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ABSTRACT 

Mechanism Study of Shale Gas Conversion via Chemical Looping and 

Heterocatalytic Processes 

Lei Bai 

The shale gas revolution has significantly changed the energy landscape in US. The 

technical-feasible, energy-effective schemes for shale gas combustion and utilization, especially 

from remote resources, have attracted increasing interest due to expensive 

transportation/distribution cost. In this research, for the first time, chemical looping combustion 

(CLC) of methane with inherent CO2 capture, oxidative coupling of methane (OCM) and dehydro-

aromatization (DHA) of ethane are systematically studied as promising alternatives at O2-rich, O2-

lean and non-oxidative conditions, respectively. 

Chemical looping combustion is bridging clean fuel combustion in energy production with 

inherent CO2 capture. CLC utilized an oxygen carrier (OC) to transfer oxygen to the fuel source 

in O2-rich conditions. However, the fundamental kinetics of surface structure with oxygen transfer 

on OC, as well as the reduction activity and coupled selectivity have yet been established. OCM 

directly converts methane to produce C2 hydrocarbons (C2H6 and C2H4) in O2-lean condition. 

Perovskite catalysts have shown promising activity and selectivity to C2, but the role of surface 

acidity of perovskite-type catalyst on OCM kinetics has not been revealed. Non-oxidative ethane 

DHA provides an economical and environmentally friendly alternative for aromatics and H2 

production. Pillared ZSM-5 with hierarchical pores could amplify the mass/heat transfer, which is 

a promising catalyst for DHA reaction. However, very few studies have been reported to directly 

associate the thickness of lamellar layers with reactant diffusion, Si/Al ratios, surface acidities as 

well as catalytic reactivity of ethane-DHA reaction. 

The research objective is to provide fundamental insights of surface structure-performance 

relationship of model catalysts for catalytic C2/C3 conversion in three aspects: 1) the oxygen 

transfer mechanisms in CLC by using surface calcium-doped (1, 2 and 4 wt%) copper oxides based 

OC; 2) the effect of surface compositions of perovskites on the OCM by using SrTiO3 as a model 

catalyst is investigated; and 3) a regenerable MoOx/lamellar ZSM-5 based on the strategy of 

optimizing micro/mesopores structure of zeolite framework, targeting high ethane conversion and 

aromatic selectivity by optimizing Si/Al ratio, surface acidity and diffusion path. The work offers 

several economic-viable and technical-feasible solutions for shale gas utilization to value-added 

products. 
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Chapter 1. Introduction 

Due to the innovative technological advances in horizontal drilling and hydraulic 

fracturing, a boom in shale gas (mainly CH4) production has emerged in the U.S during last 

decade.[1] According to an Energy Information Administration report[2], shale gas production 

rose by over 670% from 1.77 trillion cubic feet in 2000 to 13.64 trillion cubic feet by 2015.(See 

Fig. 1) The U.S. government also projects that the annual domestic shale gas production will 

account for 68% of United States gas supply by 2040. Recoverable deposits of shale gas are 

distributed worldwide, with major deposits in the countries in Asia, Europe, Latin America and 

many other regions.[3] The impact of the shale gas revolution has been notable in many areas of 

applications, including electricity/power generation, automobiles and transportation, residential 

heat supply, industrial and commercial applications.[4]  

 
Figure. 1 U.S. dry natural gas production over the past and prediction.  

Source: U.S. Energy Information Administration, Annual Energy Outlook 2018 .  
Note: “Tight oil” is light crude oil contained in petroleum-bearing formations of low permeability, often shale 
or tight sandstone, known as shale oil. “Tight gas” is natural gas produced from reservoir rocks with such low 
permeability that massive hydraulic fracturing is necessary to produce the well at economic rates. and “Coalbed 
methane” refers to is a form of natural gas extracted from coal beds. 
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Shale gas exists as the fossil natural gas trapped within shale formations. Shale is 

sedimentary rock composed of clay and other minerals, especially quartz and calcite. Over time, 

decaying biomass became trapped in these sedimentary layers and was converted into methane via 

anaerobic biological and chemical processes. Some of methane formed from the deposited biomass 

became encapsulated within the sedimentary rock layers, while portions of the methane escaped 

to more superficial rock layers, ultimately yielding what is now known as conventional natural gas 

resources. However, a considerable amount of methane remained trapped in the low permeability 

shale layers, and it is only with recent advances in drilling technology that it has become 

economical to recover methane from these shale gas deposits.[5, 6] The composition of shale gas 

varies on the location of the shale reservoirs. The gas contains methane (70–90%), as the major 

component, along with other hydrocarbons, such as ethane, propane, butane (0–20%) and gases 

such as carbon dioxide and nitrogen (0–5%). Especially, ethane is the second main component in 

some shale reservoirs. For example, the ethane component of the gas from Marcellus and Barnett 

shales are 16.1 and 11.8%, respectively[7, 8]. Moreover, in some regions of the United States, the 

price of ethane is actually lower than natural gas[9].  

On one hand, natural gas is now the largest source of U.S. electric power generation, 

helping reduce U.S. greenhouse gas emissions to mid-1990 levels.[10] Natural gas combustion 

emits about half as much CO2 as coal and 30 % less than oil, and far fewer pollutants, per unit of 

energy delivered. To fully realize the potential climate benefits of natural gas, technologies and 

policies must be put in place to capture carbon emissions. 

Despite the positive advances with methane production, costs for shale gas shipment from 

production wells to potential end users is still high. A promising alternative to these high gas 



3 

shipping costs is to convert shale gas (methane and ethane) into a higher energy density liquid 

chemicals and fuels, which are more readily shipped via pipeline[11]. 

Dramatically increased supply of shale gas has led to a significant drop in natural gas 

prices. Therefore, there is potential to boost chemical and synthetic liquid fuel productions, 

providing methane from shale gas at low cost. However, the efficient conversion of shale gas to 

chemicals, liquid fuels, and electricity remains a major unsolved scientific problem. Therefore, 

there is a critical need to provide new and reliable approaches for further utilization of shale gas. 

Some promising alternatives are proposed in this project including methane combustion with 

inherent CO2 capture, oxidative coupling of methane and ethane dehydroaromatization. Details of 

these techniques will be discussed in the following chapters. 
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Chapter 2. Mechanism Study of Methane/char Chemical Looping 

Reduction Process over Calcium-doped Copper Oxide as Oxygen 

Carrier 

 

Abstract 

Chemical looping with oxygen uncoupling (CLOU) is a novel CO2 capture technology 

which uses metal oxides to release gaseous O2. Compared to regular chemical looping combustion 

(CLC), the advantage of CLOU is the instant oxygen releasing/transfer from the bulk or surface of 

oxygen carriers, so that the thermodynamic limits of the slow gasification step will be overcome. 

However, the fundamental kinetics of surface structure with oxygen transfer, as well as the 

reduction activity and coupled selectivity has not yet been established. In this study, calcium-doped 

(1, 2 or 4 wt%) copper oxide based oxygen carriers were prepared by the impregnation method 

and employed in CLC with Wyodak char and methane as fuels at 900oC. Utilizing a combination 

of XRD and XPS analysis, calcium was confirmed to be dispersed on the surface of CuO. It is 

found that doping Ca improves CuO oxygen uncoupling characteristics. By comparing the 

chemical looping reduction process of Ca-doped CuO and un-doped CuO, Ca surface-doping 

increases the lattice oxygen transfer and surface O2 formation under CLOU conditions. Meanwhile 

the comparison of thermal decomposition reactivity under an inert environment and in-situ Raman 

spectra of doped and undoped CuO suggested the change of reduction pathway from a sequential 

(CuO→Cu2O→Cu) to a direct transition (CuO→Cu) during oxygen carrier decomposition. 

Different mechanisms were revealed for the calcium-doped copper(II) oxide oxygen carriers when 

reacted with different fuel types (solid: char, gaseous: methane). For the char CLC reduction 
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process, more CO2 was generated at a faster rate with CaO-doped CuO than with pure CuO. For 

methane CLC reduction, the calcium dopant not only accelerated the reaction rate, but also acted 

as an in situ adsorption site, which induced the methane reforming reaction. 

2.1 Introduction 

CO2 emission from fossil fuels combustion has been regarded as a major factor attributing 

to global warming in past decades[1-3]. CO2 capture and storage technologies are required to 

reduce the emission of this greenhouse gas. CO2 post combustion separation and capture after coal-

fired power plants are traditional technologies, which can carry a significant energy penalty. In 

contrast, the concept of chemical looping combustion (CLC) has been proposed as a promising 

low-cost CO2 capture technology to produce energy with inherent CO2 separation [4-6].  

CLC is realized by the oxygen transfer from solid oxide materials to fuels. These solid 

oxide materials, called oxygen carriers (OCs), travel to and from between an air reactor and fuel 

reactor. In the fuel reactor, the oxygen carriers are reduced by the reaction with fuel, as shown 

below: 

 

where MexOy denotes a metal oxide and MexOy-1 is reduced compound. The reduced oxygen 

carriers are transferred to the air reactor and oxidized by air. The regeneration of metal oxides is 

as follows: 
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Subsequently, the regenerated metal oxides travel back to the fuel reactor to initiate the 

next cycle. The oxygen transferred from air to fuels through metal oxides avoids direct contact 

between air and fuel. Consequently, CO2 and H2O can be obtained in a pure form without the need 

for energy-consuming separation. After simple condensation of steam, pure CO2 can be easily 

captured and stored. 

The development of oxygen carriers is a key aspect in CLC technology. A large number of 

oxygen carriers have been proposed and tested by numerous researchers[7-12]. Several transition 

metal oxides of Cu, Fe, Ni, Co, and Mn have served as conventional oxygen carriers in CLC[13, 

14]. Among these suitable metal complexes, CuO has been singled out for its high reactivity and 

oxygen transport capacity[15]. Oxygen carriers are always supported by inert materials such as 

Al2O3, ZrO2, TiO2, or MgO to enhance their redox reactivity as well as the recyclability[15-17]. 

Recently researchers demonstrated that the significant modification of the metal crystal phase can 

be achieved via addition of secondary metals, including alkali metal ions (e.g. Li+, Na+ or K+), 

transition metals, and rare earth metals. For example, Zheng et al.[18] synthesized LaFeO3 

supported CeO2 oxygen carriers for chemical looping reforming of methane, and claimed that 10% 

CeO2/LaFeO3 produced higher yields of syngas and pure hydrogen than those of pure LaFeO3. 

Galinsky et al.[19] reported that CaMnO3 doped with 25% Sr exhibited a stabilized perovskite 

structure and noticeable oxygen release at significantly lower temperature than that observed for 

pure CaMnO3, which can shift the initial reduction temperature by approximately 200 ℃. Cheng 

et al.[20] modified the Fe2O3-based oxygen carriers by different potassium salts (i.e. KNO3, 

K3PO4, KOH, K2CO3), and pointed out that the 10% KNO3/Fe2O3 was proven to be favorable 

oxygen carrier for CLC with methane due to its improved activity and redox characteristics and 

stability. However, the metal oxide crystal phases and structure of oxygen carriers, can be altered 
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due to the introduction of high concentration of dopants[16]. In addition, the oxygen carrying 

capacity can be degraded when a large quantity of dopant is added that does not contribute to the 

oxygen carrying capacity[16, 21]. Doping low concentrations of metal cations on the surface of 

oxygen carriers offers the possibility to improve reactivity and the oxygen releasing yield without 

changing the bulk phase structures. This approach is a challenging requirement for the oxygen 

carrier development field.   

When solid fuels are used in CLC, the gasification of fuels occurs and generates products 

like CO and H2. The reaction between gasification products with oxygen carriers (metal oxide 

particles) happens simultaneously along with the slow fuel gasification. In contrast, chemical 

looping with oxygen uncoupling (CLOU) is utilized as an alternative to burn the solid fuels, where 

the gaseous oxygen is released/transferred from the bulk or surface of oxygen carriers. Therefore, 

the solid fuels are combusted in gas-phase oxygen in CLOU, so that the thermodynamic limits for 

combustion reaction in regular CLC will be overcome by avoiding the slow gasification step. 

However, the fundamental kinetics of surface structure with oxygen transfer, as well as the 

reduction activity/selectivity has not yet been established.  

This study is designed to probe the mechanism of surface oxygen transfer of the oxygen 

carriers during the chemical looping reaction by using CuO, with a CaO dopant well dispersed on 

the material surface. CaO is added as active dopant from 1-4 wt% to avoid modifying the CuO 

crystalline phase. A series of experiments was conducted to understand the reduction 

characteristics of the CaO doped CuO materials, including, gas-fueled reduction, uncoupling 

potential and solid-fueled oxygen transfer. To examine oxygen transfer in these scenarios, the 

surface modified CuO was reacted with Wyodak char (solid fueled), methane and hydrogen (gas 
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fueled) in the chemical looping process. In addition oxygen uncoupling potential was also 

explored. The reaction pathway of oxygen release/transfer on the CaO-CuO surface and the 

surface-doping effects were determined through the present study. 

2.2 Experimental Section 

2.2.1 Materials and Oxygen Carrier Synthesis 

The concept of CLC with solid fuels such as coal or char has been investigated extensively 

in the past[13, 14, 22-24], and progress of the CLC technology for solid fuel combustion has been 

presented in various review articles[25-27]. Therefor we would like to firstly investigate the effect 

of surface modification of oxygen carriers on CLC performance when reacting with solid fuels, 

i.e. char. Wyodak coal samples in present work were obtained from the Penn State Coal Sample 

Bank (sample number: DECS-26). The composition of coal is listed in Table 1. Coal samples were 

crushed and ground, then pyrolyzed to remove volatiles and produce the chars. The coal samples 

were heated up to 900 ℃ at a ramp rate of 10 ℃/min in a vertical quartz tube furnace under 

atmospheric flow of 100mL/min pure helium and held isothermally for 30 min upon reaching the 

target temperature. Chars prepared from pyrolysis were subsequently ground and sieved to obtain 

particles below 106 µm. Although the ash is existing in the char, it is reported that the ash in the 

solid fuel does not affect the reactivity of the oxygen carriers in the CLC[28, 29]. 

 

Table 1. Proximate and ultimate analysis of Wyodak coal sample. 

Proximate analysis (wt.%)  Ultimate analysis (wt.%) 

Mad Vd Ad FCd  Cdaf Hdaf Ndaf Sdaf Odaf 

26.23 44.86 7.57 47.57  75.48 6.11 1.02 0.47 16.92 
Note: ad-air dry basis; d-dry basis; daf-dry and ash free basis 
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CaO-CuO-based oxygen carriers were synthesized by an impregnation method using 

calcium hydroxide and copper(II) oxide as metal oxide precursors. The calcium hydroxide and 

copper(II) oxide were purchased from ACROS ORGANICS in the purity of 98% and 99+%, 

respectively. A prescribed amount of calcium hydroxide was dissolved in deionized water to give 

a solution. The solution was added to dry copper(II) oxide at a volume equal to its pore volume to 

form a wet paste. A muffle furnace was then used to calcine the paste at a temperature of 550 ℃ 

for 10 min at a ramp rate of 5oC/min to decompose the hydrate to the desired calcium oxides 

covering the surface of copper oxide. Samples with different CaO weight percentages are 

designated as 1wt%-CaO-CuO, 2wt%-CaO-CuO and 4wt%-CaO-CuO, referring to the number of 

successive impregnations. Pure copper oxide is also used as a baseline oxygen carrier for 

comparison. Sample size range for all oxygen carriers was less than 106 µm. 

2.2.2 Oxygen Carriers Characterization 

The prepared oxygen carriers were characterized by X-ray diffraction (XRD) and X-ray 

photoelectron spectroscopy (XPS) to probe whether the calcium dopant exists on the copper oxide 

surface.  

The XRD analysis was carried out using on a Panalytical X’Pert Pro XRD system in the 

range of 20° to 80° for 2θ. Cu-Kα1 8047.2 eV source and a maximum X-Ray power of 45 kV and 

40 mA were used. 

X-ray photoelectron spectra (XPS) were obtained with a Physical Electronics PHI 5000 

VersaProbe XPS system. A monochromated 25 W, 15 kV Al-Kα X-ray source (photon energy of 

1486.6 eV) and a hemispherical analyzer were used. The routine operation pressure in the main 

chamber is ~1×10-9 Torr. All reported intensities are experimentally determined peak areas divided 



11 

by the instrumental sensitivity factors. The acquired spectra were collected using multiple scans, 

and the data were averaged and analyzed using MultiPak v9 software. All the spectra registered 

were referred to signal C 1s 284.8 eV corresponding to adventitious carbon. All XPS peak 

assignments were acquired based on the NIST XPS database[30]. 

2.2.3 Temperature-programmed Reduction Analysis of OCs 

Temperature-programmed reduction (TPR) analysis was carried out in Micromeritics 

Autochem 2900 instrument coupled with a thermal conductivity detector (TCD), at a heating rate 

of 4 °C/min up to 900 °C, then holding at that temperature for 30 min. Approximately 150 mg of 

oxygen carriers sample was supported on a quartz wool plug inside the U-shaped quartz reactor 

and reduced with 5% H2 (balanced with 95% He) as reducing agent (25 mL/min). A K-type 

thermocouple was placed in quartz wool for accurate temperature measurement. 

2.2.4 Reaction Performance and OCs Decomposition Characterization  

Chemical looping reduction experiments of oxygen carriers were performed by using the 

Micromeritics Autochem 2900 instrument (fixed-bed reactor) coupled with a Pfeiffer Omnistar 

mass spectrometer in order to identify the gaseous products formed during the reduction. When 

the char presented as the solid fuel, 60 mg char and 150 mg CaO-CuO oxygen carriers were mixed 

prior to the tests. Then the mixture was heated from 50 °C to 900 °C at a heating rate of 4 °C/min 

in helium at a flow rate of 25 mL/min at atmospheric pressure. After that, the sample was 

maintained at 900 °C for 30 min in helium. Methane was also presented as a gaseous fuel. 150 mg 

OC sample was loaded into quartz tube and heated to 900 °C at a heating rate of 4 °C/min hold for 

30 min 20%CH4/80%Ar stream at a flow rate of 25 mL/min.  
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The decomposition (uncoupling) experiments were carried out in U.H.P He atmosphere to 

ensure an inert environment to promote the reaction. 150 mg CaO-CuO sample was heated in 

flowing U.H.P He (flowing rate=25 mL/min) from 50 °C to 900 °C (ramping rate= 4 °C/min) and 

holding there for an additional 30 min. 

2.2.5 Raman Spectroscopy of OCs Decomposition 

The two oxygen carrier samples, pure CuO and 2wt%CaO-CuO, were decomposed in situ 

in a Raman catalytic reactor (Linkam CCR1000) before Raman spectral collection. The 

decomposition was done by heating the sample (ca. 15 mg) in flowing pure He (60 mL/min) from 

room temperature to 900 °C (ramping rate 20 °C /min) and holding there for an additional 5 min. 

Due to the decrease of Raman band intensities with increasing temperature,[31, 32] the spectra 

were collected at lower temperature to reduce this thermal effect. For example, after staying at 

each temperature (400, 500, 600, 700, 800, 900°C) for 5min, the sample was then cooled down to 

300°C in He, and Raman spectra were collected with laser excitation of 532nm. Since the 

experiments were conducted in the sealed Raman cell with purging pure He, no reversible reaction 

for the oxygen carriers will occur when the temperature is decreased to 300 oC for spectra 

collection. The Raman measurements were performed on a multiwavelength Raman system at Oak 

Ridge National Laboratory’s Center for Nanophase Materials Sciences.[33] Raman scattering was 

collected via a customized ellipsoidal mirror and directed by a fiber optic bundle to the 

spectrograph stage of a triple Raman spectrometer (Princeton Instruments Acton Trivista 555). 

Edge filters (Semrock) were used in front of the UV-vis fiber optic bundle (Princeton Instruments) 

to block the laser irradiation. The 532 nm excitation (20 mW at sample) is emitted from a solid-

state laser (Princeton Scientific, MSL 532-50). A UV-enhanced liquid N2-cooled CCD detector 

(Princeton Instrument) was employed for signal detection. The Raman reactor sits on an XY stage 
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(Prior Scientific, OptiScan XY system) and translates in raster mode while collecting the spectrum. 

The fast translation has shown to be able to eliminate/minimize any laser damage of the 

samples.[33]  

2.3 Results and Discussion 

2.3.1 Characterization of Oxygen Carriers 

The respective X-ray diffraction (XRD) patterns of calcined oxygen carriers are shown in 

Figure 1. Pure CuO and CaO XRD patterns are characterized as references. XRD patterns of the 

oxygen carriers is identical to the single-phase CuO with a monoclinic structure and the positions 

of the peaks are in good agreement with PDF-4+ 2016 card of CuO (Reference code: 01-073-

6234). XRD patterns exhibited strong diffraction peaks at 36°, 39°, 49°, 58°, 62°, 72° and 76°.The 

crystallographic parameters for this CuO unit cell are a=4.662 Å, b=3.417 Å, c=5.118 Å, α=γ=90°, 

β=99.48°. No peaks of impurity are observed in the oxygen carriers and CuO reference sample 

XRD patterns. XRD patterns of CaO reference sample was also shown in Fig. 1. Obvious peaks 

appeared with 2θ values of 32°, 37°, 54°, 64°, 67° and 80°, which were correspondent to a 

diffraction pattern of cubic calcium oxide with crystallographic parameters a=b=c=4.797 Å, 

α=β=γ=90° (matched by reference code:00-001-1160). For the XRD patterns from oxygen 

carriers, no peaks could be attributed to CaO or other precursor compounds. CuO is the only 

crystalline phase that is clearly apparent. The presence of copper and absence of calcium implies 

there is no interaction between calcium and copper oxide in the bulk phase.  
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Figure 1. Powder XRD patterns of CaO-CuO oxygen carriers calcined at 550 °C 

Even though bulk lattice oxygen is a crucial reactant, the reaction between oxygen carriers 

and solid fuels (i.e. coal, char and carbon black) was regarded to proceed at the solid-solid interface 

in some researches[24, 34, 35]. It is therefore important to investigate the surface properties of 

oxygen carriers in addition to their bulk structural properties. The near-surface elemental 

compositions of the as-prepared CaO-CuO oxygen carriers as determined by XPS. From the survey 

scan, Cu2p, Ca2p and O1s peaks are observed, which is understandable due to the OCs synthesis 

procedure. Apart from these, a significant amount of carbon is detected at the outer surface. This 

is due to carbonaceous contaminations, deposited on the sample during sample transfer under 

ambient conditions, which are frequently measured by XPS. On the other hand, this contamination 

may also result from the formation of small amounts of calcium carbonate, which is caused by the 

unavoidable absorption of CO2 in air by calcium oxide in CaO-CuO sample.  

Calcium-doped samples O1s and Ca2p profiles are also examined and shown in Figure 2. 

Two major peaks are identified in the O1s profiles in Figure 2(a). The major peak located at 531.5 

eV can be assigned to calcium oxide, and the other major peak at 529.5 eV can be ascribed to 

lattice oxygen in copper (II) oxide. Comparing the relative intensities of CaO and CuO peaks, the 
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increased intensities for CaO peaks on the surface of 1wt%, 2wt% and 4wt% CaO-CuO samples 

were corresponding with the increasing amount of calcium addition. The XPS Ca2p spectra of 

calcium-doped CuO are shown in Figure 2(b). The Ca2p (2p1/2 and 2p3/2) binding energy values 

of 351.1 and 347.3 eV indicate that the oxidized Ca at the surface in the oxygen carriers can be 

assigned to calcium oxide as well. The increased Ca2p peak intensities are observed due to the 

increasing loading amount. The calcium enrichment on the oxygen carriers surface is proved by 

XPS atomic concentration analysis as well, which will be discussed later. The absence of calcium 

in the OC bulk phase presented by XRD analysis as well as the presence of calcium on the surface 

illustrated by XPS analysis prove that the calcium is doped only on the surface of copper oxide as 

desired.  

  

Figure. 2 Detailed O1s XPS scan for OC samples with different amount of doping calcium 

The degree of Ca surface enrichment can also be quantified by calculating the near surface 

Ca concentration. The bulk theoretical calcium molar ratio can be estimated by assuming the 

oxygen carriers to be homogeneous mixture of CaO-CuO samples with different Ca-doping 

amounts. The calculated molar ratios of Ca and Cu of 1, 2, 4wt% CaO-CuO samples are listed in 

Table 2. As it shown, a significant surface enrichment of calcium can be observed on all Ca-doped 

oxygen carriers. The near-surface Ca concentration becomes more pronounced with a higher 
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amount of Ca addition, while Cu drops to 84.9%. It is necessary to pay attention that the Ca 

concentration derived from XPS is much higher than theoretical ones in bulk. Thus it is concluded 

that the calcium is accumulated on the CuO surface and it is valuable to study the impact of this 

surface doping on CLC, which will be discussed in later sections. 

Table 2. Ca and Cu Concentrations of 1, 2, 4wt% CaO-CuO samples (Excluding oxygen) (%) 

Sample Surface metals concentration from XPS  Theoretical metals concentration in bulk 

 Ca2p Cu2p Ca Cu 

1wt%CaO-CuO 8.3 91.7 1.8 98.2 

2wt%CaO-CuO 12.0 88.0 3.6 96.4 

4wt%CaO-CuO 15.1 84.9 7.1 92.9 

 

2.3.2 Temperature-Programmed Reduction Analysis  

To study the reducibility of the CaO-CuO oxygen carriers, Temperature-Programmed 

Reduction (TPR) was performed on all prepared oxygen carrier samples in 5%H2/95%He 

atmosphere. Pure CuO was also examined as a reference. The normalized H2 TPR profile is 

presented and three peaks are obtained in Figure 3. The corresponding peak areas are summarized 

in Table 3. Figure 3(a) illustrated that all Ca-doped samples show three main peaks with a 

maximum at 277 °C, 357 °C, 532 °C, which are donated as α, β, γ, respectively. In contrast, only 

α peak is obtained for pure CuO sample. The α peak is ascribed to the reduction of CuO to metallic 

copper. Besides, water is detected at the exit of the reactor with a mass spectrometer when CuO 

reduction occurred. A similar report was found in previous investigation on CuO TPR study[36]. 

After the CuO is reduced, β and γ peaks start to appear after 300 °C, as shown in Figure 3(b). To 

identify these two following peaks, pure calcium oxide is subjected to H2-TPR and two noticeable 

peaks are observed at the same temperatures with those of β and γ peaks. Therefore, β and γ peaks 

are assigned to the reduction of doped calcium compounds on OC surface. Water is detected by 
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the mass spectrometer as well when the temperature is ~357 °C (β peak). This water is produced 

by the reaction between oxygen in CaO and hydrogen, indicating that the β peak stemmed from 

the reduction of CaO in the oxygen carriers. As for γ peak, it is partially caused by the Ca-O bond 

reduction in H2 as well, which is observed around 600°C in another report[37]. On the other hand, 

the γ peak is caused by calcium carbonate decomposition, which is proved by the CO2 appearance 

in low concentration from mass spectrometer analysis. Thus, produced CO2 partially contributes 

to the signal intensity of γ peak which was detected by TCD. The presence of CaCO3 is consistent 

with the detected impurity carbon atom described by XPS in Section 3.1. As summarized in Table 

3, the relative peak areas of α peak decrease slightly with calcium dopant amount in the order: pure 

CuO > 1wt% CaO-CuO >2wt% CaO-CuO > 4wt% CaO-CuO. This is because the introduction of 

inactive calcium sacrifices a small amount of oxygen transfer capacity of CuO. The intensity and 

peak area of β and γ are increasing with CaO loading from 1wt% to 4wt%. Furthermore, γ peak 

positions shifts with increasing CaO loading from 525 to 550 °C. It is believed that samples with 

finely dispersed CaO (lower calcium dopant) tend to be reduced at lower temperature.[38]  

  
Figure. 3 H2 temperature-programmed reduction profiles for three CaO-CuO OCs and pure 

CuO. (a) plot of TCD signal/Temperature vs. Time during whole reduction process; (b) plot of 

TCD signal vs. Temperature in 300-900 °C range. 
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Table 3. Peak areas for H2-TPR peaks. 
Sample Area for 

α peak 

(a.u.) 

Area for 

β peak 

(a.u.) 

Area for 

γ peak 

(a.u.) 

Area for 

α+β+γ 

peak (a.u.) 

CuO reduction 

peak area (α peak) 

in percentage (%) 

Total peak areas 

(α+β+γ peaks) in 

percentage (%) 

Theoretical 

CuO amount 

(wt%) 

Pure CuO 52.11 0 0 52.11 100 100 100 

1wt%CaO-CuO 50.64 0 0.86 51.5 97.2 98.8 99 

2wt%CaO-CuO 49.81 0.16 1.64 51.61 95.6 99.0 98 

4wt%CaO-CuO 48.17 0.95 2.35 51.47 92.4 98.8 96 

 

2.3.3 Effect of Calcium on CLOU 

In order to understand how the oxygen uncoupling reaction from the CaO-CuO oxygen 

carrier is affected by Ca-doping, decomposition of CaO-CuO oxygen carriers with different Ca 

contents and pure CuO were conducted in helium. Oxygen concentration from the effluent gas 

stream was analyzed during the temperature ramp. The results are shown in Figure 4(a). Two peaks 

for released oxygen concentration are observed when pure CuO is decomposed in helium and this 

phenomenon is confirmed by repeated experiments. The first peak, centered at 880°C, can be 

assigned to the reduction of CuO to Cu2O. Meanwhile, the second small peak represented the 

further transition of copper oxide state from Cu2O to Cu, to release oxygen. The similar phase 

changes were also obtained by Siriwardane et al.[24] by using in situ XRD and XPS. These studies 

clearly showed that during carbon/CuO combustion: CuO was first converted to Cu2O at relative 

low temperature, and then reaction proceeds until Cu2O is fully converted to Cu metal at higher 

temperature.  

In contrast, the addition of calcium significantly accelerates the reduction process, which 

is shown by single peak of the oxygen release when Ca-doped oxygen carriers are employed. 

Calcium addition on the surface strongly promotes the reduction process of copper oxide so that 

the carrier releases all the available oxygen in a single range of temperature to directly achieve full 
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conversion (from CuO to Cu). The data indicate that the presence of Ca is favorable for the oxygen 

un-coupling process, which is consistent with the data reported previously[21]. Before reaching 

the maximum value (215 min, ~880°C), the O2 releasing rate (which can be represented by the 

slope of the curves in Figure 4(a)), increased in the order: pure CuO ≈ 1wt%CaO-CuO < 

4wt%CaO-CuO < 2wt%CaO-CuO. Figure 4(b) displays the O2 production rate over temperature 

[dC(O2)/dT] at the ramping stage, which is represented by the first derivative of the O2 

concentration curve. The maximum O2 production rates are found at 882, 863 and 879 °C for 

1wt%CaO-CuO, 2wt%CaO-CuO, 4wt%CaO-CuO, respectively. Meanwhile the rate reaches 

maximum at higher temperature 885°C for pure CuO sample. Therefore, it is concluded that Ca 

can accelerate the oxygen release from CuO. Moreover, it can be seen that 2wt%CaO-CuO sample 

possesses both the maximum O2 concentration and lowest peak temperature of O2 production rate. 

This implies that when 2wt% CaO is doped and dispersed on CuO surface, monolayer coverage is 

formed to initiate and accelerate the decomposition reaction[39].   

 

 

Figure. 4 O2 concentration in product gas during the temperature ramp for decomposition of 

CaO-CuO oxygen carries and pure CuO. 
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2.3.4 Raman Spectra as Function of Temperature during OCs Decomposition 

The in situ Raman was employed to test the pathway of copper(II) oxide reduction process 

during decomposition of oxygen carriers. The decomposition property of pure CuO and 2wt%-

CaO-CuO was tested with temperature-programmed experiments coupled with in situ visible 

Raman spectroscopy. Figure 5(a) shows the 532nm excitation Raman spectra collected after 

different temperatures for pure CuO to correlate the observed change in reactivity (Section 2.3.3) 

with any structural changes to the lattice during the decomposition process. Since the Raman signal 

intensity is diminished with increased temperature, all Raman spectra were collected at 300°C after 

sample materials(both pure CuO and 2wt%-CaO-CuO) were heated up and kept for 5min at the 

desired temperature, i.e. 400-900°C.[32] Meanwhile, Raman spectra was collected at room 

temperature. In the Raman shift range of 100-600 cm-1, CuO peaks are assigned at 290 and 329 

cm-1, while Cu2O peaks were assigned at 219 and 408 cm-1. The CuO and Cu2O spectra agree well 

with the literature[40]. The plasma peaks noted in Figure 5, which are derived from the laser source 

itself[41], are regarded as an internal standard making Raman spectra at different temperatures 

comparable. As can be seen, for the pure CuO sample, only the CuO peaks at 290 and 329 cm-1 

are existing and no extra peak is found when the temperature is lower than 800°C. When the 

temperature is raised to 900 °C, Cu2O peaks at 219 and 408 cm-1 appear while CuO peaks diminish, 

even disappear. The appearance of Cu2O and disappearance of CuO peaks confirm that CuO 

decomposed to Cu2O when the temperature reached 900°C. This result is consist with the O2 

production from pure CuO sample decomposition in Section 2.3.3, the temperature for the first O2 

concentration peak is 880°C where the O2 is generated from the transition from CuO to Cu2O.  

For the 2wt%-CaO-CuO sample, similarly, there is no phase changes of CuO when the 

temperature is lower than 800°C. However, when the temperature goes up to 900°C, CuO is 
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directly converted to metallic Cu, without producing Cu2O. The Raman spectra for 2wt%-CaO-

CuO along with pure CuO sample are compared in Figure 5(b). For 2wt%-CaO-CuO sample, it is 

obvious that CuO peaks diminish and still exist when the decomposition reaction occurs. No Cu2O 

peaks are detected from the Raman spectra. The absence of Cu2O and existence of CuO confirmed 

the one-step decomposition of Ca-doped CuO (CuO→Cu). Different reduction pathways are 

revealed through in situ Raman spectra and O2 yield from oxygen carriers decomposition. The 

comparison of decomposition reactivity and in situ Raman spectra of doped and un-doped CuO 

suggested the change of reduction pathway from a sequential (CuO→Cu2O→Cu) to a direct 

transition (CuO→Cu) during OCs decomposition. These different pathways can be illustrated in 

Figure 6. It can be explained that CaO potentially forms a surface structure with oxygen vacancies 

and electron gaps, which are regarded as the possible driving force to allow O2 to form the surface 

O2- anions moving from the solid lattice structure[42]. The further study on the cause for the 

change of CuO transition pathway is undergoing. 

  

Figure. 5 Raman spectra (532 nm) of (a)pure CuO collected at different temperatures and 

(b)comparison between pure CuO and CaO-CuO oxygen carries at 900°C.  
Note: * Peaks are denoted to plasma peaks, which are regarded as internal standard to make Raman peaks are 

comparable. 
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Figure. 6 Proposed reduction pathway scheme schematic for calcium-undoped/doped CuO 

based on decomposition reactivity and Raman spectra.  

 

2.3.5 Effect of Surface-doped Calcium on CuO on Char-CLC Performance 

To investigate the role of doped calcium on CuO surface on reaction performance of CLC, 

the mixtures of Wyodak Char and CuO oxygen carriers with various amount of CaO (1wt%, 2wt%, 

4wt%) were heated to 900oC and kept for 30 min. The concentrations of CO2 and CO are presented 

as a function of time from reaction performance of char/OCs mixtures in Figure 7. When a mixture 

of char and CaO-CuO oxygen carriers was heated in helium, a combustion reaction with a 

significant rate is observed around 550 oC, which is consistent with previous studies[14, 24]. Since 

volatiles are not produced from char[43, 44], the rapid reaction of CuO and char cannot proceed 

via the coal volatiles. Therefore, this reaction can only be explained as solid-solid interaction 

between metal oxide and solid fuel. It has been claimed that solid-solid reactions can occur with 

coal and oxygen carriers when there are significant contacts between the oxygen carrier and coal. 

Sequential 

Transition of 

undoped CuO 

Direct Transition 

of Ca-doped CuO 
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This kind of reaction mechanism is described as “fuel-induced oxygen release” from metal oxides 

and presented in the following equation[24, 45]: 

 

The concentration peak of CO2 with CaO-doped CuO were higher than that with pure CuO, 

indicating faster reaction rate with CaO-CuO. The relative amount of produced gases can be 

indicated by the areas of produced gas curve. In Figure 7(a), the areas of produced CO2 employing 

CaO-CuO are clearly larger than that using pure CuO, indicating that there is additional carbon 

dioxide formation due to the presence of calcium surface-decorated oxygen carrier. Namely, more 

oxygen is released/transferred from the CuO at faster rate from either surface or bulk with the help 

of the calcium doped on the surface. Furthermore, it can be seen a significant CO2 production from 

the 2wt%-CaO-CuO sample with the maximum values (3.81% for p1 and 5.32% for p2). These 

maximum values for p1 and p2 increased 47.1% and 26.7% compared to those for pure CuO 

sample (2.59% for p1 and 4.20% for p2). The reaction with 2wt%-CaO-CuO also takes place at a 

lower temperature than that with other samples which also indicates the best reactivity to process 

the chemical looping combustion of Wyodak char. As noted earlier in Section 2.3.3, when calcium 

oxide loading reached 2wt%, a CaO monolayer on CuO surface would be generated and then 

promote the CLOU characteristics of CuO-based oxygen carriers. This Ca monolayer probably is 

also the main reason for the best reactivity performance of 2wt% CaO-CuO sample to accelerate 

the OCs-char reaction to produce CO2.  

It is necessary to note that there are no significant changes in the peak intensity and amount 

of CO produced, as shown in Figure 7(b). CO was considered as the intermediate during the solid-
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solid reaction between metal oxide and char. Saucedo et al.[46] also claimed that rapid oxidation 

of CO by the oxygen carrier (i.e. Fe2O3) to CO2 occurred within the mass transfer boundary layer 

surrounding the char particle.  

  

Figure. 7 CO2 (a) and CO (b) concentration in product gas during the temperature ramp as a 

function of time from reaction performance of char/OCs mixtures. 
 

2.3.6 Effect of Surfaced-doped Calcium on CuO on CH4-CLC performance 

The reaction performance of CaO-doped and pure CuO were conducted with 20 vol% 

CH4/Ar and results are shown in Figure 8. Different from solid fuel (char) CLC, there are three 

peaks in produced CO2 and CO concentrations plots, designated as p1, p2 and p3 for CO2 and q1, 

q2 and q3 for CO, respectively. Similar data were reported elsewhere[24] explaining that p1 and 

p2 are attributed to two reaction steps during the CLC process: CuO is first reduced to Cu2O at 

relatively low temperature, and then fully reduced to metallic Cu at higher temperature. CO2/CO 

of p1/q1 is produced by the reaction of CH4 with oxygen released from CuO→Cu2O, while those 

of p2/q2 is acquired from the reaction of CH4 with oxygen generated from Cu2O→Cu. In Figure 

8(a), the slight increase of CO2 production rate (maximum value) is observed for CaO-CuO 

samples over the pure CuO, is attributed to the favorable influence of the alkali addition. During 

the CLC process, calcium oxide absorbs the released CO2 so that the CO2/CO production is delayed 
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for CaO-CuO samples compared with the pure CuO experiment. The third peak p3 appears when 

the temperature is higher than 500-550 ℃. CaCO3 decomposes to be CaO and CO2, thus a small 

CO2 peak (p3) is found at the third stage. The generated CO2 would also react with CH4 at a 

relatively higher temperature and thus the methane reforming reaction is initiated to produce CO 

(q3). CaO-CO2 adsorption and decomposition processes are also obtained and explained in the 

research about biomass catalytic pyrolysis with alkali-treated CaO/ZSM-5 by Sun et al.[47]. In 

addition, the methane reforming reaction is also promoted by the produced metallic Cu as 

catalyst[48]. Therefore, it is reasonable that the maximum value and peak area for both p3 and q3 

peaks are pronouncedly increasing with the CaO doping amounts. H2 concentration in the product 

gas as a function of time during the temperature ramp of the reaction between oxygen carriers and 

methane is shown in Figure 9. The H2 concentration profile is deconvoluted into four peaks, 

designated as r1, r2, r3 and r4, respectively. A small amount of H2 was generated at r1 and r2, 

which are corresponding to the CLC decomposition of CH4 (simultaneously producing p1/q1 and 

p2/q2 peaks). r3 peak is generated by the above-mentioned dry (CO2) reforming of methane. It is 

clear to see that H2 concentrations derived by calcium doped samples are much higher than that of 

pure CuO sample. Moreover, the maximum H2 concentration increases with the Ca loading 

amount, which is in line with the CO results. It is interesting to note that a set of peaks r4 shows 

up at higher temperature (700-800 ℃), where the catalytic decomposition of methane (CDM) is 

occurring[49-51]. When the temperature reaches 700 ℃, CuO has been reduced to metal Cu, which 

is not active for methane decomposition[52]. Meanwhile, the doped Ca as a catalyst, promotes the 

H2 production[53], which is increasing with Ca dopant content. Many researches have reported 

that the calcium species, mainly CaO and calcium, could serve as promoters to improve the activity 

and lifetime of catalysts in methane decomposition[54-56]. The main reactions during the whole 
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CLC using CaO-doped CuO as oxygen carrier are summarized as shown below. The whole process 

could be expressed in Figure 10.  

CLC of CH4:     (4) 

CaO Adsorption:       (5) 

CaO Decomposition:      (6) 

Methane Reforming:     (7) 

Methane Decomposition:       (8) 

  

Figure. 8 (a) CO2 and (b) CO concentration in product gas during the temperature ramp as a 

function of time from reaction performance of oxygen carriers and methane. 

 

 

Figure 9. H2 concentration in product gas as a function of time during the temperature ramp of 

the reaction between oxygen carriers and methane. The curves in the small window represent 
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the original curves for four oxygen carriers. Deconvolution peaks (r1, r2, r3, r4) of H2 

concentration profiles are shown in the main window. 

 

 

 

Figure. 10 Scheme schematic of the contributing reactions in the CH4/oxygen carrier 

system 

 

2.4 Conclusions 

In this study, copper oxides were doped with calcium (1, 2 or 4 wt%) to improve reactivity 

and enhance surface controlled reactions. Combined results from XRD and XPS illustrate that the 

CaO is dispersed on CuO surface. CaO-CuO oxygen carriers present three reductive active sites 

corresponding to CuO reduction, CaO reduction and impurity CaCO3 decomposition in 5%H2-

TPR process. It was claimed that doping Ca improves the CuO oxygen uncoupling characteristics. 

Ca surface-doping increases the lattice oxygen transfer and surface O2 formation rate under CLOU 

conditions. Additionally, reduction pathway for CuO from a sequential (CuO→Cu2O→Cu) to a 

direct transition (CuO→Cu) is verified through OCs decomposition and in situ Raman analysis. 

When char reacts as solid fuel in the CLC process, more CO2 is generated at a faster rate with 
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CaO-doped CuO especially with 2wt% loading content. In contrast, when methane was used as 

gaseous fuel in the CLC process, the calcium dopant not only accelerated the reaction rate, but 

also induced the methane reforming reaction by reacting with released CO2, that was initially 

bound in the form of CaCO3, to promote the formation of CO and H2. 
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Chapter 3. Impact of Surface Composition of SrTiO3 Catalysts for 

Oxidative Coupling of Methane (OCM) 

 

Abstract  

Due to the increasing production of shale gas (mostly methane), various schemes for direct 

catalytic methane conversion have regained attention from the research community. One of the 

routes for upgrading methane is the oxidative coupling of methane (OCM) to C2 hydrocarbons 

(C2H6 and C2H4). Perovskite-type oxide catalysts have shown promising activity and selectivity 

toward C2 hydrocarbons. The present work investigates the effect of surface reconstruction (which 

leads to different surface compositions) of perovskites on the OCM by using SrTiO3 (STO) as a 

model catalyst. Different surface densities of Sr, between 25 and 96 % according to low energy 

ion scattering studies (LEIS), were attained via various treatments of STO. UV-Raman and LEIS 

analysis results are in good agreement on the surface and subsurface composition of the 

reconstructed STO samples. Temperature programmed desorption (TPD) of ammonia and carbon 

dioxide was conducted to measure the concentration of acid and base sites, respectively. From 

hydrogen temperature-programmed reduction (TPR) results, only surface Ti4+ reduction occurs 

and H2 consumption of the STO samples was found to be the same, which allows correlating their 

catalytic performances with surface acid-base properties. Steady-state catalytic tests were 

performed at 600-800 oC, and it was found that the enrichment of surface Sr enhances CH4 

conversion, C2 selectivity and the ratio C2H4/C2H6 up to a Sr/(Sr+Ti) of 0.66 at the surface and 

then levels off. Compared to the surface concentration of Sr, the relative concentration of basic 

sites, base/(base+acid) ratio, are observed as a better descriptor for the catalytic performance of 

the various STO samples. Extensive kinetic analysis for OCM was attempted with various rate 
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expressions reported in the literature. However, none of those expressions could accurately 

describe the performance of all the STO catalysts under this study and thus further study is 

necessary. This work shows the clear correlation between surface reconstruction, relative 

basicity/acidity of the surface and the catalytic performance for OCM over perovskite catalysts. 

The trends here are similar to those observed for methane combustion over the reconstructed STO 

in a recent work[1]. Overall, it is suggested that tuning surface reconstruction/composition of 

perovskites can be an effective approach for controlling methane activation and conversions. 

3.1 Introduction 

Due to the pronounced increase in shale gas (mostly methane) production in recent years, 

there has been a renewed interest in various schemes for catalytic methane conversion. These 

schemes can be classified as indirect and direct methods. Indirect conversion of methane to 

valuable chemicals, e.g. Fischer-Tropsch (FT) synthesis and methanol-to-olefins (MTO), include 

multiple stages, beginning with syngas production (H2/CO mixture) from methane. The direct 

method is defined as those schemes that convert methane to hydrocarbons without undergoing the 

capital cost of the intermediate syngas step. Therefore, direct methods are expected to be more 

economical and environmentally friendly than indirect methods. One of the attractive routes for 

direct upgrading of methane is the oxidative coupling of methane (OCM) to C2 hydrocarbons 

(C2H6 and C2H4), which are valuable intermediates for many chemical industries [2]. However, 

some difficulties for the commercialization of OCM have been recognized, such as (1) overcoming 

significant heat emission at high reaction temperature (700-1000 °C);  and (2) finding active 

catalysts with high selectivity to meet the requirement for 30% C2 yield [3]. Thus, there is a crucial 

need for efficient catalysts with high C2 selectivity at significant levels of methane conversion, and 

long-term thermal stability.  
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It is widely accepted that ethylene formation through the OCM follows three steps[4]: (1) 

homolytic cleavage of methane C-H bond occurs on oxygen species of the catalyst surface to 

generate the methyl radicals; (2) two methyl radicals homogeneously couple in the gas phase to 

form ethane; (3) ethane is dehydrogenated to ethylene. The main function of the OCM catalyst is 

to generate methyl radicals [5] and simultaneously to circumvent the overoxidation of radicals at 

the surface [6]. As for the former function, the surface oxygen ion-radicals (O- and O2
2-) as the 

electron deficient species, are reported to be the active centers for methane activation to produce 

methyl radicals in the OCM reaction.[7-10] For example, the existence of peroxide-like ions has 

been observed in the perovskite BaPbO3 and BaBiO3 catalysts, [11] resulting in their good catalytic 

performance in the OCM reaction. These surface oxygen sites have been accepted as the basic 

centers.[12] Considering the latter function, the lattice oxygen O2- is responsible for completed 

oxidation of methyl radicals to form CO and CO2 [7, 8, 13, 14]. The low mobility of lattice oxygen 

in the OCM catalyst is desired, aiming to avoid the overoxidation of CH3·. Therefore, the low 

oxygen mobility and the presence of surface oxygen ion-radicals, which are acting as the active 

sites for the methyl radical generation, are essential properties for the OCM catalysts. Numerous 

efforts have been made to find a high-performance catalyst since the pioneering work by Keller and 

Bhasin in 1982 [15]. Simple basic oxides (e.g. CaO [16], MgO [17], SrO [18], etc.), and alkali and 

alkaline metals supported on basic oxides (e.g. Li/MgO [19-21], Na/MgO and Na/CaO [22], etc.) 

have shown high activity in the OCM reaction. On the other hand, transition metal oxides combined 

with alkali metals, e.g. Na2WO4-Mn/SiO2 system, are also considered as promising catalysts for the 

OCM reaching C2 yields as high as 25 %[23-25].  

The thermally and chemically stable perovskite-type oxide catalysts[26, 27] are attractive 

alternatives. Perovskites oxides have a general formula ABO3 (A represents a lanthanide, alkali or 
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alkaline earth and B represents a transition metal). Numerous studies have found that the 

perovskite-type oxides are a promising OCM catalyst with high activity and selectivity toward C2 

hydrocarbons[28-32]. For instance, Fakhroueian and co-workers[33] reported the C2+
 selectivity 

and ethylene yield of a Na-doped BaSrTiO3 perovskite catalyst to be 51% and 24%, respectively. 

The promising catalytic performance of perovskite catalysts is attributed not only to the 

segregation of oxygen ion-radicals at the surface, but also the creation of electronic defects and 

oxygen vacancies (achieved by doping cations in the A and B sublattice)[34]. Some studies have 

been conducted to investigate the effect of active alkali dopants on catalytic behavior of perovskite 

oxides under the OCM conditions. D.V. Ivanov[34] synthesized Mg- and Al-doped SrTiO3 and 

Sr2TiO4, obtaining C2 yields and selectivity up to 25% and 66%, respectively, under optimal OCM 

reaction conditions. It was found that “layered” perovskite phases Sr2-xAxTiO4 or Sr3-xAxTi2O7 

(A=Mg, Al) are destroyed and SrO segregated on the catalyst surface, promoting methane 

activation. However, fundamental understanding of the effects of perovskite surface 

reconstruction, independent of the dopant used, on catalytic reactivity/selectivity for OCM is yet 

to be fully attained.  

In addition, the effect of surface reconstruction (which leads to different surface 

compositions) of perovskites has been recently considered to play an important role in various 

catalytic process, such as  oxygen evolution[35-37], NOx storage and reduction (NSR)[38], 

ethanol dehydrogenation[39] etc. Previous work has demonstrated that surface reconstruction is 

capable of tuning catalytic acid/base properties[39, 40], which are reported to be related to active 

sites in the OCM reaction[41, 42]. In addition, the effect of surface reconstruction on the rate of 

methane combustion was investigated by employing a set of SrTiO3 (STO) samples with various 

surface compositions[1]. Surface Sr concentration is found to be proportional to the rate of 
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methane combustion. However, the impact of surface reconstruction on the OCM catalysis has, to 

the best of our knowledge, not yet been reported.   

The goal of the present work is to unveil the effect of the surface reconstruction of 

perovskites using STO as a model material on the OCM reaction. The composition of surface and 

subsurface layers of STO samples, which were tuned via post-synthesis-treatments (thermal 

treatment, chemical etching and incipient wetness impregnation), has been characterized via low 

energy ion scattering (LEIS) in previous work [1], and UV Raman spectroscopy (in the present 

work). The density and strength of acid/base sites on the STO samples have been characterized via 

NH3/CO2-temperature programmed desorption. Correlations between the surface termination of 

STO samples, the acid/base sites, and the catalytic performance for the OCM were drawn, 

providing insights into the structure-performance relationships.  

3.2 Experimental Section 

3.2.1 Materials  

Strontium titanate (STO) and strontium oxide (SrO) were purchased from Sigma-Aldrich. 

Titanium oxide in the rutile phase was purchased from Alfa Aesar. Argon, Helium, 10% CH4/Ar, 

5% O2/He, 2% CO2/Ar, 2% NH3/He and 4% H2/Ar were all purchased from Airgas.  

3.2.2 Sample Preparation  

Five STO samples with different concentrations of Sr at the surface (STO(HNO3), 

Sr/STO(HNO3)-1, Sr/STO(HNO3)-2, Sr/STO-1, Sr/STO-2) were prepared using chemical 

etching and incipient wetness impregnation (IWI), as reported in previous publications [1, 39, 

40]. Figure 1 is a flowchart for the preparation of these STO samples with surface reconstruction. 

In brief, to promote the exposure of the Ti-terminated surface, STO(HNO3) was prepared by 
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submerging the commercial STO in the 0.2 M aqueous solution of HNO3 (20 mL of solution per 

gram of catalyst), the mixture was vigorously stirred for a few seconds and left still for 1 day at 

room temperature. The catalyst was then washed with deionized water and centrifuged at least 

four times at 12000 RPM for 10 min. The separated solid was dried at 60 °C overnight in a 

vacuum oven to obtain STO(HNO3). Sr/STO(HNO3)-1 and Sr/STO(HNO3)-2 were prepared from 

impregnating Sr on STO(HNO3), to alter the exposure of the Sr-terminated surface after 

reconstruction. A prescribed amount of STO(HNO3) was mixed with an aqueous solution of 

Sr(NO3)2 in a glass dish to ensure the solid was homogeneously wetted with the solution. The 

mixture was placed in the drying oven at 110 °C for approximately 16 h at 110 °C. To promote 

the exposure of the Sr-terminated surface after reconstruction, Sr/STO-1 and Sr/STO-2 were 

prepared with loading Sr at the surface of commercial STO by employing the same above-

mentioned IWI method. All samples were calcined at 750 °C for at least 5h and then subjected to 

following analyses and catalytic performance tests.  

 
Figure 1. Process Sequences for the preparation of STO catalysts. 

In previous study[1], it was found that all prepared samples have similar Brunauer-

Emmett-Teller (BET) surface area (18.8-22.2 m2/g). In addition, all samples presented the same 
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STO perovskite crystal structure without detectable additional phases via XRD. For the reference 

sample, the BET surface area for SrO/TiO2 is 2.8 m2/g, and the SrO content on this sample is 3.55 

mg/(m2,catalyst). The particle size for Sr/TiO2 is c.a.40nm, calculated with XRD data using the 

Scherrer equation. 

3.2.3 Low Energy Ion Scattering (LEIS) Analysis 

LEIS measurements were performed at Lehigh University in an IONTOF Qtac100 

spectrometer (ION-TOF GmbH, Münster, Germany) to determine the composition of the outmost 

atomic layer. Charge neutralization was invoked during spectra acquisition and sputtering. More 

details of LEIS measurement can be found in previous work[1]. Sr-composition, namely 

Sr/(Sr+Ti), reported in this work is calculated by assuming that the Sr-composition is 50 % at 5 

nm depth for a commercial STO sample without any pretreatment.  

3.2.4 Raman Spectroscopy 

Raman spectroscopy was performed on a multiwavelength Raman system[43] at sub-

ambient temperature(-75°C) since the STO Raman signal intensity is enhanced at low 

temperature[44]. Raman spectral collection was performed with 325 and 442 nm laser excitations, 

which are ultraviolet- and visible-laser excitations, respectively. Raman scattering was collected 

via a customized ellipsoidal mirror and directed by a fiber optic bundle to the spectrograph stage 

of a triple Raman spectrometer (Princeton Instruments Acton Trivista 555). Edge filters (Semrock) 

were used in front of the UV-vis fiber optic bundle (Princeton Instruments) to block the laser 

irradiation. The 325 (<5 mW at sample) and 442 nm (<10 mW at sample) excitations are from a 

HeCd laser (Melles Griot). A UV-enhanced liquid N2-cooled CCD detector (Princeton 

Instruments) was employed for signal detection. The Raman reactor (Linkam THMS 600) sits on 



40 

an XY stage (Prior Scientific, OptiScan XY system). Prior to Raman characterization, all STO 

samples were pretreated in air in the muffle oven at 850 °C for 5 h. The samples were then 

transferred to the Raman reactor and cooled down to the measurement temperature under a 

constant Ar flow (30mL/min).   

3.2.5 Temperature Programmed Desorption of Ammonia (NH3-TPD) and Carbon 

Dioxide (CO2-TPD) 

The temperature programmed desorption of ammonia (NH3-TPD) and carbon dioxide 

(CO2-TPD) was conducted to evaluate the comparative strength and quantify the concentration of 

surface acid and base sites of the samples under study. An Altamira Instruments system (AMI-

300) coupled with an on-line mass spectrometer (Omnistar GSD-301, Pfeiffer Vacuum) was used 

to perform the TPD measurements. Prior to a TPD measurement, 20 mg of a STO sample was 

loaded into a U-tube quartz reactor and pretreated at 850 °C for 5 h under 50 mL/min of 5% O2/He. 

The temperature was increased from 25 to 850 °C at a heating rate of 20 °C/min. After 

pretreatment, the sample was cooled to 150 °C (for ammonia adsorption) or 30 °C (for carbon 

dioxide adsorption) under helium. Prior to desorption, the catalyst was exposed to 30 mL/min of 

2% NH3/He for 2 h. Then, the sample was purged with 30 mL/min of He for 2 h to remove 

physisorbed NH3. Afterwards, the temperature of the sample was ramped from 150 to 800 °C at a 

rate of 5 °C/min, and the NH3-TPD profile was recorded using the mass spectrometer. CO2-TPD 

profiles were collected using the same procedure as the NH3-TPD. 2% CO2/Ar was employed to 

perform the CO2 adsorption/desorption cycle to evaluate the density of the basic sites for the STO 

catalysts. 
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3.2.6 Temperature Programmed Reduction with Hydrogen (H2-TPR)  

The reducibility of the STO samples was evaluated via temperature-programmed 

reduction with hydrogen (H2-TPR). These measurements were done in an Altamira Instruments 

AMI-300 system, coupled with an online mass spectrometer (Omnistar GSD-301, Pfeiffer). Before 

the reduction, 20 mg of the STO catalyst were treated at 850 °C for 5 h under 50 mL/min of 5% 

O2/He. Then, the catalyst temperature was cooled to 50 °C under He. Once the temperature of the 

catalyst bed reached 50 °C, the flow through the bed was switched to 30 mL/min of 4%H2/Ar. 

After exposure to 4% H2/Ar for 2 h, the temperature of the catalyst sample was ramped from 50 

°C to 800 °C at a rate of 5 °C/min, and the H2-TPR profile was recorded using the online mass 

spectrometer.  

3.2.7 Steady-State Kinetic Measurement 

The OCM reaction was performed in the AMI-300 system. 5 mg STO or SrO sample 

(particle sizes both are 177-250 μm) was diluted in quartz sand (177-250 μm) to minimize 

channeling and local temperature differences. The quartz-to-catalyst mass ratio was approximately 

60:1. The catalyst bed was placed inside a quartz u-tube (10 mm inner diameter) and held in place 

by quartz wool at both ends of the bed. A K-type thermocouple was placed inside the reactor to 

monitor the temperature of the catalyst bed. Before kinetic measurements, each sample was 

pretreated under 50 mL/min of 5% O2/He at 850 °C for 5 h. Steady-state conversions and 

selectivity do not change during at least 2 h time-on-stream, suggesting that the surface does not 

reconstruct further after the initial activation in O2 at high temperature. The feed used to perform 

the OCM reaction consisted of 25 mL/min of 10% CH4/Ar, 10 mL/min of 5% O2/He, and 15 

mL/min of He as balance gas. Thus, the methane to oxygen ratio was 5. Products were analyzed 

by an on-line gas chromatograph (Agilent Technologies, 6890N) with HayeSep-N and Molecular 
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Sieve 13X columns using both thermal conductivity and flame ionization detectors. The GC 

response factor was calibrated for all compounds. All lines were heated to 120 °C to avoid water 

condensation. All the kinetic data were measured under differential conditions (methane 

conversion less than 6%) at temperatures of 650 °C. A blank test using the same U-tube reactor 

without catalyst was carried out and showed negligible methane conversion and C2 yield (CH4 

conversion of 0.39%, 0.94%, 2.3%, and C2 yield of 0%, 0%, 0.04% at 600, 700, 800 °C, 

respectively). All data points are averaged values of 3 to 5 GC-runs after the reaction reached 

steady state. The error for each data point is less than 5%, and the averaged values are presented 

below. The CH4 conversion (%), C2 hydrocarbon selectivity (%), C2 hydrocarbon yield (%), COx 

selectivity (%), COx yield (%) and ethylene/ethane ratio (mol/mol) were defined as follows:  

     (Eq3.2-1) 

     (Eq3.2-2) 

    (Eq3.2-3) 

      (Eq3.2-4) 

  (Eq3.2-5) 

       (Eq3.2-6)  

3.3 Results and Discussion 

3.3.1 Surface Composition 

LEIS was used to analyze the composition at the surface of the STO samples since it is 

considered as a particularly suitable technique to probe the top atomic monolayer of a material 
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(escape depth of ~0.3 nm) with a sensitivity on the order of 0.1 at.% [45-47]. Sr-compositions 

(Sr/(Sr+Ti)) of the outermost surface layer of STO samples are presented in Figure 2. The 

Sr/(Sr+Ti) value for the STO(HNO3) sample is 0.25, indicating the STO(HNO3) surface is enriched 

with Ti cations. As reported previously, chemical etching with HNO3 exposed Ti cations at the 

surface (as single and double layers)[40]. Although Sr-doping increases the surface composition 

of Sr for Sr/STO(HNO3)-1 and Sr/STO(HNO3)-2 samples (whose Sr/(Sr+Ti) values are larger than 

that of STO(HNO3) sample), surface Ti enrichment is also observed for Sr/STO(HNO3)-1 sample 

since its Sr/(Sr+Ti) value is 0.28, namely 72% of its surface is covered by Ti cations. For the 

commercial STO sample, Sr/(Sr+Ti) at the surface is 0.66, i.e. the Sr/Ti ratio is about 2. The 

impregnation of Sr significantly increases the Sr termination on the top layer of Sr/STO-1 and 

Sr/STO-2 samples, whose Sr/(Sr+Ti) are 0.92 and 0.96, respectively. To sum up, chemical etching 

and IWI methods effectively tuned the surface compositions of the STO perovskite. The 

concentration of surface Sr increases in the order: STO(HNO3) < Sr/STO(HNO3)-1 < 

Sr/STO(HNO3)-2 < STO < Sr/STO-1 < Sr/STO-2. The ratio of base/acid sites (quantified by NH3-

TPD and CO2-TPD to be shown in a later section) is also tuned by the surface compositions of the 

samples (see Figure 2). This base/acid ratio correlates with the surface Sr concentration, and the 

details about this relationship will be discussed in Section 3.3.3.  



44 

 

Figure 2. Sr-compositions (Sr/(Sr+Ti)) of outermost surface layer and ratio of base/acid site of 

STO samples. 

The evidence for surface reconstruction of the STO perovskites upon high temperature 

treatment was collected via LEIS. Significant differences in the segregation of cations at the 

surface were observed before and after the in situ O2 treatment (the treatment in the O2 atmosphere 

at high temperatures attempts to reproduce approximately the OCM reaction conditions, given the 

limitations of the technique). The compositions before and after reconstruction for commercial 

STO and STO(HNO3) samples are summarized in Table 1. 

Table 1. Surface composition from LEIS analysis with in situ heat treatment 

in O2 atmosphere at 500°C for 30min. 

Catalyst Sr/(Sr+Ti) at the surface 

Before Treatment After Treatment 

STO 0.35 0.66 

STO(HNO3) 0.20 0.25 

 

3.3.2 Raman Spectra as Function of Laser Excitations and Surface Composition 

The commercial STO sample was selected for the comparison of the Raman spectra from 

UV- and visible- laser excitations. Figure 3(a) shows the Raman spectra of commercial STO 
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excited at 325 (UV-Raman spectrum) and 442 nm (visible Raman spectrum). All the peaks 

assignments are listed in Table 2. Excitation by the two lasers at different wavelengths gives 

Raman spectra with similar peak positions but different relative intensity. The relative intensities 

of the peaks at 795, 1038, 1292 and 1618 cm-1 to that of the peak at 308 cm-1 are greatly enhanced 

with the 325-nm excitation, due to the resonance enhancement effect [48, 49].  

 

 

Figure 3. (a) Raman spectra of commercial STO excited at 325 and 442 nm. (b) 325-nm excited 

Raman spectra of STO samples with surface reconstruction. (c) Ratio of IA4/IA7 values for 

different STO samples. 
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Table 2. Raman peak assignments for STO samples. 

Peak Position (cm-1) Assignment Reference 

308 TO2+TA, TO2+TO1, TO4-TO2 [50] 

480 LO3 [51] 

543 TO4 [51] 

624 TO4+TA, TO4+TO1 [50] 

684 2TO3 [50] 

727 TO4+TO2 [50] 

795 LO4, Ti-O stretching mode [52, 53] 

1038 2LO2, 2TO4 [50] 

1292 LO4+LO2 [50] 

1618 2LO4 [50] 

 

In its diffuse reflectance UV-vis spectrum in Figure 4, STO shows strong electronic 

absorption in the region below 400 nm, whereas it exhibits little absorption in the visible region. 

As a result, compared to the conventional visible Raman spectroscopy, UV-excitation Raman has 

a shorter penetration depth, preventing light from entering the substrate or deep bulk[44, 49]. 

Therefore, the UV excitation at 325 nm was utilized for studying the composition in the surface 

sublayers in the STO samples. Indeed the 325 nm laser was found to have a penetration depth of 

∼9 nm[54] of STO, a relatively small portion of the outside of the STO particles with an average 

particle size of ~100 nm[39]. 
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Figure 4. UV-vis diffuse reflectance spectrum of the commercial STO sample. 

 

Figure 3(b) gives the 325 nm excited Raman spectra of various STO samples and the 

corresponding Raman spectra from 442 nm excitation are shown in Figure 5.  

 

Figure 5. Raman spectra of all STO samples with excitation at 442 nm. 
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Since the three overtone bands at 1038, 1292 and 1618 cm-1 yield consistent values for 

the phonon energies of the LO4 and LO2 modes[50], their intensities remain constant for all the 

samples and normalization was conducted regarding the band at 1618 cm-1 as the reference. Each 

of the acquired spectra in the region between 600-1900 cm-1 were deconvoluted to 7 Gaussian 

bands A1-A7. A typical example of the spectral deconvolution of the Raman spectra of the 

commercial STO sample is shown in Figure 6. Coefficient of determination (R2) of curve 

deconvolution is more than 0.98 for all samples (0 ≤ R2 ≤ 1). All band assignments for A1-A7 can 

be found in Table 2. Especially, the A4 peak at 795 cm-1 is assigned to the Ti-O stretching mode 

[53] and A7 peak at 1618 cm-1 is assigned to the combination of LO4+LO2 mode. The relative 

amount of Ti in the sublayer of STO samples can be described by the area ratios of the A4 band to 

A7 band (IA4/IA7). Figure 3(c) exhibits the IA4/IA7 values for different STO samples. The IA4/IA7 

ratio, namely, the relative amount of the Ti in the STO sublayer, decreases with the increase of 

Sr/(Sr+Ti) detected from LEIS analysis. UV-Raman and LEIS analysis results are in good 

agreement on the surface and subsurface composition of reconstructed STO samples.  
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Figure 6. Spectral deconvolution of the Raman spectrum of the commercial STO sample. 
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Figure 7. Raman spectra for commercial STO sample under OCM conditions at different 

temperatures and reaction time. 

 

3.3.3 Acid-base Properties Investigation 

It is widely accepted that the acid/base properties of the catalysts, especially the 

concentration of surface base sites, play an important role in the formation of C2 hydrocarbons in 

the OCM reaction. Florica et al.[41] claimed that the higher the catalyst basicity, the better the 

efficiency for selectively converting methane to C2 products. Acid/base catalytic properties of 

perovskites have been studied with multiple techniques and these studies were reviewed 

recently[12]. It is accepted that the acid/base catalytic performance can be influenced by some 

factors, such as density, strength and type of adsorption sites, the surface reconstruction (both 

surface concentration and surface structure) under reaction conditions and the facet exposed. In 

recent work [39], the acid-base properties were found to relate with the surface composition which 

can be tuned by surface reconstruction of shape-controlled STO nanocrystals. In this work, the 

NH3-TPD measurements were performed to analyze the acid-site strength distribution and 

concentration on the STO surface. As shown in Figure. 8(a), three desorption peaks Q1, Q2, Q3 



51 

were obtained by conducting deconvolution at low temperature around 190 and 250 °C and high 

temperature around 500 °C. The low temperature peaks (Q1 and Q2) correspond to weak acid 

sites, whereas the higher temperature peak Q3 is related to strong acid sites. It is observed that 

surface-Sr-rich samples (Sr/(Sr+Ti) > 0.5), i.e. STO, Sr/STO-1, Sr/STO-2, only possess a weak 

Q2 peak at low temperature; in contrast, surface-Ti-rich samples (i.e. STO(HNO3), 

Sr/STO(HNO3)-1, Sr/STO(HNO3)-2) exhibit both Q1 and Q2 low temperature peaks. Moreover, 

the increase of Ti at the surface further increases the strength of acid sites by shifting the 

corresponding high temperature desorption peak Q3 from 450 to 550 °C. The amount of NH3 

adsorbed represents the surface acid site concentration of the catalysts and is summarized in Table 

3. The acid site density increases in the order: Sr/STO-2 < Sr/STO-1 < STO < STO(HNO3)-2 < 

Sr/STO(HNO3)-1 < STO(HNO3). 

Table 3. Acid and base site density of catalyst  

Catalyst ID Acid site 

(µmol/g) 

Base site 

(µmol/g) 

Ratio of 

base/acid 

Ratio of 

base/(base+acid) 

STO(HNO3) 71.32 10.58 0.15 0.13 

Sr/STO(HNO3)-1 71.37 17.33 0.24 0.20 

Sr/STO(HNO3)-2 62.00 37.53 0.61 0.38 

STO 54.05 146.82 2.72 0.73 

Sr/STO-1 48.40 155.92 3.22 0.76 

Sr/STO-2 52.36 145.46 2.78 0.74 

Sr/TiO2 51.77 1.13 0.02 0.02 

 

The basicity of STO catalysts was measured by CO2-TPD as shown in Figure 8(b). There 

are three peaks in the CO2-TPD profile, labelled P1, P2 and P3. P1 and P2 were assigned to the 

weak and strong CO2 desorption at the temperature < 100 and 300 °C, respectively, which are due 

to the alkalinity of strontium[56]. P3 appears at 700 °C for the Sr/STO samples, which is caused 

by the decomposition of surface carbonate (SrCO3 → SrO + CO2)[57, 58]. Surface-Sr-rich STO 

samples possess P1, P2 and P3 basic sites; whereas surface-Ti-rich samples only have the P1 
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weakly basic sites, except that STO(HNO3)-2 shows small amount of P2 strong basic sites. The 

amount of basic sites for the STO samples was also calculated and summarized in Table 3. The 

total amount of basic sites increases with the surface Sr concentration. The plot in Figure 9 suggests 

the correlation of base-site density with acid-site density on STO samples, where the base site 

concentration is inversely proportional to that of the acid sites.  

The catalyst performance was evaluated over the temperature range of 600-800 °C and the 

product CO2 can form carbonate species on the STO surface. From the CO2-TPD profile, it is 

found that most basic sites (locating on P1 and P2 peaks) on the STO samples are available to 

reactants when the temperature is higher than 600 °C. Furthermore, when reaction temperature is 

higher than 700 °C, the basic sites corresponding to P3 are exposed and can contribute to the 

formation of C2. Reactivity trends are similar in the temperature range studied (600-800 °C); and 

therefore, we conclude that the basic sites corresponding to P3 at reaction temperatures above 700 

°C do not have significant impact on the OCM performances over the STO samples. 

The surface ratio of base/acid sites and base/(base+acid) are listed in the Table 3. From 

Figure 2, the base/acid ratio trend in the STO samples is in good agreement with the LEIS results, 

indicating that the surface Sr enrichment of the catalysts is proportional to the density of basic 

sites.   
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Figure 8. (a) NH3-TPD profiles and (b) CO2-TPD profiles of STO samples. 

 

 

Figure 9. Correlation of base-site density with acid-site density on STO samples. 

  

3.3.4 H2-TPR Analysis 

To study the dependence of the reducibility of the STO samples with surface termination, 

TPR tests were performed in 30 mL/min 4% H2/He flow. The H2-TPR profiles are presented in 

Figure 10, illustrating that all STO samples show one main peak with a maximum at 500 °C. This 
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all STO samples was calculated and summarized in Table 4. All samples showed similar H2 

consumption (584-595 µmol/g); therefore, the surface composition has negligible effect on the 

reducibility of STO samples.  

Table 4. H2 consumption of STO samples during H2-TPR 

Catalyst ID H2 consumption (µmol/g)   

STO(HNO3) 595.9 

Sr/STO(HNO3)-1 592.9 

Sr/STO(HNO3)-2 581.6 

STO 591.3 

Sr/STO-1 586.4 

Sr/STO-2 584.0 

 

 

Figure 10. H2-TPR profiles of STO samples. 

 

3.3.5 Catalytic Performance 

When tested for the OCM reaction, the STO catalysts have shown promising activity and 

selectivity toward C2 hydrocarbons, i.e. C2 yield can reach 10.5% for 30 mg STO at 800 ~ 850 °C 

at CH4/O2 = 5 (See Figure 11). The yield, upon further catalyst optimization, has the potential to 

meet the industrial requirement, which is 30% for combined C2 yield [10, 60]. For example, D. V. 

Ivanov and co-workers[34] reported the C2 yield in the OCM reaction for Mg-/Al-doped STO and 
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Sr2TiO4 can achieve as high as 25% at 850-900 °C, thus can be comparable to that found for the-

state-of-the-art OCM catalysts, such as Na-doped Ba0.5Sr0.5TiO3 (24 % C2 yield)[33], and Na-W-

Mn/SiO2 (29 % C2 yield)[55], among others. In addition, excellent regenerability of the STO 

catalysts was validated in the present work. The spent STO after the OCM reaction at 850 °C for 

3 h was exposed to oxygen (5% O2/He, 850 °C, 5h) for regeneration. The regenerated STO 

exhibited unchanged catalytic activity as shown in Figure 11.  

 

Figure 11. Regenerability test of commercial STO sample for OCM reaction. 
Note: CH4 conversion, C2 selectivity and C2 yield for 30mg commercial STO with CH4/O2 feeding ratio 5 at 

different temperatures in OCM reaction. 850-Re represents that spent STO sample was regenerated (in 5% O2/He 

for 5h at 850 °C) after OCM reaction (850 °C for 3h), then employed to OCM reaction in the same condition at 850 

°C. 

To study the OCM kinetics, the STO catalysts were tested for the OCM reaction with 

CH4/O2=5 over the 600-800 °C temperature range with CH4 conversion below 10%. The variation 

of CH4 consumption rate and product (CO2, CO, C2H4 and C2H6) yields with respect to the 

composition of the top catalyst surface at different temperatures are presented in Figure 12(a)-(e). 

Although the maximum C2 (C2H4+C2H6) yield in present experimental condition is 5.3% (Figure 

12 (d) and (e)), the fundamental understanding of the effects of perovskite surface composition 

can be investigated. The methane consumption rate and product yields are found proportional to 

750 800 850 850-Re

0

10

20

30

40

50

60
 CH4 Conversion

 C2 Selectivity

 C2 Yield 

Temperature (oC)

C
H

4
 C

o
n

v
e
ri

s
o

n
 /
 C

2
 S

e
le

c
ti

v
it

y
 (

%
)

0

2

4

6

8

10

12

14

16

C
2
 y

ie
ld

 (
%

)



56 

the concentration of Sr at the surface for the range of temperature studied up to Sr/(Sr+Ti) ratio of 

0.66, beyond which the CH4 conversion and yields tend to level off. The trends are similar to the 

trend observed for methane combustion over these STO samples in recent work (See Figure 13), 

i.e., similar enhancement of CH4 conversion is present with surface Sr concentration of STO in 

both methane combustion and the OCM reaction. Apparently, the surface Sr concentration can be 

highlighted as a universal descriptor for methane activation, independent of the reaction (OCM or 

combustion). As a control test, the OCM reaction was conducted on a Sr/TiO2 catalyst and no 

activity was observed (CH4 conversion of 0.65%, 0.84%, 2.45% at 600, 700, 800 °C, respectively, 

similar to the blank test results). From recent report[1], the Sr/TiO2 sample was synthesized by 

impregnating Sr on the surface of rutile TiO2. XRD results indicated Sr does not diffuse into the 

TiO2 lattice and its theoretical surface Sr/(Sr+Ti) value is 1. This prominent reactivity difference 

between Sr-doped TiO2 and impregnated STO indicates that the arrangement of cations in the bulk, 

related to the crystal structure, is critical for the OCM reaction. From Table 3, the acid-site density 

of Sr/TiO2 is comparable to those of perovskite STO with surface reconstruction (48.40-71.37 

µmol/g). In contrast, the base-site density of Sr/TiO2 is only 1.13 µmol/g, which is much less than 

those of perovskite STO samples (10.58-155.92 µmol/g), resulting in poor OCM activity. 

Therefore, it can be concluded that the ABO3 crystal structure is necessary for the existence and 

stabilization of basic sites on the catalyst surface.   

 



57 

     

Figure 12. (a) CH4 conversion, (b) CO2 yield, (c) CO yield, (d) C2H6 yield and (e) C2H4 yield 

with respect to the composition of the top surface of various STO samples at different catalyst 

bed temperatures (600, 650, 700, 750, 800°C) for OCM reaction with conditions in present work.  
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Figure 13. Rate of CH4 conversion versus composition of outermost atomic layer of various 

STO samples at different temperatures for methane combustion. 
Note: Reaction conditions for methane combustion: 30 mg of catalyst, 1.4 atm, feed consists of 51 mL/min 1.1% 

CH4, 4.5% O2, balance Ar + He. Reprinted with permission from (F. Polo-Garzon, V. Fung, X. Liu, Z.D. Hood, 

E.E. Bickel, L. Bai, H. Tian, G.S. Foo, M. Chi, D.-e. Jiang, Z. Wu, Understanding the Impact of Surface 

Reconstruction of Perovskite Catalysts on CH4 Activation and Combustion, ACS Catalysis, (2018)). Copyright 

(2018) American Chemical Society. 

 

Figure 14(a) and (b) show the ratio of C2/COx and ethylene/ethane yield, respectively, at 

different temperatures as a function of top surface composition. C2 selectivity along with 

ethylene/ethane ratio increased with both temperature and Sr/(Sr+Ti) at the surface. The surface 

basic sites are reported to be responsible for the formation of C2.[41, 42]. From previous work [1], 

the homolytic dehydrogenation of methane, which would create free methyl radicals, presents the 

lowest activation energy (0.32 eV) on the Sr-terminated step surface, compared with Ti-terminated 

step surface and other heterolytic C-H bond cleavage over STO surface. Subsequently, more C2H6 

is formed via the combination of methyl radicals in the gas phase. Then, the dehydrogenation of 

concentrated C2H6 is promoted and finally more C2H4 is generated in the gas phase. In short, a clear 

connection between STO surface composition and the OCM catalytic performance is expressed, i.e., 
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Sr concentration at the surface is shown to be an indicator for the activity and selectivity in the OCM 

reaction. 

 

Figure 14. (a) Ratio of C2/COx yield and (b) ratio of ethylene/ethane yield as function of top 

surface composition at different catalyst bed temperatures over various STO samples. 

 

To calculate the apparent activation energies for different STO samples, the reaction rates 

under differential conditions (CH4 conversion < 10%) are fitted to power law model[61] with a 

simple rate expression: 

 (Eq3.3-1) 
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Where the A’ is the pre-exponential factor in the Arrhenius equation, Ea is the apparent 

activation energy, R is the gas constant with the value of 8.314×10-3 kJ/K/mol, T is the reaction 

temperature. 

Thus, the Eq3.3-1 can be rewritten as:  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6  600 oC

 650 oC

 700 oC

 750 oC

 800 oC

R
a

ti
o

 o
f 

C
2
H

4
/C

2
H

6
 Y

ie
ld

Sr/(Sr+Ti) at the surface

(b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 600 oC

 650 oC

 700 oC

 750 oC

 800 oC

R
a

ti
o

 o
f 

C
2
/C

O
x
 Y

ie
ld

 

Sr/(Sr+Ti) at the surface

(a)



60 

  (Eq3.3-2)   or,  

   (Eq3.3-3) 

Where, A=A’(PCH4)
a (PO2)

b, B=Ea/(1000×R). By plotting the ln(rate) against the (1000/T), 

A and B can be derived from the intercept and slope of the plots, respectively. Hence, the Ea can 

be solved from B values in (Eq-S3), which are shown in Table 5. The calculated Ea values are 

listed in the Table 6 in the following part. 

Table 5. Fitted B values according to Eq3.3-3. 

Sample Fitted B values  

CH4 consumption CO formation CO2 formation C2 formation 

STO(HNO3) 16.388±2.666 15.209±0.950 14.952±1.374 22.09±3.100 

Sr/STO(HNO3)-2 14.902±1.957 14.274±0.407 18.08±0.831 23.745±3.176 

STO 14.839±1.560 12.04±1.842 11.087±2.671 22.746±0.394 

Sr/STO-1 14.171±1.672 12.792±0.568 13.251±1.176 36.016±3.554 

Sr/STO-2 12.603±0.985 11.045±2.405 11.437±2.450 23.899±1.989 

 

The Arrhenius plots for CH4 consumption with various catalysts are presented in Figure 

15(a). The apparent activation energies (Ea) for CH4 consumption, CO, CO2 and C2 formation are 

shown in Table 6. Moreover, Figure 16 shows the Arrhenius plots for CO, CO2 and C2 formation 

rates with different catalysts. The relationship between apparent activation energies with surface 

Sr concentration is plotted in Figure. 15(b). The Ea values remained constant with varying surface 

Sr concentration for the STO samples, indicating the reaction pathway for the OCM reaction on 

STO is unchanged. It is reported in precious publication[1] that the rate-determining step (RDS) 

for the combustion of methane over STO is involved in the dehydrogenation of CH4 rather than 

the dissociation of O2, confirmed by kinetic isotopic experiments. Since the OCM rate trends are 

similar to that for methane combustion over these STO samples, it is reasonable to assume the 
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RDS for OCM reaction is also related to the C-H bond breaking of CH4. The difference in the rate 

of the OCM reaction (Figure 12(a)) can be attributed to the different surface density of active sites, 

which increases with either surface Sr or basic sites.  

  

Figure 15. (a) Arrhenius plots for the CH4 consumption rate. (b) Apparent activation energies 

(Ea) measured under differential conditions, for CH4 consumption rate over STO catalysts under 

study with different surface Sr concentration. Experimental conditions: 5 mg catalyst, 1.0 atm, 

feed consists of 25 mL/min of 10% CH4/Ar, 10 mL/min of 5% O2/He, and 15 mL/min of He as 

balance gas. 

 

Table 6. Apparent Activation Energies for CH4 consumption and CO,CO2, C2 formation 

Sample  Apparent Activation Energy (kJ/mol) 

CH4 consumption CO formation CO2 formation C2 formation 

STO(HNO3) 136.2±22.2 126.4±7.9 124.3±11.4 183.7±25.8 

Sr/STO(HNO3)-2 123.9±16.3 118.7±3.4 150.3±6.9 197.4±26.4 

STO 123.4±13.0 100.1±15.3 92.2±22.2 189.1±3.3 

Sr/STO-1 117.8±13.9 106.4±4.7 110.2±9.8 299.4±29.6 

Sr/STO-2 104.8±8.2 91.8±20.0 95.1±20.4 198.7±16.5 
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Figure 16. The Arrhenius plots for CO, CO2 and C2 formation during OCM over various STO 

catalysts. 
Note: Experimental conditions: 5 mg catalyst, 1.0 atm, feed consists of 25 mL/min of 10% CH4/Ar, 10 mL/min of 

5% O2/He, and 15 mL/min of He as balance gas. 

 

The acid-base properties of active sites on catalysts are reported to be responsible for the 

catalytic performance in the OCM reaction[41, 42]. Therefore, the relationship between CH4 

conversion and acid or base site density is investigated and plotted in Figure 17. The CH4 

conversion increases with increasing surface base site density (Figure 17(a)), while it decreases 

with increasing acid site density (Figure 17(b)).  
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Figure 17. CH4 conversion as the function of the surface base site density and the acid site 

density for OCM reaction over various STO samples. 

 

Moreover, Figure 18 indicates that the higher the relative concentration of base sites (i.e. 

base/(base+acid)), the higher the CH4 conversion. As mentioned before, CH4 conversions of STO 

samples remain steady when Sr/(Sr+Ti) is greater than 0.66. However, after Sr/(Sr+Ti) > 0.66, the 

relative concentration of basic sites (base/(base+acid)) also remains constant. Furthermore, Figure 

8(b) shows that the strength of the basic sites is the same for STO samples with Sr/(Sr+Ti) ratio 

more than 0.66. Therefore, the CH4 conversion shows a linear increase with the ratio of 

base/(base+acid) over the whole range of surface compositions, suggesting that the relative base 

site concentration (i.e. base/(base+acid)) is a better descriptor for the catalytic activity. This 

relationship also suggested that the synergy between the basic sites and the acid sites over STO 

catalysts plays an important role in the oxidative coupling of methane. 
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Figure 18. CH4 conversion rate with respect to Base/(Base+Acid) ratio at different temperatures 

over various STO samples.  

 

In Figure 18, the enhancement effect of base sites on the CH4 conversion can be represented 

by the slopes of the trendlines at each temperature. The enhancement effect of base sites on the 

CH4 conversion increases with reaction temperature, since the slope values rise with temperatures 

(See Table 7). It is also observed from Figure 19, for each sample with a fixed Base/(Base+Acid) 

concentration, the CH4 consumption rate is exponentially enhanced with reaction temperature. 

Table 7. Slopes of trendlines for Base/(Base+Acid)-CH4 consumption relationship. 

Temperatures 600 650 700 750 800 

Slopes of Trendline 2.2 4.5 9.9 18.2 22.1 
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Figure 19. CH4 conversion rate with respect to temperatures over various STO samples (with 

different Base/(Base+Acid) ratios). 

 

3.3.6 Kinetics Analysis of STO Samples in OCM 

The kinetics of the OCM reaction has been intensively studied over different catalysts[62-

64]. In this work, four reported mechanisms, including the Power Law model[61, 65], the Mars-

Van Krevelen model[66], the double-site Langmuir-Hinshelwood model[67] and the Eley-Rideal 

model[68], were examined for the OCM reactions over the STO catalysts. All the reaction schemes 

proposed by each model and the corresponding rate equations for each mechanism are presented 

in the Section 3.3.7. To achieve the differential conditions, the OCM reaction was performed at 

650°C to obtain low CH4 conversion (< 10%). It is noted that the O2-lean condition for kinetic 

tests (CH4/O2 ratio in the range of 2-7) is in favor of both OCM and the partial oxidation 

reaction[69, 70]. In some kinetic tests for OCM, production of CO and H2 was detected, suggesting 

the coexistence of partial oxidation over a metastable state of the catalyst surface. The catalyst 

pretreatment in O2 was extended in some cases out to 15 h to achieve the thermodynamically stable 
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surface that favors the OCM reaction. All results presented in this work are for cases where OCM 

dominates.  

Figure 20 shows the methane consumption rate as a function of P(CH4) and P(O2) over 

different STO catalysts. In general, the rate of CH4 conversion exhibits a positive dependence on 

both P(CH4) and P(O2). Through a comparison across these STO catalysts, it can be observed that 

the commercial STO sample has the highest methane conversion rate (except that Sr/STO-1 shows 

higher conversion rate when P(CH4) > 0.048 atm), while the acid-treated STO(HNO3) sample 

shows the lowest methane conversion rate at the same P(CH4) or P(O2). We have attempted kinetic 

analyses of the OCM reaction by using the above-mentioned four models over this set of STO 

samples (Section 3.3.7). However, poor fitting of the measured methane consumption rates with 

any of the models suggests that the catalytic behavior of the STO samples cannot be simply 

described by these proposed four models. Accurate modelling of kinetics for OCM over the 

reconstructed perovskite catalysts remains contingent upon a detailed computational study of 

reaction elementary steps.  

  

Figure 20. Methane consumption rate as a function of (a) CH4 pressure at P(O2)=0.01 atm and 

of (b) O2 pressure at P(CH4)=0.04 atm, respectively, over various STO samples. (Reaction 

conditions: 650 °C for bed temperature, total flow rate=50 mL/min, He+Ar as balance gas.) 

0.006 0.008 0.010 0.012 0.014
0

100

200

300

400

500

600

700

800

(b) 650 oC, P(CH4)=0.04 atm STO

Sr/STO(HNO3)-2

Sr/STO-1

STO(HNO3)

C
H

4
 C

o
n

v
e

rs
io

n
 R

a
te

 (


m
o

l/
g

c
a
t/
m

in
)

P(O2) (atm)

Sr/STO-2



67 

3.3.7 Methane and Oxygen Consumption Rates over STO Catalysts Based on Different 

Mechanisms  

In present work, the methane consumption rates (rCH4) were measured under various partial 

pressure of methane (PCH4) or oxygen (PO2) to study the kinetics of OCM reactions. Four kinetic 

models are tested to analyze the OCM reaction over the STO catalysts with surface reconstruction. 

The applied models are Power Law model[61, 65], Mars-Van Krevelen model[71], Double site 

Langmuir-Hinshelwood model[67] and Eley-Rideal model[68].  

3.3.7.1 Power Law Model  

This model is proposed by Takanabe and Iglesia[65], with the assumption that the methane 

activation is the rate determine step and dissociative oxygen adsorption is weak at high temperature 

for OCM reaction. In this mechanism, the first step involves oxygen (O2) dissociatively adsorbed 

on the active surface vacancies (*) to form O*. In the second step, methane is activated by surface 

O* to form methyl radicals and OH*. Finally, two OH* combine to from H2O and surface 

vacancies (*). The later steps for C2H6 and COx formation and corresponding methane 

consumption rate expression are presented in the Table 8.  
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Table 8. The OCM reaction scheme proposed by Takanabe and Iglesia[65]. 

                                                (S1-1) 

                                        (S1-2) 

                                        (S1-3) 

                                        (S1-4) 

                                                (S1-5) 

                                        (S1-6)      

CH4 consumption rate expression:            (Eq S1-1) 

M: third body in the reaction.  

Based on the above-mentioned mechanism, a power law expression for methane 

conversion is proposed and tested:  

                             (Eq S1-2) 

The effect of partial pressure of CH4 and O2 on methane conversion rate are studied to 

calculate the reactant orders. Figure 21(a) presents the CH4 conversion rate as a function of CH4 

partial pressure at a constant oxygen pressure, meanwhile 21(b) shows the CH4 conversion rate as 

a function of O2 partial pressure at fixed methane pressure on all investigated STO samples. 

Reactant order a and one rate constant k can be calculated from fitting the curves in Figure 21(a). 

Similarly, reactant order b and one rate constant k’ can be calculated from fitting the curves in 

Figure 21(b). If the present STO samples follow this OCM mechanism, the reactants orders should 

be a=1, b=0.5, respectively. k should be equal to k’. However, from the fitting results listed in 
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Table 9, it found that a and b are not equal to 1 and 0.5, respectively. Moreover, most calculated k 

and k’ are different. Therefore, the proposed power law rate expression is not satisfactory to 

describe the OCM reaction of present STO samples.  

 

Figure 21. Effect of (a) CH4 partial pressure on CH4 conversion rate at P(O2)=0.01 atm and 

(b) O2 partial pressure on CH4 conversion rate at P(CH4)=0.04 atm at 650oC. 

 

Table 9. Results of reactant orders and rate constants for STO samples analyzed by power law 

model. 

Catalyst ID a b k k’ 

   (µmol/gcat/min/atm1.5) 

STO(HNO3) -0.178 0.263 2.92E+02 7.67E+01 

Sr/STO(HNO3)-2 3.287 0.846 7.02E+08 5.74E+08 

STO 1.779 0.071 2.95E+05 2.80E+05 

Sr/STO-1 2.408 0.133 2.73E+06 2.39E+06 

Sr/STO-2 3.984 0.250 3.07E+08 3.07E+08 

 

3.3.7.2 Mars-Van Krevelen Model 

The scheme in the Table 10 shows the elementary reaction steps in the proposed Mars-Van 

Krevelen mechanism[71]. First of all, the surface active site is oxidized to form the O∙S. In the 

second step, the gaseous methane reacts with oxidized active site, which consequently reduced the 
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active site to its original form. The methyl radical is also formed in this step. Then the methyl 

radicals partially react with oxygen to generate COx (step S2-3), partially undergo coupling to form 

C2H6 (step S2-4). The corresponding methane consumption rate is also presented in the Table 10.  

Table 10. The Mars-Van Krevelen mechanism for OCM reaction[71]. 

                                                 (S2-1) 

                                 (S2-2) 

                                              (S2-3) 

                                                  (S2-4) 

CH4 consumption rate expression:        (Eq S2-1) 

S: surface active site in reduced form; O∙S: surface active site in oxidized 

form. 

 

The equation (EqS2-1) can be rearranged to the following two expressions:  

                 (Eq S2-2)                 

 (Eq S2-3) 

When the is constant, plots of  against  can be obtained. Similarly, when the 

 is fixed, plots of  against  can also be drawn. These two plots are shown in Figure 

22. Two sets of kinetic parameters k1, k2 and k1’, k2’ can be determined from the relationships of  
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 ~  and  ~ , respectively. Ideally, if the OCM reaction of STO samples follows 

the Mars-Van Krevelen model, identical k1 and k1’ (k2 and k2’) are supposed to be attained. The 

kinetic parameters, determined from the linear plots, are given in Table 11. Obviously, k1 and k1’ 

(k2 and k2’) are significantly different. This model does not fit the kinetics for the OCM reactions 

over all the STO catalysts.  

  

Figure 22. (a) Plots of  against  at P(O2)=0.01 atm and (b)plots of  against   at 

P(CH4)=0.04 atm at 650oC. 

 

Table 11. Kinetic parameters for STO samples analyzed by Mars-Van Krevelen model. 

Catalyst ID  k1 k1’ k2 k2’ 

(Unit) (µmol/gcat/min/atm0.5) (µmol/g/min/atm) 

STO(HNO3) 1.32E+03 6.18E+02 -2.32E+04 2.90E+03 

Sr/STO(HNO3)-2 -1.90E+03 1.74E+03 3.06E+03 -1.07E+04 

STO -1.05E+04 5.13E+04 1.04E+04 1.89E+04 

Sr/STO-1 -5.55E+03 1.72E+04 7.38E+03 2.08E+04 

Sr/STO-2 -1.02E+03 4.91E+03 1.78E+03 1.41E+04 
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3.3.7.3 Double Site Langmuir-Hinshelwood Model 

Table 12 shows the proposed reaction steps for OCM reactions following the Double site 

Langmuir-Hinshelwood mechanism. In this mechanism, oxygen and methane are adsorbed on two 

types of active sites (S1 and S2) to form the O2∙S
1
 and CH4∙S

2 species in steps S3-1 and S3-2, 

respectively. In next step (S3-3), the C-H bond is activated and methyl radicals are produced by 

the reaction between molecularly adsorbed methane and oxygen species. Then the methyl radicals 

partially react with either oxygen on the catalyst surface or gaseous oxygen to generate COx (S3-

4). Simultaneously, methyl radicals undergo coupling to form C2H6 (S3-5). The corresponding 

methane consumption rate Eq S3-1 is presented in the Table 12. 

When the  is fixed in the OCM reaction, Eq S3-1 can be rearranged to,  

                 (Eq S3-2) 

The plot of  as a function of  indicates that the slope of the plot is  and 

the intercept is . The adsorption equilibrium constant for CH4 ( ) can be obtained 

from the ratio of slope to intercept in Eq S3-2.  

Similarly, when the is constant, Eq S3-1 can be rearranged to,  

                 (Eq S3-3) 
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The plot of as a function of  indicates that the slope of the plot is  and 

the intercept is . The adsorption equilibrium constant for O2 (KO2) can be obtained 

from the ratio of slope to intercept in Eq S3-3.  

Plots of PCH4/rCH4 against PCH4 and plots of PO2/rCH4 against PO2 are shown in Figure 23. Two 

methane activation rate constants (k and k’) can be calculated by substituting the KCH4 and KO2 into 

the Eq S3-2 and Eq S3-3, respectively. If the Double site Langmuir-Hinshelwood model fits the 

kinetics for the OCM reaction over STO samples, k and k’ with the same values will be solved. 

The determined kinetic parameters are listed in the Table 13. It is found from Figure 23 that the 

linear fitting for Sr/STO(HNO3)-2, STO, Sr/STO-1, Sr/STO-2 samples exhibit negative intercepts. 

Also, all KCH4 are with negative values, and k does not match with k’ value for each STO sample. 

These results are in contrary to the proposed model. Therefore, the Double site Langmuir-

Hinshelwood model is not suitable to describe the OCM reaction over STO samples.  
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Table 12. The Double site Langmuir-Hinshelwood mechanism for OCM reaction[67]. 

                                                         (S3-1) 

                                                      (S3-2) 

                               (S3-3) 

                                                         (S3-4) 

                                                             (S3-5)      

CH4 consumption rate expression:            (Eq3-1) 

 

  

Figure 23. Linearized correlations of (a)  versus  and (b)  versus . The inset 

in (b) shows an enlarged image of Sr/STO(HNO3)-2, STO, Sr/STO-1, Sr/STO-2 samples. 
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Table 13. Kinetic parameters for STO samples analyzed by Double site Langmuir-

Hinshelwood model. 

Catalyst ID    k k’ 

(Unit) (atm-1) (atm-1) (µmol/gcat/min) (µmol/gcat/min) 

STO(HNO3) -1.41E+02 8.71E+02 1.41E+02 3.65E+01 

Sr/STO(HNO3)-2 -1.59E+01 1.67E+01 -1.40E+03 -1.20E+03 

STO -9.98E+00 1.10E+03 -1.19E+03 -1.09E+03 

Sr/STO-1 -1.33E+01 1.76E+03 -5.89E+02 -5.21E+02 

Sr/STO-2 -1.72E+01 4.20E+02 -1.37E+02 -1.49E+02 

 

3.3.7.4 Eley-Rideal Model 

The elementary steps in the Eley-Rideal mechanism are listed in Table 14. The oxygen is 

firstly adsorbed on the surface active site S and form the active species (O2)ads (S4-1). The gaseous 

methane reacts with (O2)ads to form the methyl radicals in step (S4-2). Similar with other 

mechanism, some generated methyl radicals are oxidized to COx product (S4-3), and some undergo 

the coupling to form the ethane at the same time(S4-4). The rate law for CH4 consumption is listed 

in Table 14 as well.  

Table 14. The Eley-Rideal mechanism for OCM reaction[68]. 

                                             (S4-1) 

                            (S4-2) 

                                             (S4-3) 

                                                 (S4-4) 

CH4 consumption rate expression:         (Eq S4-1) 

When the partial pressure of CH4 is fixed, the rate expression (Eq S4-1) can be rearranged to,  
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                               (Eq S4-2) 

The methane activation rate constant k and adsorption equilibrium constant for oxygen 

(Kads) can be determined from the intercept  and slope . 

When the partial pressure of O2 is fixed, the rate expression (Eq S4-1) can be written as,  

                              (Eq S4-3) 

The linear correlation of  versus  in (Eq S4-3), whose slope is  and the 

intercept is 0, can be used for validating the proposed model. The plots of  ~  and  ~ 

 are drawn in Figure 24.  

  

Figure 24. Linearized correlations of (a)  versus , and (b)  versus . The inset in 

(a) shows an enlarged image of Sr/STO(HNO3)-2, STO, Sr/STO-1, Sr/STO-2 samples. 
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Table 15. Kinetic parameters for STO samples analyzed by Eley-Rideal model. 

Catalyst ID  k Kads Slope-1 Slope-2 

(Unit) (µmol/gcat/min/atm) (atm-1)   

STO(HNO3) 1.54E+03 1.96E+02 9.82E-06 -4.30E-07 

Sr/STO(HNO3)-2 3.58E+04 2.61E+01 1.35E-06 3.27E-06 

STO 1.75E+04 1.43E+03 6.11E-07 9.60E-07 

Sr/STO-1 1.70E+04 4.91E+02 7.09E-07 1.36E-06 

Sr/STO-2 8.94E+03 2.80E+02 1.52E-06 5.61E-06 
Note: Slope-1: slope of Eq4-3, calculated based on the k and Kads values from Eq4-2 and Figure S14(a). Slope-

2: slope of Eq4-3, obtained from data fitting from Figure S14(b). 

The determined kinetic parameters k and Kads are presented in the Table 15. However, the 

curves of   ~  plotted in Figure 24(b) show that x-intercepts for Sr/STO(HNO3)-2, STO, 

Sr/STO-1, Sr/STO-2 lines are (16.5,0), (10.5,0), (13.5,0), (16,0), respectively. Also, the cross-

check of Eq S4-3 slope in Table 15 indicates the different values of slope-1 and slope-2. Thus, 

these results are in contrary to the proposed model. Eley-Rideal model cannot be used for fitting 

the OCM reaction over STO catalysts.  

 

3.4 Conclusions 

In this work, surface reconstructed SrTiO3 samples, with different surface composition of 

Sr, were obtained through incipient wetness impregnation and chemical etching with HNO3. UV-

Raman and low energy ion scattering (LEIS) analysis results are in good agreement on the surface 

and subsurface composition of reconstructed STO samples. The redox capability of STO samples 

was found to be the same, thus their different catalytic performance can be related to the surface 

acid-base properties rather than lattice reducibility. The OCM reaction at steady state was 

performed at 600-800 oC and it was found that the Sr enrichment (resulting from surface-
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reconstruction) enhances the CH4 conversion, C2 selectivity as well as the ratio of C2H4/C2H6 up 

to certain surface Sr concentration, similar to the promoting effect of the surface Sr concentration 

on  methane combustion. Furthermore, it is shown that the catalytic activity (CH4 conversion) 

increases linearly with the relative concentration of basic sites (base/(base+acid)) over the STO 

catalysts at the full range of surface Sr concentrations, rendering the relative concentration of basic 

sites as a tentative descriptor for the activity of STO samples in the OCM reaction. These results 

for the model STO samples with controlled surface compositions and with the same bulk structure 

provide valuable insights into designing more efficient perovskite-based catalysts for methane 

activation and conversion via surface reconstructions.  
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Chapter 4. Fabrication of Pillared ZSM-5 Framework for Shape 

Selectivity of Ethane Dehydroaromatization  

 

Abstract  

Ethane, the second major component of shale gas, is a prospective raw feedstock to 

valuable chemicals and fuels. Innovative pillared ZSM-5 with various lamellar thicknesses and 

Si/Al ratios were successfully synthesized with the dual-template method. 1% molybdenum 

species were dispersed over these lamellar ZSM-5, and evaluated for ethane dehydroaromatization. 

The influence of zeolite morphology and texture property for the reduction/acidity nature of MoOx 

species were investigated by XRD, SEM, nitrogen(N2) sorption, H2-TPR/TPO and NH3-TPD. 

Strong acidity not only increases ethane conversion and aromatic selectivity, but intensely induces 

surface coking. Therefore, moderate Si/Al ratio maintains a favorable option to balance catalytic 

reactivity and stability. Thicker zeolite layers with a long diffusion path exhibited fair ethane 

conversion, but high aromatization yield. It is of significant importance that Mo/MFI-50(T8) 

catalyst (Si/Al=50, 210 nm layer thickness) demonstrated excellent regenerability during multi-

cycle reaction/oxidation operation, which could be a promising system for industrial optimization 

and process deployment.  
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4.1 Introduction 

With the global shale gas revolution, there are on-growing academia/industrial interests for 

utilizing C1-C4 compounds as the emerging resources for energy and chemical demands. Ethane, 

the second-concentrated component in natural gas and shale gas, is considered as an 

environmentally-benign resource for catalytic combustion or conversion. The price of ethane is 

extraordinary cheap because ethane is a by-product and waste from pipeline compression. In 

contrast, benzene, toluene and xylene (BTX) are the “building-block” chemicals in many 

applications, such as the polymer, medical or fragrance industries. The conventional scheme in 

which BTX is derived from naphtha reforming or oil thermal cracking could hardly meet the fast-

growing market demand in recent years. Consequently, non-oxidative dehydro-aromatization of 

ethane, instead of methane, provides an economically-viable and technical-feasible option for BTX 

and H2 production.  

Zeolite-supported transition metals have been intensively investigated for the 

dehydroaromatization reaction. Particularly, HZSM-5 zeolite has been used for many decades in 

catalytic dehydroaromatization (DHA) of methane due to its acidic and shape selective 

properties[1, 2]. However, methane DHA requires high reaction temperature and sometimes 

requires other pretreatment such as nonthermal plasma activation, to achieve higher aromatic 

yield[3, 4]. Consequently, with the difficulty in direct methane DHA, there is emerging research 

focusing on ethane DHA. Krogh et al.[5] used Re/HZSM-5 to achieve 65% aromatic selectivity to 

BTX (benzene, toluene, xylene) under 550 °C. Chetina et al.[6] discovered that platinum and 

gallium doped HZSM-5 catalyst can achieve 64% aromatic selectivity under 550 °C. ZnO 

supported over HZSM-5 generally demonstrated >60% ethane conversion with >50% BTX 

selectivity[7, 8]. Mo species over ZSM-5 zeolite are still being considered as a potential catalyst 
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for ethane DHA, even though they have smaller reactivity compared to Ga, Zn and Pt catalysts. In 

academia, Mo/HZSM-5 has been extensively studied for methane-DHA[4, 9-13]. However, the 

fast deactivation of this catalyst system due to surface coke deposition and the migration of active 

sites under high-temperature conditions make it very difficult to scale-up for industrial 

deployment[14-22].  

The catalytic mechanism of the ethane DHA reaction over Mo-based catalyst has been 

hypothesized as a sequential pathways [23-27]: (1) C-H breakage and dehydrogenation of ethane 

molecules occurred over MoCx or oxycarbide structures anchored on acid sites located in the 

micro-channels of ZSM-5; (2) the produced ethylene oligomerized via cyclization to benzene or 

other aromatics over acidic sites. The bifunctional zeolite acidic sites, namely, anchoring the Mo 

structure and serving as catalytic active sites in oligomerization of ethylene, are both important for 

the aromatics formation. In addition, ethylene intermediates could re-adsorb over metallic sites for 

further aromatization[8, 28]. Therefore, catalytic performance of ethane dehydro-aromatization 

can be fundamentally affected by the distribution/location of Mo species, surface acidity and pore 

structures. 

Compared to conventional microporous zeolites, micro- or mesoporous zeolites with 

lamellar structures allow the integration of high catalytic activities and fast molecular 

diffusion[29]. In previous reports, dual-functional templates and diquaternary ammonium-type 

surfactants have been successfully applied for preparing ZSM-5 zeolites with lamellar 

structures[30, 31]. A typical dual-functional template is composed of hydrophilic head (quaternary 

nitrogen atoms) and hydrophobic tails (long alkyl chains). Pentasil structures form in the presence 

of quaternary nitrogen atoms, and the growth of crystals along b-axis was limited by the long alkyl 
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chains in the zeolitization process. The micro-mesopore ratio of lamellar ZSM-5 zeolites could be 

controlled by applying the similar template employing the second structure directing agent (SDA), 

such as Tetrapropylammonium Hydroxide (TPAOH), or Cetyltrimethylammonium Bromide 

(CTAB)[32, 33]. Consequently, two-dimensional ZSM-5 nanosheet structures can be fabricated 

by the presence of two functional groups, which act as a “pillar” after calcination. In addition to 

surface-active structure, micro/mesopores structures of zeolite framework restrict mass diffusion 

rates of reactive molecules and surface intermediates, which play a key role for controlling 

reactivity and selectivity. For a given zeolite framework, the design strategies are generally 

associated with the change of crystal size, unit-cell volume, morphology[34-36]. In ethane-DHA, 

the desorption of ethylene intermediates can be accelerated from the catalytic surface and then 

diffuse from mesoporous structure of zeolite particles, skipping further dehydrogenation and 

oligomerization to produce aromatics[37, 38]. Furthermore, ZSM-5 particles at the nanoscale 

possesses high mesopores ratio and short diffusion paths. Big molecules like 1-hexene and 

aromatics could diffuse between the reaction gas flow and inside the zeolite. Consequently, nano-

sized zeolite particles and the meso/macropores framework enable effective mass diffusion, which 

can notably increase BTX yields during methane aromatization. Pillared ZSM-5, with hierarchical 

pores, could amplify the mass/heat transfer, which has successfully been demonstrated in the 

application of ethanol dehydration, monomolecular conversion of propane and isobutene and  

alkylation of benzyl alcohol with mesitylene reactions[39-41]. This enhanced mass/heat transfer 

capacity is supposed to be applicable to the DHA reaction. However, very few studies have been 

reported to directly associate the thickness of lamellar layers with reactant diffusion, Si/Al ratios, 

surface acidities, as well as catalytic reactivity of ethane-DHA reaction. 
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During the aromatization reaction, carbon deposition as polyaromatic or graphite species 

rapidly accumulates over the external surface, blocking the mass transfer in the porous channel, or 

covering the active Mo species active sites and Brønsted acidic sites, resulting in continuous 

catalytic deactivation[42, 43]. In the last decades, significant efforts have been attempted to 

address this issue, such as the recent breakthrough of Fe@SiO2 used at very high temperature 

during methane-DHA reaction[44]. However, to the best of our knowledge, the formation of 

carbonaceous deposit is still inevitable, even at laboratory-scale performance testing.  

In this study, a regenerable MoOx/lamellar ZSM-5 is explored based on the strategy of 

optimizing micro/mesopores structure of zeolite framework, targeting high ethane conversion and 

aromatic selectivity by optimizing the Si/Al ratio, surface acidity and diffusion path. A series of 

lamellar ZSM-5 zeolites with controllable thicknesses will be synthesized, the influence of Si/Al 

ratio of lamellar ZSM-5 zeolite on catalytic performance will be evaluated for the ethane-DHA 

reaction. Mass diffusion in lamellar zeolites will be optimized by adjusting the hierarchical micro-

mesoporous structure, consequently mitigating catalytic deactivation. Different from conventional 

strategies to minimize catalytic deactivation, easy regeneration of spent catalyst would be more 

applicable for realistic industrial practices. Therefore, detailed examination of catalytic 

regenerability/stability will be evaluated during cyclic ethane-DHA/oxidation regeneration 

operations.   
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4.2 Experimental Section 

4.2.1 Catalyst Preparation 

4.2.1.1 Surfactant Synthesis  

The surfactants used for zeolite synthesis were prepared by following a previous report[30, 

41]: 12.45 g 1-Bromodocosane (98%, TCI) was dissolved in 150 mL toluene (99.5%, Fisher) and 

52.22 g N,N,N',N'-tetramethyl-1,6-diaminohexane (98.5%, ACROS Organics) was dissolved in 

150 mL acetonitrile (99.9% Fisher). These solutions were evenly mixed and stirred for 1 h, and 

then refluxed at 353 K for 10 h. After cooling to room temperature, the precipitate was filtered, 

washed with diethyl ether and dried overnight. The product has been identified as [C22H45-

N+(CH3)2-C6H12-N(CH3)2]Br. 11.22 g of [C22H45-N
+(CH3)2-C6H12-N(CH3)2]Br and 6.73 g of 1-

bromohexane (99%, ACROS Organics) were added into acetonitrile (100 mL), stirred for 1 h and 

refluxed at 353 K for 10 h. After cooling to room temperature, the precipitated products were 

filtered, washed with diethyl ether and dried in a vacuum oven at 373 K overnight. The final 

surfactant has been analyzed as [C22H45-N
+(CH3)2-C6H12-N

+(CH3)2-C6H13]Br2 (C22-6-6Br2). 

4.2.1.2 Dual Template Synthesis of Lamellar MFI (ZSM-5) with Different TPAOH 

Amounts  

The zeolites were synthesized with the chemical formula as: 30Na2O: 1Al2O3: 100SiO2: 10C22-

6-6Br2: xTPAOH: 4000H2O, where x equaled to 0, 2, and 8, respectively. Taking ZSM-5, where x 

equaled to 8, as an example, the detailed procedure is presented as follows: 0.70 g sodium 

hydroxide (97%, Fisher) was dissolved in 2.09 g C22-6-6Br2 and 15 g DI water mixture. 1.17 g 

TPAOH (40%, TCI) was dropwise added to the prepared solution followed by adding 0.19 g 

aluminum sulfate hydrate (Al2S3O12·18H2O, 98%, Fisher) and 3.58 g sulfuric acid (60%, Fisher) 

and 3.06 g DI water with vigorous stirring. Subsequently the mixture was heated at 343 K to obtain 
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a clear solution. At room temperature, 6.12 g TEOS (98%, ACROS Organics) was dropwise added 

into the solution and stirred for 20 h at room temperature. The resulted gel was transferred into a 

Teflon-lined stainless-steel autoclave and crystallized for 5 days at 423 K. The product was filtered 

and washed with DI water and then dried at 373 K overnight. The samples were calcined at 823 K 

for 6 hours in air with 10K/min heating rate. The as-synthesized zeolites were named as MFI-

50(T0), MFI-50(T2) and MFI-50(T8), whereas 0, 2 and 8 equaled to the TPAOH addition in the 

synthesis formulation and 50 was corresponding to Si/Al ratios of 50. In comparison, commercial 

MFI zeolites with the same Si/Al ratio were obtained from Zeolyst Company. 

4.2.1.3 Dual Template Synthesis of Lamellar MFI of Different Si/Al Ratios  

To prepare lamellar MFI zeolites with different Si/Al ratios, the formula was adjusted as 

follows: 30Na2O: xAlO2: 100SiO2: 10 C22-6-6Br2: 8TPAOH: 4000H2O, in which x equaled to 0.5, 

1 and 2, and corresponding to different Si/Al ratios of 100, 50 and 25 respectively. The Si/Al ratios 

of zeolite samples were adjusted by adding various amount of aluminum sulfate hydrate. The as-

synthesized zeolites were identified as MFI-25(T8), MFI-50(T8) and MFI-100(T8), whereas the 

numbers 25, 50, 100 represented Si/Al ratio of zeolites. The Si/Al ratios of all the zeolites are 

analyzed and presented in Table 1. 

4.2.1.4 Synthesis of Supported Mo/MFI Zeolites  

The as-calcined MFI samples were firstly ion-exchanged with 1 M aqueous NH4NO3 (99%, 

ACROS Organics) at 353 K for 8 h, subsequently washed with DI water, and dried at 343 K 

overnight. Commercial MFI zeolites were received as NH4
+ form.  

1 wt.% of MoO3/MFI catalysts were prepared by incipient wetness impregnation of aqueous 

ammonia molybdate tetrahydrate solution as precursor (99%, ACROS Organics). After 
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impregnation, the catalysts were dried in ambient conditions overnight, and then calcined in air at 

773 K for 2 h. The Mo/MFI zeolites with different Si/Al ratios were identified as Mo/MFI-25(T8), 

Mo/MFI-50(T8), Mo/MFI-100(T8), while the catalysts that were prepared by adding different 

amounts of TPAOH in the synthesis recipe were named as Mo/MFI-50(T0), Mo/MFI-50(T2), and 

Mo/MFI-50(T8).  

4.2.2 Catalyst Evaluation 

4.2.2.1 Ethane Aromatization Reaction:  

Catalytic performance of Mo/MFI for ethane dehydro-aromatization was studied at 923 K, 

atmospheric pressure with a space velocity of 1920 mL/(gcat·h). 500 mg of catalyst was loosely 

loaded in a fixed bed reactor (9 mm ID.) and purged in N2 (10 mL/min, UHP, Air gas) at 923 K 

for 1 h. After pretreatment, 80% C2H6/He was introduced into the catalyst at 20 mL/min. Since the 

produced aromatics cannot be detected by on-line GC at experimental condition, the outlet of the 

fixed bed reactor was connected with a replaceable bubbler containing hexadecane to 

absorb/condense aromatic products. The exit gas after the bubbler was analyzed by an on-line GC. 

The C2H6 conversion (%), aromatics selectivity (%), aromatics yield (%)were defined as follows:   

𝐸𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑒 𝑖𝑛 𝑓𝑒𝑒𝑑
× 100     (1) 

𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) =

3(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 benzene 𝑓𝑜𝑟𝑚𝑒𝑑)+3.5(𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 toluene 𝑓𝑜𝑟𝑚𝑒𝑑)+4(moles of xylene fromed)

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑒𝑡ℎ𝑎𝑛𝑒 𝑟𝑒𝑎𝑐𝑡𝑒𝑑
× 100 (2) 

𝐴𝑟𝑜𝑚𝑎𝑡𝑖𝑐𝑠 𝑦𝑖𝑒𝑙𝑑 (%) = 𝑒𝑡ℎ𝑎𝑛𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) × 𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) ×
1

100
 (3) 
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4.2.2.2 Cyclic Ethane Dehydro-aromatization Reaction-oxidative Regeneration:  

The ethane dehydro-aromatization-oxidative regeneration cycles over Mo/MFI-50(T8) and 

Mo/Commercial MFI were carried out in Micromeritics Autochem 2950 analyzer. 50 mg of 

catalyst were loosely loaded into a U-tube (9.5 mm ID.) and pretreated at 923 K for 90 min in He 

(UHP, 50 mL/min). For a typical reaction-regeneration cycle, 20% C2H6/He (50 mL/min) was 

introduced with on-line mass spectrometer for product analysis. After reacting for 15 minutes, the 

feedstock changed to pure He at the flow rate of 50 mL/min and held for 10 min to flush out residue 

gas. The catalyst regeneration was conducted in 2% O2 in He (50 mL/min) at 773 K for 20 min. 

Each catalyst was tested for four reaction/regeneration cycles. 

4.2.3 Catalytic Characterization 

Powder X-ray diffraction (XRD) was performed to identify the product structure and 

calculate the zeolite crystallinity of each catalyst. XRD patterns were obtained using a PANalytical 

X’Pert Pro XRD system equipped with Ni filtered Cu target Ka radiation (operation at 45 kV, 40 

mA, wavelength λ=0.15418 nm). The morphologies and the crystal sizes of the synthesized 

samples were examined by scanning electron microscopy (SEM). Nitrogen (N2) sorption analysis 

was performed using a Micromeritics Tristar 3000 at 77 K, to characterize the porosity, pore sizes, 

and surface areas of the catalysts. Prior to measurement, samples were degassed under flowing 

nitrogen at 350 °C for at least 6 h. The specific surface area was calculated using the Brunauer–

Emmett–Teller (BET) equation utilizing the adsorption branch.  

The H2-TPR experiment was conducted in a Micromeritics Autochem 2950 analyzer 

equipped with a TCD detector to study the reducibility and dispersion of Mo phases anchored over 

the zeolite frameworks. 5 vol% H2/Ar (20 mL/min) was introduced to the catalyst bed (0.1 g) at 
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373 K until stable TCD signals were obtained. The reactor was heated at 5 K/min up to 1123K. 

Temperature-programmed oxidation (TPO) measurements were carried out after the fourth 

dehydro-aromatization/ regeneration cycle. The spent catalyst was heated from room temperature 

to 1073 K in a stream of 2 vol% O2/He (20 mL/min) at the rate of 10 K/min. 

NH3-TPD used the same micro-reactor system as the H2-TPR. NH3 adsorption/desorption 

cycles were performed to evaluate the effect of Si/Al ratios and acidic structure of the synthesized 

MFI. These studies were performed in four steps: (i) pretreatment, (ii) NH3 adsorption, (iii) Ar 

purge, and (iv) temperature-programmed desorption (TPD). During sample pretreatment, the 

catalysts were dehydrated at 723 K in the mixture of 10 cm3/min 5%O2/He anmd 20 cm3/min Ar 

for 30 min, and then the gas was switched to pure Ar flow for another 30 min. NH3 adsorption was 

performed by exposing the catalyst to 1% NH3/He (30 cm3/min) for 15 min at 423 K until NH3 

adsorption was saturated. The residual gas in the reactor was completely purged by UHP Ar. TPD 

was conducted by heating the catalyst to 723 K at the rate of 10 K/min with on-line MS detection 

(Omnistar GSD-301, Pfeiffer).  

4.3 Results and Discussion 

4.3.1 Bulk Structures and Morphology of the Zeolites 

XRD patterns of lamellar MFI and commercial MFI zeolites are shown in Fig. 1. The high-

angle region of XRD patterns of lamellar MFI-50(T0), MFI-50(T2), MFI-50(T8), MFI-25(T8), 

MFI-100(T8) zeolites are identical to commercial MFI zeolite, indicating the pentasil-type zeolites 

are successfully prepared with MFI topology[30, 40]. Table 1 summarized the key parameters of 

the synthesized zeolites. The crystallinity of MFI-50(T0), MFI-50(T2), MFI-50(T8), MFI-25(T8), 

MFI-100(T8) zeolites respectively equaled to 56%, 75%, 83%, 105% and 82% as referred to 
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commercial MFI with 100% crystallinity as standard. This type of pillared ZSM-5 is of 

numerically poor crystallinity compared to the conventional ZSM-5, partly due to the formation 

of small crystals (eg. (421) Miller index at 13.8° and (133) Miller index at 24.3° are weak)[29, 30, 

32]. 

 

Figure 1. XRD patterns of lamellar MFI-50(T0), MFI-50(T2), MFI-50(T8), MFI-25(T8), 

MFI-100(T8) and commercial MFI. 

 

Table 1 Key crystalline parameters of various zeolites from XRD result. 

Zeolite Si/Al Ratio Crystallinity (%) Layer thickness (nm) 

Commercial MFI 50 100* - 

MFI-50(T0) 50 56 35 

MFI-50(T2) 50 75 60 

MFI-50(T8) 50 88 210 

MFI-25(T8) 25 105 - 

MFI-100(T8) 100 75 - 

*referenced crystallinity of the zeolites 
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SEM images of the crystal morphologies of the lamellar zeolites are shown in Fig. 2. All 

zeolite samples consisted of random-oriented nanosheets with different thicknesses, which 

function as pillars to support a microporous structure. As shown in Fig. 2 (a-c), the thickness of 

nanosheets increases from ca. 35 nm on MFI-50(T0) to ca. 210 nm on MFI-50(T8). Due to the 

framework growth of ZSM-5 zeolites, the crystallinity of zeolites in the XRD pattern increases 

with the increasing of TPAOH/C22-6-6Br2 ratio[32, 33]. The b-axis dimension of a single MFI unit 

cell is 1.9738 nm[30]. The zeolite was synthesized as multilamellar stacking of MFI nanosheets 

that were three-dimensionally intergrown. As mentioned, the overall thickness of the lamellar 

stacking was 35, 60 and 210 nm, for MFI-50(T0), MFI-50(T2), MFI-50(T8), respectively. The 

stackings were proposed to composed of numerous 2.0-nm-thick MFI zeolite framework according 

to the reports from Ryong Ryoo and colleagues[30, 45]. Compared to MFI-50(T0), the other two 

zeolites (MFI-50(T2) and MFI-50(T8)) exhibit thicker nanosheets with extra addition of TPAOH, 

indicating that the formation of crystalline ZSM-5 was not only influenced by the addition of C22-

6-6Br2, but also the amount of TPAOH. There are random nanosheets aligned with ZSM-5 

framework which create hierarchical channels during the hydrotreating[46, 47]. Thicker 

nanosheets suggested longer diffusion paths, which could directly change the overall catalytic 

reactivity and selectivity[30]. Moreover, the Si/Al ratios have noticeable impact on the 

morphologies as shown in Fig. 2c to 2e. A fraction of a nanosheet has converted to coffin-shape 

particles among the MFI-25(T8) zeolite sample, while MFI-100(T8) exhibits flower-like 

morphology with various thicknesses of nanosheet. For comparison, commercial ZSM-5 zeolite 

demonstrates spherical structure, which is totally different from nanosheet structure of lamellar 

MFI (Fig 2e). 
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Figure 2. SEM images of a) MFI-50(T0); b) MFI-50(T2); c) MFI-50(T8); d) MFI-25(T8); e) 

MFI-100(T8); f) commercial MFI 

 

N2 adsorption-desorption isotherms were carried out to reveal the porosity features of 

zeolites. All the samples exhibit type-IV N2 isotherms with a hysteresis loop, corresponding to 

capillary condensation in mesopores[48], as depicted in Fig. 3a. For MFI-50(T0), MFI-50(T2) and 

MFI-50(T8), the decrease in adsorption volume at the low pressure region (P/P0 < 0.45) indicates 

that the thicker layer expose less micropores (Table 2). Moreover, Fig. 3b reveals that the 

mesopores at the range of 3-7 nm disappear with a high quantity of TPAOH added to the synthesis 

javascript:;
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recipe, while those at the range <3 nm increase slightly. This pore structure tendency is consistent 

with previous findings[32, 40]. For MFI-25(T8) and MFI-100(T8), morphologies and Si/Al ratio 

have a vital influence on porosities. As Si/Al ratio increases, the increase of mesopore volume and 

the decrease of micropore volume can be observed (Table 2). The total pore volumes of most 

synthesized MFI are larger than those of commercial MFI. Therefore, most of the synthesized 

zeolites are more capable to accommodate coke than the commercial zeolites. The hierarchy factor, 

defined as the product of the relative micropore volume and the relative mesopore surface area, 

(Vmicro/Vtotal)×(Smeso/SBET), is used to describe the interplay between the catalytic function located 

in the micropores and the accessibility function provided by the mesopores in the hierarchical 

zeolites[49]. The order of hierarchy factor of synthesized zeolites with various TPAOH adding 

amounts is: MFI-50(T0) < MFI-50(T2) < MFI-50(T8). For MFI samples with different Si/Al 

ratios, the order of hierarchy factor order is MFI-25(T8) < MFI-50(T8) < MFI-100(T8), since the 

relative increase of meso-porosity is higher than the relative decrease of micro-porosity in these 

zeolites. Both tailoring of the TPAOH concentration and Si/Al ratio in the MFI synthesis process 

results in tunable meso-microporosity in lamellar MFI catalysts. 
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Figure 3. a) N2 adsorption-desorption isotherms and b) pore size distributions as derived from 

N2 sorption of the zeolites. The pore size distribution were calculated by using Barrett-Joyner-

Halenda (BJH) algorithm from the adsorption branch. 

 

Table 2 Textural property of zeolites measured by N2 Adsorption-Desorption 

Catalyst 
SBET

a 

(m2g-1) 

Smicro
b 

(m2g-1) 

Smeso
b  

(m2g-1) 

Vtotal
c
 

(cm3g-1) 

Vmicro
b
 

(cm3g-1) 

Vmeso
d

 

(cm3g-1) 

Hierarchy 

factore 

Commercial 

MFI 
263.8 206.7 57.1 0.228 0.108 0.120 0.10 

MFI-50(T0) 424.9 280.6 144.3 0.515 0.145 0.370 0.10 

MFI-50(T2) 422.7 226.0 196.7 0.506 0.118 0.388 0.11 

MFI-50(T8) 319.5 214.9 104.6 0.257 0.112 0.145 0.14 

MFI-25(T8) 320.2 270.6 49.6 0.191 0.143 0.048 0.12 

MFI-100(T8) 314.2 150.0 164.2 0.238 0.080 0.158 0.18 
a: Determined from multipoint BET method. b: Determined from t-method. c: Determined from adsorbed volume 

at P/P0=0.99. d: Vmeso = Vtotal – Vmicro e: Described as the product (Vmicro/Vtotal)×(Smeso/SBET). 

 

4.3.2 Temperature-Programmed Reduction Analysis 

The reducibility of MoOx/ZSM-5 species was studied by H2-TPR. Previous MAS NMR 

spectra suggested that surface MoOx could migrate into the structural channels during calcination, 

and anchor over conventional ZSM-5 frameworks as active sites[50, 51]. Moreover, DFT 

calculation and UV-Raman study also demonstrated that Mo oxide species preferentially anchor 
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on framework Al sites[52, 53]. In this study, TPR profiles are deconvoluted into four peaks (as 

shown in Fig. 4), and the corresponding hydrogen consumptions are summarized in Table 3. Peak 

I at the lowest reduction temperature (~530 K) is assigned to partial reduction of amorphous 

polymolybdates (Mo6+), peak II at ~640 K and peak III at ~790 K are corresponding to the 

reduction of octahedrally-coordinated Mo6+ in MoO3 to Mo4+. Peak IV with the highest reducing 

temperature (~940 K) is assigned to the sequential reduction of Mo4+ to metallic Mo(0)[54-56]. 

The reduction of amorphous polymolybdates (peak I) are not pronounced in all Mo/MFI samples, 

which confirmed the successful preparation of highly-dispersed of Mo species over the synthetic 

zeolites. The reduction of Mo4+ to metal Mo (0) dominates the TPR profile, and only a small 

fraction of Mo4+ was reduced to metal Mo (0) over Mo/MFI-50(T0) catalyst. Mo/MFI-50(T8) 

catalyst indicates more than 3-fold increase of hydrogen consumption of peak IV than that of 

Mo/MFI-50(T0). Therefore, thicker layers introduced by TPAOH addition contributed to the 

reducibility from Mo4+ to metal Mo. As summarized in Table 3, the relative concentration of 

reducible Mo4+ in various catalysts decreases with layer thickness in the order: MFI-50(T8) > MFI-

50(T2) > MFI-50(T0), while that of the catalysts with different Si/Al ratios decreases in the order: 

Mo/MFI-25(T8) >Mo/MFI-100(T8) > Mo/MFI-50(T8).  
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Figure 4. H2-TPR profiles for fresh Mo/MFI-50(T0), Mo/MFI-50(T2), Mo/MFI-50(T8), 

Mo/MFI-25(T8), Mo/MFI-100(T8) catalysts 

 

 

Table 3 Numerical results of TPR experiments on Mo loaded catalysts 

Catalyst  Peak I Peak II Peak III Peak IV 

Mo/Commercial MFI 
Temperature (K) 536 644 799 924 

H2 consumption (μmol/g) 13 49 106 96 

Mo/MFI-50(T0) 
Temperature (K) 541 646 808 964 

H2 consumption (μmol/g) 14 23 142 15 

Mo/MFI-50(T2) 
Temperature (K) 535 633 785 879 

H2 consumption (μmol/g) 8 100 168 42 

Mo/MFI-50(T8) 
Temperature (K) 519 633 807 932 

H2 consumption (μmol/g) 3 59 174 70 

Mo/MFI-25(T8) 
Temperature (K) 560 634 778 925 

H2 consumption (μmol/g) 2 85 87 203 

Mo/MFI-100(T8) 
Temperature (K) 569 680 795 924 

H2 consumption (μmol/g) 8 48 68 163 
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4.3.3 NH3-TPD Analysis 

The NH3-TPD measurements were performed to analyze the acid distribution and 

concentrations on the zeolite surface. As shown in Figure 5, two desorption peaks were obtained 

by conducting deconvolution at low temperature around 530 K and high temperature around 700 

K, which is consistent with reported data[57, 58]. These two peaks correspond to weak-acid sites 

and strong-acid sites on the zeolite surface, respectively. It is widely accepted that the Al in the 

zeolitic framework causes strong-acid sites, whereas framework terminal Si mainly brings weak 

acidity[59, 60]. The results indicated the concentration of strong-acid sites associated with Al are 

dominant among every zeolite.  

 

Figure 5. NH3-TPD profiles of MFI-50(T0), MFI-50(T2), MFI-50(T8), MFI-25(T8) and MFI-

100(T8). 
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Table 4 NH3-TPD data of synthesized ZSM-5 

Catalyst 
Distribution and concentration of acid sites (μmol NH3/g) 

Region Weak Region Strong Total 

MFI-25(T8) 118 443 561 

MFI-100(T8) 12 132 144 

MFI-50(T8) 60 280 340 

MFI-50(T2) 27 154 181 

MFI-50(T0) 19 150 169 

 

The acidities of the synthesized ZSM-5 are summarized in Table 4. The MFI-25(T8), MFI-

50(T8) and MFI-100(T8) clearly exhibited different scales of acid sites, suggesting that the change 

of the Si/Al ratio is an effective approach to modify surface acidity. Moreover, the MFI-50(T8) 

possessed a larger amount of acidic sites than MFI-50(T2) and MFI-50(T0), though they were in 

the same Si/Al ratio of 50. Consequently, the extra addition of TPAOH in MFI-50(T2) and MFI-

50(T8) promoted the Al embedding into the framework.  

 

4.3.4 Ethane Dehydro-aromatization on Mo/MFI Catalysts with Different Layer 

Thickness 

All synthetic/commercial zeolites demonstrated negligible aromatic productivity. The 

reaction profiles of ethane conversion with time-on-stream (TOS) over Mo/MFI-50(T0), Mo/MFI-

50(T2), Mo/MFI-50(T8) and Mo/commercial MFI with the same Si/Al ratio (Si/Al=50), but 

different layer thickness are presented in Figure 6a. Among various catalysts, Mo/MFI-50(T0) with 

the thinnest nanosheets exhibits the best performance in ethane conversion, while Mo/MFI-50(T8) 

with the thickest nanosheets shows fair performance. During the initial period of dehydro-

aromatization reaction, gaseous ethane must diffuse through the channels of zeolite framework, 

and then contact the reduced Mo species[61-63]. Thus, the thicker the nanosheet, the longer 
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diffusion path is necessary for the reactant to pass through. Once the intermediates and the products 

were mixed with ethane, the TOF (turn-over-frequency) of ethane on Mo active sites was 

negatively affected by longer channels, and results in lower ethane conversion. Moreover, from 

NH3-TPD results, the concentration of acid sites on MFI-50(T2) (181 μmol NH3/g) is comparable 

to that of MFI-50(T0) (169 μmol NH3/g), however Mo/MFI-50(T2) shows lower ethane 

conversion but higher aromatic selectivity. From Fig. 6 c and d, it is found that the synthesized 

pillared MFI samples presented the higher produced ethylene flow rate but lower aromatic yields 

than those of commercial MFI, which is attributed to the less shape selectivity of the lamellar 

zeolite samples. 
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Figure 6. Mo/MFI-50(T0), Mo/MFI-50(T2), Mo/MFI-50(T8) and Mo/Commercial MFI 

catalysts in ethane aromatization reaction with the TOS of a) ethane conversion, b) H2 flow rate, 

c) C2H4 flow rate, d) aromatic yield, e) aromatic selectivity. 
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Figure 6b, c, and d depict the productivities of H2, C2H4 and the aromatic yield (containing 

benzene and toluene). The ratio of benzene to toluene in the product of Mo/MFI-50(T8) catalyst 

reached 1.85, which is greater than that of Mo/MFI-50(T0) and Mo/MFI-50(T2) catalyst, whose 

ratio equaled 1.35 and 1.53, respectively. Interestingly, Mo/MFI-50(T0) exhibited the highest 

C2H6 conversion and H2/C2H4 productivity, but the yield of aromatic was the lowest. Mo/MFI-

50(T8) exhibited higher aromatic yield compared to Mo/MFI-50(T0) and Mo/MFI-50(T2) despite 

lower ethane conversion, suggesting that the thicker zeolite layer is beneficial for aromatic yields. 

Based on the carbon balance, it is remarkable that the Mo/MFI-50(T8) catalyst showed the highest 

aromatic selectivity, even compared to the referential Mo/commercial ZSM-5 with spherical 

structure from SEM observation. Compared with Mo/MFI-50 (T0), both Mo/MFI-50(T2) and 

Mo/MFI-50(T8) catalysts with thicker layers demonstrated lower ethane conversion but higher 

aromatic yield. Therefore, it is conclusive that the pillar layers with long diffusion path plays a 

critical role in improving the formation of aromatics.  

4.3.5 Ethane Dehydro-aromatization on Mo/MFI Catalysts with Different Si/Al Ratios 

It is widely accepted that alumina defects provide nucleation sites during the formation of 

the ZSM-5 structure and Brønsted acidity[52, 64]. In this study, the influence of Si/Al ratio and 

Al/Mo for the reactivity of ethane dehydro-aromatization was studied with Mo/MFI-25(T8), 

Mo/MFI-50(T8) and Mo/MFI-100(T8), in which the numbers (25, 50, 100) represents various 

Si/Al ratios. Because this study focuses on the zeolite structure, the same Mo loading (1%) was 

applied. Therefore, Si/Al ratio is inversely with Al/Mo ratios, which can serve as an indicator of 

the amount of acid sites taken by Mo for aromatization. As shown in Figure 7, the ethane 

conversion on the Mo/MFI-25(T8) catalyst with lowest Si/Al (25) dropped dramatically after the 

initial period, while Mo/MFI-50(T8) (Si/Al=50, Al/Mo=3.14) and Mo/MFI-100(T8) (Si/Al=100, 
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Al/Mo=1.57) decreased steadily. It should be noted that simultaneous downtrend of H2 and 

aromatic yields can be observed in Figure 7b and d. Stable ethylene yield was obtained over all 

catalysts after 30 mins reaction. Mo/MFI-25(T8) catalyst exhibited the highest initial activity, 

while Mo/MFI-100(T8) catalyst indicated the lowest aromatic yield. On the other hand, NH3-TPD 

profiles demonstrated that Si/Al ratio of zeolite directly correlated with the surface acidity of 

Mo/MFI catalyst. As shown in Table 4, Mo/MFI-25(T8) represents the highest surface acidity 

among various synthesized zeolites. Considering negligible reactivity of pure zeolites, it is Mo 

species neighboring Brønsted acid sites that synergistically convert ethane into aromatics, and the 

Si/Al ratios greatly affect initial reaction performance[52].  

Despite the trace amount polymolybdates identified by H2-TPR, Mo is mainly highly-

dispersed in all catalysts. There are three types of MoOx allocated in the zeolite framework: 

anchoring at double Al sites, single Al sites and surface Si sites. It is accepted that the C-H bond 

activation energy over the Mo nanostructures anchored are increasing in the order: double Al acid 

sites > single Al acid sites > external Si sites[52, 53, 65]. In MFI-25(T8) and MFI-50(T8), the 

Al/Mo ratio are 6.28 and 3.14, respectively (Table 5). Therefore, Mo species are likely to anchor 

at double/single Al sites, which may contribute to the higher initial aromatic yield of MFI-25 (T8). 

 

Table 5. The Si/Al and Al/Mo ratio for samples  

Sample  Si/Al Ratio  Al/Mo Ratio 

MFI-25(T8) 25 6.28 

MFI-50(T0)/(T2)/(T8) 50 3.14 

MFI-100 (T8) 100 1.57 
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Figure 7. Mo/MFI-25(T8), Mo/MFI-50(T8), Mo/MFI-100(T8) catalysts in ethane aromatization 

reaction with the TOS of a) ethane conversion, b) H2 flow rate, c) C2H4 flow rate, d) aromatic 

yield, e) aromatic selectivity. 

 

The prepared Mo/MFI catalysts indicated different deactivation behavior: the Mo/MFI-

25(T8) catalyst with the lowest Si/Al ratio remarkably increases ethane conversion and aromatic 
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selectivity, though fast deactivation was observed as well. For Mo/MFI-100(T8), Mo sites over 

the lowest acidity results in the lowest ethane conversion, lowest ethane/H2/aromatics productivity 

and least aromatic selectivity. Instead, Mo/MFI-50(T8) catalyst indicated highest H2 and aromatic 

productivity during 250 min reaction. Thus, lamellar zeolites with moderate Si/Al ratio maintains 

a favorable balance between catalytic activity, high selectivity to aromatics and catalyst stability 

in ethane aromatization. 

4.3.6 Coke Analysis 

Coke formed during aromatization reaction is a complicated mixture of polyaromatics and 

graphitic species which blocks Brønsted acidic sites, zeolite micropores and Mo active centers, 

thus leading to the inevitable decline of catalytic performance[42, 43, 66]. Fig. 8 presents TPO 

profiles of spent catalysts after continuous aromatization testing at 923 K for 300 min, and the 

relative areas of each peak were summarized in Table 6.  

The amount of the coke deposit content is: Mo/MFI-25(T8) > Mo/MFI-50(T0) > Mo/MFI-

50(T2) > Mo/MFI-100(T8) > Mo/MFI-50(T8) ≈ commercial MFI. CO2 profiles could be 

deconvoluted into three peaks at ~705, 750 and 830 K[42, 67, 68] as shown in Figure 8. Carbon 

deposits burned out at 705 K were located at the external surface of the catalytic particles, the peak 

at 750 K corresponds to the coke associated with the Mo species in the zeolite, whereas the carbon 

species burning at high temperatures (> 800 K) were mainly from coking anchored over the 

Brønsted acid sites. 
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Figure 8. TPO profiles for spent Mo/MFI-50(T0), Mo/MFI-50(T2), Mo/MFI-50(T8), Mo/MFI-

25(T8), Mo/MFI-100(T8) catalysts after ethane dehydro-aromatization reactions 

 

Trace carbon deposits over external surface of Mo species are observed at 705 K, which 

demonstrated that the coking over external surface are negligible for prepared Mo/lamellar zeolites 

catalyst. On the spent Mo/MFI-25(T8) (Si/Al=25, Al/Mo=6.28), the largest amount of coke 

appeared on the Brønsted acid sites with very few carbon deposits associated with Mo species. In 

contrary, over the spent Mo/MFI-100(T8) catalyst with less Brønsted acidity, carbon deposits 

mainly associated with Mo species, instead of Brønsted sites.  

Regarding the spent samples of Mo/MFI-50(T0), Mo/MFI-50(T2), Mo/MFI-50(T8) 

catalysts with same Si/Al ratio, TPO profiles showed that the nature and amount of deposited coke 

are associated with zeolite thicknesses. With the thinner nanosheet, carbon deposits were 

preferable to be formed over Brønsted acid sites. Combined with performance data in Figure 7, it 

is concluded that that the large amount of coke in Mo/MFI-50(T0) catalyst with thinner layer could 

be induced by high ethane conversion and lower aromatic selectivity, whereas Mo/MFI-50(T8) 
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catalyst exhibited higher aromatic selectivity as well as less amount of coke deposited on the 

Brønsted acid sites.  

Table 6 Numerical results of TPO experiments on used Mo/MFI-T0, Mo/MFI-T2, Mo/MFI-

T8(Mo/MFI-50), Mo/MFI-25, Mo/MFI-100 catalysts. 

Catalyst 
Peak relative area Total carbon amount 

Peak I Peak II Peak III  

Mo/MFI-25(T8) 1 5 100* 106 

Mo/MFI-100(T8) 2 42 15 59 

Mo/MFI-50(T8) 3 10 34 47 

Mo/MFI-50(T2) 3 10 56 69 

Mo/MFI-50(T0) 2 11 67 80 

Commercial MFI 4 3 38 45 

*reference value of peak area 

Overall, it is believed that the complicated coking over Mo/lamellar zeolites follows two 

mechanisms: (1) in the case of lamellar zeolites with high Si/Al ratio, coke mainly covered Mo 

active sites, whereas only a small fraction of coke associated with Brønsted acid sites blocked the 

channel, ensuring the stability of aromatic selectivity while the ethane conversion dropped; (2) in 

the case of lamellar zeolites with lower Si/Al ratio, a large amount of coke mainly covered 

Brønsted acid sites and clogged the channels, which would further decrease the ethane conversion. 

Consequently, a moderate Si/Al ratio of a lamellar zeolite sustained the ethane conversion and 

aromatic selectivity, which benefited from the balance between hydrocarbons activation over Mo 

carbide species and modest channel coking over Brønsted acid sites.  

4.3.7 Oxidative Regenerations and Ethane Aromatization Reaction 

Considering surface coking and catalytic deactivation are unavoidable, it is proposed to 

study aromatization-regeneration cycle for realistic application of ethane aromatization. As 
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discussed above, it is identified that surface coking is mainly associated with MoCx nanoparticles 

and strong acidic sites. Therefore, the preservation of the overall framework and the decoking 

degree should be considered during oxidative regeneration[1, 69, 70]. From the TPO data as shown 

in Figure 8, oxidative calcination at 823 K can greatly preserve the zeolite structure and avoid 

catalytic deactivation caused by Mo content[70]. Therefore, all cyclic reaction-regeneration 

experiments were performed at isothermal 823 K in this study.  

 

Figure 9. Ethane dehydro-aromatization reaction-regeneration cyclic operation. a), b) plots of 

ethane conversion and aromatic yield achieved on Mo/Commercial MFI catalyst in each reaction 

cycle; c), d) plots of ethane conversion and aromatic yield achieved on Mo/MFI-50(T8) in each 

reaction cycle. 

Multi-cycle reaction-regeneration testing of Mo/Commercial-MFI and Mo/MFI-50(T8) 

were compared because they have the same Si/Al ratio (as shown in Figure 9). At initial reaction 

(TOS=150s), ethane conversion notably dropped in the first cycle, and then continuously declined 

in the next three cycles over Mo/Commercial-MFI. The conversion for Mo/Commercial-MFI 
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(Figure 9a) gave total 2.60% reactivity recession in four-cycle testing. In contrary, only 0.46% 

decrease of initial reactivity was observed over Mo/MFI-50(T8) under the same cyclic testing 

(Figure 9c). Regarding aromatic yield (Figure 9b and 9d), Mo/Commercial MFI showed 

continuous decrease with the increasing of cyclic testing, and totally 1.03% decrease of aromatic 

yields was observed. Surprisingly, the aromatic yields greatly improved from 3.1% to ~5.0% after 

first regeneration for Mo/MFI-50(T8), and then minor decrease of aromatic yields in subsequent 

cycles. Therefore, the innovative Mo/MFI-50(T8) sample remains constant or even slightly 

improved aromatic productivity during multiple cyclic reactions.   

Similar scenarios have been observed at ending stage of aromatization reaction 

(TOS=900s): ethane conversion and aromatic yield was significantly decreased at 2.8% and 1.5% 

for Mo/Commercial-MFI. In comparison, only 1.2% conversion was observed for Mo/MFI-50(T8) 

catalyst, while aromatic yields remains constant during four-cycle testing.   

Excellent stability of Mo/MFI-50(T8) can also be validated by direct performance 

comparison of cycled catalyst with fresh sample. As shown in Table 7, catalytic performance 

(ethane conversion and aromatic yields) of spent catalyst after four cycle testing relatively mitigate 

>30% reactivity compared to fresh sample. The Mo/MFI-50(T8), instead, lost less than 5% of 

initial activity, and generate higher aromatic yield during cyclic testing. In conclusion, it is 

reasonable to predict that the industrial reaction/regeneration process will be operate quietly 

smoothly with Mo/MFI-50(T8) as a promising catalyst for ethane aromatization. 

TPO profiles of the spent catalysts after the fourth aromatization reaction are shown in 

Figure 10. The spent Mo/Commercial ZSM-5 possess a considerably higher amount (by 21% 

compared to the Mo/MFI-50(T8)) of coke deposition than that of Mo/MFI-50(T8), which required 
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longer period for decoking under oxidative condition. The size of HZSM-5 channels is identical 

to the diameters of benzene and naphthalene molecules so that the coke species, polyaromatics on 

the Brønsted acid sites spatially clogged the channel[43, 66]. The hierarchical cross of ZSM-5 

nanosheet, micro-mesopores structure was fabricated to afford better mass transfer for 

regeneration of coking combustion as well as heat diffusion. Therefore, the hierarchical structure 

of Mo/MFI-50(T8) had an advantage of easy regeneration for continuous operations. In summary, 

our study confirmed that Mo/MFI-50(T8) is a promising catalyst support for ethane aromatization 

under cyclic operation. We are currently optimizing regeneration temperature and other 

parameters, and the results will be reported soon. 

 

 

Figure 10. TPO profiles for fresh Mo/Commercial MFI and Mo/MFI-50(T8) catalyst after the 

fourth dehydro-aromatization reactions-regeneration cycles. The curves in the small window 

represent the original curves between two used catalysts. Deconvolution peaks of TPO profiles 

in the main window: a) back solid line and red solid line stand for carbide associated with Mo 

species over Mo/Commercial MFI and Mo/MFI-50(T8), respectively; b) black and red dash-

dot-dash lines are assigned to coke combined with Brønsted acid sites over Mo/Commercial 

MFI and Mo/MFI-50(T8), respectively. 
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4.4. Conclusions 

Lamellar MoO3/ZSM-5 catalysts with various thicknesses were fabricated for ethane 

dehydro-aromatization by adding TPAOH in the synthesis recipe. The thicker layers with longer 

diffusion paths of zeolite lengthen the reaction path for the reactant and thus help the shape 

selectivity of aromatics, despite the lower ethane conversion. The ZSM-5 support with low Si/Al 

ratio helps to promote the ethane conversion as well as aromatic selectivity, but it sacrifices the 

stability of catalytic performance. Suitable Si/Al ratios can balance high aromatic selectivity and 

catalytic stability. The longer diffusion pathway in ZSM-5 nanosheet can enhance the aromatic 

selectivity and lower the coke formation over thicker catalyst. Coke unevenly accumulated on 

Brønsted acid sites associated with Mo species, suggesting that Si/Al ratio plays a crucial role in 

the reaction of ethane dehydro-aromatization. During the cyclic reaction-regeneration progress, 

lamellar zeolites with hierarchical structure among the layers allow better mass transfer for better 

reproducibility, which significantly improves catalyst regenerability over the conventional 

Mo/ZSM-5 catalyst. Overall, Mo-based catalysts supported over novel lamellar zeolites, such as 

Mo/MFI-50(T8) catalyst, indicated stable reactivity during multiple-cycle reaction-regeneration 

operation, and could be a promising system for industrial optimization and process deployment. 
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Chapter 5. Conclusions 

The research efforts conducted for this work represent a contribution to the field of shale 

gas combustion and utilization via multiple promising schemes at various O2 partial pressure 

conditions. In this research, chemical looping combustion (CLC) of methane with inherent CO2 

capture, oxidative coupling of methane (OCM) and dehydro-aromatization (DHA) of ethane are 

systematically studied as promising alternatives at O2-rich, O2-lean and nonoxidative conditions, 

respectively. The work offers several economically-viable and technically-feasible solutions for 

shale gas utilization to value-added products. The present research provided fundamental insights 

of surface structure performance relationships of model catalysts for catalytic methane/ethane 

conversion. Briefly: 

The study of chemical looping combustion (CLC) of methane with inherent CO2 capture 

study (Chapter 2) reveals the oxygen transfer mechanisms in CLC by using the surface calcium-

doped (1, 2 and 4 wt%) copper oxide-based OC. In this chapter, the Ca is well-dispersed on the 

CuO surface without deep penetration to the bulk, confirmed by the combination of XPS and XRD 

characterizations. CaO-CuO oxygen carriers present three reductive active sites corresponding to 

CuO reduction, CaO reduction and impurity CaCO3 decomposition in H2-TPR. The surface 

modification with the alkaline earth metal Ca promotes CuO oxygen uncoupling characteristics, 

since Ca surface-doping increases the lattice oxygen transfer and surface O2 formation rate under 

CLOU conditions. The reduction pathway for CuO from a sequential (CuO→Cu2O→Cu) to a 

direct transition (CuO→Cu) during is verified through the decomposition of oxygen carriers and 

in situ Raman analysis. When methane was used as gaseous fuel in the CLC process, the calcium 

dopant not only accelerates the reaction rate, but also induces methane reforming reaction by 



123 

reacting with released CO2, which was initially bound in the form of CaCO3, to promote the 

formation of CO and H2. (Publication: Lei Bai, Jarret Riley, Hanjing Tian, Zili Wu, Si Luo, He 

Qi, Haiyang Li, Xingbo Liu. Mechanism Study of Char/Methane Chemical Looping Reduction 

Process Over Calcium-doped Copper Oxide as Oxygen Carrier. Submitted to Applied Energy.) 

Extending the CLC work in O2-rich conditions from Chapter 2 into Chapter 3 allowed the 

investigation of the effect of surface compositions of perovskites on the OCM by using SrTiO3 as 

a model catalyst in O2-lean conditions. Specifically, in this chapter, a set of SrTiO3 samples was 

synthesized with different surface densities of Sr (25-96%, verified by Low Energy Ion Scattering 

(LEIS)), through incipient wetness impregnation, chemical etching with HNO3, and thermal 

treatment. The redox capability for STO samples was found to be the same due to the same bulk 

structure. Therefore, their different catalytic performance was studied and related to the surface 

acid-base properties rather than reducibility properties. The surface basicity and composition have 

been studied via NH3-/CO2-TPD, UV-Raman, LEIS, etc. The OCM reaction at steady state was 

performed at 600-800 oC and it was found that the Sr enrichment enhances the CH4 conversion, C2 

selectivity as well as the ratio of C2H4/C2H6 up to a certain surface Sr concentration. Furthermore, 

it was found that the catalytic activity (CH4 conversion) increases linearly with the relative 

concentration of basic sites (base/(base+acid)) over the STO catalysts at the full range of surface 

Sr concentrations, rendering the relative concentration of basic sites as a tentative descriptor for 

the activity of STO samples in the OCM reaction. This work shows the clear correlation between 

surface compositions, relative basicity/acidity and OCM catalytic performance over perovskite 

catalysts. Overall, it is suggested that tuning the surface reconstruction/composition of perovskites 

can be an effective approach to control CH4 activation and conversions.(Publication: Lei Bai, 

Felipe Polo-Garzon, Zhenghong Bao, Si Luo, Hanjing Tian*, Zili Wu*. Effect of Surface 
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Composition of SrTiO3 on Oxidative Coupling of Methane (OCM). Just Accepted. 

DOI:10.1002/cctc.201900159. ChemCatChem. 2019.) 

Lastly, in Chapter 4, we designed a regenerable MoOx/lamellar ZSM-5 was designed with 

the strategy of optimizing the micro/mesopores structure of the zeolite framework. The pillar 

ZSM-5 is applied in the non-oxidative ethane dehydroaromatization reaction, and high ethane 

conversion and aromatic selectivity were obtained by optimizing Si/Al ratio, surface acidity and 

diffusion path. The thicker layers with longer diffusion paths of zeolite lengthen the reaction path 

for the reactant and thus help the shape selectivity of aromatics, despite the lower ethane 

conversion. ZSM-5 support with low Si/Al ratio helps to promote the ethane conversion as well as 

aromatic selectivity, but it sacrifices the stability of catalytic performance. Suitable Si/Al ratios 

can balance high aromatic selectivity and catalytic stability. The cyclic reaction-regeneration 

strategy was utilized to remove the produced coke, lamellar zeolites with hierarchical structure 

among the layers allows better mass transfer for better reproducibility, which significantly improve 

catalyst regeneratability than conventional Mo/ZSM-5 catalyst. Overall, Mo-based catalysts 

supported over novel lamellar zeolites, such as Mo/MFI-50(T8) catalyst, indicated stable reactivity 

during multiple-cycle reaction-regeneration operation, and could be a promising system for 

industrial optimization and process deployment. (Publication: Jiahui Ye#, Lei Bai#, Baoyu Liu, 

Hanjing Tian*, Jianli Hu, Felipe Polo-Garzon, Richard T. Mayes, Zili Wu, Yanxiong Fang*. 

Fabrication of ZSM-5 Framework for Shape Selectivity of Ethane Dehydroaromatization. (# for 

equal contribution, Just Accepted. DOI: 10.1021/acs.iecr.8b04965. Industry & Engineering 

Chemistry Research. 2019.) 
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