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Abstract 

Investigating changes in productivity of an old growth Juniperus stand:  

A physiological and isotopic approach 

by Scott E. Spal 

Forest ecosystems play a central role in the global carbon cycle and are a major part of the terrestrial carbon 

sink. For more accurate predictions of terrestrial C sequestration models require a mechanistic understanding 

of how carbon cycling in trees and forests responds to atmospheric CO2, temperature, and precipitation.  With 

this comes a need for a greater understanding of the physiological mechanisms involved with changes in 

forest productivity as trees and forests age. This research used an old growth stand of Juniperus virginiana 

(Eastern red cedar) in the Central Appalachian Mountains of West Virginia to examine how carbon 

assimilation changes over time. This study had two components; the first examined of how tree age affects the 

physiological ecology of Juniperus virginiana in their native habitat; the second used the stable C isotopes in 

the annual growth rings to determine whether we could detect how climatic and environmental factors 

affected C assimilation and growth over the last century.  The first component of this study provided little 

evidence that age strongly affects leaf photosynthesis or hydraulic conductivity.  Current environmental 

conditions are far more indicative of physiological functioning than tree age.  However, it may be that age-

related changes in the physiology of J. virginiana occur earlier than the youngest ages of trees in this stand. 

The second component of this study found weak links between climate and tree productivity.  Interestingly, a 

strong link between Ci/Ca and deposition of both nitrogen and sulfur may be evidence that regulations put 

in place by congress have had noticeable effects on tree physiology.  In an area of tree physiology that has 

focused primarily on the effect of rising CO2 concentrations this link may lead to investigating other possible 

drivers of physiological change in trees.   
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 CHAPTER 1: General introduction 

 

Forest ecosystems play a central role in the global carbon cycle; they sustain approximately 80% of 

terrestrial net primary production and 50% of global NPP (Whittaker 1975; Field et al. 1998) and are a major 

part of the terrestrial carbon sink that removes approximately 30% of anthropogenic C emissions each year 

(Canadell et al. 2007). For more accurate predictions of terrestrial C sequestration coupled biosphere–

atmosphere models require a mechanistic understanding of how carbon cycling in trees and forests responds 

to atmospheric CO2, temperature, and precipitation (Dufresne et al. 2002; Friedlingstein et al. 2006; Meehl et 

al. 2007).  In addition, since trees and forests are not static, a greater understanding of physiological 

mechanisms involved with changes in forest productivity as trees and forests age is essential to our 

understanding of forest ecosystems (Gower et al. 1996; Ryan and Waring 1992). My thesis research used an 

old growth stand of Juniperus virginiana (Eastern red cedar) in the Central Appalachian Mountains of West 

Virginia to examine how carbon assimilation changes as they age. I performed two studies; the first examined 

of how tree age affects the physiological ecology of Juniperus virginiana in their native habitat; the second 

used the stable C isotopes in the annual growth rings to determine whether we could detect how climatic and 

environmental factors affected C assimilation and growth over the last century. 

 

A physiological examination of seasonal assimilation in old Juniperus virginiana trees 

Forest productivity declines as the trees in a forest age (reviews by Ryan et al. 1997; Pregitzer & 

Euskirchen 2004; DeLucia et al. 2007).  The reason for this decline, however, is unclear. One hypothesis is 

that there may be a decline in photosynthesis linked to the reduced ability to provision foliage with water, 

specifically a reduced stem hydraulic conductance or the ability to move water through the stem (Ryan and 

Yoder 1997). Several studies have examined the hydraulic limitation hypothesis, but most of these studies 

have used trees that are both tall and old (e.g. Koch et al. 2004) and the effects of these two factors on 

hydraulic conductivity may be confounded.  The gravitational force exerted on the water column in xylem has 

been found to lower the water potential by approximately 0.01 MPa per meter (Ryan and Yoder 1997) and 

thus, reduced hydraulic conductance may be a consequence of tree height and not a consequence of old age.  

Few studies have examined the effect of tree age on hydraulic limitation independent of tree height 

(McDowell et al. 2002; Mencuccini et al. 2005).   

My thesis project examined the physiological functioning of a chronosequence of J. virginiana trees 

that are approximately the same height (6.77 ± 0.54 m) yet differ greatly in age (98 – 481 years).  

Measurement of hydraulic conductance and photosynthetic parameters were conducted to investigate age 

related declines in productivity.  A chronosequence of trees in a single stand was used to reduce variability 

due to site differences such as slope, aspect and nutrient availability, as well as minimizing ecological factors, 

such as plant competition and tree height.   

My assessment of productivity had three elements.  First, I measured stem hydraulic conductance of 

J. virginiana trees with the hypothesis that hydraulic conductance will decrease with age.   Second, I assessed 
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the stomatal and biochemical limitations of leaf photosynthesis of these trees across two growing seasons.  If 

the stomatal limitation of photosynthesis increases with tree age, this would provide support for the hydraulic 

limitation hypothesis.  If biochemical limitations increase with tree age, this might indicate nutrient limitations 

of productivity instead of hydraulic conductance. Thus, I also measured foliar nitrogen across the tree 

chronosequence.  The third element of my study was to use δ13
C of leaf material as a proxy for the 

relationship between water use and photosynthesis to provide an integrated index of water use efficiency 

(Gower et al. 1996) that links stomatal conductance over an entire year to C assimilation.   

 

An examination of long-term Juniperus productivity using stable isotopes in tree rings 

In order to investigate changes in productivity over the last century, I used stable isotopes of carbon 

(δ13
C) in the annual rings of the same stand of J. virginiana trees as in the previous study to examine how 

δ
13

C, the ratio of internal leaf CO2 concentration (Ci) to atmospheric CO2 concentration (Ca), and 

instantaneous water use efficiency changed over the last one hundred years. Correlations between these 

parameters and records of climate and other environmental factors will be used to determine potential 

explanations for patterns of stable isotopes in the chronosequence of tree rings.  This site-specific analysis 

may indicate whether carbon isotopes make these J. virginiana trees a good candidate to use for climate 

reconstruction of the eastern U.S. 

Photosynthesis is the physiological process regulating the incorporation of carbon into plants.  In a 

light saturated environment photosynthesis is limited by ribulose-1,5-bisphosphate carboxylase/oxygenase 

activity or the efficiency of regeneration of ribulose-1,5-bisphosphate (Farquhar and von Caemmerer 1982).    

The link between environmental conditions and physiological response, with regards to carbon, can be 

determined using the equation below that calculates the fractiontion of heavy and light C isotopes in a sample, 

                                           

where a refers to fractionation resulting from changes in diffusion through stomata,  b is the enzymatic 

discrimination during carboxylation and Ci/Ca refers to the ratio of the CO2 concentration inside the leaf to 

atmospheric CO2 concentration (Farquhar et al. 1989).  These isotopic fractionations are affected by the 

biochemical demand for C due to photosynthetic activity (Farquhar and Sharkey 1982) and stomatal 

conductance. Stomata are the primary regulator of water loss in plants but also have large effects on CO2 

inside the leaf and, therefore, influence isotopic composition of C greatly.  By investigating current and past 

Ci/Ca ratios estimated from the isotopic composition of wood samples, the influence of climate and 

atmospheric composition on stomatal regulation can be determined.  The link between assimilation of carbon 

and water use is investigated using water use efficiency (WUE), calculated as carbon gain per unit of water 

lost through transpiration.  Many factors contribute to stomatal control, such as changing humidity and 

temperature, making interpretations of WUE from δ13
C difficult (Farquhar and Sharkey 1982).  Understanding 

the relationships between the isotopic signature of plant material and the biochemical processes that relate 

WUE to climatic conditions can lead to better understanding of plant physiology over the life of the tree, 

∆
13C = a + (b − a)(Ci /Ca )
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climate variability and how the trees respond to other environmental factors.  In this study, WUE was used to 

estimate the significance of stomatal changes in trees throughout the past century.   

Dendrochronology has been used to analyze long-term tree response to weather variability in efforts 

to better understand climate variability.  The use of stable isotopes of C that are locked in the cellulose of 

wood is a valuable tool that provides an annually defined index of physiological response to climate 

(McCarroll and Loader 2004).   The differential incorporation of heavy and light isotopes in wood is termed 

fractionation and is an indicator of physiological response to climate or other environmental factors.   If there 

are direct correlations between the isotopes found in wood and weather, tree rings may be a relative index of 

past climate.  These stable isotopic signals function primarily to give an indication of physiological 

functioning over time but may also provide indices of past climate variability which can be used to strengthen 

climate reconstructions (Spiker and Hatcher 1987; Schleser et al. 1999).   The strength of using changes in 

stable isotopes as part of a dendrochronological reconstruction of climate is that they provide a mechanistic 

link between isotopic composition of wood and environmental conditions.  The uses of multiple climate 

proxies (e.g., δ13
C and δ18

O) may make climate reconstruction more statistically powerful and enhance the 

ring width climate signal (Gagen et al. 2006).   While relationships between climate and isotopic signature of 

wood can often be found, understanding the mechanisms linking physiological responses to climate is 

imperative for future development of climate reconstructions.  This technique is often more powerful than 

traditional dendrochrological reconstruction of climate (von Storch et al. 2004), but few analyses exist for 

eastern North America.    

 

Study site 

The study site is a stand of J. virginiana trees located along the South branch of the Potomac River in 

southern Grant County, WV, on a northwestern facing limestone outcrop located above Smoke Hole Canyon 

(38°53'1.95"N 79°14'10.05"W; 670 m above sea level).  This site in the Ridge and Valley Physiographic 

Province of northeastern West Virginia has been defined as a cedar glade (Bartgis 1993) and is approximately 

0.1 hectares. The soil in this glade woodland has little organic matter and is primarily composed of broken 

limestone. In addition to Juniperus virginiana trees, the overstory vegetation is comprised of Quercus 

muhlenbergii, Quercus alba, Fraxinus Americana, and Juglans nigra, and the open overstory allows most 

trees receive full sunlight throughout the day. 
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CHAPTER 2: Investigation of age related changes in Photosynthetic Capacity and Hydraulic 

Conductance of Juniperus virginiana in a Cedar Glade in West Virginia, US.   

 

Abstract 

Using an old-growth stand of Juniperus virginiana in the Central Appalachian Mountains of West 

Virginia, we examined age-related changes in both photosynthesis and hydraulic conductance on an even-

height chronosequence of trees.   This stand of trees was chosen to investigate how physiological mechanisms 

changed over the last century as an essential part of our furthering our understanding of tree age effects on 

forest ecosystems.  Studying forest productivity changes over time will improve our ability to understand the 

ecological significance of tree physiology on the global carbon cycle.  We predicted that productivity would 

decline in trees between 98 and 481 years old, and that reductions in hydraulic conductance would be 

responsible for these declines.  There were no significant reductions in photosynthesis, stomatal conductance, 

ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity or electron transport in the 

chronosequence until three young trees (<10 years old) were included in the analysis.  Hydraulic conductance 

showed a significant decline with tree age (r2=0.20, p=0.05) on day 279.  However, all other sampling dates 

showed no such relationship.    The significant relationships only occurred under specific climatic conditions 

and were not present on all sampling dates.  The data suggest that in these trees any age related decline in 

productivity is occurring before the trees reach 100 years of age, after which environmental conditions have 

more of an effect on changes in productivity than age.     

 

Introduction 

Forest trees are responsible for about 80% of terrestrial net primary productivity (Whittaker 1975; 

Field et al. 1998) and contribute to a significant portion of the terrestrial carbon sink that removes about 30% 

of anthropogenic carbon emissions (Canadell et al. 2007).  Thus, an understanding of the ecological and 

physiological factors that control tree growth is important for developing models that estimate carbon cycling 

in forest ecosystems. One factor that requires a greater understanding is the common observation that tree 

productivity slows as trees become older and taller (Gower et al. 1996; Ryan and Waring 1992).  Several 

hypotheses have been developed for why tree growth slows with age including an alteration in the balance 

between photosynthesis and respiration, changes in nutrient availability, and stomatal constraint leading to 

increased hydraulic resistance; with the hydraulic limitation hypothesis gaining the most support in the 

ecological community (Gower et al. 1996; Ryan and Yoder 1997).  Studies examining these hypotheses have 

reported varied results suggesting that multiple drivers may be at play and that a species dependent 

examination of physiological functioning in aging trees is important in understanding NPP decline (Ryan and 

Waring 1992; Yoder et al. 1994; Gower et al. 1996; McDowell et al. 2002; Koch et al. 2004; Mencuccini et 

al. 2007).  Several studies have examined the hydraulic limitation hypothesis, but most have used trees that 

are both tall and old  making it difficult to separate the confounding effects of age and height on hydraulic 

conductance (Mencuccini and Grace 1996; Ryan and Yoder 1997; McDowell et al. 2002; Phillips et al. 2002; 
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Barnard and Ryan 2003; Koch et al. 2004; Mencuccini et al. 2005; Yoder et al. 1994).  The gravitational force 

exerted on the water column in xylem has been found to lower the water potential by approximately 0.01 MPa 

per meter (Ryan and Yoder 1997) and thus, reduced hydraulic conductance may be a consequence of tree 

height and not only a consequence of old age.  Few studies have examined the effect of tree age on hydraulic 

conductance independent of tree height (McDowell et al. 2002; Mencuccini et al. 2005).   

The purpose of this study was to examine age-related declines in photosynthesis and hydraulic 

conductance using a chronosequence of Juniperus virginiana trees that vary greatly in age (98 – 481 years), 

but are similar in height (3.4 to 10.7 m). We hypothesized that both assimilation and hydraulic conductance 

would decline as J. virginiana trees increased in age.   

 

Materials and Methods 

To test our hypothesis, trees from a single stand were used to help reduce variations due to 

differences in slope, aspect, geology, climate, and nutrient availability that are often inherent in studies that 

compare trees from different sites.  Stem hydraulic conductance was measured on branches from the upper 

canopy (Kolb et al. 1996) along a tree chronosequence to determine whether water transport diminished with 

tree age.  Light-saturated net photosynthesis versus leaf internal CO2 concentration was measured on the 

chronosequence to assess whether stomatal and biochemical limitations of leaf photosynthesis were affected 

by tree age.  We hypothesized that if stomatal limitation of photosynthesis increased with tree age, this would 

provide support for the hydraulic limitation hypothesis due to the role of stomata in regulating water loss.  

Measurement of δ13C of current year leaf tissue, a proxy for the ratio of the CO2 concentration inside the leaf 

to atmospheric CO2 concentration (Ci/Ca), was conducted to investigate the role stomatal control might play in 

changes in productivity over the life of the leaves (Farquhar et al. 1982).  Nutrient limitation was investigated 

by comparing biochemical limitations in conjunction with decreased foliar N concentrations which may 

indicate nutrient limitation, rather than hydraulic conductance, as a driver of reductions in productivity as the 

tree ages.   

 

Site description and experimental design 

The study site is a stand (~0.1 ha) of J. virginiana trees located along the South branch of the 

Potomac River in southern Grant County, WV, on a northwestern facing limestone outcrop above Smoke 

Hole Canyon (38°53'1.95" N, 79°14'10.05" W; 670 m above sea level).  This site is in the Ridge and Valley 

Physiographic Province of northeastern West Virginia has been defined as a cedar glade (Bartgis 1993) with 

soil that has little organic matter and is primarily composed of broken limestone.  In addition to J. virginiana 

trees, the overstory vegetation is comprised of Quercus muhlenbergii, Quercus alba, Fraxinus Americana, 

and Juglans nigra and the open overstory allows most trees to receive full sunlight throughout the day.  

A transect was established running northeast to southwest and parallel to the bluff approximately 6 m 

from the edge.  J. virginiana trees were cored along the transect using a 5-mm diameter tree borer and 

prepared using standard dendrochronology techniques (Fritts 1976).  Cores were used to give approximate 
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ages by counting rings and were not cross-dated due to the lack of a master chronology for the site at the time 

of sampling. Thus, tree age is an estimate because cores were not analyzed for false or missing rings.  Using 

these ages, a chronosequence of 21 trees (98 – 481 years old) with even height (6.77 ± 0.54 m) were selected 

for physiological measurements.   

Precipitation events and maximum and minimum temperature during the measurement period (June 

to October 2008 and April to September 2009) were collected from a weather station in Cabins, WV 

approximately 8 miles from the site (Figure 1).  Pre-dawn and mid-day water potentials were measured on all 

trees in our chronosequence using a Scholander Pressure Chamber (Soilmoisture Equipment Co., Santa 

Barbara, CA).  For these measurements, small branch sections (10 cm in length) were collected using pole 

loppers from the upper canopy of the trees.  Predawn measurements were taken at approximately 0500 EST 

and midday measurements were taken at approximately 1200 EST.  At the time of mid-day measurements, 

soil moisture at 1-5 cm below the soil surface was determined using time-domain reflectometry (Hydrosense 

Soil Moisture Probe, Campbell Scientific, Logan, UT).  

  

Gas exchange measurements 

Gas exchange was measured on ten J. virginiana trees in the chronosequence using an open-flow gas 

exchange system with an attached red/blue LED light source (LI6400, Li-Cor, Inc, Lincoln, NE).  Trees were 

chosen to have as even a distribution of ages as possible with trees determined to be 98, 112, 145, 168, 208, 

228, 248, 308, 420, and 481 years old. Branches were collected in 2008 and 2009 from the upper canopy 

using pole loppers and immediately placed into containers filled with water (floral water picks). Foliage used 

for analysis was from mature leaves taken from the end of branches.  Measurements were taken 

approximately every 30 days, May through October, between 1000 and 1600 EST on sunny days to minimize 

diurnal effects (Singsaas et al. 2000) with saturating light (~1500 µmol m-2 s-1).  The initial CO2 concentration 

was maintained at 380 µl l-1.  

After an equilibration of ~ 5 minutes, steady-state light-saturated photosynthesis (Asat) and stomatal 

conductance (gs) were measured. The relationship between net photosynthetic rate (A) and internal leaf CO2 

concentration (Ci) was then measured to assess the stomatal and biochemical limitations on photosynthesis 

(von Caemmerer and Farquhar 1981, Farquhar and Sharkey 1982, Sharkey 1985).   To generate A-Ci curves, 

photosynthesis was measured at ten CO2 concentrations between 50 and 1500 µl CO2 l
-1 air using the same 

environmental conditions used for the steady state measurements. These measurements were then used to 

parameterize the model of photosynthesis proposed by Farquhar et al. (1980) and subsequently modified by 

Harley et al. (1992) and Bernacchi et al. (2001).  The model uses biochemically-based equations to describe 

how photosynthesis is regulated by the amount, activity and kinetic properties of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (rubisco) (Vcmax), and the rate of electron transport mediated through ribulose-1,5-

bisphosphate regeneration (Jmax) (Harley and Sharkey 1991, Harley et al. 1992).   
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Since they are temperature dependent, values of both Vcmax and Jmax were standardized to 25 °C (Bernacchi et 

al. 2001, McMurtie and Wang 1993).  Relative stomatal limitation (RSL) was calculated using, 

                                 (1) 

where A is the photosynthetic rate at ambient CO2 concentration of the atmosphere (Ca) and A0 is the 

theoretical photosynthetic rate where Ci equals Ca, (i.e. stomatal conductance is infinite; Farquhar and Sharkey 

1982).   

After the gas exchange analyses, all leaves were taken to the lab and scanned to determine their 

projected area (Canoscan 9950F, Canon, Lake Success, NY). The projected leaf area was then multiplied by 

pi to calculate total leaf area (Cregg 1992).   Leaf samples were dried at 65°C, and leaf mass per unit area was 

calculated (LMarea, g m-2) by dividing mass by total leaf area.  Once leaf mass was measured the leaves were 

ground to a fine powder and foliar N was measured using Dumas combustion (Carlo Erba NCS elemental 

analyzer, Fisons Instruments, Milan, Italy).   

In 2009, an additional 2-3 trees that were ~10 years old were sampled in a pasture approximately one 

kilometer from the study transect. These trees were used to compare photosynthetic capacity of J. virginiana 

trees of the cedar glade chronosequence to younger trees since no trees younger than 98 years old could be 

found in the cedar glade study site.  

 

Hydraulic Conductance 

 Stem hydraulic conductance (kn) was measured using the method of Kolb et al. (1996) which was designed 

for highly branched stems like those found in J. virginiana. This method was adapted from Sperry et al. 

(1988) where hydraulic conductance is measured as a percentage of maximum water flow through the stem. In 

2008, short-branched stems (~20 cm) from each tree of our chronosequence were cut from the upper canopy, 

placed in plastic bags with the cut end of stem being placed in a floral water pick, and kept on ice until 

returning to the lab.  Hydraulic conductance was measured within three days of cutting the stems.  Stems were 

re-cut under water and placed into a vacuum chamber with a hose attached to the cut end.  The branch was 

subjected to an increasing vacuum to mimic the tension placed on the water column during transpiration.  The 

flow of water through the tube was measure at 15 s intervals. These flow rates were plotted and the slope of 

the line was defined as the total stem hydraulic conductance (kn).    

 

Stable isotope analysis   

Leaves that were used in gas exchange analysis in 2008 were collected and a subsample of leaf 

material from each tree was analyzed for δ13
C with a ThermoFinnigan Conflow III interface and Finnigan 

Delta-plus Continuous Flow Stable Isotope Ratio Mass Spectrometer (Stable Isotope Mass Spectrometry 

Laboratory, Kansas State University, Manhattan, KS) using PeeDee River belemnite (PDB) as the reference. 

RSL = (1− A / A0) x 100
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Samples had a with-in run variation of 0.07‰ and laboratory standards had a variation of <0.04‰. Carbon 

isotope discrimination (∆13C) was calculated according to (Farquhar et al. 1982) using, 

                                                                         (2) 

where δ13Cleaf were isotopic values of the most recent leaf material and δ13Cair values were atmospheric values 

(McCarroll and Loader 2004). The Ci/Ca ratio was calculated according to Farquhar et al. (1982) using, 

                                                                                                      (3) 

where a is the fractionation constant due to diffusion of CO2 through the stomatal aperture (4.4‰, O’Leary 

1981) and b is the fractionation constant due to rubisco (27‰, Farquhar and Richards 1984). 

 

Data analysis 

The effects of tree age on photosynthetic capacity and stem hydraulic conductance were examined 

two ways.  First, regression analysis was used for each measurement date to determine whether tree age 

correlated with any of the measured physiological parameters (JMP, Statistical Analysis Systems, Cary, NC).  

This analysis was conducted for each growing season. An additional regression analysis included values from 

the 10 year-old trees from the nearby field to determine if an age effect may have occurred before trees 

reached an age of 98 years - the youngest age of the trees in the cedar glade chronosequence.   The second 

way the data were examined was through the use of a one-way analysis of variance (ANOVA) model that 

included the effects of measurement date in a growing season on kn, light-saturated photosynthesis, Vcmax, Jmax 

and RSL (JMP, Statistical Analysis Systems, Cary, NC).   

 

Results 

Monthly measurements made at our site were made under a variety of environmental conditions that 

are important to consider when analyzing the results (Figure 1 and Table 1).   Water potential and soil 

moisture measurements were made to assess water availability at the site.  Pre-dawn water potentials of J. 

virginiana in the early part of the season (days 179 and 207) of 2008 were 47% more negative than later in the 

season (days 245 and 279) (F= 42.1978, p< 0.0001; Table 1). Mid-day water potentials were less negative on 

day 207 of 2008 than the other measurement days in that year (F= 13.2757, p< 0.0001).  Soil moisture on day 

207 in 2008 was significantly drier than the other days of that field season (F= 10.7462, p< 0.0001).  Pre-

dawn water potentials in 2009 were different on all days that this parameter was measured (F = 957.92, p < 

0.0001); measurements were not made on the first two sampling dates (days 115 and 151) due to rainy 

weather and are assumed to be very close to zero.  Mid-day water potential values on day 243 of 2009 were 

significantly more negative than other sampling dates (F = 83.42, p < 0.0001) and both mid-day and pre-dawn 

water potentials indicate a drier than normal period for the J. virginiana stand on day 243 of 2009. 

∆
13

C =
δ

13Cair −δ
13Cleaf

1000 − δ
13

Cleaf

 

 
  

 

 
   x 1000

Ci /Ca =
∆ − a

b − a
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  There was little evidence that photosynthetic capacity was related to tree age over the J. virginiana 

chronosequence during 2008 or 2009 (Table 2). The only age-related trend that was observed was in 2008 

when there was an increase in Vcmax with tree age on day 207 (r2 = 0.44, p = 0.03).  When young trees from a 

nearby pasture were included in the age analysis, there are reductions in A and gs with tree age on days 181 

(A: r2 = 0.37, p = 0.03; gs: r
2 = 0.40, p = 0.02) and 206 (A: r2 = 0.47, p = 0.01; gs : r

2 = 0.45, p = 0.01).  There 

was also a reduction in Jmax with age on day 206 (r2 = 0.40, p = 0.02).   

Stem hydraulic conductance (kn) was not related to tree age of J. virginiana when analyzed over the 

entire growing season.  When each sampling date was analyzed independently, there was a trend for a 

negative relationship between stem hydraulic conductance and tree age on every day except day 245 (Figure 

2). There was a significant negative correlation between hydraulic conductance and tree age on day 279 (r2 = 

0.20, p= 0.05).  

Parameters related to photosynthetic capacity varied across the season for this J. virginiana 

chronosequence in both 2008 and 2009 and were influenced by recent precipitation events. (Figure 3 

2008:Asat, F= 8.4001, p = 0.0003; gs, F= 7.9615, p = 0.0004; Vcmax , F= 4.3062, p= 0.0116; Jmax, F= 9.5633, p = 

0.0001; RSL, F= 4.7526, p= 0.0075; Figure 4 2009: Asat, F = 9.0349, p <0.0001; gs, F = 14.3995, p <0.0001; 

Jmax, F = 7.0824, p <0.0001, RSL, F=4.0589, p <0.0034).    

 

Leaf δ13
C of J. virginiana in 2008 showed a significant relationship with tree age, becoming less 

negative with age (r2 = 0.20, p = 0.004) (Figure 6).  The Ci/Ca ratio did not show a relationship with tree age 

over either year.  The relative stomatal limitation (RSL) estimated from gas exchange analysis for 2008 and 

2009 was not related to tree age, although when the 2009 values for the young trees were included there was a 

significant increase with tree age (r2 = 0.14, p = 0.0009). 

Leaf nitrogen concentration per unit mass and leaf mass per unit area (LMa) of J. virginiana showed 

opposing trends with tree age (Figure 6).  Foliar N declined with tree age in 2008 (r2 = 0.15, p = 0.02) but 

showed no effects of tree age in 2009, even when foliar N concentrations from the 10 year-old trees were 

added to the analysis. On the other hand, leaf nitrogen per unit area was not affected by tree age in 2008, and 

increased with tree age in 2009 (r2 = 0.26, p < 0.0001).  

 

Discussion 

This study examined an important, and long-standing, question in forest ecology –What causes net 

primary productivity to decline with tree age? (Ryan et al. 1997, Pregitzer and Euskirchen 2004, DeLucia et 

al. 2007).  There are two prominent hypotheses that attempt to answer this question, and both were tested.  

The first is the hydraulic limitation hypothesis (HLH) which predicts that as trees age and grow taller stomata 

close to prevent xylem cavitation resulting in a decline in canopy photosynthesis (Ryan et al. 2006). More 

specifically it predicts that both stem hydraulic conductance and leaf photosynthesis should decrease with tree 

age (Ryan et al. 2006).  The second hypothesis is the nitrogen limitation hypothesis (Bond 2000) which 

suggests that declines in nitrogen availability with stand age may result in reductions in forest productivity.   
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This study, using J. virginiana trees that are approximately the same height (6.77 ± 0.54 m) yet differ 

greatly in age (98 – 481 years), provides little evidence to support the HLH or nitrogen limitation hypotheses.  

With respect to the HLH hypothesis, measurements of stem hydraulic conductance of J. virginiana on four 

occasions during 2008 growing season found only one sampling date (day 279) when there was a significant 

relationship between stem hydraulic conductance and tree age (Figure 2).  Even on that day, only 20% of 

variation in hydraulic conductance could be explained by tree age (Figure 2).  Compared to other studies using 

the same method to measure hydraulic conductance (Kolb et al. 1996; Kolb et al. 1999); J. virginiana had 

very low values of stem hydraulic conductance regardless of tree age in the chronosequence.  Since stem 

hydraulic conductance is not known for young J. virginiana trees it may be that an age-related effect has 

occurred before J. virginiana reaches the age of trees in the cedar glade stand we studied. 

As a second test of the HLC hypothesis we measured parameters related to photosynthetic capacity, 

including light-saturated photosynthesis, stomatal conductance, and gas exchange-derived estimates of 

rubisco activity and electron transport capacity but found very few consistent effects of age across the 

chronosequence (Figure 3).  Reductions in photosynthesis in aging stands of trees often occur at a younger age 

than trees in the J. virginiana stand (Yoder et al. 1994; Ryan et al. 2004; Drake et al. 2011). However, adding 

young J. virginiana trees (≤10 years old & from nearby pasture) to this analysis increased the significance of 

the relationship between photosynthetic capacity and tree age for only a few dates (Figure 3), which suggests 

that age may have little influence on photosynthesis of J. virginiana at this site.  Net photosynthetic rates for J. 

virginiana in this cedar glade stand are similar to those found in previous studies (Lassoie et al. 1983), 

especially when J. virginiana is grown under water stress (Eggemeyer et al. 2006; Bihmidine et al. 2010, 

Volder et al. 2010), as might be expected on a rock outcrop, such as this cedar glade in West Virginia. These 

data imply that this species develops physiological traits to deal with water stress early in life and maintain 

low photosynthetic rates but a positive carbon balance and slow growth over decades or even centuries. 

A third test of the HLC investigated thefoliar δ13
C  values as an index of stomatal control over the 

life of leaf tissue.  Measurements of foliar δ13
C across the J. virginiana chronosequence followed this 

predicted trend (Figure 5), which suggests that stomatal conductance of J. virginiana integrated across the life 

of the tissue was lower in leaves of older trees. Thus, these data support the hydraulic limitation hypothesis 

and are similar to decreased carbon isotope discrimination that has been observed across chronosequences of 

Douglas fir (McDowell et al 2002) and loblolly pine stands (Drake et al. 2011). The same trend has been 

observed with increasing height in giant redwood trees (Koch et al. 2004). It must be noted, however, that 

many other factors affect foliar δ13
C in the same manner as increased hydraulic conductance. For example, 

δ
13

C may increase with decreasing air humidity (Panak and Waring 1997), decreasing soil moisture (Korol et 

al. 1999), increasing irradiance (Zimmerman and Ehleringer 1990) and increasing atmospheric CO2 

(Sternberg et al. 1989). Because isotopic measurements were conducted on a single stand of trees growing in 

a cedar glade rock outcrop, most confounding sources of environmental variation that might affect δ13
C were 

minimized. On the other hand, one potential confounding source of variation that might have affected the δ13C 

of J. virginiana foliage is the positive correlation between δ13C and leaf mass per unit area (p < 0.0448, 
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r2=0.11; data not shown). In addition, this study shows that leaf mass per unit area increased as tree age of J. 

virginiana increased in the cedar glade chronosequence (Figure 6). Leaf thickness affects the conductance of 

CO2 from the substomatal cavity inside the leaf to the site of carboxylation in the chloroplast and leaf 

thickness related mesophyll conductance can have the same effect on δ13C as increased hydraulic conductance 

(Hanba et al. 1999).  

An alternative hypothesis that has been proposed for reduced photosynthesis in trees as they age is 

that nitrogen limitation becomes exacerbated as forests age (Bond 2000). Data from this study show small but 

significant reductions in foliar N of J. virginiana as they age in this chronosequence for leaf samples taken in 

2008, but no effect of age on foliar N in 2009 (Figure 6). Since light-saturated photosynthesis was not affected 

by tree age in either year, N reductions in 2008 with tree age may be related to some leaf function other than 

photosynthesis. 

Whether changes in hydraulic conductance, nutrient limitation, or height are the causal factors for 

age-related changes in the physiology of trees that result in reductions in forest productivity is still unclear 

(Ryan and Yoder 1997; Mencuccini et al. 2005; Ryan 2006). This study provided little evidence that age as a 

single factor strongly affects leaf photosynthesis or hydraulic conductivity of stems or leaves.  For these trees, 

current environmental conditions are far more indicative of physiological functioning than age.  While δ13C 

increases over tree age as predicted by the hydraulic limitation hypothesis, there are other factors, such as leaf 

thickness, that may be contributing to this response. It may be that age-related changes in the physiology of J. 

virginiana occurs earlier than the youngest ages of trees in this stand, but photosynthetic rates of young J. 

virginiana in a nearby pasture were not much different than that found in this old stand in the cedar glade.  
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Table 1.  Site conditions for the 2008 and 2009 growing seasons.  Water potential and soil moisture were 

measured on 17-21 trees. Air temperature was from Cabins, WV weather station (located 8 miles from the 

study site).  2009 measurements were on 10 of the original 21 trees and soil moisture was not recorded.  

Predawn water potential on days 115 and 151 in 2009 were not recorded due to inclement weather.  Leaf 

temperatures were recorded with the LI-COR 6400 during gas exchange measurements. Precipitation is the 

total amount received a week prior to measurements as recorded by the weather station at Cabins, WV (N 38° 

59’ 48” W 79° 12’ 29”).  All values are means (± 1 SE) except precipitation totals.  

 

Julian 

Day  

2008 

Pre-dawn 

(Mpa) 

Mid-day  

(Mpa) 

Soil 

Moisture % 

Air 

Temperature 

°C 

Leaf 

Temperature 

°C 

Precipitation 

(mm) 

177 -0.97(0.04) -1.50(0.04) 12.82(0.83) 23.12(0.45) 23.12(0.45) 66.80 

207 -0.92(0.04) -0.91(0.04) 9.13(0.42) 21.50(1.25) 21.50(1.25) 29.46 

245 -0.57(0.02) -1.43(0.10) 14.35(0.98) 19.50(0.88) 19.50(0.88) 55.88 

279 -0.57(0.01) -1.50(0.06) 14.37(0.79) 19.90(1.81) 17.90(1.81) 39.37 

Julian 

Day  

  2009 

      

115 - -2.05(0.13) - 32.66(0.28) 32.79(0.91) 62.48 

151 - -1.31(0.04) - 23.72(0.23) 23.20(0.57) 38.86 

181 -0.65 (0.02) -1.99 (0.05) - 25.16(0.35) 24.92(0.18) 18.54 

206 -1.47 (0.05) -2.26 (0.06) - 29.17(0.70) 30.75(0.53) 41.40 

243 -2.99 (0.04) -3.12 (0.02) - 18.92(0.54) 18.19(0.32) 20.32 

274 -0.84 (0.03) -1.58 (0.06) - 27.14(0.16) 23.05(0.46) 22.35 
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Table 2. P values and r2 of regressions between age of Juniperus virginiana trees and light-saturated 

photosynthesis (Asat), stomatal conductance (gs), carboxylation (Vcmax), electron transport (Jmax) and relative 

stomatal limitation (RSL). Regression analyses were conducted in both 2008 and 2009.  All measurements 

were made in saturating light of 1500 µmol m-2 s-1 and 380 µl CO2 l
-1 air with n=11 for 2008 (except n=3 for 

day 177) and n = 10 in 2009. P values and r2 of regressions in 2009* included three 10 year-old trees from a 

near-by pasture. P values with ns denote a non-significant relationship between the photosynthetic parameter 

and tree age of Juniperus. 

 

Year Julian 
Day 

Asat 

P value 

 

r2
 

gs 

P value 

 

r2
 

Vcmax 

P value 

 

r2
 

Jmax 

P value 

 

r2
 

RSL 

P value 

 

r2
 

2008 177 ns 0.74 ns† 0.13 ns 0.54 ns 0.04 ns 0.49 
 207 ns 0.13 ns 0.04 0.03 0.44 ns 0.27 ns 0.00 
 245 ns 0.12 ns 0.29 ns 0.28 ns 0.18 ns 0.14 
 279 ns 0.13 ns 0.14 ns 0.04 ns 0.05 ns 0.06 
            

2009 115 ns 0.29 ns 0.07 ns 0.02 ns 0.18 0.05 0.45 
 151 ns 0.01 ns 0.01 ns 0.00 ns 0.01 ns 0.00 
 181 ns 0.04 ns 0.03 ns 0.06 ns 0.10 ns 0.02 
 206 ns 0.07 ns 0.02 ns 0.10 ns 0.21 ns 0.01 
 243 ns 0.02 ns 0.01 ns 0.11 ns 0.01 ns 0.06 
 274 ns 0.38 ns 0.29 ns 0.19 ns 0.14 ns 0.03 
            

2009* 151 ns 0.01 ns 0.28 ns 0.00 ns 0.02 ns 0.12 
 181 0.03 0.37 0.02 0.40 ns 0.00 ns 0.03 ns 0.22 
 206 0.01 0.47 0.01 0.45 ns 0.01 0.02 0.40 ns 0.23 
 243 ns 0.21 ns 0.27 ns 0.01 ns 0.07 ns 0.15 
 274 ns 0.22 ns 0.18 ns 0.23 ns 0.19 ns 0.00 

† equipment failure, sample size of three which lead to non-significant relationship 
*analysis including young trees from nearby field 
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Figure 1.  Maximum (––) and minimum (---) temperature and precipitation (bars) during the study period 

used for comparison to the physiological data.  Temperature and precipitation data were collected from 

Cabins, WV (N 38° 59’ 48”, W 79° 12’ 29”) approximately 8 miles north of the site.  Vertical dashed lines 

indicate Julian dates that physiological sampling of Juniperus virginiana trees was conducted: 177, 207, 245, 

279 of 2008 and 115, 151, 181, 206, 143, 274 of 2009. 

 

 

 

 

 

 

 

 

 

 



 27

 

Figure 2.  Stem hydraulic conductance (kn) of Juniperus virginiana measured across the 2008 growing season 

plotted against the ages of the individual trees. Lines are best fit using natural log transformed values of kn 

(n=16-21).  

 

 

 

 

 

 



 28

 

Figure 3.  Steady state light-saturated photosynthesis (A), stomatal conductance (B) and modeled (from A-Ci 

curves) carboxylation (C) and electron transport (D) measured across the 2008 growing season (means ± 1 

SE). All measurements were made in saturating light of 1500 µmol m-2 s-1 and 380 µl CO2 l
-1 air with n=3 for 

day 177 and n=11 for subsequent days.  Bars separated by different letters are significantly different. 
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Figure 4.  Steady state light-saturated photosynthesis (A), stomatal conductance (B) and modeled (from A-Ci 

curves) carboxylation (C) and electron transport (D) measured across the 2009 growing season (means ± 1 

SE). All measurements were made in saturating light of 1500 µmol m-2 s-1 and 380 µl CO2 l
-1 air with n=10 for 

all sampling dates.  Bars separated by different letters are significantly different. 
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Figure 5.   Leaf isotopic composition (δ13C) of Juniperus virginiana needles. Needles that were sampled were 

assumed to be current year tissue.  
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CHAPTER 3:  Investigation of Juniperus virginiana growth during the past century using δ
13

C 
 
 
Abstract 

This study examined the relationships between tree growth during the past century, climate, the ratio 

of internal carbon dioxide concentration to atmospheric CO2 concentration (Ci/Ca) and intrinsic water-use 

efficiency (iWUE) by analyzing δ13C in tree rings of Juniperus virginiana growing on a limestone outcrop in 

West Virginia, US. Tree rings from years 1909 to 2008 from five Juniperus virginiana trees that ranged from 

98 years to 480 years in age were measured for basal area growth and used for isotopic analysis. Intrinsic 

WUE increased from approximately 47 to 77µmol mmol-1 over the past century, representing a 64% increase. 

In addition, we found a positive relationship between iWUE and the basal area increase over this time period, 

suggesting the increase in WUE translated into greater growth of the Juniperus trees. Typically, it might be 

expected that increased growth of these trees reflects increased photosynthesis and decreased stomatal 

conductance resulting from increased atmospheric CO2 concentrations.  However, this area of the central 

Appalachian Mountains has historically received some of the highest rates of acid deposition in the nation 

resulting from being downwind from an abundance of coal-fired power plants in the Ohio River valley. Our 

results show that Ci/Ca declined 12% between 1909 and 1980, but increased 8.6% between 1980 and 2008. 

We hypothesize that the directional change in Ci/Ca that occurred around 1980 was due to a reduction in sulfur 

emissions imposed by the Clean Air Act, environmental legislation enacted in 1970 and amended in 1990. 

Sulfur deposition measured by the National Atmospheric Deposition Program (NADP) in West Virginia near 

our Juniperus site shows a 53% decline between 1979 and 2009 and these NADP data show a highly 

significant negative correlation with Ci/Ca of Juniperus over this time period.  Previously, experimental 

studies have shown that acidic sulfur mist leaches calcium from leaves causing a reduction in stomatal control 

and lowering internal leaf CO2 concentrations.  Thus, these tree-ring data show proxy evidence for 

physiological responses to increased CO2 over the previous century, but also provide a biotic signature 

illustrating the role of environmental legislation to alleviate environmental pollution at large spatial and 

temporal scales.  

 

Introduction 

Trees contain an annually defined record of physiological response to the environment in annual 

growth rings that may provide a proxy of past climate (Fritts 1976; Cook and Kairiukstis 1990). Traditionally, 

the response to the environment has been examined using ring width measurements, but stable isotopic 

content of the wood in tree rings also provides a record of physiological response to the environment that may 

be independent of the local climate record (McCarroll and Loader 2004). By incorporating the stable isotopic 

signature record with traditional tree-rings analyses, we may be able to extend local climate histories and 

establish relationships investigating multiple environmental factors that affect the physiological processes of 

trees over time.   
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 The isotopic signature of carbon from wood in tree-rings reflects known environmental effects on 

foliar gas exchange (Dawson and Ehleringer 1993) linked through the ratio of the CO2 concentration inside 

the leaf (Ci) to the atmospheric CO2 concentration (Ca) (Farquhar et al. 1989). In addition, tree rings have 

recorded the decrease in the ratio of 13
C/

12
C caused by anthropogenic inputs of CO2 into the atmosphere (the 

Seuss effect; Feng 1999).  However, this decrease in the isotopic signature due to anthropogenic increases in 

atmospheric CO2 concentration is not completely understood. Two possible explanations have been suggested 

for the way plants may respond to these changes. There may be a passive response where the tree does not 

respond to changes in Ca and thus, Ca minus Ci remains constant or there may be an active response by which 

the tree maintains a constant Ci /Ca ratio through stomatal regulation (McCarroll et al. 2009). Experimental 

investigation of this phenomenon has reported both responses pointing to a nonlinear and heterogeneous 

relationship between Ca and Ci (Waterhouse et al. 2004; Loader et al. 2008; Duquesnay et al. 1998) and 

indicating the need for careful analysis and interpretation of experimental data.  Plant water use efficiency 

(WUE), carbon gain per unit water loss, provides a measurement by which we can track how trees may be 

changing their physiological functioning as atmospheric CO2 increases.  As more CO2 is available to the tree 

an increase in WUE is possible due to the higher concentration gradient of CO2 into the leaf causing partial 

stomatal closure, and thereby maintaining carbon supply for photosynthesis while limiting water loss through 

transpiration. Once a greater understanding of physiological response to environment is established these tree 

ring width and isotopic chronologies can be used in an attempt to create a more robust historical context of 

climate patterns.    

 By combining isotopic and traditional dendrochronological tree-ring proxies that are influenced by 

similar primary pathways (e.g., air temperature) and different secondary pathways (e.g., source of 

precipitation), a stronger biological/climate correlation may be generated (Gagen et al. 2006).  Once isotopic 

tree-ring chronologies are better understood through the analysis of physiological responses to changes 

atmospheric composition (Loader et al. 2008; Treydte et al. 2007) tree-ring isotope analyses may be used to 

strengthen dendrochronological studies investigating climatic variability.  This may allow for the 

identification of years with growing seasons that were both dry and warm or cool and wet (Gagen et al. 2004; 

McCarroll et al. 2003).  Predictions of future climate are constrained by our ability to analyze and interpret 

historical climate patterns.  While tree-ring records offer annually defined indices of local environmental 

history, the spatial distribution of usable tree-ring chronologies is limited to regions affected by highly 

variable climatic conditions. In eastern North America, dendrochronological climate studies have had limited 

success because the temperate climate often lacks high frequency fluctuations, constraining the climate – tree 

ring record, resulting in the exclusion of this region from many studies (Treydte et al. 2007).  Careful 

selection of tree species and site can strengthen climate signals, although this does not guarantee isolation of 

reliable dendrochronological climate proxy (McCarroll and Loader 2004).  Isolating climate signals from 

noise present due to stand age and dynamics is often difficult.  Signals in temperate regions can be affected by 

changes in nutrient availability (Sheppard et al. 2001), physical damage (Smolnik et al. 2006) and stand 

dynamics (Cook 1987).  For these reasons, tree ring records in temperate regions often fail to provide good 
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proxies of climate, such as mean air temperatures.  Since tree rings integrate growing season environmental 

conditions into a single record, environmental conditions experienced by the tree during the non-growing 

season (e.g., winter temperature extremes) are often not recorded in tree-rings (Jones et al. 2003).  Developing 

methods to utilize the information recorded in the tree-rings of temperate regions would be an invaluable 

record of local climate variability.   This study developed a chronology of both ring-width and δ13
C for a stand 

of Juniperus virginiana (Eastern red cedar) in a temperate region of eastern North America using traditional 

dendrochronological and isotopic techniques.  The red cedar chronology was first used to determine whether 

anthropogenic inputs of CO2 impacted the δ13
C signatures recorded in tree-rings.  The chronology of 

isotopically derived Ci/Ca ratios and WUE was used to examine how these diagnostics of photosynthetic 

capacity changed over time, as well as possible environmental and anthropogenic influences. Finally, the data 

was used to determine whether these J. virginiana trees contained a signal linking physiological response to 

local weather patterns, as well as large-scale climatic or meteorological shifts (Stenseth et al. 2003).  In 

comparing global climate patterns with singular local climate signals, the data was used to isolate which 

atmospheric patterns most influenced yearly growth of this stand of trees.   

Methods 

Study site and experimental approach 

Our study site was a stand of Juniperus virginiana (red cedar) trees that is located along the South 

branch of the Potomac River in southern Grant County, West Virginia, USA (38°53'1.95"N 79°14'10.05"W) 

and is characterized as a cedar or limestone glade (Bartgis 1993).   The site is approximately 0.1 hectares, 670 

meters above sea level, with full northwestern exposure to extreme weather events.  The shallow soil is 

primarily composed of broken limestone and little organic matter. In addition to red cedar, the open overstory 

vegetation is comprised of Quercus muhlenbergii, Quercus alba, Fraxinus americana, and Juglans nigra.  

Precipitation and temperature data used in this study were combined from three sources to develop a complete 

100-year record: Petersburg, WV, WV region 6 weather data (West Virginia Climate Region Six Data. 

NOAA/NCDC), and Parameter-elevation Regressions on Independent Slopes Model data (PRISM Climate 

Group, Oregon State University, http://www.prismclimate.org, created 10 October 2009; Kalnay et al.  1996). 

Nitrogen and sulfur deposition used in this study was collected by the National Atmospheric Deposition 

Program (NADP) at the NADP Monitoring Location WV18 in Parsons, WV 

(http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN&id=WV18). 

Five red cedar trees were randomly selected along a transect running parallel to the bluff 6m from 

the edge.  Trees were cored using a 5mm diameter increment borer and prepared using standard 

dendrochronology techniques (Stokes and Smiley 1968).  Cores were cross-dated using WinDENDRO 

(Regent Instruments Inc. Quebec City, Canada 2009) with a master chronology created previously for the site 

using <20 red cedar trees and all chronologies correlated with the master chronology with an expressed 

population signal (EPS) ≤ 65% (Maxwell et al. 2011).   Ring widths were standardized using ARSTAN (Cook 

1986) with a 100-year smoothing spline to remove juvenile effects. The residual index of tree-ring width was 

used for subsequent analyses.  The five trees were aged to be between 98 and 480 years old. Ring width 
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measurements from the year 1909 to 2007 were used to calculate basal area increment (BAI) as a measure of 

total tree growth for the given year using, 

��� �  ���	

 �  �	�



 �,            (1) 

where R is tree radius and n is the year of ring formation (Silva et al. 2010). 

 Tree rings for years 1909 to 2008 were collected for isotopic analysis by scalpel dissection of cores 

under 5x magnifications at the boundary of late wood and early wood.  Wood samples were re-cut to 1 mg 

and packed into tin capsules for carbon isotopic analysis.  Within years, early and latewood were combined 

for sample analysis to ensure enough material for peak detection in the isotopic analysis. Samples were 

analyzed for δ13C with a ThermoFinnigan Conflow III interface and Finnigan Delta-plus Continuous Flow 

Stable Isotope Ratio Mass Spectrometer (IRMS, Waltham, Massachusetts).   PeeDee River belemnite (PDB) 

was used as the standard to which the samples were compared. Samples had a with-in run variation of 0.07‰ 

and laboratory standards had a variation of <0.04‰. Whole wood samples were corrected by -3.2‰ to 

account for the differences between leaf and wood isotopic signature.  This value was calculated from the 

difference between current year leaf isotopic values and those of the outer most ring of radial growth (Other 

estimates of the offset between wood tissue and leaf tissue have been similar, e.g. Juniperus californica, Ward 

et al. 2005). 

 

∆
13

C and calculation of Ci /Ca and intrinsic water use efficiency 

Carbon isotope discrimination (∆13C) was calculated according to (Farquhar et al. 1982) using, 
                                                                        

∆
� � �
�����������������

�����������
����

�,          (3) 

 
where δ13Cplant were δ13Cwood values corrected with the -3.2‰ wood to leaf offset and δ13Cair values were 

atmospheric values for the specific year of the tree ring from direct atmospheric measurements (Scripps CO2 

program, Scripps Institution of Oceanography; Keeling et al. 2010) and the Law Dome ice cores (Etheridge et 

al. 1998). The Ci/Ca ratio was calculated from  according to Farquhar et al. (1982) using the following 

equations; 

∆
�! � " # �$ � "� !%
!&

' ,      (4) 

!% !& �  
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(�&
' ,                             (5) 

!% � !&�!% !&�⁄ ,                        (6) 

where a is the fractionation constant due to diffusion of CO2 through the stomatal aperture (4.4‰, O’Leary 

1981) and b is the fractionation constant due to ribulose-1,5-bisphosphate carboxylase–oxygenase (27‰, 

Farquhar and Richards 1984). Values of Ca and Ci were used to determine intrinsic water use efficiency 

(iWUE) (McCarroll and Loader 2004) where, 

                          

∆
13

C
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*WUE �  A g0  ⁄ � �!% � !&�0.625, (7)                                  

 

 

 

Atmospheric CO2 concentrations for the specific year of the tree ring were taken from direct atmospheric 

measurements (Scripps CO2 program, Scripps Institution of Oceanography; Keeling et al. 2010) and the Law 

Dome ice cores (Etheridge et al. 1998). 

 

Correlations between ring widths and δ
13

C with climatic variables 

Relationships between ring widths, carbon isotopic values and climate variables were investigated 

using regression analysis. Local climate signals investigated included mean monthly precipitation, mean 

monthly temperatures, minimum temperatures, maximum temperatures, total yearly precipitation, monthly 

precipitation and Palmer Drought Severity Index (PDSI).   

 

Statistical analyses   

Average annual BAI, δ13
C, Ci/Ca, and iWUE from 1909 to 2008 for J. virginiana at the cedar glade 

site were calculated. Regression analyses were used to determine the lines of best fit in the temporal trends of 

BAI, δ13
C, Ci/Ca, and iWUE of trees in each study over the 100-year period using correlation analysis and 

best-fit line functions in Excel (Microsoft Corporation, Redmond, WA). 

In order to examine the correlations between ring widths and δ13
C of J. virginiana with climatic 

variables, values of δ13
C were standardized into an index value using a standard score (z-score).  These index 

values along with tree ring indices were compared against climate indices with simple linear correlations 

using the correlation analysis tool in Excel (Microsoft Corporation, Redmond, WA).  Statistical significance 

of these relationships were assessed using JMP ver. 10 (SAS, Cary, NC) or Sigmaplot 10 (Systat Software 

Inc., Evanston, IL).   

 

Results   

Temporal trends in δ
13

C, Ci/Ca, iWUE and BAI of J. virginiana trees 

Carbon isotope abundance of J. virginiana tree rings followed a nonlinear temporal trend between 

the years 1910 to 2008, reflecting the changing source of atmospheric CO2 due to fossil fuel emissions as well 

as the physiology of the trees (Figure 1).  The ∆13 C indicates how the plant changed the way it discriminated 

against the heavier isotope over time, changing over time (Figure 2).  Likewise, Ci/Ca, calculated from ∆13 C 

followed a nonlinear temporal trend (Figure 3). The Ci/Ca ratio of J. virginiana declined 12.2% from 1909 and 

1982, but then increased 8.6% from 1982 to 2008 (Figure 3).  Intrinsic WUE increased linearly over the past 

century (y = 0.309x – 543.2; 

r2=0.89) representing a 64% increase in iWUE over the last century from approximately 47 to 

77µmol CO2 mmol-1 H2O (Figure 5).  
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Tree growth inferred from the BAI of the J. virginiana tree rings showed an exponential increase 

between 1909 and 2008 (y = (7x10-19)0.0219x ; r2=0.81; p < ; Figure 6). Because of the linear increase in iWUE 

over time, there was an exponential relationship between BAI and iWUE (y = 0.0119010.057x; r2=0.80; 

p<0.0001; Figure 7). 

There was a negative relationship between Ci/Ca calculated from wood carbon isotope abundance of 

J. virginiana and anthropogenic deposition rates of SO4 (y = 0.00005x2 - 0.004x + 0.5835; r2=0.31, p<0.0073) 

and NO3 (y = 0.0003x2 - 0.156x + 0.67; r2=0.43, p<0.0073; Figure 8). 

 

Discussion 

 Stable carbon isotope abundance in tree rings provides an indication of physiological functioning 

over time and may also provide indices of past climate variability which can be used to strengthen 

dendrochronological climate reconstructions (Spiker and Hatcher 1987, Schleser et al. 1999). In this study 

using old J. virginiana trees growing on a cedar glade rock outcrop in West Virginia, wood δ13C provided 

many insights into tree response to past climate variability. However, δ13C and tree ring indices did not 

contain a corresponding record of past climate and neither index provided an overly strong correlation with 

weather patterns of this temperate area of the eastern U.S. Instead, wood δ13C provided strong proxy evidence 

for physiological responses to increased CO2 over the previous century and may also provide a biotic 

signature illustrating the role of environmental legislation to alleviate environmental pollution at large spatial 

and temporal scales. This suggests that plant response to anthropogenic environmental change needs to be 

considered in interpreting climate signals using either stable isotopes or traditional dendrochronology. 

In this study, iWUE, or the ratio of photosynthesis to stomatal conductance to water, of J. virginiana 

increased linearly by 44% over last century (Figure 3). Many isotopic studies using tree rings of species in the 

Northern hemisphere have found the similar results (Arneth et al. 2002; Bert et al. 1997; Feng 1999; Sauer et 

al. 2004; Waterhouse et al. 2004; Liu et al. 2007; Sauer et al. 2008; Silva et al. 2010). Atmospheric CO2 has 

been increasing since the beginning of the industrial revolution and has increased by about 30% since the 

early 20th century (IPCC 2008). Plants may respond to increasing CO2 by increasing their photosynthetic rates 

and by partially closing their stomatal pores and WUE of the plant is increased by these responses either in 

combination or separately (Morison 1993; Overdieck & Forstreuter 1994; Picon et al. 1996; Morgan et al. 

2004.). A recent meta-analysis of 47 tree-ring studies from several different forest types found that iWUE of 

trees has increased by about 20% over the last 40 years (Peñuelas et al. 2011).  

 A surprising result in this study is that BAI, a proxy for tree growth, of J. virginiana increased 

exponentially over the last part of the 20th century despite that the age of the trees used in this study ranged 

from 98 to 480 years old (Figure 4), typically much older than expected for exponential growth. A similar 

growth trend for old J. virginiana trees has been observed in a study with a much greater sample size at this 

stand in WV and two other nearby J. virginiana stands (Maxwell et al. 2011). The strong correlation between 

BAI and iWUE of J. virginiana (Figure 5) suggests that the increased iWUE over the last century has greatly 

contributed to the increased growth of these trees. On the other hand, in the meta-analysis by Peñuelas et al. 
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(2011), about half of the studies showed reduced growth by trees despite having increased iWUE during the 

past 40 years. Silva et al. (2010) concluded that tree growth of four tree species along a latitudinal gradient 

from boreal forest to southern deciduous forest showed a decline in growth during the later part of the 20th 

century due to a changing climate, despite having a 53% increase in iWUE over the last century. 

 It cannot be concluded that the increased BAI of J. virginiana that occurred during the later part of 

the 20th century was due to increased atmospheric CO2. In fact, there are several factors that more than likely 

have been acting on these plants synergistically to cause the increase in tree growth and iWUE, with one 

factor possibly being increased CO2. Another factor may be that spring precipitation increased in this area of 

WV during the later part of 20th century (Maxwell et al. 2011), a factor that could be very important for 

growth of trees on a rock outcrop with very thin soil. However, this effect could not be detected using the 

proxy evidence provide by wood δ13C of J. virginiana for physiological responses that should be sensitive to 

greater water availability. 

The most important factor affecting BAI of J. virginiana at this site in the latter half of the 20th 

century and one that would act synergistically with elevated CO2 and precipitation may be the reduction in 

emissions of SO4 and NO3 electric power generation plants after the enactment of the Federal Clean Air Act 

of 1970 and subsequent amendments. The surrounding area of WV that contains this study site has historically 

had some of the highest rates of acid deposition, including both SO4 and NO3, in the U.S. However, there has 

been a 60% reduction in SO4 deposition and a 45% reduction in NO3 deposition in this area of the U.S. since 

1978 (Figure 6 upper; http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN&id=WV18).  Numerous studies 

have shown that acid deposition disrupts cation cycling in forest ecosystems and limits the availability of soil 

Ca2+ and Mg2+ for tree uptake and use for growth (Likens et al. 1996; Driscoll et al. 2001). In addition, 

canopies of forests that receive high amounts of acid rain experience significant leaching of calcium from 

leaves (Joslin et al. 1988). Field studies have shown that acid rain can cause the loss of over 1/3 of foliar Ca of 

red spruce needles (Joslin et al. 1988). Experimental misting of foliage with acidic N and S implicated that S 

deposition, and not N deposition, was responsible for Ca leaching (Eamus 1993) and that the lost Ca was from 

the labile pool of Ca in cells that is associated with membranes (Schaberg et al. 2000). Further, the loss of 

foliar Ca due to acidic misting has been show to result in membrane destabilization and loss of cold tolerance 

(DeHayes et al. 1999; Schaberg et al. 2000), reduced photosynthesis and increased dark respiration 

(McLaughlin et al. 1991; McLaughlin and Tjoelker 1992; McLaughlin et al. 1993; Eamus 1993; Ellsworth 

and Liu 1994), and impaired stomatal function including, lower stomatal conductance (Eamus 1993), a 

smaller maximum stomatal aperture (Borer et al. 2005), the loss of stomatal sensitivity to light (Eamus 1993), 

and the loss of stomatal sensitivity to water stress (Borer et al. 2005). Foliage damage, loss of foliage, and 

reduced radial growth of have also been observed in red spruce trees subjected to acid rain (Johnson et al. 

1988, LeBlanc and Raynal 1990).  In this study, δ13C from the chronosequence of J. virginiana tree rings 

show that the Ci/Ca ratio decreased by 12.2% from 1909 to 1982, after which Ci/Ca increased by 8.6% through 

2009 (Figure 2). The reduction in Ci/Ca from 1909 to 1982 might be explained by atmospheric CO2 

enrichment, where increasing CO2 over this time period reduces stomatal conductance of J. virginiana trees, 
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or it could be explained by the effect of SO4 deposition on stomatal function of the J. virginiana trees. 

Increasing CO2, however, cannot explain the increase in Ci/Ca that occurs from 1982 to 2009, where Ci/Ca 

returns to early 1900 levels. On the other hand, the return of stomatal function of J. virginiana as SO4 

deposition declines can explain the observed increase in Ci/Ca. While we do not have records of sulfur and 

nitrogen deposition in this area of WV before 1978, those measured since 1978 indicate a significant 

correlation between increased Ci/Ca of J. virginiana with reductions in SO4 deposition (y = 0.00005x2 - 0.004x 

+ 0.5835; r2=0.31, p<0.0073) and NO3 (y = 0.0003x2 - 0.156x + 0.67; r2=0.43, p<0.0073; Figure 6). 

 

Ring proxy data 

Creating strong indexes of climate based on tree rings relies on the assumption that trees maintain 

consistent environmental responses over the time courses of centuries to millennia.   The trend towards 

enriched ring δ13C may indicate that these trees are regulating stomata in response to increased availability of 

CO2. The reduced stomatal conductance is responsible for less discrimination of the heavier isotope.  

Regulation of stomata may be shifting again as the concentration of CO2 continues to increase (Figure 3 

Francey and Farquhar 1982; Ehleringer and Cerling 1995).  Additionally these weak relationships may be due 

changes in atmospheric deposition of nitrogen (McLauchlan et al. 2007).  The strong relationship present 

between Ci/Ca and deposition of both nitrogen and sulfur illustrates the importance of investigating alternative 

explanations to changes seen in forest productivity.  As such, it points to the importance of an interdisciplinary 

approach when investigating tree ring data sets.   

 

Conclusions 

 The link between Ci/Ca and deposition of both nitrogen and sulfur is evidence that regulations put 

in place by congress have had noticeable effects on tree physiology.  In an area of tree physiology that has 

focused primarily on the effect of rising CO2 concentrations this link may lead to investigating other possible 

drivers of physiological change in trees.  The weak link between ring proxy data and climate may be further 

explained by discovery of other stronger drivers of physiology such as pollution.   The strong positive 

influence of increased carbon dioxide concentration on productivity also contributed to the weak correlations 

with climate.  Further analysis of this site with a more robust set of ring proxy data may be able to better 

assess links with tree productivity and climate.  Including an analysis of larger climatic patterns such as the 

arctic oscillation and El Nino Southern Oscilation with local climate may provide insight into the long term 

climate patterns of the region.   
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Figure 1.  Mean whole wood carbon isotopic values (δ13C) from tree rings of Juniperus virginiana from 1909 
to 2008. Each δ13C value is the mean of 5 J. virginiana trees in the cedar glade stand. 
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Figure 2.  Carbon isotope discrimination (∆13C) based on mean whole wood carbon isotopic values (δ13C) 
from tree rings of Juniperus virginiana from 1909 to 2008. Each ∆13C value is the mean of 5 J. virginiana 
trees in the cedar glade stand. 
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Figure 3.  Temporal trend in the ratio of internal leaf CO2 concentrations to atmospheric CO2 concentrations 
(Ci/Ca) of Juniperus virginiana trees calculated from whole wood δ13C from tree rings (n = 5 trees) and 
atmospheric δ13C over the last century. Values of atmospheric δ13C for the specific year of the tree ring were 
taken from direct atmospheric measurements (Scripps CO2 program, Scripps Institution of Oceanography; 
Keeling et al. 2010) and the Law Dome ice cores (Etheridge et al. 1998).  
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Figure 4.  Temporal trend of internal CO2 concentrations (Ci, µmol CO2 l-1) and the corresponding 
atmospheric concentration (Ca, µmol CO2 l

-1) for each year of the chronosequence. 
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Figure 5.  The relationship between intrinsic water use efficiency (iWUE) of Juniperus virginiana calculated 
from carbon isotope abundance of a chronosequence of tree rings from 1909 to 2008 (n = 5 trees). 
Atmospheric values of CO2 concentration for the specific year of the tree ring were taken from direct 
atmospheric measurements (Scripps CO2 program, Scripps Institution of Oceanography; Keeling et al. 2010) 
or the Law Dome ice cores (Etheridge et al. 1998). 
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Figure 6. Temporal trend in the average annual basal area increment (BAI) of Juniperus virginiana trees 
growing over the past century on a cedar glade in Grant County, West Virginia, USA. Each value is the mean 
of 5 J. virginiana trees in the cedar glade stand. 
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Figure 7.  The relationship between intrinsic water use efficiency (iWUE) and basal area increment (BAI) of 
Juniperus virginiana growing over the past century. Each value is the mean of 5 J. virginiana trees in the 
cedar glade stand. 
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Figure 8.  (Upper) Temporal trends in SO4 and NO3 deposition since 1978. (Lower) The relationship 
between Ci/Ca ratio of Juniperus virginiana, as calculated from whole wood isotopic values, with SO4 and 
NO3 deposition (kg/ha) from 1978 to 2009. SO4 and NO3 deposition is from the National Atmospheric 
Deposition Program (NADP) at the NADP Monitoring Location WV18 in Parsons, WV, 
(http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN&id=WV18). 
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CHAPTER 4: Conclusions from my study 

 
                Trees and forests are not static in time and a greater understanding of physiological functioning of 

forests as they age is central to our understanding of forest ecosystems. My thesis research used an old growth 

stand of Juniperus virginiana (Eastern red cedar) to examine how carbon assimilation changed over the last 

century. I first examined how tree age affects the physiological ecology of Juniperus virginiana in their native 

habitat; and second I used stable C isotopes in the annual growth rings to determine whether we could detect 

how climatic and environmental factors affected C assimilation and growth. 

The observation that forest productivity declines as the trees in a forest age led me to hypothesize 

that I would see reductions in both hydraulic conductance and photosynthesis with tree age (reviews by Ryan 

et al. 1997; Pregitzer & Euskirchen 2004; DeLucia et al. 2007). Ryan and Yoder (1997) proposed the 

hydraulic limitation hypothesis, that the decline in photosynthesis is linked to the reduced ability of trees to 

provision foliage with water.  Investigation of the hydraulic limitation hypothesis in most studies have used 

trees that are both tall and old (e.g. Koch et al. 2004) and the effects of these two factors on hydraulic 

conductivity may be confounded.  This study examined the physiological functioning of a chronosequence of 

J. virginiana trees that are approximately the same height (6.77 ± 0.54 m) yet differ greatly in age (98 – 481 

years).   

My measurements of hydraulic conductance of J. virginiana trees supported the hydraulic limitation 

hypothesis in that age had no effect on hydraulic conductance.  It is possible however that an age related 

decline in hydraulic conductance may be occurring before these trees reach 100 years of age.   The stomatal 

and biochemical limitations of leaf photosynthesis of these trees across two growing seasons showed no 

relationship with tree age and were far more dependent of local climate.  The δ13
C of leaf material did follow a 

pattern that supports the hydraulic limitation hypothesis, however in conjunction with the data it is far more 

likely that leaf morphology and nutrients contributed to these patterns.   

 

Using the wood in annual rings of the same stand of J. virginiana trees as in the previous study I 

examined how δ13
C, the ratio of internal leaf CO2 concentration (Ci) to atmospheric CO2 concentration (Ca), 

and instantaneous water use efficiency changed over the last one hundred years.  Correlations between these 

parameters and records of climate and other environmental factors provided insight into changes in 

physiological functioning over longer time scales.  This site-specific analysis helped to identify specific 

factors influencing carbon assimilation in J. virginiana and whether they are a good candidate for climate 

reconstruction. 

Investigating the link between environmental conditions and physiological response, with regards to 

carbon, can be determined by understanding how C isotopes within the tree change over time (Farquhar et al. 

1989).  In this study, WUE was used to estimate the significance of stomatal changes in trees throughout the 

past century.  I hypothesized that I would see increased water use efficiency (WUE) over the last century due 
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to increases in CO2 concentration in the atmosphere and that productivity of red cedar would remain fairly 

constant.    

The Ci/Ca ratios estimated from the isotopic composition of wood samples provided data of changes 

in stomatal regulation and WUE.   The many factors that influence stomatal control make interpretations of 

WUE from δ13
C difficult (Farquhar and Sharkey 1982).  Interestingly, the strongest relationship found 

between Ci/Ca and the environment was with nitrogen and sulfur deposition.  This provides direct evidence of 

the influence of clean air regulations on forest productivity.   

The strength of using changes in stable isotopes as part of a dendrochronological reconstruction of 

climate is that they provide a mechanistic link between isotopic composition of wood and environmental 

conditions.  The dendrochronological analysis provided little evidence that this stand can be used for climate 

reconstruction.  Weak relationships between climate and isotopic signature of wood were found, however the 

small sample size does not support using these data.  The uses of multiple climate proxies (e.g., δ13
C and δ18

O) 

in the future may make climate reconstruction more statistically powerful and enhance the ring width climate 

signal (Gagen et al. 2006).    

By combining these two studies I was able to characterize the current physiology of Juniperus 

virginiana before attempting to understand past functioning.  This is not a common component of 

dendrochronological studies and led to some interesting discoveries.  This data highlights the pitfall of 

assuming that trees respond the same way to the environment over time.  This can be seen when comparing 

the current year’s data with the isotopic record.  Additionally, the “environmental” component of 

dendrochronology should also include anthropogenic data such as pollution as a potential driver of change in 

physiological functioning.  If this study only considered local climate we would have assumed that these trees 

were only responding to the changes in atmospheric concentrations of carbon dioxide.  While this data set 

proved too small to statistically support making correlations with climate and larger climatic patterns, it does 

suggest that changes have occurred to the weather patterns of the eastern United States in the last century. 
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