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ABSTRACT 

Application of Kalman Filtering for PV Power Prediction in 

Short-Term Economic Dispatch 

 

Luan H. Tran 

 

The aim of this thesis is to predict the short-term power production of PhotoVoltaic (PV) power 

plants for the economic dispatch problem with the help of Kalman filtering. The Economic 

Dispatch (ED) problem in power systems is known as an optimization problem in which the cost 

of producing energy to reliably supply consumers is minimized, hence the power production is 

assigned to all the generating units that are dispatchable. Because of the generation cost of 

renewable energy such as PV is relatively low, it is advantageous to utilize. However, these 

resources are intermittent. These renewable resources bring a lot of uncertainty into the power 

system, their power cannot be pre-specified due to their weather dependent properties and 

therefore it is a big challenge to include them in the ED problem.  

For this reason, the work in this thesis will focus on developing a predictive model built on 

Kalman Filtering for the short-term PV prediction. The model first predicts the solar irradiance 

and temperature based on an initial guess at each time period. Then, the Kalman filter will refine 

the results using sensor measurements so that the final estimated outputs from this filter can be 

used for better prediction in the next period. The PV electric power is then calculated since it is a 

function of irradiance and temperature.  

The proposed methodology has been illustrated using the IEEE 24-bus reliability test system. 

The real data from National Renewable Energy Laboratory is used in this thesis as the actual 

outputs that the outputs of the predicting model should get close to. Finally, the performance of 

the proposed approach is obtained by comparing its results with the results from an available 

method called the persistent prediction method. 
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Chapter 1 

Introduction 

Economic Dispatch (ED) in power systems is an optimization problem in which the 

cost of producing energy to reliably supply consumers is minimized. Because the costs of 

power production are different for different generators, ED determines electricity outputs 

of each generator so that the total power generated will meet the load of the system at the 

lowest cost possible without violating any transmission and operational constraint. The 

amount of power scheduled for each generator from economic dispatch are called the 

economic set points where the whole system operates at the minimum cost. If the 

generators are dispatchable (the outputs can be controlled) and the loads are known, then 

the economic dispatch problem can be solved by various optimization methods. However, 

the loads and generators in reality are more complicated and have a lot of constraints as 

well as uncertainty that need to be taken into account. 

In recent years, renewable energy resources (RERs) have been rapidly increasing and 

expected to continue in the future [1] [2] .They are sustainable, environmental friendly but 

also variable as their electrical power depends on the weather. The high penetration of 

RERs in power systems has brought a big challenge to the unit commitment and economic 

dispatch problems. These RERs are uncertain and non-dispatchable because of their 

weather dependent property. This uncertainty makes it hard to solve the dispatch problem 

when the exact electric power generated by these unit is unknown and cannot be controlled 

at a certain level. The simplest solution is that these RERs are treated as negative loads and 

there will be reserve units to compensate in case of insufficient power generated from them. 
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However, the better solution but hard to obtain is to predict the output of these RERs. The 

closer the prediction is, the better the optimal solution for dispatch problem will be. 

Understanding the necessity of power prediction for renewable resources in economic 

dispatch problem, many approaches have been introduced to predict the power of RERs or 

to bound the uncertainty so that ED can be run without too much risk.  

The work of this thesis is to predict short-term power of photovoltaic (PV) power 

plants, be a part of the on-going research in ED under uncertainty. The thesis is organized 

as follows. A literature survey will be given in Chapter 2. The background on energy 

market, cost of generators and economic dispatch problem with and without losses will be 

described in Chapter 3. Next, in chapter 4, a predicting model for solar irradiance and 

temperature built on a Kalman filter approach is introduced. Chapter 5 will present the 

results of a case study with IEEE 24-bus system that is modified to include 2 PV generators. 

Finally, concluding remarks will be given in Chapter 6. 
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Chapter 2 

Literature survey 

The benefits of renewable energy on decreasing the fuel cost and better environmental 

effect have led to the rapid increase of wind and solar energy in power systems. At the 

same time, it brings the uncertainties into the systems and results in a significant challenge 

to the operation of the systems, especially the economic dispatch problem. Many 

optimization methods have been proposed to handle these uncertainties and can be divided 

into two main categories: 1) Deterministic Optimization, and 2) Stochastic Programming.  

The deterministic approach with the robust optimization has received attention recently 

because of its ability to handle uncertainty by pre-determining the uncertainty sets. 

Reference [3] proposed an adaptive robust optimization for the security constrained unit 

commitment problem. The model takes into account the load variance by constructing a 

deterministic uncertainty set based on the mean and the range of the uncertainty data.  

 

Where: 

D
t: The uncertainty set at time t 

𝒅𝒕= (𝑑𝑖
𝑡, 𝑖 ∈ Nd): vector of net injection at time t 

𝑑̅𝑖
𝑡: the nominal value of the net injection of node i at time t 

𝑑̂𝑖
𝑡: the deviation from the nominal net injection value of node i at time t 

Nd: the set of nodes that have uncertain injections, Nd is the number of such nodes 

∆𝑡: the “budget” of uncertainty 

This approach basically bounds the uncertainty of the load injection 𝒅𝒕 within the 

maximum deviation 𝒅̂𝒕 from the nominal value 𝒅̅𝒕 and adjusts the range of the deviation 

using budget ∆𝒕(range from 0 to 1 for each node, and 0 to 𝑁𝑑 for the total 𝑁𝑑 nodes). In 

every time period t, the upper and lower bounds are independent of those in the earlier 
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period and that is why it is called static uncertainty set. Obviously, this budget determines 

the range of the uncertainty bound and therefore the choice of this budget level will affect 

the result of the optimal solution. In order to understand the effect of the budget choice, the 

authors conducted tests with budget ∆𝒕 varied from 0 to 𝑁𝑑 and observed that the best 

performance of the robust solution might be obtained when the budget is chosen using 

central limit theorem as a guideline (∆𝒕 ~ 𝑂(√𝑁𝑑)) and practical criteria in real-life. A 

similar approach using uncertainty budget is also introduced in [4] for wind power output. 

A deterministic model for economic dispatch problem is also developed based on this 

adjustable uncertainty budget and once again, different levels of budget selected results in 

different performances of the optimal solution. Determining the uncertainty bound is an 

important factor. The smaller this bound is, the more effecting is the result. That is why 

prediction is important. 

On the other hand, the approach of stochastic methods is naturally related to the 

characteristic of wind and solar generation and therefore it has also been investigated 

concurrently with the deterministic approach. In reference [5], a scenario-based and fuzzy 

self-adaptive learning particle swarm optimization is used to solve the economic dispatch 

problem considering load and wind power uncertainties. This approach handles the 

uncertainties by generating scenarios using roulette wheel technique on the basis of 

probability distribution function. The stochastic uncertainties are now decomposed into 

equivalent deterministic scenarios and the proposed algorithm goes through the entire 

search space using particle swarm optimization to find the best, mean and worst costs 

associated with the generated scenarios. A similar approach using probabilistic envelop is 

also used in [6] for load uncertainties. The deviation of load injection envelops in time and 

create a scenario tree, and the economic dispatch problem is solved based on this tree. 

Another approach introduced in [7] and [8]  tries to predict the future short-term outputs 

of wind generators by forecasting wind speed using spatio-temporal model. The authors 

applied the Trigonometric Direction Diurnal (TDD) Model proposed in [9] to model wind 

speed. Wind speed in the next period 𝑉𝑡+1 of TDD model is assumed to follow a truncated 

normal distribution on the nonnegative real domain: 𝑉𝑡+1 ~ 𝑁+(𝜇𝑡+1, 𝜎𝑡+1).  
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Where: 

𝑉𝑡+1: wind speed at time period t+1 

𝑁+(𝜇𝑡+1, 𝜎𝑡+1): normal distribution at time t+1 with mean 𝜇𝑡+1 and covariance 𝜎𝑡+1 

This model basically tries to predict the central parameter 𝜇𝑡+1 and scale parameter 𝜎𝑡+1  

by using trigonometric functions on the historical data (h periods earlier) of local and 

nearby windfarms. The wind power in near future is calculated based on this predicted 

wind speed and will be used later on to solve the k-step ahead economic dispatch of the 

system.  

Inspired by this spatio-temporal wind forecast, the authors in [10] propose a method to 

construct linear dynamic uncertainty sets for wind power using statistical inference 

techniques from time series analysis. These dynamic uncertainty sets capture the 

correlation between uncertain resources and the evolution of uncertainty over time of each 

uncertain resource. The stochastic model for available power of a renewable generator at 

time t is 𝑝𝑡 = 𝑓𝑡 + 𝑢̃𝑡 = 𝑓𝑡 + ∑ 𝐴𝑙𝐿
𝑙=1 𝑢̃𝑡−𝑙 + 𝜀𝑡̃  

Where: 

𝑝𝑡: power of a renewable generator at time t 

𝑓𝑡: pre-estimated power of that renewable generator at time t  

𝑢̃𝑡 = ∑ 𝐴𝑙𝐿
𝑙=1 𝑢̃𝑡−𝑙 + 𝜀𝑡̃: deviation from 𝑓𝑡.  

L: periods of time lag before t 

𝐴𝑙: correlation matrix between 𝑢̃𝑡 and 𝑢̃𝑡−𝑙 

𝜀𝑡̃: random variable 

The deviation 𝑢̃𝑡 is the residual of the power at time t involving from L periods earlier plus 

the random variable 𝜀𝑡̃ with mean 0 and covariance matrix Σ. The matrices 𝐴𝑙 and Σ can 

be estimated using statistical methods developed for time series. In other words, at each 

time period, unlike the fixed uncertainty sets in [3] , these sets can change as they are 

functions of uncertainty realization in previous time periods. The authors later on 

completed this concept of dynamic uncertainty sets for both wind and solar power 

uncertainties in [11]. 
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Following up on this research, the work in this thesis tries to predict the short-term 

power of photovoltaic (PV) power plants using a prediction model built on Kalman filter. 

The model first predicts the solar irradiance and temperature based on an initial guess at 

each time period. Then, the Kalman filter will refine the results using sensor measurements 

so that the final estimated outputs from this filter can be used for better prediction in the 

next period. The PV electric power can be calculated after that as it is a function of 

irradiance and temperature.  
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Chapter 3 

Background 

3.1 Electricity market 

Electricity market is the place where electricity is sold, bought and traded. The market 

can be split into wholesale and retail markets. In the wholesale market, the purchase and 

sell are made between generators and other resellers who intend to sell the power to 

someone else. The amount of energy trading is large and usually measured by Mega Watts. 

The purchase and sell of electricity to the end users are done in the retail market, usually 

in Kilo Watts. 

 

Figure 1: Electricity Market - Wholesale and Retail 

 Regional Transmission Organizations (RTOs) or Independent System Operators 

(ISOs) are the third-party who is responsible for the operation of the transmission system. 

Because of the inevitable inherent interest of a company who could own all of the 

distribution system, transmission system and some generators, these independent operators 

make sure the fairness of the power dispatch that includes both utility-owned generators 

and competitive generators. ISO/RTOs work for the benefit of consumers by providing 

impartial transmission access to facilitate competition. There are ten major RTO/ISOs in 

North America. 

Wholesale Retail 

Generator Reseller End User 
MW kW 

$$$ $$$ 
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 ISO New England 

 New York ISO 

 PJM (Mid-Atlantic, a portion of Midwest) 

 Midwest ISO 

 Southeast Power Pool 

 ERCOT (most of Texas) 

 California ISO 

 Alberta Electric System Operator 

 Ontario Independent Electricity System Operator 

 New Brunswick System Operator 

 

Figure 2: Ten majors ISO/RTOs in North America (source: IRC) 

 

These ISO/RTOs also conduct what is called day-ahead and real-time markets. In day-

ahead market, participants sell and purchase electric energy by placing their bids and offers 

for the following day. According to the information collected, the prices are calculated 

hourly to make the binding schedule of commitments (unit commitment). On the other 

hand, real-time market is based on the actual condition of the system at that particular time 
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to calculate the prices every 10-15 minutes (economic dispatch) and therefore the prices 

can be volatile. 

3.2 Cost of electricity production and auction-based market 

In both day-ahead and real-time market, at a specific time period, the total load of the 

system is forecasted, the generators that are online and ready to dispatch power to the 

system are known. Then the economic dispatch is the process of finding the optimum 

operating points of those generators such that the cost of total power dispatch is minimum. 

In order to do that, the cost of producing energy of each generator has to be specified. 

 3.2.1 Costs of a generator. 

Production cost: is the cost when a generator is operating to produce energy. Depends 

on what kind of generator (thermal, nuclear, hydro, solar wind…), the production cost will 

be variable. For example, a thermal unit needs heat to boil water and run the turbine. That 

heat is gotten by burning fuel and it cost money. Each thermal generator has its own heat 

rate characteristic and therefore the cost for each MW electricity produced will be different. 

No-load cost: Once a generator connected to the system, it needs to be kept online to 

be ready to dispatch even though there is no load because it takes time to bring it online 

and the cost is significant. 

Start-up cost: the cost that is needed to bring the unit online and connect to the system. 

A unit can start from different states (cold, medium, hot) and each state will cost differently. 

Shut-down cost: cost to shut down the unit. 

Other cost: maintenance, operating, crew expenses… 

After considering all the costs that a generator can incur. A general cost function of a 

generating unit can be represented by a quadratic form. 

𝐶𝑖(𝑃𝐺𝑖) = 𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2  ($/h) (3.1) 

Where:  

𝛼𝑖, 𝛽𝑖 𝛾𝑖: cost coefficients of unit i. 

PGi: power generated by unit i.  

Ci(PGi): operating cost of unit i at PGi. 
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Figure 3: Cost curve of a power generating unit 

3.2.2 Auction-based trading. 

In the auction-based trading, suppliers bid the prices corresponding with the amount of 

MW electricity that they want to sell. Similarly, the consumers offer the prices that they 

are willing to pay for the corresponding amount. The object is to match the bids and offers 

for the most efficient transaction. The relationship can be described under the economic 

terms. 

  

Figure 4: Supply curve and demand curve 

The suppliers want to be paid no less than the supply curve to produce the next 

increment MW. The consumers are willing to pay no more than demand curved to consume 

the next increment MW. Supplier surplus is the extra revenue above what is required to 
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produce the quantity Q*. Consumer surplus is the benefit the consumers save to consume 

quantity Q*. When the total surplus is maximized, the clearing price is reached. 

 

Figure 5: Clearing price after maximizing the total surplus. 

The total system cost is also known as the negative of the total surplus. It means 

maximizing the total surplus will minimize the system cost.  

3.3 Economic dispatch 

The objective of economic dispatch problem is to find the economic set point of power 

generated by each generating unit so that the total cost of the system to supply the load is 

minimum. 

3.3.1 Bus bar economic dispatch 

In the bus bar economic dispatch, all the losses are neglected and there is no constraint 

on system transmission as well as generator outputs. The objective function of economic 

dispatch problem can be represented as follows: 

min
𝑃𝐺𝑖

𝐶𝑇 = ∑𝐶𝑖(𝑃𝐺𝑖)

𝑁

𝑖=1

 

  (3.2) 

Subject to: 

∅ = ∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷 = 0 

  (3.3) 
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Where: 

 CT: total cost of all generators. 

  N: Number of generators participating in the power dispatch. 

 Ci(PGi): cost function of generator i, obtained from (3.1). 

 PD: total load of the system. 

The solution of the objective function (3.2) is the operating economic set point 𝑃𝐺𝑖
∗  of 

each generator at which the total cost CT of all generating units to supply the system load 

is minimum. Equation (3.3) described the power balance constraint where the total power 

generated is equal to total load, or in other word, the difference between the power 

generated and the load is zero. 

By substituting (3.1) into (3.2), the objective function can be expanded to: 

min
𝑃𝐺𝑖

𝐶𝑇 = ∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 )

𝑁

𝑖=1

 

  (3.4) 

In order to handle the power balance constraint, an undetermined variable has been 

multiplied with the empty set of the power constraint function and embedded into (3.4): 

min
𝑃𝐺𝑖,λ 

𝐶𝑎 = ∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 )

𝑁

𝑖=1

− λ(∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷) 

  (3.5) 

Ca is known as Lagrange function with Lagrange multiplier λ. The necessary 

conditions for Ca to have a minimum value is that the derivative of the Lagrange function 

with respect to each variable is equal to 0. The variables of Lagrange function are PGi and λ. 

𝜕𝐶𝑎

𝜕λ
= ∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷 = 0 

  (3.6) 

𝜕𝐶𝑎

𝜕𝑃𝐺𝑖
=

𝑑𝐶𝑖

𝑑𝑃𝐺𝑖
− λ = 0 

  (3.7) 
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Equation (3.6) is the derivative of Ca with respect to λ, as we can see, it gives back the 

power balance constraint in (3.3). This is the reason the evolution to Lagrange function is 

needed to establish the necessary conditions for the objective function CT to have a 

minimum value and still be able to handle the constraint. 

Equation (3.7) is the derivative of Lagrange function with respect to each power output 

variable PGi. By taking λ to the other side of the equation, we can observe that the 

incremental cost of all generating units is equal to λ, an undetermined variable. The 

incremental cost of a unit can be obtained like in figure 6. 

𝐼𝐶𝑖 =
𝑑𝐶𝑖

𝑑𝑃𝐺𝑖
= λ 

  (3.8) 

In summary, the necessary for the objective function to have a minimum value is that 

all the generating units operate at the same incremental cost and the total power generated 

is equal to the total load of system. 

 
Figure 6: Incremental cost of a generating unit. 

Example: Three generating units with the cost coefficients given in table 1. 

Unit # α β γ 

1 561 7.92 0.001562 

2 310 7.85 0.00194 

3 78 7.97 0.00482 

Table 1: Cost coefficients of 3 generating units 
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They are supplying a total load of 850 MW. Find the amount of power each unit should 

generate so that the total cost will be minimum. 

The objective function of this problem would be: 

min
𝑃𝐺𝑖,λ 

𝐶𝑎 = ∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 )

3

𝑖=1

− λ(∑𝑃𝐺𝑖

3

𝑖=1

− 𝑃𝐷) 

Or: 

min
𝑃𝐺1,𝑃𝐺2,𝑃𝐺3,λ 

𝐶𝑎 =561 +  7.92𝑃𝐺1  +  0.001562𝑃𝐺1
2  

                            + 310 +  7.85𝑃𝐺2  +  0.00194𝑃𝐺2
2  

                            +78 +  7.97𝑃𝐺3 + 0.00482𝑃𝐺3
2  

                           −λ(𝑃𝐺1 + 𝑃𝐺2 + 𝑃𝐺3 − 850)  (3.9) 

The necessary conditions for (3.9) to have a minimum are: 

𝜕𝐶𝑎

𝜕𝑃𝐺1
= 7.92 + 0.003124𝑃𝐺1 − λ = 0 

𝜕𝐶𝑎

𝜕𝑃𝐺2
= 7.85 + 0.00388𝑃𝐺2 − λ = 0 

𝜕𝐶𝑎

𝜕𝑃𝐺3
= 7.97 + 0.009644𝑃𝐺3 − λ = 0 

𝜕𝐶𝑎

𝜕λ
= 𝑃𝐺1 + 𝑃𝐺2 + 𝑃𝐺3 − 850 = 0 

Solve 4 condition equations above for 4 variables, the optimal set points are obtained: 

λ∗ = 9.1483 

𝑃𝐺1
∗ = 393.1936 

𝑃𝐺2
∗ = 334.6229 

𝑃𝐺3
∗ = 112.1834 

The solution can be described visually in figure 7. Obtain from the first 3 equations of 

necessary conditions, PGi can be written as functions of λ. When PD is given, the economic 

incremental cost λ∗of all generators can be calculated from the power balance condition. 

Because all generators operate at the same incremental cost, each generator can use λ∗ as 

an index to look up the associated generating power from the chart obtained in figure 6. 
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Figure 7: Finding economic set points using Lagrange multiplier 

3.3.2 Economic dispatch with transmission losses 

In bus bar economic dispatch, all losses are neglected. However, the transmission 

losses are always there in reality. Let us call the power losses on the transmission line is 

PL, then the power balance condition in (3.3) has to take it into account: 

∅ = ∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷 − 𝑃𝐿 = 0 

 (3.10) 

Because the losses depend on the power of each generator, let we assume that PL is a 

known function of PGi: 𝑃𝐿 = 𝑃𝐿(𝑃𝐺𝑖). The Lagrange function (3.5) now becomes: 

min
𝑃𝐺𝑖,λ 

𝐶𝑎 = ∑(𝛼𝑖 + 𝛽𝑖𝑃𝐺𝑖 + 𝛾𝑖𝑃𝐺𝑖
2 )

𝑁

𝑖=1

− λ(∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷 − 𝑃𝐿) 

 (3.11) 

The necessary conditions for Ca to have a minimum value are: 

𝜕𝐶𝑎

𝜕𝑃𝐺𝑖
=

𝑑𝐶𝑖

𝑑𝑃𝐺𝑖
− λ + λ

∂𝑃𝐿

∂𝑃𝐺𝑖
= 0 

  (3.12) 

∑𝑃𝐺𝑖

𝑁

𝑖=1

− 𝑃𝐷 − 𝑃𝐿 = 0 

 (3.13) 

The condition (3.12) can be rewritten as: 

𝐼𝐶𝑖 = λ(1 −
∂𝑃𝐿

∂𝑃𝐺𝑖
) ⟹ 𝐿𝑖𝐼𝐶𝑖 = λ 

  (3.14) 

Where: 
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𝐼𝐶𝑖 =
𝑑𝐶𝑖

𝑑𝑃𝐺𝑖
 

  (3.15) 

𝐿𝑖 =
1

1 −
∂𝑃𝐿

∂𝑃𝐺𝑖

=
1

𝛼𝑖
 

  (3.16) 

Li is called penalty factor. If Li =1 ⟹ 
∂𝑃𝐿

∂𝑃𝐺𝑖
= 0, which means the losses does not change 

when more power is generated from unit i. As Li increases, the losses will also increase. 

In order to find the optimal solution for (3.11), the losses PL needs to be found from the 

initial guess of PGi (could be obtained from bus bar ED). From equation (3.13), PL can be 

expressed as: 

𝑃𝐿 = ∑(𝑃𝐺𝑖 − 𝑃𝐷𝑖)

𝑁

𝑖=1

= ∑𝑓𝑃𝑖

𝑁

𝑖=1

 

  (3.17) 

with 𝑓𝑃𝑖 is the load flow equation: 

𝑓𝑃𝑖 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 = 𝑉𝑖
2𝐺𝑖𝑖 + ∑ 𝑉𝑖𝑉𝑘[𝐺𝑖𝑘 cos(𝛿𝑖 − 𝛿𝑘) + 𝐵𝑖𝑘 sin(𝛿𝑖 − 𝛿𝑘)]

𝑁

𝑘=1
𝑘≠𝑖

 

  (3.18) 

Where: 

G, B: matrices obtained from the admittance matrix 𝑌𝐵𝑈𝑆 = 𝐺 + 𝑗𝐵   

𝑉𝑖: voltage at bus i 

𝛿𝑖: phase angle at bus i. 

Solving the load flow equation using Jacobian matrix and Newton-Raphson method 

found in [12] for bus voltages and angles, then plug back into (3.17) and (3.18) to find the 

losses. When the losses are found, the next step is to compute the penalty factor Li from 

the last iteration Jacobian matrix J in the load flow problem above. 
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[
 
 
 
 
 
 
 
𝜕𝑓𝑃2

𝜕𝛿2

𝜕𝑓𝑃3

𝜕𝛿2
⋯

𝜕𝑓𝑃𝑁

𝜕𝛿2

𝜕𝑓𝑃2

𝜕𝛿3

𝜕𝑓𝑃3

𝜕𝛿3
⋯

𝜕𝑓𝑃𝑁

𝜕𝛿3

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑃2

𝜕𝛿𝑁

𝜕𝑓𝑃3

𝜕𝛿𝑁
…

𝜕𝑓𝑃𝑁

𝜕𝛿𝑁 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 1 −

∂𝑃𝐿

∂𝑃𝐺2

1 −
∂𝑃𝐿

∂𝑃𝐺3

⋮

1 −
∂𝑃𝐿

∂𝑃𝐺𝑁]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 −

𝜕𝑓𝑃1

𝜕𝛿2

−
𝜕𝑓𝑃1

𝜕𝛿3

⋮

−
𝜕𝑓𝑃1

𝜕𝛿𝑁 ]
 
 
 
 
 
 
 

 

⟺                𝑱𝑻                    ∗          𝜶       =        𝒃 

  (3.19) 

Where: 

JT: transpose of the last iteration Jacobian matrix obtained in load flow problem 

𝜶: the unknown vector in (3.16) which is needed to calculate the penalty factors. 

b: can also be obtained from the solution of the slack bus in load flow problem  

Find α from the results of load flow problem, then we can calculate the penalty factor 

using the equation in (3.16), and the incremental cost considering losses 𝐿𝑖𝐼𝐶𝑖 of each 

generator using equation (3.14). Because at the economic set points, all the generators 

operate at the same cost λ, so if all the 𝐿𝑖𝐼𝐶𝑖 are not equal, then we have to adjust the power 

of the generators and solve the whole process again until the solution is found.  

The calculation of economic dispatch considering transmission losses can be shown in 

the flow chart below: 

 

Figure 8: Economic dispatch with losses 
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Chapter 4 

 

Kalman Filter for  

PV power Prediction 
 

4.1 State-space model of solar irradiance and temperature 

Solar irradiance and temperature are two variables that need to be specified in order to 

calculate the power of a PV generator. By predicting their values, we can easily have the 

prediction of the output of a PV plant. 

Let us consider a very simple system in which solar irradiance and temperature are only 

2 state variables: 

𝑥 = [
𝑥1

𝑥2
] = [

𝐼𝑟𝑟
𝑇𝑒𝑚𝑝

] 

  (4.1) 

The model should be able to express the temporal relationship between the current 

values of solar irradiance, temperature and their future values at the next fixed time period 

ahead. The value of the next state k+1 is simply the value at the current state k plus the rate 

of change of the variables between the states. 

𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘+1 

 (4.2)  

The rate of change ∆𝑥𝑘+1 is the nature change of the weather in irradiance and 

temperature between time period k and k+1. Figure 9 illustrates the irradiance change from 

period k (at 8:00AM) to period k+1(at 8:15AM). Between this time of a day, there is a 

logical guess that the sun is rising and the amount of irradiance is following an increasing 

“trend” which is 𝑢1
𝑘+1. This 𝑢1

𝑘+1 can be seen as the best estimate input of the system that 

will drives 𝑥𝑘 to 𝑥𝑘+1 . However, there are too many factors that could make the change 

deviate from this trend, and therefore we assume this deviation is more likely to vary 
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around the trend within the variance Q1. From this observation, the rate of change can be 

split into 2 parts. 

∆𝑥𝑘+1 = 𝑢𝑘+1 + 𝜔𝑘+1 

 (4.3) 

Where: 

𝑢𝑘+1: the input trend of the change between time period k and k+1 

𝜔𝑘+1~𝑁(0, 𝑄𝑘+1): the uncertainty of the change from k to k+1. 

 

Figure 9: The change in solar irradiance with trend and uncertainty 

The discrete time-invariant model for solar irradiance and temperature then can be 

expressed as follows: 

𝑥1
𝑘+1 = 𝑥1

𝑘 + 𝑢1
𝑘+1 + 𝜔1

𝑘+1

𝑥2
𝑘+1 = 𝑥2

𝑘 + 𝑢2
𝑘+1 + 𝜔2

𝑘+1                             

⟺ [
𝑥1

𝑘+1

𝑥2
𝑘+1] = [

1 0
0 1

] [
𝑥1

𝑘

𝑥2
𝑘] + [

1 0
0 1

] [
𝑢1

𝑘+1

𝑢2
𝑘+1] + [

𝜔1
𝑘+1

𝜔2
𝑘+1] 

⟹ 𝑥𝑘+1    =  𝐹𝑥𝑘 + 𝐵𝑢𝑘+1 + 𝜔𝑘+1                                

 (4.4) 

Where 𝜔~𝑁(0, 𝑄𝑘) is the Gaussian distributed uncertainty with mean 0 and the 

covariance matrix 𝑄𝑘 of 𝑢1
𝑘 and 𝑢2

𝑘 which are assumed to be uncorrelated. 

                                                 𝑄𝑘 = [
𝑄1

𝑘 0

0 𝑄2
𝑘]  (4.5) 

The outputs of this system are the irradiance and temperature which are also the state 

variables of the system. 
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[
𝑦1

𝑘

𝑦2
𝑘] = [

1 0
0 1

] [
𝑥1

𝑘

𝑥2
𝑘] 

⟹ 𝑦𝑘    =  𝐻𝑥𝑘                    

 (4.6) 

4.2 Solar irradiance and temperature prediction using Kalman Filter 

4.2.1 State prediction based on state-space model. 

 At a certain time k, we do not know the exact values of 𝑥𝑘. There are a whole range of 

possible values and some of them might be closer to the actual one than the others. Let us 

call the best state estimate at time k is 𝒙̂𝒌 (the mean of the Gaussian blob of its covariance 

matrix Pk).  

𝑥̂𝑘 = [
𝑥̂1

𝑘

𝑥̂2
𝑘] 

 (4.7) 

𝑃𝑘 = [
𝛴𝐼𝑟𝑟 0
0 𝛴𝑇𝑒𝑚𝑝

] 

 (4.8) 

The estimate 𝑥̂𝑘 and covariance matrix 𝑃𝑘 represent a region that more likely contains 

the actual values of the system states. The whole region of state estimation is shown in 

figure 10, and the mean is chosen to be the best estimate. 

 

Figure 10: Gaussian distributed of irradiance and temperature variables 
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Let us call the notations: 

𝒙̂𝒌|𝒌: the state estimate at current time k given the measurement at time k 

𝒙̂𝒌+𝟏|𝒌: the state prediction for next time k+1 given the measurement up to current time k 

At this moment we already have the state estimate at current time 𝒙̂𝒌|𝒌 and the covariance 

matrix 𝑷𝒌|𝒌. The next step is to predict the states at time k+1 using equation (4.4) 

𝑥̂𝑘+1|𝑘 = 𝐹𝑥̂𝑘|𝑘 + 𝐵𝑢𝑘+1|𝑘  

             =  𝑥̂𝑘|𝑘 + 𝑢𝑘+1|𝑘 

 (4.9) 

Because of the Gaussian distributed uncertainty 𝜔𝑘+1, the covariance matrix at time k+1 

also needs to be updated according to [13]: 

𝑃𝑘+1|𝑘 = 𝐹𝑃𝑘|𝑘𝐹𝑇 + 𝑄𝑘+1 

             =  𝑃𝑘|𝑘 + 𝑄𝑘+1 

 (4.10) 

This whole predicting process can be explained in figure 11. Every single point in the 

estimated region of time k is transformed into a new predicted point at time k+1. However, 

due to the uncertainty 𝜔𝑘+1 in equation (4.4), a new predicted point may vary around in a 

region with covariance 𝑄𝑘+1. Thus, the predicted region of the system states will be 

enlarged. 

 

Figure 11: Kalman Filter - Prediction Step 
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4.2.2 Refining predicted states with sensor measurements. 

In the work of this thesis, each PV plant is assumed to have a sensor network that 

captures solar irradiance and temperature values in the PV field.  

At time k, we have predicted the states at time k+1 is a Gaussian blob with mean 

𝑥̂𝑘+1|𝑘 and covariance 𝑃𝑘+1|𝑘. With this prediction, the expected outputs (or 

measurements) at time k+1 can be obtained from equation (4.6). 

𝑦𝑘+1    =  𝐻𝑥̂𝑘+1|𝑘   

             = 𝑥̂𝑘+1|𝑘 

  (4.11) 

𝑦𝑘+1 is the best prediction we have for the outputs at time k+1 with all the information 

we have up to time k. 

When the system is at time k+1, we now have access to the measurements of the system 

outputs from the sensors and call it 𝒛𝒌+𝟏. Because sensors also have noise, the actual 

outputs might not be 𝒛𝒌+𝟏 but vary around it with covariance 𝑹𝒌+𝟏.  

                                                             𝑧𝑘+1 = [
𝑧1

𝑘+1

𝑧2
𝑘+1]            (4.12)          

                                                            𝑅𝑘+1 = [
𝑅1

𝑘+1 0

0 𝑅2
𝑘+1]  (4.13) 

So, at this time k+1, we have 2 different Gaussian blobs of the system outputs (see 

fig.12), which are: 

 The expected measurement with mean 𝑦𝑘+1 and covariance 𝑃𝑘+1|𝑘 

 the sensor measurement with mean 𝒛𝒌+𝟏 and covariance 𝑅𝑘+1 

 
Figure 12: Prediction and sensor measurement Gaussian blobs 
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To refine the estimate at time k+1, Kalman Filter combines these two Gaussian blobs 

by taking their product which is also a new Gaussian blob. This new Gaussian blob has its 

mean chosen to be the best estimate (𝑥̂𝑘+1|𝑘+1) at time k+1, and its covariance is 𝑃𝑘+1|𝑘+1 

The mean and covariance of this new Gaussian blob are calculated using Kalman gain 

matrix 𝐾𝑘+1. The derivation of Kalman gain matrix can be found in [14]. 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻
𝑇(𝐻𝑃𝑘+1|𝑘𝐻

𝑇 + 𝑅𝑘+1)
−1

 

           = 𝑃𝑘+1|𝑘(𝑃𝑘+1|𝑘 + 𝑅𝑘+1)
−1

 

 (4.14) 

With this Kalman gain matrix 𝐾𝑘+1, the best estimate at time k+1 and its covariance 

can be found as follows: 

                                     𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘 + 𝐾𝑘+1(𝑧𝑘+1 − 𝑥̂𝑘+1|𝑘)  (4.15) 

                                     𝑃𝑘+1|𝑘+1 = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝑃𝑘+1|𝑘  (4.16) 

At this point, the time has shifted from k to k+1, the next step is to update the timeline 

and start the whole process again at k+1 (see figure 12).  

 

Figure 13: Kalman filter process 
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4.3 The prediction of system input. 

From equation (4.9) we can observe that the Kalman filter prediction for the system 

state at k+1 relies on the input 𝑢𝑘+1|𝑘, and as described in 4.1, this input is based on an 

initial guess that somehow follow a trend at a specific time in a day (could be a logical 

guess as in 4.1 or from local weather forecast...).  

Because of the weather changes are naturally slow in a short-time period, the predicted 

input could be more accurate if it combines the information from the direct previous input 

and the initial guess.  

𝒖𝒌+𝟏|𝒌 is our predicted input at time k+1 using previous input 𝑢𝑘|𝑘 at time k, and the 

initial guess 𝑢𝐼𝑛𝑖𝑡
𝑘+1 at time k+1. The simple moving average method [15] is chosen to predict 

𝑢𝑘+1|𝑘 because of its simplicity and effectiveness in short-term prediction. 

𝑢𝑘+1|𝑘 = (𝑢𝐼𝑛𝑖𝑡
𝑘+1 + 𝑢𝑘|𝑘)/2 

 (4.17) 

Where 𝑢𝑘|𝑘 can be extracted from (4.9) at time k. 

𝑢𝑘|𝑘 = 𝑥̂𝑘|𝑘 − 𝑥̂𝑘−1|𝑘−1 

 (4.18) 

4.4 Persistent forecasting model 

The persistent forecasting model (PSS) assumes that the values of solar irradiance and 

temperature in the next time period is the same as the previous one. 

                                                                     𝑦𝑘+1 = 𝑦𝑘 (4.19) 

In other word, the PSS model assumes that the future prediction equals to the current 

measured data. From equation (4.19), the issues of this model are the delay between the 

forecast time and the observation. This delay is illustrated in figure 14. 

For short-term forecasting, due to the slow change of weather, PSS works very well. If a 

forecasting model can outperform PSS, that model is considered to be good. 
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Figure 14: Persistent Forecasting Model 

 

4.5 PV power calculation based on irradiance and temperature 

Once the values of solar irradiance and temperature are specified, the next step is to 

compute the power that a PV plant can generate associated with those values. The 

methodology for PV power calculation is given in [16]. The final formula to compute PV 

power output of a PV array is as follows: 

𝑃𝐺 = 𝑃𝑅𝑓𝑃 (
𝐼𝑟𝑟

𝐼𝑟𝑟𝑆𝑇𝐶
) [1 + 𝛼𝑃(𝑇𝑒𝑚𝑝 − 𝑇𝑒𝑚𝑝𝑆𝑇𝐶)] 

 (4.20) 

Where: 

𝑃𝐺: output of the PV array (W) 

𝑃𝑅: rated output of the PV array under standard test condition (W)  

𝑓𝑃: derating factor (efficiency factor) (%)  

𝐼𝑟𝑟: solar irradiance striking the PV array (W/m2) 

𝐼𝑟𝑟𝑆𝑇𝐶: solar irradiance at standard test condition (W/m2) 

𝑇𝑒𝑚𝑝: PV cell temperature (oC) 

𝑇𝑒𝑚𝑝𝑆𝑇𝐶: PV cell temperature at standard test condition (oC) 

𝛼𝑃: temperature coefficient of the power (%/oC) 
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Chapter 5 

 

Case Study and Results 

In this chapter, a Kalman filter for prediction of solar irradiance and temperature as in 

chapter 4 is implemented. The values are used to calculate the power outputs of 2 PV 

generators in a test system. These predicted outputs will be used later to solve the bus bar 

economic dispatch for the system. Information about the test system will also be given at 

first in this chapter, and the results of Kalman filter prediction as well as the bus bar 

economic dispatch will be discussed at the end. 

5.1 Case study information 

5.1.1 IEEE 24-bus reliability test system 

The system selected for this thesis is the IEEE 24-bus reliability test system (RTS). It 

represents the transmission level of power system where the electricity wholesale market 

takes place with connected generators and loads. The raw data of this system can be found 

on the website of University of Washington [17]. However, P. Pinson has collected and 

compiled all the data and make it ready to use as in [18].  

The one-line diagram of the system is given in figure 14. In this case study, only the 

bus bar economic dispatch is used because the objective is to study the effect of renewable 

energy under uncertainty on economic dispatch problem rather than the security constraints 

in ED. 
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Figure 15: IEEE 24-bus Reliability Test System 

 

The data of generating units is modified from IEEE 24-bus system in order to place 2 

PV generators into the system at bus 13 and bus 18. The generator data is given in table 2 

including the power constraint obtained in [18] and cost coefficients obtained in [19]. 
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Bus # 
Power Constraint Cost coefficients 

Unit Type 
Pmax Pmin γ β α 

1 252 10 0.6568 56.564 400.6849 Diesel 

2 352 30.4 0.00921 13.3939 81.545 Coal/Stream 

7 350 75 0.00611 18.1 218.3351 Oil/Stream 

13 120 0 0.0004 4.4231 395.3749 PV 

15 215 66.25 0.00463 10.1694 142.7348 Coal/Stream 

16 155 54.25 0.00473 10.7154 143.0288 Coal/Stream 

18 150 0 0.0004 4.4231 395.3749 PV 

21 591 206.85 0.00261 23.1 259.652 Nuclear 

23 660 248.5 0.00153 10.8616 177.0575 Hydro 

Table 2: IEEE 24-bus RTS - generating unit parameters 

The PV power plants are at bus 13 and 18. Note that Pmax of 2 PV generators in table 

2 is their capacity. The maximum power of these 2 generators is different at each time 

period and will be specified by the predictive model. The diesel generator at bus 1 is a fast 

response generator that is used as the spinning reserve in case of PV generators do not have 

sufficient power to supply the load. Obviously, the cost to generate power of that diesel 

unit is very high.  

The total load profile is illustrated in figure 15, and the total system demand per hour 

is given in table 3. 

 
Figure 16: System Demand Profile 



CHAPTER 5. CASE STUDY AND RESULTS 

29 
 

hour Demand (MW) hour Demand (MW) 

1 1598.252 13 2266.178 

2 1502.834 14 2266.178 

3 1431.27 15 2218.469 

4 1407.416 16 2218.469 

5 1407.416 17 2361.596 

6 1431.27 18 2385.45 

7 1765.233 19 2385.45 

8 2051.487 20 2290.032 

9 2266.178 21 2170.76 

10 2290.032 22 1979.924 

11 2290.032 23 1741.379 

12 2266.178 24 1502.834 

Table 3: System demand profile (per hour) 

5.1.2 Solar irradiance and temperature data 

The real minute to minute data from National Renewable Energy Laboratory on 

03/19/2017 from 6:08AM to 6:07PM is accessible in [20]. This data of irradiance and 

temperature will be used as the reference for the prediction using the method described in 

chapter 4.  

 

Figure 17: minute to minute solar irradiance data at 2 PV buses 
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Figure 18:  minute to minute temperature data at 2 PV buses 
 

5.1.3 Solar panel specifications of the PV plants 

This case study assumes that both PV power plants on bus 13 and 18 are using the 

same solar panel given in [21]. The specifications of the solar plants needed for the 

formula (4.19) is in table 4. 

 Notation PV at bus #13 PV at bus #18 

Rated power* 𝑃𝑅 120 MW 150 MW 

Irradiance at standard test condition 𝐼𝑟𝑟𝑆𝑇𝐶 1000 (W/m2) 1000(W/m2) 

Temperature at standard test condition 𝑇𝑒𝑚𝑝𝑆𝑇𝐶 25oC 25oC 

Temperature coefficients 𝛼𝑃 -0.38%/oK -0.38%/oK 

Table 4: Specifications of solar panels used in 2 PV plants 

* The rated power is the maximum power of PV plants obtained from table 2, it can be 

change to study the effect of different PV power penetration to the system. 

5.2 Implementation of the proposed prediction method  

The prediction method introduced in chapter 4 is implemented using MATLAB. Start 

from period k=0 at 6:08AM, the prediction will be done for only one step ahead at time 

k=1 (6:23AM) with 15-minute period (time period can be change). At 6:23AM, the data in 

figure 16 and 17 is used as the actual data of irradiance and temperature. By adding the 
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sensor noise R into this data at this time, we will obtain the sensor measurement and feed 

it to the Kalman filter to refine the state estimate at time k=1. The process now is already 

at k=1, the prediction is again being done for k=2 and one step by one step ahead until we 

get to the end of the reference data at 6:17 PM. The visual explanation for this process can 

be seen in figure 18. 

 

Figure 19: The whole predicting model 

The results of this prediction will be compared with the results of persistent forecasting 

method PSS. If this predicting model can outperform PSS, it is considered to be good. 

5.2.1 The choice of initial guess 

As described in chapter 4, the initial guess is used as the trend to predict the output 

using state-space model before the output is refined by Kalman filter. If the trend is close 

to the actual output, then the Gaussian blob of the estimated output after the Kalman filter 

will be smaller which results in better estimate for the next prediction. 
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The initial guess can be obtained from the local weather forecast or just from a logical 

guess such as the Sun is rising in the morning and setting in the afternoon, and temperature 

is quite persistent from day time. Based on this, the initial guess in this case study for 

irradiance would be a half sinusoidal waveform starting from 6:08AM and ending at 

6:07PM, and the temperature is a persistent line as in figure 19 and 20. 

 
Figure 20: Initial guess of irradiance 

 
Figure 21: Initial guess of temperature 
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5.2.2 Results of the predicting model 

Everything needed to run the model in figure 18 is available. Running the model with 15-

minute time period from 6:08AM to 6:07PM, the predicted outputs of the proposed model, 

PSS and actual outputs will be shown in the same plots for comparison. 

 

Figure 22: Comparison of irradiance, temperature and power at bus #13 

 

 

Figure 23: Comparison of irradiance, temperature and power at bus #18 
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As we can observe from figure 21 and 22 above, the prediction of irradiance and 

temperature of the model using Kalman filter is closer to the actual values than the PSS 

model. For easier observation, the deviation of the predicted power from the actual power 

generated can be seen in figure 23 and 24. 

 

Figure 24: Power deviation from actual value at PV bus #13 

 

 

Figure 25: Power deviation from actual value at PV bus #18 
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It is easily to see that the power mismatch from Kalman filter approach is less than 

PPS. From this power mismatch, the percentage error of the predicted energy in the whole 

time t (in hour) can be calculated as: 

%𝐸𝑒𝑟𝑟 =
∑|𝐸𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100% =

∑|𝑃𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ| ∗ 𝑡

𝑃𝑎𝑐𝑡𝑢𝑎𝑙 ∗ 𝑡
∗ 100% 

The percentage energy mismatch calculated for Kalman filter approach and PSS using 

the formula above is given in the tables below: 

Bus Approach 𝑬𝒂𝒄𝒕𝒖𝒂𝒍 (MWh) ∑|𝑬𝒎𝒊𝒔𝒎𝒂𝒕𝒄𝒉| (MWh) %𝑬𝒆𝒓𝒓 

13 
Kalman Filter 

746.43 
29.36 3.93 

PSS 54.31 7.28 

18 
Kalman Filter 

1,274.38 
75.54 5.93 

PSS 98.23 7.71 

Table 5: Energy deviation from the actual value 

 

5.3 Bus bar economic dispatch using results of the prediction model 

Once the predicted power of the 2 PV plants is available for the next period, the system 

will run economic dispatch with the new updated for maximum power constraint of those 

2 PV generators. Besides, in case of the predicted power of these 2 PV generators is higher 

than the actual value, the fast response diesel generator as bus 1 will compensate for those 

power mismatch as a spinning reserve. The cost of this unit is very high.  

The cost of economic dispatch under different penetration levels of PV power will be 

discussed in the next sections. The penetration level is the percentage of actual energy 

generated from PV generators over total demand energy of the load from 6:08AM to 

6:07PM. The demand energy is 25,929.85 MWh and can be calculated from table 3. 

5.3.1 Cost of economic dispatch with 8% PV power penetration 

With the capacity of 2 PV generators in table 2, the actual energy produced from 

6:08AM to 6:07PM of these 2 generators is 2,020.81 MWh which is 7.8% of the total 

demand. 
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Figure 26: Cost of Economic Dispatch with 8% PV penetration 

 The predicted cost is the cost when the system runs economic dispatch based on the 

predicted power of 2 PV generators.  

The actual cost is the cost when the system is following the predicted dispatch schedule 

at real-time but have to change because the prediction is different from reality.  

The line on figure 26 is the cost when the system does not commit PV power. 

Approach 
Predicted cost 

(k$) 

Actual cost 

(k$) 

Cost Deviation 

(k$) 

Cost deviation 

(%) 

Kalman filter 419.1 431.9 -12.8 -3.06 

PSS 418.1 433.4 -15.2 -3.64 

Table 6: Dispatch cost deviation with 8% PV penetration 

Table 6 above shows that if we run ED using the results from the predictive model base 

on Kalman filter, then the different between the actual cost and the predicted cost is -12.8 

thousand dollars in total from 6:08AM to 6:07PM. Compare to -15.2 thousand dollar 

deviation cost from PSS model, the Kalman filter approach did a little better with 2.4 

thousand dollars less. Remember that the percentage of PV power penetration in this case 

is just 7.8% of the total load.  
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5.3.2 Cost of economic dispatch with 19% PV power penetration 

By increasing the capacity of 2 PV generators at bus 13 and 18 to 320 MW and 350 

MW respectively, the penetration of PV power into the system increase to 19.1%. Doing 

the same analysis as the section above, we can observe from figure 27 that the Kalman 

filtering approach still has better performance compare to the PSS approach. 

 
Figure 27: Cost of Economic Dispatch with 19% PV penetration 

 

Table 7 shows that Kalman Filtering approach has 6.5 thousand dollars less than PPS in 

term of cost deviation between the predicted dispatch cost and actual dispatch cost. 

Approach 
Predicted cost 

(k$) 

Actual cost 

(k$) 

Cost Deviation 

(k$) 

Cost deviation 

(%) 

Kalman filter 368.6 387.0 -18.4 -5.00 

PSS 367.0 391.9 -24.9 -6.78 

Table 7: Dispatch cost deviation with 19% PV penetration 



CHAPTER 5. CASE STUDY AND RESULTS 

38 
 

5.3.3 Cost of economic dispatch with 42% PV power penetration 

The capacity of 2 PV generators in this case is increased up to 720 MW and 750 MW 

which results in 41.8% of PV power penetration in the system. 

 

Figure 28: Cost of Economic Dispatch with 42% PV penetration 

With this high penetration of PV power, figure 28 and table 8 show that the Kalman 

filtering approach performs much better with -33.7 thousand dollars or 10.98% of dispatch 

cost deviation compare to -52.2 thousand dollars or 17.14% of those in PSS approach. This 

difference would be a significant amount of money if the market is worth millions of 

dollars. 

Approach 
Predicted cost 

(k$) 

Actual cost 

(k$) 

Cost Deviation 

(k$) 

Cost deviation 

(%) 

Kalman filter 307.1 340.8 -33.7 -10.98 

PSS 304.2 356.5 -52.2 -17.14 

Table 8: Dispatch cost deviation with 42% PV penetration 
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Chapter 6 

Conclusion and Future Work  

6.1 Thesis conclusion 

The work described in this thesis is concerned with the prediction of short-term PV 

power production for economic dispatch problem. Because of the generation cost of 

renewable energy such as PV is relatively low, utilizing it will advantage in total production 

cost of the whole power system. However, the power of this resource cannot be pre-

specified but has to be forecasted. Therefore, a good prediction of PV power will obviously 

help the result of ED problem get close to the optimal solution. 

  This thesis proposes a prediction model built on Kalman filter for solar irradiance and 

temperature. The prediction of PV power can be calculated form these 2 variables. First, 

the prediction starts with an initial guess of irradiance and temperature at each time period. 

Then, the Kalman filter will refine the results when sensor measurements are updated so 

that they can be used for better prediction in the next period. The result of the prediction 

gets better when the initial guess is closer to the actual values. The proposed model is 

implemented on 2 PV generators of the IEEE 24-bus reliability test system. The real 

irradiance and temperature data from National Renewable Energy Laboratory is used as 

the actual outputs that the outputs of the predictive model should get close to.  

The simulation is run with different levels of PV penetration. The results of the 

proposed model are compared with the results from PSS model. It is shown that the 

proposed model has better performance than the PSS model when its predictive PV power 

is closer to the actual one and the actual dispatch cost is less than that of the PSS model. 
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6.2 Future work 

Better prediction method will help PV power being more reliable for the power system. 

The more renewable energy like PV is utilized, the less traditional energy from fossil fuel 

is used. This will benefit to the environment, and definitely save a lot of money since PV 

power is cost-effective.  

The work in this thesis can be further improved by: 

 Beside irradiance and temperature, the model can include more variables that 

can affect the PV power such as cloud shape, wind speed, wind direction…, 

find the relationship between these variables so that the model can be more 

precise. 

 Apply the technique to the unit commitment problem when the economic 

dispatch is done 24 hours ahead for day-ahead market. 

 The economic dispatch for the test system can be improved by consider losses 

as well as other constraints of the generators. 

 The same model can be applied for wind power. 
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Appendix 

Matlab program for PV power prediction and Economic dispatch. 

 

Under is the code for Economic Dispatch calculation, it uses the PV power prediction from 

Power_Estimation function where the predictive model using Kalman Filtering approach is 

implemented. 

clc; 

clear; 

system_load = xlsread('SystemLoad24h',1,'B8:B20');%system load from 6AM-6PM 

gen_data = xlsread('gen_para',1);% read generators data 

  

%-------------------------------------------------------------------------- 

% Definitions and data collection 

%-------------------------------------------------------------------------- 

PMAX = 2; 

PMIN = 3; 

GAMA = 4; 

BETA = 5; 

ALPHA = 6; 

alpha = gen_data(:,ALPHA); 

beta = gen_data(:,BETA); 

gama = gen_data(:,GAMA); 

no_PVs = 2; % Number of PV generators: 2 

PVs_bus = [13 18]; % Bus of PV generator: 13 & 18 

e = 10^-3; % Economic dispatch error 

  

%-------------------------------------------------------------------------- 

%Time period 

%-------------------------------------------------------------------------- 

Period_10min = 10; 

Period_15min = 15; 

Period_30min = 30; 

T = Period_15min; %time period in minutes 

  

%-------------------------------------------------------------------------- 

%Get estimated PV power of 2 PV generators from Kalman Filtering model 

%-------------------------------------------------------------------------- 

[ Preal, Pkal, Ppss ] = Power_Estimation( T, PVs_bus ); 

Pnopv = zeros(size(Preal));%for system that does not use power from PV 

  

%-------------------------------------------------------------------------- 

%Bus Bar Economic Dispatch Calculation 

%-------------------------------------------------------------------------- 

% 

% IC1 = 2*gama1*PG1 +            0 +  beta1 = lambda 

% IC2 =           0 +  2*gama2*PG2 +  beta2 = lambda 

%               PG1 +          PG2 +      0 = PD 

% <=> 

% 

% |2*gama1    0    -1|   |  PG1 |   |-beta1| 

% |  0    2*gama2  -1| * |  PG2 | = |-beta2| 

% |  1        1     0|   |lambda|   |  PD  | 
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% 

% <=> 

%           A          *     x    =    B 

%-------------------------------------------------------------------------- 

num_of_T = size(Pkal,1); % Number of periods 

Estimated_Cost = zeros(3,1); 

Real_Cost = zeros(3,1); 

% The estimated dispatch cost based on PV power prediction 

for l=1:4 

    if l==1 

        Ppv = Preal; 

    elseif l==2 

        Ppv = Pkal; 

    elseif l==3 

        Ppv = Ppss; 

    else 

        Ppv = Pnopv; 

    end     

    Cost = zeros(num_of_T,1);% vector cost of the whole time 

    Total_load=0; 

    for k=1:num_of_T 

        % update Pmax of PV generator at this time period  

        [~,genid] = intersect(gen_data,PVs_bus); 

        gen_data(genid,PMAX) = Ppv(k,1:no_PVs)/(1e6);%only 2 PVs for now  

        gen_data(genid,PMIN) = 0; 

        Pmax = gen_data(:,PMAX);     

        Pmin = gen_data(:,PMIN); 

        PD = system_load(floor(k*T/60)+1);% update PD at that time period 

        Total_load = Total_load+PD; 

        %setup the max and min of the incremental cost lambda 

        lambda_max = max(2*gama.*Pmax + beta); 

        lambda_min = min(2*gama.*Pmin + beta); 

        %calculate PG with initiate lambda is in the middle 

        lambda = (lambda_max + lambda_min)/2; 

        PG = (lambda-beta)./(gama*2); 

        %check for power constraint with this new lambda 

        PG = min(PG,Pmax); 

        PG = max(PG,Pmin); 

        mismatch = sum(PG) - PD; 

        num_of_iteration =0; 

        while abs(mismatch) > e 

            if mismatch < 0 %not enough Power -> search upper region 

                lambda_min = lambda; 

            else %too much power -> search lower region 

                lambda_max = lambda; 

            end 

            % adjust lambda, recalculate PG 

            lambda = (lambda_max + lambda_min)/2; 

            PG = (lambda-beta)./(gama*2); 

            %check for power constraint with this new lambda 

            PG = min(PG,Pmax); 

            PG = max(PG,Pmin); 

            mismatch = sum(PG)- PD;% calculate mismatch 

            num_of_iteration = num_of_iteration + 1; 

        end 

        Cost(k) = sum(alpha + beta.*PG + gama.*PG.*PG)*T/60; 

    end 

     

    if l==4 

        Cost_without_PV = sum(Cost); 

    else 

        Estimated_Cost(l) = sum(Cost); 

    end 
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end 

  

%Actual power dispatch 

Real_Cost(1) = Estimated_Cost(1); 

  

%Actual dispatch cost for PV power prediction using Kalman approach 

Pkalh = max((Pkal - Preal)/(1e6),zeros(size(Pkal))); 

Real_Cost(2) = Real_Cost(1) + ... 

    sum(sum((alpha(1,:) + beta(1,:).*Pkalh + gama(1,:).*Pkalh.*Pkalh)*T/60)); 

  

%Actual dispatch cost for PV power prediction using PSS approach 

Ppssh = max((Ppss - Preal)/(1e6),zeros(size(Pkal))); 

Real_Cost(3) = Real_Cost(1) + ... 

    sum(sum(alpha(1,:) + beta(1,:).*Ppssh + gama(1,:).*Ppssh.*Ppssh)*T/60); 

  

%-------------------------------------------------------------------------- 

%Plot bar graph the comparison of dispatch costs 

%-------------------------------------------------------------------------- 

figure; 

bar([Estimated_Cost'; Real_Cost']/1000), 

title(['Dispatch Cost from 6AM-6PM (' num2str(T) '-minute period)']),  

ylabel('USD(k$)'), 

legend('Actual','Kalman Filter','PSS'), 

set(gca,'XTickLabel',{'Predicted Cost','Actual Cost'}); 

hold on 

plot(xlim,[Cost_without_PV Cost_without_PV]/1000,'LineWidth',2) 

  

%-------------------------------------------------------------------------- 

%Energy deviation, cost deviation and PV power penetration 

%-------------------------------------------------------------------------- 

[sum(abs(Pkal-Preal)) ;sum(abs(Ppss-Preal))]; 

dEkal = sum(abs(Pkal-Preal))*T/60/1e6%energy deviation (MWh) of Kal appr. 

dEpss = sum(abs(Ppss-Preal))*T/60/1e6%energy deviation (MWh) of PSS appr. 

Ereal = sum(Preal)*T/60/1e6;%actual energy generated (MWh) from 6AM - 6PM 

percent_eng_Kal_deviation = dEkal./Ereal*100 

percent_eng_PSS_deviation = dEpss./Ereal*100 

Deviation_Cost = Estimated_Cost - Real_Cost % dollar 

Percen_Deviation_Cost = Deviation_Cost./Estimated_Cost*100 

Percen_PV_Power_Penetration = sum((sum(abs(Preal))/1e6)*100/Total_load) 

  

 

The Power_Estimation function is as follows:  

function [ Preal, Pkal, Ppss ] = Power_Estimation( T, PVs_bus ) 

% This function estimates the next output of PV power plant using  

% Kalman Filter and Persistance Forecasting(PSS) 

  

%-------------------------------------------------------------------------- 

% Solar Module Used: SunPower SPR-305E-WHT-D 

% Rated power at Standard Test Condition Irrstc=1000W/m^2, Tempstc=25oC 

% Pnom = 305W/module 

% Temperature Coefficient with power: Pcoef = -0.38%/K 

% Estimate Power Calculation: 

% P = Pnom*fpv*(Irr/Irrstc)*(1+a*(Temp-Tempstc)) 

% fpv: derating factor (assume to be 1), and no losses while connecting 

% panels into an array 

%-------------------------------------------------------------------------- 

Irrstc = 1000; % W/m^2 

Tempstc = 25; % Celcius 

Pcoef = -0.0038; % -0.38% 

Pnom = xlsread('gen_para',1);% read the capacity of 2 PV generators 

[~,genid] = intersect(Pnom(:,1),PVs_bus); 
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Pnom = (Pnom(genid,2)*1e6)';% The solar plant's capacities in Watt 

  

%-------------------------------------------------------------------------- 

%The minute to minute solar irradiance and temperature data from NREL is 

%compressed to T-minute time period by taking the mean 

%-------------------------------------------------------------------------- 

Irr = xlsread('Solar_data',1,'C2:D721'); %read irradiance data 

Temp = xlsread('Solar_data',2,'C2:D721');%read temperature data 

[data_row data_col] = size(Irr); 

if T ~= 1 % do not need to compress if period is 1 minute 

    for k=0:(data_row/T)-1 

        Irr(k+1,:) = mean(Irr(k*T+1:k*T+T,1:data_col)); 

        Temp(k+1,:) = mean(Temp(k*T+1:k*T+T,1:data_col)); 

    end 

Irr(k+2:data_row,:)=[]; %irr.data after compressed to T-minute period 

Temp(k+2:data_row,:)=[];%temp.data after compressed to T-minute period 

end 

  

%-------------------------------------------------------------------------- 

% State-space model of irradiance and temperature system for Kalman Filter 

%-------------------------------------------------------------------------- 

% Irr = x1; Temp = x2; dIrr = u1; dTemp = u2 

% x1(k+1) = x1(k) +   0   + u1(k) + 0     + w1    + 0 

% x2(k+1) = 0     + x2(k) + 0     + u2(k) + 0     + w2 

% y1(k)   = x1(k) 

% y2(k)   = x2(k) 

%-------------------------------------------------------------------------- 

F=[1 0;0 1]; 

B=[1 0;0 1]; 

H=[1 0;0 1]; 

Plant = ss(F,[B B],H,0,-1,'inputname',{'u1' 'u2' 'w1' 'w2'},... 

                            'outputname',{'y1' 'y2'}); 

Q = [31.7 0;0 0.1]; % the process noise covariance(Q) 

R = [10.5 0;0 0.5]; % sensor noise covariance(R) 

[kalmf,~,~,~,~] = kalman(Plant,Q,R); 

kalmf = kalmf(1:2,:);%interested in the output estimate y_{e} 

SimModel = kalmf; 

SimModel.inputname; 

SimModel.outputname; 

  

%-------------------------------------------------------------------------- 

% Generating noise, measurement and inputs 

%-------------------------------------------------------------------------- 

t = (0:size(Irr,1)-1)'; 

rng(10,'twister'); 

v1 = real(sqrt(R(1,1)).*randn(size(Irr)));% irr. sensor error 

v2 = real(sqrt(R(2,2)).*randn(size(Temp)));% temp. sensor error 

y1v = Irr + v1;     % measured output 

y2v = Temp + v2;     % measured output 

  

%-------------------------------------------------------------------------- 

% moving average prediction for Irr input 

%-------------------------------------------------------------------------- 

% real Irr input obtain from the sensor 

ur1 = real(diff(y1v)); ur1 = [ur1(1,:);ur1]; 

% real Temp input obtain from the sensor 

ur2 = real(diff(y2v)); ur2 = [ur2(1,:);ur2];  

% initial guess of irr. input that forms a sin wave output 

ui1 = [0;diff(sin(t*pi/t(length(t)))*Irrstc*0.9)]; ui1 = [ui1 ui1]; 

% initial guess of temp. input that forms a constant line output 

ui2 = [[0 0];diff(sin(t*pi/t(length(t))))*mean(Temp)]; 

% the initial value x(0) of irr. and temp. 

x10=[0 0]; % zeros for irr. 
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x20=[20 7]; % mean for temp. 

% the predictive inputs of the system starts with initial guess 

u1 = ui1; 

u2 = ui2; 

for k=3:length(t) 

    u1(k,:) = (ui1(k,:) + ur1(k-1,:))/2;% moving average 

    u2(k,:) = (ui2(k,:) + ur2(k-1,:))/2;% moving average 

end 

  

%-------------------------------------------------------------------------- 

% Run the Kalman Filter estimation 

%-------------------------------------------------------------------------- 

for k=1:size(Irr,2) 

    out = lsim(SimModel,[u1(:,k),u2(:,k),y1v(:,k),y2v(:,k)],... 

                                                        t,[x10(k) x20(k)]); 

    y1e(:,k) = out(:,1);  % filtered response, Irradiance 

    y2e(:,k) = out(:,2);  % filtered response, Temperature 

end 

%prediction output of the next period usinng filtered response and the 

%moving average input obtained above y1e->irr  y2e->temp 

y1e = [y1e(1,:);y1e(1:length(y1e)-1,:) + u1(1:length(u1)-1,:)];   

y2e = [y2e(1,:);y2e(1:length(y2e)-1,:) + u2(1:length(u2)-1,:)]; 

     

%-------------------------------------------------------------------------- 

% Estimation using PSS, simply delay 1 period 

%-------------------------------------------------------------------------- 

Irrpss = [y1v(1,:);y1v(1:length(y1v)-1,:)]; 

Temppss = [y2v(1,:);y2v(1:length(y2v)-1,:)]; 

  

%-------------------------------------------------------------------------- 

% Calculating the Power from irradiance and temperature 

%-------------------------------------------------------------------------- 

% Real Power generated 

Preal = bsxfun(@times,Pnom,(Irr/Irrstc)).*(1+Pcoef*(Temp-Tempstc)); 

  

% Estimated Power from Kalmann Filter 

Pkal = bsxfun(@times,Pnom,(y1e/Irrstc)).*(1+Pcoef*(y2e-Tempstc)); 

% power mismatch of Kalman filtering approach in kW 

Pmm_kal = (Pkal - Preal)/1000;  

  

% Estimated power using PSS 

Ppss = bsxfun(@times,Pnom,(Irrpss/Irrstc)).*(1+Pcoef*(Temppss-Tempstc)); 

% power mismatch of PSS approach in kW 

Pmm_pss = (Ppss - Preal)/1000; % 

  

%-------------------------------------------------------------------------- 

% Plot 

%-------------------------------------------------------------------------- 

% for generator 1 

%-------------------------------------------------------------------------- 

Irr1_r = Irr(:,1); 

Irr1_e = y1e(:,1); 

Irr1_pss = Irrpss(:,1); 

Temp1_r = Temp(:,1); 

Temp1_e = y2e(:,1); 

Temp1_pss = Temppss(:,1);     

figure; 

clf 

subplot(311), plot(t,Irr1_r,'b',t,Irr1_e,'r--',t,Irr1_pss,'g-.',t,... 

                    sin(t*pi/t(length(t)))*Irrstc*0.9,'k:','LineWidth',1), 

ylim([-50 1000]), 

xlabel('Irradiance'), ylabel('(W/m^2)'), 

legend('Actual','Kalman Filter','PSS','initial guess'), 
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title(['Irradiance, Temperature and Power Comparision of PV at bus #' ... 

                    num2str(PVs_bus(1)) '(' num2str(T) '-minute period)']) 

subplot(312), plot(t,Temp1_r,'b',t,Temp1_e,'r--',t,Temp1_pss,'g-.',t... 

                                ,x20(1)*ones(size(t)),'k:','LineWidth',1), 

xlabel('Temperature'), ylabel('(oC)') 

subplot(313), plot(t,Preal(:,1)/1e6,'b',t,Pkal(:,1)/1e6,'r--',t,... 

                                        Ppss(:,1)/1e6,'g-.','LineWidth',1), 

xlabel('Power'), ylabel('(MW)'); 

  

% Power mismatch in bar graph 

figure; 

subplot(211), bar(Pmm_kal(:,1)), 

xlabel('Kalman Filter'), ylabel('mismatch(kW)'), 

ylim([-3e4 3e4]), 

title(['Power Deviation from the actual value at PV bus #' ... 

                    num2str(PVs_bus(1)) '(' num2str(T) '-minute period)']) 

subplot(212), bar(Pmm_pss(:,1)), 

xlabel('PSS'), ylabel('mismatch(kW)'), 

ylim([-3e4 3e4]) 

  

%-------------------------------------------------------------------------- 

% for generator 2 

%-------------------------------------------------------------------------- 

Irr2_r = Irr(:,2); 

Irr2_e = y1e(:,2); 

Irr2_pss = Irrpss(:,2); 

Temp2_r = Temp(:,2); 

Temp2_e = y2e(:,2); 

Temp2_pss = Temppss(:,2); 

figure; 

clf 

subplot(311), plot(t,Irr2_r,'b',t,Irr2_e,'r--',t,Irr2_pss,'g-.',t,... 

                    sin(t*pi/t(length(t)))*Irrstc*0.9,'k:','LineWidth',1), 

ylim([-50 1100]), 

xlabel('Irradiance'), ylabel('(W/m^2)'), 

legend('Actual','Kalman Filter','PSS','initial guess'), 

title(['Irradiance, Temperature and Power Comparision of PV at bus #' ... 

                    num2str(PVs_bus(2)) '(' num2str(T) '-minute period)']) 

subplot(312), plot(t,Temp2_r,'b',t,Temp2_e,'r--',t,Temp2_pss,'g-.',t,... 

                                 x20(2)*ones(size(t)),'k:','LineWidth',1), 

xlabel('Temperature'), ylabel('(oC)') 

subplot(313), plot(t,Preal(:,2)/1e6,'b',t,Pkal(:,2)/1e6,'r--',t,... 

                                       Ppss(:,2)/1e6,'g-.','LineWidth',1), 

xlabel('Power'), ylabel('(MW)'); 

% Power mismatch in bar graph 

figure; 

subplot(211), bar(Pmm_kal(:,2)), 

xlabel('Kalman Filter'), ylabel('mismatch(kW)'), 

ylim([-3e4 3e4]), 

title(['Power Deviation from the actual value at PV bus #' ... 

                    num2str(PVs_bus(2)) '(' num2str(T) '-minute period)']) 

subplot(212), bar(Pmm_pss(:,2)), 

xlabel('PSS'), ylabel('mismatch(kW)'), 

ylim([-3e4 3e4]) 

  

end 
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