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Abstract	

 

FORECASTING FUTURE ENERGY 
PRODUCTION USING HYBRID ARTIFICIAL 
NEURAL NETWORK AND ARIMA MODEL 

by Maryam Khodaverdi 

The	objective	of	this	research	is	to	obtain	an	accurate	forecasting	model	for	the	amount	
of	electricity	(in	kWh)	that	is	generated	from	different	primary	energy	sources	in	the	
U.S.	 In	 this	 research,	 Artificial	 Neural	 Network	 (ANN)	 and	 hybrid	 ARIMA	 and	 ANN	
algorithms	were	 developed	 that	 can	 be	 used	 for	 forecasting	 the	 amount	 of	 energy	
production	in	the	short,	as	well	as,	in	the	long	run.		

Based	on	the	inferences	made	from	the	available	data	provided	by	Energy	Information	
Administration	from	January	2004	to	December	2014,	two	different	forecasting	models	
for	each	primary	energy	source	were	constructed.	These	two	models	were	validated	
with	available	data	from	January	2015	to	November	2017,	and	their	performance,	as	
measured	by	forecasting	errors	computed,	were	compared.		The	results	show	that	ANN	
algorithm	 is	 good	 for	 fossil	 fuels	 sources	 such	 as	 coal,	 petroleum,	 and	 natural	 gas.	
However,	ARIMA	-	ANN	hybrid	works	more	accurately	for	renewable	energy	sources	
such	as	geothermal,	hydroelectric,	solar,	and	wind.		

Finally,	the	best	predictor	was	selected	for	each	primary	energy	source	which	provides	
valuable	information	regarding	the	future	electricity	generation,	and	future	dominant	
energy	source	to	generate	electricity.	This	information	will	hopefully	influence	energy	
sector	forecasting	models	and	help	the	government	to	develop	future	regulations	to	
shift	toward	dominant	energy	sources	of	the	future.	
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Chapter	1	

1.1. Introduction	

Energy	is	one	of	the	main	factors	that	influence	economic	and	societal	development.	

There	are	many	known	energy	resources	in	the	world	which	we	categorize	them	into	

three	types:	fossil	fuel,	renewable	energy,	and	nuclear	energy.	The	very	first	inanimate	

energy	source	is	wood	(Tillman,	2012).	With	an	increase	in	the	world	population,	this	

resource	fell	short	of	the	demand	for	fuel.	Also,	the	amount	of	wood	and	charcoal	that	

was	 available	 decrease	 due	 to	 deforestation.	 Then,	 coal	 or	 disposed	 wood	 was	

discovered	as	a	new	source	which	had	a	much	larger	return	on	investment	compared	

to	 wood.	 	 This	 discovery	 led	 to	 industrial	 revolution.	 Finally,	 oil	 and	 gas	 were	

discovered,	which	like	to	coal,	are	non-renewable	resources.		

As	concerns	about	the	decrease	in	the	amount	of	world’s	oil	and	supplies	were	raised,	

renewable	 sources	 such	 as	 solar	 and	 wind	 started	 to	 gain	 notice	 as	 sustainable	

sources.	 Today,	 there	 are	many	 known	 energy	 resources	 in	 the	world.	 In	 general,	

energy	 sources	 are	 divided	 into	 three	 groups:	 fossil	 fuels,	 renewable	 energy,	 and	

nuclear	energy.		

Fossil	fuels	were	formed	from	ancient	plant	and	organism	during	the	Carboniferous	

period.	 Different	 combination	 of	 organic	matter,	 temperature,	 time,	 and	 pressure	

have	created	a	different	type	of	fossil	fuels	around	the	world.	Coal,	oil,	and	natural	gas	

are	three	main	types	of	fossil	fuels.	Fossil	fuels	are	non-renewable	sources	of	energy	

due	to	time	takes	to	form	them,	and	they	will	not	be	replenished	in	a	human	lifetime	

once	they	are	used.		

Today,	 we	 gather	 most	 of	 our	 energy	 from	 fossil	 fuels.	 Fossil	 fuel	 is	 the	 world’s	

dominant	energy	source	with	a	variety	of	applications	such	as	generating	electricity,	

production	plants,	and	 transportation.	Also,	a	variety	of	products	 such	as	cosmetic	

products,	 plastics,	 etc.	 are	 produced	 using	 fossil	 fuels	 which	 have	 powered	

industrialization	over	time.	They	are	also	largest	emitters	of	greenhouse	gas	such	as	

carbon	dioxide	in	the	world	which	negatively	impact	both	the	environment	and	human	
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health.	Climate	change,	global	warming,	air	quality	deterioration,	oil	spills,	and	acid	

rain	are	results	of	using	fossil	fuels.		

Renewable	energy	sources	naturally	replenish	themselves	in	a	human	lifetime	which	

means	that	they	never	will	run	out.	Examples	of	renewable	energy	sources	are	solar,	

wind,	hydro,	geothermal,	biomass,	rain,	wave,	and	tides.	Using	this	kind	of	energy	has	

advantages	 including	 creating	 no	 direct	 greenhouse	 gas	 emissions,	 decreasing	

pollution,	reliability,	and	stability	in	their	price	in	the	long	run.	These	sources	also	face	

some	challenges	and	disadvantages	including	difficulty	to	generate	large-scale	power,	

their	high	capital	investment,	their	intermittency,	and	their	ecological	distractions.	

Renewable	energy	sources	supply	minority	of	world’s	energy	demand.	The	good	news	

is	that	advances	in	technology	make	renewable	energy	sources	more	affordable	and	

accessible.	 Renewable	 sources	 are	 now	 the	 fastest	 growing	 energy	 source	 on	 the	

planet.	

Nuclear	energy	is	obtained	from	the	nucleus	of	an	atom	by	applying	two	different	type	

of	reactions:	Fission	and	Fusion.	Energy	or	heat	is	produced	through	fission	by	splitting	

atoms	typically	using	Uranium.	Energy	is	produced	through	fusion	by	colliding	atomic	

nuclei;	the	same	process	occurred	in	the	sun.	After	the	collision	of	atomic	nuclei	at	

high	speed	in	this	reaction,	they	joint	and	form	a	new	atomic	nucleus.	This	reaction	

has	not	been	 successfully	used	 in	 large	 scale	 since	creating	conditions	 to	 start	 this	

process	 faces	 some	 major	 scientific	 and	 engineering	 challenges.	 Today,	 fission	

reaction	is	used	in	every	operating	nuclear	plant.		

Nuclear	 energy	has	 some	advantages	 including	not	 emitting	 greenhouse	 gas,	 large	

capacity	to	generate	energy	and	low	operating	cost	of	nuclear	plants,	and	their	easy	

integration	 into	 existing	 electricity	 grids.	 However,	 using	 nuclear	 energy	 is	 still	 a	

controversial	topic.	First,	nuclear	plants	face	a	variety	of	environmental	and	human	

health	issues.	One	of	the	largest	concerns	is	generating	radioactive	wastes	that	can	

remain	radioactive	for	thousands	of	years.	Second,	nuclear	plants	require	large	initial	

capital	cost	which	means	large	financial	risk	to	investors.			
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1.2. Trends	in	energy	consumption	

Growing	 world	 population	 has	 necessitated	 enhanced	 effort	 to	 provide	 sufficient	

energy	to	meet	the	demand	across	the	globe.	Energy	demand	also	tends	upwards	in	

the	U.S.	Figure	1	presents	the	trend	in	the	total	amount	of	energy	used	in	the	U.S.		by	

four	 different	 sectors:	 residential,	 commercial,	 industrial,	 and	 transportation	 from	

1950	to	2016.	Also,	it	is	important	to	keep	in	mind	that	we	live	in	a	time	that	we	should	

be	able	to	guarantee	both	competitiveness	and	affordable	energy	for	the	current	and	

future	 use.	 Today,	 the	 number	 of	 energy	 sources	 are	more	 than	 ever	 before	 and,	

customer	expectations	have	 led	 to	energy	markets	 to	become	more	 complex	 than	

ever.	For	these	reasons,	planning	for	the	future	energy	resources	 is	a	vital	decision	

which	may	have	a	profound	effect	on	a	country’s	development	and	prosperity.		

	

Figure	1-	Total	energy	used	in	the	U.S.	by	four	different	sectors	

Looking	at	energy	consumption	pattern	over	time	can	help	the	decision	makers	to	plan	

for	providing	and	exploring	energy	resources,	and	change	policies	and	technologies	in	

a	way	that	provide	all	required	energy	in	the	future.		Figure	2	demonstrates	the	total	

consumption	of	energy	in	the	U.S.	from	1776	to	2012	(EIA,	2012).	As	you	can	see,	wood	

was	 used	 dominantly	 through	 1885.	 Then,	 coal	 was	 discovered	 and	 replaced	 as	 a	

dominant	energy	source	in	the	late	19th	century.	After	the	middle	of	19th	century,	oil	

and	natural	gas	consumption	increased	exponentially.	As	demonstrated	in	Figure	2,	

renewable	and	nuclear	energy	use	started	to	rise	in	the	middle	of	20th	century.	
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Figure	2-	Total	consumption	of	energy	in	the	U.S.	

Electricity	is	a	secondary	energy	source	meaning	that	it	is	generated	from	one	of	the	

primary	sources	of	energy	such	as	fossil	fuels,	renewable,	or	nuclear	energy.	Energy	

consumed	 for	 electric	 power	 sector	 accounts	 for	more	 than	 40%	 of	 total	 primary	

energy	consumption	in	the	U.S.	during	2017.	Figure	3	shows	the	electric	power	plant	

primary	energy	consumption	percent	share	of	total	primary	energy	consumed	in	the	

U.S.	which	is	calculated	by	dividing	electric	power	sector	primary	energy	consumption	

by	total	primary	energy	consumption	in	the	U.S.	annually	from	1949	to	2016.		

	

	

Figure	3-	Electric	power	plant	primary	energy	consumption	percent	share	of	total	primary	
energy	consumed	in	the	U.S.	
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Most	of	U.S.	electricity	 is	generated	using	fossil	 fuels.	Based	on	Energy	Information	

Administer	 (EIA)	 report,	 the	 largest	 energy	 source	 for	U.S.	 electricity	 generation	 is	

natural	gas	which	 is	the	source	of	about	34%	of	U.S.	electricity	generation	in	2016.	

Coal	is	the	second-largest	energy	source	for	electricity	generation	in	2016	with	about	

30%.	Nuclear	and	renewable	energy	also	provided	20%	and	15%	of	the	U.S.	electricity	

generation	in	2016.	The	U.S.	electricity	generation	uses	mainly	hydropower	and	wind	

power	 as	 renewable	 energy.	 Hydropower	 provides	 about	 7%,	 and	 wind	 power	

provides	about	6%	of	electricity	generation	in	2016.		

Figure	 4	 shows	 the	 amount	 of	 fossil	 fuels,	 renewable,	 and	 nuclear	 energy	 used	 in	

electric	power	sector	in	the	U.S.	from	1949	to	2016.	The	vertical	axis	is	the	amount	of	

energy	consumed	 in	 the	U.S.	 in	 term	of	 trillion	British	Thermal	Unit	 (BTU),	and	the	

horizontal	axis	represents	years.	As	one	can	see	in	Figure	4,	fossil	fuels	consumed	by	

electricity	power	plants	 tend	to	decrease.	However,	 renewable	and	nuclear	energy	

consumed	by	electric	power	plants	tend	to	increase	in	recent	years.	

	

	

Figure	4-	Amount	of	energy	used	in	electric	power	sector	in	the	U.S.	
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The	most	important	question	regarding	the	future	of	energy	resources	is	how	we	will	

use	energy	resources	to	generate	electricity	since	electric	power	sector	is	one	of	the	

major	energy	consumers	in	the	U.S.	As	Figure	4	demonstrates,	the	U.S.	primary	energy	

consumption	 pattern	 to	 produce	 electricity	 changes	 over	 time	 which	 makes	 it	 a	

difficult	task	to	answer	the	above	question.			

	

1.3. Cost	of	generating	electricity	

Cost	is	one	of	the	key	factors	that	influence	the	choice	of	primary	energy	source	to	

generate	electricity.	Figure	5	shows	the	average	annual	cost	of	different	power	plants	

from	 2005	 to	 2015	 in	 term	 of	 dollars	 per	 megawatt-hours	 (mWh).	 Note	 that	

conventional	 hydroelectric	 and	 pumped	 storage	 are	 included	 in	 the	 hydroelectric	

category.	Also,	gas	 turbine,	 internal	 combustion,	photovoltaic,	and	wind	plants	are	

considered	in	the	gas	turbine	category.	This	historical	data	on	the	average	annual	cost	

of	power	plants	including	operation,	maintenance,	and	fuel	costs	are	obtained	from	

Federal	Energy	Regulatory	Commission.		

	

	

Figure	5-	Average	annual	cost	of	generating	electricity	in	term	of	dollar	per	mWh	
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As	illustrated	in	Figure	5,	recent	improvements	in	turbine	technology	have	decreased	

the	cost	of	generating	electricity	by	wind.	These	developments	will	allow	consumers	

to	use	low	and	affordable	electricity	rates	in	the	next	years.		

The	 levelized	 cost	 of	 electricity	 (LCOE)	 is	 another	 economic	 assessment	 which	

represents	the	average	minimum	unit	cost	of	electricity	which	represents	the	average	

price	of	unit	electricity	that	power	plants	receive	to	break	even	over	their	 lifetime.	

LCOE	 consists	 of	 the	 total	 cost	 of	 building	 or	 initial	 investment,	 operations,	

maintenance,	and	cost	of	fuel.	This	can	be	calculated	by	dividing	the	power	plant’s	

costs	by	the	amount	of	generated	electricity	over	the	lifetime	of	a	power	plant	which	

is	usually	between	20	to	40	years.		

EIA	has	published	yearly	LCOE-projections	 for	various	 types	of	 future	power	plants	

from	2010	in	term	of	dollars	per	mWh	based	on	a	30-year	cost	recovery	period	(see	

Appendix	 5.3).	 	Figure	6	depicts	 the	annual	LCOE-projections	 for	different	 types	of	

power	plants	from	2010	to	2016	in	term	of	dollars	per	mWh.		Figure	6		also	shows	that	

the	 economic	 value	 of	 two	 primary	 energy,	 i.e.,	 onshore	wind	 and	 solar	 PV,	 have	

improved	significantly	over	the	last	years.	

	

	

Figure	6-	Yearly	LCOE	projections	for	types	of	power	plants	in	term	of	dollars	per	mWh	
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1.4. Research	objectives	

The	main	objective	of	this	research	is	to	obtain	an	accurate	forecasting	model	for	the	

amount	of	electricity	that	is	generated	from	different	primary	energy	sources	in	the	

U.S.	 and	 to	 estimate	 each	 energy	 resource’s	 share	 of	 total	 primary	 energy	

consumption	 to	 generate	 electricity	 in	 the	 U.S.	 The	 forecasting	 model	 will	 be	

constructed	based	on	inferences	made	from	the	available	energy	data	provided	by	EIA	

from	January	2004	to	December	2014	and	will	be	validated	on	data	between	January	

2015	to	November	2017.			

The	model	will	provide	a	monthly	forecast	for	each	primary	energy	consumption	to	

generate	electricity	 in	 the	U.S.	 Figure	7,	provided	by	EIA,	 illustrates	 the	amount	of	

electricity	 generated	with	 each	 primary	 energy	 source	 in	 the	 past	 67	 years	 (1949-

2016).	As	demonstrated,	 the	amount	of	 coal	used	 to	generate	electricity	has	been	

decreasing	since	2007,	and	the	amount	of	natural	gas,	renewable,	and	nuclear	energy	

used	to	generate	electricity	has	increased.		

Our	forecast	models	will	provide	valuable	information	regarding	the	future	electricity	

generation	 and	 future	 dominant	 energy	 sources	 to	 generate	 electricity.	 This	

information	will	hopefully	 influence	energy	sector	 forecasting	models	and	help	 the	

government	to	develop	future	regulations	to	shift	toward	dominant	energy	sources	of	

the	future.		

	

	
Figure	7-	U.S.	electricity	generation	in	term	of	billion	kWh	 	
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1.5. Data	description		

The	source	of	historical	data	about	the	factors	of	 interest	 in	this	research	is	energy	

information	administration	(EIA).	The	exact	geographic	coverage	of	the	data	sets	is	all	

the	50	states	and	the	District	of	Columbia.	The	detailed	description	and	availability	of	

the	historical	data	are	reported	below.		

	

1.5.1. Natural	gas	

Natural	gas	withdrawals,	natural	gas	consumed	by	electricity	power	sector,	natural	

gas	imports	statistics	are	available	from	1949	to	2017.	The	description	of	each	variable	

is	presented	below.	All	volumes	of	natural	gas	are	reported	on	a	pressure	of	14.73	Psia	

and	60	Fahrenheit	in	our	data	set.		

§ Natural	gas	withdrawals	present	the	total	volume	(in	billion	cubic	feet)	of	gas	

per	year	withdraws	from	natural	gas,	crude	oil,	coalbed,	and	shale	gas	wells	in	

the	U.S.	including	natural	gas,	natural	gas	plant	liquids,	and	nonhydrocarbon	

gases.		

§ Natural	gas	consumed	by	electric	power	sector	data	presents	the	total	volume	

of	 natural	 gas	 consumed	 in	 the	 U.S.	 by	 electric	 power	 sector	 comprises	

electricity-only	 and	 combined-heat-and-power	 plants	 within	 the	 NAICS	 22	

category	whose	primary	business	is	to	sell	electricity	to	the	public.		

§ Natural	gas	imports	statistics	show	the	total	annual	volume	of	gas	imported	

into	the	U.S.		

Figure	8	demonstrates	the	data	pertaining	natural	gas	from	1949	to	2017.		
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Figure	8-	Data	pertaining	natural	gas	in	term	of	billion	cubic	feet 
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shows	the	monthly	value	of	natural	gas	at	Henry	Hub.	

Henry	Hub	is	a	distribution	hub	on	the	natural	gas	pipeline	system	in	Louisiana.	Natural	

gas	price	at	Henry	Hub	 is	 the	primary	price	set	 in	 the	U.S.	natural	gas	market,	and	
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1.5.2. Crude	oil		

Average	of	crude	oil	production,	crude	oil	consumed	to	generate	electricity,	crude	oil	

imports	 for	 each	 year,	 are	 available	 from	 1949	 to	 2017.	 The	 description	 of	 each	

variable	is	presented	below.	All	volumes	of	crude	oil	are	reported	in	term	of	thousand	

barrels	per	day	in	our	data	set.		

§ Crude	 oil	 production	 presents	 the	 average	 volume	 of	 crude	 oil	 per	 day	

produced	on	leases	in	the	U.S.	each	year.		

§ Crude	 oil	 consumed	 by	 electric	 power	 sector	 data	 represents	 the	 average	

volume	of	crude	oil	consumed	in	the	U.S.	per	day	by	the	electric	power	sector.	

It	comprises	electricity-only	and	combined-heat-and-power	plants	within	the	

NAICS	22	category	whose	primary	business	is	to	sell	electricity	to	the	public.	

§ Crude	 oil	 imports	 statistics	 show	 the	 average	 volume	 of	 crude	 oil	 per	 day	

imported	into	the	U.S.	each	year.		

§ Crude	 oil	 exports	 statistics	 show	 the	 average	 volume	 of	 crude	 oil	 per	 day	

exported	from	the	U.S.	per	year.		

Figure	9	demonstrates	the	data	pertaining	oil	from	1949	to	2017.		

	

Figure	9-	Average	data	pertaining	oil	in	term	of	thousand	barrels	per	day	
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Another	 factor	 of	 interest	 is	 crude	 oil	 price.	 U.S.	 average.	 Monthly	 West	 Texas	

Intermediate	 Crude	 Oil	 (WTI)	 spot	 price	 in	 Cushing,	 Oklahoma	 is	 available	 from	

January	1986	to	December	2017	 in	 terms	of	U.S.	dollars	per	barrel.	WTI	spot	price	

represents	the	crude	oil	price	in	the	U.S.	per	month.		

	

1.5.3. Coal		

Coal	 production,	 coal	 consumed	 to	 generate	 electricity,	 coal	 imports	 statistics	 are	

available	from	1949	to	2017.	The	description	of	each	variable	is	presented	below.	All	

volumes	of	coal	are	reported	in	term	of	thousand	short	tons	in	our	data	set.		

§ Coal	 production	 presents	 the	 total	 volume	 of	 coal	 produced	 in	 the	 U.S.	

including	a	small	amount	of	refuse	recovery	in	which	coal	recaptured	from	a	

refuse	 mine	 and	 cleaned	 to	 reduce	 the	 concentration	 of	 noncombustible	

materials.		

§ Coal	consumed	by	electricity	power	sector	data	represents	the	total	volume	of	

coal	consumed	in	the	U.S.	by	the	electric	power	sector.	It	comprises	electricity-

only	 and	 combined-heat-and-power	 plants	 within	 the	 NAICS	 22	 category	

whose	primary	business	is	to	sell	electricity	to	the	public.	

§ Coal	imports	statistics	show	the	total	volume	of	coal	imported	into	the	U.S.	per	

year.		

Figure	10	demonstrates	the	data	pertaining	coal	from	1949	to	2017.		

Another	 factor	 of	 interest	 is	 the	 price	 of	 coal.	 Columbia	monthly	 coal	 prices	 from	

January	2004	to	December	2017	in	terms	of	U.S.	dollar	per	metric	ton	of	coal.	The	coal	

price	is	obtained	from	Index	Mundi	database1.		

																																																								
1	http://www.indexmundi.com/commodities/?commodity=colombian-coal&months=360	



13	
	

	

	

Figure	10-	Data	pertaining	coal	in	term	of	thousand	short	tons	
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Figure	11-	Nuclear	electricity	net	generation	in	the	U.S.		
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Figure	12-	Hydroelectric	net	power	consumption	in	the	U.S.	
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Figure	13-	Wind	electricity	net	consumption	in	the	U.S.		
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Figure	14-	Solar	electricity	net	consumption	in	the	U.S.		
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Figure	15-	Geothermal	energy	consumption	in	the	US.		
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of	the	20th	century.			

	

	

Figure	16-	U.S.	population	data	obtained	from	U.S.	Census	Bureau.		
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1.6. Data	availability		

Time	period	 considered	 to	 be	 used	 in	 this	 research	 is	 from	2004	 to	 2017.	 Table	 1	

summarizes	factors	and	their	availability.		

Table	1-	Variables	and	their	availability	

No.		 Variable	 Availability	(Year)	

1	 NG	withdrawal	 1949-2017	

2	 NG	consumed	by	the	electricity	

sector	

1949-2017	

3	 NG	import		 1949-2017	

4	 NG	price	 1997-2017	

5	 Oil	production	 1949-2017	

6	 Oil	consumed	by	the	electricity	

sector	

1949-2017	

7	 Oil	import		 1949-2017	

8		 Oil	price		 1986-2017	

9		 Coal	production		 1949-2017	

10	 Coal	consumed	by	the	electricity	

sector		

1949-2017	

11	 Coal	import		 1949-2017	

12	 Coal	price		 1949-2017	

13	 Nuclear	electricity	generation	 1957-2017	

14	 Hydroelectric	power	consumption		 1949-2017	

15	 Wind	energy	consumption		 1983-2017	

16	 Solar	energy	consumption		 1984-2017	

17	 Geothermal	energy	consumption		 1960-2017	

18		 U.S.	population	 1949-2017	

19	 Fossil	stream	plant	operating	cost	 2006-2017	

20	 Hydro-electric	plant	operating	cost		 2006-2017	

21	 Gas	turbine	plant	operating	cost		 2006-2017	

22	 Nuclear	plant	operating	cost		 2006-2017	
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1.7. Methodology	

In	this	research,	we	aim	to	analyze	historical	data	by	quantitative	forecasting	methods	

to	 identify	 the	 relationship	 between	 market	 prices,	 efficiency	 or	 heat	 rate,	 Co2	

emission,	population	and	generated	electricity	from	each	primary	energy	source.		We	

aim	to	extrapolate	this	finding	to	predict	the	future	share	of	various	energy	sources	to	

generate	electricity.	

First,	historical	data	was	collected	which	is	described	in	section	1.5.	Artificial	Neural	

Network	(ANN)	is	implemented	in	this	research	as	the	primary	quantitative	forecasting	

method.	 This	method	 is	 reviewed	 in	 section	 2.2.	 Next,	 in	 order	 to	 have	 accurate	

forecasting,	 variables	 were	 scaled	 and	 updated	 as	 shown	 in	 section	 3.1.	 Three	

variables	including	scaled	real	market	price,	scaled	heat	rate,	scaled	Co2	emission	and	

scaled	U.S.	population	were	 incorporated	 in	the	model.	Finally,	 the	neural	network	

algorithm	and	the	hybrid	ARIMA	and	ANN	algorithm	were	constructed	in	section	3.3	

and	 3.4	respectively	since	multiple	 linear	regression	(MLR)	did	not	fit	a	model	with	

uncorrelated	residuals	in	section	3.2.		

Two	 ANN	 and	 hybrid	 ARIMA	 and	 ANN	 algorithms	 were	 implemented,	 and	 their	

performance	 associated	 with	 forecasting	 error	 is	 compared	 in	 section	 3.5.	 The	

software	 that	was	 used	 in	 this	 research	 is	MATLAB,	 a	 high-performance	 language.	

MATLAB	supports	ANN	computations	to	train	complex	models	(Vedaldi	&	Lenc,	2015).	

R	software	was	used	to	fit	MLR	and	ARIMA	models	to	our	data.			
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2. Chapter	2:	Literature	survey		

This	 chapter	 reviews	 some	 time-series	 forecasting	 techniques	 and	 intelligent	

forecasting	algorithms	as	well	as	discussion	and	findings	of	the	cited	literature.		

Time-series	 is	 a	 collection	 of	 observations	 that	 occur	 sequentially.	 The	 main	

characteristic	of	a	time	series	is	the	dependency	between	the	observations.	The	future	

pattern	of	a	time	series	can	be	projected	based	on	the	behavior	of	current	and	past	

observations.	 Forecasting	 models	 that	 represent	 the	 statistical	 relation	 between	

current	 and	 previous	 observations	 are	 used	 to	 forecast	 future	 processes.	 Many	

statistical	approaches	are	available	to	forecast	the	status	of	future	processes,	and	an	

appropriate	approach	is	chosen	based	on	the	purpose	of	forecasting	exercise.		

	

2.1. ARMA	forecasting	model	

Forecasting	 models	 consist	 of	 deterministic	 and	 stochastic	 categories.	 Stochastic	

models	express	uncertainty	associated	with	future	observations.	“Every	environment	

is	 changing,	 and	 a	 good	 forecasting	 model	 captures	 the	 way	 in	 which	 things	 are	

changing	 (Hyndman	 &	 Athanasopoulos,	 2014).”	 In	 some	 models,	 the	 stochastic	

component	or	random	noise	is	simply	assumed	independent	of	the	process.	However,	

this	 is	 not	 always	 a	 valid	 assumption.	Autoregressive	Moving	Average	 (ARMA)	 is	 a	

model	 that	 incorporates	 both	 the	 dependency	 of	 random	 noise	 and	 deterministic	

components	(Montgomery,	Jennings,	&	Kulahci,	2015).	

	ARMA	is	obtained	by	uniting	the	Autoregressive	(AR)	and	Moving	Average	model	(MA)	

models.		
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2.1.1	Autoregressive	model	

AR	models	 are	 presented	 by	 Yule	 (1926)	 as	 a	 representation	 of	 a	 type	 of	 random	

process.	In	an	AR	stochastic	model,	the	predicted	variable	depends	linearly	on	its	own,	

previous	values,	and	an	error	term.	The	AR	model	is:	

𝑋" = 𝑐	 + 𝜑(𝑋")( + 𝜑*𝑋")* + ⋯+ 𝜑,𝑋"), + 𝜀"																																																						(2 − 1)	

When	𝑋3 	is	 the	 value	 of	 time	 series	 at	 time	𝑖 ,	𝜑(, 𝜑*, … , 𝜑,	are	 parameters	 of	 the	

model,	𝑐		is	a	constant,	and	𝜀"	is	normal	random	noise	at	time	𝑡.	The	parameter	𝑝	is	

known	as	the	order	of	AR	model,	and	represents	the	number	of	previous	time	series	

values	incorporated	into	the	model.		

Equation	(2-1)	can	be	rewritten	in	the	following	form:	

𝜑 𝐵 𝑋" = 𝑐	 + 𝜀"																																																																																																														(2 − 2)	

𝑤ℎ𝑒𝑛:			𝜑 𝐵 = 1 − 𝜑(𝐵 − 𝜑*𝐵* − ⋯− 𝜑,𝐵,																																																							(2 − 3)	

Here	B	is	the	backward	shift	operator	which	is	defined	as:	

𝐵𝑥" = 𝑥")(																																																																																																																									(2 − 4)	

AR	process	can	be	stationary	or	nonstationary.	The	absolute	value	of	roots	of	equation	

𝜑 𝐵 = 0	should	 be	more	 than	 1	when	 it	 is	 considered	 as	 a	 polynomial	 of	 B	 in	 a	

stationary	AR	process.	 Equation	 (2-3)	 can	be	 rewritten	 in	 a	 form	of	 equation	 (2-5)	

where	the	roots	of	the	equation	are	𝐺()(, 𝐺*)(, … , 𝐺,)(.		

𝜑 𝐵 = (1 − 𝐺(𝐵)(1 − 𝐺*𝐵	)… (1 − 𝐺,𝐵	)																																																													(2 − 5)	

	

2.1.2.	Moving	average	models	

Slutzky	 (1937)	 introduced	 Moving	 Average	 (MA)	 models	 in	 which	 the	 predicted	

variable	depends	 linearly	on	 the	 current	 and	various	past	 values	of	white	noise	or	

random	shock	terms.	MA	has	the	form	of:	

𝑋" = 𝜇	 + 𝜀" − 𝜃(𝜀")( − 𝜃*𝜀")* − ⋯− 𝜃G𝜀")G																																																									(2 − 6)	

When	𝑋" 	is	 the	 value	 of	 time	 series	 at	 time	𝑡 ,	𝜃(, 𝜃*, … , 𝜃G	are	 coefficients	 of	 the	

model,	𝜇		is	a	constant	value,	and	𝜀3 	is	normal	random	noise	at	time	𝑖.	The	parameter	
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𝑞	is	known	as	the	order	of	the	 	MA	model,	and	represents	the	number	of	previous	

time	 series	 values	 incorporated	 into	 the	model.	 Random	 shocks	 at	 each	 point	 are	

supposed	 to	have	 the	same	distribution,	 typically	a	Normal	distribution	with	mean	

equal	to	zero	and	standard	deviation	equal	to	one.		

Equation	(2-6)	can	be	rewritten	in	the	following	form	where	B	is	the	backward	shift	

operator.	

𝜃 𝐵 𝜀" = 𝑋" − 𝜇																																																																																																															(2 − 7)	

𝑤ℎ𝑒𝑛:			𝜃 𝐵 = 1 − 𝜃(𝐵 − 𝜃*𝐵* − ⋯− 𝜃G𝐵G																																																									(2 − 8)	

Since	the	MA	model	 is	obtained	by	the	finite	sum	of	weighted	random	shocks,	 the	

process	is	always	stationary.	No	additional	condition	is	required	to	make	MA	model	

with	 finite	 weights	 stationary.	 Invertibility	 condition	 for	 MA	 model	 ensures	 that	

present	 events	 are	 associated	 with	 the	 past	 events	 in	 a	 sensible	 way.	 To	 satisfy	

invertibility	 condition	 for	 the	MA	model,	 the	 absolute	 value	 of	 roots	 of	 equation	

𝜃 𝐵 = 0	should	be	greater	than	one.		

	

2.1.3.	Autoregressive	moving	average	models	

AR	model	combined	with	MA	model	is	used	to	build	a	more	complicated	mixed	model	

called	the	ARMA.	The	ARMA	model	with	𝑝	AR	terms	and	𝑞	MA	terms	has	the	form	of:		

𝑋" = 𝑐 + 𝜑(𝑋")( + 𝜑*𝑋")* + ⋯+ 𝜑,𝑋"), − 𝜃(𝜀")( + 𝜃*𝜀")* + ⋯+ 𝜃G𝜀")G
+ 𝜀"					

(2 − 9)	

The	equation	(2-9)	can	be	rewritten	as:		

𝑋" = 𝑐 + 𝜑3𝑋")3
,

3M(
− 𝜃3𝜀")3

G

3M(
+ 𝜀"																																																												(2 − 10)	

𝜑 𝐵 𝑋" = 𝑐 + 𝜃 𝐵 𝜀"																																																																																																			(2 − 11)	

For	 the	 process	 to	 be	 stationary,	 the	 absolute	 value	 of	 the	 roots	 of	 the	 function	

𝜑 𝐵 = 0 	should	 be	 greater	 than	 one.	 To	 satisfy	 the	 invertibility	 condition,	 the	

absolute	value	of	the	roots	of	the	function	𝜃 𝐵 = 0	must	be	greater	than	one.	When	
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a	time	series	data	does	not	have	a	constant	mean,	the	process	is	not	stationary.	In	a	

non-stationary	process,	autoregressive	operator	𝜑 𝐵 	has	roots	that	are	greater	than	

one.			

ARMA	model	is	estimated	by	Box-Jenkins	method	developed	in	Box,	Jenkins,	Reinsel,	

and	Ljung	(2015).	Torres	et	al.		(2005)	perform	a	study	to	predict	the	hourly	average	

wind	 speed	 via	 ARMA	model.	 In	 this	 research,	 parameters	 are	 estimated	 by	 Box-

Jenkins	method.	Because	of	non-stationary	nature	of	hourly	wind	 speed,	 they	 first	

adjusted	the	time	series.	Their	study	also	demonstrates	that	adjustments	to	the	non-

Gaussian	time	series,	transformation,	and	standardization,	allow	the	ARMA	model	to	

behave	significantly	better.	Pappas	et	al.	 (2008)	 successfully	 fit	an	ARMA	model	 to	

electricity	demand	loads	in	Greece.		

Some	studies	only	focus	on	short-term	forecasting	(Brown,	1959),	(Harrison,	1965).	

Harrison	(1965)	develops	two	methods	to	forecast	short-term	seasonal	sale	forecasts	

which	are	usually	made	during	lead	time.	In	this	study,	Brown's	technique	(1959)	has	

been	developed	to	improve	seasonal	forecasting.	Some	studies	focus	on	non-Gaussian	

process	 (Samorodnitsky	 &	 Taqqu,	 1994),	 (Al-Smadi	 &	Wilkes,	 1995).	 Al-Smadi	 and	

Wilkes	(1995)	present	a	new	technique	to	estimate	the	order	of	a	non-Gaussian	ARMA	

process.	They	use	higher	order	statistics	based	on	the	minimum	eigenvalue	of	a	family	

of	covariance	matrices	derived	from	the	observed	data.	

	

2.1.4.	General	form	of	ARMA	models	

A	general	form	of	an	ARMA	model	to	forecast	non-stationarity	data	is	Autoregressive	

integrated	moving	average	(ARIMA).	ARIMA	was	introduced	by	Box-	Jenkins	(Box	et	

al.,	2015).	The	ARIMA	process	with	(𝑝, 𝑑, 𝑞)	order	is:	

𝑋" = 𝑐 + 𝜑(𝑋")( + 𝜑*𝑋")* + ⋯+ 𝜑,𝑋"), − 𝜃(𝜀")( + 𝜃*𝜀")* + ⋯+ 𝜃G𝜀")G
+ 𝜀"			

(2 − 12)	

When	𝑋" = ∇P𝑋".	Here,	𝑑	time	differencing	(∇P𝑋")	produces	a	stationary	ARMA(𝑝, 𝑞)	

process.		
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In	 an	 ARMA	 model,	 suppose	 that	𝜑 𝐵 	has	𝑑 	roots,	 we	 can	 write	 the	 following	

equation:	

𝜙 𝐵 = 𝜑 𝐵 (1 − 𝐵)P																																																																																																	(2 − 13)	

Thus,	 non-stationary	 ARMA	 model	 can	 be	 written	 in	 the	 form	 of	 the	 following	

equation:	

𝜑 𝐵 (1 − 𝐵)P𝑋" = 𝑐 + 𝜃 𝐵 𝜀"																																																																																	(2 − 14)	

Consider	𝑋" = (1 − 𝐵)P𝑋" = ∇P𝑋" ,	 note	 that	(1 − 𝐵)	𝑋" = 𝑋" − 𝑋")( = ∇	𝑋" ,	 and	

rewrite	above	equation.	The	ARMA	model	for	non-stationary	process	is:	

𝜑 𝐵 𝑋" = 𝑐 + 𝜃 𝐵 𝜀"																																																																																																			(2 − 15)	

The	 above	 equation	 shows	 that	 a	 stationary	model	 can	 describe	 a	 non-stationary	

process	after	applying	𝑑	time	differencing.		

Tse	 (1997)	 fits	 real	 estate	 prices	 in	Hong	 Kong	 into	 an	ARIMA	model.	 Since	 in	 the	

classical	 version	 of	 the	 ARIMA	 model,	 seasonal	 variation	 is	 not	 addressed,	

multiplicative	seasonal	ARIMA	model	is	developed	by	Box-Jenkins	(Box	et	al.,	2015).	

Mohan	 and	 Vedula	 (1995)	 use	 multiplicative	 seasonal	 ARIMA	 model	 for	 monthly	

inflows	into	a	reservoir	system	with	logarithmic	transformation.	Their	comparison	of	

forecasted	 flows	 with	 the	 actual	 flows	 demonstrates	 that	 the	 ARIMA	 model	 is	

adequate	for	long-term	forecasting	of	inflows	(Mohan	&	Vedula,	1995).		

There	 is	 an	 idea	 that	 some	 information	 is	 lost	 through	 the	 modeling	 process.	 To	

determine	 the	 order	 of	 forecasting	 model,	 minimization	 information	 criteria	 that	

measure	 information	 loss	 is	 suggested	 (Burnham	 &	 Anderson,	 2003),	 (Hannan	 &	

Quinn,	 1979),	 (Akaike,	 1974),	 (Schwarz,	 1978).	 Akaike	 (1974)	 introduces	 Akaike	

Information	 Theoretical	 Criterion	 (AIC),	 and	 minimum	 information	 theoretical	

criterion	 estimate	 to	 maximum	 likelihood	 estimates	 of	 the	 parameters.	 Schwarz	

(1978)	introduces	Bayesian	Information	Criterion	(BIC)	to	select	one	of	the	models	of	

a	 different	 dimension.	 Liang	 et	 al.	 (1993)	 propose	 minimum	 description	 length	

criterion	to	determine	the	order	of	forecasting	model.	They	analyze	the	effect	of	the	

ARMA	root	locations	in	pole-zero	diagrams.	The	information	criteria	techniques	are	
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widely	 used	 to	 determine	 the	 best	 forecasting	 model	 (Watanabe,	 2010),	 (Tan	 &	

Biswas,	2012),	(De'ath	&	Fabricius,	2000).		

	

2.2. Neural	network	forecasting	models	

Artificial	 neural	 network	 (ANN)	 is	 a	 flexible	 computing	 method	 inspired	 by	

organization	and	functioning	of	biological	neurons	in	the	brain	(Hill	et	at.	1994).	ANN	

is	widely	used	as	a	forecasting	method	since	it	can	learn	and	capture	patterns	among	

variables.	The	structure	of	neural	network	and	learning	process	was	first	described	by	

Donald	O.	Hebb	who	was	a	psychologist	and	worked	in	the	area	of	neuropsychology	

(Hebb,	1980).	Based	on	Hebb’s	rules,	scientists	developed	the	first	ANN	during	1950-

60’s.			

ANN	 became	 a	modeling	 approach	 to	 solve	 problems	 requiring	 knowledge	 that	 is	

difficult	to	specify	(Zhang,	Patuwo,	&	Hu,	1998).	Thus,	ANN	has	been	utilized	in	many	

different	fields	such	as	business,	industry	and	science,	and	many	applications	such	as	

classification,	identifications,	optimization,	and	prediction.	Zhang	et	al.	(1998)	provide	

a	comprehensive	review	of	research	successfully	used	ANN	to	forecast	a	variable.		

Like	the	human	brain,	a	neural	network	is	a	collection	of	nodes	called	neurons	which	

are	 computing	 units.	 Each	 of	 these	 neurons	 is	 connected	 to	 others	 and	 transmits	

signals	through	synapses	(Jain,	Mao,	&	Mohiuddin,	1996).	Synapses’	job	is	to	take	a	

value	from	the	input,	multiply	it	by	a	specific	weight,	and	output	the	results.	Neurons	

take	and	send	signals	to	several	other	neurons.	Figure	17	demonstrates	a	simplified	

illustration	of	a	neuron.		

Neurons	 take	 input	 signals	 from	 synapses	 (𝑋3 ),	 and	 apply	 combination	 or	 transfer	

function	to	output	one	value.	The	most	popular	function	as	combination	function	is	

the	weighted	sum.	In	Figure	17,	this	function	is	shown	by	a	circle.	Then,	neurons	apply	

output	function	which	is	defined	for	each	neuron.	This	function	is	called	the	activation	

function,	 and	 allows	 the	 ANNs	 to	 model	 non-linear	 patterns.	 Depending	 on	 the	

application	of	ANN,	different	output	functions	can	be	selected.	For	example,	the	linear	



27	
	

function	is	proper	for	linear	regression	problem.	This	function	is	shown	by	a	square	in	

Figure	17.		

	

	

Figure	17-	Model	of		the	neuron	(Jain	et	al.,	1996)	

	

Neural	networks	have	different	architectures	according	to	the	application	for	which	

they	are	used.	Also,	the	way	of	knitting	neurons	together	differs.	Finding	the	optimal	

architecture	 of	 the	 neural	 network	 is	 a	 complicated	 job	 which	 is	 discussed	 in	

section	2.2.1.	After	designing	a	neural	network,	different	algorithms	are	used	to	train	

the	network.		

The	difference	between	the	ideal	output	value	and	the	actual	output	value	in	a	neural	

network	 is	 called	 the	 error	 function.	 The	 error	 function	 depends	 on	 the	 synaptic	

weights.	Since	the	value	of	error	represents	how	a	neural	network	fits	the	data	set,	

the	neural	network	learns	weights	on	synapses	and	estimate	them	to	minimize	the	

error	 function.	 Trying	 different	weights	 to	 find	 the	 best	 combination	 of	weights	 is	

time-consuming,	and	impossible	for	a	problem	with	a	large	number	of	neurons	and	

synapses.		

Fortunately,	the	problem	of	minimizing	continuous	functions	has	been	widely	studied,	

and	 many	 approaches	 are	 directly	 applicable	 to	 the	 training	 of	 neural	 networks	

efficiently.	Some	of	the	popular	learning	algorithms	and	their	underlying	concepts	are	

reviewed	in	section	2.2.2.		

The	procedure	for	modeling	an	ANN	is	summarized	in	the	following	pseudocode.		
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Begin	

Define	input	and	outputs	layers;	

Initialize	parameters;	

While	ANN	model	performance	is	not	acceptable,	Do	

Design	ANN	architecture;	

Calculate	the	output	of	neurons	in	the	input,	hidden,	and	output	layers;	

Calculate	the	overall	error;	

While	the	overall	error	is	not	acceptable,	Do	

												Train	ANN	model;	

End	

Validate	ANN	model	performance;	

End	

Get	the	result	from	output	layer;	

End	of	algorithm	

Figure	18-Procedure	of	ANN	

	

Tang	and	Fishwick	(1993)	study	neural	networks	as	models	for	long-term	and	short-

term	 time	 series	 forecasting.	 This	 study	 compares	 the	 performance	 of	 the	 neural	

networks	with	the	Box-Jenkins	method	in	different	experiments.	Tang	and	Fishwich‘s	

experiment	indicate	that	neural	network	outperformed	the	Box-Jenkins	model	applied	

for	 short-term	 time	 series.	 They	 also	 state	 that	 neural	 networks	 and	 Box-Jenkins	

method	generate	comparable	results	for	the	long-term	forecast.			

	

2.2.1. The	optimal	architecture	of	a	neural	network		

There	are	many	types	of	neural	networks.	Feedforward	and	recurrent	neural	network	

are	 two	 of	 the	 more	 popular	 types.	 Feedforward	 ANN	 is	 a	 popular	 design	 which	

consists	of	three	different	input,	hidden,	and	output	layers.	We	may	define	more	than	

one	layer	as	a	hidden	layer	(Sandberg,	2001).		

If	only	one	layer	is	defined	as	a	hidden	layer,	then,	the	feedforward	network	is	called	

three-layer	 feedforward	 network.	 In	 this	 design,	 neurons	 of	 the	 input	 layer	 feed	

neurons	in	the	next	layer	which	is	a	hidden	layer.	Neurons	in	the	hidden	layer	process	
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the	input	data,	and	feed	the	layer	above	them	or	the	output	layer.	Figure	19	shows	a	

sample	of	three-layer	feedforward	network.		

	

	

Figure	19-	Example	of	feedforward	neural	network	(Davim,	2011)	

	

Another	type	of	network	is	a	recurrent	or	recursive	network	in	which	neurons	can	feed	

themselves,	neurons	of	preceding	 layers,	and	neurons	of	the	same	 layer.	Figure	20	

shows	an	example	of	a	recurrent	network.		

	

	
	

Figure	20-	Example	of	a	recurrent	neural	network	(Quiza	&	Davim,	2009)	

	

Finding	the	optimal	architecture	of	a	neural	network	is	a	complex	job.	The	number	of	

layers,	the	number	of	nodes	in	layers,	and	the	number	of	synapses	in	a	network	should	

be	determined	to	build	a	neural	network.		Many	different	approaches	are	developed	
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to	determine	these	parameters	and	design	a	network	(Karnin,	1990),	 (Reed,	1993),	

(Cottrell	et	al.	(1995).	However,	applying	these	methods	does	not	guarantee	that	the	

optimal	architecture	can	be	found.	

Tang	and	Fishwick	(1993)	find	out	that	the	number	of	hidden	nodes	on	neural	network	

model	 affects	 forecasting	performance.	However,	 this	 effect	 is	 not	 significant,	 and	

neural	networks	are	robust.	Zhang	et	al.	(1998)	consider	the	number	of	input	nodes	

as	the	most	critical	decision	variable	for	a	time	series	forecasting	problem	in	a	neural	

network.	 They	 argue	 that	 input	 nodes	 contain	 information	 about	 the	 complex	

autocorrelation	structure	in	the	data.	They	also	suggest	determining	the	number	of	

input	nodes	by	theoretical	research	in	nonlinear	time	series	analysis.			

The	 number	 of	 output	 nodes	 is	 another	 important	 parameter	 in	 neural	 network	

architecture	which	is	determined	by	the	forecasting	horizon.	Only	one	output	node	

will	be	assigned	to	a	neural	network	to	forecast	one	period	or	multiple	periods	in	the	

future	using	Box-Jenkins	 iterative	 forecasting	 in	which	predicted	value	 is	 iteratively	

used	as	input	to	generate	the	next	forecast.	More	output	nodes	will	be	assigned	to	

neural	network	forecasting	direct	multiple	periods.	Zhang	et	al.	(1998)	state	that	direct	

multiple	period	forecasting	is	better	than	iterative	forecasting	method	in	the	neural	

network.		

	

2.2.2. Training	neural	networks	
	

Training	algorithms	for	neural	networks	are	developed	to	search	and	find	optimum	

synaptic	weights	at	which	the	error	function	takes	a	minimum	value	(Bishop,	2013).	In	

general,	 the	 error	 function	 is	 non-linear.	 The	basic	 idea	 to	 find	 optimal	weights	 in	

training	 algorithms	 is	 to	 generate	 a	 sequence	 of	 weight	 vectors	 so	 that	 the	 error	

function	is	reduced	at	each	iteration	of	the	algorithm.	The	initial	weight	vector	can	be	

chosen	randomly.	When	a	specified	condition	is	satisfied,	the	algorithm	stops.	

Back-Propagation	(BP)	is	one	of	the	popular	learning	algorithms.	BP	was	first	described	

by	Werbos	 (1994).	 In	 this	 algorithm,	 derivatives	 of	 error	 functions	with	 respect	 to	

network	 weight	 are	 computed.	 Then,	 non-linear	 optimization	 algorithms	 such	 as	
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gradient	descent	or	quasi-Newton	method	are	applied	to	find	the	best	weights	in	each	

iteration,	and	the	network	weights	are	updated	based	on	obtained	partial	derivatives.		

The	BP	as	a	learning	algorithm	has	many	variations.	Gradient	descent	BP	steps	may	

apply	after	each	observation,	called	one-line	learning,	or	after	passing	all	data	points	

through	the	network	called	batch	learning.	In	addition	to	gradient	descent,	other	non-

linear	optimization	algorithms	such	as	Newton's	method,	quasi-Newton,	Levenberg-

Marquardt	can	be	used	in	BP	to	train	the	neural	network.		

Gradient	descent	may	be	used	as	an	optimization	algorithm	to	move	toward	minimum	

error.	This	method	considers	a	point	as	a	start	point	𝑎S,	takes	a	step	proportional	to	

the	 negative	 of	 the	 gradient	∇𝐹 𝑎S ,	 then	 moves	 to	 a	 new	 point	𝑎SU( .	 In	 this	

optimization	algorithm,	gradienthe	t	is	the	direction	that	the	error	function	decreases	

most	rapidly,	and	can	be	found	from	derivatives.		

𝑎SU( = 𝑎S − 𝛾	∇𝐹 𝑎S 																																																																																																	(2 − 16)	

	Newton's	method	 is	 another	optimization	algorithm	 that	may	be	applied	 to	move	

toward	 the	 minimum	 error	 point.	 In	 this	 optimization	 algorithm,	 the	 second	

derivatives	 of	 the	 error	 function	 and	 inverse	 Hessian	 (𝐻S)( )	 are	 used	 to	 find	 the	

direction	of	the	next	move.		

𝑎SU( = 𝑎S − 𝛾𝐻S)(	∇𝐹 𝑎S 																																																																																									(2 − 17)	

𝑤ℎ𝑒𝑛:						𝑓(𝑎S + ∆𝑥) = 𝑓(𝑎S) + ∇𝑓 𝑎S ∆𝑥 + 0.5		∆𝑥[𝐻∆𝑥																									(2 − 18)	

The	quasi-newton	method	builds	 an	 approximation	 to	 the	 inverse	Hessian	𝐽	 	which	

only	needs	first	derivatives	of	the	error	function.	Thus,	it	requires	fewer	operations	to	

evaluate	 compared	 to	 the	 Newton	 method.	 This	 algorithm	 converges	 faster	 than	

gradient	descent.		

𝑎SU( = 𝑎S − 𝛾(𝐽S)∇𝐹 𝑎S 																																																																																										(2 − 19)	

The	 Levenberg-Marquardt	 algorithm	 is	 primarily	 used	 to	 solve	 the	 least	 square	

problem	 (Yu	 &	Wilamowski,	 2011).	 This	 method	 computes	 the	 approximation	 for	

Hessian	matrix	and	gradient	with	the	Jacobian	matrix.	The	gradient	vector	of	the	least	

square	function	is	computed	as	equation	2-20	where	e	is	a	vector	of	errors.		
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∇𝑓 = 2. 𝐽	[. 𝑒																																																																																																																					(2 − 20)	

Also,	Hessian	matrix	is	computed	with	the	following	expression	where	𝜆			is	a	factor	to	

ensure	the	positivity	of	the	Hessian	and	𝐼	is	the	identity	matrix.		

𝐻 = 2. (𝐽	[. 𝐽		 + 𝜆		. 𝐼)																																																																																																						(2 − 21)	

Thus,	Levenberg-Marquardt	improvement	process	is	defined	as:	

𝑎SU( = 𝑎S − 𝐽S[. 𝐽S	 + 𝜆S	 . 𝐼 )((2. 𝐽S[. 𝑒S)																																																																	(2 − 22)	

When	𝜆			is	zero,	equation	2-22	is	similar	to	Newton's	method.	Also,	when	𝜆			is	large,	

this	algorithm	tends	to	become	similar	to	gradient	descent.	This	algorithm	works	well	

for	small	and	medium	size	networks.		

	

2.2.3. Performance	of	a	neural	network		

The	 performances	 of	 the	 neural	 network	 compared	 to	 statistical	 models	 is	

questionable	since	neural	network	performance	depends	on	many	architectural	and	

design	factors.	Many	studies	compare	the	results	of	statistical	forecasting	and	neural	

networks.		

Ho,	Xie,	and	Goh	(2002)	perform	a	study	to	compare	the	performance	of	Box-Jenkins	

ARIMA	and	the	ANNs	forecasting	models	for	a	repairable	compressor	system	failure.	

They	 conclude	 that	 recurring	 neural	 network,	 at	 the	 optimal	 weighting	 factor,	

performs	better	than	the	ARIMA	model.	Lam	and	Oshodi	(2016)	also	compare	ARIMA	

and	neural	network	forecasting	results	on	the	volume	of	construction	work	in	Hong	

Kong.	They	find	that	neural	network	model	provides	accurate	forecast	compared	to	

the	ARIMA	for	their	medium-term	planning.	

Niaki	 and	Hoseinzade	 (2013)	 forecast	 the	daily	 direction	of	 Standard	&	Poor's	 500	

index	by	ANN.	They	select	the	most	 influential	 factors	affecting	the	response	(daily	

direction	 of	 S&P	 500)	 in	 the	 first	 step	 of	 their	 study.	 They	 present	 the	 results	 of	

developed	ANN.	Gorr,	Nagin,	and	Szczypula	(1994)	compare	the	results	obtained	by	

linear	regression,	stepwise	polynomial	regression,	and	single	middle	layer	ANNs	model	

for	 predicting	 student	 grade	 point	 averages.	 Their	 study	 shows	 that	 there	 are	 no	
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significant	statistical	differences	between	the	performance	of	the	different	methods	

applied.		

Many	 algorithms	 are	 developed	 to	 enhance	 the	 performance	 of	 forecasting	 with	

ANNs.	 Pelikan	 et	 al.	 (1992)	 suggest	 combining	 several	 neural	 networks.	 This	 study	

shows	that	the	result	obtained	from	the	suggested	method	is	better	than	applying	a	

single	neural	network.	Ginzburg	and	Horn	(1994)	also	combine	two	ANNs	as	a	new	

predictor.	 In	 their	 study,	 the	 first	network	models	 the	 time	 series,	 and	 the	 second	

network	models	 the	 residual	 from	 the	 first	 network.	 They	 test	 the	 new	 combined	

network;	 results	 demonstrate	 that	 the	 combined	 network	 is	 better	 than	 a	 single	

network.		

Moreover,	Reed	(1993)	presents	pruning	algorithm	to	reduce	the	complexity	of	the	

network	and	improve	the	results.	Reed	trains	a	network	that	is	larger	than	necessary	

and	removes	unnecessary	parts.	Cottrell	et	al.	 (1995)	propose	a	stepwise	statistical	

method	which	is	a	systematic	methodology	to	simplify	neural	network	architecture	by	

determining	nonsignificant	weights.	They	combine	the	statistical	techniques	of	linear	

and	 nonlinear	 time	 series	 with	 the	 connectionist	 approach	 in	 their	 study.	

Lachtermacher	and	Fuller	(1995)	implement	mixed	Box-Jenkins	and	ANNs	method	to	

minimize	the	size	of	the	network.	In	their	study,	Box-Jenkins	method	is	implemented	

to	identify	the	appropriate	ARIMA	model.	

	

2.3. Hybrid	forecasting	models	

Different	hybrid	methods	have	been	proposed	in	the	literature	to	improve	forecasting	

outcomes.	 Yu,	 Wang,	 and	 Lai	 (2005)	 integrate	 generalized	 linear	 autoregression	

(GLAR)	with	ANN	to	obtain	accurate	forecasting	model	for	the	exchange	rate.	Their	

nonlinear	 ensemble	model	 is	 used	 to	 forecast	 foreign	 exchange	market	 rate.	 They	

compare	 the	 results	 obtained	 by	 the	 proposed	 method	 with	 ANN	 and	 GLAR	

forecasting	models,	the	linear	combination	model,	and	the	hybrid	model.	They	show	

that	the	prediction	with	the	nonlinear	ensemble	model	is	better	than	the	other	models	

included	in	the	comparison.		
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Gairaa	et	al.	(2016)	state	that	since	the	ARMA	model	is	unable	to	capture	the	nonlinear	

characteristics	of	 the	data,	ANN	as	a	nonlinear	modeling	method	can	be	combined	

with	ARMA	to	capture	both	linear	and	nonlinear	patterns.	Gairaa	et	al.	(2016)	apply	

combined	ARMA	and	ANN	algorithm	and	estimate	the	daily	global	solar	radiation	by	

using	the	new	method.		

They	first	perform	ARMA	to	model	the	linear	part	of	the	daily	global	radiation.	Then,	

ANN	is	used	to	model	the	obtained	ARMA	residuals	as	a	nonlinear	component.	Faruk	

(2010)	 also	 applies	 the	 same	 procedure	 to	 predict	 a	 water	 quality	 time	 series.	 In	

Gairaa’s	 study,	 global	 solar	 radiation	 data	 recorded	 from	 2012	 to	 2013	 for	 two	

Algerian	 climate	 sites	are	used	 to	 test	 the	developed	method.	They	 show	 that	 the	

obtained	 results	 improved	 by	 implementing	 their	 combined	method	 compared	 to	

ARMA	and	ANN	models.	

The	pseudocode	for	their	algorithm	is	summarized	in	Figure	21.			

Begin	

	Estimate	ARMA	model	as	linear	component	(𝐿);	

Calculate	the	residuals	of	ARMA	(𝑒 = 𝑦 − 𝐿);	

Use	ANN	and	model	𝑒 = 𝜃(𝐵)𝜀	as	non-linear	component	(𝑁);	

Combine	estimations	(𝑦 = 𝐿 + 𝑁);	

End	of	hybrid	ARMA	and	ANN	algorithm		

Figure	21-	The	pseudocode	of	hybrid	ARMA	and	ANN	algorithm	applied	in	(Gairaa	et	al.,	
2016)	

	

Hybrid	ARMA	and	ANN	can	be	designed	with	two	different	chains	of	neurons:	a	chain	

to	represent	AR,	and	a	chain	to	represent	MA	section	of	the	ARMA	model.	Each	neuron	

of	 AR	 and	MA	 sub-network	 receives	 inputs	 and	 outputs	 the	 results.	 In	 this	 hybrid	

algorithm,	the	output	of	neurons	passes	to	the	next	neurons	in	the	same	sub-network.	

Thus,	 both	 AR	 and	 MR	 sub-networks	 operate	 identically.	 However,	 the	 AR	 sub-

network	 receives	 time	 series	 value	 as	 an	 input,	 but	 the	MA	 sub-network	 receives	

shocks.	 This	 algorithm	 is	 proposed	 by	 Rose	 (2015).	 Figure	 22	 represents	 the	

pseudocode	of	this	hybrid	ARMA	and	ANN	algorithm.	
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Begin		

Design	ANN	with	two	sub-networks;	

Use	first	sub-network	of	ANN	and	model	MA	component	(𝐿);	

Use	second	sub-network	of	ANN	and	model	AR	component	(𝑁);	

Combine	estimations	(𝑦 = 𝐿 + 𝑁);	

End	of	hybrid	ARMA	and	ANN	algorithm		

Figure	22-	pseudocode	of	hybrid	ARMA	and	ANN	algorithm	proposed	in	(Rose,	2015)	

	

Some	studies	combine	ARIMA	and	ANN	to	take	advantage	of	the	strengths	of	both	

models	in	linear	and	nonlinear	modeling.	Zhang	(2003)	implements	a	hybrid	method	

that	combines	ARIMA	and	ANN.	The	underlying	idea	for	his	approach	is	similar	to	the	

approach	used	in	(Gairaa	et	al.,	2016).	He	uses	the	ARIMA	model	instead	of	the	ARMA	

in	Gairaa’s	algorithm	(2016).		

In	their	study,	three	datasets	including	Wolf’s	sunspot	data,	Canadian	lynx	data,	and	

British	pound/US	dollar	exchange	rate	are	used	to	test	the	proposed	hybrid	method.	

Zhang	shows	that	combined	method	improves	the	forecasting	accuracy	compared	to	

the	results	achieved	by	either	of	the	models	used	separately	for	the	three	datasets.		

Tseng	et	al.	(2002)	aim	to	predict	seasonal	time	series	data.	They	apply	a	hybrid	model	

that	 combines	 the	 seasonal	ARIMA	and	 the	ANN.	 In	 this	 study,	 two	 seasonal	 time	

series	datasets	including	total	production	value	of	Taiwan	machinery	industry	and	soft	

drink	 consumption	 are	 tested.	 They	 compare	 the	 performance	 of	 their	 developed	

method	with	seasonal	ARIMA	model,	neural	network	models	with	differenced	data,	

and	 neural	 network	 models	 with	 deseasonalized	 data.	 They	 also	 show	 that	 their	

obtained	model	generates	the	best	result	with	the	lowest	error.	

However,	Khashei	and	Bijari	(2011)	believe	that	using	hybrid	models	to	forecast	time	

series	 is	 risky.	They	refer	 to	 the	common	assumption	 in	hybrid	algorithms	that	 the	

relationship	 between	 the	 linear	 and	 nonlinear	 components	 is	 additive.	 They	 also	

explain	how	this	assumption	may	affect	the	performance	of	the	predictors.	They	also	
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mention	that	the	residuals	of	the	linear	component	may	not	comprise	valid	nonlinear	

patterns	(Khashei	&	Bijari,	2011).	

Khashei	and	Bijari	(2011)	propose	hybridization	of	ANN	and	ARIMA	models	without	

assuming	 additivity	 between	 linear	 and	 non-linear	 components	 aiming	 to	 achieve	

more	generality	of	the	application	of	their	proposed	method.	They	guarantee	that	the	

performance	of	the	proposed	model	is	superior	to	the	separate	use	of	ARIMA	and	ANN	

models.	 	 Figure	 23	 represents	 the	 pseudocode	 of	 their	 hybrid	 ARIMA	 and	 ANN	

algorithm.		

They	 test	 the	 new	 hybrid	 method	 and	 compare	 the	 accuracy	 of	 the	 obtained	

forecasting	model	with	 traditional	hybrid	ARIMA-ANNs	models.	 In	 this	 study,	 three	

real	datasets	are	used	to	 test	 the	proposed	method	against	 those	 tested	by	Zhang	

(2003)	 including	 Wolf’s	 sunspot	 data,	 the	 Canadian	 lynx	 data,	 and	 the	 British	

pound/US	dollar	exchange	rate	data.	

	

Begin		

Execute	𝑋" = (1 − 𝐵)P𝑋"	

Estimate	ARMA	model	for	𝑋"	as	linear	component	(𝐿);	

Calculate	the	residuals	of	ARMA	(𝑒 = 𝑦 − 𝐿);	

Use	ANN	to	determine	a	non-linear	function	𝑓((𝜃 𝐵 𝑒)	as	1st	non-linear	component	
(𝑁();	

Use	ANN	to	determine	a	non-linear	function	𝑓*(𝜃 𝐵 𝑋)	as	2nd	non-linear	component	
(𝑁*);	

Combine	estimations	𝑋 = 𝑓(𝐿, 𝑁(, 𝑁*);	

End	of	hybrid	ARMA	and	ANN	algorithm		

Figure	23-	pseudocode	of	hybrid	ARMA	and	ANN	algorithm	proposed	in	(Khashei	&	Bijari,	
2011)	 	
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3. Chapter	3:	Methodology	

This	 chapter	 applies	 MLR,	 ANN	 forecasting	 algorithm,	 ARIMA	 model,	 and	 hybrid	

ARIMA	and	neural	network	algorithm	to	find	an	accurate	forecasting	model	for	the	

amount	of	electricity	in	terms	of	kWh	that	is	generated	from	different	primary	energy	

sources	including	fossil	fuel,	renewable	energy,	and	nuclear.	

	

3.1. Model	preparation		

To	forecast	the	future	amount	of	electricity	generated	from	various	primary	energy	

sources,	 four	 independent	 variables	 were	 considered.	 They	 are	 market	 price	 of	

primary	 energy	 sources,	 heat	 rate,	 carbon	 dioxide	 emission,	 and	 population.	 This	

section	defines	the	four	independent	variables.		

	

3.1.1. The	market	price	of	primary	energy	sources	

The	market	price	of	primary	energy	sources	is	an	important	factor	that	influences	the	

amount	of	electricity	that	is	generated	from	them.	In	this	study,	the	adjusted	price	of	

natural	gas,	crude	oil,	and	coal	was	calculated	to	remove	the	effect	of	changes	in	the	

purchasing	power	of	the	dollar	since	the	available	data	is	the	nominal	price	of	natural	

gas,	crude	oil,	and	coal	that	have	not	been	adjusted	for	inflation.		

The	real,	or	adjusted,	prices	are	used	to	remove	the	effect	of	changes	in	the	purchasing	

power	of	the	dollar.	In	this	research,	real	prices	are	computed	by	dividing	the	nominal	

price	in	each	month	by	the	ratio	of	the	Consumer	Price	Index	(CPI-	See	Appendix	5.1)	

in	that	month	to	the	CPI	in	November	2017	as	the	base	period.	Consequently,	all	real	

prices	are	expressed	in	the	2017	base	dollar.	This	enables	us	to	compare	prices	with	

the	past	and	projected	real	prices	since	prices	are	expressed	in	the	same	dollar	values.	

Figure	24	demonstrates	the	adjusted,	or	real,	and	nominal	prices	that	were	used	in	

this	research.		



38	
	

𝑅𝑃3" =
𝑃𝑟𝑖𝑐𝑒	𝑜𝑓	𝑒𝑛𝑒𝑟𝑔𝑦	𝑡𝑦𝑝𝑒	𝑖	𝑖𝑛	𝑚𝑜𝑛𝑡ℎ	𝑡

𝐶𝑃𝐼	𝑖𝑛	𝑚𝑜𝑛𝑡ℎ	𝑡
𝐶𝑃𝐼	𝑖𝑛	𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟, 2017

																																																											(3 − 1)	

In	the	next	step,	the	real	price	of	primary	energy	was	calculated	in	terms	of	$ 𝑘𝑊ℎ	

by	using	the	following	equations:	

𝑃nopq,"
$

𝑘𝑊ℎ
=
𝑅𝑃nopq,"

$
𝑚𝑒𝑡𝑟𝑖𝑐	𝑡𝑜𝑛𝑠 ×𝐻𝑒𝑎𝑡	𝑟𝑎𝑡𝑒nopq

𝐵𝑇𝑈
𝑘𝑊ℎ ×0.907184

19.78×10v	
								 3 − 2 	

𝑃wx,"
$

𝑘𝑊ℎ =
𝑅𝑃wx,"

$
𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝐵𝑇𝑈 ×𝐻𝑒𝑎𝑡	𝑟𝑎𝑡𝑒wx

𝐵𝑇𝑈
𝑘𝑊ℎ

10v	 																									 3 − 3 	

𝑃z3q,"
$

𝑘𝑊ℎ =
𝑅𝑃z3q,"

$
𝑏𝑎𝑟𝑟𝑒𝑙	 ×𝐻𝑒𝑎𝑡	𝑟𝑎𝑡𝑒z3q

𝐵𝑇𝑈
𝑘𝑊ℎ

5.8×10v	 																																			 3 − 4 	

To	produce	a	dimensionless	variable,	𝑃𝑅3"	was	defined	as:	

𝑃𝑅3" =
𝑃3"	

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑃3	
																																																																																																					(3 − 5)	
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Figure	24-	Nominal	and	the	real	price	of	coal,	natural	gas,	and	crude	oil	

	
3.1.2.	Heat	rate	of	primary	energy	sources	

To	incorporate	the	efficiency	of	different	primary	energy	sources	in	our	model,	scaled	

heat	rate	was	calculated.	The	heat	rate	 is	the	amount	of	primary	energy	used	by	a	

power	 plant	 to	 generate	 a	 unit	 (1	 kWh)	 of	 electricity.	 The	 heat	 rate	 for	 different	

primary	energy	sources	from	2004	to	2017	was	obtained	from	the	EIA	in	terms	of	Btu	

per	kWh	(Appendix	5.2).	

To	make	the	heat	rate	dimensionless,	the	independent	variable	ℎ3"	was	defined	by	the	

following	equation:	

	ℎ3" =
|}p"	~p"}	o�	}S}~��	"�,}	3	p"	�}p~	"		(�"�/���)
�p�3���	�}p"	~p"}	o�	}S}~��	"�,}	3(�"�/���)

																																																						(3 − 6)	
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3.1.3.	Carbon	dioxide	emission	

Carbon	 dioxide	 (CO2)	 emissions	 from	 power	 plants	 is	 another	 factor	 of	 interest.	

Equation	3-7	was	used	to	compute	the	rate	of	CO2	emissions	for	different	types	of	

power	plants.		

𝐶𝐸3"
𝑡𝑜𝑛
𝑘𝑊ℎ =

𝐶𝑂*	𝑒𝑚𝑖𝑡𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑒𝑛𝑒𝑟𝑔𝑦	𝑖	𝑎𝑡	𝑚𝑜𝑛𝑡ℎ	𝑡 𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑚𝑒𝑡𝑟𝑖𝑐	𝑡𝑜𝑛
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑	𝑓𝑟𝑜𝑚	𝑒𝑛𝑒𝑟𝑔𝑦	𝑖	 𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑘𝑊ℎ 		

(3 − 7)	

To	make	this	rate	scale-less,	variable	𝐶3"	was	defined	as	below:	

𝐶3" =
𝐶𝐸3"	(

𝑡𝑜𝑛
𝑘𝑊ℎ)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝐶𝐸3	
																																																																																																					(3 − 8)	

	
3.1.4.	Population		
	
To	incorporate	U.S.	population,	the	scaled	population	was	calculated	and	
incorporated	in	our	model.		
	

𝑄" =
𝑈. 𝑆.		𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑎𝑡	𝑚𝑜𝑛𝑡ℎ	𝑡	
𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 																																																																											(3 − 9)	

	
	

3.2. Multiple	linear	regression	for	generated	electricity		

Multiple	 linear	 regression	 (MLR)	 was	 first	 used	 to	 fit	 a	 model	 of	 the	 amount	 of	

electricity	generated	from	different	primary	energy	sources.	The	obtained	results	are	

summarized	in	Figure	25.	

A	 good	 MLR	 forecasting	 method	 results	 in	 uncorrelated	 residuals.	 To	 detect	 the	

presence	of	autocorrelation	at	lag	1	in	the	residuals,	the	Durbin-Watson	test	was	used	

(Durbin	&	Watson,	1950).	The	null	hypothesis	of	 this	 test	 is	uncorrelated	 residuals	

against	the	alternative	that	residuals	follow	a	first-order	autoregressive	process.	The	

corresponding	 p-value	 of	 each	 test	 is	 reported	 in	 Figure	 25.	 	 Also,	 the	 correlation	

between	successive	residuals	was	computed	and	reported	in	Figure	25.		
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Coal:	
Residual	standard	
error	

15.83	

R	square	 0.6825	
Cor.	successive	
residual	

0.6873	

Durbin-Watson	p-
value	

7.365e-16	
	

Natural	Gas:	
Residual	standard	
error	

14.59	

R	square	 0.5077	
Cor.	successive	
residual	

0.6414	

Durbin-Watson	p-
value	

4.531e-15	
	

Oil:	
Residual	standard	
error	

1.304	

R	square	 0.821	
Cor.	successive	
residual	

0.4633	

Durbin-Watson	p-
value	

1.782e-09	
	

Geothermal:	
Residual	standard	
error	

0.0512	

R	square	 0.3282	
Cor.	successive	
residual	

-0.0131	

Durbin-Watson	p-
value	

0.4063	
	

Hydroelectric:	
Residual	standard	
error	

4.101	

R	square	 0.0111	
Cor.	successive	
residual	

0.6945	

Durbin-Watson	p-
value	

2.2e-16	
	

Solar:	
Residual	standard	
error	

0.3168	

R	square	 0.4927	
Cor.	successive	
residual	

0.9608	

Durbin-Watson	p-
value	

2.2e-16	
	

Wind:	
Residual	standard	
error	

1.759	

R	square	 0.8815	
Cor.	successive	
residual	

0.6270	

Durbin-Watson	p-
value	

4.89e-14	
	

Nuclear:	
Residual	standard	
error	

5.091	

R	square	 0.0006	
Cor.	successive	
residual	

0.3980	

Durbin-Watson	p-
value	

5.775e-07	

	

	
Figure	25-Summary	of	MLR	result	

	

Figure	26	illustrates	the	relation	between	successive	residuals.	Based	on	the	result	of	

the	Durbin-Watson	test	and	successive	residuals	plots,	it	can	be	concluded	that	the	

obtained	residuals	are	correlated.		
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Coal:	

	

Natural	Gas:	

	

Oil:	

	

Geothermal:	

	

Hydroelectric:	

	

Solar:	

	

Wind:	

	

Nuclear:	

	

Figure	26-	Successive	residual	plots	
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3.3. Non-linear	regression	for	generated	electricity		

3.3.1. Design	of	a	neural	network		

Any	ANN	can	be	characterized	by	the	architecture	of	the	network,	training	algorithm,	

and	 the	 activation	 function.	 There	 are	 different	 types	 of	 networks	 for	 different	

applications.	A	 feed-forward	network	with	one	hidden	 layer	was	used	 in	 this	study	

since	 feed-forward	networks	with	multilayer	 perceptron	 are	 the	most	widely	 used	

designs	for	time	series	modeling	and	forecasting	(Zhang	et	al.,	1998).	

Different	training	algorithms	were	discussed	in	section	2.2.2.	In	this	research,	The	BP	

with	 Levenberg-Marquardt	 (LM)	was	 chosen	 as	 the	 training	 algorithm	 (Levenberg,	

1944).	Combination	function	defines	the	output	of	a	node	when	a	set	of	inputs	are	

given	 (See	 section	 2.2).	 In	 BP	 network,	 the	 Sigmoid	 and	 Tangent	 functions	 are	

commonly	defined	as	activation	functions	for	the	hidden	layers,	and	a	linear	transfer	

function	is	utilized	for	the	output	layer.	We	used	a	tangent-sigmoid	transfer	function	

in	the	hidden	layer	and	a	linear	transfer	function	in	the	output	layer.		

In	this	study,	four	nodes	in	the	input	layer	(corresponding	to	market	price,	heat	rate,	

CO2	emission,	U.S.	population),	and	ten	nodes	in	the	hidden	layer	are	defined	for	coal,	

natural	gas,	and	oil	neural	networks.	Three	nodes	in	the	input	layer	(corresponding	to	

heat	rate,	CO2	emission,	and	U.S.	population),	and	ten	nodes	in	the	hidden	layer	are	

defined	 for	 the	 geothermal	 neural	 network.	 Also,	 two	 nodes	 in	 the	 input	 layer	

(corresponding	to	heat	rate	and	U.S.	population),	and	200,	150,	300,	and	350	nodes	in	

the	 hidden	 layer	 are	 defined	 for	 hydroelectric,	 solar,	 wind,	 and	 nuclear	 neural	

networks	respectively.		

Also,	75%	of	data	points	(92	points)	were	assigned	for	training;	15%	of	data	points	(20	

points)	were	assigned	for	validating	to	measure	network	generalization	and	to	halt	

training	when	generalization	 stops	 improving;	15%	of	data	points	 (20	points)	were	

assigned	for	testing	that	provides	an	independent	measure	of	network	performance	

during	and	after	training.		
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3.3.2. Results	

The	convergence	of	ANNs	are	illustrated	in		

Figure	27.	The	ANNs	stop	if	the	magnitude	of	the	calculated	gradient	becomes	 less	

than10)�,	or	the	number	of	successive	iterations	that	the	validation	performance	fails	

to	decrease	reaches	6.		

	
Coal:	

	

Natural	Gas:	

	
Oil:	

	

Geothermal:	
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Hydroelectric:	

	

Solar:	

	
	
Wind:	

	

	
Nuclear:	

	
	

Figure	27-	ANN	convergence	

	

At	the	end	of	the	ANN	algorithms,	a	linear	regression	between	the	network	outputs	

and	the	corresponding	targets	was	performed.		

Figure	28	shows	the	results.	
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Oil:	

	

Geothermal:	

	
Hydroelectric:	

	

Solar:	
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Wind:	

	

Nuclear:	

	
	

Figure	28-	Linear	regression	between	ANN	outputs	and	targets	

	

The	process	of	training	an	ANN	involves	finding	the	values	of	the	weights	to	optimize	

network	 mean	 square	 error	 (MSE).	 MSE	 is	 defined	 as	 the	 average	 squared	 error	

between	the	network	outputs	and	the	target	value.		

Figure	29	reports	the	obtained	MSE	in	each	ANN.		
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Coal:	

	 Sample	 MSE	
Training		 92	 132.803	
Validation		 20	 223.592	
Test	 20	 271.747	
Predict	 35	 14.903	

	

Natural	Gas:	

	 Sample	 MSE	
Training		 92	 159.254	
Validation		 20	 111.792	
Test	 20	 293.179	
Predict	 35	 343.390	

	

Oil:	

	 Sample	 MSE	
Training		 92	 54.520	
Validation		 20	 1.082	
Test	 20	 1.310	
Predict	 35	 0.080	

	

Geothermal:	

	 Sample	 MSE	
Training		 92	 0.001	
Validation		 20	 0.166	
Test	 20	 0.097	
Predict	 35	 0.304	

	

Hydroelectric:	

	 Sample	 MSE	
Training		 92	 2.943	
Validation		 20	 7.314	
Test	 20	 7.479	
Predict	 35	 321.560	

	

Solar:	

	 Sample	 MSE	
Training		 92	 4.106e-4	
Validation		 20	 7.670e-3	
Test	 20	 1.285e-3	
Predict	 35	 6.029	

	

Wind:	

	 Sample	 MSE	
Training		 92	 2.881	
Validation		 20	 4.261	
Test	 20	 1.744	
Predict	 35	 344.110	

	

Nuclear:	

	 Sample	 MSE	
Training		 92	 2.423	
Validation		 20	 14.818	
Test	 20	 39.533	
Predict	 35	 199.760	

	

	

Figure	29-	MSE	of	ANNs	

Tracking	signals	can	indicate	if	forecast-bias	is	present.	Tracking	signals	are	suggested	

when	the	validity	of	the	forecasting	model	might	be	in	doubt	(Trigg,	1964).	Figure	30	

shows	 the	 tracking	 signals	 for	 predicted	 values	 starting	 from	 January	 2014	 to	

November	2017.	 	Equation	(3-10)	was	used	to	calculate	the	tracking	signals.	 In	this	

equation,	the	forecast	error	was	estimated	by	mean	absolute	deviation.		

𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔	𝑠𝑖𝑔𝑛𝑎𝑙	 = 	
𝑆𝑢𝑚	𝑜𝑓	𝑒𝑟𝑟𝑜𝑟𝑠

𝑀𝑒𝑎𝑛	𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛																																															(3 − 10)	

The	mean	 absolute	 deviation	 is	 sum	 of	 absolute	 deviations	 divided	 by	 number	 of	

months	that	was	predicted.	Thus,	equation	(3-10)	can	be	rewritten	as:	
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𝑇𝑆3� 	= 	
(𝑌3" − 𝑌3")�

"M(

𝑌3" − 𝑌3"�
"M( 𝑠

																																																																																											(3 − 11)	

When	𝑇𝑆3� 	is	 the	 tracking	 signal	of	energy	 source	𝑖	in	month𝑠,	𝑌3" 	is	 the	amount	of	

electricity	generated	in	month	𝑡	from	energy	source	i,	and	𝑌3"	is	the	predicted	amount	

of	electricity	generated	at	month	𝑡	from	energy	source	𝑖.		

As	 demonstrated	 in	 Figure	 30,	 there	 are	 some	 kind	 of	 fluctuations	 in	 all	 tracking	

signals.	It	moves	up	and	down	which	suggests	that	the	ANN	does	not	over-estimate	or	

under-estimate	 the	 amount	 of	 electricity	 generated	 from	different	 primary	 energy	

sources.		
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Coal:	

	

Natural	Gas:	

	
Oil:	

	

Geothermal:	

	

Hydroelectric:	

	

Wind:	

	
Solar:	

	

Nuclear:	

	
Figure	30-	Tracking	signal	of	predicted	data	(January	2014-November	2017)	
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3.4. ARIMA	model	for	generated	electricity		

3.4.1. Identifying	the	order	of	ARIMA	
	
The	 parameters	 of	 ARIMA	 are	𝑝 	(the	 order	 of	 the	 AR	 model),	𝑑 	(the	 degree	 of	

differencing),	 and	𝑞	(the	order	of	 the	MA	model).	 These	parameters	were	 selected	

based	on	minimum	BIC	and	AIC	using	R	software.		

Figure	31	shows	the	best	fitted	ARIMA	models	which	predicted	values	for	electricity	

generated	from	each	primary	energy	sources	between	January	2014	and	November	

2017,	as	well	as	95%	and	80%	confidence	interval	for	predicted	values.			

	

	

Coal:	

	

Natural	Gas:	

	

Oil:	

	

Geothermal:	

	
Hydroelectric:	

	

Solar:	
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Wind:	

	

Nuclear:	

	
Figure	31-	ARIMA	model	and	predicted	values		

	
3.4.2. Fitting	non-	linear	function	of	the	residuals			

After	fitting	the	best	ARIMA	model	and	finding	the	residuals	of	data	from	January	2004	

to	December	2013,	a	non-linear	function	which	predicts	the	value	of	residuals	by	𝑑	

past	given	values	were	built	by	an	ANN	algorithm.			

The	same	training	method	that	was	explained	in	section	3.3.1	was	used	to	design	ANN.	

Only	1	node	in	the	input	layer	(corresponding	to	generated	electricity),	and	15,	20,	20,	

15,	15,	100,	40,	and	15	nodes	in	the	hidden	layer	are	defined	for	coal,	natural	gas,	oil,	

geothermal,	 hydroelectric,	 solar,	 wind,	 and	 nuclear	 neural	 networks	 respectively	

when	𝑑 = 12.		

75%	of	data	points	(92	points),	15%	of	data	points	(20	points),	and	15%	of	data	points	

(20	points)	were	assigned	for	training,	validating,	and	testing	respectively.	Figure	32	

shows	 the	 linear	 regression	 between	 the	 network	 outputs	 and	 the	 corresponding	

targets.		

Coal:	

	

Natural	Gas:	
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Oil:	

	

Geothermal:	

	
Hydroelectric:	

	

Solar:	

	
Wind:	

	

Nuclear:	

	
Figure	32-	Linear	regression	between	ANN	outputs	and	targets	for	residuals	
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3.5. Conclusion		

Two	forecasting	models	were	fit	to	data	from	January	2004	to	December	2014	using	

the	ANN	algorithm	and	the	hybrid	ARIMA	and	ANN	algorithm.	Based	on	these	two	

models,	the	amount	of	electricity	generation	for	each	primary	energy	source	between	

January	2015	and	November	2017	was	predicted	and	reported	in	Table	5	to	Table	8	

(see	Appendix	 5.4).	The	predicted	values	were	compared	with	the	actual	data,	and	

MSE	was	computed.	Table	2	compares	MSE	obtained	from	the	ANN	algorithm	and	the	

hybrid	ARIMA	and	ANN	algorithm.	

Table	2-	MSE	obtained	from	ANN	and	hybrid	ARIMA	and	ANN	

	 Sample	 ANN	 Hybrid	ARIMA	and	ANN	
Coal	 35	 14.90	 964.11	
Natural	gas	 35	 343.39	 772.44	
Oil	 35	 0.08	 1.51	
Geothermal		 35	 0.30	 0.01	
Hydroelectric		 35	 321.56	 35.92	
Solar		 35	 6.03	 9.37	
Wind		 35	 344.11	 51.73	
Nuclear		 35	 199.76	 55.69	

				

Figure	33	shows	the	predicted	amount	of	electricity	generated	from	different	primary	

energy	sources	in	terms	of	billion	kWh	from	January	2014	to	November	2017	as	well	

as	the	fitted	value	from	January	2004	to	December	2014	obtained	from	ANN,	ARIMA,	

and	hybrid	ARIMA	and	ANN	algorithms.	The	predicted	values	from	2014	to	2017	are	

shown	in	Figure	34.		

As	shown	in	Figure	33	and	Table	2,	the	ANN	algorithm	forecasts	a	good	model	with	

lower	MSE	for	coal,	natural	gas,	and	oil.	The	hybrid	ARIMA	and	ANN	algorithm	fits	a	

more	accurate	model	with	lower	MSE	for	geothermal,	hydroelectric,	solar,	wind,	and	

nuclear	 primary	 energy	 sources.	 However,	 in	 order	 to	 improve	 forecast	 accuracy,	

more	 independent	 variables	 could	 be	 added	 to	 the	 model.	 Various	 regression	

transformations	could	also	be	considered	to	improve	the	fitted	model.		
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Wind:	

	
Nuclear:	

	
Figure	33-	The	fitted	value	of	generated	electricity	vs.	actual	value			
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Hydroelectric:	

	
Solar:	

	
Wind:	

	
Nuclear:	

	
	

Figure	34-	The	predicted	value	of	generated	electricity	vs.	actual	value			
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5. Appendix		

5.1. Consumer	price	index	data		

Table	3	 reports	monthly	Consumer	Price	 Index	 (CPI)	 from	 January	2004	 to	 January	

2018	which	is	obtained	from	EIA.		

Table	3-	Consumer	price	index	of	U.S.		

Month		 CIP	 Month		 CIP	 Month		 CIP	

January	2004	 1.863	 May 2009	 2.130	 September 2014	 2.375	
February	2004	 1.867	 June 2009	 2.148	 October 2014	 2.374	
March	2004	 1.871	 July 2009	 2.147	 November 2014	 2.370	
April	2004	 1.874	 August 2009	 2.154	 December 2014	 2.363	
May	2004	 1.882	 September 2009	 2.159	 January 2015	 2.348	
June	2004	 1.889	 October 2009	 2.165	 February 2015	 2.353	
July	2004	 1.891	 November 2009	 2.172	 March 2015	 2.360	
August	2004	 1.892	 December 2009	 2.173	 May 2013	 2.319	
September	2004	 1.898	 January 2010	 2.175	 June 2013	 2.324	
October	2004	 1.908	 February 2010	 2.173	 July 2013	 2.329	
November	2004	 1.917	 March 2010	 2.174	 August 2013	 2.335	
December	2004	 1.917	 April 2010	 2.174	 September 2013	 2.335	
January	2005	 1.916	 May 2010	 2.173	 October 2013	 2.337	
February	2005	 1.924	 June 2010	 2.172	 November 2013	 2.341	
March	2005	 1.931	 July 2010	 2.176	 December 2013	 2.347	
April	2005	 1.937	 August 2010	 2.179	 January 2014	 2.353	
May	2005	 1.936	 September 2010	 2.183	 February 2014	 2.355	
June	2005	 1.937	 October 2010	 2.190	 March 2014	 2.360	
July	2005	 1.949	 November 2010	 2.196	 April 2014	 2.365	
August	2005	 1.961	 December 2010	 2.205	 May 2014	 2.369	
September	2005	 1.988	 January 2011	 2.212	 June 2014	 2.372	
October	2005	 1.991	 February 2011	 2.219	 July 2014	 2.375	
November	2005	 1.981	 March 2011	 2.230	 August 2014	 2.374	
December	2005	 1.981	 April 2011	 2.241	 September 2014	 2.375	
January	2006	 1.993	 May 2011	 2.248	 October 2014	 2.374	
February	2006	 1.994	 June 2011	 2.248	 November 2014	 2.370	
March	2006	 1.997	 July 2011	 2.254	 December 2014	 2.363	
April	2006	 2.007	 August 2011	 2.261	 January 2015	 2.348	
May	2006	 2.013	 September 2011	 2.266	 February 2015	 2.353	
June	2006	 2.018	 October 2011	 2.268	 March 2015	 2.360	
July	2006	 2.029	 November 2011	 2.272	 April 2015	 2.362	
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August	2006	 2.038	 December 2011	 2.272	 May 2015	 2.370	
September	2006	 2.028	 January 2012	 2.278	 June 2015	 2.376	
October	2006	 2.019	 February 2012	 2.283	 July 2015	 2.380	
November	2006	 2.020	 March 2012	 2.288	 August 2015	 2.380	
December	2006	 2.031	 April 2012	 2.292	 September 2015	 2.375	
January	2007	 2.034	 May 2012	 2.287	 October 2015	 2.378	
February	2007	 2.042	 June 2012	 2.285	 November 2015	 2.381	
March	2007	 2.053	 July 2012	 2.286	 December 2015	 2.378	
April	2007	 2.059	 August 2012	 2.299	 January 2016	 2.380	
May	2007	 2.068	 September 2012	 2.310	 February 2016	 2.375	
June	2007	 2.072	 October 2012	 2.316	 March 2016	 2.380	
July	2007	 2.076	 November 2012	 2.312	 April 2016	 2.388	
August 2007	 2.077	 December 2012	 2.312	 May 2016	 2.394	
September 2007	 2.085	 January 2013	 2.317	 June 2016	 2.401	
October 2007 2.092 February 2013 2.329 July 2016 2.401 
November 2007 2.108 March 2013 2.323 August 2016 2.406 
December 2007 2.114 April 2013 2.318 September 2016 2.410 
January 2008 2.122 May 2013 2.319 October 2016 2.417 
February 2008 2.127 June 2013 2.324 November 2016 2.421 
March 2008 2.134 July 2013 2.329 December 2016 2.428 
April 2008 2.139 August 2013 2.335 January 2017 2.440 
May 2008 2.152 September 2013 2.335 February 2017 2.441 
June 2008 2.175 October 2013 2.337 March 2017 2.437 
July 2008 2.190 November 2013 2.341 April 2017 2.441 
August 2008 2.187 December 2013 2.347 May 2017 2.439 
September 2008 2.189 January 2014 2.353 June 2017 2.440 
October 2008 2.170 February 2014 2.355 July 2017 2.442 
November 2008 2.132 March 2014 2.360 August 2017 2.453 
December 2008 2.114 April 2014 2.365 September 2017 2.464 
January 2009 2.119 May 2014 2.369 October 2017 2.466 
February 2009 2.127 June 2014 2.372 November 2017 2.474 
March 2009 2.125 July 2014 2.375 December 2017 2.479 
April 2009 2.127 August 2014 2.374 January 2018 2.492 
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5.2. Average	heat	rate	

Approximate	heat	rates	for	electricity	from	2004	to	2017	in	terms	of	Btu	per	kWh	are	

obtained	from	EIA.	The	data	was	updated	in	February	2018.		

 
Table	4-	Heat	rates	for	electricity	(EIA)	

Year	 Coal	 Petroleum	 Natural	gas	 Nuclear	 Noncombustible	
Renewable	Energy	

2004	 10331	 10571	 8647	 10428	 10016	
2005	 10373	 10631	 8551	 10436	 9999	
2006	 10351	 10809	 8471	 10435	 9919	
2007	 10375	 10794	 8403	 10489	 9884	
2008	 10378	 11015	 8305	 10452	 9854	
2009	 10414	 10923	 8160	 10459	 9760	
2010	 10415	 10984	 8185	 10452	 9756	
2011	 10444	 10829	 8152	 10464	 9716	
2012	 10498	 10991	 8039	 10479	 9516	
2013	 10459	 10713	 7948	 10449	 9541	
2014	 10428	 10814	 7907	 10459	 9510	
2015	 10495	 10687	 7878	 10458	 9319	
2016	 10493	 10811	 7870	 10459	 9232	
2017	 10493	 10811	 7870	 10459	 9232	

 
	

Note	that	coal	includes	anthracite,	bituminous,	sub-bituminous	and	lignite	coal,	waste	

coal	and	synthetic	coal.	Petroleum	includes	distillate	fuel	oil,	residual	fuel	oil,	fuel	oil,	

jet	fuel,	kerosene,	petroleum	coke,	and	waste	oil.		

The	fossil-fuels	heat	rate	is	used	as	the	thermal	conversion	factor	for	electricity	net		

Also,	 the	 heat	 and	 power	 plants	 are	 combined.	 All	 plants	 in	 the	 commercial	 and	

industrial	sectors	are	excluded	from	the	calculations.	
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5.3. EIA's	LCOE	projections	

Historical	 summary	 of	 EIA's	 LCOE	 projections	 from	 2010	 to	 2017	 obtained	 from	

wikipedia.org2.		

	

	
	

	

	

																																																								
2	https://en.wikipedia.org/wiki/Cost_of_electricity_by_source	
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5.4. The	predicted	value	of	electricity	generation	using	the	ANN	

and	the	hybrid	ARIMA	and	ANN:	

Table	5,	Table	6,	Table	7,	Table	8,	report	the	monthly	predicted	value	of	electricity	

generation	from	different	primary	energy	sources	in	terms	of	billion	kWh	from	January	

2015	to	November	2017.		

	
Table	5-	Actual	and	predicted	value	of	electricity	generation	from	coal	and	oil	between	2004	

to	2017	

Date	
Actual	
value	
(Coal)	

Fitted	value	 Actual	
value	(Oil)	

Fitted	value	

ANN	 Hybrid		 ANN	 Hybrid		

Jan-14	 155.9163	 117.2494	 141.6109	 6.7841	 1.9821	 2.3511	
Feb-14	 142.2176	 149.2783	 144.8578	 2.5778	 5.5400	 3.6380	
Mar-14	 135.2902	 116.8060	 144.2032	 2.9988	 1.9317	 2.5476	
Apr-14	 108.2787	 108.7611	 137.5928	 1.5834	 1.9066	 3.6859	
May-14	 117.7384	 108.9004	 136.8646	 1.8702	 1.8931	 2.3328	
Jun-14	 136.4698	 107.5873	 131.8706	 1.8451	 1.8841	 2.8904	
Jul-14	 148.4722	 107.1394	 138.0515	 1.8675	 1.8961	 1.5962	
Aug-14	 147.3290	 104.8720	 128.9580	 1.8729	 1.8997	 2.9142	
Sep-14	 125.0617	 101.4761	 132.8322	 1.7773	 1.8911	 2.2363	
Oct-14	 110.3222	 97.2764	 124.6784	 1.3679	 1.8844	 3.5080	
Nov-14	 118.1175	 88.2236	 120.2392	 1.5769	 1.8734	 1.8679	
Dec-14	 123.5607	 86.2770	 119.0140	 1.9211	 1.7969	 2.3495	
Jan-15	 131.4307	 91.3026	 123.2784	 2.7889	 1.8008	 1.1341	
Feb-15	 126.0236	 91.1259	 138.1820	 6.0736	 1.7960	 2.3252	
Mar-15	 107.4710	 88.5805	 138.3800	 1.6440	 1.8030	 1.8224	
Apr-15	 88.1470	 90.1245	 136.5760	 1.5702	 1.7918	 2.9509	
May-15	 103.6716	 86.2403	 128.9302	 1.7937	 1.7730	 1.0539	
Jun-15	 124.6771	 88.1285	 124.0496	 1.7228	 1.7746	 2.1854	
Jul-15	 138.0605	 93.6065	 118.0554	 2.1854	 1.7781	 0.4945	
Aug-15	 133.6513	 96.7822	 127.4083	 2.0132	 1.7674	 1.4025	
Sep-15	 117.0054	 102.9182	 128.9817	 1.8987	 1.7648	 2.0315	
Oct-15	 95.8715	 125.5690	 136.0737	 1.6572	 1.7704	 2.2481	
Nov-15	 86.3620	 130.2755	 139.3357	 1.5827	 1.7345	 0.5590	
Dec-15	 88.6217	 115.0935	 131.9650	 1.5748	 1.7256	 1.7183	
Jan-16	 112.6240	 113.5627	 124.9023	 2.2171	 1.7175	 0	
Feb-16	 91.9092	 109.9647	 102.4731	 2.0790	 1.7145	 0.7731	
Mar-16	 71.3458	 105.6999	 106.1971	 1.6952	 1.7236	 2.3298	
Apr-16	 71.4191	 106.7556	 118.8680	 1.7452	 1.7153	 0.9953	
May-16	 80.9347	 98.5778	 121.1342	 1.8143	 1.7648	 0.1657	
Jun-16	 115.1967	 104.2240	 123.9511	 1.8472	 1.7326	 1.1891	
Jul-16	 135.4201	 110.0884	 114.2703	 2.1857	 1.7605	 0	
Aug-16	 134.7624	 122.3026	 117.5752	 2.2103	 1.7167	 0.8406	
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Sep-16	 113.3470	 120.1123	 125.6076	 1.8217	 1.6982	 2.5761	
Oct-16	 98.4738	 116.9672	 125.9757	 1.4496	 1.7041	 0.0769	
Nov-16	 86.2753	 111.5201	 125.3286	 1.7367	 1.6992	 0.0148	
Dec-16	 117.9548	 117.2494	 141.6109	 1.9084	 1.9821	 2.3511	
Jan-17	 114.7028	 149.2783	 144.8578	 2.0109	 5.5400	 3.6380	
Feb-17	 86.1792	 116.8060	 144.2032	 1.5442	 1.9317	 2.5476	
Mar-17	 88.7252	 108.7611	 137.5928	 1.5625	 1.9066	 3.6859	
Apr-17	 80.9206	 108.9004	 136.8646	 1.1994	 1.8931	 2.3328	
May-17	 91.8081	 107.5873	 131.8706	 1.6537	 1.8841	 2.8904	
Jun-17	 106.9991	 107.1394	 138.0515	 1.7630	 1.8961	 1.5962	
Jul-17	 127.2503	 104.8720	 128.9580	 1.6185	 1.8997	 2.9142	
Aug-17	 119.1462	 101.4761	 132.8322	 1.6082	 1.8911	 2.2363	
Sep-17	 97.7310	 97.2764	 124.6784	 1.5681	 1.8844	 3.5080	
Oct-17	 89.3812	 88.2236	 120.2392	 1.4443	 1.8734	 1.8679	
Nov-17	 90.4921	 86.2770	 119.0140	 1.4860	 1.7969	 2.3495	
	
	
	
	

Table	6-	Actual	and	predicted	value	of	electricity	generation	from	natural	gas	and	
geothermal	between	2004	to	2017	

Date	
Actual	
value	
(NG)	

Fitted	value	 Actual	
value	
(Geo)	

Fitted	value	

ANN	 Hybrid		 ANN	 Hybrid		

Jan-14	 82.9691	 83.0075	 87.6510	 1.3550	 1.2729	 1.2777	
Feb-14	 68.7296	 86.7136	 103.1229	 1.2061	 1.3509	 1.3905	
Mar-14	 70.5173	 86.5973	 81.3693	 1.3377	 1.3231	 1.3139	
Apr-14	 69.5833	 89.9967	 95.4354	 1.3135	 1.2688	 1.3391	
May-14	 81.6449	 93.6384	 88.9946	 1.3324	 1.3271	 1.3104	
Jun-14	 90.9025	 95.7452	 81.0318	 1.2934	 1.3157	 1.3493	
Jul-14	 106.6955	 104.6966	 88.1242	 1.3196	 1.2946	 1.3346	
Aug-14	 113.9098	 102.5303	 103.1549	 1.3292	 1.2869	 1.3131	
Sep-14	 98.6902	 95.3307	 88.1544	 1.3075	 1.1640	 1.3554	
Oct-14	 90.0534	 94.1768	 92.8234	 1.3451	 1.2749	 1.3378	
Nov-14	 76.7106	 98.3671	 96.0746	 1.3625	 1.3903	 1.3373	
Dec-14	 82.7661	 86.7137	 83.2432	 1.3750	 1.3502	 1.3204	
Jan-15	 93.4496	 85.4020	 102.6468	 1.3619	 1.2836	 1.3000	
Feb-15	 84.2069	 85.7714	 113.3129	 1.2601	 1.2790	 1.3733	
Mar-15	 92.1103	 99.7270	 82.1895	 1.3940	 1.2799	 1.3262	
Apr-15	 85.8277	 110.2472	 78.2063	 1.2724	 1.2068	 1.3510	
May-15	 94.1240	 107.1126	 110.7412	 1.3902	 1.3053	 1.3236	
Jun-15	 113.3901	 106.4896	 113.6848	 1.3016	 1.2699	 1.3523	
Jul-15	 132.2659	 117.4606	 86.1781	 1.3567	 1.2911	 1.3540	
Aug-15	 130.3142	 107.7688	 63.7594	 1.3441	 1.3058	 1.3258	
Sep-15	 114.7917	 96.4652	 77.8131	 1.2029	 1.3497	 1.3538	
Oct-15	 102.0218	 100.6604	 115.0646	 1.3230	 1.3431	 1.3469	
Nov-15	 94.1323	 91.1104	 85.6837	 1.3336	 1.3980	 1.3512	
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Dec-15	 101.0218	 83.9242	 94.1627	 1.3770	 1.4199	 1.3481	
Jan-16	 101.7862	 96.7019	 61.8147	 1.3320	 1.3666	 1.3203	
Feb-16	 90.8494	 85.9365	 54.1289	 1.2434	 1.3681	 1.3710	
Mar-16	 95.8487	 136.3440	 82.0701	 1.3152	 1.3548	 1.3382	
Apr-16	 91.2573	 113.8152	 63.3153	 1.2090	 1.4168	 1.3618	
May-16	 102.4819	 115.2682	 99.4953	 1.3418	 1.2535	 1.3376	
Jun-16	 123.0428	 112.4245	 69.9057	 1.2514	 1.3198	 1.3557	
Jul-16	 142.5580	 116.2048	 74.8729	 1.3112	 1.3615	 1.3662	
Aug-16	 145.6101	 130.1436	 89.1414	 1.3243	 1.3527	 1.3436	
Sep-16	 117.1967	 116.5169	 87.5973	 1.3267	 1.4190	 1.3590	
Oct-16	 94.7541	 109.9944	 92.2938	 1.3532	 1.1622	 1.3546	
Nov-16	 85.9068	 107.1446	 79.7549	 1.3639	 1.4417	 1.3587	
Dec-16	 88.0876	 83.0075	 87.6510	 1.4539	 1.2729	 1.2777	
Jan-17	 82.8778	 86.7136	 103.1229	 1.3995	 1.3509	 1.3905	
Feb-17	 72.9904	 86.5973	 81.3693	 1.2413	 1.3231	 1.3139	
Mar-17	 86.9471	 89.9967	 95.4354	 1.3798	 1.2688	 1.3391	
Apr-17	 78.6219	 93.6384	 88.9946	 1.3573	 1.3271	 1.3104	
May-17	 88.9479	 95.7452	 81.0318	 1.2951	 1.3157	 1.3493	
Jun-17	 107.9290	 104.6966	 88.1242	 1.2647	 1.2946	 1.3346	
Jul-17	 136.0430	 102.5303	 103.1549	 1.3678	 1.2869	 1.3131	
Aug-17	 131.2785	 95.3307	 88.1544	 1.3570	 1.1640	 1.3554	
Sep-17	 109.0336	 94.1768	 92.8234	 1.3254	 1.2749	 1.3378	
Oct-17	 99.2773	 98.3671	 96.0746	 1.2609	 1.3903	 1.3373	
Nov-17	 84.8566	 86.7137	 83.2432	 1.3341	 1.3502	 1.3204	
	
	
	
	
Table	7-	Actual	and	predicted	value	of	electricity	generation	from	hydroelectric	and	solar	

between	2004	to	2017	

Date	
Actual	
value	
(Hydro)	

Fitted	value	 Actual	
value	
(Solar)	

Fitted	value	

ANN	 Hybrid		 ANN	 Hybrid		

Jan-14	 21.5101	 25.5310	 26.5284	 0.7340	 3.7183	 0.4916	
Feb-14	 17.2889	 26.4634	 27.7529	 0.8139	 3.9082	 0.9112	
Mar-14	 24.1388	 27.0361	 19.6287	 1.2865	 4.0909	 0.1263	
Apr-14	 25.3095	 26.6935	 23.9195	 1.4529	 4.2611	 0.4275	
May-14	 26.4104	 24.9973	 19.7174	 1.7101	 4.4059	 0.6641	
Jun-14	 25.6405	 21.7082	 18.1840	 1.8828	 4.5129	 0.0736	
Jul-14	 24.2649	 16.9520	 22.0720	 1.7482	 4.5560	 0.6970	
Aug-14	 19.7085	 11.6137	 23.5340	 1.8387	 4.5139	 0.3429	
Sep-14	 15.9858	 6.9881	 25.8846	 1.7954	 4.4101	 0.8385	
Oct-14	 17.0635	 3.9128	 27.0196	 1.6799	 4.3067	 0.8442	
Nov-14	 18.5239	 2.4149	 25.7549	 1.3509	 4.2447	 0.6498	
Dec-14	 22.2015	 2.2187	 17.3718	 1.0107	 4.2244	 0.5752	
Jan-15	 24.0140	 42.5263	 24.3114	 1.1342	 0	 0.2127	
Feb-15	 22.1789	 39.6839	 22.8024	 1.4593	 0	 1.0312	
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Mar-15	 24.1480	 36.3490	 17.7265	 2.0373	 0	 0.6923	
Apr-15	 22.3305	 32.6418	 19.8577	 2.3378	 0	 0	
May-15	 19.9954	 29.0622	 14.1566	 2.4561	 0	 0.9088	
Jun-15	 20.2966	 26.2598	 17.5564	 2.5120	 0	 0.0851	
Jul-15	 20.8959	 25.0446	 18.6372	 2.5795	 0	 0.6923	
Aug-15	 19.0295	 25.9847	 13.6675	 2.6394	 0	 1.9500	
Sep-15	 16.0151	 28.8057	 14.6620	 2.1778	 0.4385	 0.8569	
Oct-15	 16.5132	 32.5137	 18.5808	 1.8754	 0.8675	 0	
Nov-15	 19.2020	 36.1536	 12.4541	 1.7015	 1.2527	 0.7902	
Dec-15	 23.0165	 39.4920	 14.7502	 1.5453	 1.6284	 2.8394	
Jan-16	 25.4639	 42.1251	 15.2921	 1.4582	 1.9761	 1.1593	
Feb-16	 24.0058	 44.1557	 19.4752	 2.2005	 2.3069	 0	
Mar-16	 27.2256	 45.9605	 22.8212	 2.5708	 2.6826	 0	
Apr-16	 25.7349	 47.5204	 23.9342	 2.8311	 3.1068	 0	
May-16	 25.3554	 48.8893	 23.8608	 3.3750	 3.5712	 0.4569	
Jun-16	 23.1255	 50.2744	 22.1516	 3.4177	 4.0811	 1.7457	
Jul-16	 21.3367	 51.9687	 25.2303	 3.8865	 4.6481	 0	
Aug-16	 19.4580	 54.0890	 15.1528	 3.9084	 5.2396	 0.3322	
Sep-16	 16.2789	 56.4242	 16.9352	 3.5842	 5.8000	 0	
Oct-16	 17.2294	 58.5321	 13.7256	 3.1466	 6.2612	 1.5152	
Nov-16	 18.7215	 60.1616	 15.2858	 2.7294	 6.5952	 1.0450	
Dec-16	 22.3903	 25.5310	 26.5284	 2.3890	 3.7183	 0.4916	
Jan-17	 27.7116	 26.4634	 27.7529	 2.1232	 3.9082	 0.9112	
Feb-17	 24.4105	 27.0361	 19.6287	 2.4630	 4.0909	 0.1263	
Mar-17	 30.0691	 26.6935	 23.9195	 4.3699	 4.2611	 0.4275	
Apr-17	 29.1728	 24.9973	 19.7174	 4.7057	 4.4059	 0.6641	
May-17	 32.0194	 21.7082	 18.1840	 5.6779	 4.5129	 0.0736	
Jun-17	 30.2741	 16.9520	 22.0720	 6.1517	 4.5560	 0.6970	
Jul-17	 25.5997	 11.6137	 23.5340	 5.4123	 4.5139	 0.3429	
Aug-17	 21.1134	 6.9881	 25.8846	 5.3116	 4.4101	 0.8385	
Sep-17	 18.8503	 3.9128	 27.0196	 5.0796	 4.3067	 0.8442	
Oct-17	 17.0936	 2.4149	 25.7549	 4.7449	 4.2447	 0.6498	
Nov-17	 19.7057	 2.2187	 17.3718	 3.0380	 4.2244	 0.5752	
	
	
	
	
Table	8-	Actual	and	predicted	value	of	electricity	generation	from	wind	and	nuclear	between	

2004	to	2017	

Date	
Actual	
value	
(Wind)	

Fitted	value	 Actual	
value	

(Nuclear)	

Fitted	value	

ANN	 Hybrid		 ANN	 Hybrid		

Jan-14	 17.8946	 0	 9.7087	 73.1626	 75.6129	 64.1995	
Feb-14	 13.9966	 0	 17.9957	 62.6390	 74.2272	 70.2383	
Mar-14	 17.7221	 0	 17.2287	 62.3971	 71.9062	 60.1639	
Apr-14	 18.6213	 0	 10.0961	 56.3846	 68.8486	 68.7919	
May-14	 15.5906	 0	 16.3641	 62.9474	 65.4993	 62.4239	
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Jun-14	 15.7862	 7.8905	 15.0389	 68.1382	 61.9456	 63.3194	
Jul-14	 12.1764	 15.1735	 12.6140	 71.9401	 58.0375	 64.1393	
Aug-14	 10.1621	 21.4233	 16.2247	 71.1287	 53.7743	 64.8270	
Sep-14	 11.5098	 26.6164	 15.0828	 67.5345	 49.6874	 64.1736	
Oct-14	 14.4923	 30.6813	 12.8775	 62.3910	 46.7240	 71.4765	
Nov-14	 18.8475	 33.8172	 23.3739	 65.1402	 45.3548	 69.5145	
Dec-14	 14.6965	 36.5152	 9.9600	 73.3625	 45.4857	 58.4053	
Jan-15	 15.1463	 0	 13.3469	 74.2700	 50.9651	 63.9158	
Feb-15	 14.9076	 0	 18.4303	 63.4615	 53.4520	 73.0730	
Mar-15	 15.2930	 0	 10.7471	 64.5468	 55.9555	 63.8002	
Apr-15	 17.8505	 0	 16.0699	 59.7845	 58.2981	 71.4933	
May-15	 17.1364	 2.8875	 16.4315	 65.8265	 60.3566	 64.9724	
Jun-15	 13.4096	 9.1078	 17.6232	 68.5162	 62.2335	 66.7648	
Jul-15	 13.6656	 15.0304	 12.9933	 71.4122	 64.1307	 63.3344	
Aug-15	 13.0702	 20.3573	 16.6198	 72.4154	 66.2337	 64.3121	
Sep-15	 13.9610	 24.9650	 11.8948	 66.4764	 68.6649	 64.1577	
Oct-15	 16.3635	 28.6407	 19.6385	 60.5709	 71.3426	 70.3380	
Nov-15	 19.6631	 31.2028	 17.7347	 60.2639	 74.0595	 68.0606	
Dec-15	 20.0802	 32.6950	 10.4025	 69.6337	 76.8244	 56.9360	
Jan-16	 18.4469	 33.0954	 14.2124	 72.5248	 79.2849	 63.2366	
Feb-16	 20.1184	 32.8083	 15.4120	 65.6381	 81.3942	 74.0434	
Mar-16	 21.9198	 32.1214	 5.5471	 66.1489	 83.4134	 62.0413	
Apr-16	 20.7810	 31.3714	 15.4696	 62.7318	 85.1524	 70.4576	
May-16	 18.8320	 30.8885	 21.9848	 66.5765	 86.3982	 65.0702	
Jun-16	 16.2898	 30.8220	 2.3194	 67.1753	 87.0401	 67.1431	
Jul-16	 17.6051	 31.2386	 20.2313	 70.3493	 87.0010	 62.0991	
Aug-16	 13.5788	 32.1662	 15.7689	 71.5264	 86.2803	 64.4513	
Sep-16	 16.3907	 33.5452	 5.1811	 65.4482	 85.0482	 65.5780	
Oct-16	 20.3179	 35.1430	 18.4894	 60.7333	 83.6112	 69.6035	
Nov-16	 19.3878	 36.6797	 16.6495	 65.1788	 82.2431	 69.0040	
Dec-16	 23.1220	 0	 9.7087	 71.6624	 75.6129	 64.1995	
Jan-17	 20.5921	 0	 17.9957	 73.1206	 74.2272	 70.2383	
Feb-17	 22.0727	 0	 17.2287	 64.0528	 71.9062	 60.1639	
Mar-17	 26.0081	 0	 10.0961	 65.0932	 68.8486	 68.7919	
Apr-17	 25.7019	 0	 16.3641	 56.7434	 65.4993	 62.4239	
May-17	 22.5873	 7.8905	 15.0389	 61.3094	 61.9456	 63.3194	
Jun-17	 19.6267	 15.1735	 12.6140	 67.0108	 58.0375	 64.1393	
Jul-17	 15.8339	 21.4233	 16.2247	 71.3142	 53.7743	 64.8270	
Aug-17	 13.1366	 26.6164	 15.0828	 72.3842	 49.6874	 64.1736	
Sep-17	 17.2776	 30.6813	 12.8775	 68.0734	 46.7240	 71.4765	
Oct-17	 24.7669	 33.8172	 23.3739	 65.9948	 45.3548	 69.5145	
Nov-17	 23.2997	 36.5152	 9.9600	 66.6179	 45.4857	 58.4053	
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