
Graduate Theses, Dissertations, and Problem Reports 

2016 

The Regulation of Alternative Pre-mRNA Splicing in Photoreceptor The Regulation of Alternative Pre-mRNA Splicing in Photoreceptor 

Cells. Cells. 

Daniel P. Murphy 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Other Medicine and Health Sciences Commons 

Recommended Citation Recommended Citation 
Murphy, Daniel P., "The Regulation of Alternative Pre-mRNA Splicing in Photoreceptor Cells." (2016). 
Graduate Theses, Dissertations, and Problem Reports. 6282. 
https://researchrepository.wvu.edu/etd/6282 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6282&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/772?utm_source=researchrepository.wvu.edu%2Fetd%2F6282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6282?utm_source=researchrepository.wvu.edu%2Fetd%2F6282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


The Regulation of Alternative Pre-mRNA Splicing in Photoreceptor Cells. 

Daniel P. Murphy 

Dissertation submitted to the  

School of Medicine  

at West Virginia University  

in partial fulfillment of the requirements 

 for the degree of 

Doctor of Philosophy 

in 

Biochemistry and Molecular Biology 

Peter Stoilov, Ph.D., Chair 

Visvanathan Ramamurthy, Ph.D. 

Lisa Salati, Ph.D. 

J. Michael Ruppert, M.D., Ph.D.

Peter Mathers, Ph.D. 

Graduate Program in Biochemistry  

West Virginia University School of Medicine 

Morgantown, West Virginia 

2016 

Keywords: RNA splicing, Retina, Photoreceptor, Musashi, BBS8, Primary Cilia, Exon 2A 

© 2016 Daniel Murphy 



Abstract 

The Regulation of Alternative Pre-mRNA Splicing in Photoreceptor Cells. 

  

Alternative pre-mRNA splicing provides an important mechanism for generating the 
diverse array of proteins required to generate complex tissue and cell types from a limited 
genome. Therefore, the proper regulation of alternative splicing is vital to shape cellular identity 
and function. As consequence, defects in alternative splicing are associated with disease 
phenotypes that can range from systemic syndromes to the dysfunction of single cell types. For 
example, heterozygous mutations in ubiquitously expressed components of the spliceosome 
lead to photoreceptor specific cell death. This suggests that the topography of alternative 
splicing in photoreceptors cells may be unique, a notion which is supported by reports of 
photoreceptor specific splicing events. However, the mechanisms mediating photoreceptor 
specific splicing, and the reason why photoreceptors are uniquely sensitive to perturbations in 
the splicing machinery, remain unknown. 

In this work, I characterize the alternative splicing program of photoreceptor cells using 
exon 2A of the BBS8 gene as a model. The photoreceptor specific exon 2A was recently 
discovered through a mutation in the 3’ splice site that was linked with non-syndromic retinitis 
pigmentosa (RP). Skipping of this exon in photoreceptor cells was thought to limit the phenotype 
of the mutation to RP, rather than the systemic disease Bardet-Biedl syndrome (BBS). I show 
that the IVS1-2A>G mutation in BBS8 leads to missplicing of exon 2A, producing a shift in the 
reading frame predicted to eliminate the BBS8 protein specifically in photoreceptor cells. I also 
show that in the absence of splicing elements within the exon, the splicing of exon 2A is directed 
entirely by sequences located within the adjacent introns.  

To gain a more expansive view of the photoreceptor splicing program, I utilize mouse 
models to isolate the gene expression and alternative splicing profile of photoreceptor cells by 
RNA sequencing. Bioinformatics analysis indicates that while photoreceptors share a general 
splicing pattern with other neurons, they exhibit a distinct program that affects a broad set of 
genes. Cell type specific splicing in photoreceptors appears to be regulated by a combinatorial 
mechanism which involves activation by the Musashi proteins in the absence of many typical 
neuronal splicing regulators. This program controls a subset of exons, including BBS8 exon 2A, 
which are spliced in a “switch-like” manner to produce photoreceptor specific protein isoforms. 

These splicing events share a temporal inclusion pattern which precedes the development of 
the light sensing outer segment. Remarkably, multiple switch-like exons are located within 
genes that are necessary for the biogenesis and maintenance of primary cilia. This suggests 
that alternative splicing may modulate protein function to allow for development and 
maintenance of the unique structure of photoreceptor cells.  

This work provides a foundation on which to characterize the regulation of alternative 
splicing in photoreceptor cells, and identifies multiple splicing events which may impact the 
function of the photoreceptor outer segment.  
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Chapter 1. Literature Review 

I. Introduction 

Alternative splicing of pre-mRNA transcripts is a major mechanism for increasing protein 

diversity and generating tissue complexity1. Accurate regulation of the spliceosome requires the 

spatiotemporal coordination of numerous protein and RNA interactions, guided by short 

sequence elements that are widespread across the genome2. As such, genetic mutations that 

disrupt alternative splicing often lead to disease3,4. For instance, RP is caused by genetic 

mutations in a wide variety of genes, including multiple components of the spliceosome5–7. A 

recent study identified a link between RP and disrupted splicing of a photoreceptor specific exon 

inclusion event8. This photoreceptor specific splicing event provides a unique tool to uncover 

how mutations in ubiquitously expressed genes can lead to cell type specific phenotypes. The 

goal of this review is to discuss the regulation of alternative splicing in the context of the distinct 

structure, and function, of the photoreceptor cell.  

 

II. Mechanism of pre-mRNA Splicing 

Analysis of high-throughput sequencing data indicates that over 95% of human 

multiexon genes undergo alternative splicing9,10. Eukaryotic splicing involves the joining of 

exons and removal of intronic sequences in pre-mRNA to produce mature mRNA transcripts. 

The exon/intron borders are marked by short and highly degenerate sequence elements, such 

as the 5’ GU and 3’ AG splice sites located at either end of an intron, hereafter referred to as the 

5’ and 3’ SS (splice site)2. Other consensus elements include an adenosine residue known as 

the branch point, which is followed by a series of pyrimidines known as the polypyrimidine tract. 

These elements are found near the 3’ SS, approximately 15-50 nucleotides from the intron/exon 

border (see Figure 1A)2,11,12. These sequences are recognized by the core spliceosome, a 

macromolecule comprising multiple small nuclear ribonucleoprotein particles (snRNPs), which 

are composed of a small nuclear RNA (snRNA) and a host of associated proteins11,12. 
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Spliceosome formation is driven by base pairing interactions between the mRNA and the non-

coding RNA components of snRNPs, which position the RNA for catalysis (see Figure 1 B). In 

spliceosome formation, the U1 and U2/U2AF (U2 Associated Factor) snRNPs recognize the 5’ 

and 3’ SS, respectively. The intron definition complex is formed through an interaction between 

the U1 and U2 snRNPs, which brings the 5’ SS, branch point, and 3’ SS together by looping out 

the intron. This complex then recruits the pre-assembled tri-snRNP composed of U4/U6 and 

U52,11,12. Next, the complex undergoes a series of rearrangements resulting in the loss of the U1 

and U4 snRNPs and the formation of the catalytic complex. This structure positions the branch 

point adenosine and the 3’ SS to allow the RNA to catalyze two transesterification reactions 

which remove the intron and ligate the exons together2,13,14.  

While the steps of assembly and catalysis are well conserved from yeast to humans, the 

exons of multicellular eukaryotes are often surrounded by large introns. As such, rather than 

intron definition, higher eukaryotes form the exon definition complex, in which the U2 snRNP 

from the upstream intron interacts with the U1 sn RNP of the downstream intron11.  

 

2.1: Regulation of alternative splicing 

The information provided by the sequence elements discussed above is not sufficient for 

the spliceosome to accurately identify eukaryotic exons. Large introns often contain multiple 

motifs that match the splice site consensus sequences, and the snRNP interactions with the 

mRNA are fairly weak11,12. Therefore, precise alternative splicing requires additional sequence 

elements located within introns and exons to correctly define these boundaries. These elements 

are recognized by splicing regulatory factors, which can stabilize or inhibit the binding of the 

spliceosome. The two largest families of such regulatory factors are the serine arginine (SR) 

rich proteins, which mainly promote exon inclusion, and the heterogeneous nuclear 

ribonucleoproteins, (hnRNPs) which generally suppress exon inclusion (see Figure 1C)15,16.  
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Exon definition by the spliceosome depends upon a combination of 1) how well the 

splice sites match the consensus sequence, 2) the presence of regulatory sequence elements, 

and 3) the expression of splicing factors that recognize those elements. Interestingly, multiple 

splicing factors have been shown to direct splicing in a position-dependent manner. For 

example, Nova (neuro-oncological ventral antigen) and Rbfox (RNA binding protein feminizing 

locus on X homolog) proteins enhance exon inclusion when bound to the downstream intron; 

however they promote exon skipping when bound to the upstream intron or the exon itself17. 

The combinatorial control of exon recognition allows for certain exons to be included or 

excluded only in cells that express specific splicing factors. Moreover, the splicing of a transcript 

can be altered in complex ways, beyond simple inclusion or skipping of a cassette exon as in 

Figure 1 D. For instance, inclusion of two adjacent exons can be mutually exclusive, or a single 

exon can be resized with alternate 5’ and 3’ splice sites. Splicing can also result in the use of 

Figure 1 The spliceosome recognizes consensus splice sites, and splicing factors aid in exon 
definition. A) Cartoon showing approximate locations of the consensus splice sites which mark the 
boundaries of an intron; SS, splice site. B) Cartoon showing the process of intron definition by the 
spliceosome. See text for details. All snRNPs are shown in teal. C) SR proteins, in green, and hnRNPs in 
red, bind to regulatory elements, also in green/red, within the exon (white box) or intron (grey line) to 
regulate spliceosome formation; ISE, intronic splicing enhancer; ISS, intronic splicing silencer; ESE, exonic 
splicing enhancer; ESS, exonic splicing silencer. D) Schematic of alternative exon splicing, showing two 
isoforms which result from inclusion or skipping of exon 2.   
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alternative promotors, poly-adenylation sites and even retained introns. These mechanisms can 

achieve a wide variation in transcript isoforms and thus generate increased protein diversity1,2. 

In addition to altering protein structure and function, alternative splicing can be used to regulate 

gene expression. Splicing variations can alter transcript localization and translation, or they can 

signal for degradation when coupled with nonsense-mediated decay (NMD)18,19. Consequently, 

the temporal and spatial restriction of splicing factor expression is vital to develop and maintain 

tissue specificity2,13,18.  

 

2.2: Alternative splicing in the brain 

Alternative splicing is especially important in complex tissues. From an evolutionary 

perspective, levels of alternative splicing are highest in primates and decrease with further 

evolutionary distance from humans20. Within species, multiple studies have demonstrated that 

the frequency of alternative splicing events is very high in neuronal tissues, such as the retina 

and brain9,20,21. These observations are supported by the presence of multiple RNA-binding 

proteins expressed specifically in neurons22. For instance, members of the ElavL (embryonic 

lethal abnormal vision-like) and Nova families, as well as RBFOX3 (aka NEUN), PTBP2 

(Polypyrimidine tract-binding protein 2), and NSR100 (neural-specific SR-related protein of 

100kDa, aka Srrm4), are all neuron specific. The importance of these splicing factors in 

neuronal development and function is highlighted by the finding that loss-of-function of these 

proteins results in a variety of severe neurological phenotypes in mice17,22–24. Dysregulation of 

alternative splicing associated with nsr100 and Rbfox proteins in neurons has also been linked 

with cognitive impairment, including autism spectrum disorder25,26.  

Unraveling the impact of splice sites, splicing factors, and alternative transcripts on 

cellular function can be challenging. Complex interactions can arise due to regulation of one 

splicing factor by another, as well as changes in expression or subcellular localization of splicing 

factors during development. 
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III. Structure and Function of the Retina 

The vertebrate retina is an extension of the central nervous system and thus shares 

anatomical and functional characteristics with neurons. Moreover, with fewer cell types and a 

comparatively straightforward structure, the retina is an ideal model to study neuronal 

alternative splicing and gene expression profiles27,28. Anatomically, the vertebrate retina is 

structured as a layered arrangement of six main cell types: photoreceptor, bipolar, amacrine, 

horizontal, and ganglion cells, as well as Müller glia. Each cell type can be further classified into 

a number of subtypes, bringing the total number of cell types closer to 6029.  

The neural retina forms three layers of cell bodies, the outer nuclear layer (ONL), inner 

nuclear layer (INL), and ganglion cell layer (GCL), separated by two synaptic layers (see Figure 

2A). The light sensing photoreceptor cells are located at the back of the retina, within the ONL 

and adjacent to the pigmented epithelial cells (RPE). Light activation of photoreceptor cells 

signals second order neurons in the INL, composed of bipolar, amacrine and horizontal cells. 

The neurons of the INL synapse with ganglion cells, which connect the retina to the brain via the 

optic nerve. At the far back of the retina is a single layer of epithelial cells known as the RPE. 

These cells serve several important functions, including phagocytosis of the photoreceptor outer 

segment, absorption of scattered light, and recycling of the chromophore retinal30.  

 

3.1: Retinal development 

During embryonic development, the optic vesicles that form each eye are derived from 

the ventral forebrain. Patterning of the eye and neural retina is achieved through coordination of 

signaling pathways and expression of distinct transcription factors31.  All six retinal cell types are 

derived from multipotent retinal progenitor cells (RPCs). Current models of fate determination 

favor a mechanism in which the RPCs progress through a series of competency states, each 

characterized by the probability that an individual RPC will progress to a specific cell fate32. This 

5



is shown through the overlap in the developmental timelines of each cell, which appear to be 

conserved in vertebrates33. Generally, ganglion cells are the first to be ‘born’, followed closely by 

cone photoreceptor cells, horizontal cells, and amacrine cells. These are followed by rod 

photoreceptor cells, then bipolar cells, and finally Müller glial cells32. 

 

3.2: Photoreceptor cells 

Vertebrates have two main types of photoreceptors involved in vision: rods, which are 

specialized to detect low-intensity light but cannot sense color, and cones, which are color 

sensing but require higher light intensity than rods30. Both rod and cone photoreceptors are 

highly specialized cells with a polarized structure, segmented into an outer and an inner 

segment (see Figure 2B)34. The light-sensing structure of the photoreceptor is the outer 

segment (OS), which is a modified cilia filled with flattened, disc-like membranes that are 

densely packed with light-sensing pigments. The OS joins the inner segment (IS), which 

comprises the cell body, through a narrow strip called the connecting cilium (CC) (see Figure 

2C). The IS is the center for metabolism and biosynthesis in the photoreceptor. Accordingly, all 

OS proteins must be transported 

from the IS through the CC35. 

This leads to extremely high 

Figure 2. Morphology of the 
murine retina and rod 
photoreceptor. A)  Section of 
mouse retina stained with toluidine 
blue, cell layers and photoreceptor 
segments are labeled. B) Cartoon 
of rod photoreceptor cell with 
morphology indicated from A. C) 
Electron micrograph image of 
mouse rod photoreceptor showing 
connecting cilium. RPE, retinal 
pigmented epithelium. OS, outer 
segment. IS, inner segment. ONL, 
outer nuclear layer, INL, inner 
nuclear layer, GCL, ganglion cell 
layer, CC, connecting cilium.  
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demand for protein transport to the rod OS as the distal end is regularly shed and phagocytosed 

by the RPE. As a consequence, perturbations to the CC structure or trafficking can result in 

impaired biogenesis and maintenance of the OS, often leading to photoreceptor cell death36,37.   

 

3.3: The Connecting Cilium 

Interestingly, the genes involved in biogenesis and maintenance of the photoreceptor 

primary cilia are ubiquitously expressed in ciliated cell types. Accordingly, the CC of 

photoreceptor cells form through ciliogenesis much as the primary cilia of other cell types. 

Ciliogenesis starts when the mother centriole of the basal body anchors to a ciliary vesicle. An 

array of nine microtubule doublets extends from the mother centriole to form the axoneme. 

Once the ciliary vesicle fuses with the plasma membrane, the axoneme extends into the 

extracellular space38,39. The formation and maintenance of cilia are highly dependent upon 

bidirectional protein trafficking termed intraflagellar transport (IFT). IFT is mediated by the 

protein complexes IFT-A and IFT-B, which associate with molecular motors for retrograde and 

anterograde transport, respectively39. Additional protein complexes such as the BBSome, 

discussed below, are also required for protein transport in cilia and photoreceptors. 

Structurally, the CC of a photoreceptor is very similar to the transition zone of motile 

cilia40. While it is roughly 10 times the length of a typical transition zone, the CC contains the 

majority of ciliary transition zone components41. As a diffusion barrier, the base of the CC is 

often compared to the nuclear pore. A pinwheel-like arrangement of transition fibers arises from 

the basal body and acts as a sieve, preventing diffusion of vesicles. Lateral diffusion of 

membrane proteins is similarly obstructed by a ring of septin proteins, just above the transition 

fibers. Within the CC itself are champagne glass-shaped structures known as Y-links, which 

connect the axoneme to the ciliary membrane36,39,41. A variety of multiprotein complexes exist 

within the CC where they are thought to act as a “ciliary gate” regulating protein trafficking in 

and out of the transition zone36,39,42,43. 

7



Mutations in IFT components or transition zone proteins can lead to the disruption of 

ciliary biogenesis and maintenance, causing a variety of syndromes known as ciliopathies36,38,44. 

These syndromes include BBS, Ushers syndrome, Alstrom syndrome, Jeune syndrome, and 

Senior-Loken syndrome37,45. Degeneration of photoreceptor cells in the retina is a hallmark of 

many ciliopathies, highlighting the importance of the CC in the function of photoreceptor cells. 

 

IV. Retinitis Pigmentosa and pre-mRNA splicing 

While RP is often associated with systemic syndromes, most cases of RP are non-

syndromic, and symptoms are limited to the loss of photoreceptors in the retina. The death of 

the rod photoreceptors in RP results in night blindness and progressive loss of vision that can 

eventually lead to complete blindness. Symptoms generally appear in early teenage years and 

worsen over time, with severe loss of vision by middle age6. Approximately 1 in 4000 individuals 

is affected with RP in the United States46,47. Genetically, RP is extremely heterogeneous, and 

can be passed down through all modes of inheritance5,7,47. Currently, over 60 genes and 

hundreds of genetic loci have been linked to nonsyndromic RP7,48. Of these, 20 are linked with 

autosomal dominant forms (adRP). Accordingly, development of therapy is hampered by 

difficulty in diagnosing causative mutations. Strangely, while many of mutations are found in 

photoreceptor specific genes that are required for phototransduction, other mutations are in 

ubiquitously expressed genes47,49.  

A notable example of this are mutations in 7 genes identified to cause adRP, which 

encode ubiquitously expressed pre-mRNA processing factors, such as pre-mRNA processing 

factor (PRPF) 3, 4, 6, 8, and 31, RP9, and SNRNP200. Excluding RP9, these factors are 

required for the proper activity of the U4/U6.U5 tri-snRNP, a core component of the spliceosome 

(see Figure 1B)6,7,47,50.  Additional genes encode ubiquitously expressed enzymes such as 

IMPDH and hexokinase51.  
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These observations have prompted a question that has yet to be answered: How do 

mutations in essential housekeeping proteins lead to a phenotype restricted to the retina? In the 

context of splicing, various ideas have been proposed47,49,50 For example, the haploinsufficiency 

model is based on the notion that photoreceptors require high levels of pre-mRNA processing 

due to factors like high protein turnover. In this model, cell death results from a reduction in 

spliceosomal components below a certain threshold. Prolonged suboptimal splicing conditions 

eventually lead to photoreceptor degeneration, while other cell types have a lower demand and 

remain viable. Support for this model comes from observations that photoreceptor cells are 

highly metabolically active and that the murine retina expresses high levels of PRPF 3,8, and 31 

compared to other tissues52. In addition, multiple adRP-associated mutations were found to 

impair assembly of the U4/U6.U5 tri-SNRP53–55. Another potential mechanism is based on a 

decrease in spliceosomal fidelity, leading to production of misspliced transcripts that are 

specifically toxic to photoreceptor cells. Evidence for this hypothesis comes from adRP-linked 

mutations in SNRNP200 that lead to an increase in misspliced products, rather than decreased 

spliceosomal assembly or activity56,57. Finally, a previously unidentified splicing factor, or factors, 

that is unique to photoreceptors could exacerbate the phenotype of the spliceosomal mutations. 

It may be that all of these concepts play a role in development of autosomal dominant RP. 

Regardless, there remain unknown elements affecting alternative splicing in photoreceptors, 

which will require further investigation. The reports of photoreceptor cell-specific splicing events, 

discussed below, highlight this notion.  

 

4.1: Photoreceptor specific splicing of BBS8 Exon 2a 

The key to distinguishing the splicing machinery in photoreceptors from other cell types 

lies in the characterization of photoreceptor specific splicing events. Recently, a mutation in the 

3’ splice site of BBS8 exon 2a was found to cause non-syndromic autosomal recessive RP (see 

Figure 3A). Laser capture microdissection of retinal tissue suggests that this exon is expressed 
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specifically in photoreceptors (see Figure 3B)58. BBS8 encodes one component of a highly 

conserved octomeric protein complex called the BBSome, which is thought to act as an adapter 

protein that moves from the base to the tip of cilia in association with IFT complexes59–61. 

Recent evidence supports a role for the BBSome in removal of membrane signaling 

components from the ciliary tip through retrograde transport62,63. Abrogated function of the 

BBSome is associated with BBS. This ciliopathy is characterized by obesity, polydactyly, renal 

abnormalities, and RP37,64. The mutation of the 3’ SS of BBS8 exon 2a is thought to cause 

skipping of the exon specifically in photoreceptors, resulting in the phenotype of non-syndromic 

RP rather than systemic BBS58. However, the impact of the 10 amino acids encoded by exon 2a 

on the function of BBS8 protein in photoreceptors remains unclear. Regardless, this splicing 

event presents a unique tool with which to uncover the sequence elements and splicing factors 

responsible for photoreceptor specific exon inclusion.  

 

V. Conclusions 

The connections between pre-mRNA splicing and ciliary dysfunction as observed in RP remain 

unclear. The photoreceptor specific exon 2a of the BBS8 gene offers an elegant system to study 

these questions. Further, the existence of a mechanism limiting exon 2a inclusion to 

photoreceptor cells hints that there may be additional transcripts which are under the same 

regulation. In support of this, a previous report identified a photoreceptor specific isoform of the 

Basignin gene, which is required for retinal development in mice65,66. More recently, a retina 

specific isoform of Arl6 (ADP Ribosylation Factor-Like 6) was shown to be required for vision in 

zebrafish and normal IS morphology in mice67,68. Interestingly, Arl6 is necessary for membrane 

targeting of the BBSome through direct interaction with BBS1, and loss of Arl6 leads to BBS69–

71.  
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5.1: Purpose 

These data suggest that photoreceptors exhibit a distinct splicing program, which is 

necessary to shape their development and function through the production of photoreceptor 

specific protein isoforms. The purpose of this project was to investigate the regulation of the 

photoreceptor alternative splicing program. Using the aforementioned splicing events as 

models, we can begin to characterize the unique features which regulate alternative splicing in 

photoreceptor cells. This knowledge will be invaluable in uncovering novel disease genes and 

linking disease phenotypes to causal mutations. It can also lead to identification of the molecular 

mechanisms that mediate the susceptibility of photoreceptor cells to defects in alternative 

splicing. Finally, many questions remain about the regulation of protein trafficking across the 

photoreceptor connecting cilium. Analysis of photoreceptor specific protein isoforms such as 

BBS8 may reveal an important role for alternative splicing in this context.  

Figure 3. Splice site mutation in a photoreceptor-
specific exon of BBS8. (Riazuddin et al 2010)A. 
Schematic showing A>G mutation in 3’SS of Exon 2a 
of BBS8, presumed to cause exon skipping. B. Laser 
capture microdissection of mouse retina followed by 
quantitative RT-PCR to identify isoforms of Exon 2a. 
The exon 2a containing isoform is expressed 
exclusively in the ONL, which is composed of 
photoreceptor cells. GCL, ganglion cell layer, INL, 
inner nuclear layer, ONL, outer nuclear layer; RPE, 
retinal pigmented epithelium. The y -axis shows ratios 
of each transcript against GAPDH.  
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Summary 

Reverse transcription-PCR (RT-PCR) is a core technique for detecting and quantifying 

alternative pre-mRNA splicing. RT-PCR is multistep process involving RNA isolation, reverse 

transcription, and PCR that is often performed using radiolabeled primers. As a result RT-PCR 

analysis of alternative splicing is a laborious technique that quickly becomes prohibitively 

expensive when applied to large numbers of samples. Here, we describe a RT-PCR approach 

for detecting alternative splicing in multi-well plates that can be applied to effortlessly quantify 

exon inclusion levels in large number of samples. The procedures outlined here can also be 

automated on standard liquid handling equipment to produce medium throughput assay capable 

of handling thousands of samples per day.    

 

Keywords: alternative splicing, RNA isolation, 96-well plate format, RT-PCR, fluorescent 

primers, capillary electrophoresis 

1.  Introduction 

Pre-mRNA splicing has emerged as major mechanism for regulation of gene expression and 

protein function (1). In higher eukaryotes alternative splicing generates astonishing protein 

diversity from a relatively limited number of gene (2; 3). Perturbations in constitutive and 

alternative pre-mRNA splicing are a frequently cause of disease. Estimated 15% of disease 

causing mutations disrupting canonical splice sites and another 20 to 30% disrupting splicing 

regulatory sequences located within the exons (4; 5). As a result there has been a significant 

interest in developing increased throughput approaches to screen for chemical and genetic 

modulators of alternative splicing. In the past in vivo luciferase and fluorescent protein reporters 

have successfully been used in high throughput screens to identify modulators of alternative 

splicing (6–9). However these approaches suffer from significant false discovery rates and 
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require secondary validations assays to reliably identify the positive hits. Reverse 

transcription/PCR (RT-PCR) is the method of choice for such secondary assays. However, the 

throughput of RT-PCR has been limited due to the relatively high cost of the necessary 

consumables and reagents. Here we describe a medium throughput procedure for RNA 

isolation and RT-PCR in multi-well plates that uses low cost consumables. The protocol outlined 

below can be applied effortlessly in most laboratories to processed 192 to 384 samples per day. 

This throughput is sufficient to directly screen targeted compound and siRNA libraries such as 

the InhibitorSelect and ON-TARGETplus collections offered by EMD biosciences and 

Dharmacon. Furthermore, all steps of the protocol can be fully automated using standard liquid 

handling equipment to create a medium throughput assay capable of handling thousands of 

samples per day in 96 and 384 well formats. 

2. Materials 

 

2.1. Prepare all solutions with ultrapure (18mΩ) nuclease free water and store them as 

indicated in the instructions. As some waste products produced during these 

protocols can be harmful to the environment, please refer to your local 

regulations and procedures when disposing of waste.RNA Extraction 

Components 

1. A centrifuge with deep swing-out buckets capable of spinning 2 deep-well plates in each 

adapter at a speed of 1500G. 

2. Low volume spectrophotometer: NanoDrop (Thermo Scientific) or equivalent.  

3. 96-well tissue culture plates 

4. Nuclease free liquid troughs  
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5. 96-well, 400µl, 0.45µm hydrophilic PVDF filter plates (Seahorse Biosciences part # 200943-

100, see Note 1).  

6. 96-well 1ml deep-well plates  

7. 96-well nuclease free PCR plates  

8. Aluminum plate sealing film  

9. DNase I, RNase free.  

10. RNA Lysis Buffer: 6M Lithium chloride, 5% Triton X-100, 5% DGME (Di-ethylene glycol 

mono-ethyl ether), 10mM EDTA pH 8.0, 100mM Tris-HCl pH 8.8. Filter through 0.45μM 

filter and store at room temperature. Just before use add 2% β-mercaptoethanol. 

11. RNA Wash Solution I: 5M Lithium chloride, 55% Ethanol. Filter and store at room 

temperature (see Note 2). 

12. RNA Wash Solution II: 30mM Tris-HCl pH 7.6, 70% Ethanol. Filter and store at room 

temperature. 

13. Phosphate Buffered Saline (PBS) 

2.2.  cDNA Synthesis Components 

14. 96-well nuclease free PCR plate 

15. Plate sealing film 

16. Ultrapure water 

17. dNTP mix, 10mM each 

18. Primer mix: 10µM Anchored oligo dT (dT24VN) and 50µM random hexamers 

19. 10X Reverse transcriptase buffer: 500 mM Tris-HCI (pH 8.3), 750 mM KC1, 30 mM MgCl2. 

20. RNase H(-) reverse transcriptase (see Note 2) 
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2.3. PCR Components 

1. 96-well nuclease free PCR plate 

2. Plate sealing film 

3. Ultrapure water 

4. dNTP mix, 10mM each 

5. Forward and reverse PCR primer mix, 10µM each. One of the primers needs to be 

fluorescently labeled (see Note 3). 

6. 10X Taq buffer 500 mM KCl, 100 mM Tris HCl (pH 9.0 at 25°C), 15 mM MgCl2, and 1% 

Triton X-100 

7. Taq polymerase at 15 units/µl (see Note 2) 

2.4. Acrylamide Gel Electrophoresis Components 

1. Vertical gel electrophoresis apparatus (Labrepco model V16 or equivalent) 

2. High voltage power supply 

3. PCR tube strips and caps (8- or 12-tube) 

4. Sigmacote (Sigma Aldrich)or equivalent siliconizing reagent.  

5. 10% weight/volume Ammonium Persulfate (APS) solution in water. 

6. Tetramethylenediamine (TEMED). 

7. 1X Tris-Borate EDTA Buffer (TBE): 89mM Tris, 89mM Boric acid, 2mM EDTA. The buffer 

can be made as a 5X stock solution and diluted before use.  

8. Acrylamide gel solution: 4% Acrylamide/Bis-acrylamide (19:1 crosslink ratio), 1xTBE, 7.5M 

Urea. Filter solution through 0.45µM buffer and store in a dark bottle at 4°C.  

9. Clear formamide loading buffer: Deionized formamide, 2 mM EDTA 

10. Formamide loading buffer with tracking dyes: Deionized formamide, 2 mM EDTA 0.25% 

(w/v) bromophenol blue, and 0.25% (w/v) xylene cyanol FF. 
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11. Fluorescently labeled size standards: Life technologies/ABI GeneScan 1000 Rox or 

GeneScan 1200 LIZ. Alternatively custom size standards can be prepared by a simple 

PCR amplification with a ROX labeled primer  (10). 

2.5. Capillary Electrophoresis Components 

1. ABI capillary sequencer. Access to this equipment is typically available as part of 

sequencing core facility or commercial service. 

2. 96-well half skirt PCR plate compatible with ABI sequencers (see Note 4). 

3. Clear formamide loading buffer: Deionized formamide, 2 mM EDTA 0.25% (w/v) 

4. Fluorescently labeled size standard 

3. Methods 

This protocol involves procedures for RNA isolation, cDNA synthesis, PCR and capillary 

electrophoresis that are carried out in 96 well plates.  The RNA isolation procedure is adapted 

from Bair et al and uses high concentrations of LiCl, which has long been known to efficiently 

strip the proteins from the RNA (11; 12). The RNA is then bound to solid support, and after 

washing away the contaminants is eluted in water.  In our hands PVDF membranes proved 

superior to silica or glass fiber support that is typically used in nucleic acid purification 

procedures. In particular the PVDF membranes unlike glass-fiber filters did not bind the 

detergents used to lyse the cells and produced RNA free of contaminants (Figure 1).  

 cDNA synthesis and PCR amplification procedures follow standard protocols. A key 

feature of the approach described here is the use of fluorescently labeled primer in the PCR 

amplification. The fluorescent label allows the amplification products to be subsequently 

quantified by capillary electrophoresis. Substituting standard gel electrophoresis procedures for 

automated capillary electrophoresis significantly decreases the labor involved and increases the 
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throughput of the assay.  Although we also describe the gel electrophoresis procedures, we 

recommend using it only on a limited subset of samples as a quality control and troubleshooting 

tool.  

3.1. RNA isolation from adherent cells in 96-well plates 

Just prior to beginning the extraction procedure add 20μl per ml β-mercaptoethanol to the RNA 

Lysis Buffer (see Note 5).  

1. Grow the cells in 96 well tissue culture plates. 

2. Before lysing the cells stack a 96 well PVDF filter plate on top of a deep well plate. 

Steps 3 through 6 describe the lysis procedure for adherent cells. If working with suspension 

cultures or very loosely adherent cells skip to step #7. 

3. If working with adherent cells invert the tissue culture plate and shake off the media. Tap 

the plate on a stack of paper towels to remove the excess liquid. 

4. Wash cells once with 200µl of PBS. If the cells are adhering loosely to the plate, skip this 

step as it can result in washing the cells away. 

5. Add 200µl RNA Lysis Buffer to each well (see Note 6). 

6. Using a multi-channel pipette transfer the lysates into the filter plate. Proceed to step #11 

of the protocol. 

7. If working with suspension cells resuspend the cells in the culture media by pipetting up 

and down and transfer the suspension to the filter plate. 

8. Spin the plate at 1500g for 3 minutes to remove the media. 

9. Discard the liquid accumulated in the deep well plate, tap the plate face down on stack of 

paper towels to remove excess liquid and reuse the plate. 

10. Add 200µl of lysis buffer to each well and incubate for 3 minutes at room temperature. 

11. Spin the plate at 1500g for 3 minutes. 
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12. Add 200µl RNA Wash Solution I and spin at 1500g for 3 minutes. 

13. Discard the liquid accumulated in the deep well plate as in step #9 

14. Add 200µl RNA Wash Solution II and spin at 1500g for 3 minutes. 

15. Add 20µl of DNase solution (0.1U/ul in 1X DNase buffer) to the membrane, seal the plate 

and incubate at 37ºC for 20 minutes. 

16. Add 200µl RNA Lysis Buffer and incubate at room temperature for 2 minutes. 

17. Spin at 1500g for 2 minutes. 

18. Discard the liquid accumulated in the deep well plate as in step #9. 

19. Add 200µl RNA Wash Solution I and spin at 1500g for 2 minutes. 

20. Add 200µl RNA Wash Solution II and spin at 1500g for 2 minutes. 

21. Discard the liquid accumulated in the deep well plate as in step #9. 

22. Repeat Step 13, this time extending the spin to 5 min. 

23. Transfer the filter plate to a full-skirt PCR plate. 

24. Add 16µl-25ul of water to the membrane, incubate for 5 minutes at room temperature 

and spin at 1500g for 5. The filter plate retention volume is typically 1ul per well resulting 

in RNA solution volume of 15µl-24µl. If all RNA is going to be used for cDNA synthesis, 

step 20 can be omitted.  In this case the RNA can be eluted using 16µl of water into a 

plate containing 5µl of reverse transcription master mix to perform the first strand 

synthesis (see below).  

25. Check the RNA quality in a subset of wells by agarose gel electrophoresis of 5µl of the 

sample (see Note 7). If necessary determine the RNA concentration using a NanoDrop 

spectrophotometer. At this point the plates can be sealed using aluminum sealing film 

and stored at -80°C, or used for first strand DNA synthesis. 
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3.2. First strand cDNA synthesis  

1. For each 96 well plate prepare a reverse transcription master mix containing 220µl 10X 

reverse transcriptase buffer, 110µl 10mM dNTPs, 110µl oligo dT/random hexamer mix, 

55µl of reverse transcriptase, and 55µl of water.  

2. Dispense 5µl of the master mix in each well of a 96 well PCR plate. 

3. Add 15µl of RNA solution to each well of the plate containing the reverse transcription 

mix. Alternatively use the plate containing the reverse transcription mix to catch the RNA 

eluted with 16 µl of water in step19 of the RNA isolation procedure above. 

4. Spin down the plate briefly to collect any drops and purge air bubbles trapped at the 

bottom of the wells. 

5. Cover the plate with sealing film and run in a thermal cycler under the following 

conditions: step 1 - 25°C for 5 minutes, step 2 - 43°C for 40 minutes, step 3 - 75°C for 15 

minutes, followed by a 10°C hold until ready to remove the plate. 

6. Remove the plate from the thermal cycler. 

7. Dilute the reactions with 20 µl of water, reseal the plate and store at -20°C until needed. 

3.3. PCR Primer design 

PCR primers for measuring exon inclusion levels can be designed using primer3. The primers 

are placed in the constitutive exons that flank the alternatively spliced region and should have 

melting temperatures of approximately 60°C. Typically the primers will be located in the exons 

immediately adjacent to the alternatively spliced region (Figure 2A).  In cases where the size or 

nucleotide composition of the constitutive exons place constrains on the primer design, the 

primers can be moved further away (Figure 2B). This placement will produce PCR products of 
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different size corresponding to the exon included and exon skipped mRNA isoforms. Optimally 

the primers should be designed so that the shortest (skipped) product should be between 150 

and 250nt. The longest PCR product should not exceed 800nt in size. This size limit is dictated 

by the lower amplification efficiency of large fragments which leads to under representation of 

the product derived from the exon included isoform and inaccurate quantification of the exon 

inclusion rates. The inclusion rate of such large alternative exons can be assessed using a set 

of three primers that includes a shared forward primer and two reverse primers placed in the 

downstream exons (Figure 2C). The same approach using a shared forward primer and two 

reverse primers can also be used to detect mutually exclusive exons, which typically have the 

same size, or alternative 3’ terminal exons (Figure 2D).  

One of the primers in the set is synthesized with fluorescent tag at the 5’ end. In the cases 

where a set of three primers is used the label should be placed on the shared primer. The 

fluorescent tag needs to be compatible with the capillary electrophoresis equipment that will be 

used to separate and quantify the PCR products. The tag also needs to be different from the 

fluorescent label of the size standard. ABI capillary sequencers can use both ROX or LIZ 

labeled size standards. We recommend using FAM or HEX to label the primers. Bot tags are 

compatible with the ABI equipment (Table 1) and are commonly available as an inexpensive 5’ 

modification option from a number of oligonucleotide synthesis service companies.  

3.4. PCR amplification 

1. For each 96 well plate prepare a PCR master mix containing 165µl 10X Taq PCR buffer 

33µl dNTPs, 33µl 10µM Primer mix, 17µl of Taq DNA polymerase, and 1182µl of water. 

2. Dispense 13µl of the master mix in each well of a 96 well PCR plate. 
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3. Transfer 2µl of the first strand synthesis reactions to the plate containing the PCR mix. 

Spin down the plate briefly to collect any drops and purge air bubbles trapped at the 

bottom of the wells. 

4. Cover the plate with sealing film and amplify the templates using the following 

conditions: 

Initial denaturation: 94°C for 4 minutes 

20 to 35 amplification cycles: 94°C for 30 seconds; 60°C for 30 seconds; 72°C for 60 

seconds (see Note 8). 

Final extension: 72°C for 5 minutes 

Hold at 10°C until ready to remove the plate. 

3.5. Electrophoresis and Quantification of exon inclusion 

The PCR amplicons can be visualized and quantified either by gel or capillary electrophoresis.  

Gel electrophoresis is significantly more laborious. However it is indispensable as a tool to 

control the quality of the samples and troubleshoot problems. In particular we recommend 

analyzing 12 to 16 samples by gel electrophoresis to ensure that the PCR reactions did not fail 

and to estimate if a dilution of the samples may be necessary prior to submitting the full sample 

set for capillary electrophoresis. The fluorescently labeled PCR amplicons separated by gel 

electrophoresis can be imaged directly on a Typhoon Phorsphorimager (GE) and quantified 

either by the ImageQuant software that accompanies the instrument or by the freely available 

ImageJ software (Figure 3).  

Capillary electrophoresis instruments offer single nucleotide resolution over a wider range of 

fragment sizes, increased sensitivity, and significantly higher throughput compared to gel 

electrophoresis.  
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3.5.1. Fragment Analysis By Gel Electrophoresis 

Acrylamide gel electrophoresis  

1. Clean the sides of each glass plate with absolute ethanol and then dry with paper towels 

(see Note 9). 

2. If the glass plates have not been siliconized before, apply Sigmacote (see Note 10) to 

the ethanol cleaned sides and spread/dry with a paper towel. Clean again the plates with 

ethanol as described in step #1. 

3. Place the spacers on the larger of the two glass plates (two side spacers with the foam 

dam toward the top and the bottom spacer across the bottom edge) then take the 

smaller of the two plates and place it on top with the cleaned side facing the other plate, 

thus making a plate-spacer-plate sandwich. 

4. Clip the sandwich together with paper clips and set aside. 

5. Assemble as many gels as needed as described above. 

6. In a clean flask mix acrylamide solution (25ml/gel) with 1/100 volume 10% APS 

(250µl/gel) and 1/1000 volume TEMED (25µl/gel). 

7. Holding the plate sandwich at approximately 15-20 degrees from horizontal, pour the gel 

solution in a steady stream along one of the side spacers allowing it to flow smoothly 

between the two glass plates while ensuring that no air bubbles are formed. Once filled 

to the top, place the gel horizontally to insert the comb. Leave the gel in this position 

until the gel polymerizes (approximately 20-30 minutes).  

8. After the gel has solidified remove the clips, the bottom gel spacer, and the well comb.  
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9. Place the sandwich into the running apparatus with the larger glass plate facing out. Use 

two clips on each side of the gel to clip the sandwich to the gel.  

10. Immediately rinse the wells using an 18 gauge needle on a 50 ml syringe filled with 

1xTBE running buffer. 

11. Fill the upper and lower reservoirs with 1X TBE buffer ensuring that the gel is covered 

and that there is no air trapped at the bottom.  

12. Apply a piece of clear adhesive tape such as Scotch tape, to the outside glass plate 

directly under the wells. On the tape, use a Sharpie pen to label each well with a number 

that corresponds to the sample that will be loaded into the well (see Note 11). 

13. Attach the cover of the gel apparatus and pre-run the gel for 30 to 50 minutes at 450 

volts. While the gel is preheating prepare the PCR amplicons for loading as described 

below. 

14. Prepare a loading buffer mix containing 10µl clear formamide loading buffer and 0.3µl 

fluorescent size standard for each sample to be loaded on the gel. 

15. Depending on the number of samples being analyzed place one or more PCR tube 

strips on a PCR tube rack. 

16. Dispense 10µl of the loading buffer mix to each tube.  

17. Transfer 2 µl of the PCR amplicon to each of the tubes containing the loading buffer mix. 

18. Seal the tubes and incubate in a thermal cycler at 95°C for 5 minutes to denature the 

samples. Place the tubes on ice. 
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19. Turn off the gel power supply.  Rinse again the wells as described in step #11 to remove 

accumulated urea. Failing to remove the urea will interfere with loading the samples and 

distort the bands. 

20. Load 10 µl of the denatured samples in each well. 

21. Optionally load 1-2µl of the gel loading buffer containing tracking dyes to and empty well 

at least one lane apart from the nearest sample (see Note 12).  

22. Run the gel at 450 volts for 55 minutes or until the bromophenol blue dye moves out of 

the gel then turn off the power supply. 

23. Remove the gel sandwich from the electrophoresis apparatus.  

24. Remove the side spacers and the adhesive tape. Do not disassemble the gel sandwich! 

25. Clean the plates with deionized water to remove any dried acrylamide or urea attached 

to the outside of the plates.  

26. Clean and dry the plates with ethanol soaked paper towels to remove any remaining dirt 

and dry the plates (see Note 9).   

Phosphorimager Visualization 

1. Clean and dry the surface of the phosphorimager with ethanol soaked paper towels (see 

Note 9). 

2. Place the gel sandwich(es) on the phosphorimager glass plate. 

3. In the Typhoon control software select the scan area, then close the imager lid.   

4. In the Typhoon control software set the phosphorimager to fluorescence mode. 
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5. Select the appropriate combinations of excitation lasers and band pass emission filters 

depending on labels present in the samples and the size standards. The settings for the 

most common labels are listed on Table 1. 

6. Set the focal plane to +3 mm (this adjusts the focal point to 3 mm above the surface of 

the phosphorimager to account for the width of the glass plate of the gel). 

7. Choose the appropriate orientation for your output image. 

8. Scan the gel. While scanning make sure that there are no saturated pixels (marked in 

red on the preview window). If there are saturated pixels, rescan the gel after lowering 

the photomultiplier (PMT) voltage for the appropriate channel.   

3.5.2. Fragment analysis by capillary electrophoresis 

1. Dilute the PCR amplicons with water. The dilution factor depends on the signal strength and 

can vary from two to hundred fold. The approximate dilution factor can be determined from 

the the gel electrophoresis analysis. We recommend running a pilot experiment to determine 

the relationship between the signal strengths detected by the phosphorimager and capillary 

electrophoresis equipment. 

2. Prepare loading buffer mix containing 1ml clear formamide loading buffer and 30µl for each 

96 well plate.  

3. Dispense 10 µl of the loading buffer mix in each well of a half skirt 96 well PCR plate. 

4. Transfer 2 µl of the diluted PCR amplicons to the plate containing the loading buffer mix. 

5. Seal the plate and incubate in a thermal cycler at 95°C for 5 minutes to denature the 

samples. 
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6. Place the plates on ice and bring them to the facility operating the ABI capillary 

electrophoresis equipment to perform fragment analysis. The denatured plates can be 

stored frozen at -20°C for several days. 

7. The electrophoretograms generated by the capillary electrophoresis equipment can be 

analyzed using the PeakScanner software to determine the peak sizes and intensities. 

Follow the PeakScanner manual for detailed procedures (see Note 13). 

8. Export the peak size and area data from PeakScanner as comma or tab delimited text file. 

9. Import the peak data in spreadsheet software (Microsoft Office Excel; Libre Office Calc) and 

calculate the relative exon inclusion levels. 

10.  The relative exon inclusion rate is calculated as the amount of the bands that contain the 

exon normalized to the total amount of DNA in all bands (see Note 14).  

4. Notes 

1. In the United States hydrophilic PVDF plates from Seahorse Biosciences (part # 

200943-100) are sold by Phenix Research Products (catalog # MPF-011) and ISC 

Bioexpress (catalog # T-3180-7). We have not tested the performance of hydrophilic 

PVDF plates from other manufacturers in this protocol. 

2. Dissolving LiCl in water is extremely exothermic reaction. Allow the solution to cool 

before adding the remaining components.  

3. Taq polymerase and RNase H(-) MMLV reverse transcriptase can be obtained from a 

number of vendors. Enzyme costs can be substantially reduced by expressing and 

purifying recombinant enzymes in E.coli following published protocols (13; 14). We use 

6xHis-tagged MMLV clone containing the following mutations: (i) D524N – to eliminate 

the RNase H activity ; (ii) Q84A – to improve processivity ; (iii) Δ1-23 - deletion of the 

first 23 amino acids to improve solubility (13; 15; 16). 
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4. ABI sequencer compatible plates can be obtained from a number of manufacturers.  

5. For example, one 96-well plate will require 38.4 ml of RNA Lysis Buffer (19.2 ml at step 

#2 and another 19.2 ml at step #9). So, it is practical to make up 40 ml total to ensure 

extra for ease of pipetting from the liquid troughs. After adding 40 ml of the RNA Lysis 

Buffer to an RNase free conical tube, a total of 800µl of β-mercaptoethanol is added and 

thoroughly mixed. 

6. High numbers of cells, for example plates that contain densely seeded HEK 293 cells, 

may not lyse efficiently in 200µl of lysis buffer and subsequently clog the filter plate. In 

such cases increase the volume of the lysis buffer to 300µl and apply only 100µl to the 

filter plate in step #6 of the RNA extraction protocol. 

7. RNA concentrations are typically 30-50ng/µl (0.9-1.5ug total) for 90% confluent well of 

HEK293 cells (50,000 cells); 10-20ng/µl (250-500ng total) for 90% confluent fibroblasts 

or MDA-MB-231 cells. 260/280 ratio is typically 1.9 to 2.0.  

8. The number of cycles depends on the copy number of the template and the number of 

cells in the starting material. We recommend determining it experimentally for each 

template. Moderately expressed transcripts are easily detectable at 25 to 30 cycles. 

9. It is critical that all surfaces are clean and free of dust as dirt and dust particles are often 

highly fluorescent and will interfere with the fluorescent imaging.  

10. Rainex is a suitable, less expensive alternative. It is sufficient to siliconize the plates 

once every six to twelve months depending on the frequency of use. 

11. Because the amplicon/formamide mix that will be loaded into each well is clear it is easy 

to lose track of which well has which sample and it is very difficult to determine if a 

sample was loaded into a well. By numbering the wells one can keep track of the wells 

that have been loaded to prevent a well from being accidentally skipped or being loaded 

with two samples. 
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12. Both bromophenol blue and xylene cyanol FF are strongly fluorescent and may interfere 

with the signal if placed two close to the samples. 

13. PeakScanner is available after registration as a free download from Life Technologies.  

14. The electrophoretograms may contain bands arising from nonspecific amplification. The 

areas of these bands should not be included when calculating the relative exon 

inclusion levels.  

15. The HEX label can also be detected on the G5 set although this is not supported by ABI. 
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Tables. 

Table 1. Typhoon phosphorimager excitation/emission combinations and ABI capillary 

electrophoresis filter sets for detecting commonly used fluorescent labels. 

Label Typhoon Excitation 

laser 

Typhoon Emission 

filter 

ABI dye filter set 

FAM 480nm (Blue laser) 520nm band pass 40 A, D, F, G5, C, S 

532nm (Green laser) 526nm short pass  

HEX 532nm (Green laser) 555nm band pass 20 D (see Note 15) 

ROX 532nm (Green laser) 610nm band pass 30 A,D,F 

LIZ 633nm (Red laser) 670nm band pass  30 G5, S 
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Figures. 

Figure 1. Agarose gel electrophoresis of RNA extracted from cells grown in 96 well 

plates. The first lane contains the size standard. The positions of the 18S and 26S ribosomal 

RNAs are indicated on the side. 

Figure 2. Primer placement for detecting alternatively splicing events. Each panel shows a 

stylized gene structure (top) and the expected PCR products (bottom). The start indicates the 

label position in the primers and the PCR products. Primers are typically placed in the 

constitutive exons flanking the alternatively spliced regions (A and B). A combination of a 

shared forward primer and two reverse primers can be used to detect large cassettes (more 

than 700bp), mutually exclusive or alternative 3’ exons (C and D).  

Figure 3. Gel electrophoresis of alternatively spliced products imaged on typhoon 

phosphorimager. The PCR amplicons derived from three alternative isoforms are labeled by 

FAM (green bands indicated by arrows). The custom size standard (75nt-800nt) is labeled with 

ROX (red bands). 
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and Protocols.   

Analysis of alternative splicing in the mouse retina using a fluorescent reporter.  

Daniel Murphy, Saravanan Kolandaivelu, Visvanathan Ramamurthy, Peter Stoilov 

Summary/Abstract 

In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often 

individual cellular components of complex tissues will express different splicing programs. Thus, 

when studying splicing in multicellular organisms it is critical to determine the exon inclusion 

levels in individual cells positioned in the context of their native tissue or organ. Here we 

describe how a fluorescent splicing reporter in combination with in vivo electroporation can be 

used to visualize alternative splicing in individual cells within mature tissues. In a test case we 

show how the splicing of a photoreceptor specific exon can be visualized within the mouse 

retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells 

cannot be studied in culture. With minor modifications to the injection and electroporation 

procedure, the protocol we outline can be applied to other tissues and organs. 

Key Words: In vivo reporter, alternative splicing, retina, photoreceptor 

Introduction 

Alternative splicing is a major mechanism for generating protein diversity in higher 

eukaryotes. Expression of tissue and cell type specific splicing isoforms is critical for the 

development and maintenance of differentiated cell types such as neurons, muscle, and 

epithelial cells. On aggregate each of these differentiated cell types expresses a distinct splicing 

program and set of splicing regulators. However, the gross picture painted by tissue wide 

analysis of splicing and expression masks the significant variability of specialized cellular 
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subtypes, particularly among neurons and epithelial cells. To understand the organization and 

functions of complex vertebrate tissues, gene expression and splicing need to be analyzed at 

the level of the individual cell within the context of the native tissue. Naturally, such studies face 

significant technical challenges in segregating the signals derived from individual cells. One 

approach to address these challenges is the use of fluorescent reporters which provide a 

convenient way to visualize gene expression and splicing at the individual cell level. The recent 

development of two-color fluorescent splicing reporters that produce either Green (GFP) or Red 

Fluorescent Protein (RFP) depending on the splicing of an alternative exon has provided an 

opportunity to study alternative splicing in vivo1–6. Transgenes expressing fluorescent splicing 

reporters have successfully been used to visualize FGFR2 splicing in mice and let-2 splicing in 

C. elegans3,6,7. However, the relatively high cost and long time frames required for the 

establishment of mouse transgenes have limited the utility of the splicing reporters in vivo.  

Here, we describe a protocol that uses electroporation to introduce splicing reporters into 

the retina of mice, followed by RT-PCR analysis and fluorescent microscopy imaging to 

investigate alternative splicing. The protocol is based on an in vivo subretinal injection and 

electroporation method 8. The technique involves injection of the plasmid DNA into the space 

between the retinal pigmented epithelial (RPE) cell layer and retina followed by electroporation 

using tweezer-type electrodes. Electroporation facilitates the movement of plasmid DNA into the 

retinal precursor cells. This system is highly customizable, allowing for multiple DNA constructs 

driven by various promoters to be expressed in rod, bipolar, amacrine, and muller glial cells, 

with expression lasting upwards of 50 days8. It has also been adapted for gain of function and 

loss of function studies using plasmids and si-RNAs, and has been demonstrated in both 

neonatal and adult mice as well as other species8,9. The in vivo electroporation approach is 

remarkably tolerant to variations in the size of the DNA. We and others have reproducibly 

electroporated bacterial artificial chromosome (BAC) clones reaching 100Kbp in size10,11.  
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In vivo electroporation of DNA constructs provides a rapid and cost-efficient alternative 

to the use of transgenic animals. The time frame of a typical experiment is dictated mainly by 

the developmental timeline of the mouse retina and typically lasts 20 to 30 days. A significant 

advantage over the use of transgenic animals is the ability to quickly analyze the splicing of a 

large number of minigenes. This approach has allowed us to carry out extensive mutagenesis 

experiments involving more than 20 different constructs that were tested in multiple replicates.  

A key component of the protocol described here is a two-color fluorescent splicing 

reporter. The splicing reporter, which was described previously, expresses either GFP or RFP 

fluorescent protein depending on the splicing of an alternative exon1. The reporter is designed 

to accommodate virtually any alternative exon. The test exon is cloned in an intron that splits the 

AUG translation initiation codon of the GFP reading frame (Figure 1). When the exon is skipped 

from the mature RNA, the AUG codon of the GFP reading frame is joined together by splicing 

out the intervening sequences and GFP protein is expressed from the mature RNA. In this 

scenario the translation of the downstream RFP reading frame, which lacks an internal 

ribosome entry site, is suppressed. In the alternative scenario, the exon is spliced in, leading to 

disruption of the translation initiation codon of the GFP reading frame, and the downstream RFP 

reading frame is translated instead. This reporter design (pFlare A in Figure 1) accommodates 

exons that do not terminate on adenosine or carry a translation initiation codon with good match 

to the Kozak consensus. These types of exons are accommodated by a second backbone 

(pFlare G on Figure 1) in which the upstream exon no longer carries the adenosine of the GFP 

reading frame AUG codon. Under this design GFP will be expressed upon inclusion of the 

alternative exon. This can be achieved by either recreation of the AUG codon of the GFP 

reading frame by exons terminating on adenosine or by initiation of GFP translation from AUG 

codon encoded by the exon. In the latter case care must be taken to ensure that GFP is in 

frame with the AUG codon carried by the exon. 
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While the focus of this protocol is on studying splicing in the retina, the combination of in 

vivo electroporation and fluorescent reporters can be applied with some modifications to other 

tissues and organs. Reliable electroporation protocols have been established for introducing 

DNA in brain, lung, liver, muscle, heart, skin, and testis12–19.  

 

Materials 

1. Laboratory animal and regulatory approval. 

1.1. Pregnant (untimed pregnancy) mice such as CD-1 IGS (Charles River). (see note 1) 

1.2. All procedures that are carried out on mice must be approved by the institutional 

regulatory bodies that oversee the use and human treatment of laboratory animals.  

2. Tools and equipment. 

2.1. Surgery and dissection. 

2.1.1. Microscope for performing surgery and dissections, such as Zeiss Stemi DV4.  

2.1.2. Hamilton blunt end syringe, 33G or 32G. (7634-01). 

2.1.3. Water heated warming blanket such as HTP-1500, Adroit Medical. 

2.1.4. Square Wave Electroporation System, Nepagene CUY21, or BTX ECM 830. 

2.1.5. Tweezer-type electrodes- BTX model 520, 7mm diameter. 

2.1.6. Two pairs of tweezers, and scissors for dissection of retina prior to both RNA 

isolation and sectioning and imaging  

2.1.7. Chamber for euthanization by asphyxiation from CO2. 

2.1.8. CO2 tank and regulator. 

2.2. Microscopy 

2.2.1. Cryostat such as Leica cm 1850.  

2.2.2. Zeiss LSM 510 laser scanning confocal microscope or equivalent. 

2.3. RNA isolation, cDNA synthesis, PCR amplification, and gel electrophoresis 
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2.3.1. Handheld homogenizer such as (VWR 47747-370) with RNAse free pestles 

(VWR 47747-358). 

2.3.2. Tabletop microcentrifuge such as Sorvall Legend Micro 17 (Thermo 75002430). 

2.3.3. Nanodrop spectrophotometer (Thermo). 

2.3.4. Thermocycler. 

2.3.5. Vertical gel electrophoresis apparatus (Labrepco model v16 or equivalent). 

2.3.6. High voltage power supply capable of producing 500V DC, such as Bio-Rad 

Power Pac 3000. 

2.3.7. 18G disposable needle. 

2.3.8. 50ml syringe. 

2.3.9. Laser scanning capable of imaging two fluorescence channels, such as Typhoon 

9410 Phosphorimager (GE). 

3. Reagents and consumables. 

3.1. Subretinal injection. 

3.1.1. DNA at approximately 2-6µg/µl diluted in PBS with 0.1% fluorescein sodium. 

3.1.2. Ice. 

3.1.3. Sterile Single use needle 22G1 for dissection (Becton Dickinson 305159). 

3.1.4. Phosphate Buffered Saline (PBS). 

3.1.5. Absolute, Anhydrous ACS/USP grade Ethanol (Pharmaco-AAPER, 111ACS200). 

3.1.6. Cotton swabs. 

3.1.7. 1:40 dilution (0.05% final concentration) of Nolvasan (2% Chlorhexidine (1,1’-

Hexamethylenebis [5-(p-chlorophenyl) biguanide]) diacetate, Zoetis) in water. 

3.2. RNA Isolation, cDNA synthesis, PCR amplification, and gel electrophoresis 

3.2.1. Sterile Polystyrene Petri Dish (VWR 470175-016). 

3.2.2. Filter paper (Fisher 22-279539). 

3.2.3. Ultrapure water. 
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3.2.4. Dry Ice. 

3.2.5. TRIzol reagent (Sigma T9424-200ML). 

3.2.6. Chloroform, ACS Spectrophotometric grade (Sigma 154733). 

3.2.7. Isopropanol HPLC Grade (Sigma Aldrich 650447). 

3.2.8. Absolute, Anhydrous ACS/USP grade Ethanol (Pharmaco-AAPER, 111ACS200). 

3.2.9. 1.5ml microcentrifuge tubes. (World Wide Medical Products 41021009). 

3.2.10. DNAse 1 RNAse Free enzyme and 10x DNAse 1 Buffer (Roche 04716728001). 

3.2.11. 3 Molar Sodium acetate solution, pH 5.2. 

3.2.12. PCR tube strips and caps (8 or 12-tube) (VWR 20170-004 or 53509-306). 

3.2.13. 10mM dNTP mix (dATP, dCTP. dGTP and dTTP at 10mM concentration each). 

(Denville Scientific CB4420-4). 

3.2.14. Reverse transcription primer mix: 10uM anchored oligo dT (dT24VN) and 50uM 

random hexamers. 

3.2.15. 10x Reverse Transcriptase Buffer: 500mM Tris-HCL (pH 8.3), 750mM KCL, 

30mM MgCl2. 

3.2.16. RNAse H (-) Reverse Transcriptase. 

3.2.17. Primers combined at 10uM final concentration each: 

pFlare-BGL-F: aaacagatctaccattggtgc 

EGFP-N carrying 5’ end 6-FAM label: [6-FAM] cgtcgccgtccagctcgacca 

3.2.18. 10x Taq buffer: 500mM KCL, 100mM Tris-HCl, (pH 9.0), 15mM MgCl2, and 1% 

Triton X-100. 

3.2.19. Taq polymerase at 15U/µl. 

3.2.20. Sigmacote (Sigma Aldrich) or equivalent siliconizing reagent. 

3.2.21. 10% Ammonium Persulfate (APS) solution in water. 

3.2.22. Tetramethylenediamine (TEMED). 
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3.2.23. 1x Tris-Borate EDTA Buffer (TBE): 89mM Tris, 89mM Boric Acid, 2mM EDTA. 

This buffer can be made as a 5x stock solution and diluted before use. 

3.2.24. Acrylamide gel solution: 4% Acrylamide/Bis-acrylamide (19:1 crosslink ratio), 1x 

TBE, 7.5M Urea. Filter through .45µM filter and store in a dark bottle at 4˚C.  

3.2.25. Clear formamide loading buffer: Deionized formamide, 2mM EDTA. 

3.2.26. Formamide loading buffer with tracking dyes: Deionized formamide, 2mM EDTA, 

0.25% (w/v) bromophenol blue and 0.25% (w/v) xylene cyanol FF.  

3.2.27. Fluorescently labeled size standards: Life technologies/ABI GeneScan 1000 Rox 

or GeneScan 1200 Liz. Alternatively custom size standards can be prepared by a 

simple PCR amplification with Rox-labelled primer 20.  

3.3. Tissue sectioning and fluorescent microscopy. 

3.3.1. Sterile Polystyrene Petri Dish (VWR 470175-016). 

3.3.2. 24 well polystyrene tissue culture plate (VWR 662 0160). 

3.3.3. Filter paper (Fisher 22-279539). 

3.3.4. Phosphate-buffered Saline (PBS). 

3.3.5. 4% paraformaldehyde (PFA) in PBS. 

3.3.6. 20% sucrose (Jt Baker 4097) solution in PBS. 

3.3.7. Hanks Balanced Salt Solution (HBSS) (Fisher, cat no SH30268.01). 

3.3.8. Sterile Single use needle 22G1 for dissection (Becton Dickinson 305159). 

3.3.9. Dry ice. 

3.3.10. Optimal Cutting Temperature Compound (O.C.T.) Tissue Tek (Ref 4583). 

3.3.11. Cryomolds Tissue Tek (ref 4565). 

3.3.12. Fisher SuperFrost Plus slides (cat no 12-550-15). 

3.3.13. ProLong-Gold Antifade reagent with DAPI (life technologies P36935). 

3.3.14. Cover slips. 

3.3.15. Clear nail polish. 
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Methods 

 

Generation of reporter construct 

The procedures for cloning the exon to be tested for inclusion can be found elsewhere21. 

The cassette exon cloned into the reporter construct should contain part of flanking native 

introns to ensure that all elements necessary for the regulation of its splicing are present. 

Typically, intronic regulator elements will be located within 100nt from the exon borders. The 

sequence conservation of the flanking introns should serve as a guide in the identification of 

such cis-acting sequences22. We recommend incorporating 200 to 300 nucleotides of each 

flanking intron. If the sequence conservation extends beyond this range, larger portions of 

the introns will need to be incorporated into the minigene to ensure that all regulatory 

sequences are present. It is important to confirm that the regulation of the alternative exon in 

the minigene construct mirrors the regulation of the exon in the native gene. This can be 

achieved by transfecting the minigene in cell lines that differentially splice the exon of the 

native gene and using RT-PCR to confirm that the splicing of the minigene is regulated 

similarly to the native transcript. It is possible that suitable cell lines may not exist for some 

cell type specific exons (the Bbs8 exon 2A example used in this protocol is one such exon). 

Should this be the case, testing the minigenes will have to be carried out directly in animal 

tissue and suitable controls will need to be considered to ensure that negative results are 

not due to failure to incorporate the required regulatory sequences into the minigene. The 

nature of these controls is beyond the scope of this protocol as it strongly depends on the 

exon and tissue being studied. (see note 2) 

 

1. Subretinal Injection and electroporation. 
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This technique requires a minor surgery to open the eye in a neonatal pup followed by 

an incision in the sclera. A blunt end syringe is then used to deliver the DNA through the 

incision created in the sclera. The use of a blunt end needle is necessary to prevent piercing 

through the back of the eye. The depth at which the DNA needs to be injected is determined 

by the slight increase in resistance which is felt when the blunt end needle reaches the end 

of scleral wall. Following injection in the subretinal space, electroporation is used to 

introduce the DNA into the retinal precursor cells. The steps in the procedure will require 

some practice, patience, and a steady hand in order to deliver the DNA at the correct site. 

We typically see the expression of the minigene constructs in 60 to 70% of the injections. 

The entire process (excluding time for anesthetization) should take less than 3-5 minutes 

per pup, cause little if any bleeding, and result in a 100% survival rate. 

 

1.1. Prepare purified DNA according to plasmid purification kit. For large DNA constructs 

such as Bacterial Artificial Chromosomes (BACs), we recommend using CsCl gradient 

to purify the DNA. 

1.2. Resuspend DNA at 2-6µg/µl in PBS.  

1.3. Monitor untimed pregnant moms daily to check for delivery of pups. 

1.4. To 15-20µl of DNA in PBS, add 1/10 volume of 1% fluorescein sodium. 

1.5. Remove newborn pups from cage and anesthetize individually on ice for several 

minutes. To avoid frostbite from direct contact with ice, place each mouse in a latex 

sleeve made from the finger of an examination glove (See Figure 2 A). Mice are fully 

anesthetized when they no longer respond to a toe pinch. 

1.6. Clean the eyelid with ethanol using a cotton swab.  

1.7. Repeat the cleaning with a 1:40 solution of Nolvasan. 

1.8. Under the microscope using a 32-guage needle, carefully make an incision along the 

future edge of the eyelid (Figure 2 B and C).  
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1.9. Expose the eye by spreading the eyelids. 

1.10. Make a pinpoint incision through the sclera using the tip of the needle (Figure 2 C and 

D). 

1.11. Insert a blunt end syringe containing 0.5µl of the DNA and dye solution into the 

incision, carefully maneuver the syringe around the lens toward the back of the eye until 

the retinal pigmented epithelium (RPE), is reached, you should feel some resistance 

(Figure 2 E). 

1.12. Slowly inject the DNA into the subretinal space. The dye should be visible as it 

spreads across a small area of the retina (Figure 2 E). 

1.13. Dip tweezer-type electrodes in PBS and apply them to the head of the pup with light 

pressure. The positive electrode is indicated by the screw, and should be oriented on 

the same side as the injection (Figure 2F). 

1.14. Apply five pulses of 80 volts at 50 millisecond durations with 950 millisecond duration 

between pulses. 

1.15. Place pups on a warming blanket (HTP-1500, Adroit Medical) for recovery before 

returning them to their mother. 

2. Dissection of the retina for RNA Isolation. 

At postnatal day 16 (P16), the photoreceptors should be fully developed (although the 

outer segments may not be fully elongated) and retinae can be harvested for RNA isolation. 

The following protocol outlines the dissection of the eye in order to isolate the retina. All 

procedures should be carried out in an RNAse-free environment. (see note 3) 

2.1. Euthanize animals according to IACUC approved protocol. 

2.2. To remove injected eye spread eyelids with thumb and forefinger. With the other hand, 

apply tweezers over and around the eyeball to pop it out of the eye socket. Grasp the 

optic nerve and enucleate the eye (Figure 3 A). (see note 4) 
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2.3. Place eye on a small square of filter paper dampened with HBSS, under microscope 

(Figure 3 A). 

2.4. Using a needle, puncture the eye at the border of the cornea and sclera. This will 

release pressure and allow for further dissection (Figure 3 B).  

2.5. Using the needle incision as a starting point, cut out the cornea with scissors (Figure 3 

C).  

2.6. Carefully pull the lens out with tweezers. Before and after images shown on Figures 3 D 

and E.  

2.7. Place eye in 1 drop of RNAse-free water or HBSS on a plastic petri dish 

2.8. Using two tweezers, separate the retina from the sclera as shown on Figure 3F-H: 

2.8.1. With one tweezers, grip the sclera near the optic nerve. With the second, lightly 

clamp down on the back of the eye near optic nerve (Figure 3 G). 

2.8.2.  Gently push the second pair of tweezers away from the optic nerve into the drop 

of water or HBSS. The retina (clear) will separate from the sclera (Figure 3 H).  

2.9. Place retina into a 1.5ml centrifuge tube containing 200µl TRIzol. Freeze on dry ice 

while collecting other samples. 

2.10. To serve as a negative control, collect the retina of the other, uninjected eye as 

described above and add to separate TRIzol containing tube. 

3. RNA isolation and DNAse treatment. 

3.1. Homogenize each retina by pulsing 10-15 times for 1-2 seconds with handheld 

homogenizer. 

3.2. Add additional 200µl of TRIzol to each tube containing homogenized retina and mix by 

vortexing. 

3.3. Add 1/10 volume of Chloroform to each sample. 

3.4. Vortex well. 

3.5. Spin samples at 15000xG for 10minutes. 
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3.6. Transfer the aqueous (top) phase, which should be approximately 200-250µl to a new 

tube. (see note 5) 

3.7. Add 1.5 volumes of isopropanol to each sample and mix by vortexing. 

3.8. Incubate at room temperature for 15 minutes. 

3.9. Spin each sample at 15000xG for 10-15 minutes to precipitate RNA. 

3.10. Carefully remove the supernatant. 

3.11. Add 0.5ml of 75% ethanol. 

3.12. Centrifuge at 15000xG for 5 minutes. 

3.13. Remove ethanol and briefly air-dry pellets. 

3.14. Resuspend each pellet in 100µl of ultrapure water. 

3.15. Make a 2x concentrated master mix containing 20µl of 10x DNAse1 Buffer, 79µl of 

water, and 1µl DNAse 1 per tube.  

3.16. Add 100µl of the master mix to each sample. 

3.17. Mix samples and incubate at 37˚C for 20 minutes. 

3.18. Add 200µl of chloroform and vortex well. 

3.19. Centrifuge at 15000xG for 10 minutes. 

3.20. Transfer the aqueous (top) phase to a new tube. Take care not to carry over the 

interphase, containing the denatured proteins. 

3.21. Add 1/10 volume, or 20µl of 3M sodium acetate ph5.2. 

3.22. Add 3 volumes or 600µl ice-cold ethanol and mix well. 

3.23. Incubate each sample at -20˚C for at least 30 minutes. 

3.24. Resuspend RNA in 25µl of ultrapure water. 

3.25. Determine the RNA concentration on a Nanodrop spectrophotometer (Thermo Fisher). 

The typical yield is approximately 1ug of RNA per retina. 

4. cDNA synthesis 
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4.1. Prepare a 2x Reverse transcription master mix (2µl of 10xRT buffer; 1µl of 10mM 

dNTPs; 0.5µl Oligo dT/random hexamer primer mix;  6µl water, and 0.5µl reverse 

transcriptase per reaction) 

4.2. Dispense 10µl of master mix into each tube of a PCR tube strip. 

4.3. Add 10µl of RNA solution containing up to 1ug of RNA to each reaction and mix by 

pipetting. 100ng of RNA are typically sufficient to reliably quantify the splicing of the 

minigene. 

4.4. Cap the strip and incubate in a thermal cycler under the following conditions: 25˚C for 5 

minutes; 43˚C for 40 min; 75˚C for 15 min; hold at 10˚C until the strip is removed. 

5. PCR 

5.1. Prepare a master mix (2µl of 10x Taq PCR buffer; 0.4µl of 10mM dNTPs, 2µl of 10µM 

primer mix, 0.2 µl of Taq DNA polymerase per reaction) 

5.2. Dispense 19.5 µl to each tube of a PCR tube strip.  

5.3. Transfer 0.5µl of cDNA to each reaction.  

5.4. Mix by pipette and cap the strip. Make sure there are no air bubbles at the bottom of 

each tube.  

5.5. Amplify the templates using the following conditions. Initial denaturation step at 94˚C for 

4 minutes, followed by 20-30 cycles of 94˚C for 30 seconds, 62˚C for 30 seconds, and 

72˚C for 30-60 seconds, followed by a final extension at 72 for 5 minutes. Then hold the 

reactions at 10˚C until ready to remove. 

6. Electrophoresis and imaging 

The electrophoresis protocol described here uses denaturing urea/polyacrylamide gels 

to resolve the PCR products. The gels are then imaged on a fluorescent imager without 

being disassembled. 

6.1. Clean slides of each glass plate with ethanol and dry with paper towels 
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6.2. If the plates have not been siliconized before, apply Sigmacote to the cleaned plates 

and spread it with a paper towel until dry. Clean the plates with ethanol again as in step 

6.1. 

6.3. Place spacers on the clean side of the larger of the two glass plates- place the two side 

spacers with the foam dam toward the top, and the bottom spacer across the bottom 

edge. Place the smaller of the two glass, clean side facing down, on top of the larger 

glass plate to create a plate-spacer-plate sandwich.  

6.4. Clip the sandwich together with binder clips and set aside. 

6.5. Repeat for as many gels as needed 

6.6. In a clean flask mix acrylamide solution (25ml per gel) with 1/100 volume of 10% APS 

(250µl per gel) and 1/1,000 volume TEMED (25µl per gel) and pour the gels. 

6.7. Holding the plate sandwich at approximately 15-20 degrees from horizontal, pour the 

gel solution in a steady stream along one of the side spacers allowing it to flow 

smoothly between the two glass plates while ensuring that no air bubbles are formed. 

Once filled to the top, place the gel horizontally to insert the comb. Leave the gel in this 

position until the gel polymerizes (approximately 20-30 minutes).  

6.8. After the gel has solidified, remove the clips and the bottom spacer, as well as the well 

comb. 

6.9. Place the sandwich onto the running apparatus with the larger glass plate facing out. 

Use two clips on each side of the gel to clip the sandwich to the gel.  

6.10. Fill the upper and lower reservoirs with 1x TBE buffer ensuring that the gel is covered. 

Flush with TBE any air that was trapped at the bottom of the gel.  

6.11. Immediately rinse the wells using an 18G needle on a 50ml syringe filled with 1x TBE. 

6.12. Apply a piece of clear adhesive tape such as Scotch tape, to the outside glass plate 

directly over the wells. Use a sharpie pen to label on the tape each well with a number 

that corresponds to the sample that will be loaded in the well. It is critical to label the 
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wells as the loading buffer contains no running dye and it is impossible to determine 

which lanes have been loaded. 

6.13. Attach the cover of the gel apparatus and pre-run the gel for 30-50 minutes at 400 V. 

While the gel is running, prepare the PCR amplicons for loading as described in steps 

14-16 below. 

6.14. Prepare a loading buffer mix containing 10µl of clear formamide loading buffer and 

0.3µl fluorescent size standard for each sample loaded onto the gel.  

6.15. Dispense 10µl of loading buffer mix to each tube on a PCR tube strip, according to the 

number of samples being analyzed.  

6.16. Transfer 1µl of the PCR amplicon to each of the tubes containing the loading buffer 

mix. 

6.17. Seal the tubes and incubate in a thermal cycler at 95˚C for 5 minutes to denature the 

samples. Place the tubes on ice. 

6.18. Turn off the gel power supply. Remove the urea that has accumulated in the wells by 

rinsing them again as described in step 11. Failing to remove the urea will result in 

distorted bands. 

6.19. Load 10µl of the denatured samples in each well. 

6.20. Run the gel at 400V for 55 min then turn off the power supply. 

6.21. Remove the gel sandwich from the apparatus.  

6.22. Remove the side spacers, but do not disassemble the gel sandwich. 

6.23. Clean the plates with deionized water to remove any acrylamide or urea attached to 

the outside of the plates. 

6.24. Dry the plates with a paper towel. 

6.25. Clean the surface of the phosphorimager with a moist paper towel and dry it. 

6.26. Place the gel sandwiches on the phosphorimager glass plate. 

6.27. Select the scan area in the typhoon software and close the lid. 
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6.28. Select the appropriate combination of excitation lasers and bandpass emission filters 

depending on the labels present in the samples and the size standards. For FAM-

labeled primers, we recommend blue laser (480nm) excitation and 520nm bandpass 

emission filter. 

6.29. Set the focal plane to +3 mm to adjust the focal point above the surface of the 

phosphorimager, to account for the width of the glass plate and gel. 

6.30. Choose the appropriate orientation for your output image. 

6.31. Scan the gel. While scanning make sure that there are no saturated pixels, indicated 

by red dots on the preview window. If there are saturated pixels, rescan the gel after 

lowering the photomultiplier (PMT) voltage for the appropriate channel. (See Figure 4 

for example results). 

7. Dissection of the retina for tissue sectioning 

To ensure that photoreceptor maturation is complete, we allow 20 days post-injection 

before the injected eyes are taken for tissue sectioning. The procedure outlined here is very 

similar to the retinal dissection for RNA isolation described above and shown in Figure 3 A-

E. Here, however, maintaining retinal morphology throughout the process is vital for 

obtaining unblemished tissue sections. Excessive pressure or shearing forces on the eye 

can cause the retina to detach or tear, making interpretation of results difficult. While some 

retinal detachment and malformation can be expected from the injection process, most of 

the tissue expressing the reporter should still display normal morphology. 

7.1. In a petri dish, soak a piece of filter paper in HBSS.  

7.2. Carefully enucleate the injected eye, and place it on the filter paper. This may require 

removal of fascia surrounding eye. Retinal detachment may occur if excess pressure is 

exerted on the eye.  

7.3. Puncture with a 33 gauge needle at the border of the cornea and sclera. Figure 3 B. 
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7.4. Place the eye in a well of a 24 well plate containing 500µl of 4% PFA in PBS. Incubate 

5-10 minutes at room temperature (RT). 

7.5. Place the eye back under the microscope and remove the cornea and lens to prepare 

eye cup (Figure 3 C). Alternatively, the lens can be removed at the end of step 7.9.  

7.6. Place the eye cup into the well containing 4% PFA. Incubate for 30-60 minutes at RT for 

fixation. 

7.7. Wash the eye cup three times for 5 minutes each with PBS at RT. 

7.8. Remove PBS and immerse the eye cup in 20% sucrose in PBS solution and incubate 

with shaking overnight at 4˚C.  

7.9. Replace the 20% Sucrose solution with a 1:1 mixture of O.C.T. compound and 20% 

sucrose in PBS. Incubate with shaking for 1 hour. 

7.10. Prepare an ethanol/dry ice bath in a container with wide opening. 

7.11. Fill a labeled cryomold container with O.C.T compound. Rather than writing on the 

plastic itself, label a piece of tape and attach it to the lip of the cryomold to prevent the 

ethanol from washing off marker. 

7.12. Remove the eye and blot off excess O.C.T./Sucrose in PBS. Place the eye in the 

cryomold containing O.C.T. 

7.13. Orient the eye such that the opening (where cornea and lens were removed) is facing 

to the right. (see note 6) 

7.14. Snap freeze the eye in O.C.T by submerging the well of the cryomold in ethanol/dry 

ice bath. 

7.15. Store the eye at -80°C. Eyes can be stored at -80°C for more than a year.  

8. Sectioning and staining 

Once the dissected eye is properly fixed and frozen in a block of O.C.T compound it can 

be cut into 16µm thick sections using a cryostat. Cryostat operation will require training 

which is beyond the scope of this protocol. Properly oriented, the sectioned retina should 
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resemble a “C” with the opening formed from the removal of the cornea and lens. As many 

“C” sections as is practical for mounting can be arranged on each slide. For mounting, we 

use a reagent containing DAPI to stain the nuclei. The RFP and GFP expression from the 

minigene are visible without any further staining (Figure 4). If necessary, 

immunofluorescence staining following standard protocols can be used to visualize cell type 

specific markers or other proteins of interest. We recommend using secondary antibodies 

labeled with Cy5 or equivalent infrared fluorescent dye, to prevent overlap with the 

fluorescence of the GFP and RFP proteins.  

8.1. Using a cryostat, cut sections at 16um. 

8.2. Arrange 5-10 tissue sections on the stage of the cryostat. 

8.3. Quickly but carefully apply the slide (treated side facing down) to the sections. The 

tissue sections will adhere to the slide. The slide should be at room temperature. This 

process should be done quickly to ensure that the slide will not cool, which can inhibit 

proper attachment of sections. Do not press the slide firmly onto the stage. 

8.4. Air-dry sections on each slide for 30 minutes and mount or store at -20˚C. Slides can be 

stored for several months. 

8.5. To room temperature slides add a drop of ProLong Gold with DAPI. To avoid bubbles, 

use a cut pipette tip to apply the Pro-Gold to the retinal sections. Very little is needed as 

the solution will spread once cover slip is applied. 

8.6. Carefully apply the cover slip and ensure each retina is coated with Pro-Gold. 

8.7. Air-dry for 30 minutes. 

8.8. Seal the cover and slide edge with clear nail polish and store at 4˚C. 

8.9. Image the slides on a confocal microscope. 
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Notes 

1. Many mouse strains carry mutations causing retinal degeneration, such as rd1 and rd8. In 

some cases the same mouse strain may or may not carry retinal degeneration mutations 

depending on the commercial source. It is critical to ensure that the experimental animals do not 

carry rd alleles. 

2. The nature of these controls is beyond the scope of this protocol as it strongly depends on 

the exon and tissue being studied.  

3. Preventing RNase contamination: 

 Maintain clean bench surfaces. 

 If necessary RNase contamination on equipment and bench surfaces can be inactivated 

by treating with RNaseZap reagent (Life Technologies). 

 Always wear gloves. 

 Use ultrapure or DEPC treated water to prepare reagents. 

 Where applicable autoclave or filter sterilize the reagents. 

 Use RNase- and DNase-free plasticware. If possible use aerosol resistant tips. 

4. Keeping the optic nerve intact provides a convenient method for handling the eye 

throughout the procedure with minimal risk for causing damage. 

5. Adding 1 μl GlycoBlue™ Coprecipitant to the supernatant (optional) helps to visualize the 

RNA pellet after the precipitation steps. 

6. Ensure that there are no air bubbles inside or surrounding the eye cup. Trapped air can 

make it impossible to obtain intact sections. 
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 Figure legends 

Figure 1. Two-color fluorescent splicing reporter. Diagram of pFlare splicing reporters. The 

alternative exon being tested is shown in blue, constitutive 5’ and 3’ exons of the backbone are 

shown in cyan and green/red, respectively. The upper panel shows the pFlare A backbone, 

which accommodates exons ending in C, T or G. The lower panel depicts the pFlare G 

backbone for use with exons ending in adenosine. In each panel, transcripts resulting from 

alternative splicing and the subsequent fluorescent protein expression are shown below. For 

pFlare A, exon inclusion abolishes the AUG start codon for GFP, resulting in RFP expression, 

whereas exon skipping reforms the AUG, allowing for GFP expression. Conversely, in pFlare G, 

exon inclusion establishes the AUG start codon for GFP translation, while exon skipping 

prevents GFP expression and results in expression of a downstream RFP.   

Figure 2. Subretinal injection and electroporation at postnatal day 0. A. Image of neonatal 

mouse pup in examination glove sleeve. B. Image of neonatal mouse pup, using thumb and 

forefinger to gently spread the skin around the eye. The outline of the eye and the future edge of 

the eyelid are shown by dotted lines. The approximate location of the scleral incision is denoted 

by a round dot. C. Cartoon of an aerial view of neonatal mouse eye showing position of future 

edge of the eyelid and needle used for incision. Skin is shown in beige, future edge of the 

eyelid, lens, sclera (black), RPE (grey), subretinal space, and retinal precursor cells (orange) 

are denoted by arrows. D. Cartoon showing the location of pinpoint incision through the sclera. 

E. Cartoon showing the DNA injection using blunt end needle. The injected DNA is shown in 

green. F. Cartoon showing direction of current in electroporation. Cells that have taken up 

injected DNA are shown in green.  
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Figure 3. Retinal Dissection. A. Image of adult pigmented mouse eye. The border of the 

cornea and sclera is indicated by a dotted line. Black arrow indicates optic nerve B. Image of 

needle puncture at border of cornea and sclera. C. Image of removing the cornea. D. Image of 

eye once cornea (black arrow) is removed. E. Image of eye once lens (black arrow) is removed. 

F. Expansive view of using tweezers to separate the retina from the sclera. G. magnified view of 

the same image as in panel F. H. Image of retina in a drop of HBSS. 

 Figure 4. RT-PCR and Fluorescence microscopy. The left panel in each set shows RT-PCR 

results for injected eyes after gel electrophoresis and imaging. “+” denotes exon inclusion and “-

” denotes exon skipping. The green and red bands are PCR amplicons and ROX size standard, 

respectively. The right panel in each set shows fluorescence microscopy images of sections 

taken from injected eyes. The layers of the retina are indicated with brackets on the side of the 

image. A. Example of photoreceptor specific Bbs8 Exon 2a wild type (WT) minigene. RT-PCR 

indicates a very high level of exon inclusion. Fluorescence microscopy shows high RFP 

fluorescence in Outer Nuclear Layer (ONL) containing the photoreceptor cell nuclei. Few 

neuronal cells expressing the minigene in the Inner Nuclear Layer (INL) produce GFP which 

indicates exon skipping. B. Example of Bbs8 Exon 2a minigene once the critical intronic splicing 

enhancers have been deleted. RT-PCR indicates majority of transcripts skip exon 2a. 

Fluorescence microscopy shows high levels of GFP in all cell layers, and low levels of RFP in 

ONL. C. Control minigene containing the Dup34 synthetic exon. RT-PCR and fluorescence 

microscopy show the exon being skipped in all cell layers. D. Control minigene containing the 

Dup51 synthetic exon. RT-PCR and fluorescence microscopy show high levels of exon inclusion 

regardless of cell type. 

 

 

 

67



GCCACCA TG...GFP...TAG   GCCACCATG...RFP...TAG
GFP Expression

GCCACCA ...C/T/GTG...GFP...TAG    GCCACCATG...RFP...TAG
RFP Expression

GCCACCA C/T/G TG........GFP..........TAG GCCACCATG.....RFP....TAG

pFlare A

GCCACCAG TG...GFP...TAG    GCCACCATG...RFP...TAG
RFP Expression

GCCACCAG ..........ATG...GFP...TAG    GCCACCATG...RFP...TAG
GFP Expression

GCCACCAG A TG........GFP..........TAG GCCACCATG.....RFP....TAG

pFlare G

Figure 1
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ABSTRACT 

Bardet-Biedl syndrome is a genetic disorder affecting multiple systems and organs in the body. 

Several mutations in genes associated with Bardet-Biedl syndrome (BBS) affect only 

photoreceptor cells and cause nonsyndromic Retinitis Pigmentosa (RP), raising the question 

why certain mutations manifest as a systemic disorder, while other changes in the same gene 

affect only a specific cell type. Here, we show that cell type specific alternative splicing is 

responsible for confining the phenotype of the IVS1-2A>G mutation in the BBS8 gene to 

photoreceptor cells. The IVS1-2A>G mutation leads to mis-splicing of BBS8 exon 2A producing 

a frameshift in the BBS8 reading frame and thus eliminating the protein specifically in 

photoreceptor cells. Cell types other than photoreceptors skip exon 2A from the mature BBS8 

transcript, which renders them immune to the mutation. We also show that the splicing of Bbs8 

exon 2A in photoreceptors is directed exclusively by redundant splicing enhancers located in the 

adjacent introns. These intronic sequences are sufficient for photoreceptor cell-specific splicing 

of heterologous exons, including an exon with randomized sequence. 
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INTRODUCTION 

The BBSome is a multi-protein complex that is thought be required for the transport of proteins 

in and out of the cilia. The BBSome interacts with IFT-A and IFT-B complexes and promotes the 

assembly of the intraflagellar transport (IFT) machinery (1–7). Several proteins such as the G-

protein coupled receptors Smo, Sstr3, Mchr1 and Vipr2, depend on the BBSome for their ciliary 

transport, suggesting a possible role for the BBSome as an adapter that connects the IFT 

complex to its cargo in primary cilia (2, 8, 9). Mutations in genes that encode BBSome 

components and proteins associated with the BBSome are linked to the systemic Bardet-Biedl 

syndrome (BBS). BBS is an autosomal recessive ciliopathy caused by defects in the BBSome 

that disrupt the normal ciliary function throughout the body. The BBS symptoms include Retinitis 

Pigmentosa (RP), skeletal malformations, mental retardation, obesity, hearing impairment, 

shortened limbs, polydactyly and kidney cysts (10, 11). In photoreceptor cells, BBSome 

deficiency leads to defects in rod outer segment formation and localization of rod opsin, and 

ultimately photoreceptor cell death (10–13). The severity of the BBS symptoms can vary 

considerably due to the nature of the mutation and the genetic background. Interestingly, 

phenotypes of different mutations in the same gene can range from a classical BBS that affects 

multiple systems to nonsyndromic RP, where the phenotype is limited to loss of photoreceptor 

function. For example, ARL6 (BBS3) A89V, BBS1 M390R and BBS8 IVS1-2A>G mutations 

cause nonsyndromic RP, while several other mutations in the same genes manifest as classical 

BBS presenting additional symptoms such as obesity, hearing impairment, polydactyly and 

mental retardation in addition to the loss of vision (7, 14–19). The existence of BBSome 

mutations that cause nonsyndromic RP is interpreted to indicate a specific function for this 

protein complex in vision. This hypothesis is further supported by the requirement for the Arl6 

long (Arl6L) splice isoform that is specific to the retina for photoreceptor survival (20, 21). 
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BBS8 is a tetratricopeptide repeat (TPR) protein that is part of the core BBSome particle. BBS8 

was recently shown play a role in establishing planar cell polarity and cilia orientation in 

epithelial cells (22). To date, six mutations in the BBS8 gene have been linked to classical BBS 

(18, 23, 24). An exception from this pattern is the BBS8 IVS1-2A>G mutation, which disrupts the 

3’ splice site of BBS8 exon 2A and causes nonsyndromic RP. It was postulated that the IVS1-

2A>G mutation induces skipping of the exon to produce a shorter splice variant (BBS8S) (19). 

The long form of BBS8 containing the 30nt exon 2A (BBS8L) is detected exclusively in the 

photoreceptor outer nuclear layer (ONL), but not in other parts of the retina which express the 

short BBS8S isoform (19). Analogous to Arl6, where the splicing isoform Arl6L is needed for 

photoreceptor survival, it was proposed that the RP phenotype is due to the inability of BBS8S 

protein to substitute for a crucial function performed by the longer BBS8L isoform in 

photoreceptor cells (19–21). 

Here, we show that BBS8 exon 2A is highly photoreceptor specific. We dissect the sequences 

that direct Bbs8 exon 2A splicing and show that splicing enhancers within the flanking introns 

are sufficient to drive photoreceptor specific inclusion of exon 2A and unrelated exons. The 

mechanisms controlling the cell type specific splicing of BBS8 exon 2A modify the phenotype of 

the IVS1-2A>G mutation to eliminate the BBS8 protein specifically in photoreceptors and cause 

nonsyndromic RP.  

MATERIALS AND METHODS 

Mice  

The procedures used in this work were approved by Institutional Animal Care and Use 

Committee at West Virginia University. The in vivo subretinal injection and electroporation 

experiments were carried out in CD-1 mice (Charles River). The Aipl1 and Nrl knockouts were 

described previously (25, 26). Nrl knockouts were a generous donation from Dr. Anand 
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Swaroop (NEI). The two knockout alleles were maintained in C57BL/6J genetic background. 

(Jackson Laboratory, Bar Harbor, ME).  

RNA isolation and RT-PCR 

Mouse eyes were enucleated at P16 and dissected under microscope (Zeiss Stemi DV4) to 

isolate the retina. Retinal RNA was isolated with TRI reagent (Sigma) according to 

manufacturer’s guidelines. Reverse-transcription PCR reactions containing 0.1-0.5 g RNA 

were primed with Oligo-dT and random hexamers to generate cDNA. The alternatively spliced 

regions were amplified using fluorescently labeled primers (listed in Supplementary Table 2) 

positioned in the flanking constitutive exons (27). The amplified products were separated by gel 

electrophoresis under denaturing conditions (Urea/polyacrylamide gels) and imaged on typhoon 

imager 9410 (GE). The band intensities on the gels were quantified using the Image Quant 

software (GE). For sequencing, the PCR products were isolated from agarose gels, purified 

using QIAquick Gel Extraction Kit (Qiagen) and either sequenced directly or cloned into pGEM 

T-Easy vector (Promega) prior to sequencing. 

Real Time-PCR. 

Rho, Opn1sw, Gnat1, Gnat2, Pde6a and Pde6c expression was quantified by SYBR-green 

qPCR. The expression of each gene was normalized to the average expression of three 

reference genes: β- Glucuronidase (GusB), β-Actin (ActB), and Glyceraldehyde-3-Phoshpate 

Dehydrogenase (Gapdh). See Supplementary Table 2 for primer sequences. 

Antibodies  

The Bbs8 exon 2A antiserum was produced by Pacific Immunology. The serum was raised in 

rabbits against a peptide antigen (C-SPYDQEPAPDLPVSQA) that corresponds to the mouse 

exon 2A and includes six amino acid residues from the flanking exons to improve its 
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immunogenicity. The antibody was affinity purified using the antigen peptide coupled to sulfo-

link resin (Pierce). We also used the following commercial antibodies: pan-Bbs8 rabbit 

polyclonal antibody E-2 (Santa-Cruz Biotech); GAPDH mouse monoclonal antibody 10RG109a 

(Fitzgerald). The antibodies to Pdc, Chx and Pax6 were kind gifts by Drs Maxim Sokolov and 

Peter Mathers (WVU). 

Western blotting  

Flash frozen retinal samples (Aipl1+/+; Aipl1-/-) and lysates of N2A cells transiently transfected 

with BBS8 expressing construct were homogenized by sonication (Microson Ultrasonic cell 

disruptor) in 1xPhosphate Buffered Saline (PBS) containing protease inhibitors (Roche 

complete). The protein concentration was measured by using NanoDrop spectrophotometer 

(ND-1000, Thermo Scientific). Equal concentrations (150 µg) of protein samples were resolved 

in 10% SDS-PAGE gel electrophoresis and then transferred to Immobilon-FL membrane 

(Millipore). Membranes were blocked with blocking buffer (Rockland) for 30 min at room 

temperature. After blocking, membranes were incubated with primary anti-Bbs8 antibodies at 

1:1000 dilution for 4 hrs at room temperature. The secondary antibodies, odyssey goat anti-

rabbit Alexa 680 and odyssey goat anti-mouse Alexa 680 (LI-COR Biosciences) were used at 

1:50,000 dilution for 30 min at room temperature. Membranes were scanned using an Odyssey 

Infrared Imaging System (LI-COR Biosciences). 

Retinal tissue sections and fluorescence imaging  

Mouse eyes were enucleated at P20 and incubated in 4% paraformaldehyde for 10 minutes. 

After removal of the cornea, the dissected eye was incubated in 4% paraformaldehyde for an 

additional 1 hr with shaking. After three 5 min washes in PBS, the eye were cryoprotected by 

shaking at 4°C overnight in PBS containing  20% sucrose. Eyes were then incubated for 1 hr 

with shaking in a 1:1 mixture of optimal cutting temperature (OCT) (Tissue Tek) compound and 
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20%sucrose in PBS, during which time the lens was removed. Eye cups were then flash frozen 

in OCT compound and stored at -80°C. Retinal sections (16 µm) were cut (Lecia cm 1850) and 

mounted on Superfrost Plus (Fisher) slides and stored at -20°C. Slides were washed in PBS to 

remove excess OCT and mounted with Prolong-Gold reagent containing 4′,6-Diamidino-2-

phenylindole (DAPI) (Life technologies). The slides were imaged on Zeiss LSM 510 laser 

scanning confocal microscope. 

Generation of minigenes 

The Bbs8 exon 2a minigene was created by inserting a 700bp fragment containing Bbs8 exon 

2a and surrounding intron sequences into the EcoR1 and BamH1 sites of pFLare9a. The Bbs8 

site directed mutagenesis was performed using PCR overlap extension. The sequences of the 

primers used for cloning are in Supplementary Table 2. The construction of Dup 51 and Dup 34 

exon minigenes were described in our earlier publication (28). 

Modification of BAC clones 

The RP11-99F24 BAC clone carrying the full length human BBS8 gene was purchased from 

BACPAC Resources Center at Children's Hospital Oakland Research Institute (Oakland, 

California) and verified by end sequencing and restriction fragment analysis. The IVS1-2A>G 

mutation and the tandem Flag/HA tag at the C-terminus of the BBS8 ORF were introduced into 

the RP11-99F24 BAC clone using recombineering following previously described procedures 

(29). Restriction digests and sequencing of the targeted sites was used to ensure that the 

expected recombination events have occurred without unintended changes in the surrounding 

sequences.  

Subretinal injection and electroporation 
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Minigene plasmid DNA was isolated at 4-7µg/µl using the Qiagen Plasmid Plus Midi kit. DNA 

containing 0.1% fluorescein sodium (NDC) was injected into the subretinal space of newborn 

CD-1 pups as described (30). Briefly, after anesthesia, an incision was made at the future eyelid 

with a 33 gauge needle under a dissecting microscope. The needle was used to make a pinhole 

puncture in the sclera away from the lens. 0.5 µl of DNA was injected through the puncture into 

the subretinal space using a blunt-end syringe. Five pulses of 80v at 50-ms duration with 950-

ms intervals were then applied with tweezer type electrodes BTX model 520, 7 mm diameter. All 

experimental results and conclusions are based on at least three independent experiments (see 

Supplementary Table 1 for the number of replicates used in each experiment).   
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RESULTS 

The long form of BBS8 (BBS8L) is predominantly expressed in photoreceptor cells. 

A previous study analyzing Bbs8 message from various retinal layers obtained by laser 

captured microdissection showed that exon 2A is included in the photoreceptor layer. It was 

unclear if exon 2A inclusion in the mature Bbs8 transcripts is a general feature of photoreceptor 

cells or if it is restricted to rods, which comprise 97% of the mouse retina. We first established 

the tissue specificity of exon 2A inclusion using RT-PCR to analyze the splicing of Bbs8 in 

various mouse tissues. Other than the retina, we did not observe significant exon 2A inclusion in 

any of the tissues that we examined (Figures 1A and 1B). Low levels of exon 2A inclusion can 

be detected in cortex and cerebellum after overexposing the gel with the RT-PCR products 

(Figure 1A, lower panel).  

To confirm that exon 2A containing transcripts in the retina are specific to photoreceptor cells, 

we analyzed Bbs8 splicing in the retina of Aryl hydrocarbon receptor Interacting Protein Like -1 

(Aipl1) knockout mice at P60 and compared it to age matched littermates. Aipl1 is required for 

photoreceptor cell survival. Consequently, the retina of Aipl1 knockout mice lacks photoreceptor 

cells by P30, but retain their inner neurons and retinal pigmented epithelium (25). RT-qPCR 

analysis of the expression of cone and rod photoreceptor markers (Opn1sw, Gnat2, Pde6c, 

Rho, Gnat1 and Pde6a) in the Aipl1 knockout retina confirmed that there are little if any 

photoreceptor cells left (Supplementary Figure 1). We reasoned that if Bbs8 exon 2A is 

expressed exclusively in photoreceptor cells, we should see a dramatic reduction in its inclusion 

in Aipl1 knockout animals compared to wild type littermates. In agreement with the previous 

study characterizing Bbs8 exon 2A splicing, we find that the expression of the Bbs8L isoform is 

severely reduced in the retina of the adult Aipl1 knockout animals (Figure 1B) (19). This result 

demonstrates that exon 2A is included in the mature Bbs8 RNA in photoreceptor cells. To 
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determine if Bbs8 exon inclusion is specific to a particular photoreceptor cell type in the retina, 

we compared the splicing of the Bbs8 transcripts in retina from wild type to retina from mice 

lacking the Nrl transcription factor. The retina from the Nrl knockout animal is enriched in cones 

and lack rods (26). RT-qPCR analysis of the expression of photoreceptor specific genes 

confirmed elevated expression of cone markers (Opn1sw, Gnat2 and Pde6c) and loss of rod 

markers (Rho, Gnat1 and Pde6a) in the retina of Nrl knockout mice (Supplementary Figure 1). 

The level of exon 2A inclusion in the retina of the Nrl knockout was indistinguishable from that in 

wild type mouse retina (Figure 1B), indicating that rods and cones include Bbs8 exon 2A.  

We next examined the splicing of Bbs8 exon 2A in the course of retinal development. Inclusion 

of exon 2A was not detectable in the retina at embryonic day 17.5. Exon 2A was detected first at 

P0 and its inclusion increases rapidly thereafter (Figure 1C). This change in exon 2A inclusion 

levels closely correlates with photoreceptor outer segment morphogenesis as well as 

expression of rod opsin, which is not detectable at E17.5 and rapidly rises after birth (Figure 1C) 

(31). Thus, the developmental regulation of exon 2A splicing and its splicing pattern in the retina 

of adult Aipl1 and Nrl knockout mice strongly support photoreceptor cell specific splicing of this 

alternative exon. 

To assess the Bbs8L protein expression in the retina, we raised a rabbit polyclonal antibody 

against the peptide sequence encoded by exon 2A. Unfortunately, this Bbs8L antibody was not 

suitable for immunolocalization in retinal sections. However, we were able to use the anti-exon 

2A antibody to compare the Bbs8L expression by western blotting in the retina from wild type 

and Aipl1 knockout animals. Wild type retina expressed high levels of Bbs8L protein that 

matched in mobility to the recombinant Bbs8L protein overexpressed in N2A cells, a mouse 

neuronal cell line (Figure 1D). Consistent with the photoreceptor cell specific splicing of exon 

2A, the Bbs8L protein was undetectable in the retina lacking Aipl1 and in untransfected N2A 

cells. To determine the overall expression pattern of the Bbs8S and Bbs8L proteins in the retina, 
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we probed the protein extracts with a commercially available pan-Bbs8 antibody that recognizes 

both isoforms. Similar to the results obtained with the Bbs8L specific antibody, the pan-Bbs8 

antibody detected high levels of Bbs8 protein in the wild type retina, which was absent in the 

retina from the Aipl1 knockouts. We also noticed that the retina lacking Aipl1 and the 

untransfected N2A cells express the shorter BBS8S protein albeit at low levels. Overall, our 

results show that the Bbs8L protein is expressed at high levels in photoreceptor cells. 

The splice site mutation upstream of exon 2A results in cryptic splicing 

The A to G substitution (IVS1-2A>G) in the 3’ splice site of BBS8 exon 2A was postulated to 

cause nonsyndromic Retinitis Pigmentosa (RP) by preventing the inclusion of exon 2A in the 

mature transcripts (19). To test this hypothesis, we established a robust system to investigate 

the mechanism that controls the inclusion of exon 2A in Bbs8. This assay would also aid in 

visualizing the Bbs8 exon 2A splicing event in a particular cell type in the retina.  We cloned a 

700bp fragment containing the mouse exon 2A and portions of its flanking introns into a splicing 

reporter minigene under the control of ubiquitously active cytomegalovirus promoter (CMV) 

(Figure 2A). In addition to the wild type construct, we also created an exon 2A minigene carrying 

the IVS1-2A>G mutation. The splicing reporter is designed to produce red fluorescent protein 

(RFP) when exon 2A is included and green fluorescent protein (GFP) when the exon is skipped 

(28). This reporter construct allows us to use fluorescent microscopy to assess the inclusion of 

exon 2A by comparing the RFP to GFP expression in individual cells. The splicing of exon 2A in 

the context of the minigene can also be quantified by RT-PCR using primers specific to the 

backbone.  

We first analyzed the splicing of the wild type and mutant exon 2A minigenes after transfecting 

them into human embryonic kidney (HEK293) tissue culture cells. Both minigenes produced 

mRNA that did not include exon 2A (Figure 2B, product A). Next, we used subretinal injection 
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and electroporation to introduce the Bbs8 exon 2A minigenes into developing photoreceptor 

cells at postnatal day 0 (P0) and analyzed their splicing by RT-PCR at P16 (30). We harvested 

retina at this time point as our results indicated that the inclusion of exon 2A is near its 

maximum at P16 (Figure 1C). In addition, splicing of minigenes was visualized by fluorescence 

microscopy at P20 in retinas dissected from littermates of animals used for the RT-PCR 

experiments. Exon 2A was included in 98% of the minigene transcripts as determined by RT-

PCR (Figure 2B, product B). Surprisingly, introducing the 3’ splice site mutation into the 

minigene caused mis-splicing rather than exon skipping. Sequencing the PCR product showed 

that the shorter transcript is derived from the inclusion of a truncated exon 2A (represented as 

2A*) due to the use of a cryptic 3’ splice site 7 nucleotides downstream of the normal acceptor 

site (Figure 2B, product D). The minigene also produced two minor splice products, one 

migrating significantly higher than the wild type exon 2A and one migrating at the same position 

as the wild type exon. We determined by sequencing that the higher molecular weight splice 

product is generated by the use of a cryptic 3’ splice site upstream of exon 2A (Product C). 

Splicing to both the intronic (Product C) and the exonic (Product D) cryptic splice site is 

predicted to cause frame shift and premature termination of the Bbs8 reading frame in the 

downstream exon 2. 

Fluorescent microscopy imaging of the electroporated retinas shows that the electroporated 

minigenes are expressed mostly in photoreceptor cells, as very few inner neurons express the 

reporter fluorescent proteins (Figure 3 and Supplementary Figures 2, 3 and 4). Thus, the RT-

PCR signal is largely derived from the photoreceptor cells. In agreement with photoreceptor cell 

specific inclusion of exon 2A, we see high levels of RFP expression in the photoreceptor outer 

nuclear layer (ONL) (Figure 3A). Similar high RFP expression, that is indicative of exon 

inclusion was observed with the minigene carrying the IVS1-2A>G mutation (Figure 3B). To 

determine the exon 2A inclusion levels in inner neurons, we analyzed by fluorescent microscopy 

83



sections from animals electroporated with the exon 2A minigenes (Figure 3A, 3B and 

Supplementary Figures 2 and 3). Invariably, the inner neurons displayed high GFP to RFP ratio, 

which is indicative of skipping of exon 2A from the mature transcript (Figure 3A, indicated with 

yellow arrows). Taken together, the fluorescence imaging of the mutant minigene in the retina 

and the RT-PCR analysis show that the cryptic splice sites are used exclusively by the 

photoreceptor cells (Figure 3B and Supplementary Figure 3).  In contrast, inner neurons skip 

both the wild type and mutant exon 2A altogether (Figure 3A, 3B and Supplementary Figures 2 

and 3).  

To ensure that the observed splicing pattern is not influenced by the vector backbone, we 

electroporated two minigenes that carried synthetic alternative exons, Dup34 and Dup51, 

derived from the human β-globin gene (28). Dup34 is universally skipped, while Dup51 has 

approximately 50% inclusion level in cultured cells (28, 32). We observed by RT-PCR and 

fluorescence microscopy that the Dup34 exon was completely skipped (high GFP) (Figure 3C 

and Supplementary Figure 4) and the Dup51 exon was included at a high rate (high RFP) 

(Figure 3D and Supplementary Figure 4). Neither of the two exons displayed a photoreceptor 

specific splicing pattern.  

We next examined the inclusion of exon 2A in the context of full-length introns and exons in 

human BBS8 gene. To do so, we used recombineering to modify a BAC clone containing the full 

length human BBS8 gene and created an A to G substitution in the 3’ splice site of exon 2A 

(Figure 4A). The wild type and mutant BAC were then introduced into the developing 

photoreceptor cells of neonatal mice by subretinal injection and electroporation (30). The 

splicing of exon 2A in the retina was analyzed at P16 by RT-PCR using primers specific to the 

human sequence. We observed high levels of exon 2A inclusion in retina expressing the wild 

type BBS8 gene (Figure 4B). Similar to our minigene experiments, the IVS1-2A>G mutation did 

not cause skipping of exon 2A from the BBS8 transcripts (Figure 4B). Instead, the exon 2A 
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isoform was replaced by an mRNA variant that included a slightly shorter exon. The shorter 

transcript contained a truncated exon 2A* with the use of the cryptic 3’ splice site 7 nucleotides 

downstream of the normal acceptor site, which we observed in our minigene experiments 

(Figure 4C and Supplementary Figure 5).   

Our results show that the molecular mechanism by which mutation of Bbs8 exon 2A causes the 

loss of photoreceptor cells is mis-splicing leading to the inclusion of a truncated exon 2A, rather 

than skipping of exon 2A.  

The sequence of exon 2A does not direct its inclusion in photoreceptor cells. 

Our studies establish that Bbs8 exon 2A is specifically included in photoreceptor cells. To 

determine how such specificity is achieved, we mapped the sequence elements that direct the 

splicing of exon2A in photoreceptor cells. The sequence elements located within the exons 

(exonic splicing enhancers or ESEs) are typically required for exon recognition and inclusion in 

the mature transcript (33–35). To determine if ESE sequences are involved in the photoreceptor 

specific splicing of Bbs8 exon 2A we created four minigenes (LS1-4) in which overlapping 8 

nucleotide  segments of the exon were replaced with a PvuI linker sequence (Figure 5A). To our 

surprise, all linker scanning mutants retained a high level of exon 2A inclusion in the retina 

(Figure 5B). The LS1 mutant was the only one that showed minor but significant decrease of 

approximately 14% in its inclusion level compared to the wild type exon (Figure 3 top left panel 

and Figure 5B). We reasoned that rather than carrying ESEs recognized by photoreceptor 

specific splicing factors, Bbs8 exon 2A might contain exonic splicing silencers (ESS) that 

repress its inclusion in other cell types. Alternatively, the linker sequence itself may contain an 

ESE. To test this hypothesis, we introduced the linker scanning mutants into N2A cells. In 

comparison to HEK293 cells where exon 2A was not included, we observed minor levels (10%) 

of wild-type (WT) exon 2A inclusion in N2A cells. However, this was significantly lower than the 
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98% inclusion levels in photoreceptor cells. We expected that mutants which disrupt ESS 

elements in exon 2A or add an ESE will increase its inclusion in the N2A cell line. We did not 

observe significant increase in the exon 2A inclusion levels in any of the linker scanning 

mutations (Figure 5C). As in our in vivo electroporation experiments, the LS1 mutant showed 

minor but significant decrease in the exon 2A inclusion level (Figure 5C). 

To rule out the possibility that exon 2A may contain redundant ESEs we scrambled the exon 2A 

sequence (Core-SCR), while preserving the first and the last three nucleotides, and the overall 

nucleotide composition (Figure 5A). The first nucleotide and the last three nucleotides of the 

exon are part of the consensus splice site sequences and are directly contacted by the core 

spliceosome (36–38). By preserving these nucleotides in the Core-Scr minigene, we avoided 

disrupting interactions that are essential for splicing. MaxEnt splice site scores for the 3’ splice 

sites of Bbs8 exon 2A and Core-SCR are 8.82 and 8.61, respectively (39). The 5’ splice sites of 

both exons have a MaxEnt score of 8.59. We also created a minigene construct in which Bbs8 

exon 2A was substituted with the Dup34 exon, while preserving the Bbs8 intronic sequence 

(Bbs8-Dup34). The MaxEnt score of the 3’ splice site of the Bbs8-Dup34 fusion is lower, 7.47, 

but still represents a good match to the 3’ splice site consensus sequence. The 5’ splice site 

score of the Bbs8-Dup34 fusion is 8.59, identical to that of Bbs8 exon 2A and the Core-SCR. 

After subretinal injection and electroporation, both the Core-SCR and Bbs8-Dup34 minigenes 

displayed high levels of inclusion of the alternative exon: 88% and 77%, respectively (Figure 5D, 

and Supplementary Figures 6 and 7). Importantly, both exons are specifically included in 

photoreceptor cells and not in inner neurons (Figure 5D and 5E). This result is in contrast to our 

previous observation where the Dup34 exon is completely skipped in photoreceptor cells when 

it is flanked by its original β-globin introns (Figure 3, bottom left). 

Mutating the first and last three nucleotides of Bbs8 exon 2A (Edge-SCR) to reduce the strength 

of the 3’ and 5’ splice sites to 6.17 and -8.27, respectively, completely abolished the inclusion of 
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the exon (Figure 5D and Supplementary Figure 8). Lack of exon 2A inclusion in this mutant is 

likely due to the disruption of the 5’ splice site as indicated by its negative MaxEnt score.  

The results from our mutagenesis study demonstrate that exon2A does not contain splicing 

regulatory elements that are necessary for its inclusion in the photoreceptor cells and that the 

cis-elements that control Bbs8 exon 2A splicing are likely intronic. 

Redundant intronic splicing enhancers (ISEs) regulate the splicing of Bbs8 exon 2A. 

To map these regulatory elements in the introns flanking Bbs8 exon 2A, we created six deletion 

mutants, each one removing 100 nucleotides from the upstream and downstream introns cloned 

in the exon 2A minigene (Figure 6A). In all deletions we preserved the sequences of the 3’ and 

5’ splice sites, and the putative branch point, which are recognized by the core spliceosome. We 

observed that deletion of the segments adjacent to the exon, labeled D3 and D4, resulted in 

significant reduction of exon 2A inclusion in the retina (Figure 6B and Figure 3 top left panel). 

Additionally, the deletion of segment D3 caused retention of the upstream intron in part of the 

mature transcripts. The remaining four deletions had minimal or no effect on the exon 2A 

inclusion levels or the splicing efficiency of the introns. Combined deletion of segments D3 and 

D4 dramatically reduced the exon 2A inclusion level in photoreceptor cells from 98% (Figure 2) 

to 23% (Figure 6C and Supplementary Figure 9). In agreement with decrease in inclusion levels 

of exon 2A in D3/D4 deletion, we saw increased expression of GFP in photoreceptor cells 

(Figure 6C). This is in contrast to our earlier result with intact exon 2A introns showing robust 

expression of RFP (Figure 3D). Altogether, these findings indicate that ISE elements located in 

both D3 and D4 segments in concert promote the splicing of exon 2A in photoreceptor cells. 

To obtain a higher resolution map of the ISEs controlling exon 2A splicing, we generated six 

additional mutants that had overlapping 40 nucleotide deletions in segments D3 and D4 (Figure 

6D). We did not observe any significant changes in levels of exon 2A inclusion in any of the 
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shorter deletion mutants (Figure 6E). We conclude that segments D3 and D4 contain multiple 

redundant ISEs, so that the deletion of any single ISE is insufficient to significantly impact the 

splicing of exon 2A. 
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Discussion 

The lack of cellular models and the technical difficulty of analyzing the gene expression profiles 

of individual cell subtypes in the retina have presented significant obstacles to studying the 

regulation of gene expression and alternative splicing in photoreceptor cells. Here we 

demonstrate that these obstacles can be overcome by using genetically engineered mouse 

models to identify photoreceptor specific transcripts and subretinal injection and electroporation 

to dissect the regulation of their expression. In particular, the use of the fluorescent splicing 

reporter allowed us to visualize the splicing regulation of Bbs8 exon 2A in individual retinal cells. 

As the fluorescent reporter minigene is designed to accommodate most alternative exons, our 

approach is generally applicable to studying splicing in vivo. 

To our surprise the IVS1-2A>G mutation in the splice acceptor site of Bbs8 exon 2A does not 

cause skipping of the exon, which in turn will result in the expression of the BBS8S protein in 

place of the photoreceptor specific BBS8L. Instead, the mutation forced the use of a cryptic 

splice site located 7nt downstream of the mutated site. The splicing of the mutant exon 2A is 

consistent with our finding that any exon placed in the context of the introns flanking Bbs8 exon 

2A will be spliced efficiently in photoreceptor cells as long as it carries functional splice sites. 

Based on the splicing pattern of the mutant exon 2A, we propose that the disease mechanism 

involves mis-splicing, which in turn results in premature termination of the BBS8 reading frame 

and elimination of the BBS8 protein in photoreceptors (Figure 7). In this scenario, we expect no 

BBS8 protein (BBS8L or BBS8S) expression in photoreceptor cells. This is akin to generating 

photoreceptor specific BBS8 knockout. Our attempts to detect BBS8 protein expression in the 

retina from either the wild type or mutant BAC constructs were not fruitful. This is likely due to 

the low efficiency of the BAC electroporation. A robust test to examine the effect of the IVS1-

2A>G mutation on BBS8 protein synthesis will require animal models in which the mutation is 
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introduced in the endogenous Bbs8 locus or transgenes carrying the BAC constructs described 

here and bred into a Bbs8 null animals.  

How is the phenotype of the IVS1-2A>G mutation confined to photoreceptors? All cell types 

other than photoreceptor cells that we have tested skip exon 2A and consequently do not utilize 

the cryptic splice sites. These cells express the short BBS8 isoform (BBS8S) and are immune to 

the mutation (Figure 7). Thus, the phenotype of the IVS1-2A>G mutation is determined by the 

photoreceptor specific alternative splicing program. To our knowledge, such interaction between 

tissue specific alternative splicing and genetic mutations has been described only in Stickler 

syndrome. Stickler syndrome is caused by mutations in at least 4 collagen genes and presents 

as a systemic disorder characterized by facial and eye abnormalities, hearing loss and joint 

problems (40, 41). However, mutations in exon 2 of the COL2A1 gene, but not in other exons of 

the same gene, produce predominantly eye phenotype due to the tissue specific splicing of this 

exon (42–45). We are tempted to speculate that the BBS8 IVS1-2A>G and the COL2A1 exon 2 

mutations may not be isolated cases. Neurons, epithelial cells and muscle cells express highly 

cell type specific splicing regulators and consequently present characteristic splicing programs. 

Furthermore, splicing regulatory sequences are rich and often underappreciated target for 

disease causing genetic mutations (46). Approximately 10% of disease causing mutations 

disrupt the canonical splice site and additional 25% are estimated to affect splicing regulatory 

sequences within the exons (47, 48). Thus, we expect the phenotype of many disease causing 

mutations to be modulated by the alternative splicing machinery. 

Bbs8 exon 2A is highly photoreceptor specific with nearly 100% inclusion levels in 

photoreceptor cells, while it is not included or included at very low levels outside of the retina. 

After exhaustive mutagenesis, we find that efficient splicing of Bbs8 exon 2A in photoreceptor 

cells does not depend on ESEs. Strikingly, even the randomized sequence of the Core-SCR 

exon and the unrelated Dup34 exon were spliced efficiently in photoreceptor cells as long as 
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they were in the context of the introns flanking Bbs8 exon 2A. Two 100 nucleotide segments, D3 

located upstream and D4 located downstream of exon 2A, work in concert to promote inclusion 

of exon 2A in photoreceptors. The D3 and D4 segments are likely composed of multiple 

redundant intronic splicing enhancers, as a series of shorter deletions did not significantly 

reduce the efficiency of exon 2A splicing. Intronic splicing regulatory elements have a well-

established role in regulating alternative splicing and promoting alternative exon splicing in 

specific tissues and cell types. In particular, neuronal and muscle specific microexons are 

characterized by high degree of conservation of the adjacent intronic sequences, compared to 

longer exons with similar tissue specific regulation (49, 50). The intron sequence conservation in 

these exons is dictated by the presence of regulatory sequences that are recognized by 

Rbfox1/2/3, PTBP1/2 and SRRM3 splicing regulators (49, 50).  

At present, we do not know the identity of the trans-acting factors that bind to the intronic 

splicing enhancers flanking Bbs8 exon 2A to promote its inclusion in photoreceptor cells. We 

are also unaware of any RNA binding proteins that are specifically expressed in photoreceptors. 

Several genome wide studies provide evidence that the retina expresses a highly diverse set of 

alternative transcripts that are developmentally regulated (51–54). It is unclear to what degree 

the retina specific transcript variants identified in these studies are derived from photoreceptor 

cells. We believe that by expanding to a genomic scale, our approach of comparing the 

expression levels in the retina of Aipl1 knockout to wild type animals will make it possible to 

identify the splicing regulators and alternative transcripts specific to the photoreceptor cells. In 

the absence of photoreceptor specific proteins that directly bind to the Bbs8 pre-mRNA, the 

splicing of the exon 2A may be controlled by a combination of otherwise ubiquitously expressed 

splicing factors that is unique to this cell type. Such mode of regulation will be consistent with 

the combinatorial nature of the mechanisms controlling alternative splicing (55–57).  
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Figure Legends 

Figure 1. Bbs8 transcripts containing exon 2A are specifically expressed in 

photoreceptor cells.  (A) Bbs8 exon 2A splicing was analyzed by RT-PCR in a panel of mouse 

tissues. Exon 2A is skipped or included at very low levels in all of the tissues we examined (“+” 

and “-” indicate exon inclusion and skipping, respectively). Some exon 2A inclusion is detected 

after overexposing the gel (panel below) in neural tissues from wild type animals. (B) RT-PCR 

analysis of Bbs8 exon 2A splicing in the retina of wild type, Aipl1 knockout and Nrl knockout 

animals. Exon 2A is included at high levels in the retina of wild type and Nrl knockout mice and 

is largely skipped in the retina of the Aipl1 knockout mice. (C) Exon 2A inclusion in the mature 

Bbs8 transcript is first detected at postnatal day 0 (left), and increases rapidly thereafter. The 

increase in exon 2A inclusion correlates with the increase in rod opsin expression as detected 

by qRT-PCR (right). (D) Protein extracts from wild type mouse retina, Aipl1 knockout retina, 

N2A cells transfected with BBS8L expression, and mock transfected N2A cells were probed with 

rabbit polyclonal antibody raised against a peptide antigen containing the exon 2A sequence 

(Top) and a pan-BBS8 antibody (Bottom). The BBS8L protein, recognized specifically by the 

anti-exon 2A antibody, is not detected in the mock transfected N2A cells and is lost in the Aipl1 

knockout retina. Similarly, low levels of the BBS8S protein are detected by the pan-BBS8 

antibody in Aipl1 knockout retina and mock transfected N2A cells.  

 

Figure 2. The Bbs8 exon2A minigene recapitulates the splicing of the full length gene. (A) 

Schematic of the splicing minigene carrying the mouse Bbs8 exon 2A. The exon and portions of 

the flanking introns are cloned in the fluorescent reporter minigene (28). The ATG translation 

start codon of the GFP reading frame is split between the first and last exon of the minigene and 

is reconstituted when the alternative exon is spliced out. This leads to GFP expression, while 
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the translation of the downstream RFP reading frame is suppressed. Inclusion of the alternative 

exon will disrupt the ATG codon of the GFP reading frame, which blocks the GFP protein 

expression and simultaneously allows the downstream RFP reading frame to be translated. (B) 

RT-PCR analysis of the splicing of the wild type (WT) and mutant (MT) exon 2A minigenes in 

HEK293 cells and mouse retina. HEK293 cells skip both the wild type and mutant exon 2A from 

the mature transcripts (skipped isoform labeled A). In retina, the wild type exon 2A is included in 

the majority of transcripts. The major splice product of the mutant minigene, labeled D, is 

inclusion of truncated exon that utilizes the same cryptic splice site as the exon in the context of 

the full length human BBS8 gene. A second high molecular weight splice product, labeled C, is 

derived from the use of a cryptic splice site upstream of exon 2A. (C) Sequence of the mouse 

Bbs8 exon 2A and portions of the adjacent introns. The mutation in the 3’splice site is 

underlined. The exon included in the minigene mRNA is outlined with white (splice product B), 

dark gray (splice product D) and light gray (splice product C) boxes. Black arrow indicates the 

position of the wild type 3’ splice site. White arrows indicate the positions of the cryptic 3’ and 5’ 

splice sites that are activated in the mutant minigene. 

Figure 3. Photoreceptor specific splicing of exon 2A in the context of the Bbs8 minigene.  

Retinal sections from animals after electroporation with indicated minigenes were imaged for 

GFP (Green) and RFP (Red). The nuclei are stained by DAPI (Blue). ONL, INL and GCL 

indicate outer nuclear, inner nuclear and ganglion cell layer, respectively. The RT-PCR analysis 

of minigene splicing in the retina is shown on the left. The percent exon inclusion ± standard 

error is shown under each gel image. (A) The wild type exon 2A  is included in photoreceptors 

as indicated by the high RFP expression observed on immunofluorescence and by RT-PCR 

analysis of total retinal RNA (“+” and “-” indicate exon inclusion and skipping, respectively). In 

contrast, higher GFP expression in the inner neurons demonstrates skipping of exon 2A in 

these cells (indicated by yellow arrows). (B) Similar to the wild type exon 2A, the exon included 
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products from the mutant exon 2A are specifically detected in photoreceptors and not inner 

neurons . The Dup34 and Dup51 exons show uniform fluorescent protein expression throughout 

the retina (Bottom two panels; inner neurons are indicated by yellow arrows). Both Dup34 (C) 

and Dup51 (D) produce unspliced RNA (indicated by “~” next to the RT-PCR gel). This 

unspliced RNA does not express RFP or GFP, because a small ORF in the downstream intron 

inhibits the translation of the downstream RFP reading frame (28).  

Figure 4. Inclusion of a truncated exon 2A in BBS8 patient mutation linked to RP. (A) 

Schematic of the wild-type BAC clones containing the full length human BBS8 gene. The mutant 

BAC clone harbors an IVS1-2A>G mutation in the 3’ splice of exon 2A. (B) RT-PCR analysis of 

the splicing of the BAC transcripts in mouse retina at P16 after electroporation at P0 using 

primers specific to the human BBS8 sequence. The wild type BAC produces the exon 2A 

included isoform of the mature BBS8 mRNA. The mutation causes the inclusion of a shorter 

exon 2A* in the mature mRNAs. Also indicated on the right is the minor isoform that excludes 

exon 2A in retina electroporated with both wild type and mutant BBS8 BAC.  (C) Genomic 

sequence of exon 2A and the adjacent introns showing the mutated splice site (underlines), the 

3’-splice sites being used for the wild type (black arrow) and the mutant (open arrow) exons. 

The sequence of the exon being spliced is outlined with a white (wild type) or gray (mutant) box.  

Figure 5. The sequence of Bbs8 exon 2A does not control its splicing. (A) Sequences of 

the wild type Bbs8 exon 2A along with the sequences of the exon in mutant Bbs8 minigenes. 

Four linker scanning mutants were created by substituting overlapping 8 nucleotide (nt) 

segments of the exon with a PvuI linker (the linker sequences is shown in bold). Two minigenes 

scramble the sequence of nucleotides 2 to 27 (Core-Scr) or mutate nucleotides 1, 28, 29 and 20 

(Edge-Scr) of the Bbs8 exon 2A. The mutated nucleotides are shown in bold. In Bbs8-Dup34 

exon 2A is replaced by the Dup34 exon, while preserving the Bbs8 introns. (B) RT-PCR 

analysis of the splicing of the linker scanning minigenes in the retina at postnatal day 16, and in 
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N2A cells 48 hours post transfection. All linker scanning mutants are included at high rate in the 

retina and skipped in N2A cells (“+” and “-” indicate exon inclusion and skipping, respectively). 

(C) RT-PCR and fluorescence microscopy analysis of the splicing of the Core-SCR, Bbs8-

Dup34 and Edge-SCR minigenes in mouse retina. Each panel represents fluorescence 

microscopy images of the retinal sections accompanied by RT-PCR analysis of the minigene 

splicing. The percent exon inclusion ± standard error is shown under each gel image. The Core-

SCR and Bbs8-Dup34 exons are included at high rate in the photoreceptors and skipped from 

the minigene transcripts in the inner neurons (indicated by yellow markers). The Edge-SCR 

exon is skipped uniformly throughout the retina. 

Figure 6. Intronic splicing enhancers promote exon 2A splicing in photoreceptor cells.  

(A) Schematic showing the positions six 100nt intronic deletions relative to Bbs8 exon 2A. (B) 

RT-PCR analysis of the splicing of the intron deletion minigenes in mouse retina. The percent 

exon inclusion ± standard error is shown under each gel image. Most deletions with exception of 

D3 and D4 do not affect significantly the splicing of Bbs8 exon 2A. D3 and D4 cause reduction 

of Bbs8 exon inclusion (“+” and “-” indicate exon inclusion and skipping, respectively). In 

addition, the D3 mutant expresses significant amounts of mRNA which retains the upstream 

intron (indicated by “~”). The numbers under the gel images represent the percent of the 

transcripts including the exon and the standard error. (C) The simultaneous deletion of 

segments 3 and 4 reduces exon 2A inclusion levels in the retina to 23% (RT-PCR analysis gel 

shown on the left), which is accompanied by increase of GFP and reduction of RFP expression 

in the photoreceptor cells (right). The yellow marker points to an inner neuron. (D) Schematic 

showing the relative positions of six 40nt deletions within the sequence of segments D3 and D4. 

(E) The 40nt deletions shown on panel D do not alter Bbs8 exon inclusion in the retina as 

detected by RT-PCR. The percent exon inclusion ± standard error is shown under each gel 

image. 
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Figure 7. Model explaining the confinement of the phenotype of the BBS8 IVS1-2A>G 

mutation to photoreceptor cells. BBS8 exon 2A is included specifically in the photoreceptor 

cells to produce BBS8L protein. All other cell types skip exon 2A and produce the shorter 

BBS8S protein. Disruption of the exon 2A splice site by the IVS1-2A>G mutation causes the use 

of a cryptic splice site, resulting in frameshift. As a result of the frameshift, the BBS8 reading 

frame will end with a premature termination codon (PTC) in exon 2. As BBS8L is the exclusive 

isoform in photoreceptors, the mutation ultimately results in elimination of the BBS8 protein from 

this cell type. All other cell types are immune to the mutation as they skip exon 2A and do not 

utilize the cryptic splice site.  
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SUPPLEMENTARY MATERIAL 

Tables 

Supplementary table 1. Number of replicates used in the RT-PCR experiments. 

Minigene electroporated into 
mouse retina 

Figure # Replicates 
(animals) 

WT Bbs8 3 4 
A>G Mutant Bbs8 3 6 
D1 6 9 
D2 6 5 
D3 6 5 
D4 6 7 
D5 6 5 
D6 6 8 
D3.1 6 7 
D3.2 6 6 
D3.3 6 8 
D4.1 6 8 
D4.2 6 6 
D4.3 6 9 
LS1 5 5 
LS2 5 10 
LS3 5 6 
LS4 5 8 
EdgeScR 5 7 
CoreScr 5 5 
D3+4 6 8 
pFlare Dup 51 3 10 
pFlare Dup 34 3 3 
Bbs8 Dup 34 4 4 

   
Minigenes transfected into 

N2a cells 
Figure # Replicates 

(independent 
transfections) 

Bbs8 WT 5 3 
LS1 5 3 
LS2 5 3 
LS3 5 3 
LS4 5 3 
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Supplementary Table 2. Primer Sequences 

pFlare Minigene Primers 
Gene 
name 

Primer name Sequence Label 

pFlare-
minigenes 

EGFP-N-R-FAM cgtcgccgtccagctcgacca FAM 

pFlare-
minigenes 

Dup-e1-bgl-F aaacagatctaccattggtgc none 

    
Real-Time PCR Primers 
Species Gene 

name 
Primer name Primer sequence 

mouse Rho mRhodopsin-Left AGGGCTTCTTTGCCACACTT 
mouse Rho mRhodopsin-Right CACACCCATGATAGCGTGAT 
mouse Pde6a mPDE6a-Left CCGACTCCGAGATTGTCTTC 
mouse Pde6a mPDE6a-Right CCACGAAGTCACAGAAATGC 
mouse Gnat1 Gnat1-F TGCCATCATCTACGGCAACACTCT 
mouse Gnat1 Gnat1-R CTTGGGCATTGTGCCTTCCTCAAT 
mouse Gnat2 FP900 AACTACCTCCCTAACGAGCAG 
mouse Gnat2 RP901 GGCCGCACAGAAAATGATGC 
mouse Pde6c FP902 CAGTTTGAAACGGTGATCCA 
mouse Pde6c RP903 CGGGTCGGAGGTTACGTATT 
mouse Gapdh mGAPDH-Left GGTCCTCAGTGTAGCCCAAG 
mouse Gapdh mGAPDH-Right AATGTGTCCGTCGTGGATCT 
mouse Actb mActB-Left ACGATGGAGGGGAATACAGC 
mouse Actb mActB-Right CTTTGCAGCTCCTTCGTTG 
mouse GusB mGusB-Left CAGCCAATAAAGTCCCGAAG 
mouse GusB mGusB-Right GGTTTCGAGCAGCAATGGTA 
    
Cloning Primers   
Primer 
Name 

Minige
ne 
Name 

Primer Sequence  

mBbs8-
F-Eco 

WT 
(mous
e) 

actgaaTTCgcagtaaaggcttgctgagg 

mBbs8-
R-Bam 

WT 
(mous
e) 

actggatccgcccagctccctctaaagtc 

mBbs8-
GG-F 

A>G 
mutant 

aacgctTTCcggGAACCAGCTCCTG 
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(mous
e) 

mBbs8-
GG-R 

A>G 
mutant 
(mous
e) 

CAGGAGCTGGTTCccggaaagcgtt 

D1-100-
F-Eco 

D1 actgaaTTCTGCAAACTCTAGGTTGAGTGA 

D2-100-
200-F 

D2 ccacgctagctgacttAGGCAAAATAAGCCACACCC 

D2-100-
200-R 

D2 tggcttattttgcctAAGTCAGCTAGCGTGGCTGTT 

D3-200-
300-F 

D3 ctcccgccatgtgcacCAGAAATTGCATGCCTTAAAA 

D3-200-
300-R 

D3 aggcatgcaatTTCtgGTGCACATGGCGGGAGGAGAA 

D4-400-
500-F 

D4 aagttagctgcaaactTACCAGCTGTTCTGTTTTTTT 

D4-400-
500-R 

D4 aacagaacagctggtaAGTTTGCAGCTAACTTTTTAC 

D5-500-
600-F 

D5 aaacttagctgcatctACTGAGGCTTGGGGCTTCAGT 

D5-500-
600-R 

D5 agccccaagcctcagtAGATGCAGCTAAGTTTCTAAT 

D6-600-
700-R-
Bam 

D6 actggatccACTGAAGCCCCAAGCCTCAGT 

Bbs8_LS
1_2-9-F 

LS1 CTTAACGCTTTCCAGGacgatcgtCCTGATTTGCCAGTGTCTCAG 

Bbs8_LS
1_2-9-R 

LS1 ACACTGGCAAATCAGGacgatcgtCCTGGAAAGCGTTAAGAAGGT 

Bbs8_LS
1_7-15-F 

LS2 GCTTTCCAGGAACCAGacgatcgtTTGCCAGTGTCTCAGGTAAAA 

Bbs8_LS
1_7-15-R 

LS2 CCTGAGACACTGGCAAacgatcgtCTGGTTCCTGGAAAGCGTTAA 

Bbs8_LS
1_13-21-
F 

LS3 CAGGAACCAGCTCCTGacgatcgtGTGTCTCAGGTAAAAAGTTAG 

Bbs8_LS
1_13-21-
R 

LS3 TTTTTACCTGAGACACacgatcgtCAGGAGCTGGTTCCTGGAAAG 

Bbs8_LS
1_19-27-
F 

LS4 CCAGCTCCTGATTTGCacgatcgtCAGGTAAAAAGTTAGCTGCAA 

Bbs8_LS
1_19-27-
R 

LS4 GCTAACTTTTTACCTGacgatcgtGCAAATCAGGAGCTGGTTCCT 

D3.1-
200-240-
F 

D3.1 ctcccgccatgtgcacGCACACATACATTTAATATTT 
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D3.1-
200-240-
R 

D3.1 ttaaatgtatgtgtgcGTGCACATGGCGGGAGGAGAA 

D3.2-
230-270-
F 

D3.2 acacccatgcatatgcTTGATTAATACTCATTAAGAC 

D3.2-
230-270-
R 

D3.2 aatgagtattaatcaaGCATATGCATGGGTGTGGCTT 

D3.3-
260-300-
F 

D3.3 catacatttaatatTTCAGAAATTGCATGCCTTAAAA 

D3.3-
260-300-
R 

D3.3 aggcatgcaatTTCtgAAATATTAAATGTATGTGTGC 

D4.1-
400-440-
F 

D4.1 aagttagctgcaaacTTCCTGAAGATTGGAAAATGTG 

D4.1-
400-440-
R 

D4.1 tTTCcaatcTTCaggaAGTTTGCAGCTAACTTTTTAC 

D4.2-
430-470-
F 

D4.2 agcttagttgctgtcgCGCTCATAGTATTAGAAACTT 

D4.2-
430-470-
R 

D4.2 tctaatactatgagcgCGACAGCAACTAAGCTACTCT 

D4.3-
460-500-
F 

D4.3 aagattggaaaatgtgTACCAGCTGTTCTGTTTTTTT 

D4.3-
460-500-
R 

D4.3 aacagaacagctggtaCACATTTTCCAATCTTCAGGA 

D5.1-
500-540-
F 

D5.1 aaacttagctgcatctTTCATATTCCTAAACCTTTTA 

D5.1-
500-540-
R 

D5.1 ggtttaggaatatgaaAGATGCAGCTAAGTTTCTAAT 

D5.2-
530-570-
F 

D5.2 tttttttttattgtgtCTAGCCTTGTAGAACTAGTGT 

D5.2-
530-570-
R 

D5.2 agTTCtacaaggctagACACAATAAAAAAAAAACAGA 

D5.3-
560-600-
F 

D5.3 aTTCctaaaccttttaACTGAGGCTTGGGGCTTCAGT 
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D5.3-
560-600-
R 

D5.3 agccccaagcctcagtTAAAAGGTTTAGGAATATGAA 

D6.1-
600-640-
F 

D6.1 tagtgtgaactgcttaTAGGATGGGGAGAAGAAGGAA 

D6.1-
600-640-
R 

D6.1 tcTTCtccccatcctaTAAGCAGTTCACACTAGTTCT 

D6.2-
630-670-
F 

D6.2 TTCagtaacgattgccATAGTAGTATCAGACTTTAGA 

D6.2-
630-670-
R 

D6.2 agtctgatactactatGGCAATCGTTACTGAAGCCCC 

D6.3-
660-700-
F 

D6.3 tggggagaagaaggaaGCGGATCCATAGTCGACCACC 

D6.3 
Reverse-
Bam 

D6.3 GATCCATAGTCGACCACCATGGTGGCTTA 

BBS8-F-
Mlu1 

WT 
(huma
n) 

actACGCGTcttatttttgaataaaagga 

BBS8-R-
Bam 

WT 
(huma
n) 

actggatcccgctccctTTCtaagccctt 

BBS8-
A>G-F 

A>G 
mutant 
(huma
n) 

TTCttaatgctTTCcGgGAACCAGATCCTGAATTGCC 

BBS8-
A>G-R 

A>G 
mutant 
(huma
n) 

ATTCAGGATCTGGTTCcCggaaagcattaagaaggca 

Bbs8-
ExonDup
51-F 

DUP51 
fusion 

GCTGCTGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCC
TGGGCAGgtaaaaagttagctgcaaact 

Bbs8-
ExonDup
51-R 

DUP51 
fusion 

CTGCCCAGGGCCTCACCACCAACTTCATCCACGTTCACCTTGCCC
AGCAGCctggaaagcgttaagaaggtt 

Bbs8-
ExonDup
34-F 

DUP34 
fusion 

GCTGCTGGTGGTGCcATGgcAGGCCCTGGGCAGgtaaaaagttagctgca
aact 

Bbs8-
ExonDup
34-R 

DUP34 
fusion 

CTGCCCAGGGCCTgcCATgGCACCACCAGCAGCctggaaagcgttaagaa
ggtt 

NewScr-
Exon-F 

Core-
SCR 

GattactagTTCcggcgttacactcgcCAGgtaaaaagttagctgcaaact 
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NewScr-
Exon-R 

Core-
SCR 

CTGgcgagtgtaacgccggaactagtaatCctggaaagcgttaagaaggtt 

EdgeScr-
Exon-F 

Edge-
SCR 

TAACCAGCTCCTGATTTGCCAGTGTCTGTCgtaaaaagttagctgcaaact 

EdgeScr-
Exon-R 

Edge-
SCR 

GACAGACACTGGCAAATCAGGAGCTGGTTActggaaagcgttaagaaggtt 

 

Fluorescent PCR for alternative splicing detection 
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mouse mBbs8 chr12:98
,937,120
-
98,937,1
49 

CA 30 mBbs
8-F 

GGGCCT
GGAGCT
ATTTTAG
A 

F FAM 236 266 

mouse mBbs8 chr12:98
,937,120
-
98,937,1
49 

CA 30 mBbs
8-R 

GCCAGG
GAGCBbs
AAAGAT
G 

R none 236 266 

human hBBS8 chr14:89
,300,037
-
89,300,0
66 

CA 30 BBS8-
F 

TGGCCT
GGAGCT
ATTTTAG
G 

F FAM 236 266 

human hBBS8 chr14:89
,300,037
-
89,300,0
66 

CA 30 BBS8-
R 

TCCAGG
GAGTBbs
AAAGAC
G 

R none 236 266 

 

 

 

 

 

 

117



Supplementary Figure Legends 

Supplementary Figure 1. Rod and cone marker gene expression in wild type, Aipl1 (-/-) 

and Nrl (-/-) mice. RT-qPCR quantification of the cone (Opn1sw, Gnat2 and Pde6c) and rod 

(Rho, Gnat1, Pde6a) markers. The values are normalized to the expression levels in the Aipl1 (-

/-) retina. Each bar is an average of three animals. The cone marker expression is significantly 

upregulated in the Nrl (-/-) retina as it is enriched in cone photoreceptor cells, compared to the 

wild type (3% cones) retina. The rod markers have highest expression in the wild type retina 

(97% rods) and are lost in the Nrl (-/-) retina. In contrast, expression of both rod and cone 

markers are absent in the Aipl1(-/-) retinas supporting the loss of photoreceptor cells.  

Supplementary Figure 2. Bbs8 exon 2A splicing of reporter minigene in mouse retina. 

These additional images were collected from retinal sections from four different mice. Panel A 

shows unstained retinal sections. Panels B, C and D show sections stained with the 

photoreceptor marker Pdc, the bipolar neuron marker Chx, and the amacrine and ganglion 

neuron marker Pax 6, respectively. The Pdc, Chx and Pax6 markers outline the positions of the 

photoreceptor and neuronal layers in the retina. Inner neurons expressing the minigene are 

indicated by yellow markers. All inner neurons express high GFP to RFP ratio, which is 

indicative of exon skipping. In contrast, photoreceptor cells express high levels of RFP (low GFP 

to RFP ratio), indicative of exon inclusion. 

Supplementary Figure 3. Bbs8 mutant (IVS1-2A>G) exon 2A splicing of reporter minigene 

in mouse retina. These additional images were collected from retinal sections from four 

different animals. Panel A shows unstained retinal sections. Panels B, C and D show sections 

stained with the photoreceptor marker Pdc, the bipolar neuron marker Chx, and the amacrine 

and ganglion neuron marker Pax 6, respectively. The Pdc, Chx and Pax6 markers outline the 

positions of the photoreceptor and neuronal layers in the retina. Inner neurons expressing the 

minigene are indicated by yellow markers. The blue marker points to a Mueller glia cell. A total 

of 7 inner neurons and one Mueller glia cell can be observed, all of which express high GFP to 

RFP ratio, which is indicative of exon skipping. In contrast all photoreceptors express high levels 

of RFP (low GFP to RFP ratio), indicative of exon inclusion. 

Supplementary Figure 4. Mouse retina electroporated with the splicing reporter minigene 

carrying the Dup34 and Dup51 exons. These additional images were collected from retinal 

sections from two mice. Inner neurons expressing the minigene are indicated by yellow 

markers. The Dup34 exon is skipped resulting GFP expression, while Dup51 is mostly included 

producing high levels of RFP. Both Dup34 and Dup51 exons are included at the same rate in 

photoreceptors and inner neurons. 

Supplementary Figure 5. Sequencing traces of the RT-PCR products produced by 

amplification of the wild type and mutant Bbs8 transcripts. The exon boundaries are 

marked by black arrows. The position of the 7 nucleotide deletion in the transcript from the 

mutant gene relative to the wild type transcript is shown by dotted line. 

Supplementary Figure 6. Mouse retina electroporated with the splicing reporter minigene 

carrying the Core-SCR exon. The images were collected from retinal sections from three mice. 

Inner neurons expressing the minigene are indicated by yellow markers. Blue markers point to 

the Mueller glia cells. A total of 12 inner neurons and two Mueller glia cells can be observed, all 

of which express high GFP to RFP ratio, which is indicative of exon skipping. In contrast, 
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photoreceptor cells express high levels of RFP (low GFP to RFP ratio), indicative of exon 

inclusion. 

Supplementary Figure 7. Mouse retina electroporated with the splicing reporter minigene 

carrying the Bbs8-Dup34 fusion. These additional images were collected from retinal sections 

from three different mice. Inner neurons expressing the minigene are indicated by yellow 

markers. A total of 19 inner neurons can be observed, all of which express high GFP to RFP 

ratio, which is indicative of exon skipping. On the other hand, photoreceptor cells express high 

levels of RFP (low GFP to RFP ratio), indicative of exon inclusion. 

Supplementary Figure 8. Mouse retina electroporated with the splicing reporter minigene 

carrying the Edge-SCR exon. The images were collected from retinal sections from two mice. 

Inner neurons expressing the minigene are indicated by yellow markers. A total of 15 inner 

neurons can be observed. Both photoreceptor and inner neurons express high GFP to RFP 

ratio, which is indicative of exon skipping. 

Supplementary Figure 9. Mouse retina electroporated with the splicing reporter minigene 

carrying the double D3+D4 deletion. The images were collected from retinal sections from 

two mice. Inner neurons expressing the minigene are indicated by yellow markers. A total of 9 

inner neurons can be observed. Photoreceptor neurons express high levels of GFP and low to 

moderate levels of RFP, pointing to low rate of exon 2a inclusion. Inner neurons express high 

GFP to RFP ratio, which is indicative of exon skipping. 
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Supplementary Figure 3 
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Supplementary Figure 5
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Supplementary Figure 6 .
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Supplementary Figure 7 
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Supplementary Figure 8 .
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Abstract 

Alternative pre-mRNA splicing expands the coding capacity of eukaryotic genomes, potentially 

enabling a limited number of genes to govern the development of complex structures such as 

the vertebrate nervous system. Here, we show that photoreceptors, a type of sensory neuron, 

express a specific splicing program that affects a broad set of genes. The photoreceptor splicing 

program is initiated early in retinal development, prior to the morphogenesis of their light 

sensing outer segments. A striking feature of alternative splicing in photoreceptors are exons 

with a "switch-like" pattern of high inclusion levels in photoreceptors and near complete 

exclusion outside of the retina. Presence of "switch-like" exons in genes that are involved in 

biogenesis and maintenance of primary cilia suggests a role for alternative splicing in the 

development of the photoreceptor outer segment. Photoreceptors lack prototypical neuronal 

splicing factors and photoreceptor specific exons are spliced by a combinatorial mechanism that 

involves the Musashi proteins. 
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Introduction 

Vertebrate nervous systems contain numerous types of neuronal cells distinguished by 

their morphology, connectivity, electrophysiological properties, and neurotransmitter signatures. 

Differences in marker gene expression among the neuronal subtypes suggest that their identity 

is established and maintained by specific gene expression programs. Consistent with this, 

single cell transcriptome profiling studies reveal dozens of distinct gene expression profiles in 

the central nervous system (CNS) and the retina (Rotem et al. 2015; Johnson et al. 2015; Shin 

et al. 2015; Zeisel et al. 2015). A limitation of the single cell approaches is the relatively low 

coverage of the transcriptome that is biased towards the 3'-end of the transcripts (Wu et al. 

2014). The depth and distribution of the reads produced by the current single cell transcriptome 

profiling approaches do not allow the reliable assessment of the levels of transcript isoforms 

produced by alternative splicing. Thus, the posttranscriptional layer in the regulation of gene 

expression in neurons, which is required for the normal development and function of the CNS, 

remains hidden (Lauren T Gehman et al. 2011; L. T. Gehman et al. 2012; Q. Li et al. 2014, 2; 

Irimia et al. 2014; Jensen et al. 2000, -1; Kim et al. 2013, 3).  

The vertebrate retina offers a relatively simple model for carrying out gene expression 

profiling of specific neuronal subtypes (Siegert et al. 2012; Rotem et al. 2015; Macosko et al. 

2015). The retina is an extension of the CNS that is formed by approximately 60 different types 

of neurons belonging to six major classes (photoreceptor, horizontal, bipolar, amacrine and 

ganglion cells). While less complex than the CNS, the retina is a fully developed neural network 

that encodes the visual input in modalities that reflect color, edges, and direction of movement 

(Masland 2012).  

 Retinal photoreceptor cells in particular provide an intriguing model to study how gene 

expression programs shape the cell structure and properties. Photoreceptors have a distinct 

morphology with a characteristic light sensing organelle termed the outer segment. The 
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photoreceptor outer segment is a sensory cilium with an elaborate structure of membrane 

stacks which hold the phototransduction machinery. Surprisingly, the genes involved in the 

biogenesis and maintenance of the photoreceptor cilium are ubiquitously expressed in all 

ciliated cells. Recently, isoforms for two of these proteins, Arl6 (BBS3) and Ttc8 (BBS8), were 

shown to be preferentially expressed in photoreceptors (Pretorius et al. 2011; Pretorius et al. 

2010; Riazuddin et al. 2010; Murphy et al. 2015). The photoreceptor variant of Arl6, a Ras 

related GTP-binding protein, is required for the survival of zebrafish photoreceptor cells and the 

morphogenesis of the photoreceptor layer in the mouse retina (Pretorius et al. 2010; Pretorius et 

al. 2011). These findings raise the possibility that photoreceptor cells are at least in part shaped 

by post-transcriptional processes such as alternative pre-mRNA splicing.  

Alternative pre-mRNA splicing is a major mechanism for generating protein diversity in 

vertebrates. In particular,  neurons use alternative splicing for generating protein diversity to a 

significantly higher degree than any other cell type (Zheng and Black 2013; Raj and Blencowe 

2015). Additionally, neurons broadly utilize alternative microexons. Microexons are short exons 

that are defined by different groups as being no longer than 27nt or 51nt (Irimia et al. 2014; Y. I. 

Li et al. 2014). Examination of the conservation of microexons and the surrounding sequence 

indicates that their splicing is controlled to a large degree by sequence elements in the adjacent 

introns (Irimia et al. 2014; Y. I. Li et al. 2014). The neuronal splicing program and the inclusion 

of neuronal microexons are governed by splicing factors belonging to several families of RNA 

binding proteins such as PTBP, ELAVL, NOVA, KHDRBS, SRRM and RBFOX (Q. Li, Lee, and 

Black 2007; Raj and Blencowe 2015; Iijima et al. 2014; Iijima et al. 2011; Ehrmann et al. 2013).  

With the exception of Ptbp1, these proteins have high expression levels in neurons and are not 

expressed or have limited expression outside of the nervous system. Ptbp1, which represses 

splicing of neuronal exons outside of the nervous system, is replaced by the Ptbp2 in the early 

stages of neuronal differentiation.  
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Here we use animal models to characterize in depth the alternative splicing profiles of 

photoreceptor cells, a sensory neuron type. We find that photoreceptors express a characteristic 

splicing program. This program includes a set of photoreceptor specific isoforms that are absent 

from retinal and CNS neurons, or any other tissue we examined. Surprisingly, key neuronal 

splicing regulators are either not expressed or downregulated in photoreceptor cells. We show 

that the Musashi proteins, MSI1 and MSI2, promote the splicing of photoreceptor specific exons 

as part of a combinatorial mechanism that controls splicing in photoreceptor cells.  

Results 

Mouse models for retinal degeneration can be used to isolate the photoreceptor 

transcriptome 

To identify the features of the retina transcriptome that are specific to photoreceptor cells 

we used RNA-Seq to analyze the transcriptomes of retina samples from wild type and Aipl1 

knockout mice. AIPL1 is a molecular chaperone that is mutated in patients with Leber 

Congenital Amaurosis, a retinopathy caused by rapid loss of photoreceptors (Daiger, Sullivan, 

and Bowne 2013; Ramamurthy et al. 2004, 1; Kolandaivelu, Singh, and Ramamurthy 2014, 1). 

The Aipl1 mouse knockout phenocopies the human disease and by postnatal day 30, the retina 

lacking AIPL1 is devoid of photoreceptors (Figure 1A) (Ramamurthy et al. 2004, 1). The 

remaining cells in the retina, apart from the missing photoreceptors, have grossly normal 

anatomy (Figure 1A) (Ramamurthy et al. 2004). In a comparison between the transcriptomes of 

Aipl1 knockout and wild type retina, transcripts with higher expression levels in photoreceptors 

will appear downregulated in the Aipl1(-/-) sample due to the altered cell composition (Figure 

1B). Conversely, transcripts expressed at higher levels in the inner neurons will show elevated 

expression levels in the Aipl1 knockout retina.  
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We first validated our approach by performing gene level expression analysis and 

tracking the expression levels of transcripts known to be specific to photoreceptors. We 

identified 5377 genes  with more than 2 fold difference in their expression level between Aipl1 

knockout and wild type retina (false discovery rate corrected p-value <0.01; see Supplementary 

Table 1). In the Aipl1 knockout, we observed loss of all genes known to encode photoreceptor 

specific transcription factors, (e.g. NR2E3, NRL), proteins involved in phototransduction, (e.g 

RHO, CNGA1, PDE6B), and photoreceptor morphogenesis (e.g PRPH2, RM1, FSCN2) 

(Supplementary Table 1). The genes with higher expression in the wild type retina compared to 

the Aipl1 knockout, showed enrichment of Gene Ontology (GO) categories directly related to 

photoreceptor development, structure and function (Table 1 and Supplementary Table 2). This 

enrichment is consistent with the loss of photoreceptor cells in the Aipl1 knockout.  In contrast, 

the genes with lower expression levels in the wild type retina were part of broad GO categories 

related to organ development, neuronal cell structure and function (Table 1 and Supplementary 

Table 3). The GO categories enriched in downregulated transcripts reflect the preservation of 

the inner neuronal layers in the retina of the Aipl1 knockout mice. Thus, the gene level 

expression data demonstrates that comparing the retinal transcriptome of Aipl1 knockout with 

that of the wild type retina correctly identifies the transcripts characteristic to photoreceptors.  

Photoreceptors express a characteristic splicing program 

We used the RNA-Seq data to determine the inclusion levels of alternative exons in the 

mouse retina (Supplementary Table 4). Hierarchical clustering shows that the retina samples 

form a separate cluster with a splicing profile related to that of other neuronal tissues 

(Supplementary figure 1).  Similar to central nervous system samples, the retina utilizes a 

significant number of microexons (Supplementary Figure 1).  

We next analyzed the differences in exon inclusion levels in the wild type retina 

compared to the retina of the Aipl1 knockout. For this purpose we used the rMATS software, 
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which we modified by adding an algorithm to discover novel exons (S. Shen et al. 2012). 

Interestingly, approximately 40% of the differentially spliced exons between wild type and Aipl1 

knockout retina were not annotated in the GRCm38 mouse genome assembly. The large 

number of novel exons prompted us to use Cufflinks to carry out guided transcriptome assembly 

based on the ENSEMBL GRCm38 transcript annotation and our RNA-Seq data. We then 

repeated the analysis of the differential splicing using the updated annotation and identified 540 

differentially spliced exons (delta-Psi >= 0.1, FDR corrected p-value<0.01) in 372 genes 

(Supplementary Table 4). Of these 318 exons showed higher inclusion levels in wild type retina 

and 222 had lower inclusion levels. The alternative exons in the Bsg and Ttc8 (Bbs8) genes that 

are known to be used exclusively in photoreceptors were among the exons with higher inclusion 

levels in wild type retina, verifying that our approach correctly identifies photoreceptor specific 

exons (Ochrietor et al. 2003; Riazuddin et al. 2010; Murphy et al. 2015). We validated using RT-

PCR 18 alternative exons that showed differences in inclusion level between 10% and 90% in 

our RNA-Seq data. All changes in exon inclusion level that were predicted by RNA-Seq were 

confirmed by the RT-PCR experiment (Figure 1C and Supplementary Figure 2). Exons in 

multiple genes such as Cep290, Cc2d2a, Cacna2d4, Prom1 and Kif1b showed large differences 

in inclusion levels between the wild type and Aipl1 knockout retina consistent with a “switch-like” 

splicing pattern. Similar to the Bsg and Ttc8 exons, these “switch-like” exons appear to be 

included at high levels in photoreceptors and skipped in all other tissues we examined (Figure 

1B and Figure 2).  

Unsupervised hierarchical clustering of the mouse tissue panel based on the inclusion 

levels of the exons differentially spliced in photoreceptors places the retina along with the other 

neuronal tissues (Figure 2). Interestingly, in this clustering the profile of the Aipl1 knockout 

retina is more closely related to that of the CNS samples than the wild type retina. The 
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expression of a distinct splicing profile by the photoreceptor cells is likely responsible for the 

separation of the Aipl1 knockouts from the cluster containing the wild type retinal samples.   

As cone photoreceptors comprise only 3% of the retina, it was unclear if the splicing 

profile we discovered is shared between photoreceptors of different types or if it is specific to 

rod photoreceptors. To determine if rods and cones share the same splicing program we 

analyzed the splicing in the retina of Nrl knockout mice by RT-PCR. Nrl is a transcription factor 

required for rod photoreceptor development and its disruption leads to the conversion of all rod 

photoreceptors into cone like cells (Mears et al. 2001). All tested exons, with exception of an 

exon in the Glb1l2 gene, showed identical inclusion levels in the wild type and Nrl knockout 

retina (Figure 1B and Supplementary Figure 2). Thus, rods and cones share largely the same 

splicing program. 

We next carried out gene ontology enrichment analysis to determine if alternative 

splicing in photoreceptors modifies particular processes or cellular components (Table 2 and 

Supplementary Table 5). Several of the enriched categories point to a significant impact of 

alternative splicing on the cytoskeleton of photoreceptor cells. Apart from the cytoskeleton we 

see enrichment of genes in broadly defined categories that are partially related to cell 

differentiation and neurogenesis. Such enrichment is evidence that alternative splicing modifies 

multiple systems and processes in the photoreceptor cells.  

The photoreceptor splicing program is executed prior to photoreceptor 

differentiation 

To gain insight into the developmental mechanisms that control splicing in 

photoreceptors, we analyzed exon inclusion levels in a panel of published retinal RNASeq 

datasets from wild type mice and genetic models that disrupt normal photoreceptor 

development and function. In addition to the Aipl1 and Nrl knockouts described above, these 
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models include a Crx knockout (Furukawa et al. 1999), a Crx-dominant negative (Crx-DN) 

mutant (Roger et al. 2014), and the RD10 mutant (Gargini et al. 2007). Deletion of Crx or 

expression of the CRX-DN protein block the transcription of the genes involved in 

phototransduction and the development of the outer segment by the post-mitotic photoreceptor 

progenitors (Furukawa et al. 1999; Morrow et al. 2005; Roger et al. 2014). The RD10 mutant, 

similar to the Aipl1 knockout, loses its photoreceptors in adulthood (Gargini et al. 2007). The 

wild type samples included retina from postnatal day 2, which contain early post-mitotic rod 

photoreceptor progenitors, and fully developed retina from juvenile and adult animals (postnatal 

days 21 and 50).  

Unsupervised hierarchical clustering of the exons differentially spliced in photoreceptors 

revealed two major clusters (Figure 3A). One cluster is formed by samples derived from the 

Aipl1 knockout and the RD10 mutant retinas, both devoid of photoreceptor cells, and also 

includes the postnatal day 2 retina samples. The similarity between the Aipl1 and RD10 

samples indicates that these splicing profiles are characteristic to retina devoid of 

photoreceptors and not a particular mouse model, further validating our approach.  

A second cluster is formed by the adult wild type retina, the Nrl and Crx knockouts, and 

the Crx-DN mutant. The samples in this cluster preserved the photoreceptor splicing profile, a 

finding that we confirmed for the Nrl knockout by RT-PCR (Figure 1C and Supplementary Figure 

2). Crx is a transcriptional factor required for photoreceptor differentiation (Swaroop, Kim, and 

Forrest 2010; Roger et al. 2014). The CRX-DN mutant protein heterodimerizes with OTX2, an 

upstream transcriptional regulator of Crx, and blocks its activity (Roger et al. 2014). Thus the 

presence of the photoreceptor specific splicing profile in the Crx knockout and Crx-DN mutant 

shows that the alternative splicing in photoreceptors is controlled independently of the known 

transcriptional regulators of photoreceptor morphogenesis. 
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At postnatal day 2 the rod photoreceptors are at the stage of immature progenitors. 

Interestingly, the splicing profile of the postnatal day 2 retina does not cluster with the samples 

containing immature photoreceptors that are derived from Crx knockout and Crx-DN retinas at 

postnatal day 21. The segregation of the postnatal day 2 retina from the juvenile Crx knockout 

and Crx-DN retina suggests that the photoreceptor splicing program is established in the post-

mitotic photoreceptor progenitors prior to their final differentiation. To characterize the temporal 

control of alternative splicing during photoreceptor differentiation we analyzed by RT-PCR the 

inclusion levels of four photoreceptor specific exons in the Ttc8, Prom1, Cep290 and Cc2d2a 

genes between postnatal days 0 and 16 (Figure 3B). All four exons showed low levels of exon 

inclusion between postnatal day 0, which marks the peak of rod progenitor cell birth, and 

postnatal day 2. The inclusion levels of the four exons steadily increase thereafter, reaching 

approximately half of the maximum inclusion levels at postnatal day 8, when the photoreceptor 

outer segments begin to develop.  Maximum inclusion levels are reached at postnatal day 14-

16, shortly after the eyes open. Thus, the shift towards photoreceptor specific isoform 

expression is initiated in advance of the final stages of photoreceptor cell differentiation and the 

development of the critical for vision photoreceptor outer segments. 

Motifs for several RNA binding proteins are enriched in proximity to exons 

differentially spliced in photoreceptors 

After determining that photoreceptors express a characteristic splicing program we 

explored how this splicing program is controlled. To determine if a specific subset of splicing 

regulators bind in proximity to the exons differentially spliced in photoreceptors we performed 

motif enrichment analysis. For this purpose we used the position weight matrices (PWM) from 

the Cis-BP-RNA database that describe the sites recognized by RNA binding proteins (Ray et 

al. 2013). As these matrices are derived from the alignment of 7-mers, they fail to represent the 

true binding site for certain RNA binding proteins that recognize significantly shorter, 3 to 4 
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nucleotides long, sequences. To correct this deficiency we substituted the matrices for PTBP, 

NOVA, MBNL and MSI proteins with matrices corresponding to the sequences recognized by 

their RNA binding domains, i.e. YCU/UCY for PTBP, YCAY for NOVA, YGCY for MBNL, and 

UAG for MSI1. 

Intronic sequences surrounding the differentially spliced exons showed enrichment of 

binding sites for several RNA binding proteins when exons differentially spliced in 

photoreceptors were compared to exons whose inclusion levels were the same in wild type and 

Aipl1 knockout retina (Table 3 and Supplementary Table 6). We observed enrichment of 

RBFOX and EIF2S1 binding sites, and marginal, but statistically significant enrichment of Nova 

binding sites downstream of exons with lower inclusion levels in photoreceptors. EIF2S1 is a 

cytoplasmic protein involved in translation initiation. The enrichment we observed for the 

EIF2S1 binding sites is likely due to the high degree of similarity between the sequence it 

recognizes (WGCAUG) and the binding site of the RBFOX splicing factors (UGCAUG). Weak, 

but statistically significant enrichment of PTBP binding sites was observed upstream of all 

differentially spliced exons, regardless if they were included at higher rate or skipped at higher 

rate in photoreceptors compared to inner neurons. Msi binding sites were enriched downstream 

of exons with higher inclusion levels in photoreceptors, compared to inner neurons. Elavl 

binding sites were partially depleted in exons with higher inclusion levels in photoreceptors and 

enriched in exons with lower inclusion levels in photoreceptors. Exons that had lower inclusion 

levels in photoreceptors showed enrichment of  binding sites recognized by the KHDRBS, 

A1CF, LIN28, MEX3 and RBM41 proteins, all of which bind to for A/U rich sequences. Binding 

sites for two SR proteins, SRSF2 and SRSF9 that recognize G/A rich sequences, were depleted 

in these exons. 

The cis-acting elements that efficiently recruit the PTBP, NOVA, MBNL and MSI proteins 

typically contain clusters of the short sequences recognized by their RNA binding domains (Han 
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et al. 2014; Licatalosi et al. 2008; Zearfoss et al. 2014; Goers et al. 2010; E. T. Wang et al. 

2012). Thus, we tested if the number of PTBP, NOVA, MBNL and MSI motifs that are located in 

clusters is higher in proximity to the exons that are differentially spliced in photoreceptors. We 

examined clusters containing two to five motifs while varying the spacing between the motifs 

from 0 to 30 nucleotides. PTBP binding sites in clusters containing at least 5 motifs spaced by 

less than 2 nucleotides were significantly enriched upstream of all differentially spliced exons 

(Figure 4A and, Supplementary Figures 3 and 4). Such clustering of PTBP motifs is consistent 

with the well characterized mode of binding of the PTBP proteins to RNA. MSI binding sites in 

clusters containing at least three UAG motifs spaced by 10 to 15 nucleotides were enriched up 

to 8 fold downstream of the exons with elevated inclusion levels in photoreceptors (Figure 4A). 

Similar enrichment of pairs of Msi binding sites, albeit with larger spacing, was previously 

reported in the 3’ UTRs of transcripts whose stability and translational efficiency is controlled by 

MSI (Zearfoss et al. 2014). NOVA binding sites were also enriched in clusters downstream of 

exons with lower inclusion levels in photoreceptors compared to inner neurons. We did not 

observe enrichment in the number of MBNL binding site located in clusters.  

The motif enrichment analysis suggests a potential role in photoreceptors for several 

neuronal splicing regulators: RBFOX, NOVA, PTBP, KHDRBS and ELAVL.  

Neuronal splicing factors are downregulated in photoreceptors 

In an attempt to identify splicing factors specific to photoreceptors we examined the 

expression of 1039 known and potential splicing regulators in the panel of mouse retinal 

samples used in our splicing analysis (Supplementary table 7). None of these genes had 

expression restricted to photoreceptor cells that would suggest a role in the regulation of the 

photoreceptor specific exons. We observed that several key regulators of alternative splicing in 

neurons, Rbfox, Nova and Elavl family members, Ptbp1, Khdrbs2, and Srrm4 are 
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downregulated in the wild type retina compared to the Aipl1 knockout (Table 4 and 

Supplementary Table 1).  

We used immunofluorescence staining to determine the expression pattern of RBFOX, 

NOVA, PTBP, KHDRBS, and ELAVL proteins in the mouse retina (Figure 4B). We were unable 

to test the expression of the SRRM4 protein in the retina due to the lack of selective antibodies 

suitable for immunofluorescence. In agreement with the RNA-Seq data showing lower 

expression levels in the wild type retina compared to the Aipl1 knockout, RBFOX and NOVA1 

proteins were expressed in the inner neuronal layers but were completely absent from the 

photoreceptors. RBFOX and NOVA proteins act as splicing activators when bound downstream 

of alternative exons (Weyn-Vanhentenryck et al. 2014; Licatalosi et al. 2008). Thus, the lack of 

RBFOX and NOVA expression in the photoreceptor cells is consistent with the enrichment of 

their binding sites downstream from the exons with lower inclusion levels in photoreceptors 

compared to inner neurons (Figure 4A).  

The PTBP proteins show the expected expression pattern with PTBP1 present in the 

nuclei of Muller glia cells, while PTBP2 (nPTB) is expressed in the neurons and photoreceptors 

(Figure 4B). The absence of PTBP1 from the retinal neurons and photoreceptors releases the 

splicing of alternative exons carrying PTBP binding sites within the upstream intron. These 

exons can then be regulated in a different manner in photoreceptors and inner neurons, 

explaining the enrichment of PTBP1 binding sites upstream of both up- and downregulated 

exons.  

The ELAVL (Hu) proteins are expressed throughout the retina, with lower protein levels 

in the photoreceptors, consistent with the differences in ELAVL mRNA expression determined 

by RNA-Seq (Figure 4B). The pattern of ELAVL binding site enrichment that we observe in 

exons downregulated in photoreceptor cells is not consistent with data from one report showing 
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that the ELAVL1 protein acts as splicing repressor when bound to an alternative exon in the Fas 

gene (Izquierdo 2008).  

The Khdrbs family of RNA binding proteins consists of the ubiquitously expressed 

KHDRBS1 (Sam68), and two orthologues, KHDRBS2 (Slm1) and KHDRBS3 (Slm2, T-STAR), 

which in the CNS are expressed in neurons (Stoss et al. 2004; Iijima et al. 2014; Ehrmann et al. 

2013). Consistent with its ubiquitous expression, KHDRBS1 can be detected thought the retina 

with little variation in signal strength. In contrast, the KHDRBS2 and KHDRBS3 proteins were 

expressed only in the neurons of the inner retina, but not in photoreceptors. The KHRDBS3 

protein expression is most likely suppressed posttranscriptionally as the KHDRBS3 RNA levels 

are uniform throughout the retina (Table 4). Accordingly, the 3'-UTR of KHDRBS3 contains 

conserved binding sites for microRNAs from the miR-96/miR-182/miR-183 cluster which is 

expressed in photoreceptors (Supplementary Figure 5) (Lumayag et al. 2013). The enrichment 

of KHDRBS binding sites in the downregulated exons is consistent with at least one previous 

report showing that KHDRBS3 binds to exonic splicing enhancers to activate exon inclusion 

(Stoss et al. 2001).  

The Musashi proteins directly regulate splicing. 

Msi binding site enrichment in the downstream intron is associated with exons whose 

inclusion level is increased in photoreceptor cells. The two Msi proteins are expressed 

throughout the retina and consistent with previous reports show mostly cytoplasmic localization 

in the inner neuronal layers (Figure 4A) (Nickerson et al. 2011; Susaki et al. 2009; Kaneko and 

Chiba 2009). As an adaptation to low light environment, the heterochromatin of mouse 

photoreceptors is packed in the center of the nucleus and the nucleoplasm pushed to the 

periphery (Solovei et al. 2009; Solovei et al. 2013). This morphology makes DNA staining 

unsuitable for identifying the boundaries of the nucleus. Thus, to determine if the Musashi 

proteins are present in the nuclei of photoreceptors, where they can regulate splicing, we 

142



decorated the nuclear envelope with anti-Lamin antibody (Figure 5A and Supplementary figure 

6). The Lamin staining of 4µm sections showed that both MSI1 (Figure 5) and MSI2 

(Supplementary figure 6) are present in the nuclei of photoreceptor cells, where they are located 

in the periphery and are excluded from the heterochromatin core. 

To generally validate whether the Musashi proteins can activate exon splicing directly we 

tested if the two Musashi proteins can promote inclusion of an alternative exon when bound 

downstream of it. For this purpose we used an alternative splicing reporter that has two lambda 

phage BoxB RNA hairpins engineered in the downstream intron (Heinicke et al. 2013). The loop 

of the BoxB hairpin is specifically bound by the lambda N-peptide. Consequently, proteins 

tagged with the lambda N-peptide will be tethered to the BoxB elements on the pre-mRNA. 

Cotransfection of the reporter with Musashi lambda-N fusions increased inclusion of the reporter 

exon (Figure 6 and Supplementary Figure 7A). The effect of Musashi on splicing is completely 

abolished in a reporter containing G to A point mutations in the two BoxB elements that disrupt 

binding of the lambda-N peptide. Thus, the Musashi proteins are capable of directly promoting 

exon inclusion when bound downstream of an alternative exon.  

The Musashi proteins promote Ttc8 exon 2A inclusion in photoreceptors 

To determine if the Musashi proteins directly regulate splicing in photoreceptors we 

turned to the photoreceptor specific exon 2A in the Ttc8 (Bbs8) gene. We previously mapped 

two 100nt sequence segments in the introns immediately adjacent to exon 2A that acted in 

concert to promote the splicing of this exon in photoreceptors (Murphy et al. 2015). Deletion 

mutagenesis showed that these segments contain multiple redundant cis-acting sequences 

(Murphy et al. 2015). The D4 segment located immediately downstream of exon 2A carries two 

clusters of Musashi binding sites, each containing three UAG motifs (Figure 7A). Within 320nt of 

the downstream intron immediately adjacent to exon 2A we find two more clusters containing 

three and four UAG motifs. A 350nt section of the intron immediately upstream of exon 2A 
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contains four Musashi binding sites, approximately the number of UAG triples that would be 

expected in random sequence of this size. To determine if the Musashi proteins can bind 

specifically to the D4 segment we used biotinylated RNA corresponding to this element to pull-

down RNA binding proteins from retinal extracts. We also performed the pull-down with the 

other regulatory element, D3, and with segment D2, which is not required for splicing of exon 2A 

in photoreceptors. The binding was competed with non-biotinylated competitor RNA, either of 

the same sequence or a non-specific sequence of the same length. In this pulldown experiment 

the Musashi proteins bind specifically to segment D4, and their binding can be competed out by 

RNA of the same sequence and not by nonspecific competitor (Figure 7B). In contrast, 

segments D2 and D3, each of which contains a single UAG motif, had lower affinity for the 

Musashi proteins and the binding was completely blocked by a nonspecific competitor.   

 To determine how Msi1 binding downstream of exon 2A affects its inclusion levels in the 

retina we used a reporter minigene. The reporter, designed to produce GFP exon when the 

exon is skipped and RFP when the exon is included, was described previously (Murphy et al. 

2015; Stoilov et al. 2008). We mutated all 15 Musashi binding sites in the downstream intron of 

the minigene (Figure 7A). We then co-transfected the wild type and mutant minigenes with Msi1 

and Msi2 expression constructs in N2A cells. MSI1 and MSI2 potently promoted the inclusion of 

the wild type exon 2A but had no effect on the mutant minigene (Figure 7C and Supplementary 

figure 7A). To determine if the Msi binding sites are required for splicing of Ttc8 exon 2A in 

photoreceptor cells, we electroporated the wild type and mutant minigenes in the retina of 

neonate mice. We allowed the photoreceptors to develop and analyzed the splicing of the 

minigene transcripts in the retina by RT-PCR and immunofluorescence at postnatal days 16 and 

20, respectively. As we have shown previously, the wild type Ttc8 exon 2A is included at high 

levels in the photoreceptors and is excluded from the mature transcripts in the inner neurons 

(Figure 7D and Supplementary figure 7B). In contrast, the inclusion level of exon 2A in the 
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transcripts of the mutant minigene, where the Musashi binding sites were disrupted, was 

reduced to approximately 38%.  

Msi1 promotes the inclusion of photoreceptor specific exons 

The enrichment of Musashi binding sites downstream of exons with elevated inclusion 

levels in photoreceptors suggests that multiple alternative exons should be regulated by the 

Musashi proteins in addition to Ttc8 exon 2A. To test this prediction, we analyzed the splicing in 

N2A cells of 11 exons with elevated inclusion levels in photoreceptors after expressing flag-

tagged Msi1. Msi1 caused statistically significant increase (t-test p-value <0.01) in the inclusion 

levels of 7 exons located in the Ttc8, Cep290, Cc2d2a, Prom1, Cluap1, Impdh1, and Unc13b 

genes (Figure 8). Inclusion levels of five of these exons, including exon 2A of the endogenous 

Ttc8 gene, increased by at least 10% in response to Msi1 expression (Figure 8). The smaller 

amplitude of the effect of Msi1 transfection on the inclusion levels of the endogenous Ttc8 exon 

2A compared to the minigene transcripts is due to the transfection efficiency, which was 

approximately 40% in these experiments. Among the exons coordinately regulated by the MSI1 

are four “switch-like” exons in Ttc8, Cep290, Cc2d2a and Prom1. All four genes encode 

ubiquitously expressed proteins that are involved in ciliary biogenesis and function. Ttc8, 

Cep290, Cc2d2a and Prom1 are also required for the development and maintenance of the 

photoreceptor outer segments (Chang et al. 2006; Bachmann-Gagescu et al. 2011; Yang et al. 

2008). 

Discussion 

 The lack of comprehensive gene expression profiles of defined neuronal subtypes is a 

major obstacle to understanding how the neuronal diversity of the vertebrate CNS is 

established. To delineate the gene expression and alternative splicing programs of a single 

neuronal subtype we turned to the vertebrate retina. The high abundance of rod photoreceptors 
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in the mouse retina allowed us to isolate the characteristic features of their gene expression and 

alternative splicing programs by comparing the Aipl1 knockout model of retinal degeneration to 

wild type mice.  

The splicing profile of photoreceptor cells is generally related to the spicing profiles of 

retinal and CNS neurons (Figure 2 and Supplementary figure 1). Alternative splicing in neurons 

is known to be regulated by SRRM4 and members of the PTBP, RBFOX, KHDRBS, NOVA and 

ELAVL families of RNA binding proteins (Q. Li, Lee, and Black 2007; Raj and Blencowe 2015; 

Iijima et al. 2014; Iijima et al. 2011; Ehrmann et al. 2013). Strikingly, photoreceptors lack 

RBFOX, NOVA, KHDRBS2 and KHDRBS3 protein expression, express lower amounts of 

ELAVL proteins and have markedly lower Srrm4 transcript levels. In light of this data, the switch 

from PTBP1 to PTBP2 expression during development emerges as a major determinant of the 

alternative splicing program that is shared between neurons and photoreceptor cells (Boutz et 

al. 2007; Makeyev et al. 2007).   

To find photoreceptor specific splicing regulators we examined expression across the 

samples in our tissue panel of over 1000 candidate genes. We failed to identify candidates with 

an expression profile that correlates with the inclusion levels of the photoreceptor specific exons 

across the RNA-Seq samples in our panel. In the absence of a “master” regulator of splicing in 

photoreceptors, the characteristic splicing program of these cells can be determined by a unique 

combination of splicing factors with broader expression or through regulation of the activity of 

these factors by posttranslational modifications. Such combinatorial control of splicing is a well-

established paradigm, but rarely has it been seen to produce the high level of cell type 

specificity we see for a subset of the differentially spliced exons we identify (Hertel 2008). 

In support of the combinatorial mode of splicing regulation we show that MSI1 and MSI2 

promote the splicing of exons with elevated inclusion levels in photoreceptors. The Musashi 

proteins are notable for their expression in stem cells, where they are involved in stem cell 
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maintenance and cell fate determination (Okano, Imai, and Okabe 2002; Fox et al. 2015; 

Nakamura et al. 1994). The best characterized function of Musashi is the regulation of mRNA 

stability and translation in the cytoplasm through binding to the 3’-UTR of the target transcripts 

(Fox et al. 2015). In the retina, the subcellular localization of the Musashi proteins varies during 

development and in mature neurons the two proteins are confined to the cytoplasm (Figure 4) 

(Nickerson et al. 2011). Here we show that in photoreceptor cells MSI1 and MSI2 are present 

not only in the cytoplasm but also in the nuclei, where they control alternative pre-mRNA 

splicing (Figure 5). Controlling the subcellular localization of the Musashi proteins provides an 

intriguing mechanism that can generate the characteristic splicing program of photoreceptors 

without requiring a photoreceptor specific RNA binding protein. Similar mechanisms that involve 

redistribution of RNA binding proteins between the nucleus and the cytoplasm have been shown 

to control alternative splicing in response to external stimuli (van der Houven van Oordt et al. 

2000; Lee, Tang, and Black 2009; Daoud et al. 2002). The downregulation of neuronal splicing 

regulators is another characteristic of the combinatorial control mechanism that drives the 

alternative splicing program of photoreceptors. Consequently, exons whose inclusion depends 

on splicing factors like Rbfox and Nova are skipped in photoreceptor cells.  

At present it is unclear how most of the alternative exons we identified affect protein 

function or to what degree alternative splicing shapes the properties of the photoreceptor cells. 

One exception is the 14nt exon 8 in the Arl6 (BBS3) gene, which has high inclusion levels in 

photoreceptors (Figure 1). ARL6, a Ras family GTP-binding protein, is part of a network of 

proteins involved in the development and maintenance of primary cilia (Figure 8C). The exon 8 

containing isoform of ARL6 is required for normal vision in zebra fish (Pretorius et al. 2011; 

Pretorius et al. 2010). The vision phenotype of mice lacking Arl6 exon 8 has not been reported 

in detail, however gross histological examination and immunofluorescent staining of the retina 

show that the inner segments of photoreceptors are disorganized (Pretorius et al. 2010). 
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Several other components of the protein network that ARL6 is part of are also differentially 

spliced in photoreceptors. Four of these genes, Cep290, Cc2d2a, Ttc8 and Prom1 contain 

“switch-like” exons that produce isoforms highly specific to photoreceptors (Figure 8C and 

Figure 1B) (Riazuddin et al. 2010; Murphy et al. 2015). Strikingly, the splicing of these “switch-

like” exons is coordinately regulated in development (Figure 3B) and their inclusion is promoted 

by MSI1. We are tempted to speculate that alternative splicing modifies the properties of these 

otherwise ubiquitously expressed proteins to enable the development of the outer segment 

membrane stacks by the photoreceptor cilia. Consistent with a role of MSI1 in controlling 

alternative splicing in photoreceptor morphogenesis, the photoreceptor outer segments of Msi1 

knockout mice are short and fragmented (Susaki et al. 2009).  

Further highlighting a potential role in photoreceptor differentiation, the photoreceptor 

splicing program is activated in the postmitotic progenitors, prior to the onset of outer segment 

development. A transcription factor cascade starting from Crx homeobox protein that is critical 

for photoreceptor morphogenesis is also activated during the same developmental time frame 

(Morrow et al. 2005; Swaroop, Kim, and Forrest 2010; Cepko 2014).  Interestingly, alternative 

splicing in photoreceptors is not affected in the Crx knockout animals and in the Crx dominant 

negative mutant, which suppresses the upstream Otx2 transcription factor (Roger et al. 2014). 

Thus, the developmental switch to photoreceptor specific splicing is independent of the 

established transcriptional mechanism that activates the expression of photoreceptor specific 

genes. 

In summary we demonstrate that photoreceptors express a characteristic splicing program that 

encompasses hundreds of alternative exons and affects the transcripts of multiple genes that 

are critical for vision.  
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Materials and methods 

Clones and antibodies 

To generate the flag-tagged Musashi 1 clone we amplified the coding sequence from 

mouse retinal cDNA using primers that introduced the flag tag and restriction sites for cloning 

(See Supplementary table 11 for primer sequences). The product was inserted into pCDNA3.1 

vector linearized with BamH1 and Xho1. 

The PKC-neg-40B-2xBoxB-EGFP splicing reporter and pIBX-C-FF-(B)-NLS-λN 

expression vector were described previously (Newman et al. 2006; Heinicke et al. 2013). PKC-

neg-40B-2xBoxB (G1A)-EGFP was constructed by swapping the 2xBoxB cassette with the 

mutant 2xBoxB G1A via ClaI and XhoI (The first G in the loop of the BoxB hairpin (G1) is 

required for λN binding (Chattopadhyay et al. 1995).  

The Bbs8 exon 2A minigene containing mutagenized Musashi 1 consensus binding 

motifs was created using Gibson Assembly (See Supplementary Table 11 for the 

oligonucleotide sequences).  

Antibodies used in this work are listed in Supplementary table 8.  

Mice 

All procedures carried out on laboratory mice were approved by Institutional Animal Care 

and Use Committee at West Virginia University (WVU). Subretinal injection, time course 

analyses, and immunofluorescence of sections were performed on CD-1 mice (Charles River). 

Aipl1(-/-) mice were generated as described (Ramamurthy 2004).Toluidine blue staining in 

Figure 1 was performed on p65 C57bl/6j and p60 Aipl1(-/-) mice.  

RNA-Seq library preparation and sequencing 
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Total RNA was isolated from wild type C57bl/6j and C57bl/6j:Aipl1 (-/-) retinas at 

postnatal day 50 using Tri-reagent (Sigma). rRNA subtracted RNA-Seq libraries were generated 

using 1µg of total RNA per replicate using RiboZero and TruSeq kits (Illumina) following 

manufacturer's instructions. Four replicates, each derived from different animal, were generated 

for each wild type and Aipl1(-/-) sample. The libraries were sequenced to a depth of 43 million 

reads (range 39  to 47 million reads) on Illumina Hi-Seq 15000. Library preparation was carried 

out by the WVU genomics core and the libraries were sequenced by the Marshall University 

genomics core. The reads produced by the RNA-Seq experiments are deposited at the NCBI 

SRA repository under accession number SRP068974. 

Bioinformatics analysis 

Reads from the retinal samples were mapped to the current mouse genome (GRCm38) 

using TopHat. Following the mapping, Cufflinks was used to carry out guided transcriptome 

assembly based on the ENSEMBL GRCm38 annotation (Supplementary data file 1 contains the 

updated annotation in GTF fromat). Additional RNA-Seq data sets for mouse tissues and retinal 

samples from genetically engineered mouse models were downloaded from the NCBI sequence 

read archive (Supplementary table 9) and aligned to the updated annotation.  

Exon inclusion levels across all samples were calculated using rMATS version 3.08 

(Shihao Shen et al. 2014). In light of the large data set that needed to be processed we modified 

rMATS to improve the speed of read pre-processing and counting. For this purpose we enabled 

rMATS software to read the binary BAM alignment format via samtools/pysam and to use 

multithreading (H. Li et al. 2009; “Pysam-Developers/pysam” 2016). We also added a basic 

capability to discover novel exons within annotated transcripts based on splice junction reads 

that are anchored on one end to a known exon (Supplementary figure 8). rMATS was also used 

to carry out differential splicing analysis of the wild type and Aipl1(-/-) retina samples. 

Differences in gene expression between the wild type and Aipl1(-/-) samples were identified 
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using featureCounts and edgeR  (Robinson, McCarthy, and Smyth 2010; Liao, Smyth, and Shi 

2014). Gene Ontology analysis was carried out using WebGestalt (J. Wang et al. 2013). 

Motif enrichment analysis was carried out in R/Bioconductor using the PWMEnriched 

package (Stojnic and Diez 2015). Position weight matrices for RNA binding proteins were 

described previously (Ray et al. 2013). The matrices for RBFOX, PTBP, MBNL and MSI 

proteins were replaced with the matrices listed in Supplementary Table 10. Binding sites 

carrying 90% match to the scoring matrices were counted in the exons and in 200nt segments 

of the introns immediately adjacent to the exon. Binding site position for orthologues recognizing 

highly similar sequences, e.g. RBFOX1, 2 and 3 proteins, KHDRBS1, 2 and 3 proteins, etc, 

were pooled together. Binding sites whose positions on the transcript overlap by more than 50% 

were counted as a single site. Two single tailed hypergeometric tests were used to determine 

the significance of the binding site enrichment/depletion in each segment. The hypergeometric 

test p-values were then corrected for multiple testing using Benjamini-Hohberg's procedure. To 

assess if there is an enrichment of clustered binding sites, the binding sites for MSI, PTBP, 

ELAVL and NOVA proteins that were not located within a cluster were excluded from the 

analysis. Clusters were defined by two parameters: minimum number of binding sites necessary 

to form a cluster, ranging from 2 to 5; and the maximum spacing between them, ranging from 

0nt to 30nt. The enrichment analysis was carried out for each pair of minimum binding site count 

and maximum spacing parameters.  

RNA isolation and RT-PCR from retina 

Mouse eyes were enucleated at post-natal day 16 and dissected under stereo 

microscope (Zeiss Stemi dv4) to isolate the retina. Retinal RNA was isolated with TRI reagent 

(Sigma) according to manufacturer’s guidelines. Reverse-transcription PCR reactions containing 

0.1-0.5µg RNA were primed with Oligo dT and random hexamers to generate cDNA. 

Alternatively spliced regions were amplified using fluorescently labeled primers positioned in the 
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flanking exons (See Supplementary table 11 for primer sequences). The amplified products 

were separated by gel electrophoresis under denaturing conditions (urea/polyacrylamide gels) 

and imaged on a Typhoon 9410 imager (GE). 

Retinal tissue sections and fluorescence imaging  

Mouse eyes were enucleated at P20, punctured at the edge of the cornea with an 18-

gauge needle, and incubated in 4% paraformaldehyde for 10 min. After removal of the cornea, 

the dissected eye was incubated in 4% paraformaldehyde for an additional 1 h with shaking. 

After three 5-min washes in PBS, the eyes were cryoprotected by shaking at 4°C overnight in 

PBS containing 20% sucrose. Eyes were then incubated for 1 h with shaking in a 1:1 mixture of 

optimal cutting temperature (OCT) (Tissue Tek) compound and 20% sucrose–PBS, during 

which time the lens was removed. Eye cups were then flash frozen in OCT compound and 

stored at -80°C. Retinal sections were cut to 4µm or 16µm (Leica CM1850) and mounted on 

Superfrost Plus (Fisher) slides and stored at -20°C. Slides were washed in PBS to remove 

excess OCT compound and mounted with Prolong Gold reagent containing DAPI (4-,6-

diamidino-2-phenylindole) (Life Technologies). For immunofluorescence staining, slides were 

washed with PBS to remove excess OCT compound and blocked in PBS containing 10% FBS, 

0.5% Triton X-100(Sigma), and 0.5x10-4% Sodium Azide. Slides were then washed once more 

with PBS before overnight incubation at 4°C with primary antibody. Primary antibodies were 

removed with three 15 minute washes in PBS containing 0.1% Triton X-100 prior to a 1 hour 

incubation at room temperature with secondary antibody. Following 3 additional washes for 20 

minutes each in PBS containing 0.1% Triton X-100, slides were rinsed briefly in water and 

mounted. All antibodies for immunofluorescence were diluted in PBS containing 5% FBS, 0.5% 

Triton X-100 and 0.5x10-4% Sodium Azide. 

The slides were imaged on Zeiss LSM 510 or 700 laser scanning confocal microscopes. 

Musashi, Lamin-B, and DAPI co-localization analysis was performed on 4µm sections using 
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ImageJ software to plot signal intensities spanning a 10µm line perpendicular to the border of 

nuclei in the ONL, n= 53. Signals from individual nuclei were normalized to the maximal signal 

for each channel. Each set of measurements were then centered relative to the maximal Lamin-

B signal before calculating and plotting data. 

Cell Line Transfections 

Exponentially growing mouse neuroblastoma (N2A) cells were plated at 0.8x105 cells per 

ml. Following 24 hours of incubation at 37°C cells were transiently transfected using a 2.5:1 

ratio of Polyethylenimine to plasmid DNA mixture containing equal amounts of minigene 

reporter and expression vector. After 48 hours of incubation cells were washed twice with ice 

cold PBS. RNA was isolated with TRI reagent (Sigma) according to manufacturer’s guidelines 

and cDNA was synthesized to analyze splice products as above.  

293T cells were transfected using Mirus Transit 293 reagent with 150ng PKC-neg-40B-

2xBoxB-EGFP or PKC-neg-40B-2xBoxB(G1A)-EGFP  and 50ng pIBX-C-FF-(B)-NLS-λN (empty 

vector, Msi1 or Msi2) per well of a 24 well plate in triplicate. RNA and protein were isolated 48 

hours later using Trizol reagent and RIPA buffer, respectively. RT-PCR of the mini-gene was 

carried out using primers in the flanking exons of the 40nt test exon with the reverse primer 

being FAM labeled.  

Western Blotting 

Transiently transfected N2A cells expressing wild type or mutagenized Bbs8 exon 2a 

splicing reporters along with N-terminally flag-tagged Msi1 expression vector or empty vector 

were washed twice in ice cold PBS and boiled at 95°C  for 6 minutes in SDS buffer containing 

1% 2-mercaptoethanol (Sigma). Lysates were stored at -80°C and resolved in 10% SDS-PAGE 

gel electrophoresis before being transferred to an Immobilon FL membrane (Millipore.) 

Membranes were blocked in Tris buffered saline solution containing 1% Tween-20 (sigma) and 
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0.25% bovine skin gelatin (Sigma). After blocking membranes were incubated with primary 

antibodies overnight at 4°C in the blocking solution. After removing the primary antibody and 

washing the membrane, the secondary antibodies were applied in the blocking solution for 1 

hour at RT. Membranes were imaged on a Typhoon 9410 imager (GE) after removing the 

secondary antibodies and washing the membranes in PBS.  

Subretinal Injection and Electroporation 

Plasmid DNA was isolated at 4 to 6 µg/µl using a Qiagen Plasmid Plus Midi kit. DNA 

containing 0.1% fluorescein sodium was injected into the subretinal space of newborn CD-1 

pups as described previously (Matsuda and Cepko 2004). Briefly, after anesthesia, an incision 

was made at the future eyelid with a 33-gauge needle under a dissecting microscope. The 

needle was used to make a pinhole puncture in the sclera away from the lens. A 0.5-µl volume 

of DNA was injected through the puncture into the subretinal space using a blunt-end syringe. 

Five pulses of 80 V at 50-ms duration with 950-ms intervals were then applied with tweezer-type 

electrodes (BTX model 520) (7-mm diameter). 

RNA Pull-down  

Template DNA was amplified using primers corresponding to intronic regions flanking 

BBS8 exon 2A (Supplementary Table 11) and purified through gel extraction (Zymo). RNA 

probes were synthesized with the Hi-Scribe T7 RNA Synthesis kit (NEB) using 0.5µg of 

template DNA. 100pmol of RNA probes were then biotinylated using the Pierce RNA 3’ end 

biotinylation kit (Thermo Fisher) and purified according to manufacturer’s instructions. 

Biotinylated RNA probes were re-suspended in 100µl of high salt buffer (0.5M NaCl, 10mM 

Hepes pH7.9). Approximately 0.4mg of streptavidin magnetic beads (NEB) were washed in high 

salt buffer and incubated with biotinylated probes on ice for 1-2 hours with occasional mixing. 

RNA-bead conjugates were then washed three times with wash buffer (0.1M KCl, 10mMHepes 
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pH 7.9, 0.1% Triton-X100). Washed beads were then incubated on ice with 100µg retinal extract 

and 6µg competitor RNA or water in binding buffer (0.1M KCl, 10mMHepes pH 7.9, 5µg/µl 

heparin (Sigma), 0.1% Triton-X100 and 20U RNAse Inhibitor (Santa Cruz Biotech)) for four 

hours with occasional mixing. Beads were then washed three times with wash buffer. Bound 

proteins were eluted in wash buffer containing 20ng RNAse A (Sigma). The Musashi proteins in 

the eluates were detected by western blotting using an antibody that reacts with both MSI1 and 

MSI2 (Supplementary table 8). All steps were carried out in low retention micro centrifuge tubes 

(Fisher). 
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Tables 

Table 1. GO categories enriched in genes differentially expressed in wild type compared 

to Aipl1(-/-) retina. 

Genes with higher expression in wild type retina 

GO Term  
GO term 

ID 

Fold 
enrichme

nt 

Adjuste
d 

p-value 

Biological Process       

visual perception GO:000760
1 9.43 1.13E-

33 

sensory perception of light stimulus GO:005095
3 9.43 1.13E-

33 

detection of light stimulus GO:000958
3 13.16 7.06E-

17 

phototransduction GO:000760
2 14.51 1.88E-

15 

photoreceptor cell differentiation GO:004653
0 9.48 2.84E-

13 

photoreceptor cell development GO:004246
1 10.69 2.11E-

12 

retina development in camera-type eye GO:006004
1 5.96 3.53E-

12 

detection of abiotic stimulus GO:000958
2 6.86 8.06E-

12 

eye photoreceptor cell differentiation GO:000175
4 9.84 4.52E-

11 

photoreceptor cell maintenance GO:004549
4 12.22 8.73E-

10 

Molecular Function             

3',5'-cyclic-nucleotide phosphodiesterase activity GO:000411
4 7.53 0.0016 

cyclic-nucleotide phosphodiesterase activity GO:000411
2 7.23 0.0016 

3',5'-cyclic-GMP phosphodiesterase activity GO:004755
5 10.43 0.0016 

cyclic nucleotide-gated ion channel activity GO:004385
5 12.55 0.0018 

intracellular cyclic nucleotide activated cation channel 
activity 

GO:000522
1 12.55 0.0018 

Cellular Component       
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cilium GO:000592
9 6.37 2.43E-

33 

nonmotile primary cilium GO:003151
3 9.35 7.01E-

24 

primary cilium GO:007237
2 8.29 1.56E-

22 

photoreceptor outer segment GO:000175
0 12.19 2.29E-

19 

cell projection GO:004299
5 2.08 1.03E-

13 

photoreceptor inner segment GO:000191
7 13.18 9.67E-

13 

cilium part GO:004444
1 6.4 2.36E-

10 

photoreceptor connecting cilium GO:003239
1 9.93 6.62E-

07 

photoreceptor outer segment membrane GO:004262
2 15.99 1.13E-

06 

BBSome GO:003446
4 19.58 1.48E-

06 
        

Genes with lower expression in wild type retina 

GO Term  
GO term 

ID 

Fold 
enrichme

nt 

Adjuste
d 

p-value 

Biological Process       

biological adhesion GO:002261
0 2.58 1.07E-

75 

cell adhesion GO:000715
5 2.59 1.07E-

75 

locomotion GO:004001
1 2.23 3.01E-

58 

Molecular Function             

substrate-specific channel activity GO:002283
8 2.83 3.15E-

45 

ion channel activity GO:000521
6 2.84 8.67E-

45 

channel activity GO:001526
7 2.76 4.05E-

44 

passive transmembrane transporter activity GO:002280
3 2.76 4.05E-

44 

ion gated channel activity GO:002283
9 3.03 4.24E-

40 

transmembrane transporter activity GO:002285
7 2.09 4.24E-

40 
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gated channel activity GO:002283
6 3.03 4.24E-

40 

substrate-specific transmembrane transporter activity GO:002289
1 2.14 2.83E-

39 

Cellular Component       

neuron projection GO:004300
5 2.38 9.01E-

59 

synapse GO:004520
2 2.62 1.62E-

54 

extracellular matrix GO:003101
2 2.99 9.06E-

54 

cell junction GO:003005
4 2.35 3.35E-

52 
 

Table 2. GO terms enriched in genes with exons differentially spliced in wild type retina 

compared to retina from Aipl1(-/-) animals 

 

GO Term 
GO term 

ID 

Fold 
enrichme

nt 

Adjuste
d 

p-value 

Biological Process       

cellular component organization or biogenesis at 
cellular level 

GO:007184
1 1.6 3.00E-

04 

cellular component organization at cellular level GO:007184
2 1.61 3.00E-

04 

nervous system development GO:000739
9 1.96 4.00E-

04 

cellular component organization GO:001604
3 1.5 4.00E-

04 

cellular component organization or biogenesis GO:007184
0 1.49 4.00E-

04 

single-organism process GO:004469
9 1.35 7.00E-

04 

neuron differentiation GO:003018
2 2.22 7.00E-

04 

cellular process GO:000998
7 1.16 1.40E-

03 

cell projection organization GO:003003
0 2.09 2.60E-

03 

neuron development GO:004866
6 2.25 2.60E-

03 

generation of neurons GO:004869
9 2.05 2.60E-

03 
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neuron projection development GO:003117
5 2.33 3.30E-

03 

regulation of cellular process GO:005079
4 1.27 3.30E-

03 

cell communication GO:000715
4 1.42 3.30E-

03 

cell development GO:004846
8 1.81 3.30E-

03 

neurogenesis GO:002200
8 1.97 3.30E-

03 

cellular component morphogenesis GO:003298
9 2.05 3.30E-

03 

biological regulation GO:006500
7 1.24 3.40E-

03 

cell morphogenesis GO:000090
2 2.07 3.90E-

03 

cell-cell signaling GO:000726
7 2.14 6.00E-

03 

regulation of biological process GO:005078
9 1.24 6.00E-

03 

organelle organization GO:000699
6 1.56 6.90E-

03 

Molecular Function     

binding GO:000548
8 1.25 1.54E-

08 

protein binding GO:000551
5 1.32 4.00E-

04 

cytoskeletal protein binding GO:000809
2 2.2 1.90E-

03 

Cellular Component 

intracellular GO:000562
2 1.24 1.44E-

09 

cell part GO:004446
4 1.18 5.95E-

08 

cell GO:000562
3 1.18 5.95E-

08 

intracellular part GO:004442
4 1.22 8.83E-

08 

cytoplasm GO:000573
7 1.28 3.71E-

06 

organelle GO:004322
6 1.21 8.11E-

05 

intracellular organelle GO:004322
9 1.21 1.00E-

04 

cell projection GO:004299
5 1.79 3.00E-

04 

synapse GO:004520
2 2.17 1.10E-

03 
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non-membrane-bounded organelle GO:004322
8 1.48 1.10E-

03 

intracellular non-membrane-bounded organelle GO:004323
2 1.48 1.10E-

03 

microtubule GO:000587
4 2.71 1.40E-

03 

clathrin coat of coated pit GO:003013
2 13.37 1.80E-

03 

cytoskeleton GO:000585
6 1.61 1.80E-

03 

membrane-bounded organelle GO:004322
7 1.18 3.40E-

03 

intracellular membrane-bounded organelle GO:004323
1 1.17 8.00E-

03 

nucleus GO:000563
4 1.26 9.00E-

03 
 

 
 

Table 3: Binding site enrichment in the regulated exons and 200nt of the adjacent 

introns. Locations with significant enrichment/depletion (FDR corrected p-value < 0.01) 

are shown in bold typeface. 

 

RNA binding 
protein 

Upregulated exons 

Upstream intron Exon Downstream intron 

Fold 
enrichment FDR 

Fold 
enrichment FDR 

Fold 
enrichment FDR 

A1CF 1.13 3.08E-01 1.42 7.72E-01 1.14 4.88E-01 
EIF2S1 1.17 3.08E-01 1.71 4.96E-02 1.06 9.77E-01 
ELAVL1/2/3 1.14 1.60E-01 0.73 6.10E-04 1.08 6.31E-01 
KHDRBS1/2/3 1.14 8.25E-01 1.87 4.68E-01 0.79 3.56E-01 
LIN28 0.60 7.47E-02 0.79 6.97E-01 0.85 5.86E-01 
MEX3A/B/C/D 1.31 3.44E-01 2.41 6.68E-01 0.82 6.16E-01 
MSI1/2 0.90 3.08E-01 1.13 9.14E-01 1.29 3.32E-07 

NOVA1/2 1.12 1.20E-01 1.09 1.64E-01 0.96 5.79E-02 
PCBP1/2/3 1.34 2.68E-03 0.76 3.49E-01 1.09 3.67E-01 
PTBP1/2/3 1.11 1.42E-03 0.98 7.72E-01 1.07 9.79E-02 
RBFOX1/2/3 1.81 1.47E-01 2.14 5.84E-02 1.22 9.81E-01 
RBM41 1.23 1.72E-01 1.42 7.88E-01 0.73 1.17E-01 
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SRSF2 0.84 4.54E-01 0.90 9.62E-01 0.87 6.16E-01 
SRSF9 0.75 1.20E-01 0.96 9.14E-01 0.97 7.93E-01 
       

RNA binding 
protein 

Downregulated exons 

Upstream intron Exon Downstream intron 

Fold 
enrichment FDR 

Fold 
enrichment FDR 

Fold 
enrichment FDR 

A1CF 0.86 4.91E-01 2.39 4.65E-03 1.26 2.56E-01 
EIF2S1 0.91 5.24E-01 1.08 3.99E-01 2.46 7.10E-05 

ELAVL1/2/3 1.00 5.24E-01 1.82 9.84E-05 1.30 3.88E-02 
KHDRBS1/2/3 2.31 1.25E-02 2.37 4.38E-03 0.79 3.02E-01 
LIN28 1.29 3.20E-01 0.55 4.38E-03 0.66 2.56E-01 
MEX3A/B/C/D 0.82 5.70E-01 4.57 4.38E-03 0.57 2.98E-01 
MSI1/2 0.88 2.14E-01 1.45 9.29E-07 0.93 3.06E-01 
NOVA1/2 1.06 2.77E-01 0.99 5.80E-01 1.25 3.21E-04 

PCBP1/2/3 0.87 3.48E-01 0.77 1.24E-01 1.03 4.45E-01 
PTBP1/2/3 1.03 3.02E-02 0.93 3.64E-01 1.05 1.00E-02 
RBFOX1/2/3 1.40 3.20E-01 0.90 5.30E-01 4.18 5.43E-07 

RBM41 0.75 3.48E-01 2.45 4.38E-03 1.14 3.26E-01 
SRSF2 0.76 3.86E-01 0.40 1.01E-05 0.64 2.48E-01 
SRSF9 0.80 2.05E-01 0.75 6.47E-03 0.73 7.99E-02 

 

Table 4. Expression level difference of RNA binding protein in wild type retina compared 

to retina from Aipl1(-/-) mice. Significant differences in gene expression are shown in 

bold typeface. 

Entrez 
GeneID 

Symbol 
Log(2) Fold Change  

WT/AIPL1(-/-) 
FDR 

15568 Elavl1 -0.56 6.113E-3 

15569 Elavl2 -1.21 1.226E-7 

15571 Elavl3 -1.51 1.762E-16 

15572 Elavl4 -1.23 1.796E-11 

20218 Khdrbs1 -0.16 5.493E-1 
170771 Khdrbs2 -1.33 5.649E-16 

13992 Khdrbs3 0.47 1.224E-2 
17690 Msi1 0.50 9.849E-3 

76626 Msi2 0.36 6.597E-2 
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664883 Nova1 -1.69 3.542E-10 

384569 Nova2 -2.02 1.272E-14 

19205 Ptbp1 -0.49 8.269E-4 

56195 Ptbp2 -0.34 1.634E-1 
230257 Ptbp3 -0.24 2.717E-1 
268859 Rbfox1 -1.32 1.798E-16 

93686 Rbfox2 -1.21 3.027E-15 

52897 Rbfox3 -1.20 1.954E-10 

51796 Srrm1 0.16 6.699E-1 
75956 Srrm2 -0.21 5.651E-1 
58212 Srrm3 -0.26 2.886E-1 
68955 Srrm4 -1.35 3.802E-6 
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Figure legends 

Figure 1. Identification of differentially spliced exons in photoreceptors. (A) Retinal 

sections from wild type (left) and Aipl1(-/-) mice stained with toluidine blue at postnatal day 50. 

Low magnification images show the overall retinal structure near the site of the optic nerve (top). 

Red rectangles indicate the position of the magnified images shown below. Below, high 

magnification images show the layered retinal structure. The Aipl1(-/-) animals lack layers 

formed by the photoreceptor cells: outer nuclear layer (ONL), inner segment (IS) and outer 

segment (OS). The retinal pigmented epithelium (RPE), the inner nuclear layer (INL) and 

ganglion cell layer (GCL) are intact in the Aipl1(-/-) animals. (B) Experimental approach for 

identifying transcripts differentially expressed in photoreceptors. The retina transcriptome is an 

aggregate of the transcriptomes of multiple cell types. Approximately 40-60% of the cells in the 

neural retina are photoreceptors. Due to the abundance of photoreceptors in the retina, their 

loss produces changes in the retinal transcriptome that are readily detectable. (C) RT-PCR 

analysis of the inclusion levels of exons identified in the RNA-Seq analysis in retina from wild 

type, Aipl1(-/-) and Nrl(-/-) mice. The exons include the previously described photoreceptor 

specific exon 2A in the Ttc8 gene and retina enriched exon 6 in the Arl6 gene. The bands 

corresponding to the exon skipped and exon included mRNA isoforms are labeled with ‘+’ and ‘-

’, respectively. The relative exon inclusion and standard error of three independent replicates 

are shown below each lane.  

Figure 2. The photoreceptors express a splicing program that is distinct from the splicing 

profiles of CNS or other retinal neurons. Heatmap showing the relative inclusion levels of 

exons differentially spliced between the retina of wild type and Aipl(-/-) animals across a panel 

of mouse tissues. Unsupervised hierarchical clustering places retinal samples from Aipl1(-/-) 

mice along with the CNS samples, while the wild type retina samples form a separate cluster. 
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Microexons with length of 30nt or less are annotated on the right. The red bar on the left shows 

a cluster of photoreceptor specific exons with “switch like” splicing pattern.    

Figure 3. The photoreceptor splicing program is executed in the postmitotic progenitors 

independent of Crx. (A) Heatmap showing the inclusion of exon differentially spliced in 

photoreceptors across retinal samples from wild type mice and genetically engineered mouse 

models. Unsupervised hierarchical clustering groups the sample in two major clusters. One 

cluster groups samples from retinas that lack photoreceptors (RD10, Aipl1(-/-)) with wild type 

retina at postnatal day 2 (P2). The second cluster contains wild type retina samples from 

postnatal days 50 (P50) and 21 (P21) along with samples from mice carrying a dominant 

negative mutation in the Crx gene (Crx-DN) and knockout animals lacking the Crx or Nrl genes. 

Microexons with length of 30nt or less are annotated on the right. (B) RT-PCR analysis of the 

splicing of four photoreceptor specific exons in the developing retina between postnatal days 0 

and 16. The bands corresponding to the exon skipped and exon included mRNA isoforms are 

labeled with ‘+’ and ‘-’, respectively. Key landmarks in eye development between postnatal days 

0 and 16 are indicated with arrows below the gel images. 

Figure 4. Enriched motifs for RNA binding proteins in exons differentially spliced in 

photoreceptors and expression of neuronal splicing regulators in the retina. (A) Diagram 

showing the position and enrichment of RNA binding protein motifs in proximity to the exons that 

are differentially spliced in photoreceptors. Sites enriched/depleted in the upregulated exons are 

shown on top in green and sites enriched/depleted in downregulated exons are shown below 

the exon diagram in red. Stacked ovals indicate clusters of binding sites. Pale colors indicate 

depletion of the motif. The fold enrichment and false discovery rate corrected p-values are 

shown next to each site. Clustered motifs are also labeled with the minimum number of motifs 

per cluster and the maximum spacing between the motifs in the cluster.  (B) 

Immunofluorescence (IF) staining of retinal sections with antibodies against RBFOX, NOVA1, 
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ELAVL, PTBP1, PTBP2, MSI1, MSI2, KHDRBS1, KHDRBS2 and KHDRBS3. IF signal is shown 

in grayscale and DAPI staining of the nuclear DNA is in blue. DAPI staining, shown for half of 

each section, indicates the position of the outer nuclear (ONL), inner nuclear (INL) and ganglion 

cell (GCL) layers.   

Figure 5. Musashi 1 is present in the nuclei of photoreceptor cells. (A) 

Immunofluorescence staining of the outer nuclear layer on 4µm retinal sections. The nuclear 

envelope is stained with Lamin-B antibody (red). MSI1 staining is shown in gray. The nuclear 

DNA is stained with DAPI (blue).  (B) Quantification of the Lamin-B, Msi1 and DAPI signal in the 

nuclei of photoreceptor cells. Lamin-B, Msi1 and DAPI fluorescence intensities were measured 

along a line perpendicular to the nuclear envelope (inset). The intensities measured on 54 

nuclei were normalized and aligned to the peak of the Lamin-B staining. 

Figure 6. Binding of Musashi 1 downstream of an alternative exon promotes its inclusion. 

(A) Diagram of the BoxB minigenes. In the wild type minigene two BoxB hairpins are positioned 

in the intron downstream of an alternative exon. In the G1A minigene a G to A mutation in the 

BoxB hairpins prevents binding of the λN peptide to the RNA. (B)  RT-PCR analysis of the 

splicing of the wild type and G1A minigenes after co-transfection with empty vector (EV) or 

vector expressing Msi1- λN fusion (left). The exon included and exon skipped isoforms are 

indicated with ‘+’ and ‘-’, respectively. Relative exon inclusion levels with standard error are 

shown below each lane.  On the right, western blot shows the expression levels of the Msi1- λN 

protein as detected by the anti-Msi1 and anti-Flag antibodies. GAPDH and Lamin-B are used as 

loading controls. 

Figure 7. Musashi proteins bind downstream of Ttc8 exon 2A and promote its inclusion 

in photoreceptor cells. (A) Diagram of Ttc8 exon 2A and the adjacent introns. Musashi binding 

sites in the introns are shown with tick marks above the intron. Clusters of Musashi binding sites 

in the downstream intron are labeled with numbers. Binding sites in the downstream intron that 
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were mutated to create the Ttc8-dMsi minigene are shown in red. The sequence mutated in the 

Ttc8-dMsi minigene is shown below the diagram with the mutated bases in red. (B) Pull-down of 

Musashi proteins from retinal extracts. Three biotinylated probes corresponding to segments 

D2, D3, and D4 were used to pull down RNA binding proteins from retinal extracts. The binding 

was competed with the competitor RNA as indicated above. The Musashi proteins were then 

detected by western blot using an antibody that recognizes both Msi1 and Msi2. (C) RT-PCR 

analysis of the wild type and mutant Ttc8 exon 2A minigene transcripts after co-transfection with 

construct expressing flag-tagged Msi1 protein. The exon included and exon skipped isoforms 

are indicated with ‘+’ and ‘-’, respectively. Relative exon inclusion levels with standard error are 

shown below each lane.  On the right western blot shows the expression levels of the Msi1- flag 

protein as detected by the anti-Msi1 and anti-Flag antibodies. GAPDH and Lamin-B are used as 

loading controls. (D) RT-PCR analysis and fluorescence imaging of the splicing of the Ttc8 

minigene transcripts in the retina. Mouse retinas were electroporated with each minigene at 

postnatal day 0 and the splicing was analyzed by RT-PCR at postnatal day 16 and by 

fluorescence imaging at postnatal day 20. Relative exon inclusion levels with standard error are 

shown below each lane. The minigene is designed to produce GFP when the alternative exon is 

skipped or RFP when the exon is included. The wild type minigene is shown on the right. High 

RFP and low GFP expression in the photoreceptors indicates that the exon is included in the 

mature transcripts from the minigene. The inner neurons, marked with yellow arrows, express 

almost exclusively GFP, an indication that the exon is skipped. Reduced RFP expression and 

increased GFP levels in the mutant minigene indicate that the exon is mostly skipped in 

photoreceptors, in agreement with the RT-PCR analysis.  

Figure 8. Musashi 1 promotes the inclusion of photoreceptor specific exons. (A) RT-PCR 

analysis of the inclusion levels of 11 exons with elevated inclusion levels in photoreceptors in 

N2A cell transfected with flag-tagged Msi1 expression construct. The exon included and exon 
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skipped isoforms are indicated with ‘+’ and ‘-’ respectively. On the right, western blot shows the 

expression of the flag-tagged Msi1 protein. (B) Chart showing the quantification of the inclusion 

levels of seven exons affected by the Msi1 protein. (C) Diagram showing a protein interaction 

network enriched in photoreceptor specific isoforms. The network is centered on Cep290 and 

the BBSome. Genes containing “switch-like” exons are shown in dark red or green. Red and 

green colors indicate inclusion and skipping in photoreceptors, respectively. Genes containing 

exons differentially spliced in photoreceptors are shown in pale red or green.  
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Supplementary Material 

Chapter 5 Supplementary tables are available electronically.  
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Supplementary figure legends 

Supplementary figure 1. Retinal neurons express a characteristic splicing program that is 

related to the splicing program of CNS neurons. (A) Heat map showing unsupervised 

hierarchical clustering of a panel of mouse tissues based on the inclusion levels of 8539 

alternative exons. Microexons of 30nt or less in length are annotated on the right. Retinal 

samples form an independent cluster which is related to the cluster formed by the samples from 

the central nervous system and show frequent use of microexons. (B) Unsupervised 

hierarchical clustering of tissue samples based on the inclusion levels of 483 microexons shows 

elevated microexon use in neuronal tissues. A subset of the microexons marked with a red box 

on the left of the heat map are specifically included in retinal transcripts. 

Supplementary figure 2. RT-PCR analysis of the inclusion levels of exons differentially 

spliced between wild type and Aipl1(-/-) retina. The bands corresponding to the exon skipped 

and exon included mRNA isoforms are labeled with ‘+’ and ‘-’, respectively. The relative exon 

inclusion and standard error of three independent replicates are shown below each lane.  

Supplementary figure 3. Enrichment of Msi, Ptbp and Nova binding site motifs in clusters 

adjacent to exons upregulated in photoreceptors. Clusters with minimum size of 2, 3, 4 or 5 

motifs were tested for each protein. The spacing between the motifs in a cluster was varied from 

0 to 30nt (x - axis). Enrichment upstream or downstream of the exons is plotted with circles and 

triangles, respectively. Statistically enriched clusters are represented by filled markers using red 

or blue colors for positions upstream or downstream of the exon, respectively.   

Supplementary figure 4. Enrichment of Msi, Ptbp and Nova binding site motifs in clusters 

adjacent to exons downregulated in photoreceptors. Clusters with minimum size of 2, 3, 4 

or 5 motifs were tested for each protein. The spacing between the motifs in a cluster was varied 

from 0 to 30nt (x - axis). Enrichment upstream or downstream of the exons is plotted with circles 
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and triangles, respectively. Statistically enriched clusters are represented by filled markers using 

red or blue colors for positions upstream or downstream of the exon, respectively.   

 

Supplementary figure 5. Khdrbs3 is targeted by micro-RNAs from the mir-96/182/183 

cluster. (A) Predicted binding sites for retinal micro-RNAs in the 3'-UTR of Khdrb3. Binding 

sites conserved between mouse and human are shown in bold typeface. (B) Alignment of the 

retina specific micro-RNAs to the predicted binding sites. Seed sequences conserved between 

mouse and human are underlined. Each alignment is accompanied with mirSVR score 

representing the predicted efficiency of the target site (lower score means higher efficiency) and 

PhastCons sequence conservation score (Betel et al. 2010) 

Supplementary figure 6. Musashi 2 is present in the nuclei of photoreceptor cells. 

Immunofluorescence staining of the outer nuclear layer on 4µm retinal sections. The nuclear 

envelope is stained with Lamin-B antibody (red). Msi2 staining is shown in gray. The nuclear 

DNA is stained with DAPI (blue).   

Supplementary figure 7. Binding of the Musashi proteins downstream of an alternative 

exon promotes its inclusion. (A) RT-PCR analysis of the splicing of the wild type and G1A 

minigenes after co-transfection with empty vector or vectors expressing Msi1- λN and Msi2- λN 

fusions (top). The exon included and exon skipped isoforms are indicated with ‘+’ and ‘-’, 

respectively. Relative exon inclusion levels with standard error are shown below each lane. 

Below, western blot shows the expression levels of the Msi1- λN and Msi2- λN proteins. GAPDH 

and Lamin-B are used as loading controls. (B) RT-PCR analysis of the wild type and mutant 

Ttc8 exon 2A minigene transcripts after co-transfection with construct expressing flag-tagged 

Msi1 and Msi2 proteins. The exon included and exon skipped isoforms are indicated with ‘+’ and 

‘-’, respectively. Relative exon inclusion levels with standard error are shown below each lane.  
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Below, western blot shows the expression levels of the Msi1 and Msi2 proteins. Lamin-B is used 

as loading control.  

Supplementary figure 8. New exon discovery. Junction reads that map on one end of an 

exon in annotated transcripts are used to identify novel exons. A novel exon is defined by two 

sets of junction reads of at least 10 reads per set, one anchored on the left and a second one 

anchored on the right to a known exon, that map within a predefined distance (300nt) from each 

other.  

Supplementary figure 9. Musashi proteins are present in the nuclei of photoreceptor cells 

in the Nrl (-/-) retina. Immunofluorescence staining of the outer nuclear layer on 6µm retinal 

sections. The nuclear envelope is stained with Lamin-B antibody (red). Msi1 and Msi2 staining 

are shown in gray. The nuclear DNA is stained with DAPI (blue).   
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Supplementary Figure 3
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Supplementary Figure 4

195



Supplementary figure 5 

(A)

NM_010158 Mouse Khdrbs3 3'UTR

1   UUGUACUGUCUGAUGUUGUGAAAUAGCCAAUCUCCACCGUCCUGUAUACU 50

51  GUUCAAAGUAAUUUUUUUCUAUGACCAAUCCCUUUUUAAAUAAAUCAAAA 100

101 UGCUUAAAAUCUGAAUGGAUGGAACUUAAAGCCACUUUGUUGAAGCAUCC 150

151 ACUUGACAGGGAGAAGAAGGACAUGUAAAAUUUUGUUAUUUGCAGUCUGU 200

201 AUAUGAAAACUAGGUUAUGAAAAGGAAAAAAAUAACUUUGAUUAACUAGU 250

251 GUUAAACAAAAAGAUAGGUUUACUAAAUAUGUUAAUCCAUUCUUUAACAU 300

301 AAGUCUCACCUUUCAUCUUAAAGGUUUCCAUAGAAUUUAGUUAUUUUAUC 350

                                               miR-96 
                                              miR-182 
351 UUUCAGCCAUAUGCUAGUUUUUUUUUUUCUUUCUUUCUUUCUUGCCAACU 400

401 UGCGUAAAAAGGGAGCCGAUUACAAGUGCAGACAAUGUGGUAUUCUUUUG 450

451 UAACUGAGUCCUGAAAUGUUCUGUAGUGUUAGGCAAAGUCUCCUCUUGCU 500

501 UGAUACUAAAUAAACUUUUGAAAGAAAUUUUGUGUGUGUGAGCUAACGAU 550

551 UUCAUGUUUUUUUUUUUUUCUAUUUAAAAAGUUCUUCAUAAAUAGCUGUA 600

601 AACAGGGAAAGGGCUCCUCUAACAGCGCUUGUCAUAAAAGGGUCACACUA 650

                                              miR-183 

651 AAUAUUGUACAGCUUCCUUUAAAAGUGGUAUAAAAUUAAACGUGCCAUGG 700

701 UAUACUCACCAUAGGUUCAGAUGCGGUCUAAAGAGUCCACACGGUAUCAA 750

751 GCUACUCACUCAGGUGGCACGUUAAACCCAUGCAAACCAAAUCUGACUUU 800

801 AAAAACUGGUUCUAAAAUAACUACUGGCUUUUCUGAAAAGGAUGUGAUCA 850

851 GAUUUCAUCUUGUCGAGCGUUUUUUCACUAGUGCAACUUUGGAUUUUUUA 900

901 UGAGACUUUUGGUACCUUAAUGAACACCUCGCUCCAUGCUGGAAGCAUAA 950

951 ACAGAGAGCUUUUAAAGACAUUCUGACUUGCCUAAUUGAGGUCGCACUCG 1000

1001 CCAAGGCUGAGGAUGUGUAAGCCUUAAACGGUCUUCAUUUUCAAAGGUAA 1050

1051 AUAAACGAAAUAAGAUUUUAAUCUCACUUAAUUUAUCUUAAUAUAUAACU 1100
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1101 AAUAAAGCCAGGGAGAUUACAACUUAGCCGGUUUCAUUAUCCAUUCUAGA 1150

1151 AAGGUUUUAAGAUCACCUAAAUUCUCAUUUUAAAAAGUUUAAUUUGUUUU 1200

1201 AGUCAUCUAAAAAGCCUUAGUCUAGCCAGUUUAAUUGGGGCCAAUUCUUC 1250

1251 CCUGUUAAACAACUGUAAAACCUCAUAACUAGUCGUGUGUAAUACAUCUU 1300

1301 UUGGUUAAUAAUUGAGGGCAUUCUUAAAAGUGACAAGGGUUUAAUAAAGU 1350

1351 UAUUUGUUAAUCAUUUGGCUUAAGUUUUAAUGGUAGAUUAUGUAAAAUGU 1400

1401 UUAUCUUUAGUUUCGGAGGGGGGCUCCUUAUAUUUAUUUUGAGUAAACAG 1450

1451 AUUUCUUCUUUUGUUAGGAAAUGUCGACCACCUUGGACUGUCAGAGAGCU 1500

1501 CCAAGUGACUUAGAGCAGACAAAG 1524

(B)

miR-182
Mouse
mirSVR score: -0.8830

PhastCons score:0.7999

     3' gccacacucAAGAUGGUAACGGUUu 5' mmu-miR-182

                 |||| :| ||||||| 

 376:5' uuucuuucuUUCUUUC-UUGCCAAc 3' Khdrbs3

Human
mirSVR score: -1.0912

PhastCons score:0.8312

     3' ucaCACUCAAGAUGGUAACGGUUu 5' hsa-miR-182

           ||   ||:| |: ||||||| 

 373:5' cuaGUUUUUUUUUCUCUUGCCAAc 3' KHDRBS3

miR-96
Mouse
mirSVR score: -0.1050

PhastCons score:0.7999

     3' ucguuuuuacacgaucACGGUUu 5' mmu-miR-96

                        |||||| 

 377:5' uucuuucuuucuuucuUGCCAAc 3' Khdrbs3

Human
mirSVR score: -0.2023

PhastCons score:0.8312

     3' ucguuuuuacacgaucACGGUUu 5' hsa-miR-96

                        |||||| 

 374:5' uaguuuuuuuuucucuUGCCAAc 3' KHDRBS3
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miR-183 

Mouse

mirSVR score: -0.7699

PhastCons score:0.7820

     3' ucacUUAAGAUGGUCACGGUAu 5' mmu-miR-183

            ||||  ||  ||||||| 

 680:5' auaaAAUUAAAC--GUGCCAUg 3' Khdrbs3
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Chapter 6. Summary 

Complex tissues and cell types require a vast number of functionally distinct proteins in 

order to develop and function. Alternative splicing of pre-mRNA is a fundamental mechanism for 

expanding the coding capacity of the genome to meet this requirement. This is especially 

apparent in the myriad of cell types that comprise the vertebrate nervous system, a tissue which 

utilizes alternative splicing to a higher degree than others. Despite well characterized roles for 

alternative splicing in the majority of cellular functions, the degree to which cell type specific 

splicing shapes cellular identity in complex tissues is difficult to determine. The well-defined 

morphology and fewer cell types make the retina an attractive model to study alternative splicing 

in neurons. The focus of my dissertation was to characterize the unique regulation of alternative 

splicing in retinal photoreceptor cells.  

 Using in vivo subretinal injection and electroporation, I was able to analyze the splicing 

of minigenes and BAC constructs within the native retinal tissue (Chapter 2). In combination 

with Dr Stoilov’s two-color fluorescent reporter, this technique allowed me to visually 

demonstrate a splicing switch between photoreceptor cells and other retinal neurons (Chapter 

3). I created minigenes with various deletions and substitutions in order to map the sequence 

elements which regulated the photoreceptor specific splicing of BBS8 exon 2a. Through these 

studies I was able to identify the mechanism which restricted the phenotype of a mutation in 

BBS8 to the retina (Chapter 4).  

With the assistance of Dr. Stoilov, I was able to identify a photoreceptor specific splicing 

program by comparing a wild type retina with a mouse model lacking photoreceptor cells 

(Chapter 5). Various approaches including bioinformatics, minigene splicing assays, and RNA 

immunoprecipitations were used to demonstrate a role for Musashi proteins in activation of 

photoreceptor specific splicing. Analysis of splicing over a time course showed that this splicing 

program is activated prior to the development of the photoreceptor outer segment. The 
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presence of photoreceptor specific exons in multiple genes required for biogenesis and 

maintenance of primary cilia suggest that this splicing program may play a role in shaping the 

unique structure of photoreceptor cells.  

While this work has established a foundation for the regulation of alternative splicing in 

photoreceptors, many questions yet remain. Our data suggests a combinatorial mechanism for 

the regulation of photoreceptor specific splicing, and further analysis will be needed in order to 

identify the additional regulators. Likewise, functional analysis of photoreceptor specific protein 

isoforms will be necessary to elucidate the role of this splicing program in vision. These studies 

will inform on potential disease mechanisms and increase our understanding of the molecular 

machinery within primary cilia of sensory neurons.  
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Appendix 

Tables. 

Appendix Table 1. Proteins identified by mass spectrometry in bands cut from D3. 

Identified Proteins (81) Accession 
Number 

Molecular 
Weight 

70kD 
SpC 

50kD 
SpC 

Non-POU domain-containing octamer-
binding protein OS=Mus musculus 
GN=Nono PE=1 SV=3 

sp|Q99K48|NONO
_MOUSE 

55 kDa 87 21 

Heterogeneous nuclear 
ribonucleoprotein L OS=Mus musculus 
GN=Hnrnpl PE=1 SV=2 

sp|Q8R081|HNRP
L_MOUSE 

64 kDa 67 18 

Poly(U)-binding-splicing factor PUF60 
OS=Mus musculus GN=Puf60 PE=2 
SV=2 

sp|Q3UEB3|PUF6
0_MOUSE 

60 kDa 45 0 

Paraspeckle component 1 OS=Mus 
musculus GN=Pspc1 PE=1 SV=1 

sp|Q8R326|PSPC
1_MOUSE 

59 kDa 44 4 

Heterogeneous nuclear 
ribonucleoprotein K OS=Mus musculus 
GN=Hnrnpk PE=1 SV=1 

sp|P61979|HNRP
K_MOUSE 

51 kDa 27 2 

Splicing factor, proline- and glutamine-
rich OS=Mus musculus GN=Sfpq 
PE=1 SV=1 

sp|Q8VIJ6|SFPQ_
MOUSE 

75 kDa 26 20 

RNA-binding protein FUS OS=Mus 
musculus GN=Fus PE=2 SV=1 

sp|P56959|FUS_M
OUSE 

53 kDa 23 0 

KH domain-containing, RNA-binding, 
signal transduction-associated protein 
1 OS=Mus musculus GN=Khdrbs1 
PE=1 SV=2 

sp|Q60749|KHDR
1_MOUSE 

48 kDa 18 4 

Far upstream element-binding protein 
1 OS=Mus musculus GN=Fubp1 PE=1 
SV=1 

sp|Q91WJ8|FUBP
1_MOUSE 

69 kDa 17 13 

Far upstream element-binding protein 
2 OS=Mus musculus GN=Khsrp PE=1 
SV=2 

sp|Q3U0V1|FUBP
2_MOUSE 

77 kDa 15 6 

Serine/threonine-protein phosphatase 
2A 65 kDa regulatory subunit A alpha 
isoform OS=Mus musculus 
GN=Ppp2r1a PE=1 SV=3 

sp|Q76MZ3|2AAA
_MOUSE 

65 kDa 14 0 

Myelin expression factor 2 OS=Mus 
musculus GN=Myef2 PE=1 SV=1 

sp|Q8C854|MYEF
2_MOUSE 

63 kDa 14 0 

Splicing factor 3B subunit 3 OS=Mus 
musculus GN=Sf3b3 PE=2 SV=1 

sp|Q921M3|SF3B
3_MOUSE 

136 kDa 12 0 

Histone deacetylase 1 OS=Mus 
musculus GN=Hdac1 PE=1 SV=1 

sp|O09106|HDAC
1_MOUSE 

55 kDa 9 0 
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General transcription factor 3C 
polypeptide 5 OS=Mus musculus 
GN=Gtf3c5 PE=2 SV=2 

sp|Q8R2T8|TF3C5
_MOUSE 

61 kDa 6 0 

Kelch-like protein 3 OS=Mus musculus 
GN=Klhl3 PE=1 SV=2 

sp|E0CZ16|KLHL3
_MOUSE 

65 kDa 5 0 

Heterogeneous nuclear 
ribonucleoprotein M OS=Mus 
musculus GN=Hnrnpm PE=1 SV=3 

sp|Q9D0E1|HNRP
M_MOUSE 

78 kDa 5 0 

Heterogeneous nuclear 
ribonucleoproteins A2/B1 OS=Mus 
musculus GN=Hnrnpa2b1 PE=1 SV=2 

sp|O88569|ROA2_
MOUSE 

37 kDa 4 6 

Tubulin alpha-1B chain OS=Mus 
musculus GN=Tuba1b PE=1 SV=2 

sp|P05213|TBA1B
_MOUSE (+2) 

50 kDa 4 10 

26S proteasome non-ATPase 
regulatory subunit 3 OS=Mus 
musculus GN=Psmd3 PE=1 SV=3 

sp|P14685|PSMD
3_MOUSE 

61 kDa 4 0 

Splicing factor 3A subunit 2 OS=Mus 
musculus GN=Sf3a2 PE=1 SV=2 

sp|Q62203|SF3A2
_MOUSE 

50 kDa 4 0 

Retinoblastoma-binding protein 5 
OS=Mus musculus GN=Rbbp5 PE=1 
SV=2 

sp|Q8BX09|RBBP
5_MOUSE 

59 kDa 4 0 

Nuclear receptor coactivator 5 
OS=Mus musculus GN=Ncoa5 PE=1 
SV=1 

sp|Q91W39|NCOA
5_MOUSE 

65 kDa 4 0 

Dihydropyrimidinase-related protein 4 
OS=Mus musculus GN=Dpysl4 PE=1 
SV=1 

sp|O35098|DPYL4
_MOUSE 

62 kDa 3 0 

Microtubule-associated protein 1B 
OS=Mus musculus GN=Map1b PE=1 
SV=2 

sp|P14873|MAP1B
_MOUSE 

270 kDa 3 0 

T-complex protein 1 subunit epsilon 
OS=Mus musculus GN=Cct5 PE=1 
SV=1 

sp|P80316|TCPE_
MOUSE 

60 kDa 3 0 

Tubulin beta-5 chain OS=Mus 
musculus GN=Tubb5 PE=1 SV=1 

sp|P99024|TBB5_
MOUSE 

50 kDa 3 13 

Interleukin enhancer-binding factor 3 
OS=Mus musculus GN=Ilf3 PE=1 
SV=2 

sp|Q9Z1X4|ILF3_
MOUSE 

96 kDa 3 0 

T-complex protein 1 subunit alpha 
OS=Mus musculus GN=Tcp1 PE=1 
SV=3 

sp|P11983|TCPA_
MOUSE 

60 kDa 2 0 

T-complex protein 1 subunit theta 
OS=Mus musculus GN=Cct8 PE=1 
SV=3 

sp|P42932|TCPQ_
MOUSE 

60 kDa 2 0 

Dihydropyrimidinase-related protein 1 
OS=Mus musculus GN=Crmp1 PE=1 
SV=1 

sp|P97427|DPYL1
_MOUSE 

62 kDa 2 0 

Protein FAM98A OS=Mus musculus 
GN=Fam98a PE=2 SV=1 

sp|Q3TJZ6|FA98A
_MOUSE 

55 kDa 2 0 

206



Probable ATP-dependent RNA 
helicase DDX17 OS=Mus musculus 
GN=Ddx17 PE=1 SV=1 

sp|Q501J6|DDX17
_MOUSE (+1) 

72 kDa 2 0 

T-complex protein 1 subunit zeta-2 
OS=Mus musculus GN=Cct6b PE=2 
SV=4 

sp|Q61390|TCPW
_MOUSE 

58 kDa 2 0 

Dihydropyrimidinase-related protein 3 
OS=Mus musculus GN=Dpysl3 PE=1 
SV=1 

sp|Q62188|DPYL3
_MOUSE 

62 kDa 2 0 

Heterogeneous nuclear 
ribonucleoprotein U OS=Mus musculus 
GN=Hnrnpu PE=1 SV=1 

sp|Q8VEK3|HNRP
U_MOUSE 

88 kDa 2 0 

H/ACA ribonucleoprotein complex 
subunit 4 OS=Mus musculus GN=Dkc1 
PE=1 SV=4 

sp|Q9ESX5|DKC1
_MOUSE 

57 kDa 2 0 

MAGUK p55 subfamily member 2 
OS=Mus musculus GN=Mpp2 PE=1 
SV=1 

sp|Q9WV34|MPP2
_MOUSE 

62 kDa 2 0 

Treacle protein OS=Mus musculus 
GN=Tcof1 PE=1 SV=1 

sp|O08784|TCOF_
MOUSE 

135 kDa 0 2 

Heterogeneous nuclear 
ribonucleoprotein H OS=Mus musculus 
GN=Hnrnph1 PE=1 SV=3 

sp|O35737|HNRH
1_MOUSE 

49 kDa 0 14 

ATP-dependent RNA helicase A 
OS=Mus musculus GN=Dhx9 PE=1 
SV=2 

sp|O70133|DHX9_
MOUSE 

149 kDa 0 2 

Glutamine synthetase OS=Mus 
musculus GN=Glul PE=1 SV=6 

sp|P15105|GLNA_
MOUSE 

42 kDa 0 11 

Heterogeneous nuclear 
ribonucleoprotein A1 OS=Mus 
musculus GN=Hnrnpa1 PE=1 SV=2 

sp|P49312|ROA1_
MOUSE 

34 kDa 0 8 

Nucleolysin TIA-1 OS=Mus musculus 
GN=Tia1 PE=1 SV=1 

sp|P52912|TIA1_
MOUSE 

43 kDa 0 26 

Poly(rC)-binding protein 4 OS=Mus 
musculus GN=Pcbp4 PE=2 SV=1 

sp|P57724|PCBP4
_MOUSE 

41 kDa 0 2 

Actin, cytoplasmic 1 OS=Mus 
musculus GN=Actb PE=1 SV=1 

sp|P60710|ACTB_
MOUSE 

42 kDa 0 50 

Alpha-centractin OS=Mus musculus 
GN=Actr1a PE=2 SV=1 

sp|P61164|ACTZ_
MOUSE 

43 kDa 0 3 

26S protease regulatory subunit 8 
OS=Mus musculus GN=Psmc5 PE=1 
SV=1 

sp|P62196|PRS8_
MOUSE 

46 kDa 0 7 

Nucleolysin TIAR OS=Mus musculus 
GN=Tial1 PE=1 SV=1 

sp|P70318|TIAR_
MOUSE 

43 kDa 0 22 

Heterogeneous nuclear 
ribonucleoprotein H2 OS=Mus 
musculus GN=Hnrnph2 PE=2 SV=1 

sp|P70333|HNRH
2_MOUSE 

49 kDa 0 8 

RISC-loading complex subunit 
TARBP2 OS=Mus musculus 
GN=Tarbp2 PE=1 SV=2 

sp|P97473|TRBP2
_MOUSE 

39 kDa 0 5 
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Creatine kinase B-type OS=Mus 
musculus GN=Ckb PE=1 SV=1 

sp|Q04447|KCRB
_MOUSE 

43 kDa 0 10 

WD repeat-containing protein 18 
OS=Mus musculus GN=Wdr18 PE=1 
SV=1 

sp|Q4VBE8|WDR1
8_MOUSE 

47 kDa 0 4 

Heterogeneous nuclear 
ribonucleoprotein D0 OS=Mus 
musculus GN=Hnrnpd PE=1 SV=2 

sp|Q60668|HNRP
D_MOUSE 

38 kDa 0 56 

Poly(rC)-binding protein 2 OS=Mus 
musculus GN=Pcbp2 PE=1 SV=1 

sp|Q61990|PCBP2
_MOUSE 

38 kDa 0 3 

Protein FAM98B OS=Mus musculus 
GN=Fam98b PE=2 SV=1 

sp|Q80VD1|FA98
B_MOUSE 

45 kDa 0 7 

Elongation factor Tu, mitochondrial 
OS=Mus musculus GN=Tufm PE=1 
SV=1 

sp|Q8BFR5|EFTU
_MOUSE 

50 kDa 0 2 

Heterogeneous nuclear 
ribonucleoprotein A3 OS=Mus 
musculus GN=Hnrnpa3 PE=1 SV=1 

sp|Q8BG05|ROA3
_MOUSE 

40 kDa 0 3 

RNA binding protein fox-1 homolog 2 
OS=Mus musculus GN=Rbfox2 PE=1 
SV=2 

sp|Q8BP71|RFOX
2_MOUSE (+1) 

47 kDa 0 2 

G-rich sequence factor 1 OS=Mus 
musculus GN=Grsf1 PE=1 SV=2 

sp|Q8C5Q4|GRSF
1_MOUSE 

53 kDa 0 6 

Polyadenylate-binding protein 2 
OS=Mus musculus GN=Pabpn1 PE=2 
SV=3 

sp|Q8CCS6|PABP
2_MOUSE 

32 kDa 0 13 

Zinc finger protein 385A OS=Mus 
musculus GN=Znf385a PE=1 SV=2 

sp|Q8VD12|Z385A
_MOUSE 

40 kDa 0 31 

Eukaryotic initiation factor 4A-III 
OS=Mus musculus GN=Eif4a3 PE=2 
SV=3 

sp|Q91VC3|IF4A3
_MOUSE 

47 kDa 0 9 

Ribonuclease inhibitor OS=Mus 
musculus GN=Rnh1 PE=1 SV=1 

sp|Q91VI7|RINI_M
OUSE 

50 kDa 0 4 

RNA binding motif protein, X-linked-
like-1 OS=Mus musculus GN=Rbmxl1 
PE=1 SV=1 

sp|Q91VM5|RMXL
1_MOUSE 

42 kDa 0 29 

Spermatid perinuclear RNA-binding 
protein OS=Mus musculus GN=Strbp 
PE=1 SV=1 

sp|Q91WM1|STR
BP_MOUSE 

74 kDa 0 2 

TAR DNA-binding protein 43 OS=Mus 
musculus GN=Tardbp PE=1 SV=1 

sp|Q921F2|TADB
P_MOUSE 

45 kDa 0 18 

26S proteasome non-ATPase 
regulatory subunit 6 OS=Mus 
musculus GN=Psmd6 PE=1 SV=1 

sp|Q99JI4|PSMD6
_MOUSE 

46 kDa 0 5 

Cleavage stimulation factor subunit 1 
OS=Mus musculus GN=Cstf1 PE=2 
SV=1 

sp|Q99LC2|CSTF
1_MOUSE 

48 kDa 0 7 

Interleukin enhancer-binding factor 2 
OS=Mus musculus GN=Ilf2 PE=1 
SV=1 

sp|Q9CXY6|ILF2_
MOUSE 

43 kDa 0 26 
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RNA 3'-terminal phosphate cyclase 
OS=Mus musculus GN=RtcA PE=2 
SV=2 

sp|Q9D7H3|RTCA
_MOUSE 

39 kDa 0 6 

Transcription initiation factor TFIID 
subunit 8 OS=Mus musculus GN=Taf8 
PE=2 SV=1 

sp|Q9EQH4|TAF8
_MOUSE 

34 kDa 0 2 

DAZ-associated protein 1 OS=Mus 
musculus GN=Dazap1 PE=2 SV=2 

sp|Q9JII5|DAZP1_
MOUSE 

43 kDa 0 26 

LanC-like protein 2 OS=Mus musculus 
GN=Lancl2 PE=1 SV=1 

sp|Q9JJK2|LANC2
_MOUSE 

51 kDa 0 3 

Muscleblind-like protein 1 OS=Mus 
musculus GN=Mbnl1 PE=1 SV=1 

sp|Q9JKP5|MBNL
1_MOUSE 

37 kDa 0 3 

Photoreceptor specific nuclear receptor 
OS=Mus musculus GN=Nr2e3 PE=1 
SV=1 

sp|Q9QXZ7|NR2E
3_MOUSE 

43 kDa 0 4 

KH domain-containing, RNA-binding, 
signal transduction-associated protein 
3 OS=Mus musculus GN=Khdrbs3 
PE=1 SV=1 

sp|Q9R226|KHDR
3_MOUSE 

39 kDa 0 6 

RNA-binding motif protein, X 
chromosome OS=Mus musculus 
GN=Rbmx PE=1 SV=1 

sp|Q9WV02|RBM
X_MOUSE 

42 kDa 0 26 

Succinyl-CoA ligase [ADP-forming] 
subunit beta, mitochondrial OS=Mus 
musculus GN=Sucla2 PE=1 SV=2 

sp|Q9Z2I9|SUCB1
_MOUSE 

50 kDa 0 4 

Actin-like protein 6A OS=Mus 
musculus GN=Actl6a PE=1 SV=2 

sp|Q9Z2N8|ACL6
A_MOUSE 

47 kDa 0 3 

Heterogeneous nuclear 
ribonucleoprotein F OS=Mus musculus 
GN=Hnrnpf PE=1 SV=3 

sp|Q9Z2X1|HNRP
F_MOUSE 

46 kDa 0 9 

 

Appendix Table 2. Proteins identified by mass spectrometry of D4 probe eluate. 

Identified Proteins (332) Accession 
Number 

M
W

 

S
p

C
 

S
A

F
 

N
S

A
F

 

S
U

M
 

S
A

F
 

Heterogeneous nuclear 
ribonucleoproteins A2/B1 OS=Mus 
musculus GN=Hnrnpa2b1 PE=1 
SV=2 

sp|O88569|RO
A2_MOUSE 

37 272 7.3513
51351 

7.56
% 

97.2
7929
014 

Heterogeneous nuclear 
ribonucleoprotein A1 OS=Mus 
musculus GN=Hnrnpa1 PE=1 SV=2 

sp|P49312|RO
A1_MOUSE 

34 155 4.5588
23529 

4.69
% 

 

Splicing factor 3B subunit 3 OS=Mus 
musculus GN=Sf3b3 PE=2 SV=1 

sp|Q921M3|SF
3B3_MOUSE 

136 137 1.0073
52941 

1.04
% 

 

ATP-dependent RNA helicase A 
OS=Mus musculus GN=Dhx9 PE=1 
SV=2 

sp|O70133|DH
X9_MOUSE 

149 128 0.8590
60403 

0.88
% 
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Pre-mRNA-processing-splicing factor 
8 OS=Mus musculus GN=Prpf8 PE=1 
SV=2 

sp|Q99PV0|PR
P8_MOUSE 

274 102 0.3722
62774 

0.38
% 

 

Heterogeneous nuclear 
ribonucleoprotein A3 OS=Mus 
musculus GN=Hnrnpa3 PE=1 SV=1 

sp|Q8BG05|R
OA3_MOUSE 

40 99 2.475 2.54
% 

 

Poly(rC)-binding protein 3 OS=Mus 
musculus GN=Pcbp3 PE=2 SV=3 

sp|P57722|PC
BP3_MOUSE 

39 84 2.1538
46154 

2.21
% 

 

Heat shock cognate 71 kDa protein 
OS=Mus musculus GN=Hspa8 PE=1 
SV=1 

sp|P63017|HS
P7C_MOUSE 

71 84 1.1830
98592 

1.22
% 

 

Microtubule-associated protein 1B 
OS=Mus musculus GN=Map1b PE=1 
SV=2 

sp|P14873|MA
P1B_MOUSE 

270 82 0.3037
03704 

0.31
% 

 

U5 small nuclear ribonucleoprotein 
200 kDa helicase OS=Mus musculus 
GN=Snrnp200 PE=1 SV=1 

sp|Q6P4T2|U5
20_MOUSE 

245 74 0.3020
40816 

0.31
% 

 

Poly(rC)-binding protein 2 OS=Mus 
musculus GN=Pcbp2 PE=1 SV=1 

sp|Q61990|PC
BP2_MOUSE 

38 59 1.5526
31579 

1.60
% 

 

Tubulin beta-5 chain OS=Mus 
musculus GN=Tubb5 PE=1 SV=1 

sp|P99024|TB
B5_MOUSE 

50 55 1.1 1.13
% 

 

Muscleblind-like protein 1 OS=Mus 
musculus GN=Mbnl1 PE=1 SV=1 

sp|Q9JKP5|M
BNL1_MOUSE 

37 52 1.4054
05405 

1.44
% 

 

Muscleblind-like protein 2 OS=Mus 
musculus GN=Mbnl2 PE=2 SV=2 

sp|Q8C181|M
BNL2_MOUSE 

40 48 1.2 1.23
% 

 

Desmoplakin OS=Mus musculus 
GN=Dsp PE=1 SV=1 

sp|E9Q557|DE
SP_MOUSE 

333 43 0.1291
29129 

0.13
% 

 

Cold shock domain-containing protein 
E1 OS=Mus musculus GN=Csde1 
PE=2 SV=1 

sp|Q91W50|C
SDE1_MOUS
E 

89 43 0.4831
46067 

0.50
% 

 

DAZ-associated protein 1 OS=Mus 
musculus GN=Dazap1 PE=2 SV=2 

sp|Q9JII5|DAZ
P1_MOUSE 

43 42 0.9767
44186 

1.00
% 

 

Actin, cytoplasmic 1 OS=Mus 
musculus GN=Actb PE=1 SV=1 

sp|P60710|AC
TB_MOUSE 
(+1) 

42 41 0.9761
90476 

1.00
% 

 

Far upstream element-binding protein 
2 OS=Mus musculus GN=Khsrp PE=1 
SV=2 

sp|Q3U0V1|FU
BP2_MOUSE 

77 41 0.5324
67532 

0.55
% 

 

Junction plakoglobin OS=Mus 
musculus GN=Jup PE=1 SV=3 

sp|Q02257|PL
AK_MOUSE 

82 40 0.4878
04878 

0.50
% 

 

Poly(rC)-binding protein 1 OS=Mus 
musculus GN=Pcbp1 PE=1 SV=1 

sp|P60335|PC
BP1_MOUSE 

37 38 1.0270
27027 

1.06
% 

 

Poly(U)-binding-splicing factor PUF60 
OS=Mus musculus GN=Puf60 PE=2 
SV=2 

sp|Q3UEB3|P
UF60_MOUSE 

60 37 0.6166
66667 

0.63
% 

 

Tubulin beta-4B chain OS=Mus 
musculus GN=Tubb4b PE=1 SV=1 

sp|P68372|TB
B4B_MOUSE 

50 36 0.72 0.74
% 

 

Tubulin beta-2A chain OS=Mus 
musculus GN=Tubb2a PE=1 SV=1 

sp|Q7TMM9|T
BB2A_MOUSE 

50 36 0.72 0.74
% 
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Heterogeneous nuclear 
ribonucleoprotein U-like protein 1 
OS=Mus musculus GN=Hnrnpul1 
PE=1 SV=1 

sp|Q8VDM6|H
NRL1_MOUSE 

96 36 0.375 0.39
% 

 

Heterogeneous nuclear 
ribonucleoprotein H OS=Mus 
musculus GN=Hnrnph1 PE=1 SV=3 

sp|O35737|HN
RH1_MOUSE 

49 35 0.7142
85714 

0.73
% 

 

Tubulin alpha-1B chain OS=Mus 
musculus GN=Tuba1b PE=1 SV=2 

sp|P05213|TB
A1B_MOUSE 
(+2) 

50 35 0.7 0.72
% 

 

TAR DNA-binding protein 43 OS=Mus 
musculus GN=Tardbp PE=1 SV=1 

sp|Q921F2|TA
DBP_MOUSE 

45 35 0.7777
77778 

0.80
% 

 

RING finger protein unkempt homolog 
OS=Mus musculus GN=Unk PE=2 
SV=1 

sp|Q8BL48|UN
K_MOUSE 

88 34 0.3863
63636 

0.40
% 

 

Eukaryotic initiation factor 4A-III 
OS=Mus musculus GN=Eif4a3 PE=2 
SV=3 

sp|Q91VC3|IF
4A3_MOUSE 

47 34 0.7234
04255 

0.74
% 

 

Elongation factor 2 OS=Mus 
musculus GN=Eef2 PE=1 SV=2 

sp|P58252|EF
2_MOUSE 

95 32 0.3368
42105 

0.35
% 

 

Polypyrimidine tract-binding protein 2 
OS=Mus musculus GN=Ptbp2 PE=1 
SV=2 

sp|Q91Z31|PT
BP2_MOUSE 

57 31 0.5438
59649 

0.56
% 

 

Heterogeneous nuclear 
ribonucleoprotein A/B OS=Mus 
musculus GN=Hnrnpab PE=1 SV=1 

sp|Q99020|RO
AA_MOUSE 

31 31 1 1.03
% 

 

Heterogeneous nuclear 
ribonucleoprotein D0 OS=Mus 
musculus GN=Hnrnpd PE=1 SV=2 

sp|Q60668|HN
RPD_MOUSE 

38 30 0.7894
73684 

0.81
% 

 

Tubulin beta-4A chain OS=Mus 
musculus GN=Tubb4a PE=1 SV=3 

sp|Q9D6F9|TB
B4A_MOUSE 

50 28 0.56 0.58
% 

 

116 kDa U5 small nuclear 
ribonucleoprotein component 
OS=Mus musculus GN=Eftud2 PE=2 
SV=1 

sp|O08810|U5
S1_MOUSE 

109 26 0.2385
3211 

0.25
% 

 

RNA-binding protein Musashi 
homolog 1 OS=Mus musculus 
GN=Msi1 PE=1 SV=1 

sp|Q61474|MS
I1H_MOUSE 

39 25 0.6410
25641 

0.66
% 

 

Heterogeneous nuclear 
ribonucleoprotein U OS=Mus 
musculus GN=Hnrnpu PE=1 SV=1 

sp|Q8VEK3|H
NRPU_MOUS
E 

88 25 0.2840
90909 

0.29
% 

 

Far upstream element-binding protein 
1 OS=Mus musculus GN=Fubp1 
PE=1 SV=1 

sp|Q91WJ8|F
UBP1_MOUS
E 

69 25 0.3623
18841 

0.37
% 

 

Spliceosome RNA helicase Ddx39b 
OS=Mus musculus GN=Ddx39b PE=1 
SV=1 

sp|Q9Z1N5|DX
39B_MOUSE 

49 25 0.5102
04082 

0.52
% 

 

Heterogeneous nuclear 
ribonucleoprotein H2 OS=Mus 
musculus GN=Hnrnph2 PE=2 SV=1 

sp|P70333|HN
RH2_MOUSE 

49 24 0.4897
95918 

0.50
% 
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Serine/arginine-rich splicing factor 1 
OS=Mus musculus GN=Srsf1 PE=1 
SV=3 

sp|Q6PDM2|S
RSF1_MOUSE 

28 24 0.8571
42857 

0.88
% 

 

Heterogeneous nuclear 
ribonucleoprotein U-like protein 2 
OS=Mus musculus GN=Hnrnpul2 
PE=1 SV=2 

sp|Q00PI9|HN
RL2_MOUSE 

85 21 0.2470
58824 

0.25
% 

 

Interleukin enhancer-binding factor 3 
OS=Mus musculus GN=Ilf3 PE=1 
SV=2 

sp|Q9Z1X4|ILF
3_MOUSE 

96 21 0.2187
5 

0.22
% 

 

Transcriptional activator protein Pur-
beta OS=Mus musculus GN=Purb 
PE=1 SV=3 

sp|O35295|PU
RB_MOUSE 

34 20 0.5882
35294 

0.60
% 

 

Programmed cell death protein 6 
OS=Mus musculus GN=Pdcd6 PE=1 
SV=2 

sp|P12815|PD
CD6_MOUSE 

22 20 0.9090
90909 

0.93
% 

 

Vimentin OS=Mus musculus GN=Vim 
PE=1 SV=3 

sp|P20152|VI
ME_MOUSE 

54 20 0.3703
7037 

0.38
% 

 

14-3-3 protein epsilon OS=Mus 
musculus GN=Ywhae PE=1 SV=1 

sp|P62259|143
3E_MOUSE 

29 20 0.6896
55172 

0.71
% 

 

WD40 repeat-containing protein 
SMU1 OS=Mus musculus GN=Smu1 
PE=2 SV=2 

sp|Q3UKJ7|S
MU1_MOUSE 

58 20 0.3448
27586 

0.35
% 

 

14-3-3 protein zeta/delta OS=Mus 
musculus GN=Ywhaz PE=1 SV=1 

sp|P63101|143
3Z_MOUSE 

28 19 0.6785
71429 

0.70
% 

 

Keratin, type I cytoskeletal 14 
OS=Mus musculus GN=Krt14 PE=1 
SV=2 

sp|Q61781|K1
C14_MOUSE 

53 19 0.3584
90566 

0.37
% 

 

Interphotoreceptor matrix 
proteoglycan 1 OS=Mus musculus 
GN=Impg1 PE=1 SV=1 

sp|Q8R1W8|I
MPG1_MOUS
E 

89 19 0.2134
83146 

0.22
% 

 

Heterogeneous nuclear 
ribonucleoprotein M OS=Mus 
musculus GN=Hnrnpm PE=1 SV=3 

sp|Q9D0E1|H
NRPM_MOUS
E 

78 19 0.2435
89744 

0.25
% 

 

Interferon-inducible double-stranded 
RNA-dependent protein kinase 
activator A OS=Mus musculus 
GN=Prkra PE=1 SV=1 

sp|Q9WTX2|P
RKRA_MOUS
E 

34 19 0.5588
23529 

0.57
% 

 

Heat shock protein HSP 90-alpha 
OS=Mus musculus GN=Hsp90aa1 
PE=1 SV=4 

sp|P07901|HS
90A_MOUSE 

85 18 0.2117
64706 

0.22
% 

 

Heat shock 70 kDa protein 1B 
OS=Mus musculus GN=Hspa1b PE=1 
SV=3 

sp|P17879|HS
71B_MOUSE 
(+1) 

70 18 0.2571
42857 

0.26
% 

 

Transcriptional activator protein Pur-
alpha OS=Mus musculus GN=Pura 
PE=1 SV=1 

sp|P42669|PU
RA_MOUSE 

35 18 0.5142
85714 

0.53
% 

 

14-3-3 protein gamma OS=Mus 
musculus GN=Ywhag PE=1 SV=2 

sp|P61982|143
3G_MOUSE 

28 18 0.6428
57143 

0.66
% 
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GTP-binding nuclear protein Ran 
OS=Mus musculus GN=Ran PE=1 
SV=3 

sp|P62827|RA
N_MOUSE 

24 18 0.75 0.77
% 

 

High mobility group protein B1 
OS=Mus musculus GN=Hmgb1 PE=1 
SV=2 

sp|P63158|HM
GB1_MOUSE 

25 18 0.72 0.74
% 

 

G-rich sequence factor 1 OS=Mus 
musculus GN=Grsf1 PE=1 SV=2 

sp|Q8C5Q4|G
RSF1_MOUSE 

53 18 0.3396
22642 

0.35
% 

 

Polyubiquitin-B OS=Mus musculus 
GN=Ubb PE=2 SV=1 

sp|P0CG49|U
BB_MOUSE 
(+3) 

34 17 0.5 0.51
% 

 

Guanine nucleotide-binding protein 
G(t) subunit alpha-1 OS=Mus 
musculus GN=Gnat1 PE=1 SV=3 

sp|P20612|GN
AT1_MOUSE 

40 17 0.425 0.44
% 

 

RNA-binding protein Musashi 
homolog 2 OS=Mus musculus 
GN=Msi2 PE=1 SV=1 

sp|Q920Q6|M
SI2H_MOUSE 

37 17 0.4594
59459 

0.47
% 

 

Serine/threonine-protein phosphatase 
2A 65 kDa regulatory subunit A alpha 
isoform OS=Mus musculus 
GN=Ppp2r1a PE=1 SV=3 

sp|Q76MZ3|2A
AA_MOUSE 

65 16 0.2461
53846 

0.25
% 

 

Spermatid perinuclear RNA-binding 
protein OS=Mus musculus GN=Strbp 
PE=1 SV=1 

sp|Q91WM1|S
TRBP_MOUS
E 

74 16 0.2162
16216 

0.22
% 

 

Serine-threonine kinase receptor-
associated protein OS=Mus musculus 
GN=Strap PE=1 SV=2 

sp|Q9Z1Z2|ST
RAP_MOUSE 

38 16 0.4210
52632 

0.43
% 

 

Putative pre-mRNA-splicing factor 
ATP-dependent RNA helicase DHX15 
OS=Mus musculus GN=Dhx15 PE=1 
SV=2 

sp|O35286|DH
X15_MOUSE 

91 15 0.1648
35165 

0.17
% 

 

Protein mago nashi homolog OS=Mus 
musculus GN=Magoh PE=2 SV=1 

sp|P61327|MG
N_MOUSE 

17 15 0.8823
52941 

0.91
% 

 

14-3-3 protein theta OS=Mus 
musculus GN=Ywhaq PE=1 SV=1 

sp|P68254|143
3T_MOUSE 

28 15 0.5357
14286 

0.55
% 

 

Importin subunit beta-1 OS=Mus 
musculus GN=Kpnb1 PE=1 SV=2 

sp|P70168|IM
B1_MOUSE 

97 15 0.1546
39175 

0.16
% 

 

ELAV-like protein 1 OS=Mus 
musculus GN=Elavl1 PE=1 SV=2 

sp|P70372|EL
AV1_MOUSE 

36 15 0.4166
66667 

0.43
% 

 

Probable ATP-dependent RNA 
helicase DDX5 OS=Mus musculus 
GN=Ddx5 PE=1 SV=2 

sp|Q61656|DD
X5_MOUSE 

69 15 0.2173
91304 

0.22
% 

 

Myelin expression factor 2 OS=Mus 
musculus GN=Myef2 PE=1 SV=1 

sp|Q8C854|M
YEF2_MOUSE 

63 15 0.2380
95238 

0.24
% 

 

Reticulon-4 OS=Mus musculus 
GN=Rtn4 PE=1 SV=2 

sp|Q99P72|RT
N4_MOUSE 

127 15 0.1181
10236 

0.12
% 

 

RNA 3'-terminal phosphate cyclase 
OS=Mus musculus GN=RtcA PE=2 
SV=2 

sp|Q9D7H3|R
TCA_MOUSE 

39 15 0.3846
15385 

0.40
% 
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Cap-specific mRNA (nucleoside-2'-O-
)-methyltransferase 1 OS=Mus 
musculus GN=Cmtr1 PE=1 SV=1 

sp|Q9DBC3|C
MTR1_MOUS
E 

96 15 0.1562
5 

0.16
% 

 

CUGBP Elav-like family member 2 
OS=Mus musculus GN=Celf2 PE=1 
SV=1 

sp|Q9Z0H4|CE
LF2_MOUSE 

54 15 0.2777
77778 

0.29
% 

 

Hemoglobin subunit beta-1 OS=Mus 
musculus GN=Hbb-b1 PE=1 SV=2 

sp|P02088|HB
B1_MOUSE 

16 14 0.875 0.90
% 

 

PHD finger-like domain-containing 
protein 5A OS=Mus musculus 
GN=Phf5a PE=1 SV=1 

sp|P83870|PH
F5A_MOUSE 

12 14 1.1666
66667 

1.20
% 

 

ATP-dependent RNA helicase DDX1 
OS=Mus musculus GN=Ddx1 PE=1 
SV=1 

sp|Q91VR5|D
DX1_MOUSE 

83 14 0.1686
74699 

0.17
% 

 

Serine/arginine-rich splicing factor 9 
OS=Mus musculus GN=Srsf9 PE=1 
SV=1 

sp|Q9D0B0|S
RSF9_MOUSE 

26 14 0.5384
61538 

0.55
% 

 

Heterogeneous nuclear 
ribonucleoprotein F OS=Mus 
musculus GN=Hnrnpf PE=1 SV=3 

sp|Q9Z2X1|HN
RPF_MOUSE 

46 14 0.3043
47826 

0.31
% 

 

Cleavage and polyadenylation 
specificity factor subunit 2 OS=Mus 
musculus GN=Cpsf2 PE=1 SV=1 

sp|O35218|CP
SF2_MOUSE 

88 13 0.1477
27273 

0.15
% 

 

Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-1 
OS=Mus musculus GN=Gnb1 PE=1 
SV=3 

sp|P62874|GB
B1_MOUSE 

37 13 0.3513
51351 

0.36
% 

 

14-3-3 protein eta OS=Mus musculus 
GN=Ywhah PE=1 SV=2 

sp|P68510|143
3F_MOUSE 

28 13 0.4642
85714 

0.48
% 

 

Nucleolysin TIAR OS=Mus musculus 
GN=Tial1 PE=1 SV=1 

sp|P70318|TIA
R_MOUSE 

43 13 0.3023
25581 

0.31
% 

 

Enhancer of rudimentary homolog 
OS=Mus musculus GN=Erh PE=1 
SV=1 

sp|P84089|ER
H_MOUSE 

12 13 1.0833
33333 

1.11
% 

 

Splicing factor, proline- and 
glutamine-rich OS=Mus musculus 
GN=Sfpq PE=1 SV=1 

sp|Q8VIJ6|SF
PQ_MOUSE 

75 13 0.1733
33333 

0.18
% 

 

Heterogeneous nuclear 
ribonucleoprotein L-like OS=Mus 
musculus GN=Hnrnpll PE=1 SV=3 

sp|Q921F4|HN
RLL_MOUSE 

64 13 0.2031
25 

0.21
% 

 

14-3-3 protein beta/alpha OS=Mus 
musculus GN=Ywhab PE=1 SV=3 

sp|Q9CQV8|14
33B_MOUSE 

28 13 0.4642
85714 

0.48
% 

 

Syntaxin-binding protein 1 OS=Mus 
musculus GN=Stxbp1 PE=1 SV=2 

sp|O08599|ST
XB1_MOUSE 

68 12 0.1764
70588 

0.18
% 

 

Heat shock protein HSP 90-beta 
OS=Mus musculus GN=Hsp90ab1 
PE=1 SV=3 

sp|P11499|HS
90B_MOUSE 

83 12 0.1445
78313 

0.15
% 

 

Glutamine synthetase OS=Mus 
musculus GN=Glul PE=1 SV=6 

sp|P15105|GL
NA_MOUSE 

42 12 0.2857
14286 

0.29
% 
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S-arrestin OS=Mus musculus 
GN=Sag PE=1 SV=1 

sp|P20443|AR
RS_MOUSE 

45 12 0.2666
66667 

0.27
% 

 

Putative E3 ubiquitin-protein ligase 
UNKL OS=Mus musculus GN=Unkl 
PE=2 SV=2 

sp|Q5FWH2|U
NKL_MOUSE 

80 12 0.15 0.15
% 

 

Non-POU domain-containing octamer-
binding protein OS=Mus musculus 
GN=Nono PE=1 SV=3 

sp|Q99K48|NO
NO_MOUSE 

55 12 0.2181
81818 

0.22
% 

 

RNA-binding protein 8A OS=Mus 
musculus GN=Rbm8a PE=1 SV=3 

sp|Q9CWZ3|R
BM8A_MOUS
E 

20 12 0.6 0.62
% 

 

Zinc finger RNA-binding protein 
OS=Mus musculus GN=Zfr PE=1 
SV=2 

sp|O88532|ZF
R_MOUSE 

117 11 0.0940
17094 

0.10
% 

 

Spectrin alpha chain, non-erythrocytic 
1 OS=Mus musculus GN=Sptan1 
PE=1 SV=4 

sp|P16546|SP
TN1_MOUSE 

285 11 0.0385
96491 

0.04
% 

 

Protein argonaute-2 OS=Mus 
musculus GN=Ago2 PE=1 SV=3 

sp|Q8CJG0|A
GO2_MOUSE 

97 11 0.1134
02062 

0.12
% 

 

Heterogeneous nuclear 
ribonucleoprotein L OS=Mus 
musculus GN=Hnrnpl PE=1 SV=2 

sp|Q8R081|HN
RPL_MOUSE 

64 11 0.1718
75 

0.18
% 

 

Cell cycle and apoptosis regulator 
protein 2 OS=Mus musculus 
GN=Ccar2 PE=1 SV=2 

sp|Q8VDP4|C
CAR2_MOUS
E 

103 11 0.1067
96117 

0.11
% 

 

Protein syndesmos OS=Mus 
musculus GN=Nudt16l1 PE=1 SV=2 

sp|Q8VHN8|S
DOS_MOUSE 

23 11 0.4782
6087 

0.49
% 

 

UPF0568 protein C14orf166 homolog 
OS=Mus musculus PE=2 SV=1 

sp|Q9CQE8|C
N166_MOUSE 

28 11 0.3928
57143 

0.40
% 

 

Interleukin enhancer-binding factor 2 
OS=Mus musculus GN=Ilf2 PE=1 
SV=1 

sp|Q9CXY6|IL
F2_MOUSE 

43 11 0.2558
13953 

0.26
% 

 

Target of rapamycin complex subunit 
LST8 OS=Mus musculus GN=Mlst8 
PE=1 SV=1 

sp|Q9DCJ1|LS
T8_MOUSE 

36 11 0.3055
55556 

0.31
% 

 

Regulator of nonsense transcripts 1 
OS=Mus musculus GN=Upf1 PE=1 
SV=2 

sp|Q9EPU0|R
ENT1_MOUSE 

124 11 0.0887
09677 

0.09
% 

 

Triosephosphate isomerase OS=Mus 
musculus GN=Tpi1 PE=1 SV=4 

sp|P17751|TPI
S_MOUSE 

32 10 0.3125 0.32
% 

 

Rod cGMP-specific 3',5'-cyclic 
phosphodiesterase subunit alpha 
OS=Mus musculus GN=Pde6a PE=2 
SV=3 

sp|P27664|PD
E6A_MOUSE 

100 10 0.1 0.10
% 

 

High mobility group protein B2 
OS=Mus musculus GN=Hmgb2 PE=1 
SV=3 

sp|P30681|HM
GB2_MOUSE 

24 10 0.4166
66667 

0.43
% 

 

Guanine nucleotide-binding protein 
subunit beta-2-like 1 OS=Mus 
musculus GN=Gnb2l1 PE=1 SV=3 

sp|P68040|GB
LP_MOUSE 

35 10 0.2857
14286 

0.29
% 
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Histone-binding protein RBBP4 
OS=Mus musculus GN=Rbbp4 PE=1 
SV=5 

sp|Q60972|RB
BP4_MOUSE 

48 10 0.2083
33333 

0.21
% 

 

Serine/arginine-rich splicing factor 2 
OS=Mus musculus GN=Srsf2 PE=1 
SV=4 

sp|Q62093|SR
SF2_MOUSE 

25 10 0.4 0.41
% 

 

Transcription intermediary factor 1-
beta OS=Mus musculus GN=Trim28 
PE=1 SV=3 

sp|Q62318|TIF
1B_MOUSE 

89 10 0.1123
59551 

0.12
% 

 

Eukaryotic translation initiation factor 
2 subunit 1 OS=Mus musculus 
GN=Eif2s1 PE=1 SV=3 

sp|Q6ZWX6|IF
2A_MOUSE 

36 10 0.2777
77778 

0.29
% 

 

WD repeat-containing protein 82 
OS=Mus musculus GN=Wdr82 PE=1 
SV=1 

sp|Q8BFQ4|W
DR82_MOUSE 

35 10 0.2857
14286 

0.29
% 

 

Transportin-1 OS=Mus musculus 
GN=Tnpo1 PE=1 SV=2 

sp|Q8BFY9|TN
PO1_MOUSE 

102 10 0.0980
39216 

0.10
% 

 

Splicing factor 3B subunit 5 OS=Mus 
musculus GN=Sf3b5 PE=2 SV=1 

sp|Q923D4|SF
3B5_MOUSE 

10 10 1 1.03
% 

 

Cleavage stimulation factor subunit 1 
OS=Mus musculus GN=Cstf1 PE=2 
SV=1 

sp|Q99LC2|CS
TF1_MOUSE 

48 10 0.2083
33333 

0.21
% 

 

Cleavage and polyadenylation 
specificity factor subunit 3 OS=Mus 
musculus GN=Cpsf3 PE=1 SV=2 

sp|Q9QXK7|C
PSF3_MOUSE 

78 10 0.1282
05128 

0.13
% 

 

Nucleolysin TIA-1 OS=Mus musculus 
GN=Tia1 PE=1 SV=1 

sp|P52912|TIA
1_MOUSE 

43 9 0.2093
02326 

0.22
% 

 

Transcription elongation factor B 
polypeptide 2 OS=Mus musculus 
GN=Tceb2 PE=1 SV=1 

sp|P62869|EL
OB_MOUSE 

13 9 0.6923
07692 

0.71
% 

 

Apolipoprotein A-I OS=Mus musculus 
GN=Apoa1 PE=1 SV=2 

sp|Q00623|AP
OA1_MOUSE 

31 9 0.2903
22581 

0.30
% 

 

Nucleophosmin OS=Mus musculus 
GN=Npm1 PE=1 SV=1 

sp|Q61937|NP
M_MOUSE 

33 9 0.2727
27273 

0.28
% 

 

ATP-dependent RNA helicase DDX3X 
OS=Mus musculus GN=Ddx3x PE=1 
SV=3 

sp|Q62167|DD
X3X_MOUSE 

73 9 0.1232
87671 

0.13
% 

 

Interphotoreceptor matrix 
proteoglycan 2 OS=Mus musculus 
GN=Impg2 PE=1 SV=1 

sp|Q80XH2|IM
PG2_MOUSE 

138 9 0.0652
17391 

0.07
% 

 

RNA binding motif protein, X-linked-
like-1 OS=Mus musculus GN=Rbmxl1 
PE=1 SV=1 

sp|Q91VM5|R
MXL1_MOUS
E 

42 9 0.2142
85714 

0.22
% 

 

Protein arginine N-methyltransferase 
1 OS=Mus musculus GN=Prmt1 
PE=1 SV=1 

sp|Q9JIF0|AN
M1_MOUSE 

42 9 0.2142
85714 

0.22
% 

 

Squamous cell carcinoma antigen 
recognized by T-cells 3 OS=Mus 
musculus GN=Sart3 PE=1 SV=1 

sp|Q9JLI8|SA
RT3_MOUSE 

110 9 0.0818
18182 

0.08
% 
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Hemoglobin subunit alpha OS=Mus 
musculus GN=Hba PE=1 SV=2 

sp|P01942|HB
A_MOUSE 

15 8 0.5333
33333 

0.55
% 

 

Transitional endoplasmic reticulum 
ATPase OS=Mus musculus GN=Vcp 
PE=1 SV=4 

sp|Q01853|TE
RA_MOUSE 

89 8 0.0898
8764 

0.09
% 

 

Keratin, type II cytoskeletal 2 oral 
OS=Mus musculus GN=Krt76 PE=2 
SV=1 

sp|Q3UV17|K2
2O_MOUSE 

63 8 0.1269
84127 

0.13
% 

 

U1 small nuclear ribonucleoprotein A 
OS=Mus musculus GN=Snrpa PE=2 
SV=3 

sp|Q62189|SN
RPA_MOUSE 

32 8 0.25 0.26
% 

 

PEST proteolytic signal-containing 
nuclear protein OS=Mus musculus 
GN=Pcnp PE=1 SV=1 

sp|Q6P8I4|PC
NP_MOUSE 

19 8 0.4210
52632 

0.43
% 

 

Sodium/potassium-transporting 
ATPase subunit alpha-3 OS=Mus 
musculus GN=Atp1a3 PE=1 SV=1 

sp|Q6PIC6|AT
1A3_MOUSE 

112 8 0.0714
28571 

0.07
% 

 

Zinc finger matrin-type protein 4 
OS=Mus musculus GN=Zmat4 PE=2 
SV=1 

sp|Q8BZ94|ZM
AT4_MOUSE 

26 8 0.3076
92308 

0.32
% 

 

Polyadenylate-binding protein 2 
OS=Mus musculus GN=Pabpn1 PE=2 
SV=3 

sp|Q8CCS6|P
ABP2_MOUSE 

32 8 0.25 0.26
% 

 

UDP-N-acetylglucosamine--peptide N-
acetylglucosaminyltransferase 110 
kDa subunit OS=Mus musculus 
GN=Ogt PE=1 SV=2 

sp|Q8CGY8|O
GT1_MOUSE 

117 8 0.0683
76068 

0.07
% 

 

Splicing factor 3B subunit 1 OS=Mus 
musculus GN=Sf3b1 PE=1 SV=1 

sp|Q99NB9|SF
3B1_MOUSE 

146 8 0.0547
94521 

0.06
% 

 

Cleavage and polyadenylation 
specificity factor subunit 5 OS=Mus 
musculus GN=Nudt21 PE=1 SV=1 

sp|Q9CQF3|C
PSF5_MOUSE 

26 8 0.3076
92308 

0.32
% 

 

Microfibrillar-associated protein 1 
OS=Mus musculus GN=Mfap1 PE=1 
SV=1 

sp|Q9CQU1|M
FAP1_MOUSE 

52 8 0.1538
46154 

0.16
% 

 

Dihydropyrimidinase-related protein 2 
OS=Mus musculus GN=Dpysl2 PE=1 
SV=2 

sp|O08553|DP
YL2_MOUSE 

62 7 0.1129
03226 

0.12
% 

 

AP-1 complex subunit beta-1 
OS=Mus musculus GN=Ap1b1 PE=2 
SV=2 

sp|O35643|AP
1B1_MOUSE 

104 7 0.0673
07692 

0.07
% 

 

Putative RNA-binding protein 3 
OS=Mus musculus GN=Rbm3 PE=2 
SV=1 

sp|O89086|RB
M3_MOUSE 

17 7 0.4117
64706 

0.42
% 

 

L-lactate dehydrogenase A chain 
OS=Mus musculus GN=Ldha PE=1 
SV=3 

sp|P06151|LD
HA_MOUSE 

36 7 0.1944
44444 

0.20
% 

 

Alpha-crystallin A chain OS=Mus 
musculus GN=Cryaa PE=2 SV=1 

sp|P24622|CR
YAA_MOUSE 

22 7 0.3181
81818 

0.33
% 
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Ezrin OS=Mus musculus GN=Ezr 
PE=1 SV=3 

sp|P26040|EZ
RI_MOUSE 

69 7 0.1014
49275 

0.10
% 

 

Peroxiredoxin-1 OS=Mus musculus 
GN=Prdx1 PE=1 SV=1 

sp|P35700|PR
DX1_MOUSE 

22 7 0.3181
81818 

0.33
% 

 

RuvB-like 1 OS=Mus musculus 
GN=Ruvbl1 PE=1 SV=1 

sp|P60122|RU
VB1_MOUSE 

50 7 0.14 0.14
% 

 

Serine/threonine-protein phosphatase 
2A catalytic subunit alpha isoform 
OS=Mus musculus GN=Ppp2ca PE=1 
SV=1 

sp|P63330|PP
2AA_MOUSE 

36 7 0.1944
44444 

0.20
% 

 

DNA damage-binding protein 1 
OS=Mus musculus GN=Ddb1 PE=1 
SV=2 

sp|Q3U1J4|DD
B1_MOUSE 

127 7 0.0551
1811 

0.06
% 

 

TNF receptor-associated factor 3 
OS=Mus musculus GN=Traf3 PE=1 
SV=2 

sp|Q60803|TR
AF3_MOUSE 

64 7 0.1093
75 

0.11
% 

 

Guanine nucleotide-binding protein 
G(T) subunit gamma-T1 OS=Mus 
musculus GN=Gngt1 PE=1 SV=3 

sp|Q61012|GB
G1_MOUSE 

9 7 0.7777
77778 

0.80
% 

 

Host cell factor 1 OS=Mus musculus 
GN=Hcfc1 PE=1 SV=2 

sp|Q61191|HC
FC1_MOUSE 

210 7 0.0333
33333 

0.03
% 

 

Sperm flagellar protein 2 OS=Mus 
musculus GN=Spef2 PE=2 SV=2 

sp|Q8C9J3|SP
EF2_MOUSE 

199 7 0.0351
75879 

0.04
% 

 

Paraspeckle component 1 OS=Mus 
musculus GN=Pspc1 PE=1 SV=1 

sp|Q8R326|PS
PC1_MOUSE 

59 7 0.1186
44068 

0.12
% 

 

Zinc finger CCHC domain-containing 
protein 8 OS=Mus musculus 
GN=Zcchc8 PE=2 SV=3 

sp|Q9CYA6|Z
CHC8_MOUS
E 

78 7 0.0897
4359 

0.09
% 

 

RuvB-like 2 OS=Mus musculus 
GN=Ruvbl2 PE=2 SV=3 

sp|Q9WTM5|R
UVB2_MOUS
E 

51 7 0.1372
54902 

0.14
% 

 

Eukaryotic translation initiation factor 
4H OS=Mus musculus GN=Eif4h 
PE=1 SV=3 

sp|Q9WUK2|IF
4H_MOUSE 

27 7 0.2592
59259 

0.27
% 

 

Retinoschisin OS=Mus musculus 
GN=Rs1 PE=1 SV=1 

sp|Q9Z1L4|XL
RS1_MOUSE 

26 7 0.2692
30769 

0.28
% 

 

Kelch-like protein 3 OS=Mus 
musculus GN=Klhl3 PE=1 SV=2 

sp|E0CZ16|KL
HL3_MOUSE 

65 6 0.0923
07692 

0.09
% 

 

Hexokinase-2 OS=Mus musculus 
GN=Hk2 PE=2 SV=1 

sp|O08528|HX
K2_MOUSE 

103 6 0.0582
52427 

0.06
% 

 

Serum albumin OS=Mus musculus 
GN=Alb PE=1 SV=3 

sp|P07724|AL
BU_MOUSE 

69 6 0.0869
56522 

0.09
% 

 

Nucleolin OS=Mus musculus GN=Ncl 
PE=1 SV=2 

sp|P09405|NU
CL_MOUSE 

77 6 0.0779
22078 

0.08
% 

 

60S acidic ribosomal protein P0 
OS=Mus musculus GN=Rplp0 PE=1 
SV=3 

sp|P14869|RL
A0_MOUSE 

34 6 0.1764
70588 

0.18
% 

 

Lysozyme C-1 OS=Mus musculus 
GN=Lyz1 PE=1 SV=1 

sp|P17897|LY
Z1_MOUSE 

17 6 0.3529
41176 

0.36
% 

 

218



CUGBP Elav-like family member 1 
OS=Mus musculus GN=Celf1 PE=1 
SV=2 

sp|P28659|CE
LF1_MOUSE 

52 6 0.1153
84615 

0.12
% 

 

RNA-binding protein FUS OS=Mus 
musculus GN=Fus PE=2 SV=1 

sp|P56959|FU
S_MOUSE 

53 6 0.1132
07547 

0.12
% 

 

Dihydropyrimidinase-related protein 3 
OS=Mus musculus GN=Dpysl3 PE=1 
SV=1 

sp|Q62188|DP
YL3_MOUSE 

62 6 0.0967
74194 

0.10
% 

 

Cleavage stimulation factor subunit 2 
OS=Mus musculus GN=Cstf2 PE=1 
SV=2 

sp|Q8BIQ5|CS
TF2_MOUSE 

61 6 0.0983
60656 

0.10
% 

 

Aryl-hydrocarbon-interacting protein-
like 1 OS=Mus musculus GN=Aipl1 
PE=2 SV=2 

sp|Q924K1|AI
PL1_MOUSE 

38 6 0.1578
94737 

0.16
% 

 

Superkiller viralicidic activity 2-like 2 
OS=Mus musculus GN=Skiv2l2 PE=1 
SV=1 

sp|Q9CZU3|S
K2L2_MOUSE 

118 6 0.0508
47458 

0.05
% 

 

Phenylalanine--tRNA ligase beta 
subunit OS=Mus musculus GN=Farsb 
PE=2 SV=2 

sp|Q9WUA2|S
YFB_MOUSE 

66 6 0.0909
09091 

0.09
% 

 

Phospholipid hydroperoxide 
glutathione peroxidase, mitochondrial 
OS=Mus musculus GN=Gpx4 PE=1 
SV=4 

sp|O70325|GP
X41_MOUSE 
(+1) 

22 5 0.2272
72727 

0.23
% 

 

C-terminal-binding protein 1 OS=Mus 
musculus GN=Ctbp1 PE=1 SV=2 

sp|O88712|CT
BP1_MOUSE 

48 5 0.1041
66667 

0.11
% 

 

Elongation factor 1-alpha 1 OS=Mus 
musculus GN=Eef1a1 PE=1 SV=3 

sp|P10126|EF
1A1_MOUSE 

50 5 0.1 0.10
% 

 

Histone H2B type 1-F/J/L OS=Mus 
musculus GN=Hist1h2bf PE=1 SV=2 

sp|P10853|H2
B1F_MOUSE 
(+8) 

14 5 0.3571
42857 

0.37
% 

 

DNA-(apurinic or apyrimidinic site) 
lyase OS=Mus musculus GN=Apex1 
PE=1 SV=2 

sp|P28352|AP
EX1_MOUSE 

35 5 0.1428
57143 

0.15
% 

 

F-actin-capping protein subunit beta 
OS=Mus musculus GN=Capzb PE=1 
SV=3 

sp|P47757|CA
PZB_MOUSE 

31 5 0.1612
90323 

0.17
% 

 

Pyruvate kinase PKM OS=Mus 
musculus GN=Pkm PE=1 SV=4 

sp|P52480|KP
YM_MOUSE 

58 5 0.0862
06897 

0.09
% 

 

Calmodulin OS=Mus musculus 
GN=Calm1 PE=1 SV=2 

sp|P62204|CA
LM_MOUSE 

17 5 0.2941
17647 

0.30
% 

 

Transcription elongation factor B 
polypeptide 1 OS=Mus musculus 
GN=Tceb1 PE=1 SV=1 

sp|P83940|EL
OC_MOUSE 

12 5 0.4166
66667 

0.43
% 

 

Dihydropyrimidinase-related protein 1 
OS=Mus musculus GN=Crmp1 PE=1 
SV=1 

sp|P97427|DP
YL1_MOUSE 

62 5 0.0806
45161 

0.08
% 

 

Constitutive coactivator of PPAR-
gamma-like protein 1 OS=Mus 
musculus GN=FAM120A PE=1 SV=2 

sp|Q6A0A9|F1
20A_MOUSE 

122 5 0.0409
83607 

0.04
% 
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Staphylococcal nuclease domain-
containing protein 1 OS=Mus 
musculus GN=Snd1 PE=1 SV=1 

sp|Q78PY7|SN
D1_MOUSE 

102 5 0.0490
19608 

0.05
% 

 

HIV Tat-specific factor 1 homolog 
OS=Mus musculus GN=Htatsf1 PE=1 
SV=1 

sp|Q8BGC0|H
TSF1_MOUSE 

86 5 0.0581
39535 

0.06
% 

 

Integrator complex subunit 4 OS=Mus 
musculus GN=Ints4 PE=1 SV=1 

sp|Q8CIM8|IN
T4_MOUSE 

108 5 0.0462
96296 

0.05
% 

 

Protein argonaute-1 OS=Mus 
musculus GN=Ago1 PE=1 SV=2 

sp|Q8CJG1|A
GO1_MOUSE 

97 5 0.0515
46392 

0.05
% 

 

Transmembrane emp24 domain-
containing protein 9 OS=Mus 
musculus GN=Tmed9 PE=1 SV=2 

sp|Q99KF1|TM
ED9_MOUSE 

27 5 0.1851
85185 

0.19
% 

 

Cleavage stimulation factor subunit 3 
OS=Mus musculus GN=Cstf3 PE=1 
SV=1 

sp|Q99LI7|CS
TF3_MOUSE 

83 5 0.0602
40964 

0.06
% 

 

Elongation factor 1-gamma OS=Mus 
musculus GN=Eef1g PE=1 SV=3 

sp|Q9D8N0|EF
1G_MOUSE 

50 5 0.1 0.10
% 

 

WD repeat-containing protein 61 
OS=Mus musculus GN=Wdr61 PE=2 
SV=1 

sp|Q9ERF3|W
DR61_MOUSE 

34 5 0.1470
58824 

0.15
% 

 

General transcription factor II-I 
OS=Mus musculus GN=Gtf2i PE=1 
SV=3 

sp|Q9ESZ8|G
TF2I_MOUSE 

112 5 0.0446
42857 

0.05
% 

 

Profilin-2 OS=Mus musculus 
GN=Pfn2 PE=1 SV=3 

sp|Q9JJV2|PR
OF2_MOUSE 

15 5 0.3333
33333 

0.34
% 

 

Treacle protein OS=Mus musculus 
GN=Tcof1 PE=1 SV=1 

sp|O08784|TC
OF_MOUSE 

135 4 0.0296
2963 

0.03
% 

 

DNA-directed RNA polymerase I 
subunit RPA1 OS=Mus musculus 
GN=Polr1a PE=1 SV=2 

sp|O35134|RP
A1_MOUSE 

194 4 0.0206
18557 

0.02
% 

 

Elongation factor 1-beta OS=Mus 
musculus GN=Eef1b PE=1 SV=5 

sp|O70251|EF
1B_MOUSE 

25 4 0.16 0.16
% 

 

Fructose-bisphosphate aldolase A 
OS=Mus musculus GN=Aldoa PE=1 
SV=2 

sp|P05064|AL
DOA_MOUSE 

39 4 0.1025
64103 

0.11
% 

 

40S ribosomal protein SA OS=Mus 
musculus GN=Rpsa PE=1 SV=4 

sp|P14206|RS
SA_MOUSE 

33 4 0.1212
12121 

0.12
% 

 

Glyceraldehyde-3-phosphate 
dehydrogenase OS=Mus musculus 
GN=Gapdh PE=1 SV=2 

sp|P16858|G3
P_MOUSE 

36 4 0.1111
11111 

0.11
% 

 

Hexokinase-1 OS=Mus musculus 
GN=Hk1 PE=1 SV=3 

sp|P17710|HX
K1_MOUSE 

108 4 0.0370
37037 

0.04
% 

 

AP-1 complex subunit gamma-1 
OS=Mus musculus GN=Ap1g1 PE=1 
SV=3 

sp|P22892|AP
1G1_MOUSE 

91 4 0.0439
56044 

0.05
% 

 

Poly(rC)-binding protein 4 OS=Mus 
musculus GN=Pcbp4 PE=2 SV=1 

sp|P57724|PC
BP4_MOUSE 

41 4 0.0975
60976 

0.10
% 
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Cold-inducible RNA-binding protein 
OS=Mus musculus GN=Cirbp PE=1 
SV=1 

sp|P60824|CIR
BP_MOUSE 

19 4 0.2105
26316 

0.22
% 

 

Small ubiquitin-related modifier 2 
OS=Mus musculus GN=Sumo2 PE=1 
SV=1 

sp|P61957|SU
MO2_MOUSE 

11 4 0.3636
36364 

0.37
% 

 

40S ribosomal protein S12 OS=Mus 
musculus GN=Rps12 PE=1 SV=2 

sp|P63323|RS
12_MOUSE 

15 4 0.2666
66667 

0.27
% 

 

Plakophilin-1 OS=Mus musculus 
GN=Pkp1 PE=2 SV=1 

sp|P97350|PK
P1_MOUSE 

81 4 0.0493
82716 

0.05
% 

 

Heat shock protein beta-6 OS=Mus 
musculus GN=Hspb6 PE=2 SV=1 

sp|Q5EBG6|H
SPB6_MOUSE 

18 4 0.2222
22222 

0.23
% 

 

Growth factor receptor-bound protein 
2 OS=Mus musculus GN=Grb2 PE=1 
SV=1 

sp|Q60631|GR
B2_MOUSE 

25 4 0.16 0.16
% 

 

Clathrin heavy chain 1 OS=Mus 
musculus GN=Cltc PE=1 SV=3 

sp|Q68FD5|CL
H1_MOUSE 

192 4 0.0208
33333 

0.02
% 

 

Cleavage stimulation factor subunit 2 
tau variant OS=Mus musculus 
GN=Cstf2t PE=1 SV=2 

sp|Q8C7E9|C
STFT_MOUSE 

66 4 0.0606
06061 

0.06
% 

 

Transcription elongation factor A 
protein-like 5 OS=Mus musculus 
GN=Tceal5 PE=1 SV=1 

sp|Q8CCT4|T
CAL5_MOUSE 

22 4 0.1818
18182 

0.19
% 

 

Translation machinery-associated 
protein 7 OS=Mus musculus 
GN=Tma7 PE=2 SV=1 

sp|Q8K003|TM
A7_MOUSE 

7 4 0.5714
28571 

0.59
% 

 

Histone chaperone ASF1A OS=Mus 
musculus GN=Asf1a PE=2 SV=1 

sp|Q9CQE6|A
SF1A_MOUSE 

23 4 0.1739
13043 

0.18
% 

 

Protein PBDC1 OS=Mus musculus 
GN=Pbdc1 PE=2 SV=1 

sp|Q9D0B6|PB
DC1_MOUSE 

22 4 0.1818
18182 

0.19
% 

 

Peptidyl-prolyl cis-trans isomerase H 
OS=Mus musculus GN=Ppih PE=2 
SV=1 

sp|Q9D868|PP
IH_MOUSE 

20 4 0.2 0.21
% 

 

Coiled-coil domain-containing protein 
97 OS=Mus musculus GN=Ccdc97 
PE=1 SV=1 

sp|Q9DBT3|C
CD97_MOUSE 

39 4 0.1025
64103 

0.11
% 

 

AMP deaminase 2 OS=Mus musculus 
GN=Ampd2 PE=1 SV=1 

sp|Q9DBT5|A
MPD2_MOUS
E 

92 4 0.0434
78261 

0.04
% 

 

Transmembrane emp24 domain-
containing protein 2 OS=Mus 
musculus GN=Tmed2 PE=1 SV=1 

sp|Q9R0Q3|T
MED2_MOUS
E 

23 4 0.1739
13043 

0.18
% 

 

Scaffold attachment factor B1 
OS=Mus musculus GN=Safb PE=1 
SV=2 

sp|D3YXK2|SA
FB1_MOUSE 

105 3 0.0285
71429 

0.03
% 

 

Histone deacetylase 1 OS=Mus 
musculus GN=Hdac1 PE=1 SV=1 

sp|O09106|HD
AC1_MOUSE 

55 3 0.0545
45455 

0.06
% 

 

Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase 48 kDa 

sp|O54734|OS
T48_MOUSE 

49 3 0.0612
2449 

0.06
% 
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subunit OS=Mus musculus GN=Ddost 
PE=1 SV=2 
Retinal rod rhodopsin-sensitive cGMP 
3',5'-cyclic phosphodiesterase subunit 
delta OS=Mus musculus GN=Pde6d 
PE=1 SV=1 

sp|O55057|PD
E6D_MOUSE 

17 3 0.1764
70588 

0.18
% 

 

Protein lin-7 homolog C OS=Mus 
musculus GN=Lin7c PE=1 SV=2 

sp|O88952|LIN
7C_MOUSE 

22 3 0.1363
63636 

0.14
% 

 

Annexin A2 OS=Mus musculus 
GN=Anxa2 PE=1 SV=2 

sp|P07356|AN
XA2_MOUSE 

39 3 0.0769
23077 

0.08
% 

 

Thioredoxin OS=Mus musculus 
GN=Txn PE=1 SV=3 

sp|P10639|THI
O_MOUSE 

12 3 0.25 0.26
% 

 

Microtubule-associated protein 4 
OS=Mus musculus GN=Map4 PE=1 
SV=3 

sp|P27546|MA
P4_MOUSE 

117 3 0.0256
41026 

0.03
% 

 

Dynamin-1 OS=Mus musculus 
GN=Dnm1 PE=1 SV=2 

sp|P39053|DY
N1_MOUSE 

98 3 0.0306
12245 

0.03
% 

 

ATP synthase subunit beta, 
mitochondrial OS=Mus musculus 
GN=Atp5b PE=1 SV=2 

sp|P56480|AT
PB_MOUSE 

56 3 0.0535
71429 

0.06
% 

 

Synaptosomal-associated protein 25 
OS=Mus musculus GN=Snap25 PE=1 
SV=1 

sp|P60879|SN
P25_MOUSE 

23 3 0.1304
34783 

0.13
% 

 

Histone H4 OS=Mus musculus 
GN=Hist1h4a PE=1 SV=2 

sp|P62806|H4
_MOUSE 

11 3 0.2727
27273 

0.28
% 

 

Vesicle-associated membrane protein 
3 OS=Mus musculus GN=Vamp3 
PE=1 SV=1 

sp|P63024|VA
MP3_MOUSE 
(+1) 

11 3 0.2727
27273 

0.28
% 

 

Dynein light chain 1, cytoplasmic 
OS=Mus musculus GN=Dynll1 PE=1 
SV=1 

sp|P63168|DY
L1_MOUSE 

10 3 0.3 0.31
% 

 

Thioredoxin-like protein 4A OS=Mus 
musculus GN=Txnl4a PE=2 SV=1 

sp|P83877|TX
N4A_MOUSE 

17 3 0.1764
70588 

0.18
% 

 

Serine/arginine-rich splicing factor 3 
OS=Mus musculus GN=Srsf3 PE=1 
SV=1 

sp|P84104|SR
SF3_MOUSE 

19 3 0.1578
94737 

0.16
% 

 

RISC-loading complex subunit 
TARBP2 OS=Mus musculus 
GN=Tarbp2 PE=1 SV=2 

sp|P97473|TR
BP2_MOUSE 

39 3 0.0769
23077 

0.08
% 

 

Peroxiredoxin-2 OS=Mus musculus 
GN=Prdx2 PE=1 SV=3 

sp|Q61171|PR
DX2_MOUSE 

22 3 0.1363
63636 

0.14
% 

 

Desmoglein-1-alpha OS=Mus 
musculus GN=Dsg1a PE=2 SV=2 

sp|Q61495|DS
G1A_MOUSE 
(+2) 

115 3 0.0260
86957 

0.03
% 

 

Serum paraoxonase/arylesterase 2 
OS=Mus musculus GN=Pon2 PE=1 
SV=2 

sp|Q62086|PO
N2_MOUSE 

40 3 0.075 0.08
% 

 

Calcium/calmodulin-dependent 
protein kinase type II subunit delta 

sp|Q6PHZ2|K
CC2D_MOUS
E 

56 3 0.0535
71429 

0.06
% 
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OS=Mus musculus GN=Camk2d 
PE=1 SV=1 
DNA-directed RNA polymerases I, II, 
and III subunit RPABC1 OS=Mus 
musculus GN=Polr2e PE=2 SV=1 

sp|Q80UW8|R
PAB1_MOUSE 

25 3 0.12 0.12
% 

 

Protein FAM98B OS=Mus musculus 
GN=Fam98b PE=2 SV=1 

sp|Q80VD1|FA
98B_MOUSE 

45 3 0.0666
66667 

0.07
% 

 

Complexin-4 OS=Mus musculus 
GN=Cplx4 PE=1 SV=2 

sp|Q80WM3|C
PLX4_MOUSE 

18 3 0.1666
66667 

0.17
% 

 

ATP-dependent RNA helicase DDX42 
OS=Mus musculus GN=Ddx42 PE=1 
SV=3 

sp|Q810A7|DD
X42_MOUSE 

102 3 0.0294
11765 

0.03
% 

 

Parkinson disease 7 domain-
containing protein 1 OS=Mus 
musculus GN=Pddc1 PE=1 SV=1 

sp|Q8BFQ8|P
DDC1_MOUS
E 

23 3 0.1304
34783 

0.13
% 

 

Zinc finger CCCH domain-containing 
protein 14 OS=Mus musculus 
GN=Zc3h14 PE=1 SV=1 

sp|Q8BJ05|ZC
3HE_MOUSE 

82 3 0.0365
85366 

0.04
% 

 

Importin-5 OS=Mus musculus 
GN=Ipo5 PE=1 SV=3 

sp|Q8BKC5|IP
O5_MOUSE 

124 3 0.0241
93548 

0.02
% 

 

Gephyrin OS=Mus musculus 
GN=Gphn PE=1 SV=2 

sp|Q8BUV3|G
EPH_MOUSE 

83 3 0.0361
44578 

0.04
% 

 

Peptidylprolyl isomerase domain and 
WD repeat-containing protein 1 
OS=Mus musculus GN=Ppwd1 PE=2 
SV=2 

sp|Q8CEC6|P
PWD1_MOUS
E 

73 3 0.0410
9589 

0.04
% 

 

Transmembrane emp24 domain-
containing protein 4 OS=Mus 
musculus GN=Tmed4 PE=2 SV=1 

sp|Q8R1V4|T
MED4_MOUS
E 

26 3 0.1153
84615 

0.12
% 

 

Vigilin OS=Mus musculus GN=Hdlbp 
PE=1 SV=1 

sp|Q8VDJ3|VI
GLN_MOUSE 

142 3 0.0211
26761 

0.02
% 

 

Telomeric repeat-binding factor 2-
interacting protein 1 OS=Mus 
musculus GN=Terf2ip PE=1 SV=1 

sp|Q91VL8|TE
2IP_MOUSE 

43 3 0.0697
67442 

0.07
% 

 

Brain acid soluble protein 1 OS=Mus 
musculus GN=Basp1 PE=1 SV=3 

sp|Q91XV3|BA
SP1_MOUSE 

22 3 0.1363
63636 

0.14
% 

 

Double-stranded RNA-specific editase 
1 OS=Mus musculus GN=Adarb1 
PE=1 SV=1 

sp|Q91ZS8|RE
D1_MOUSE 

78 3 0.0384
61538 

0.04
% 

 

tRNA-splicing ligase RtcB homolog 
OS=Mus musculus GN=Rtcb PE=2 
SV=1 

sp|Q99LF4|RT
CB_MOUSE 

55 3 0.0545
45455 

0.06
% 

 

CD2 antigen cytoplasmic tail-binding 
protein 2 OS=Mus musculus 
GN=Cd2bp2 PE=1 SV=1 

sp|Q9CWK3|C
D2B2_MOUSE 

38 3 0.0789
47368 

0.08
% 

 

NHP2-like protein 1 OS=Mus 
musculus GN=Nhp2l1 PE=1 SV=4 

sp|Q9D0T1|N
H2L1_MOUSE 

14 3 0.2142
85714 

0.22
% 

 

Vacuolar protein sorting-associated 
protein 28 homolog OS=Mus 
musculus GN=Vps28 PE=2 SV=1 

sp|Q9D1C8|V
PS28_MOUSE 

25 3 0.12 0.12
% 
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Peptidyl-prolyl cis-trans isomerase-
like 3 OS=Mus musculus GN=Ppil3 
PE=2 SV=1 

sp|Q9D6L8|PP
IL3_MOUSE 

18 3 0.1666
66667 

0.17
% 

 

Vesicular integral-membrane protein 
VIP36 OS=Mus musculus GN=Lman2 
PE=2 SV=2 

sp|Q9DBH5|L
MAN2_MOUS
E 

40 3 0.075 0.08
% 

 

C-Myc-binding protein OS=Mus 
musculus GN=Mycbp PE=2 SV=5 

sp|Q9EQS3|M
YCBP_MOUS
E 

12 3 0.25 0.26
% 

 

Zinc finger protein 346 OS=Mus 
musculus GN=Znf346 PE=1 SV=1 

sp|Q9R0B7|ZN
346_MOUSE 

33 3 0.0909
09091 

0.09
% 

 

Acyl-protein thioesterase 2 OS=Mus 
musculus GN=Lypla2 PE=1 SV=1 

sp|Q9WTL7|L
YPA2_MOUSE 

25 3 0.12 0.12
% 

 

Protein FAM50A OS=Mus musculus 
GN=Fam50a PE=2 SV=1 

sp|Q9WV03|F
A50A_MOUSE 

40 3 0.075 0.08
% 

 

THO complex subunit 4 OS=Mus 
musculus GN=Alyref PE=1 SV=3 

sp|O08583|TH
OC4_MOUSE 

27 2 0.0740
74074 

0.08
% 

 

Dihydropyrimidinase-related protein 4 
OS=Mus musculus GN=Dpysl4 PE=1 
SV=1 

sp|O35098|DP
YL4_MOUSE 

62 2 0.0322
58065 

0.03
% 

 

Importin subunit alpha-3 OS=Mus 
musculus GN=Kpna4 PE=1 SV=1 

sp|O35343|IM
A3_MOUSE 
(+1) 

58 2 0.0344
82759 

0.04
% 

 

High mobility group protein B3 
OS=Mus musculus GN=Hmgb3 PE=2 
SV=3 

sp|O54879|HM
GB3_MOUSE 

23 2 0.0869
56522 

0.09
% 

 

Synaptogyrin-1 OS=Mus musculus 
GN=Syngr1 PE=1 SV=2 

sp|O55100|SN
G1_MOUSE 

26 2 0.0769
23077 

0.08
% 

 

Eukaryotic translation initiation factor 
6 OS=Mus musculus GN=Eif6 PE=1 
SV=2 

sp|O55135|IF6
_MOUSE 

27 2 0.0740
74074 

0.08
% 

 

Cytoplasmic dynein 1 intermediate 
chain 2 OS=Mus musculus 
GN=Dync1i2 PE=1 SV=1 

sp|O88487|DC
1I2_MOUSE 

68 2 0.0294
11765 

0.03
% 

 

Neurofilament medium polypeptide 
OS=Mus musculus GN=Nefm PE=1 
SV=4 

sp|P08553|NF
M_MOUSE 

96 2 0.0208
33333 

0.02
% 

 

4F2 cell-surface antigen heavy chain 
OS=Mus musculus GN=Slc3a2 PE=1 
SV=1 

sp|P10852|4F2
_MOUSE 

58 2 0.0344
82759 

0.04
% 

 

Activated RNA polymerase II 
transcriptional coactivator p15 
OS=Mus musculus GN=Sub1 PE=1 
SV=3 

sp|P11031|TC
P4_MOUSE 

14 2 0.1428
57143 

0.15
% 

 

T-complex protein 1 subunit alpha 
OS=Mus musculus GN=Tcp1 PE=1 
SV=3 

sp|P11983|TC
PA_MOUSE 

60 2 0.0333
33333 

0.03
% 

 

cAMP-dependent protein kinase type 
II-alpha regulatory subunit OS=Mus 
musculus GN=Prkar2a PE=1 SV=2 

sp|P12367|KA
P2_MOUSE 

45 2 0.0444
44444 

0.05
% 
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ATP-dependent 6-
phosphofructokinase, liver type 
OS=Mus musculus GN=Pfkl PE=1 
SV=4 

sp|P12382|PF
KAL_MOUSE 

85 2 0.0235
29412 

0.02
% 

 

Rhodopsin OS=Mus musculus 
GN=Rho PE=1 SV=2 

sp|P15409|OP
SD_MOUSE 

39 2 0.0512
82051 

0.05
% 

 

AP-2 complex subunit alpha-2 
OS=Mus musculus GN=Ap2a2 PE=1 
SV=2 

sp|P17427|AP
2A2_MOUSE 

104 2 0.0192
30769 

0.02
% 

 

Alpha-crystallin B chain OS=Mus 
musculus GN=Cryab PE=1 SV=2 

sp|P23927|CR
YAB_MOUSE 

20 2 0.1 0.10
% 

 

Polyadenylate-binding protein 1 
OS=Mus musculus GN=Pabpc1 PE=1 
SV=2 

sp|P29341|PA
BP1_MOUSE 

71 2 0.0281
69014 

0.03
% 

 

Recoverin OS=Mus musculus 
GN=Rcvrn PE=2 SV=2 

sp|P34057|RE
CO_MOUSE 

23 2 0.0869
56522 

0.09
% 

 

Neuronal membrane glycoprotein M6-
a OS=Mus musculus GN=Gpm6a 
PE=1 SV=1 

sp|P35802|GP
M6A_MOUSE 

31 2 0.0645
16129 

0.07
% 

 

Neuronal membrane glycoprotein M6-
b OS=Mus musculus GN=Gpm6b 
PE=1 SV=2 

sp|P35803|GP
M6B_MOUSE 

36 2 0.0555
55556 

0.06
% 

 

T-complex protein 1 subunit theta 
OS=Mus musculus GN=Cct8 PE=1 
SV=3 

sp|P42932|TC
PQ_MOUSE 

60 2 0.0333
33333 

0.03
% 

 

Cyclin-dependent kinase inhibitor 1B 
OS=Mus musculus GN=Cdkn1b PE=1 
SV=2 

sp|P46414|CD
N1B_MOUSE 

22 2 0.0909
09091 

0.09
% 

 

Vesicle-fusing ATPase OS=Mus 
musculus GN=Nsf PE=1 SV=2 

sp|P46460|NS
F_MOUSE 

83 2 0.0240
96386 

0.02
% 

 

F-actin-capping protein subunit alpha-
1 OS=Mus musculus GN=Capza1 
PE=1 SV=4 

sp|P47753|CA
ZA1_MOUSE 

33 2 0.0606
06061 

0.06
% 

 

Heat shock 70 kDa protein 4L 
OS=Mus musculus GN=Hspa4l PE=1 
SV=2 

sp|P48722|HS
74L_MOUSE 

94 2 0.0212
76596 

0.02
% 

 

V-type proton ATPase catalytic 
subunit A OS=Mus musculus 
GN=Atp6v1a PE=1 SV=2 

sp|P50516|VA
TA_MOUSE 

68 2 0.0294
11765 

0.03
% 

 

Probable ATP-dependent RNA 
helicase DDX6 OS=Mus musculus 
GN=Ddx6 PE=1 SV=1 

sp|P54823|DD
X6_MOUSE 

54 2 0.0370
37037 

0.04
% 

 

DDB1- and CUL4-associated factor 7 
OS=Mus musculus GN=Dcaf7 PE=2 
SV=1 

sp|P61963|DC
AF7_MOUSE 

39 2 0.0512
82051 

0.05
% 

 

Heterogeneous nuclear 
ribonucleoprotein K OS=Mus 
musculus GN=Hnrnpk PE=1 SV=1 

sp|P61979|HN
RPK_MOUSE 

51 2 0.0392
15686 

0.04
% 

 

Beta-crystallin B2 OS=Mus musculus 
GN=Crybb2 PE=1 SV=2 

sp|P62696|CR
BB2_MOUSE 

23 2 0.0869
56522 

0.09
% 
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DNA-directed RNA polymerase I 
subunit RPA2 OS=Mus musculus 
GN=Polr1b PE=2 SV=2 

sp|P70700|RP
A2_MOUSE 

128 2 0.0156
25 

0.02
% 

 

AP-2 complex subunit mu OS=Mus 
musculus GN=Ap2m1 PE=1 SV=1 

sp|P84091|AP
2M1_MOUSE 

50 2 0.04 0.04
% 

 

60S acidic ribosomal protein P2 
OS=Mus musculus GN=Rplp2 PE=1 
SV=3 

sp|P99027|RL
A2_MOUSE 

12 2 0.1666
66667 

0.17
% 

 

Apoptosis regulator BAX OS=Mus 
musculus GN=Bax PE=1 SV=1 

sp|Q07813|BA
X_MOUSE 

21 2 0.0952
38095 

0.10
% 

 

ELAV-like protein 2 OS=Mus 
musculus GN=Elavl2 PE=2 SV=1 

sp|Q60899|EL
AV2_MOUSE 

40 2 0.05 0.05
% 

 

Methylosome subunit pICln OS=Mus 
musculus GN=Clns1a PE=2 SV=1 

sp|Q61189|ICL
N_MOUSE 

26 2 0.0769
23077 

0.08
% 

 

Translin OS=Mus musculus GN=Tsn 
PE=1 SV=1 

sp|Q62348|TS
N_MOUSE 

26 2 0.0769
23077 

0.08
% 

 

Transferrin receptor protein 1 
OS=Mus musculus GN=Tfrc PE=1 
SV=1 

sp|Q62351|TF
R1_MOUSE 

86 2 0.0232
55814 

0.02
% 

 

Synapsin-2 OS=Mus musculus 
GN=Syn2 PE=1 SV=2 

sp|Q64332|SY
N2_MOUSE 

63 2 0.0317
46032 

0.03
% 

 

U5 small nuclear ribonucleoprotein 40 
kDa protein OS=Mus musculus 
GN=Snrnp40 PE=2 SV=1 

sp|Q6PE01|SN
R40_MOUSE 

39 2 0.0512
82051 

0.05
% 

 

Nuclear ubiquitous casein and cyclin-
dependent kinase substrate 1 
OS=Mus musculus GN=Nucks1 PE=1 
SV=1 

sp|Q80XU3|N
UCKS_MOUS
E 

26 2 0.0769
23077 

0.08
% 

 

PITH domain-containing protein 1 
OS=Mus musculus GN=Pithd1 PE=2 
SV=1 

sp|Q8BWR2|PI
TH1_MOUSE 

24 2 0.0833
33333 

0.09
% 

 

Unconventional myosin-IXa OS=Mus 
musculus GN=Myo9a PE=2 SV=2 

sp|Q8C170|M
YO9A_MOUS
E 

292 2 0.0068
49315 

0.01
% 

 

RNA-binding protein 4 OS=Mus 
musculus GN=Rbm4 PE=1 SV=1 

sp|Q8C7Q4|R
BM4_MOUSE 
(+1) 

40 2 0.05 0.05
% 

 

BAG family molecular chaperone 
regulator 5 OS=Mus musculus 
GN=Bag5 PE=1 SV=1 

sp|Q8CI32|BA
G5_MOUSE 

51 2 0.0392
15686 

0.04
% 

 

Zinc finger protein 385A OS=Mus 
musculus GN=Znf385a PE=1 SV=2 

sp|Q8VD12|Z3
85A_MOUSE 

40 2 0.05 0.05
% 

 

Protein FAM3C OS=Mus musculus 
GN=Fam3c PE=1 SV=1 

sp|Q91VU0|FA
M3C_MOUSE 

25 2 0.08 0.08
% 

 

Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase subunit 1 
OS=Mus musculus GN=Rpn1 PE=1 
SV=1 

sp|Q91YQ5|R
PN1_MOUSE 

69 2 0.0289
85507 

0.03
% 

 

Protein dpy-30 homolog OS=Mus 
musculus GN=Dpy30 PE=1 SV=1 

sp|Q99LT0|DP
Y30_MOUSE 

11 2 0.1818
18182 

0.19
% 
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Serrate RNA effector molecule 
homolog OS=Mus musculus GN=Srrt 
PE=1 SV=1 

sp|Q99MR6|S
RRT_MOUSE 

100 2 0.02 0.02
% 

 

Transcription initiation factor IIA 
subunit 1 OS=Mus musculus 
GN=Gtf2a1 PE=2 SV=2 

sp|Q99PM3|TF
2AA_MOUSE 

42 2 0.0476
19048 

0.05
% 

 

40S ribosomal protein S21 OS=Mus 
musculus GN=Rps21 PE=2 SV=1 

sp|Q9CQR2|R
S21_MOUSE 

9 2 0.2222
22222 

0.23
% 

 

Chromatin target of PRMT1 protein 
OS=Mus musculus GN=Chtop PE=1 
SV=2 

sp|Q9CY57|C
HTOP_MOUS
E 

27 2 0.0740
74074 

0.08
% 

 

mRNA cap guanine-N7 
methyltransferase OS=Mus musculus 
GN=Rnmt PE=1 SV=1 

sp|Q9D0L8|M
CES_MOUSE 

53 2 0.0377
35849 

0.04
% 

 

Protein LSM12 homolog OS=Mus 
musculus GN=Lsm12 PE=1 SV=1 

sp|Q9D0R8|LS
M12_MOUSE 

22 2 0.0909
09091 

0.09
% 

 

WD repeat-containing protein 89 
OS=Mus musculus GN=Wdr89 PE=2 
SV=1 

sp|Q9D0R9|W
DR89_MOUSE 

42 2 0.0476
19048 

0.05
% 

 

Peptidyl-prolyl cis-trans isomerase-
like 1 OS=Mus musculus GN=Ppil1 
PE=2 SV=1 

sp|Q9D0W5|P
PIL1_MOUSE 

18 2 0.1111
11111 

0.11
% 

 

Transmembrane emp24 domain-
containing protein 10 OS=Mus 
musculus GN=Tmed10 PE=2 SV=1 

sp|Q9D1D4|T
MEDA_MOUS
E 

25 2 0.08 0.08
% 

 

Splicing factor 3A subunit 3 OS=Mus 
musculus GN=Sf3a3 PE=2 SV=2 

sp|Q9D554|SF
3A3_MOUSE 

59 2 0.0338
98305 

0.03
% 

 

Ubiquitin-like protein 5 OS=Mus 
musculus GN=Ubl5 PE=1 SV=1 

sp|Q9EPV8|U
BL5_MOUSE 

9 2 0.2222
22222 

0.23
% 

 

LanC-like protein 2 OS=Mus 
musculus GN=Lancl2 PE=1 SV=1 

sp|Q9JJK2|LA
NC2_MOUSE 

51 2 0.0392
15686 

0.04
% 

 

Microtubule-associated protein 1A 
OS=Mus musculus GN=Map1a PE=1 
SV=2 

sp|Q9QYR6|M
AP1A_MOUSE 

300 2 0.0066
66667 

0.01
% 

 

Destrin OS=Mus musculus GN=Dstn 
PE=1 SV=3 

sp|Q9R0P5|D
EST_MOUSE 

19 2 0.1052
63158 

0.11
% 

 

Septin-6 OS=Mus musculus 
GN=Sept6 PE=1 SV=4 

sp|Q9R1T4|SE
PT6_MOUSE 

50 2 0.04 0.04
% 

 

Band 4.1-like protein 3 OS=Mus 
musculus GN=Epb41l3 PE=1 SV=1 

sp|Q9WV92|E
41L3_MOUSE 

103 2 0.0194
17476 

0.02
% 

 

Mitotic checkpoint protein BUB3 
OS=Mus musculus GN=Bub3 PE=2 
SV=2 

sp|Q9WVA3|B
UB3_MOUSE 

37 2 0.0540
54054 

0.06
% 

 

Actin-like protein 6A OS=Mus 
musculus GN=Actl6a PE=1 SV=2 

sp|Q9Z2N8|AC
L6A_MOUSE 

47 2 0.0425
53191 

0.04
% 

 

 

 

227



Figure legends.  

Figure 1. Mass spectrometry analysis of RNA immunoprecipitation from retinal extracts. 

See Chapter 5 Figure 7 B. (A) Silver stained gel loaded with protein eluate from RNA 
immunoprecipitation using the indicated biotinylated probes. Black arrows indicate bands of 
approximately 70kd and 50kd which were cut from lane D3 and analyzed by mass spectrometry 
along with the entire eluate from lane D4. (B). Western blot analysis confirms binding of 
Musashi and hnRNPA1 proteins to probe D4. 
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