX

XZ

I
I

ZZ

XZ

I
IB =1 = and Given: A1

1

'

U
Y

Y p
p = 1

1

' −=
U
YY r

r
1

'

U
Y

Y β
β =

1U
1 'Y =φ

cosg Θ

1UAδ
' YY Aδ=

1URδ
' YY Rδ=

111 BA−β
1' LNA

L
+

= ββ
111 BAp −

1 LNA pp'L
+

=
111 BAr −

1'L rr= LNA +

11

1'

1
LNAL AA

A −
+

= δδ
δ

BA 11

1' LNAL RR
R 1 BA−

+
= δδ

δ 1' NLB
N

+
= ββ

β
111 BA−

11

1' NLB
N p

p

+
=

11

1'

1 BA
NLBN rr

r −
+

=
11

1'

1 BA
NLBN AA

A −
+

= δδ
δ

1 BA
p

−

11

'

1 BA
N R −

=δ 1 ββ YUY 1 pp YUY

)1(' +YU '' = YUY

1 N RR + δδ '' = '' =

r cosΘ− gφφ
''

LB ' '

1
'

1
'

1
''

AA YUY δδ ='' =rY 1

'
1 RR YUY δδ =

 133

Appendix C

Simulation Implementation MATLAB Files

 134

Initialization and Display Functions

Define_Battlefield

%Authored by Zachary Spritzer and Matthew Lechliter

ction [UAVS,TARGETS,THREATS,ZONES,n_uav,n_fun targ,n_zones,n_threats]=define_battlefield

,9);
os(4,9);

 1

 1

tion',' 1

 1

,'7','8','9','10','11','12','13','14','15');

26;
 positions');

i)]=ginput(1);

FontSize',12,'Color','b');

V ;

itions');

70','80','90','100');

2,i),'x','Color',[0,.4,0]);
S(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);

5 200]);

UAVS=zeros(4

RGETS=zerTA
THREATS=zeros(4,15);
ZONES=zeros(3,10);

n_uav=menu('Enter the number of UAVs for this simulation','
',...

2','3','4','5','6','7','8','9'); '
n_targ=menu('Enter the number of TARGETs for this simulation','
',...

 '2','3','4','5','6','7','8','9');
zones=menu('Enter the number of NO-FLY ZONEs for this simulan_

',...
 '2','3','4','5','6','7','8','9','10');
 n_threats=menu('Enter the number of THREATs for this simulation','

',...
2','3','4','5','6' '

l_UAV=0.Ve
menu('Using the crosshairs and clicking on the plot','Place UAVs at desired
axis([5 200 5 200]);
grid on;

for i=1:n_uav
 [UAVS(1,i),UAVS(2,
 plot(UAVS(1,i),UAVS(2,i),'bd');
 text(UAVS(1,i)+5,UAVS(2,i),{i},'
 axis([5 200 5 200]);
 grid on;

=2; UAVS(3,i)
 UAVS(4,i)=Vel_UA
 hold on;
end

hold on;

menu('Using the crosshairs and clicking on the plot','Place TARGETs at desired pos
for i=1:n_targ
 tar=menu('Select Target Value - Scale 10-100','10','20','30','40','50','60','
 TARGETS(3,i)=10*tar;
 TARGETS(4,i)=1;

]=ginput(1); [TARGETS(1,i),TARGETS(2,i)
 plot(TARGETS(1,i),TARGETS(

ETS(1,i)+5,TARGET text(TARG
200 axis([5

 135

 grid on;
 hold on;
end

hold on;

airs and clicking on the plot','Place NO-FLY ZONEs at desired positions');

 [ZONES(1,i),ZONES(2,i)]=ginput(1);
 200]);

:1)'*2*pi;

_nfz,y_nfz,'k');

e THREATs at desired positions');
;

r i=1:n_threats
Type','KS-19 100mm AntiAircraft Artillery - Range 4000 meters, 40%

robability of Kill',...
Man-Portable SAM - Range 5000 meters, 50% Probabilty of Kill',...

AM - Range 10,000 meters, 80% Probability of Kill',...
0 meters, 80% Probabilty of Kill');

REATS(3,i)=4;
HREATS(4,i)=.4;

 end
 if thr == 2
 THREATS(3,i)=5;

 if thr == 3
i)=10;

 THREATS(4,i)=.8;

 if thr == 4

S(1,i),THREATS(2,i)]=ginput(1);
lot(THREATS(1,i),THREATS(2,i),'r*');

REATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r')

 on;
 = (1/32:1/32:1)'*2*pi;

EATS(1,i);
reat = THREATS(3,i)*cos(t_threat)+THREATS(2,i);

,'r.');

menu('Using the crossh

for i=1:n_zones
 ZONES(3,i)=9;

 axis([5 200 5
 grid on;
 t_nfz = (1/16:1/16
 x_nfz = ZONES(3,i)*sin(t_nfz)+ZONES(1,i);
 y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);
 fill(x
end

menu('Using the crosshairs and clicking on the plot','Plac
hold on

fo
 thr=menu('Select Threat
P
 'SA-7 Grail -
 'Crotale S
 'SA-2 - Range 30,00
 if thr == 1
 TH
 T

 THREATS(4,i)=.5;

 end

 THREATS(3,

 end

 THREATS(3,i)=30;
 THREATS(4,i)=.8;
 end
 [THREAT
 p
 text(TH
 axis([5 200 5 200]);
 grid
 t_threat
 x_threat = THREATS(3,i)*sin(t_threat)+THR
 y_th
 plot(x_threat,y_threat
 hold on;
end

 136

Display_Initial_S

ls the calls to

ializeSizes(T); % Initialization

ulate outputs

flags

rror(['Unhandled flag = ',num2str(flag)]); % Error handling

=====================================
 initializes the states, sample

==========================

te the sizes structure.
zes = simsizes;
 Load the sizes structure with the initialization information.

= 0;
zes.NumDiscStates= 0;

;
zes.NumInputs= 36+36+30+60;
zes.DirFeedthrough=1;
zes.NumSampleTimes=1;

with the sizes information.
s = simsizes(sizes);

0 = []; % No continuous states

r = []; % No state ordering

 End of mdlInitializeSizes.
==

 Function mdlOutputs performs the calculations.
==

utputs(u)

of mdlOutputs.

%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] = display_initial_s(t,x,u,flag,T)
% Dispatch the flag. The switch function contro
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInit

 case 3
 mdlOutputs(u); % Calc

 case { 1, 2, 4, 9 }
 sys = []; % Unused

 otherwise
 e
end;

%=========================
% Function mdlInitializeSizes
% times, state ordering strings (str), and sizes structure.
%====================================
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to crea
si
%
sizes.NumContStates
si
sizes.NumOutputs= 0
si
si
si
% Load the sys vector
sy
%
x
%
st
%
ts = [T 0]; % Inherited sample time
%
%====================
%
%======
function mdlO

display_initial(u);

% End

 137

Display_Initial

d Matthew Lechliter

nction display_initial(u)

AVS=u([1:4*9],1);

=4*9;

+1:a+3*10]);
eshape(ZONES,3,10);
;

ATS=reshape(THREATS,4,15);

s(sum(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26
V %d exists at location %d x, location %d y, altitude %d km, and is flying at %d m/s.

 i,round(UAVS(1,i)),round(UAVS(2,i)),round(UAVS(3,i)),round(UAVS(4,i)*1000)));

r i=1:9

, location %d y , and with an estimated value

)>0
one %d exists at location %d x, location %d y, and with a radius of %d km.

,i)),round(ZONES(2,i)),round(ZONES(3,i))));

f abs(sum(THREATS(:,i)))>0
ts at location %d x, location %d y, with a range of %d km, and has a

ability of kill of %d%%. \n',...

nd(THREATS(1,i)),round(THREATS(2,i)),round(THREATS(3,i)),round(THREATS(4,i)*100)));

%Authored by Zachary Spritzer an

fu

U
UAVS=reshape(UAVS,4,9);
a
TARGETS=u([a+1:a+4*9]);
TARGETS=reshape(TARGETS,4,9);
a=a+4*9;
ZONES=u([a
ZONES=r
a=a+3*10
THREATS=u([a+1:a+4*15]);
THRE

for i=1:9
 if ab
 disp(sprintf('UA
\n',...

 end
end

fo
 if abs(sum(TARGETS(:,i)))>0
 disp(sprintf('Target %d indicated to be at location %d x
of %d. \n',...
 i,round(TARGETS(1,i)),round(TARGETS(2,i)),round(TARGETS(3,i))));
 end
end

for i=1:10
 if abs(sum(ZONES(:,i))
 disp(sprintf('No-Fly Z
\n',...
 i,round(ZONES(1
 end
end

for i=1:15
 i
 disp(sprintf('Threat %d exis
prob

i,rou
 end
end

 138

Plot_UAV

%Authored by Zachary Spritzer and Matthew Lechliter

nction
ETS,ZONES,THREATS,uav_path_x,uav_path_y,n_plots,uavs_existing,targ_existi

g,threats_existing)
%%
Plotting results

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
gure(n_plots);

 for i=1:2,

 for i=1:size(UAVS,2)

 text(UAVS(1,i)+5,UAVS(2,i),{i},'FontSize',12,'Color','b');

ETS(2,i),'x','Color',[0,.4,0]);
+5,TARGETS(2,i),{i},'FontSize',12,'Color',[0,0.4,0]);

1:size(THREATS,2)
hreats_existing(1,i)==1

S(2,i),'r*');
xt(THREATS(1,i)+5,THREATS(2,i),{i},'FontSize',12,'Color','r')

 axis([5 200 5 200]);
 hold on;

 end

REATS(1,i);
 = THREATS(3,i)*cos(t_threat)+THREATS(2,i);

r i=1:2,

d

fu
plot_uav(UAVS,TARG
n
%
%
%%%%%%%%%%%
fi
hold on;
%
% subplot(1,2,i),

 if uavs_existing(1,i)==1
 plot(UAVS(1,i),UAVS(2,i),'bd');

 axis([5 200 5 200]);
 hold on;
 end
 end
 for i=1:size(TARGETS,2)
 if targ_existing(1,i)==1
 plot(TARGETS(1,i),TARG
 text(TARGETS(1,i)
 axis([5 200 5 200]);
 hold on;
 end
 end
 for i=
 if t
 plot(THREATS(1,i),THREAT
 te

 end

 hold on;

 end %

Plotting Threats and range %
for i=1:size(THREATS,2)
 if threats_existing(1,i)==1
 t_threat = (1/32:1/32:1)'*2*pi;

t = THREATS(3,i)*sin(t_threat)+TH x_threa
 y_threat

% fo
% subplot(1,2,i),

 plot(x_threat,y_threat,'r.');hold on;
% en
 end
end

%Plotting No fly Zones
for i=1:size(ZONES,2)

 139

 t_nfz = (1/16:1/16:1)'*2*pi;
NES(3,i)*sin(t_nfz)+ZONES(1,i);

or i=1:2,
 subplot(1,2,i),

h_x,1)

_path_y(i,:),'b-');hold on;

thod');hold on;

0]);hold on;
 xlabel('Kilometers')

nd

unctions

 x_nfz = ZO
 y_nfz = ZONES(3,i)*cos(t_nfz)+ZONES(2,i);
% f
%
 fill(x_nfz,y_nfz,'k');hold on;
% end
end

%Plotting shortened paths
for i=1:size(uav_pat
% subplot(1,2,2),
 plot(uav_path_x(i,:),uav
end

% subplot(1,2,2),
title('Voronoi Diagram Me
% for i=1:2,
% subplot(1,2,i),
 axis([-25 250 -25 25

 ylabel('Kilometers')
% e

Path Planning Related F

 and Matthew Lechliter

th_planning_s(t,x,u,flag,T)
itch function controls the calls to

 S-function routines at each simulation stage.

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

or handling

==
 the states, sample
sizes structure.

=======================================

Path_Planning_S

Authored by Zachary Spritzer%

function [sys,x0,str,ts] = pa

 Dispatch the flag. The sw%
%
switch flag,

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Err
end;

%======================
% Function mdlInitializeSizes initializes
% times, state ordering strings (str), and
%=======================

 140

function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.

 Load the sizes structure with the initialization information.
;

zes.NumDiscStates= 0;

+9;
edthrough=1;

1;

rited sample time
s.

==

s = mdlOutputs(u)

th_planning(in)

_long=reshape(TARGETS_long,4,9);

S_long=reshape(THREATS_long,4,15);
in(163);

s=in(164);
EADING_ANGLE=in([165:173]);

1:9
 if abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26

 end
nd

AVS]=filter_zeros(UAVS_long,9);

sizes = simsizes;
%
sizes.NumContStates= 0
si
sizes.NumOutputs= 9*100*4+9;
sizes.NumInputs= 36+36+30+60+1+1
sizes.DirFe
sizes.NumSampleTimes=
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inhe
% End of mdlInitializeSize
%====================
% Function mdlOutputs performs the calculations.
%==
function sy

[sys]=path_planning(u);

% End of mdlOutputs.

Path_Planning

%Authored by Zachary Spritzer and Matthew Lechliter

function [out]=pa

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS_long,4,9);
TARGETS_long=in([37:72]);
TARGETS
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES_long,3,10);
THREATS_long=in([103:162]);
THREAT
TIME=
n_plot
H

uavs_existing=zeros(1,9);
for i=

 uavs_existing(1,i)=1;

e
[U
n_uav=size(UAVS,2);

 141

targ_existing=zeros(1,9);
for i=1:9

RGETS_temp]=filter_zeros(TARGETS_long,9);
S=[TARGETS_temp(1,:);TARGETS_temp(2,:)];

filter_zeros(ZONES_long,10);

s(1,15);

HREATS_long(3,i)~=0
g(1,i)=1;

HREATS]=filter_zeros(THREATS_long,15);

.15*THREATS_REAL(3,:);

_y,all_costs]=vrn_diag_gen(UAVS,TARGETS,ZONES,THREATS);
_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE

ortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m
EADING_ANGLE);

ected_Paths_x,Selected_Paths_y]=mmkp_task_allocation(totalcost,Shortened_Paths_x,Shortened_Path

_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA

path_y,n_plots,
ats_existing);

nd

n at time %d. \n',round(TIME)));

r i=1:n_uav,
 for j=1:n_targ,

 if TARGETS_long(3,i)~=0,
 targ_existing(1,i)=1;
 end
end
[TA
TARGET
n_targ=size(TARGETS,2);

[ZONES]=
n_zones=size(ZONES,2);

threats_existing=zero
for i=1:15
 if T
 threats_existin
 end
end
[T
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=THREATS;

ZONES(3,:)=1.15*ZONES_REAL(3,:);
THREATS(3,:)=1

split_seg=10;
min_turn=1;
[all_pos,all_lines_x,all_lines
[stored_paths,totalcost]=cheapest_paths(all_pos,all
S,THREATS);
[Sh
in_turn,split_seg,n_uav,n_targ,H
[Sel
s_y,n_uav);
[uav
VS,min_turn*2);

if n_plots~=0,

plot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long,uav_path_x,uav_
uavs_existing,targ_existing,thre
e

disp(sprintf('Path Planning ra

bestcomb=zeros(1,9);
fo

 142

 if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
d(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)

 break

 end

Making into vector
av_x=zeros(9,100);

zeros(9,100);

;
ze(uav_path_x,2);

ter=1;
r i=1:9,

th])=uav_path_x(counter,:);
 uav_y(i,[1:szpath])=uav_path_y(counter,:);

])=time_uav(counter,:)+TIME;
itude_uav(counter,:);

ter=counter+1;

p=[];

,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)];

sys_temp,selected_targets'];

thew Lechliter

s(sum(A_long(:,i)))>0 & abs(sum(A_long(:,i)))~=0.26
unter)=A_long(:,i);

ounter+1;

_convert

thored by Zachary Spritzer and Matthew Lechliter

_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(shr_x,shr_y,UAVS,distpast)

roun
 bestcomb(1,i)=j;

 end

end

%
u
uav_y=zeros(9,100);
uav_time=
uav_alt=zeros(9,100);
selected_targets=zeros(9,1)
szpath=si
coun
fo
 if uavs_existing(1,i)==1
 selected_targets(i,1)=bestcomb(1,counter);
 uav_x(i,[1:szpa

 uav_time(i,[1:szpath
 uav_alt(i,[1:szpath])=alt
 coun
 end
end
sys_tem
for i=1:9;
 sys_temp=[sys_temp
end
out=[

Filter_Zeros

%Authored by Zachary Spritzer and Mat

function [A]=filter_zeros(A_long,n)

A=[];
counter=1;
for i=1:n
 if ab
 A(:,co
 counter=c
 end
end

VRT_sim

%Au

function [uav_path

 143

%
%INPUTS:
%
%shr - is a nxmx2 matrix where n is the length of the longest

the

s the initial y position
UAVs, the third row is the initial altitude of the UAVs, and

 fourth row is the intial Velocity of the UAVs.

OUTPUTS:

%uav_path_x - is a mxn matrix where m is the number of uavs and m is the
%length of the longest path. These are the x coordinat the paths.
%
%uav_path_y - is a mxn matrix where m is the number of uavs and m is the
%length of the longest path. These are the y coordinat the paths.
%
%time_uav - is a mxn matrix where m is the number uavs and m is the
%length of the longest path. These values correspond to the time at which
%the uavs are at coordinates x and y in uav_path_x an uav_path_y.
%
%altitude_uav - is a mxn matrix where m is the numb of uavs and m is the
%length of the longest path. These values correspond to the altitudes that
%the uavs are at when they are at coordinates x and y uav_path_x and
%uav_path_y.
%
%Threat_range_vrt - is a 1xn vector where n is the number of threats, where
%the first row is the range of the threats at the altitud ere the uavs
%are flying.
%
%Zone_range_vrt - is a 1xn vector where n is the num er of zones, where
%the first row is the range of the zones at the altitude here the uavs
%are flying.

nuav=size(shr_x,2);
szshrpth=size(shr_x,1);
shr_x=[[shr_x];[shr_x(szshrpth,:)]];
shr_y=[[shr_y];[shr_y(szshrpth,:)]];
uav_path_x=zeros(nuav,szshrpth+1);
uav_path_y=zeros(nuav,szshrpth+1);
for i=1:nuav,
 for j=1:szshrpth,
 if [shr_x(j+1,i),shr_y(j+1,i)]==[shr_x(j,i),shr_y(j | j==szshrpth,
 lst_pnt_x=shr_x(j,i);
 nxtlst_pnt_x=shr_x(j-1,i);
 lst_pnt_y=shr_y(j,i);
 nxtlst_pnt_y=shr_y(j-1,i);
 dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((t_pnt_y-nxtlst_pnt_y)^2));
 last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(d tpast/dist_pnts));
 last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(d tpast/dist_pnts));
 uav_path_x(i,[j+1:szshrpth+1])=last_x;

%path and m is the number of UAVs. The element (nxmx1) x position of
%mth uav at point n. The element (nxmx2) y position of the mth uav at
%point n.
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row i
%of the
%the
%
%
%
%

es of

es of

of

d

er

 in

e wh

b
 w

,i)]

ls
is
is

 144

 uav_path_y(i,[j+1:szshrpth+1])=last_y;
 uav_path_x(i,j)=shr_x(j,i);
 uav_path_y(i,j)=shr_y(j,i);
 break
 else
 uav_path_x(i,j)=shr_x(j,i);
 uav_path_y(i,j)=shr_y(j,i);
 end
 end
end

%Initializing matrixes
time_uav_temp=zeros(nuav,szshrpth+1);
time_uav=zeros(nuav,szshrpth+1);
altitude_uav=zeros(nuav,szshrpth+1);

%Time matrix
for i=1:nuav,
 for j=1:szshrpth,
 shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_ av_path_y(i,j)-uav_path_y(i,j+1))^2);
 time_uav_temp(i,j+1)=shr_dist(i,j)/UAV
 end
 time_uav(i,[2:szshr
 for j=2:szshrpth+1,
 time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j
 end
end

time_uav=time_uav*1.01;

%Altitude matrix
for i=1:nuav,
 for j=1:szshrpth+1,
 altitude_uav(i,j)=UAVS(3,i);
 end
end

No-Fly Zone Related Functions

path_x(i,j+1))^2+(u
S(4,i);

pth+1])=sum(time_uav_temp(i,:));

);

UAV_Crash_S

%Authored by Zachary Spritzer and Matthew Lechliter

function [sys,x0,str,ts] =uav_crash_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0

zeSizes(T); % Initialization

 Calculate outputs

 [sys,x0,str,ts] = mdlInitiali

 case 3
 sys = mdlOutputs(u); %

 145

===

===

ith the initialization information.

scStates= 0;

DirFeedthrough=1;

s.
======================================

ns.
===============================

);

,9);
),3,10);

(9,1);

r i=1:9,
for j=1:10,

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise

 Error handling error(['Unhandled flag = ',num2str(flag)]); %
end;

%=====
% Function mdlInitializeSizes initializes the states, sample

 times, state ordering strings (str), and sizes structure. %
%=====
function [sys,x0,str,ts] = mdlInitializeSizes(T)

 Call function simsizes to create the sizes structure. %
sizes = simsizes;
% Load the sizes structure w
izes.NumContStates= 0; s

sizes.NumDi
sizes.NumOutputs= 9;

NumInputs= 57; sizes.
izes.s

sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%

e ordering str = []; % No stat
%

ple time ts = [T 0]; % Inherited sam
e% End of mdlInitializeSiz

%========================
% Function mdlOutputs performs the calculatio

==============%=================
function sys = mdlOutputs(u

s]=uav_crash(u); [sy

nd of mdlOutputs. % E

UAV_Crash

%Authored by Zachary Spritzer and Matthew Lechliter

function [sys]=uav_crash(u)

uav_pos=reshape(u([1:27],1),3
one_pos=reshape(u([28:57],1z

av_shot_down=zerosu

fo

 146

 dist_uav_zone=sqrt(((uav_pos(1,i)-zone_pos(1,j))^2)+((uav_pos(2,i)-zone_pos(2,j))^2));
 if dist_uav_zone < zone_pos(3,j),

 end

nd

 uav_shot_down(i,1)=1;

 end
e
sys=[uav_shot_down];

Threat Related Functions

UAV_Intercepted_S

%Authored by Zachary Spritzer and Matthew Lechliter

nction [sys,x0,str,ts] =uav_intercepted_s(t,x,u,flag,T)
itch function controls the calls to

ion routines at each simulation stage.

 0
,str,ts] = mdlInitializeSizes(T); % Initialization

 sys = mdlOutputs(u); % Calculate outputs

 2, 4, 9 }

rwise
ror(['Unhandled flag = ',num2str(flag)]); % Error handling

===
 Function mdlInitializeSizes initializes the states, sample

es structure.
==

nction [sys,x0,str,ts] = mdlInitializeSizes(T)
ate the sizes structure.

sizes;
 the initialization information.

umDiscStates= 0;
.NumOutputs= 24;

zes.NumSampleTimes=1;
 the sizes information.

r = []; % No state ordering

fu
% Dispatch the flag. The sw
% S-funct
switch flag,

 case
 [sys,x0

 case 3

 case { 1,
 sys = []; % Unused flags

 othe
 er
end;

%===================
%
% times, state ordering strings (str), and siz
%==================
fu
% Call function simsizes to cre
sizes = sim
% Load the sizes structure with
sizes.NumContStates= 0;
sizes.N
sizes
sizes.NumInputs= 87;
sizes.DirFeedthrough=1;
si
% Load the sys vector with
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
st
%

 147

ts = [T 0]; % Inherited sample time
 End of mdlInitializeSizes.

===
dlOutputs performs the calculations.

==

ion [sys]=uav_intercepted(u)

reat_pos=reshape(u([28:87],1),4,15);

os(9,1);
s(15,1);

(((uav_pos(1,i)-threat_pos(1,j))^2)+((uav_pos(2,i)-threat_pos(2,j))^2));
v_threat < threat_pos(3,j),

eats_fired(j,1)=1;
uav_chance=rand;

 if uav_chance <= threat_pos(4,j),
 uav_shot_down(i,1)=1;

hreats_fired];

elated Functions

%
%=========
% Function m
%========
function sys = mdlOutputs(u);

[sys]=uav_intercepted(u);

% End of mdlOutputs.

UAV_Intercepted

%Authored by Zachary Spritzer and Matthew Lechliter

funct

uav_pos=reshape(u([1:27],1),3,9);
th

uav_shot_down=zer
threats_fired=zero
for i=1:9,
 for j=1:15,
 dist_uav_threat=sqrt
 if dist_ua
 thr

 end
 end
 end
end
sys=[uav_shot_down; t

Target R

,T)
witch function controls the calls to

nction routines at each simulation stage.

Target_Classifier_S

%Authored by Zachary Spritzer and Matthew Lechliter

rget_classifier_s(t,x,u,flagfunction [sys,x0,str,ts] = ta
atch the flag. The s% Disp

fu% S-
switch flag,

 case 0

 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 148

 case 3
 sys = mdlOutputs(u); % Calculate outputs

, 4, 9 }
 sys = []; % Unused flags

 otherwise
['Unhandled flag = ',num2str(flag)]); % Error handling

==
unction mdlInitializeSizes initializes the states, sample

============

.
s = simsizes;

States= 0;
s.NumOutputs= 36;

or with the sizes information.
 = simsizes(sizes);

herited sample time
nd of mdlInitializeSizes.

=========

==================
ction sys = mdlOutputs(u);

rget_Classifier

nction [sys]=target_classifier(u)

 case { 1, 2

 error(
end;

%========
% F
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure
size
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDisc
size
sizes.NumInputs= 100;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vect
sys
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % In
% E
%===
% Function mdlOutputs performs the calculations.
%==
fun

[sys]=target_classifier(u);

% End of mdlOutputs.

Ta

%Authored by Zachary Spritzer and Matthew Lechliter

fu

TARGETS_OLD=u([1:36],1);
TARGETS_OLD=reshape(TARGETS_OLD,4,9);

 149

END_OF_PATH=u([37:45],1);

ETS=u([46:54],1);

ARGETS_REAL=u([55:90],1);
e(TARGETS_REAL,4,9);

00,1));

_complete=size(uav_complete,2);
ction=0;

ocation(SELECTED_TARGETS(uav_complete(1,i),1));
L(4,target_real_location);

TS_REAL(4,target_real_location) < 4,
REAL(4,target_real_location)=TARGETS_REAL(4,target_real_location)+1;

 target_present=rand;

arget %d (value %d) indentified as a target at time %d by UAV %d. \n',...

 %d by UAV %d.',...
S_REAL(3,target_real_location),clock,uav_complete(1,i)));

d.\n',...

 TARGETS_REAL(:,target_real_location)=0;

 end

GETS_REAL(3,target_real_location),clock,uav_complete(1,i))); end

ation),clock,uav_complete(1,i))); end
 if action==4,

on),clock,uav_complete(1,i)));
 else

RGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));

(sum(TARGETS_REAL))==0,

SELECTED_TARG

T
TARGETS_REAL=reshap

target_location=u([91:99],1);

clock=round(u(1

uav_complete=find(END_OF_PATH==1);
nuav
a
for i=1:nuav_complete,
 target_real_location=target_l
 action=TARGETS_REA
 if TARGE
 TARGETS_
 else
 TARGETS_REAL(:,target_real_location)=0;
 end
 if action==1,

 if target_present <= 1.1,
 disp(sprintf('T
 target_real_location,TARGETS_REAL(3,target_real_location),clock,uav_complete(1,i)));
 else
 disp(sprintf('Target %d (value %d) indentified as NOT a target at time
 target_real_location,TARGET
 disp(sprintf('Target %d has been removed from target status at time %
 target_real_location,clock));

 end

 if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV %d. \n',...
 target_real_location,TAR
 if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_loc

 target_destroyed=rand;
 if target_destroyed <= 1.1,
 disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
 target_real_location,TARGETS_REAL(3,target_real_locati

 disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d. \n',...
 target_real_location,TA
 TARGETS_REAL(4,target_real_location)=3;
 end
 end
end

if sum
 TARGETS_REAL(:,1)=[4 2 3 1]';
end

 150

sys=reshape(TARGETS_REAL,36,1);

Place_Waypoints_S

Authored by Zachary Spritzer and Matthew Lechliter

nts_s(t,x,u,flag,T)
witch function controls the calls to
ch simulation stage.

 case 0

dlOutputs(u); % Calculate outputs

1, 2, 4, 9 }

ise

; % Error handling
nd;

===
 Function mdlInitializeSizes initializes the states, sample

e ordering strings (str), and sizes structure.
=================

on [sys,x0,str,ts] = mdlInitializeSizes(T)
 Call function simsizes to create the sizes structure.

.

gh=1;

 the sizes information.

ple time
nd of mdlInitializeSizes.

==
unction mdlOutputs performs the calculations.

==
tion sys = mdlOutputs(u);

%

nction [sys,x0,str,ts] =place_waypoifu
% Dispatch the flag. The s

 S-function routines at ea%
switch flag,

 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = m

 case {
 sys = []; % Unused flags

 otherw
 error(['Unhandled flag = ',num2str(flag)])
e

%===================
%
% times, stat
%===
functi
%
sizes = simsizes;
% Load the sizes structure with the initialization information
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 9*4+9;
sizes.NumInputs= 9*4+9*4;
sizes.DirFeedthrou
sizes.NumSampleTimes=1;
% Load the sys vector with
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sam
% E
%======================
% F
%====================
func

[sys]=place_waypoints(u);

 151

% End of mdlOutputs.

Place_Waypoints

Authored by Zachary Spritzer and Matthew Lechliter

nction [sys]=place_waypoints(u)

AVS=u([1:36],1);

avs_existing=zeros(1,9);

AVS(:,i)))~=0.26

);
0;

rgets_location=zeros(1,9);

um(UAVS(:,i)))>0 & abs(sum(UAVS(:,i)))~=0.26

s(sum(TARGETS_REAL(:,i)))>0
g=n_targ+1;

:n_uav

olumn=find(A==B(1,size(B,2)));
ARGETS(1,i) = TARGETS_REAL(1,Column(1,1));

,1));

ETS_REAL(4,Column(1,1));
 targets_location(1,i)=Column(1,1);

;

lse

AL(:,i)))>0

TARGETS_REAL(:,i);
ets_location(1,counter)=i;

 counter=counter+1;

%

fu

U
UAVS=reshape(UAVS,4,9);

u
for i=1:9
 if abs(sum(UAVS(:,i)))>0 & abs(sum(U
 uavs_existing(1,i)=1;
 end
end

TARGETS_REAL=u([37:72],1);
TARGETS_REAL=reshape(TARGETS_REAL,4,9
n_uav=0;n_targ=

TARGETS=zeros(4,9);
ta
for i=1:9
 if abs(s
 n_uav=n_uav+1;
 end
 if ab
 n_tar
 end
end

if n_uav < n_targ
 for i = 1
 A=TARGETS_REAL(3,:);
 B=sort(A);
 C
 T
 TARGETS(2,i) = TARGETS_REAL(2,Column(1
 TARGETS(3,i) = TARGETS_REAL(3,Column(1,1));
 TARGETS(4,i) = TARG

 TARGETS_REAL(3,Column(1,1))=0
 end
e
 counter=1;
 for i=1:9
 if abs(sum(TARGETS_RE
 TARGETS(:,counter)=
 targ

 152

 end
 end
end

 for i=1:(n_uav-n_targ)

 Column=find(A==B(1,size(B,2)));
S(1,n_targ+i) = i*.01+TARGETS_REAL(1,Column(1,1));
S(2,n_targ+i) = i*.01+TARGETS_REAL(2,Column(1,1));

ETS(3,n_targ+i) = 0;

n(1,i+n_targ)=Column(1,1);
 end

S,2))];

if n_uav > n_targ

 A=TARGETS_REAL(3,:);
 B=sort(A);

 TARGET
 TARGET
 TARG
 TARGETS(4,n_targ+i) = 0;
 TARGETS_REAL(3,Column(1,1))=0.5*TARGETS_REAL(3,Column(1,1));
 targets_locatio

end
TARGETS=[TARGETS,zeros(4,9-size(TARGET

sys=[reshape(TARGETS,36,1);targets_location'];

 153

ppendix D

A

 MATLAB Files Grid and Visibility Graph

 154

Grid Related Functions

g. The switch function controls the calls to
ge.

nitializeSizes(T); % Initialization

alculate outputs

, 9 }
 Unused flags

g)]); % Error handling

==
 mdlInitializeSizes initializes the states, sample

tate ordering strings (str), and sizes structure.
==
 [sys,x0,str,ts] = mdlInitializeSizes(T)

 Call function simsizes to create the sizes structure.
zes = simsizes;

Times=1;
the sizes information.

0 = []; % No continuous states

r = []; % No state ordering

 sample time

==
n mdlOutputs performs the calculations.

lanning_grid(u);

Path_Planning_Grid_S

%Authored by Zachary Spritzer

function [sys,x0,str,ts] = path_planning_grid_s(t,x,u,flag,T)
% Dispatch the fla
% S-function routines at each simulation sta
switch flag,

 case 0
 [sys,x0,str,ts] = mdlI

 case 3
 sys = mdlOutputs(u); % C

 case { 1, 2, 4
 sys = []; %

 otherwise
 error(['Unhandled flag = ',num2str(fla
end;

%============
% Function
% times, s
%====
function
%
si
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 9*100*4+9;
sizes.NumInputs= 36+36+30+60+1+1+9;
sizes.DirFeedthrough=1;
sizes.NumSample
% Load the sys vector with
sys = simsizes(sizes);
%
x
%
st
%

 = [T 0]; % Inheritedts
% End of mdlInitializeSizes.
%
% Functio
%==
function sys = mdlOutputs(u)

[sys]=path_p

% End of mdlOutputs

 155

Path_Planning_Grid

%Authored by Zachary Spritzer

function [out]=path_planning_grid(in)

UAVS_long=in([1:36],1);
UAVS_long=reshape(UAVS_long,4,9);
TARGETS_long=in([37:72]);
TARGETS_long=reshape(TARGETS_long,4,9);

NES_long=in([73:102]);

ots=in(164);

 abs(sum(UAVS_long(:,i)))>0 & abs(sum(UAVS_long(:,i)))~=0.26

AVS]=filter_zeros(UAVS_long,9);
VS,2);

d

mp(2,:)];
arg=size(TARGETS,2);

reats_existing=zeros(1,15);
r i=1:15

 if THREATS_long(3,i)~=0

HREATS;

ZO
ZONES_long=reshape(ZONES_long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THREATS_long,4,15);
TIME=in(163);
n_pl
HEADING_ANGLE=in([165:173]);

uavs_existing=zeros(1,9);
for i=1:9
 if
 uavs_existing(1,i)=1;
 end
end
[U
n_uav=size(UA

targ_existing=zeros(1,9);
for i=1:9
 if TARGETS_long(3,i)~=0,
 targ_existing(1,i)=1;
 en
end
[TARGETS_temp]=filter_zeros(TARGETS_long,9);
TARGETS=[TARGETS_temp(1,:);TARGETS_te
n_t

[ZONES]=filter_zeros(ZONES_long,10);
n_zones=size(ZONES,2);

th
fo

 threats_existing(1,i)=1;
 end
end
[THREATS]=filter_zeros(THREATS_long,15);
n_threats=size(THREATS,2);

ZONES_REAL=ZONES;
THREATS_REAL=T

ZONES(3,:)=1.15*ZONES_REAL(3,:);

 156

THREATS(3,:)=1.15*THREATS_REAL(3,:);

split_seg=10;
min_turn=1;
sz_grid=20;
[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES,THREATS,sz_grid);

tored_paths,totalcost]=cheapest_paths(all_pos,all_lines_x,all_lines_y,all_costs,UAVS,TARGETS,ZONE
,THREATS);
hortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng(stored_paths,all_pos,ZONES,THREATS,m

ask_allocation(totalcost,Shortened_Paths_x,Shortened_Path

av_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA

L,THREATS_long,uav_path_x,uav_path_y,n_plots,
isting,targ_existing,threats_existing);

isp(sprintf('Path Planning ran at time %d. \n',round(TIME)));

==round(TARGETS(1,j)*10) &

zeros(9,100);
y=zeros(9,100);

av_time=zeros(9,100);
av_alt=zeros(9,100);

x,2);

 selected_targets(i,1)=bestcomb(1,counter);
 uav_x(i,[1:szpath])=uav_path_x(counter,:);

th])=uav_path_y(counter,:);

av_alt(i,[1:szpath])=altitude_uav(counter,:);

 end

mp=[];
r i=1:9;

[s
S
[S
in_turn,split_seg,n_uav,n_targ,HEADING_ANGLE);
[Selected_Paths_x,Selected_Paths_y]=mmkp_t
s_y,n_uav);
[uav_path_x,u
VS,min_turn*2);
if n_plots~=0,

plot_uav(UAVS_long,TARGETS_long,ZONES_REA
uavs_ex
end

d

bestcomb=zeros(1,9);
for i=1:n_uav,
 for j=1:n_targ,
 if round(Selected_Paths_x(end,i)*10)
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
 bestcomb(1,i)=j;
 break
 end
 end
end

%Making into vector
uav_x=
uav_
u
u
selected_targets=zeros(9,1);
szpath=size(uav_path_
counter=1;
for i=1:9,
 if uavs_existing(1,i)==1

 uav_y(i,[1:szpa
 uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;
 u
 counter=counter+1;

end
sys_te
fo

 157

 sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_alt(i,:),uav_time(i,:)];
nd
ut=[sys_temp,selected_targets'];

Grid_Gen

%Authored by Zachary Spritzer

function
[all_pos,all_lines_x,all_lines_y,all_costs]=grid_gen(UAVS,TARGETS,ZONES,THREATS,sz_grid)

%INPUTS:
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of t UAVs, and
%the fourth row is the intial Velocity of the
%
%TARGETS - is a 2xn matrix where n is the number of Targets, the first row
%is the x position of the ta

the targets.

ZONES - is a 3xn matrix where n is the number of No-Fly Zones, the first
row is the x position of the no-fly zones, the second row is the y
position of the no-fly zones, and the third row is the radius or range of
the no-fly zones.

THREATS - is a 4xn matrix where n is the number of Threats, the first row
is the x position of the threats, the second row is the y position of the
threats, the third row is the range of the threats, and the fourth row is
the level of danger of the threats.

OUTPUTS:

all_pos - is a 2xn matrix where n is the number of unique voronoi points,
uav points, and target points. Where the first row is the x position and
the second row is the y position of all of these unique points.

all_lines_x - is a 2xn matrix where n is the number of all of the lines
for the voronoi, uavs, and targets. The first row is the ending point's
x position for the nth line and the second row is the starting point's
x position for the nthe line.

all_lines_y - is a 2xn matrix where n is the number of all of the lines
for the voronoi, uavs, and targets. The first row is the ending point's
y position for the nth line and the second row is the starting point's
y position for the nthe line.

all_costs - is a 1xn row where n is the number of all of the lines
for the voronoi, uavs, and targets. This row is the costs for all of the

ax_x=max([TARGETS(1,:),UAVS(1,:),ZONES(1,:),THREATS(1,:)])+10;
AVS(1,:),ZONES(1,:),THREATS(1,:)])-10;

e
o

he
UAVs.

rgets and the second row is the y position of
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%lines of all_lines_x and all_lines_y

m
min_x=min([TARGETS(1,:),U

 158

max_y=max([TARGETS(2,:),UAVS(2,:),ZONES(2,:),THREATS(2,:)])+10;
(2,:),ZONES(2,:),THREATS(2,:)])-10;

%%%%%%%%%%%%%%%%%%%%

%%

ting Grid points

rid_x_pnts=min_x+(((max_x-min_x)*[0:(sz_grid-1)])/(sz_grid-1));
nts=min_y+(((max_y-min_y)*[0:(sz_grid-1)])/(sz_grid-1));

 vxyn(1,[(i-1)*sz_grid+1:(i-1)*sz_grid+sz_grid])=grid_x_pnts;
rid+1:(i-1)*sz_grid+sz_grid])=ones(1,sz_grid)*grid_y_pnts(1,i);

 Grid Lines

ros(2,(sz_lines)*2);
y=vx;

rid-1)])=grid_x_pnts(1,[2:sz_grid]);
_grid-1)])=grid_x_pnts(1,[1:(sz_grid-1)]);

d_y_pnts(1,i);
-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*grid_y_pnts(1,i);

_grid-1)*2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-

2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)*2])=ones(1,sz_grid-

rid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-

2)+(sz_grid-1)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-
grid-1)]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
onnecting UAV's into grid

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ost_uav,uavx,uavy]=connect_vrn(vxyn',UAVS([1,2],:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%%
vlines=size(vx,2);
ne_cost_vrn=zeros(1,nvlines);
r i=1:nvlines,

x(1,i)-vx(2,i))^2+(vy(1,i)-vy(2,i))^2);
nd

min_y=min([TARGETS(2,:),UAVS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Generating Grid
%%%%%%%

%Genera
vxyn=zeros(2,sz_grid^2);
g
grid_y_p
for i=1:sz_grid,

 vxyn(2,[(i-1)*sz_g
end

%Generating
sz_lines=(sz_grid-1)*sz_grid;
vx=ze
v
for i=1:sz_grid,
 vx(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_g
 vx(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz
 vy(1,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid-1)*2)+(sz_grid-1)])=ones(1,sz_grid-1)*gri
 vy(2,[(i-1)*((sz_grid-1)*2)+1:(i-1)*((sz_grid

 vx(1,[(i-1)*((sz
1)*grid_x_pnts(1,i);
 vx(2,[(i-1)*((sz_grid-1)*
1)*grid_x_pnts(1,i);
 vy(1,[(i-1)*((sz_grid-1)*2)+(sz_g
1)*2])=grid_y_pnts(1,[2:(sz_grid)]);
 vy(2,[(i-1)*((sz_grid-1)*
1)*2])=grid_y_pnts(1,[1:(sz_

end

%%%%%%%%%%%%%%%%
%C
%%%%%%%%%%%%%%%%%%%%%
[line_c

%%%%%%%%%%%%%%%%%%%%%
%Connecting the targets into the grid
%%%%%%%%%%%%%%%%%%%%%%%%%
[line_cost_targ,targx,targy]=connect_vrn(vxyn',TARGETS([1,2],:));

%
%Generation for grid line costs
%
n
li
fo
 line_cost_vrn(1,i)=sqrt((v
e

 159

%%%
Stacking unique positions, lines for x and y, and costs of those lines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ll_pos=[UAVS([1,2],:) vxyn([1,2],:) TARGETS([1,2],:)];

,:) targx([1,2],:)];
y([1,2],:)];
rn(1,:) line_cost_targ(1,:)];

%
%%%%%%%%%%%%%%%%%%%%%
a
all_lines_x=[uavx([1,2],:) vx([1,2]
all_lines_y=[uavy([1,2],:) vy([1,2],:) targ
all_costs=[line_cost_uav(1,:) line_cost_v

Visibility Related Functions

Path_Planning_Vis_S

%Authored by Zachary Spritzer

th_planning__vis_s(t,x,u,flag,T)
atch the flag. The switch function controls the calls to

function routines at each simulation stage.
itch flag,

zeSizes(T); % Initialization

s = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }

 otherwise
 ',num2str(flag)]); % Error handling

==================================
the states, sample

ering strings (str), and sizes structure.
===================================

izes structure with the initialization information.
ContStates= 0;

umDiscStates= 0;
.NumOutputs= 9*100*4+9;

zes.NumInputs= 36+36+30+60+1+1+9;
zes.DirFeedthrough=1;

;
zes information.

function [sys,x0,str,ts] = pa
% Disp
% S-
sw

 case 0
 [sys,x0,str,ts] = mdlInitiali

 case 3
 sy

 sys = []; % Unused flags

 error(['Unhandled flag =
end;

%============================
% Function mdlInitializeSizes initializes
% times, state ord
%===========================
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the s
sizes.Num
sizes.N
sizes
si
si
sizes.NumSampleTimes=1
% Load the sys vector with the si
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%

 160

ts = [T 0]; % Inherited sample time

===
e calculations.

=================

ing_Vis_Graph

pritzer

:36],1);
eshape(UAVS_long,4,9);

ong=in([37:72]);

ATS_long,4,15);

);
ANGLE=in([165:173]);

sting=zeros(1,9);

 & abs(sum(UAVS_long(:,i)))~=0.26

]=filter_zeros(UAVS_long,9);
v=size(UAVS,2);

ng(1,i)=1;

ARGETS_temp]=filter_zeros(TARGETS_long,9);
ARGETS=[TARGETS_temp(1,:);TARGETS_temp(2,:)];

GETS,2);

nes=size(ZONES,2);

s(1,15);
r i=1:15

 if THREATS_long(3,i)~=0

% End of mdlInitializeSizes.
%===========
% Function mdlOutputs performs th
%===
function sys = mdlOutputs(u)

[sys]=path_planning_vis_graph(u);

% End of mdlOutputs.

Path_Plann

%Authored by Zachary S

function [out]=path_planning_vis_graph(in)

UAVS_long=in([1
UAVS_long=r
TARGETS_l
TARGETS_long=reshape(TARGETS_long,4,9);
ZONES_long=in([73:102]);
ZONES_long=reshape(ZONES_long,3,10);
THREATS_long=in([103:162]);
THREATS_long=reshape(THRE
TIME=in(163);
n_plots=in(164
HEADING_

uavs_exi
for i=1:9
 if abs(sum(UAVS_long(:,i)))>0
 uavs_existing(1,i)=1;
 end
end
[UAVS
n_ua

targ_existing=zeros(1,9);
for i=1:9
 if TARGETS_long(3,i)~=0,
 targ_existi
 end
end
[T
T
n_targ=size(TAR

[ZONES]=filter_zeros(ZONES_long,10);
n_zo

threats_existing=zero
fo

 161

 threats_existing(1,i)=1;

nd
HREATS]=filter_zeros(THREATS_long,15);

_threats=size(THREATS,2);

=ZONES;
HREATS_REAL=THREATS;

ONES(3,:)=1.15*ZONES_REAL(3,:);
S(3,:)=1.15*THREATS_REAL(3,:);

lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES,THREATS,points);
_y,all_costs,UAVS,TARGETS,ZO

paths,all_pos,ZONES,THREAT

,Shortened_Paths_x,Shortened_Path

v_path_x,uav_path_y,time_uav,altitude_uav]=vrt_sim_convert(Selected_Paths_x,Selected_Paths_y,UA
);

av_path_x,uav_path_y,n_plots,

Making into vector
os(9,100);

 end
e
[T
n

ZONES_REAL
T

Z
THREAT

split_seg=10;

urn=1; min_t
points=8;

pos,all[all
[stored_paths,totalcost]=cheapest_paths_vis(all_pos,all_lines_x,all_lines

S,THREATS); NE

d_[Shortened_Paths_x,Shortened_Paths_y,totalcost]=path_shrtng_vis(store
S,min_turn,n_uav,n_targ,HEADING_ANGLE);

location(totalcost[Selected_Paths_x,Selected_Paths_y]=mmkp_task_al
,n_uav); s_y

[ua
VS,min_turn*2

_plots~=0, if n

,uplot_uav(UAVS_long,TARGETS_long,ZONES_REAL,THREATS_long
existing,targ_existing,threats_existing); uavs_

end

(sprintf('Path Planning ran at time %d. \n',round(TIME))); disp

bestcomb=zeros(1,9);
for i=1:n_uav,

or j=1:n_targ, f
 if round(Selected_Paths_x(end,i)*10)==round(TARGETS(1,j)*10) &
round(Selected_Paths_y(end,i)*10)==round(TARGETS(2,j)*10)
 bestcomb(1,i)=j;
 break

 end
 end
end

%
uav_x=zer
uav_y=zeros(9,100);

,100); uav_time=zeros(9
uav_alt=zeros(9,100);
selected_targets=zeros(9,1);
szpath=size(uav_path_x,2);
counter=1;
for i=1:9,
 if uavs_existing(1,i)==1
 selected_targets(i,1)=bestcomb(1,counter);
 uav_x(i,[1:szpath])=uav_path_x(counter,:);

 162

 uav_y(i,[1:szpath])=uav_path_y(counter,:);
 uav_time(i,[1:szpath])=time_uav(counter,:)+TIME;

nter,:);

;

alt(i,:),uav_time(i,:)];

temp,selected_targets'];

_lines_x,all_lines_y,all_costs]=vis_line_gen(UAVS,TARGETS,ZONES,THREATS,points);

HREATS,2);
ONES,2);

ros(2,points*(n_threats+n_zones));

%%%%%%%%%%%%%%%%%%%%%%%%%
erating all the points on each No-Fly Zone and Threat

%%

zones,
NES(3,i)*1.15*sin(t)+ZONES(1,i);

ZONES(3,i)*1.15*cos(t)+ZONES(2,i);
:(i-1)*points+points])=x';

 all_pos(2,[(i-1)*points+1:(i-1)*points+points])=y';

r i=1:n_threats,
ATS(3,i)*1.15*sin(t)+THREATS(1,i);

+THREATS(2,i);
_pos(1,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=x';

 all_pos(2,[(i-1)*points+1+points*n_zones:(i-1)*points+points+points*n_zones])=y';
nd

%%
Adding UAV and Target positions into all_pos
%%

) all_pos(1,:) TARGETS(1,:);UAVS(2,:) all_pos(2,:) TARGETS(2,:)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Generating visibilty lines

%%%

 uav_alt(i,[1:szpath])=altitude_uav(cou
 counter=counter+1;
 end
end
sys_temp=[]
for i=1:9;
 sys_temp=[sys_temp,uav_x(i,:),uav_y(i,:),uav_
end
out=[sys_

Vis_line_gen

%Authored by Zachary Spritzer

function
[all_pos,all

n_threats=size(T
n_zones=size(Z
n_uav=size(UAVS,2);
n_targets=size(TARGETS,2);
all_pos=ze

%%%%%%%%%%%%%%%%%%%%%%%%%%
%Gen
%%%%%%%%%
t=(1/points:1/points:1)'*2*pi;
for i=1:n_
 x=ZO
 y=
 all_pos(1,[(i-1)*points+1

end

fo
 x=THRE
 y=THREATS(3,i)*1.15*cos(t)
 all

e

%
%
%
all_pos=[UAVS(1,:

%%%%%%%%%%%%%%%%%
%

 163

ZONES_
n_zones_threats=size(ZONES_THREATS,2);
a=1;

THREATS=[ZONES([1:3],:) THREATS([1:3],:)];

r i=1:size(all_pos,2),

1,i)-all_pos(1,j))^2)+((all_pos(2,i)-all_pos(2,j))^2));
hreats ,
ES_THREATS(1,k)-all_pos(1,i))^2)+((ZONES_THREATS(2,k)-

ll_pos(2,i))^2));
HREATS(2,k)-

);
 if SN<SF & SN>0
 PC(1,k)=sqrt(SC^2-SN^2);

 if SC<FC

 if PC(1,:)>ZONES_THREATS(3,:),
);

_y(1,a)=all_pos(2,j);
ll_pos(2,i);

%%%
isibilty lines

%%
Since there is an equal weight assigned to each line within a threat there

ing a threat
ill not how long a UAV is in the

(all_lines_x,2);
all_lines_x(1,i)-all_lines_x(2,i))^2+(all_lines_y(1,i)-all_lines_y(2,i))^2);

st]=path_shrtng_vis(stored_paths,all_pos,ZONES,THREAT
av,ntarg,HEADING_ANGLE)

fo
 for j=1:size(all_pos,2),
 if i~=j,
 SF=sqrt(((all_pos(
 for k=1:n_zones_t
 SC=sqrt(((ZON
a
 FC=sqrt(((ZONES_THREATS(1,k)-all_pos(1,j))^2)+((ZONES_T
all_pos(2,j))^2));
 SN=(SC^2+SF^2-FC^2)/(2*SF

 else

 PC(1,k)=SC;
 else
 PC(1,k)=FC;
 end
 end
 end

 all_lines_x(1,a)=all_pos(1,j
 all_lines_x(2,a)=all_pos(1,i);
 all_lines
 all_lines_y(2,a)=a
 a=a+1;
 end
 end
 end
end

%%%%
%Generating straight line cost for v
%%%
%
%is no additional weighting needed for these lines since enter
%is associated with a probability of k
%threat's range.
for i=1:size
 all_costs(1,i)=sqrt((
end

Path_shrtng_vis

%Authored by Zachary Spritzer

function
[Shortened_Paths_x,Shortened_Paths_y,totalco
S,min_turn,nu

 164

%INPUTS:
%
%stored_paths - is a mxn matrix where m is the number of uavs times the

e longest path. The first row

ut by node numbers coming from

n matrix where n is the number of unique voronoi points,

 - is a 3xn matrix where n is the number of No-Fly Zones, the first
s the x position of the no-fly zones, the second row is the y

ition of the no-fly zones, and the third row is the radius or range of
the no-fly zones.

ATS - is a 4xn matrix where n is the number of Threats, the first row

 - number of segments to Split the voronoi lines into for the
ution

AVs

argets

OUTPUTS:

ere n is the length of the longest
of UAVs multiplied by the number of targets.

h uav at point n. The element
t n.

totalcost - is a mxn matrix where m is the number of uavs and n is the
 matrix

 where n is the length of the longest
Vs multiplied by the number of targets.

he mth uav at point n. The element
 uav at point n.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
d_Pos_x=ones(szpths,nuav*ntarg);
_Pos_y=ones(szpths,nuav*ntarg);
_paths(:,szpths+1)=0;

%number of targets and n is the length of th
%being the first path for the first uav and the last row being the last
%path for the last uav. The paths are outp
%the implementation of dijkstra's algorithm.
%
%all_pos - is a 2x
%uav points, and target points. Where the first row is the x position and
%the second row is the y position of all of these unique points.
%
%ZONES
%row i
%pos
%
%
%THRE
%is the x position of the threats, the second row is the y position of the
%threats, the third row is the range of the threats, and the fourth row is
%the level of danger of the threats.
%
%min_turn - minimum turning radius for the UAVs
%
%split_seg
%purpose of a more near-optimal sol
%
%nuav - number of U
%
%ntarg - number of t

%
%
%Shortened_Paths - is a nxmx2 matrix wh
%path and m is the number
%The element (nxmx1) x position of the mt
%(nxmx2) y position of the mth uav at poin
%
%
%number of possible paths for each uav. The element (m,n) of this
%is the cost for the mth uav to take the nth path.
%
%Stored_Pos - is a nxmx2 matrix
%path and m is the number of UA
%The element (nxmx1) x position of t
%(nxmx2) y position of the mth

szpths=size(stored_paths,2);
%%%%%%%%%%%%%%%%%
%Finding the corresponding x and y coordinates
%%%%%%%%%%%%%%%%%
Store
Stored
stored

 165

for i=1:nuav*ntarg,
in(find(stored_paths(i,:)==0));

ed_Pos_x(1:mnz-1,i)=all_pos(1,stored_paths(i,1:mnz-1))';
ed_Pos_y(1:mnz-1,i)=all_pos(2,stored_paths(i,1:mnz-1))';
ed_Pos_x(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(1,stored_paths(i,mnz-1))';
ed_Pos_y(mnz:end,i)=ones((szpths-mnz+1),1)*all_pos(2,stored_paths(i,mnz-1))';

d

szpths,:);
es(500,1)*Stored_Pos_y(szpths,:);
_Pos_x;Shortened_Paths_x_end];

y;Shortened_Paths_y_end];

%%%%%%%%%%%%%%%%%%%%

%%
i=1:nuav,

ntarg,
y(:,((i-1)*ntarg)+j)]=...

 heading_angle_paths([Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_y(:,((i-
j)],min_turn,HEADING_ANGLE(i,1),72);

ned_Paths_x_old=Shortened_Paths_x;
ths_y_old=Shortened_Paths_y;

ened_Paths_y=[];
r j=1:size(Shortened_Paths_x_old,1)-1,

;

ths_x(j,:)=Shortened_Paths_x_old(j,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%s
d_Paths_x,2);

mcost=zeros(nuav*ntarg,1);

ermcost(z,1)]=update_cost([Shortened_Paths_x(:,z),Shortened_Paths_y(:,z)],THREATS);

arg,nuav)';

 mnz=m
 Stor
 Stor
 Stor
 Stor
en

hortened_Paths_x_end=ones(500,1)*Stored_Pos_x(S
Shortened_Paths_y_end=on
Shortened_Paths_x=[Stored
Shortened_Paths_y=[Stored_Pos_

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Adding initial path based on heading angle
%%%%%%%
for
 for j=1:
 [Shortened_Paths_x(:,((i-1)*ntarg)+j),Shortened_Paths_

1)*ntarg)+
 end
end

Shorte
Shortened_Pa
Shortened_Paths_x=[];
Short
fo
 if Shortened_Paths_x_old(j,:)==Shortened_Paths_x_old(j+1,:) &
Shortened_Paths_y_old(j,:)==Shortened_Paths_y_old(j+1,:),
 Shortened_Paths_x(j,:)=Shortened_Paths_x_old(j,:)
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);
 break
 else
 Shortened_Pa
 Shortened_Paths_y(j,:)=Shortened_Paths_y_old(j,:);
 end
end

%%%%%%%%%%%%%
%Updating the Costs
%%%%%%%%%%%%%%%%%%%%%%%%%
zsp_perm=size(Shortene
per

for z=1:szsp_perm,
 [p
end
totalcost=reshape(permcost,nt

 166

Appendix E

 and Destroy MATLAB Files Search

 167

Path Planning Related Functions

Path_Planning_Search_S

%Authored by Zachary Spritzer

ts]function [sys,x0,str, = path_planning_search_s(t,x,u,flag,T)

cture.
============================

izes(T)
es to create the sizes structure.

tructure with the initialization information.
States= 0;

iscStates= 0;
Outputs= 9*100*4+9;

umInputs= 36+36+180*3+9+1+81+1;
.DirFeedthrough=1;

information.

 = [T 0]; % Inherited sample time

==

==================

]=path_planning_search(u);

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3

tputs sys = mdlOutputs(u); % Calculate ou

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise

Error handling error(['Unhandled flag = ',num2str(flag)]); %
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes stru

========%==========================
] = mdlInitializeSfunction [sys,x0,str,ts

siz% Call function sim
sizes = simsizes;

es s% Load the siz
ontsizes.NumC

Dsizes.Num
umsizes.N

.Nsizes
izess

sizes.NumSampleTimes=1;
th the sizes % Load the sys vector wi

ys = simsizes(sizes); s
%

% No continuous states x0 = [];
 %

str = []; % No state ordering
%
ts
% End of mdlInitializeSizes.
%
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u)

[sys

 168

Path_Planning_Search

%Authored by Zachary Spritze

r

=path_planning_search(in)

ETS=reshape(in([37:72],1),4,9);

,1)=UAVS(1,i);
 Selected_paths_y(i,1)=UAVS(2,i);
 for j=1:20,

j,i)==0,
2:100])=waypoints_x(j,i);

 Selected_paths_y(i,[2:100])=waypoints_y(j,i);

 end

 end

 num_target_visits=zeros(9,1);

function [out]

UAV
TARG

S=reshape(in([1:36],1),4,9);

uav_action=reshape(in([73:153],1),9,9);
waypoints_x=reshape(in([154:333],1),20,9);
waypoints_y=reshape(in([334:513],1),20,9);
waypoints_checked=reshape(in([514:693],1),20,9);
HEADING_ANGLE=in([694:702],1);
n_plots=in(703,1);
TIME=round(in(7
disp(sprintf('Path

04,1));
Planning Search ran at %d. \n',TIME))

 uavs_existing=zeros(9,1);
for i=1:9,
 if UAVS(3,i)~=0,
 uavs_existing(i,1)=1;
 end
end

targets_present=zeros(9,1);
for
 i

 i=1:9,
f TARGETS(4,i)~=0,
 targets_present(i,1)=1;

 end
 end

n_targ=sum(targets_present(:,1));

Selected_paths_x=zeros(9,100);
Selected_paths_y=zeros(9,100);

%If no targets are present
for i=1:9,
 if uavs_existing(i,1)~
 Selected_paths_x(i

=0,

 if waypoints_checked(
 Selected_paths_x(i,[

 break

 end

end

%If targets are present
if sum(targets_present(:,1))~=0,

 169

 visit_target_costs=zeros(9,9);
ths_x_temp=zeros(9*9,100);

,100);

1:9
vs_existing(i,1)~=0,

 Selected_paths_x_temp((j-1)*9+i,1)=UAVS(1,j);
 Selected_paths_y_temp((j-1)*9+i,1)=UAVS(2,j);

 Selected_paths_x_temp((j-1)*9+i,[2:100])=TARGETS(1,i);
 Selected_paths_y_temp((j-1)*9+i,[2:100])=TARGETS(2,i);

ths_x_temp((j-1)*9+i,:),Selected_paths_y_temp((j-1)*9+i,:)]=...
 heading_angle_paths([Selected_paths_x_temp((j-1)*9+i,:);Selected_paths_y_temp((j-

 ,1,HEADING_ANGLE(j,1),72);

 %Defining Costs
 for n=1:99,
 visit_target_costs(j,i)=visit_target_cos sqrt(((Selected_paths_x_temp((j-1)*9+i,n)-
Selected_paths_x_temp((j-1)*9+i,n+1))^2)+...
 ((Selected_paths_y_temp((j-1)*9+i, -Selected_paths_y_temp((j-1)*9+i,n+1))^2));
 end
 end
 end
 num_target_visits(i,1)=4-TARGETS(4,i);
 visit_target_costs_temp=round(visit_target_costs*100);
 uav_to_target=round(sort(visit_target_costs(:,));
 for k=1:num_target_visits(i,1);
 if uav_action(j,i)==0,
 uav_assignment(find(visit_target_costs_t p(:,i)==uav_to_target(k)),1)=i;
 end
 end
 end
 end
 for i=1:9,
 if uav_assignment(i,1)~=0,
 Selected_paths_x(i,:)=Selected_paths_x_temp i-1)*9+uav_assignment(i,1),:);
 Selected_paths_y(i,:)=Selected_paths_y_temp((i-1)*9+uav_assignment(i,1),:);
 end
 end
end

[uav_path_x,uav_path_y,time_uav,altitude_uav]=path times(Selected_paths_x,Selected_paths_y,UAVS,0.
5,uavs_existing);
time_uav=time_uav+ones(size(time_uav,1),size(time ,2))*TIME;
if n_plots~=0,
 plot_uav(UAVS,TARGETS,uav_path_x,uav_path_ ,n_plots,uavs_existing,targets_present);
end

sys_temp=[];
for i=1:9;
 sys_temp=[sys_temp,uav_path_x(i,:),uav_path_y(i,:),altitude_uav(i,:),time_uav(i,:),uavs_existing(i,1)];

 Selected_pa
 Selected_paths_y_temp=zeros(9*9
 uav_assignment=zeros(9,1);

 for i=1:9,
 if targets_present(i,1)==1,
 for j=
 if ua

 [Selected_pa

1)*9+i,:)]...

ts(j,i)+

n)

i)*100

em

((

_

_uav

y

 170

end

out=[sys_temp];

% End of mdlOutput

Path_Times

%Authored by Zachary Spritzer

function
[uav_path_x,uav_pa _paths_y,UAVS,di
stpast,uavs_existing)
%
%INPUTS:
%
%Selected_paths_x - is a n*m matrix where n=9 and m=90 path length.
%
%UAVS - is a 4xn matrix where n is number of UAVs, the first row is the
%initial x position of the UAVs, the second row is the initial y position
%of the UAVs, the third row is the initial altitude of the UAVs, and
%the fourth row is the intial Velocity of the UAVs.
%
%
%OUTPUTS:
%
%uav_path_x - is a mxn matrix where m is the number of uavs and n
%length of the longest path. These are the x coordinates of the paths.
%
%uav_path_y - is a mxn matrix where m is the number of uavs and n is the
%length of the longest path. These are the y coordinates of the paths.
%
%time_uav - is a mxn matrix where m is the number of uavs and n is
%length of the longest path. These values correspond to the time at w
%the uavs are at coordinates x and y in uav_path_x a uav_path_y.
%
%altitude_uav - is a mxn matrix where m is the numb of uavs and n is the

hese values correspond to the altitudes that
avs are at when they are at coordinates x and y in uav_path_x and
ath_y.

av_path_x=zeros(9,100);
av_path_y=zeros(9,100);

r i=1:9,
 if uavs_existing(i,1)~=0,
 for j=1:100,
 if Selected_paths_x(i,j+1) == Selected_paths_x(i,j+2) & Selected_paths_y(i,j+1) ==
Selected_paths_y(i,j+2),
 lst_pnt_x=Selected_paths_x(i,j+1);

s.

th_y,time_uav,altitude_uav]=path_times(Selected_paths_x,Selected

 is the

 the
hich

nd

er
%length of the longest path. T
%the u

uav_p%

u
u

fo

 171

 172

 nxtlst_pnt_x=Selected_paths_x(i,j);
 lst_pnt_y=Selected_paths_y(i,j+1);
 nxtlst_pnt_y=Selected_paths_y(i,j);
 dist_pnts=sqrt(((lst_pnt_x-nxtlst_pnt_x)^2)+((lst_pnt_y-nxtlst_pnt_y)^2));
 last_x=lst_pnt_x+((lst_pnt_x-nxtlst_pnt_x)*(distpast/dist_pnts));
 last_y=lst_pnt_y+((lst_pnt_y-nxtlst_pnt_y)*(distpast/dist_pnts));
 uav_path_x(i,[j+1:100])=last_x;
 uav_path_y(i,[j+1:100])=last_y;
 uav_path_x(i,j)=Selected_paths_x(i,j);
 uav_path_y(i,j)=Selected_paths_y(i,j);
 break
 else
 uav_path_x(i,j)=Selected_paths_x(i,j);
 uav_path_y(i,j)=Selected_paths_y(i,j);
 end
 end
 end
end

%Initializing matrixes
time_uav=zeros(9,100);
time_uav_temp=zeros(9,100);

%Time matrix
for i=1:9,
 if uavs_existing(i,1)~=0,
 for j=1:98,
 if uav_path_x(i,j) == uav_path_x(i,j+1) & uav_path_y(i,j) == uav_path_y(i,j+1),
 break
 end
 shr_dist(i,j)=sqrt((uav_path_x(i,j)-uav_path_x(i,j+1))^2+(uav_path_y(i,j)-uav_path_y(i,j+1))^2);
 time_uav_temp(i,j+1)=shr_dist(i,j)/UAVS(4,i);
 end

 time_uav(i,[2:100])=sum(time_uav_temp(i,:));

 for j=2:100,
 time_uav(i,j)=time_uav(i,j-1)+time_uav_temp(i,j);
 end
 end
end
time_uav=time_uav*1.01;

%Altitude matrix
altitude_uav=zeros(9,100);

for i=1:9,
 altitude_uav(i,:)=UAVS(3,i);
end

 173

Waypoint_Gen

%Authored by Zachary Spritzer

function
[waypoint_x_pos,waypoint_y_pos,waypoint_pos_checked,waypoint_start]=waypoint_gen(UAVS,grid_lim
its,search_rad,n_uav)

%Limits of the battlefield
min_x=grid_limits(1,1);
max_x=grid_limits(1,2);
min_y=grid_limits(1,3);
max_y=grid_limits(1,4);

%Number of points equal to the in increments of the search radius of the
%vehicles from min to max y
gridypnts=min_y:search_rad*2:max_y;

n_waypoints=2*ceil(size(gridypnts,2)/n_uav);

waypoint_x_pos=zeros(9,n_waypoints);
waypoint_y_pos=zeros(9,n_waypoints);
waypoint_x_pos(1:n_uav,1)=min_x;
waypoint_x_pos(1:n_uav,2)=max_x;
n_points=0;
n_uav_points=0;

%Generating orignial x and y points
while n_points<size(gridypnts,2),
 for j=1:n_uav,
 n_points=n_points+1;
 if n_points>size(gridypnts,2),break;end
 waypoint_y_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=ones(1,2)*gridypnts(1,n_points);
 if n_uav_points>=1,

waypoint_x_pos(j,[n_uav_points*2+1,n_uav_points*2+2])=[waypoint_x_pos(j,n_uav_points*2),waypoint_
x_pos(j,n_uav_points*2-1)];
 end
 end
 n_uav_points=n_uav_points+1;
end

%Adding corners to the paths with the minimum turn radius
waypoint_x_pos_temp=zeros(9,20);
waypoint_y_pos_temp=zeros(9,20);
for i=1:9,
 n_temp_points=1;
 for j=1:n_waypoints-1,
 if (waypoint_x_pos(i,j) == waypoint_x_pos(i,j+1)) & (waypoint_y_pos(i,j) ~=
waypoint_y_pos(i,j+1)),
 waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j);
 waypoint_y_pos_temp(i,n_temp_points)=waypoint_y_pos(i,j);
 n_temp_points=n_temp_points+1;
 if waypoint_x_pos(i,j) == min_x,
 waypoint_x_pos_temp(i,n_temp_points)=min_x-((waypoint_y_pos(i,j+1)-waypoint_y_pos(i,j)));

 174

 waypoint_y_pos_temp(i,n_temp_points)=((waypoint_y_pos(i,j+1)-
waypoint_y_pos(i,j))/2)+waypoint_y_pos(i,j);
 else
 waypoint_x_pos_temp(i,n_temp_points)=max_x+(waypoint_y_pos(i,j+1)-waypoint_y_pos(i,j));
 waypoint_y_pos_temp(i,n_temp_points)=((waypoint_y_pos(i,j+1)-
waypoint_y_pos(i,j))/2)+waypoint_y_pos(i,j);
 end
 n_temp_points=n_temp_points+1;
 waypoint_x_pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_x_pos(i,j+1:n_waypoints);
 waypoint_y_pos_temp(i,n_temp_points:n_waypoints+n_temp_points-j-
1)=waypoint_y_pos(i,j+1:n_waypoints);
 else
 waypoint_x_pos_temp(i,n_temp_points)=waypoint_x_pos(i,j);
 waypoint_y_pos_temp(i,n_temp_points)=waypoint_y_pos(i,j);
 n_temp_points=n_temp_points+1;
 end
 end
end

figure(102)
hold on
plot(waypoint_x_pos_temp(1,1:14),waypoint_y_pos_temp(1,1:14),'r')
plot(waypoint_x_pos_temp(2,1:14),waypoint_y_pos_temp(2,1:14),'k')
plot(waypoint_x_pos_temp(3,1:11),waypoint_y_pos_temp(3,1:11),'c')
plot(waypoint_x_pos_temp(4,1:11),waypoint_y_pos_temp(4,1:11),'g')
plot(waypoint_x_pos_temp(5,1:11),waypoint_y_pos_temp(5,1:11),'b')
plot(waypoint_x_pos_temp(6,1:11),waypoint_y_pos_temp(6,1:11),'m')
for i=1:6
 plot(UAVS(1,i),UAVS(2,i),'b*');
end
axis([-15 65 -5 55])
xlabel('Kilometers')
ylabel('Kilometers')
hold off

waypoint_x_pos=waypoint_x_pos_temp;
waypoint_y_pos=waypoint_y_pos_temp;
waypoint_start=zeros(2,9);
waypoint_start(1,:)=waypoint_x_pos(:,2)';
waypoint_start(2,:)=waypoint_y_pos(:,2)';
waypoint_start=reshape(waypoint_start,18,1);

waypoint_x_pos_temp=reshape(waypoint_x_pos',20*9,1);
waypoint_y_pos_temp=reshape(waypoint_y_pos',20*9,1);
n_waypoints=size(waypoint_x_pos,2);
waypoint_x_pos=zeros(20*9,1);
waypoint_y_pos=zeros(20*9,1);
waypoint_pos_checked=zeros(20,9);
waypoint_pos_checked(1,:)=1;
waypoint_pos_checked=reshape(waypoint_pos_checked,20*9,1);

for i=1:9
 waypoint_x_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_x_pos_temp((i-1)*n_waypoints+1:(i-
1)*n_waypoints+n_waypoints,1);

 175

 waypoint_y_pos((i-1)*20+1:(i-1)*20+n_waypoints)=waypoint_y_pos_temp((i-1)*n_waypoints+1:(i-
1)*n_waypoints+n_waypoints,1);
end

Target and Waypoint Related Functions

UAV_Detect_Target_S

%Authored by Zachary Spritzer

function [sys,x0,str,ts] =uav_detect_target_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.
switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 36+81+1;
sizes.NumInputs= 36+36+1+81;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%

 176

str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);

[sys]=uav_detect_target(u);

% End of mdlOutputs.

UAV_Detect_Target

%Authored by Zachary Spritzer

function [sys]=uav_detect_target(u)

uav_pos=reshape(u([1:36],1),4,9);
target_pos=reshape(u([37:72],1),4,9);
target_pos_old=target_pos;
clock=round(u(73,1));
uav_action=reshape(u([74:154],1),9,9);

uavs_existing=zeros(9,1);
for i=1:9,
 if uav_pos(3,i)~=0,
 uavs_existing(i,1)=1;
 end
end

targets_present=zeros(9,1);
for i=1:9,
 if target_pos(1,i)~=0,
 targets_present(i,1)=1;
 end
end

for i=1:9,
 if uavs_existing(i,1)~=0,
 for j=1:9,
 if targets_present(j,1)~=0,
 dist_uav_target=sqrt(((uav_pos(1,i)-target_pos(1,j))^2)+((uav_pos(2,i)-target_pos(2,j))^2));
 if dist_uav_target < 1 & uav_action(i,j)==0,
 action=target_pos(4,j);
 if action==0,
 disp(sprintf('Target %d (value %d) indentified at time %d by UAV %d. \n',...
 j,target_pos(3,j),clock,i));
 target_pos(4,j)=1;
 end
 if dist_uav_target < 0.1 & uav_action(i,j)==0,
 if action==1,
 target_present=rand;
 if target_present <= .9,

 177

 disp(sprintf('Target %d (value %d) indentified as a target at time %d by UAV %d. \n',...
 j,target_pos(3,j),clock,i));
 target_pos(4,j)=2;
 else
 disp(sprintf('Target %d (value %d) indentified as NOT a target at time %d by UAV
%d.',...
 j,target_pos(3,j),clock,i));
 disp(sprintf('Target %d has been removed from target status at time %d.\n',...
 j,clock));
 target_pos(:,j)=0;
 end
 end
 if action==2, disp(sprintf('Target %d (value %d) classified not attacked at time %d by UAV
%d. \n',...
 j,target_pos(3,j),clock,i));
 target_pos(4,j)=3;
 end
 if action==3, disp(sprintf('Target %d (value %d) attacked not assested at time %d by UAV
%d. \n',...
 j,target_pos(3,j),clock,i));
 target_pos(4,j)=4;
 end
 if action==4,
 target_destroyed=rand;
 if target_destroyed <= .85,
 disp(sprintf('Target %d (value %d) assested as destroyed at time %d by UAV %d. \n',...
 j,target_pos(3,j),clock,i));
 target_pos(:,j)=0;
 else
 disp(sprintf('Target %d (value %d) assested as NOT destroyed at time %d by UAV %d.
\n',...
 j,target_pos(3,j),clock,i));
 target_pos(4,j)=3;
 end
 end
 end
 end
 end
 end
 end
end

plan=(target_pos_old~=target_pos);
replan=sum(sum(plan));

sys=[reshape(target_pos,36,1);replan;reshape(uav_action,9*9,1)];

UAV_Detect_Waypoints_S

%Authored by Zachary Spritzer

function [sys,x0,str,ts] =uav_detect_waypoints_s(t,x,u,flag,T)
% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

 178

switch flag,

 case 0
 [sys,x0,str,ts] = mdlInitializeSizes(T); % Initialization

 case 3
 sys = mdlOutputs(u); % Calculate outputs

 case { 1, 2, 4, 9 }
 sys = []; % Unused flags

 otherwise
 error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;

%==
% Function mdlInitializeSizes initializes the states, sample
% times, state ordering strings (str), and sizes structure.
%==
function [sys,x0,str,ts] = mdlInitializeSizes(T)
% Call function simsizes to create the sizes structure.
sizes = simsizes;
% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;
sizes.NumDiscStates= 0;
sizes.NumOutputs= 180*3+1;
sizes.NumInputs= 36+180*3;
sizes.DirFeedthrough=1;
sizes.NumSampleTimes=1;
% Load the sys vector with the sizes information.
sys = simsizes(sizes);
%
x0 = []; % No continuous states
%
str = []; % No state ordering
%
ts = [T 0]; % Inherited sample time
% End of mdlInitializeSizes.
%==
% Function mdlOutputs performs the calculations.
%==
function sys = mdlOutputs(u);
[sys]=uav_detect_waypoints(u);
% End of mdlOutputs.

UAV_Detect_Waypoints

%Authored by Zachary Spritzer

function [sys]=uav_detect_waypoints(u)

uav_pos=reshape(u([1:36],1),4,9);
waypoint_x=reshape(u([37:216],1),20,9);

 179

waypoint_y=reshape(u([217:396],1),20,9);
waypoints_checked=reshape(u([397:576],1),20,9);
waypoints_checked_old=waypoints_checked;

for i=1:9,
 for j=1:20,
 if waypoints_checked(j,i) == 1,
 dist_uav_waypoint=sqrt(((uav_pos(1,i)-waypoint_x(j+1,i))^2)+((uav_pos(2,i)-
waypoint_y(j+1,i))^2));
 if dist_uav_waypoint < .1,
 waypoints_checked(j+1,i)=1;
 end
 break
 end
 end
end

plan=(waypoints_checked_old~=waypoints_checked);
replan=sum(sum(plan));

sys=[reshape(waypoint_x,180,1);reshape(waypoint_y,180,1);reshape(waypoints_checked,180,1);replan];

	Comparison of path-planning and search methods for cooperating unmanned aerial vehicles
	Recommended Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Chapter 1 - Introduction to Cooperating UAVs
	1.1 - Introduction to Unmanned Aerial Vehicles
	1.2 - Research Objectives

	Chapter 2 - Literary Review
	2.1 - Review of Path-Planning and Task Allocation Methods
	2.2 - Review of Search Methods

	Chapter 3 - The Path-Planning and Task Allocation Process
	3.1 - Path Generation and Path Selection
	3.2 - Path Refinement and Task Allocation

	Chapter 4 - Implementation of Six Degree of Freedom Aircraft Dynamics
	4.1 - General Overview of Aircraft Dynamics
	4.2 - Implementation of Heading Angle Control Scheme

	Chapter 5 - Development of a SIMULINK Scheme for Cooperating UAVs
	5.1 - Implementation of Path-Planning Process and Aircraft Dynamics
	5.2 - Management of the No-Fly Zones and Threats
	5.3 - Management of the UAVs and Targets

	Chapter 6 - Comparison with Other Available Path Generation Methods
	6.1 - Implementation of Grid and Visibility Graph
	6.2 - Comparison of the Path Generation Methods

	Chapter 7 - Implementation and Discussion of Search Scheme in SIMULINK
	7.1 - Implementation of a SIMULINK Based Search Scheme
	7.2 - Results of a Search Simulation

	Chapter 8 - Conclusions and Recommendations
	8.1 - Conclusions
	8.2 - Recommendations

	References
	Appendix A - Path-Planning and Task Allocation MATLAB Files
	Appendix B - Longitudinal Dimensional and Lateral Directional Stability Derivatives
	Appendix C - Simulation Implementation MATLAB Files
	Appendix D - Grid and Visibility Graph MATLAB Files
	Appendix E - Search and Destroy MATLAB Files

		John.Hagen@mail.wvu.edu
	2004-04-20T15:57:45-0400
	West Virginia University Libraries
	John H. Hagen
	I am approving this document

