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ABSTRACT

Through-Wafer Interrogation of MEMS Device Motion

Jeremy M. Dawson

Microelectromechanical systems (MEMS) have been the focus of many research groups
because of their wide variety of uses in sensing and actuation applications. A
fundamental barrier facing designers of next generation MEMS is the inability to access
accurate, real-time microstructure positional information to determine if the device is
performing as expected. Previously explored optical and electrical methods of MEMS
device monitoring are often only suitable for research environments, or are unable to
produce clear and meaningful characterization of device motion. The most desirable
MEMS monitoring method would be one that could be implemented at the device level,
which would allow the monitoring system to be fabricated along with the device itself.
This research explores a through-wafer method of optically monitoring and
characterizing the motion of a lateral comb resonator fabricated using the Multi-User
MEMS Process Service (MUMPS). Positional monitoring results obtained from a 1.3 µm
wavelength through-wafer optical probe are presented, as well as a method of device
level implementation of the monitoring system.
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Chapter 1

Introduction

Current trends in sensing, display, and control applications have certain

functionality requirements that make the implementation of microoptoelectromechanical

systems (MOEMS) necessary. Complete pre-assembled MOEMS on silicon integrated

circuits can be created by combining MEMS with integrated optical elements to integrate

the coordinated movements of microactuators with optical components such as mirrors

and diffraction gratings. Systems such as these carry several advantages including the

lack of need for component alignment, mass production, and high packing density. They

are small, lightweight, and offer low power operation [1]. The greatest advantage is the

ability to directly integrate MOEMS with electronics to produce sophisticated devices.

These micron to submicron scale devices utilize lateral, rotational, and torsional

movements to perform the desired operations in a system. Using device geometries that

take advantage of these types of movements, a myriad of different sensing and actuation

tasks can be realized.

Due to the small range of movement exhibited by MEMS devices, the continuous

measurement of these movements for control purposes over the MEMS lifetime poses

difficulties. Stroboscopic techniques and laser interferometry methods have been used to
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evaluate the movements of MEMS [2], [3]. Due to the limited accessibility of the devices

in embedded systems, the aforementioned monitoring methods, used primarily in

research settings, often cannot be used. Electrical means of sensing and predicting device

movement involving capacitance changes have been explored as well [4], [5], [6]. While

easier to integrate into a MEMS package, the signal change associated with device

movement is small, has little dynamic range, and may be lost in the noise created by the

higher voltages used to power the device. Other problems occur when the measuring

device affects the performance of the system itself [7]. In certain cases, monitoring the

device’s movement causes its behavior to change. A system to acquire a strong

movement signal as well as relay this information that could be fabricated at the same

time as the devices themselves could eliminate these problems in the same manner that

alignment problems are eliminated in combining MEMS and integrated optical elements

in MOEM systems.

Through-wafer optical interconnects offer significant benefits in the

implementation of multicomputer interconnection networks including added

dimensionality, high bandwidth, and compact packaging [8]. Interconnects such as these

can be employed to realize the goal of adding an optical monitoring and control system

within specific MEMS. A basic system could use planar or through-wafer optical

interconnects to optically probe the device, sense the movement, collect the beam, and

optically feed back this information to control circuitry. This approach involves multiple

optical layers to route the infrared beam to the desired areas. The movement of the device

would cause it to interfere with the beam in a way to change its intensity or phase. This
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change in the beam parameters could be sensed and sent to control circuitry area on the

same chip where microstructure drive corrections can be made as necessary.

The focus of this research is to characterize and evaluate a through-wafer method

of monitoring MEMS device motion using lateral comb resonators as an initial research

testbed. This monitoring method is shown to provide a large change in output signal

when an optical probe is interrupted by the movement of the translation stage of the

device. The output signal will then be used to validate theoretical characteristics of the

moving structure. Methods of implementation of a device level system using planar

folded and integrated diffractive optics will also be explored.

1.1 Microelectromechanical Systems

In order to understand the context in which this research is being done and its

range of impact, a brief representative review is given of MEMS technology and the role

of position monitoring. The need for optical monitoring and feedback control becomes

apparent when MEMS devices are used individually or in large arrays to achieve a

desired sensing or actuation task.

1.1.1 Translational MEMS

The most common type of MEMS devices are those of the translational variety.

One such device, the lateral comb resonator has been employed in many applications

where lateral movement is needed. This device often has two sets of stationary comb

fingers interleaved with comb fingers on both sides of a translation stage situated

between the stationary combs. These interleaved fingers cause an electrostatic force when
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a voltage is applied.  To counteract this force a mechanical force is provided by spring

structures, or flexures, attached to the translation stage. The combination of these two

forces allows the stage to move in one direction and then return to its original position

when the voltage is removed. Figure 1.1 shows and example of a translational MEMS

device.

Figure 1.1: Lateral Comb Resonator Designed at WVU

Optical methods of motion monitoring are most suitable in devices such as this that

exhibit continuous movement. Due to the simplicity of their movement, resonator devices

have been used in many applications involving the actuation of components in a MOEM

system. One such system employs translation stages in order to position components in a
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surface-micromachined free-space optical bench [9] (Figure 1.2). Hinge structures can be

fabricated that allow elements to be positioned at an angle to the plane of movement. By

moving two mirrors situated at 45°, the beam from the semiconductor laser can be

scanned in two dimensions. Other structures such as micro-Fresnel lenses can be made if

focusing or further direction of the beam is needed.

Figure 1.2: Free-Space Microoptical Bench [9]

Another application of linear resonators is in the area of optical switching. A

translation stage with an upright mirror fabricated on it has been used to create a

monolithic (single chip) 2x2 optical bypass switch for a fiber data distribution interface

(FDDI) local area network (LAN) [9]. This free-space approach to switching can reduce

insertion losses and cross-talk associated with conventional switching methods. The two

states of the switch, CROSS and BAR, allow for failed nodes in the system to be

bypassed (Figure 1.3). Because the comb resonators in this and the previous system
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exhibit only limited ranges of motion, mechanical limit sensors rather than continuous

optical monitoring methods may be employed to ensure proper device operation.

Figure 1.3: Optical Switch [9]

1.1.2 Torsional/Vertical Motion MEMS

Micromirror arrays utilize MEMS technology in order to scan or modulate light.

Linear arrays of such mirrors are useful for light modulation in printers. These mirrors

are rotated torsionally (tilted) by electrostatic attraction using electrodes under each side.

The space etched between the mirrored surface and the underlying electrode layer

determines the maximum angle of rotation. Each mirror, or pixel, is individually

controlled by its location, or address, on a MOS chip. This individual addressability

makes the array a highly tunable device.

Many free-space optical systems, such as astronomical telescopes and line-of-

sight optical communications, experience irregularities that effect the received signal.

These irregularities, or aberrations, are usually caused by free space turbulence, such as

thermal distortion. Aberrations cause a fuzziness of the received signal, creating a level

of uncertainty that could cause major problems in high precision applications. With the
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growth of integrated optics comes the possibility to reduce or even eliminate such

problems. By coating the surface of the image or receiving plane with thousands of

integrated deformable mirrors, these aberrations can possibly be reduced. An array of

these devices has tested and characterized by various research groups [10]. The goal of

the deformable mirror array is to decrease the intensity of the fringes caused by

diffraction, and increase the intensity of the 0th order maximum to clarify the signal or

image. Another application uses a continuous-membrane mirror with pistons or flexures

(springs) that can change the curvature of the mirror when voltage is applied (Figure 1.4)

[11]. Again, the resolution is determined by the size and density of the mirrors in the

array.

Figure 1.4: Deformable Micromirror [11]
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Digital communication is causing a need for more efficient ways to display the

information being sent. The natural interface to digital data is a digital display. This type

of display accepts an electrical signal of bits and changes them to optical bits as output.

Texas Instruments is the forerunner of this new display technology known as a DMD

(digital micromirror device). There are three aspects that make this technology desirable:

the combination of audio, text, graphics, and video; high fidelity data transmission,

storage, and playback; and limitless reproduction without degradation. The DMD is made

up of an array of tilting micromirrors fabricated over a CMOS memory structure (Figure

1.5) [9]. Because of the geometry, the mirror has a maximum translation angle of  +10

degrees. When the memory cell is in the (1) state, the mirror tilts to +10 degrees, and tilts

to -10 degrees in the (0) state. After combining this structure with a light source and

projection optics, (1) corresponds to a bright area and (0) corresponds to a dark one. With

binary pulse width modulation, a gray scale is achieved, and color can be added using

color filters and multiple DMD chips.
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Figure 1.5: Digital Micromirror Display (DMD) [9]

All of these devices use close proximity to increase resolution. This resolution

will be diminished if a large number of the devices are behaving improperly or not

working at all. Here, the complexity of the device manufacturing process may not lend

well to cointegration of the optical monitoring system. Electrical monitoring methods

may be more suitable, especially since each pixel is a binary position device, lending well

to limit sensing.

1.1.3 Gear/Motor Rotary Motion MEMS

The other major type of MEMS structure includes those that rotate in the plane of

fabrication. Rotation can be achieved by varying the voltage of the “stator” electrodes

situated around rotor electrodes with the opposite voltage applied. This variation causes a

repulsion or attraction, much like that exhibited by linear comb resonators, except in a

rotational direction. Another method of achieving motion is to combine gears with
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translational MEMS, such as the Sandia Microengine [12]. One lateral resonator device

seen in Figure 1.6 operates out of phase with the second to cause a circular action of the

center geared device.

Figure 1.6: The Sandia Microengine

These devices have been developed as arming devices on nuclear warheads. Devices such

as these that exhibit continuous movement need a reliable system of microstructure

monitoring if they are to be applied in safety critical systems. Optical methods that give a

high output signal would surely make these systems more reliable.

Rotational MEMS can be employed to give another degree of freedom to the free

space optical bench [9]. Instead of being confined to lateral motion, the micromachined

optical components can be rotated 360° if desired.  Like their translational counterparts,

this type of MEMS has been used in the areas of optical switches and planar scanning.

The rotor of an electrostatic polysilicon micromotor can be fabricated with a diffraction
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grating on it [1]. This grating can consist of two different spatial periods to redirect light

at two different angles. Again in all cases, knowing the frequency of rotation of the rotor

is important to ensure reliability.

1.2 Optical Interconnect Technologies

Optical interconnects have been the focus of many research groups because of the

benefits they bring to low level microelectronic systems. They are of interest in this

research work as a means to realize optical monitoring of MEMS devices. These types of

interconnections show promise for both high dimensionality and inter-chip bandwidth,

and more compact packaging [8]. Effective use of light to perform low-level processes

also can decrease on-chip capacitance and power consumption. Parallel interconnects,

such as slab and strip waveguides, route light on the surface of the chip. Perpendicular, or

through-wafer, interconnects route light through the silicon substrate, a desirable trait for

the implementation of multi-chip modules (MCM’s) [13], [14]. Integrated diffraction and

refraction gratings can be combined with parallel and through-wafer interconnects to

form planar folded optical systems [15], [16]. The structures used to create both

waveguides and through-wafer interconnects can be fabricated after the devices, allowing

the bulk fabrication processes of the circuitry on the chip to remain unchanged. The

following is an examination of a small sample of current applications of the

aforementioned optical interconnect applications.
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1.2.1 Optical Waveguides

The two major types of waveguides, slab and strip, use a layer or line of low loss

material to route light in one plane. As long as light incident on the interior walls of the

waveguide is greater than the critical angle, light will propagate with little loss through

total internal reflection (TIR). These light guides can support multiple modes of input

wavelengths, or be designed to be limited to a single mode of propagation only. Polymer

materials have been developed that provide low loss propagation over distances relatively

large compared to the dimensions of the guide itself [17].

Strip waveguides have been implemented for use in integrated interferometers.

These devices use a change in the intensity or phase of a light beam to perform a variety

of sensing tasks. One group has fabricated strip waveguides in a Mach-Zender

configuration to create an integrated pressure sensor [18]. A cavity was etched under one

branch of the interferometer. Pressure applied to the top surface causes the index of

refraction of the branch with the cavity under it to change, creating a delay in the light

passing through it. This output is then coupled to a fiber connected to a circuit calibrated

to give a pressure that corresponds to the change in phase of the light.

Another group applied waveguides in a Michelson arrangement to create an

integrated displacement sensor [19]. Light that is input to two separate branches, a

measurement beam and a reference beam, are sent to outputs. The measurement beam is

reflected off of the object whose displacement is being measured. Both beams are routed

back to a detector fabricated on the chip. Differences in intensity are compared and

calibrated to correspond to a physical change in the displacement of the object. Slab
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waveguides have also been employed to perform similar interferometry processes for

evanescent wave sensing [20].

1.2.2 Through-Wafer Interconnects

As mentioned before, optical methods of interconnection can provide added

dimensionality to microelectronic systems. The majority of on-chip processes occur only

in two dimensions. A third vertical direction of connection between different layers of

circuitry would allow for larger amounts of parallel processing. Vertical electrical

connections are feasible, but require more and complex processing steps and are

undesirable due to the difficulty in repairing such a connection. Vertical optical

connections are more appealing because little or no mechanical connection is necessary,

and any processing steps should be compatible with present VLSI methods [21]. Areas of

interconnection could be planned for beforehand and holes could be etched in the

substrate to accommodate the connection. The connection between layers of circuitry

could be achieved be vertical-cavity surface-emitting lasers (VCSEL’s), detectors, and

focusing microoptical elements mentioned earlier [22].

To simplify the vertical connection process further, light could be passed through

the substrate material so no holes would be needed. Silicon is transmissive to

wavelengths of light beyond its absorption cutoff (> 1.3 µm). Emitters fabricated below

the substrate that operate in this range can be coupled to detectors above the chip. This

has been achieved using InP-based emitters and detectors [23]. By stacking several layers

of silicon circuitry and implementing these emitter-detector pairs between each layer,

high-throughput architectures can be achieved [24]. To implement this type of system,
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the backside of the wafer must be polished in order to make it optically smooth and to

reduce transmission losses into the silicon substrate. One drawback of through wafer

interconnection is the difficulty in alignment between the emitters and detectors.

1.2.3 Diffractive/Refractive Optics

Integrated optical elements that focus and direct light have been incorporated in

optical interconnect systems as well. These elements used in conjunction with glass TIR

substrates form planar folded optical systems that not only route light in one plane, but

also couple it between planes [15]. Diffractive elements, such as integrated Fresnel zone

plate lenses have been used for free-space optical connections and in through-wafer

applications to both focus and collimate beams [25], [26], [27], [28]. Beam focusing on-

axis and off-axis has been explored as well [29], [30]. Incorporating these elements in an

integrated optical system requires precise alignment and near flawless device fabrication

for acceptable performance.

1.3 Optical MEMS Device Monitoring

The emergence of MOEMS has resulted in the possibility for integrated optical

elements to be combined with MEMS to create micron scale electro-optical systems. It is

the next progression for integrated optics to be combined with MEMS not only to

perform needed tasks, but also to monitor the system as well. Two methods have been

suggested to optically monitor MEMS device motion. One involves using strip

waveguides to route light to the planar edge of a moving device to sense its movement.
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Figure 1.7: Planar Device Monitoring

This method would involve depositing a layer of polymer material over the device layer

in which the waveguides would be fabricated. Light would be routed parallel to the

devices in the system from the moving stage or rotor to the control circuitry. 

Another method of optically monitoring MEMS devices uses a plane waveguide

above the device layer and integrated Fresnel lenses.

Figure 1.8: Diffractive Optics Device Monitoring

This setup uses the Fresnel lenses to direct light on to the moving device stage. When the

stage moves into the beam interruption area, the output signal is coupled back into the
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waveguide by a second lens. This method would be rather difficult due to alignment

problems in coupling the reflected probe beam.

Another method, the one investigated in this research, involves using through-

wafer free space optical interconnections to monitor the devices.

Figure 1.9: Through-Wafer Device Monitoring

Two TIR glass substrates, one above the device layer and one below the substrate, route

light to and from the device. Light is coupled between layers by integrated Fresnel lenses

that direct the light directly through the silicon substrate. This light is interrupted by the

moving device, causing a change in its intensity. The measurement of this change in

intensity should be a direct measurement of the frequency of motion of the device and its

position if calibrated with its metrology.

This research work reflects an effort to optically monitor and characterize the

lateral motion of a lateral comb resonator by using an infrared beam directed through the

silicon substrate and focused in the device plane to gain a better understanding of the

device’s behavior. The output signal will be monitored by a detector located above the

device plane. Once the optically monitored signal is determined, control methods may
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later be implemented to correct the movement of the device if it is not performing

correctly.

The through-wafer method chosen to monitor the device offers many

experimental challenges that must be met before a meaningful signal can be obtained.

Infrared alignment, due to the “invisibility” of the light being used, is not straightforward.

Transmission losses and the scattering of the beam by the device geometries also pose a

problem. Small spot sizes are needed, but achieving a small spot and determining its

actual size is very difficult because of the methods used to visually monitor the system.

Coupling the probe beam to a detector with full adjustability for both, as well as allowing

the device to be powered by probe tips creates the need for a complex and unstable

experimental setup. Interpreting an output signal with no idea of the area of the device

being monitored makes verification of the signal difficult. If these challenges are

overcome, the objective of creating a through-wafer method that gives a meaningful

signal representing the actuation of a MEMS device will be realized. Results obtained in

this research will confirm that an integrated through-wafer optical monitoring setup is

warranted, and that integration will reduce many of the problems experienced when using

the experimental setup.
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Chapter 2

Theory

The material presented in this chapter contains the theory that is the basis for

understanding resonant comb drive MEMS device motion, mutilayer transmission, and

the optics involved in reducing the spot size of the infrared sources. Section 2.1 deals

with the electrophysics of lateral comb resonator MEMS devices with a folded flexure

spring design. This research involved the detection of infrared light passed through a

silicon wafer with devices fabricated on the surface. Section 2.2 discusses the

transmission of a beam of light through multiple layers of semiconductor materials and

the conditions that maximize it. Section 2.3 outlines methods to reduce spot size of the

fiber output of the infrared sources used to diameters suitable for this application. A brief

discussion of beam intensity is given as well. Section 2.4 addresses the optical properties

of off-axis Fresnel gratings.
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2.1 MEMS Motion

MEMS utilize a combination of electrostatic and mechanical forces in order to

cause movement of the released portions of the devices in the system. The lateral comb

resonators used in this research gained their electrostatic force from many interleaved

comb fingers energized by a voltage source. There are several types of spring structures

that can provide the mechanical force for the device. Serpentine, fixed-fixed, crab-leg,

and folded flexures have been employed in MEMS devices [31]. Based on initial research

by our group, it is determined that the folded flexure design would be the most suitable

for this application because of its linear characteristics.

Figure 2.1: Lateral Comb Resonator with Folded Flexure Design
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The spring constant of the folded-beam flexure is [32]

where E is Young’s modulus for polysilicon (160 Gpa), a is flexure width, t is flexure

thickness, and l is flexure length.

For our studies, it was desirable that the center stage of the device should travel as

far as possible. Resonant frequency, ω, where maximum lateral displacement occurs, is

determined by

where m is the mass determined by multiplying the volume of the center stage by the

density of polysilicon (2.33x10-15 kg/µm).

The two forces mentioned earlier oppose each other to create oscillatory

movement of the center stage. The electrostatic force generated by the comb fingers is

given by [32]

where n is the number of fingers creating capacitance, ε is the permittivity of free space

(8.854x10-12 C2/N m2), t is the thickness of the fingers, and g is the gap between stage and

drive fingers.
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The force that restores the stage is the spring force of the flexure

where xo is the initial gap distance between stage and stator comb fingers, and x is the

distance after deflection.

These forces oppose each other, and when in equilibrium,

This equation can then be simplified to can be simplified to [32]

giving the expression for displacement of the translation stage.

An analysis of the effects of changing various parameters of the device, such as

the mass of the translation stage, the number of comb fingers, input voltage, and flexure

lengths, is presented in Chapter 3.

2.2 Multi-layer Transmission

Because a through-wafer method of MEMS monitoring involves directing light

through a silicon substrate and the devices fabricated on its surface, this section presents

the methods of determining the transmittance of a beam directed in such a manner.
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The reflectivity of a simple plane interface at normal incidence is given by [33]

where n1 and n2 are the indices of refraction of the incident and transmitted media

respectively as shown in Figure 2.2.

Figure 2.2: Plane Interface

The transmittance, T, of this interface can be determined by

Systems involving multiple layers such as the one shown in Figure 2.2 require an

evaluation including the properties of each layer. When examining such systems, not only

must the various indices of refraction be considered, but also the thickness of each layer

as well. The Jones matrix of a thin homogeneous dielectric film for a TE wave at normal

incidence is given by [34]
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where

with λ0 being the wavelength of the beam, h as the thickness of the layer, and nfilm its

refractive index. This matrix represents the effects that thickness and refractive index will

have on the light transmitted at a given wavelength

Figure 2.3: Multiple Layers

The characteristic matrix of this entire system is given by [34]

The reflectivity for this system, with n1 being the index of refraction of the incident

medium and nl the index of the final medium, can be expressed generally in terms of the

elements of M as [34]
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This equation can be rewritten in terms of the Fresnel coefficients for one layer

(representing a film between two media) as

where r12 is the reflectivity of the first interface and r23 is the reflectivity of the second

interface, both given by (2.1).

These equations are used in Chapter 4 to quantify the decrease in transmitted

beam intensity when the translation stage is present, and to suggest how to improve the

transmission of the existing device layers.

2.3 Optical Probe Beam Generation and Manipulation

Optical methods used to probe the MEMS device will require significant control

over beam location and spot size. In order to achieve a small spot size on the surface of

the die device layer in this experiment, a graded-index (GRIN) lens was employed so

desirable spot sizes could be obtained. This type of lens was chosen because of limited

space in the experimental setup. The following is a review of basic Gaussian beam optics

used. Unlike the laser diode used, the LED output was not exactly Gaussian in nature or

monochromatic, but the models presented provide a reasonable estimate of system

behaviors. This analysis was performed to determine the distance the source should be

separated from the lens in order to get a small image spot, and to approximate the

resulting spot size. It also provided some insight into the expected normalized beam

intensity at the front of the GRIN lens.
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Figure 2.4 and the following equations illustrate the propagation of a Gaussian

beam through a thin lens with inner radius R and outer radius R′ [35]. The IR output is

located at z = 0, and has a waist size of W0. The lens is located a distance of z away from

the source.

Figure 2.4 Transmission of a Gaussian Beam Through a Thin Lens [35]

The equation that gives the focal length of the lens, f, is given by

The waist radius of the image is given by

where W is the width of the beam at the lens and λ is the wavelength of light. The

distance of W0 away from the lens is determined by
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This value is expressed as a negative value because the image lies to the right of the lens.

The magnification can be obtained by using [35]

where

and

By substituting

and

into equations (2.3-1) and (2.3-2) respectively, the following beam parameters can be

determined [35]:

the waist radius

the waist location

depth of focus

and the beam divergence
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The GRIN lens focal length is determined differently from that of a simple thin

lens. Figure 2.5 illustrates the use of a single 0.29 pitch GRIN lens to focus the IR output.

Figure 2.5: GRIN Lens Focal Points [36]

The equation that gives the value of L2 is [36] is

To focus gain more control over the spot size, two quarter-pitch GRIN lenses can be

used. The first lens collimates the IR beam. The second lens sees this beam as a source an

infinite distance away, so the spot at the focal distance is approximately the same size and

distance away from the lens as the output of the IR source. This configuration is shown in

Figure 2.6.

Figure 2.6 Double GRIN Lens Setup [36]
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The focal points for the spot and the working distance of the source are both given by

The values of n0 and A½ are both a function of the beam wavelength. For a wide angle

SELFOC microlens (NA = 0.46) with a diameter of 2.0 mm these values are given by

[36]

and

respectively where λ is given in microns.

By substituting L1 and L2 into (2.3-11) for z0 and z0
’ the magnification of the GRIN lens

can be determined by

This value can then be used to calculate the parameters of the image spot.

The infrared sources used in this research had fiber outputs. As the IR output of

the LED or laser diode is moved away from the GRIN lens, the beam diameter increases

(Figure 2.7).
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Figure 2.7 Beam Radius at Grin Lens

The spot radius at a certain diameter d can be calculated by

where θ is the numerical aperture given by [33]

where nf is the index of refraction of the fiber and nc is that of the fiber cladding material.

As the spot size increases, intensity, a function of beam radius and axial distance,

decreases. This intensity is approximated here as a Gaussian as [35]
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By setting ρ = 0, the spot intensity at the center can be determined by simplifying

equation (2.3-19) to give

2.4 Diffractive Optics/TIR Propagation

In order to implement a through-wafer monitoring system, diffractive optics must

be employed to couple light between layers of planar waveguides and focus the optical

probe in the device layer of the die. Integrated Fresnel lenses are suitable for this task.

The following is a brief consideration of the design and characteristics of both on and off

axis Fresnel lenses, and light propagation in a TIR glass substrate.

2.4.1 On-Axis Fresnel Lenses

A Fresnel zone plate lens is a set of concentric apertures, each having a thickness

that introduces a 2π phase shift in light that passes through it. These zones have rotational

symmetry. When designing a Fresnel lens for a specific application, certain lens

characteristics are dependent on the needed focal length, the size of the lens, and the

wavelength of light. The radius, rm, of any specific zone is given by [29]

where m is the zone number, λ is the wavelength of the incident light, and f is the desired
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focal length of the lens. The smallest width of the rings of a Fresnel zone lens is [29]

where d is the desired diameter of the lens and L is the number of phase levels. Increasing

the number of phase levels increases the efficiency of the lens, given by

Figure 2.8 shows both binary (one level) and multi-level Fresnel lens cross-sections.

Figure 2.8: Fresnel Lens Cross-Section – (a) binary lens, (b) multi-level lens

2.4.2 Off-Axis Fresnel Lenses

Fresnel zone plate lenses that focus or collimate light at an angle to the optic axis

can also be designed.  Such a configuration is shown in Figure 2.9.

,
2

dL

f
w

λ
=

( )
.

sin
2









=

L

L

π
π

η

(2.4-2)

(2.4-3)



32

Figure 2.9: Off-Axis Lens Configuration [37]

One implementation of lenses such as these use only a section of the circular ring pattern

of regular Fresnel lenses. At point P in the x-y plane of the lens, grating phase is given by

[37]

The wavelength is λ and l is the optical path length from P to F, which is represented by

[37]

where  d is the focal distance and  n is the index of the transmitted medium, in this case

air. The value of ψ is related to the x and y coordinates of point P as
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2.4.3 Total Internal Reflective Glass Slab Propagation

TIR glass slabs, like waveguides, can be fabricated out of polymer materials for

low-loss light propagation in the medium [17]. A cross-sectional view of a slab

waveguide is shown in Figure 2.10.

Figure 2.10: TIR Slab Propagation

The critical angle of propagation, θC, the condition for no leakage of intensity into the

surrounding medium, is given by [38]

Any light propagating an angle less than the critical angle will experience a decrease in

intensity as it propagates through the medium.
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Chapter 3

MEMS Design

Initial stages of this research work involved designing a general-purpose set of

MEMS devices for guided wave free-space optical metrology studies. On hand were

devices that had been designed by previous graduate students. The original designs

utilized a split-comb geometry in order to combine the MEMS structure with integrated

optical waveguides for testing. This split in the comb drive allowed a region for the

waveguide to be coupled to the edge of the translation stage in order to employ either

intensity modulation or interferometry in an attempt to measure the frequency of the

movement.

The design employed a folded-beam spring flexure in order to provide the

mechanical return force that would counteract the electrostatic attraction of the charged

comb fingers. They were analyzed theoretically at lengths up to 150 µm and widths of 3

& 4 µm. Each actuator had 32 fingers that were 4 µm wide. When fabricated and tested,

these structures did not exhibit enough lateral, or translational, movement to be detected

when viewed under a microscope. It would be ideal to design the actuator so that lateral

movement would be visible when observed under a camera microscope, ensuring that

enough movement would be exhibited to cause a definitive change in the intensity of the

light used in the waveguide setup.  The original design was referred to as Phase I so the
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new designs were labeled Phase II as the next progression toward devices that performed

desirably (Figures 3.1 & 3.2).

Figure 3.1: Phase I Stage Geometry

Figure 3.2: Phase II Stage Geometry
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3.1 Design & Analysis

Phase II was initiated in order to design devices performed more desirably. In this

phase, the same basic split-comb center stage geometry was kept, and flexure length and

width were changed, as well as the number of comb fingers. In order to analyze the

dependence of length and width of the flexures on the flexure spring constant, lateral

displacement, and resonant frequency, a MATLAB program was written using the

equations developed in section 2.1 to analyze the different combinations of parameters.

The parameters were determined from the devices as drawn in the CAD tool described in

Section 3.2. Actual device parameters will vary due to angled sidewalls and non-ideal

thicknesses.

In the program, located in Appendix A, flexure length was varied from 150 to 450

µm and width was 2 & 3 µm. Figure 3.3 shows that the 2 µm wide flexure has a lower

spring constant at all lengths than the 3 µm width. It can be observed from Figure 3.4 that

the 2 um flexure width should provide greater translational movement at all lengths, and

that the longer flexure also increases this movement (up to ~9 µm @ 450 µm). This

coincides with the spring constant results. Figure 3.5 relates the different resonant

frequencies with flexure length at a center stage mass of 1.206x10-10 kg (Geometry B).

Figure 3.6 illustrates how increasing the voltage increases lateral displacement at a

nominal flexure length of 350 µm.
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Figure 3.3: Length of Flexure vs. Spring Constant – Geometry B

Table 3.1: Flexure and Spring Constant Data for Geometry B

Length of
Flexure(µm) 

Spring
Constant

3µm width

Spring
Constant

2µm width
150 2.560 0.7585
175 1.612 0.4777
200 1.080 0.3200
225 0.7585 0.2247
250 0.5530 0.1638
275 0.4154 0.1231
300 0.3200 0.0948
325 0.2517 0.0746
350 0.2015 0.0597
375 0.1638 0.0485
400 0.1350 0.0400
425 0.1126 0.0333
450 0.0948 0.0284

0

0.5

1

1.5

2

2.5

3

100 200 300 400 500

Flexure Length (microns)

S
p

ri
n

g
 C

o
n

st
an

t 
(N

/m
)

3 microns

2 microns



38

Figure 3.4: Length of Flexure vs. Displacement – Geometry B

Table 3.2: Flexure and Displacement Data with V = 30V, Geometry B

Length of
Flexure(µm) 

Displacement
3µm width

Displacement
2µm width

150 0.100 0.336
175 0.158 0.534
200 0.236 0.797
225 0.336 1.1335
250 0.461 1.556
275 0.614 2.072
300 0.797 2.689
325 1.013 3.419
350 1.265 4.271
375 1.556 5.253
400 1.889 6.375
425 2.266 7.646
450 2.689 9.007
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Figure 3.5: Length of Flexure vs. Resonant Frequency – Geometry B

Table 3.3: Flexure and Frequency Data for Geometry B

Length of
Flexure(µm) 

Resonant Frequency
(kHz)

3µm width

Resonant Frequency
(kHz)

2µm width
150 32.79 17.85
175 26.02 14.17
200 21.30 11.59
225 17.85 9.72
250 15.24 8.30
275 13.21 7.19
300 11.59 6.31
325 10.28 5.60
350 9.20 5.00
375 8.30 4.52
400 7.53 4.10
425 6.89 3.74
450 6.31 3.44
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Figure 3.6: Voltage vs. Displacement – Geometry B

Table 3.4: Voltage and Displacement Data with Length = 300 µm, Geometry B

Voltage (V) Displacement (µm)
3µm width

Displacement (µm)
2µm width

0 0 0
5 0.035 0.119
10 0.141 0.475
15 0.316 1.068
20 0.526 1.898
25 0.879 2.966
30 1.265 4.271
35 1.722 5.813
40 2.250 7.592
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These results showed that the 2 µm width and long flexure lengths would give the

desired lateral movement. The next step was to keep the 2 µm wide flexure and increase

the length even further.  Because of the increased flexure length, the number of fingers

was doubled to 64. The comb split was also increased to 150 µm to ease waveguide

coupling. Both of these changes increased the mass to 1.9563x10-10 kg. These devices

were labeled Geometry A because they are the most numerous on the die. Figures 3.7 -

3.9 show the results of varying the length from 350 to 550 µm. Due to the metrology of

the waveguide integration process, a monolithic structure was conceived in order to aid in

detecting the lateral motion of the stage. This structure was added as an extra polysilicon

layer to the basic 64 finger structures with a 150 waveguide split for flexure lengths from

350 to 550 µm.
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Figure 3.7: Length of Flexure vs. Displacement – Geometry A

Table 3.5: Flexure and Displacement Data with V = 20V, Geometry A

Flexure Length
(µm)

Displacement
(µm)

350 3.80
375 4.67
400 5.67
425 6.80
450 8.07
475 9.49
500 11.07
525 12.81
550 14.73
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Figure 3.8: Length of Flexure vs. Resonant Frequency - Geometry A

Table 3.6: Flexure and Frequency Data for Geometry A

Flexure Length
(µm)

Resonant Frequency
(kHz)

350 3.93
375 3.55
400 3.22
425 2.94
450 2.7
475 2.49
500 2.3
525 2.14
550 2
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Figure 3.9: Voltage vs. Displacement - Geometry A

 Table 3.7: Voltage and Displacement Data with Length = 450 µm,
Width = 2 µm, Geometry A

Voltage
(V)

Displacement
(µm)

0 0
5 0.50
10 2.02
15 4.54
20 8.07
25 12.55
30 18.11
35 24.76
40 32.59
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It was theorized that the fingers might bend away from the voltage field

underneath them. To correct this problem, strips of silicon in the dimple layer were

included along the length of the fingers in order to make them more rigid. Dimples are

structures on the bottom of the stage that reduce stiction caused by moisture that collects

under the stage of the device in an open-air environment. They provide a surface for the

device to rest on rather than directly on the substrate, and are small enough not to cause

any significant friction. Because of the fabrication process design constraints, the finger

width had to be increased to 10 µm to incorporate the dimples. This reduced the number

of fingers back to 32 while maintaining the same geometry of the center stage, but further

increased the mass to 2.8724x10-10 kg. These figures were labeled Geometry C. Figures

3.10 – 3.12 show the results of this arrangement.
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Figure 3.10: Flexure Length vs. Displacement - Geometry C

Table 3.8: Flexure and Displacement Data with V = 20V, Geometry C

Flexure Length
(µm)

Displacement
(µm)

350 4.75
375 5.84
400 7.08
425 8.50
450 10.09
475 11.86
500 13.83
525 16.02
550 18.41
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Figure 3.11: Length of Flexure vs. Resonant Frequency - Geometry C

Table 3.9: Flexure and Frequency Data for Geometry C

Flexure Length
(µm)

Resonant Frequency
(kHz)

350 3.25
375 2.93
400 2.66
425 2.43
450 2.23
475 2.05
500 1.9
525 1.77
550 1.65

1.5

2

2.5

3

3.5

300 350 400 450 500 550 600

Flexure Length (microns)

R
es

o
n

an
t 

F
re

q
u

en
cy

 (
kH

z)



48

Figure 3.12: Voltage vs. Displacement - Geometry C

Table 3.10: Voltage and Displacement Data with Length = 450 µm,
Width = 2 µm, Geometry C

Voltage
(V)

Displacement
(µm)

0 0
5 0.63

10 2.52
15 5.67
20 10.09
25 15.76
30 22.69
35 30.89
40 40.34
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Table 3.11 Device Parameters

MUMPS 20 Mass (kg) Number of Fingers Data Plots

Geometry A 1.956x10-10 64 3.3-3.6

Geometry B 1.206x10-10 64 3.7-3.9

Geometry C 2.872x10-10 32 3.10-3.12

3.2 Device Layout

The MEMS structures were previously drawn on LASI, a mask drawing software.

The mask layouts were then sent to the Microelectronics Center of North Carolina

(MCNC) for use in device fabrication. The layout of the device structures is shown in

Figure 3.13. Geometry A with the added monolithic structure can be observed in Figure

3.13 from the right of center, and the monolith can be viewed in Figure 3.14. To the left

of center in Figure 3.13 are the same structures without the monolith. The arrangement is

shown closer in Figure 3.15 as Geometry A. The comb drives with the 50 µm split

(Geometry B) are located to the far right of Figure 3.13, with flexure lengths varying

from 300 to 450 µm.  Other than the split, they have the same geometry as Geometry A.

Figure 3.16 shows Geometry B with the smaller comb split. Figure 3.17 illustrates the

comb drive with reinforced dimpled fingers (Geometry C), with a close up in Figure 3.18.

They are located to the far left in Figure 3.13 and have flexure lengths of 500 & 550 µm.

To aid in the actual testing of these devices, text was included in the first layer of

polysilicon to ease in the identification of the flexure length and number of fingers. This

is shown in Figure 3.19.
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Figure 3.13: Device Layout on 1 cm x 1 cm Die
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Figure 3.14: Geometry A
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Figure 3.15: Close-up of Monolithic Structure
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Figure 3.16: Geometry B
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Figure 3.17: Geometry C
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Figure 3.18: Close-up of Reinforced Comb Fingers
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Figure 3.19: Device Identification and Alignment Marks
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3.3 Release Process

The layout in figure 3.13 was sent to MCNC for fabrication and the finished dice

were returned in three months. Their Multi-User MEMS Process (MUMPs), outlined in

Appendix B, provides 16 dice per die location purchased. The dice are shipped with a

photoresist coating on the front side to protect the structures from any damage that may

occur during shipping. To remove this coating, the die must be soaked in acetone with

ultrasonic agitation for 20 minutes. The die is then placed in isopropyl alcohol for one

minute and rinsed thoroughly with de-ionized (DI) water.

The structures must be released, the term given to the removal of sacrificial oxide

layers between polysilicon layers, in order to allow movement of the translation stage. To

do this the die is placed in a room temperature bath of 49% hydrofluoric acid (HF) for 2.0

to 2.5 minutes with gentle agitation. This is followed by a 10 minute rinse in DI water

and 5 minutes in isopropyl alcohol. The die is then baked for 15 to 30 minutes to remove

any excess liquid that would cause stiction. If the devices do not operate properly, this

process is repeated to remove any unremoved oxide under the moving parts.

3.4 Through-Wafer Utilization

Even though the design of the Phase III devices was primarily for waveguide co-

integration, certain aspects were well suited for the application of through-wafer

interconnections. The silicon substrate is transparent to 1.3µm (near infrared) light. The

split comb design allowed an uncluttered region for the beam to interact with the

translation stage. Due to the small thicknesses of the layers of the device, infrared light



58

passing through the translation stage would not have encountered enough attenuation to

cause a decrease in the output signal. The inclusion of monolithic structures on some of

the devices solved this problem so that a totally new design did not have to be created.

Geometry A with the monolithic structures included was the only geometry utilized in

this research.

3.5 Backside Wafer Polishing

The backside of the MEMS device die was initially unpolished so any beam sent

through it would experience a drastic decrease in intensity due to of scattering before it

interacted with stage of the device. Because of this, a Cambridge Instruments

METROPOL 2 rotational sample polisher was used to smooth the backside of the wafer

die [39]. Before release, the die was mounted on the polishing chuck using brown wax.

The chuck was placed on a polishing pad coated with a 6-micron diamond suspension

and left to rotate for 1-1.5 hours. After the majority of the surface was smoothed, the pad

was changed and covered with a 1-micron suspension and allowed to spin for 15-20

minutes. The next step involved cleaning the wax and stripping the photoresist. This

involved a 20 minute soak in acetone, followed by a 5 minute soak in methanol, followed

by a 5 minute rinse in DI water. If this process wasn’t sufficient to remove all of the wax,

the process was repeated with a 5 minute soak in acetone with ultrasound, another 5

minutes in methanol, completed by another 5 minute rinse in DI water. In one case this

still was not sufficient to remove all of the wax, so the process was repeated after a first

step of a 5 minute soak in acetone heated to 40° C.



59

Chapter 4

Through-Wafer Testing

This chapter presents the modeling and characterization of the infrared optical

transmission of a silicon MUMPS die and the effect on this transmission by a MEMS

device fabricated on the die surface. Expected transmission percentage is calculated using

the multilayer transmission topics covered in Chapter 2, along with the determination of

spot size on the surface of the wafer. The experimental optical probe setup needed to

input and measure the beam intensity is described in detail. Image capture results with a

stationary translation stage, used to evaluate the feasibility of the work, are presented.

Optical power measurements with the stage stationary and electrostatically driven are

also shown, along with the optical characterization of device motion and resonance

frequency.

4.1 Expected Transmission

To implement a through-Si wafer method of monitoring, a wavelength of light

must be used for which the silicon substrate is transparent. The bandgap of silicon (1.12

eV) is such that it is transparent to infrared light at a wavelength of ~1300nm. The
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intensity of a transmitted beam of this wavelength should be decreased by the presence of

the moving device stage interrupting it when it is directed through the substrate from

below. The following figure shows a simplified view of the device layers of the MEMS

die:

Figure 4.1: Device Layers

The silicon substrate and polysilicon layers all have an index of refraction n = 3.5, the

LPCVD deposited nitride layer was chosen to have a nominal value of n = 2, and n = 1

for air. The first interface the infrared beam encounters is the air-substrate interface on

the bottom side of the die. The reflectance of this interface is given by equation (2.2-1)

where n1 is the index of refraction of air and n2 is the index of the substrate. This gives a

reflectance of 30.9% from equation (2.2-2). The transmittance has a value of 69.1% of

the input intensity, obtained from equation (2.2-3).

In order to improve this value, an antireflective coating of nitride could be

deposited on the bottom surface of the die. The thickness of this layer can be determined
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by plotting reflectance versus nitride thickness. Using the equation for the coefficient β

(eq. 2.2-5) containing h varied from 0 to 1.0µm, and substituting into the equation for the

reflectance of a film between two media (eq. 2.2-8) gives the plot shown in Figure 4.2.

Figure 4.2: Reflectance as a Function of Nitride Thickness

It can be observed from this plot that minimum reflectance occurs at every multiple of

quarter-wavelengths in the medium. Using the characteristic matrix in (2) with the

thickness, h, in (3) as 0.5 µm decreases the reflectance to 0.011, giving a transmittance

into the silicon substrate of 0.989. These figures were obtained assuming negligible

absorption losses in the media with λ0 = 1.3 µm, and a coherent light source.

This method can be repeated for the other interfaces in the device. The top

substrate-nitride-air interface is shown to have a transmittance of 0.74. This is the

fraction of the intensity observed by the infrared detector when the beam is uninterrupted

by the stage of the device. The layers of polysilicon on the translation stage have a
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transmittance of only 0.294. The combination of these transmittances gives 74% through

POLY 0, 70% through POLY0/air/POLY1, and 21% through these layers plus POLY 2.

With the infrared source powered with a DC signal, the total modulation depth when

transmission through all layers is read by the IR detector should be 21% of the signal read

through unpatterned silicon.

4.2 Experimental Setup

In order to apply the needed combination of light sources, focusing optics, and

detectors, an experimental setup had to be devised that would allow the infrared beam to

be focused and manipulated to achieve the highest signal throughput possible. It would

also have to accommodate the positioning of probes that would provide the means to

energize the devices for simulated in-situ measurements. The following diagrams show

an overall view of the entire testing system and the basic experimental setup surrounding

the MEMS device.
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Figure 4.3 Experimental Setup

Figure 4.4: Representation of Beam Interaction with Device Stage
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The light source and GRIN lenses used to focus the IR beam are situated under the die

and are both attached to an x-y-z stage, with the top GRIN lens on a separate x-y-z stage

for increased adjustment. The bottom GRIN lens, when used, was only movable in the x-

y plane. The MEMS die itself is located on a piece of aluminum with a 1cm hole drilled

in it to allow the beam to pass through the die and be probed as well. The platform is

resting on the x-y stage of the probe station to allow for adjustment of the devices on the

die when positioning probes or performing stationary device stage experiments. The

probes are magnetically attached to the probe platforms of the station and are x-y-z

adjustable as well. Attached to the same x-y-z stage as the light source output and GRIN

lenses is an apparatus that holds the optical fiber coupled to the infrared detector. It has

its own x-y-z adjustment as well for increased coupling of the beam. When positioning

probes or performing image capture tests, the fiber holder can be moved completely out

of the field of view of the microscope using the x-stage so the devices can be viewed.

Attached to the microscope is an infrared camera with outputs to a video monitor and an

image capture card, as well as a standard camera with regular video output.

4.3 Infrared Light Sources/Detectors

4.3.1 LED

Two different infrared sources were used to perform through-wafer

measurements. The first was an LED previously characterized at Bell Laboratories [40].

It emitted incoherent light at 1300 nm with an angular divergence of ~20° from a 1x12

array of 62.5 µm core multi-mode fibers that were connected to the emitting device by an
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optical fiber ribbon cable with a polished silicon V-groove end face. The LED powered

by pin 6 was used in all through-wafer tests performed with this device.

Figure 4.5: LED Pin Configuration

Measured by the InGaAS detector, maximum output intensity of  ~ 0.1 µW was observed

through unpatterned silicon with input currents in the range of 150-175 mA supplied

from an HP 6128B power supply. An HP 8013A pulse generator was used for pulsed

LED outputs.

4.3.2 Laser Diode

Due to the low output power of the LED, and infrared laser diode was obtained to

improve through-wafer transmission intensities. The laser diode was a fiber pigtailed

Newport model LD-1310-31B that emitted coherent monochromatic (1 nm FWHM) light

at a wavelength of 1310nm with a threshold current of 6 mA. The pigtail was a 9 µm

single mode fiber. The pinouts for this device are shown in Figure 4.6.
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Figure 4.6: Laser Diode Pin Configuration

The diode was mounted on an ILX Lightwave LDT-5910 temperature controller that kept

the diode at 20° C, and power was delivered to pins 1 & 4 from an ILX Lightwave LDX-

3620 ultra low noise current source. For modulated output, an HP 8111A pulse/function

generator was input to the current source set on DC modulation. The increase in output

power caused the spot to flood the IR camera, so input currents only ranged from 5-10

mA in order for the spot to be viewed. Output power in this range of current was ~100

µW. Maximum allowable input current to the device was 20 mA.

4.3.3 Germanium Detector

The first IR photodetector used was a germanium detector from United Detector

Technologies. At 1300 nm its specifications state that it has a response of 0.6228 A/W

with a quantum efficiency of 59.4 %. Because of the low power emitted by the LED and

the low conversion of the detector, the output from this device had to be amplified by a

Stanford Research Systems SR570 low noise current preamplifier. Even with output

amplification this detector was unable to read any change in signal when the spot was

scanned under the features on the device stage.
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4.3.4 InGaAs Detector

The final addition to the experimental setup that, when combined with a laser

diode source, allowed for an easily observable through-wafer signal was a FEMTO PR-

X-10K-IN-DC indium gallium arsenide low noise photoreceiver. This device was

powered by with +15 V from a Tektronix CPS250 triple output power supply. The

sensitivity of this device was 0.95A/W at 1300 nm. With a transimpedance of 1x107 A/V

this gives a conversion gain of 9.5x106 V/W, considerably higher than that of the

germanium detector. This device had a maximum frequency response of 100 kHz.

Because of the high output of this device, no current amplification was required.

4.4 GRIN Lens Applications

Because of the angular divergence of the IR source outputs, a SELFOC wide

numerical aperture, ¼-pitch, 2 mm diameter GRIN lens designed for 630 nm operation

was used to focus the beam to decrease the spot size on the top surface of the die. To

determine the correct location of object and image distances to achieve the smallest

possible spot sizes, equations 2.3-9, 2.3-13, 2.3-17, and 2.3-18 were plotted as a function

of object distance (Figures 4.7-4.10).
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Figure 4.7: Object vs. Image Distances

Figure 4.8: Object Distance vs. Magnification
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Figure 4.9: Object Distance vs. Spot Size

Figure 4.10: Object Distance vs. Beam Diameter at Lens
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For a single GRIN lens setup the source should be located as far away from the lens as

possible to get a small spot size, but this also increases the beam diameter (Figure 4.10)

and decreases intensity. To achieve smaller spot sizes without a large decrease on

intensity, two GRIN lenses were used. One lens collimated the source by placing the IR

output at the location found by Equation 2.3-14, effectively making it an infinite distance

away form the second lens. The collimated output was then directed through the second

lens and focused at the same distance as the source from the first lens. Since the

collimated beam acts as a source a relatively large distance away (5-15 mm), this should

give spot sizes on the order of 5-20 microns in diameter (Figure 4.8). While giving

smaller spot sizes, this dual lens setup will experience more loss due to lens separation

and off axis displacement [36].

4.5 Image Capture Results

The first step in determining whether the through-wafer methodology would be

feasible was to simply observe the intensity of the beam as it was moved under a MEMS

device on the die. This initial evaluation was performed using the LED, powered by 150

mA DC, and a single GRIN lens. The spot was displayed on a video monitor attached to

the infrared camera, and on a computer with a video capture card. Spot size was

determined to be ~50 microns by comparing it to features on the MEMS device. Existing

programs, written in MacRAIL [41], which scanned a region of pixels and listed their

grayscale intensity values were modified to scan the area where the spot would interact in

actual device motion testing. This involved moving the spot, capturing the image,

running the program, and tabulating the data. The spot was then moved to the next
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sequential location, and the process was repeated until the spot had moved the desired

distance under the device or feature. To obtain a clear reading, any lighting used to see

the stage was eliminated so only the spot was visible in the camera. Figure 4.11 shows

five different locations where the image capture was performed under the stage and

Figure 4.12 shows three locations that were observed under or near the flexures.

Figure 4.11: Spot Progression Under Device Stage (Phase II device)
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Figure 4.12: Spot Progression Under Flexures

At each location, a cross-sectional scan of the spot was taken and grayscale intensities

were assigned to each pixel in the row. Figure 4.13 shows the plot of grayscale values

and pixel number for the stage progression, and Figure 4.14 shows the plot for the flexure

progression.

Figure 4.13: Through-Wafer Spot Intensity Under Translation Stage
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Figure 4.14: Through-Wafer Spot Intensity Under Flexure

To observe how the spot intensity changed as it moved under the stage more accurately,

more data points had to be taken. The spot was moved in increments of 0.5 mils (12.7

microns), and the image capture grayscale intensity assignment was done for the pixels in

the row for each location. The grayscale intensities in each row were added to give a total

intensity value of the spot at each location. It can be observed from Figure 4.15 that there

is a definite decrease in the intensity of the spot as it was moved under the stage. It is at

its lowest point when the spot is under the strip of POLY 2 fabricated on the stage

(monolithic structure) at the location of approximately 63 microns. Lack of resolution in

the previous figures is a result of the large spot size of the LED output.
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Figure 4.15: Total Intensity as a Function of Distance

4.6 Power Measurement

In order to verify the theoretical transmission results discussed in section 4.1 and

determine the actual signal caused by the MEMS features, the output of the beam coupled

through the MUMPS die was measured with a photodetector. The voltage output given

by the detector could then be changed into through-wafer power by using the detector’s

conversion gain. A laser diode with a small spot size was used to simulate those typical

of a diffractive optical system. Unlike the image capture tests where the output was

viewed by the camera, these tests used an optical fiber to couple output near the spot

focused on the device to the InGaAs detector.

To verify the shape of the output data, a convolution was done using MATLAB

that simulated scanning a 25µm spot under a structure with the transmission

characteristics of the stage with the strip of polysilicon fabricated on it. This spot size was
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chosen as a worst case value, and no diffraction effects were considered. Figure 4.16

shows the Gaussian beam function, 4.17 the transmission function of the stage, and 4.18

their convolution. This output figure will also change with the core diameter of the

detector fiber.

Figure 4.16: Gaussian Beam
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Figure 4.17: Device Transmission Function

4.18: Convolution (Side View)
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The convolution image shows that the lowest points in the transmission profile occur

~125 microns away from each other, under the POLY 2 strips. The goal is to get the

sharpest transition in signal when the beam passes from areas with only POLY 0 layers to

areas with POLY layers 0, 1, and 2. The GRIN lenses were adjusted to achieve the

smallest apparent spot size of the output beam with the device stage in focus on the IR

camera display. It should be noted that the binocular microscope used made visual

determination of the actual spot size and location difficult, and that the monochromatic

nature of the laser diode caused significant diffraction and stray reflections that caused

visual location of the spot to be uncertain as well.

To be more certain of the location of the spot, scans were done to find the location

of the contact pads. Because the contact pads are metal, transmission should be very low

or zero when the spot is under one of them. Alpha step scans were performed to be

certain of feature sizes on the MUMPs die. (Figures 4.19 & 4.20)

Figure 4.19: Contact Pad Width
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Figure 4.20: Contact Connection Strip Width

If a region of low intensity was discovered, distance comparison with the alpha step scan

was done to see if the structure being scanned under is indeed one of the pads. After the

scan was completed, the spot was moved back into a position just outside of the pad. The

detector fiber was moved outside of the field of view of the microscope and the spot

location was observed on the IR camera. Fortunately the microscope optics were such

that the “false” spot was in the vicinity of the one scanned, not one of the other three

connected to the device. The actual spot was marked on the output screen, and the die

was moved so it would be just outside the desired scanning location in the comb split, an

unpatterned area of the die. The detector fiber was then moved over the spot focused in

the device plane until it read the highest possible output. The detector fiber was lowered

as close to the device as possible (~0.5 mm) to decrease beam divergence. The spot was

then scanned under the stage in the same manner as was explained in the image capture

tests.  Figures 4.21-4.28 show the results of the spot scans under a contact pad for

correction, and scans under the device translation stage. These scans were performed with

47 and 8 µm core detector fibers and a double GRIN lens setup. A modulated IR source
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(15 mV modulation, 5 mV offset, 6 mA input current) was used for to better observe a

signal change on the oscilloscope output.

Figure 4.21: Through-Wafer Voltage Under Contact Pad
(LD, 47 µm detector fiber, double GRIN lenses)

 Figure 4.22: Through-Wafer Power Under Contact Pad
(LD, 47 µm detector fiber, double GRIN lenses)
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  Figure 4.23: Through-Wafer Voltage Under Stage
(LD, 47 µm detector fiber, double GRIN lenses)

 Figure 4.24: Through-Wafer Power Under Stage
(LD, 47 µm detector fiber, double GRIN lenses)
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 Figure 4.25: Through-Wafer Voltage Under Contact Pad
(LD, 8 µm detector fiber, double GRIN lenses)

 Figure 4.26: Through-Wafer Power Under Contact Pad
(LD, 8 µm detector fiber, double GRIN lenses)
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 Figure 4.27: Through-Wafer Voltage Under Stage
(LD, 8 µm detector fiber, double GRIN lenses)

 Figure 4.28: Through-Wafer Power Under Stage
(LD, 8 µm detector fiber, double GRIN lenses)
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These measurements taken coincide with the theoretical convolution results and

device feature locations in the area of the scans (Figure 4.29).

Figure 4.29: Area of IR Scan (All Dimensions in µm)

It can be observed from this series of tests that the laser diode and double GRIN lens

setup gave a smaller spot size, and smaller core detector fibers gave signal with

significantly more spatial information. These conclusions are drawn because of the

increase in sharpness in transition from a signal read through unpatterned silicon to a

signal read under the device stage. It is clear that the contact pads are 100 µm wide and

that the distance between the POLY 2 strips on the device stage is 140 µm. Sharp spikes

in intensity that occur before and after features are most likely diffraction effects caused

by the coherent laser diode light source at the edge of the features. Spikes occurring

between 80 and 200 µm in Figure 4.28 may be a result of light passing through the etch

holes in the POLY 1 layer of the stage. During the 8 µm detector scan, there was a x5

change in intensity around the 225 µm location in Figure 4.28. This is the location of the
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POLY 2 strip. The sharp decrease in signal over a short distance also implies very small

spot size, ~10 µm in diameter.

Transmission percentages agreed with theoretical results discussed in section 4.1

as well. The following table relates the percentage of transmitted light from unpatterned

silicon to transmission under various layers of polysilicon for both the 8 and the 47 µm

scans. The layer locations are based on comparisons between Figures 4.23 & 4.24 and

4.27 & 4.28 and locations of features in the scan area shown in Figure 4.29.

Table 4.1: Transmission Percentages

POLY 0 POLY 0/air/POLY 1
POLY 0/air/POLY

1/POLY 2
Theoretical

Values
74% 70% 21%

47 micron
detector

60-75% 50-65% 20%

8 micron
detector

66% 31-53% 2%

Transmission data measured with the 47 µm detector fiber matches the theoretical values

more closely. The 8 µm detector fiber proved to be unstable in the experimental setup,

causing unwanted noise. The low values measured by the 8 µm detector are most likely a

result of diffraction effects and experimental system instability. If the system were better

stabilized, diffraction effects from the 8µm fiber could be used to obtain a stronger

signal.

Initially, three different detector fiber core diameters, 100, 47, and 8 µm, were

used to scan under the device stage. However, due to uncertainties in spot location theses
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scans passed under an area different than that shown in Figure 4.29. Figures 4.30-4.37

show the results of these tests. The LED and laser diode were modulated as described

previously.

Figure 4.30: Through- Wafer Voltage
(LED, 100 µm detector fiber, single GRIN lens)

 Figure 4.31:Through- Wafer Power
(LED, 100 µm detector fiber, single GRIN lens)
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 Figure 4.32: Through-Wafer Voltage
(LD, 100 µm detector fiber, double GRIN lenses)

 Figure 4.33: Through-Wafer Power
(LD, 100 µm detector fiber, double GRIN lenses)
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 Figure 4.34: Through-Wafer Voltage
(LD, 47 µm core detector, double GRIN lenses)

 Figure 4.35: Through-Wafer Power
(LD, 47 µm core detector, double GRIN lenses)
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 Figure 4.36: Through-Wafer Voltage
(LD, 8 µm detector fiber, double GRIN lenses)

Figure 4.37: Through-Wafer Power
(LD, 8 µm detector fiber, double GRIN lenses)
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Upon further inspection, one can see that the measured outputs agree somewhat

with the theoretical convolution results in shape, but not in the distances. Figure 4.29

lends further proof that the wrong area had been scanned. Both this figure and the

convolution results show that the lowest transmission intensities should occur

approximately 130 µm apart. The power and voltage measurement results illustrated in

Figures 4.30-4.37 show these minimums to be as high as 375 µm apart, more than twice

the distance expected. Since the dimensions indicated in the LASI layout were verified by

the alpha step scans (Figures 4.19 & 4.20), the area that the spot scanned when the tests

were performed must not have been the area described in Figure 4.29. Figure 4.38 shows

the suspected area of these incorrect scans.

Figure 4.38: Area of Incorrect Scans

 This is another example in which the binocular microscope is very unreliable for visual

determination of IR spot location, and shows that the spot may be focused in the device

plane somewhere other than the location viewed with the camera.

These scans do show the improvement in signal as the size of the detector fiber is

decreased. More details of the device features are visible in the scans done with the 47

and 8 µm detectors. They also illustrate the smaller spot sizes achievable with the laser
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diode and the double grin lens setup. This is evident because of the sharp decrease in

intensity at the feature edges, but is enhanced by diffraction effects.

4.7 Optical Monitoring of Static Deflection

To observe the effects that interruption of the optical probe by the moving device

stage had on the through-wafer signal, the stage was actuated by a DC voltage. To

accomplish this task, the MEMS device had to be probed and monitored by the detector

simultaneously. This added another degree of complexity to the already densely packed

experimental setup. Luckily, the small size of the detector fiber made it suitable for

maneuvering in between the probe tips. Since the 8 µm detector fiber gave the sharpest

signal, it was the only fiber probe used in these tests. The laser diode was driven at 10

mA DC. As with the stationary stage and static displacement measurements, before

testing the spot was scanned under a contact pad and its position was verified. Once the

device was in the correct location, the probes were lowered and the detector fiber was

moved into position. Because one side of the device slit area had POLY 0, POLY1, and

POLY2 layers in close proximity, the other side of the device was used in the frequency

validation tests. This side had a large area of POLY 0, further lowering the intensity of

the spot, but created a less cluttered signal due to the absence of the POLY 0-nitride step

located on the other side of the stage. The next step was to apply power to the device.

While applying + 17 V to the stator combs, the stage voltage was varied from positive to

negative15V and the output data was recorded. Starting spot location was determined by

adjusting the coupled output and detector until a slight decrease in intensity was found.
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Position verification was performed by the same method discussed earlier. Figure 4.39

shows the results of this measurement, and Figure 4.40 shows the 0 V spot location.

Figure 4.39: Static Displacement Output Analysis

Figure 4.40: Spot location at 0 V
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It is clear from the output data that as the stage moved in the –15 V direction, intensity

increased, and decreased in the +15 V direction. The theoretical displacement data

confirms the direction of motion and, to some degree, the actual distances moved. As the

stage moved in the +15 V direction, intensity decreased, reached a minimum, and

increased again. This is most likely a result of the monolithic structure passing

completely over the spot and allowing light to pass through to the other side. This

structure is 12 µm wide, but the stage theoretically travels only 8 µm in both directions,

for a total swing of 16 µm. This could be explained by diffraction effects, spot and stage

feature geometries, or uncertainties in spot location. It also may be because the device

stage may perform better than was predicted in the theoretical analysis.

4.8 Optical Monitoring During MEMS Actuation

The time dependent position of an electrostatically driven MEMS device was

monitored next. This means that the stage of the device moved continuously while being

monitored by the optical probe. Input voltage levels and frequencies were kept low

because the devices often experienced catastrophic failure when the stage power supply

was turned on at high voltages and frequencies. After the device was determined to be

working properly, the detector was moved into position over the spot located in the

POLY 1 region. Once the highest intensity of the spot was read by the detector, the fiber

and spot were moved just underneath the edge of the device stage. The edge of the device

stage was determined by the output signal on the oscilloscope being the same as that of

the modulated stage signal. Spot position, frequency, modulation voltage, and stator
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voltages were varied, and data was recorded to observe how the output signal would vary

as device inputs were changed.

4.8.1 Spot Position Variation

The first test performed was the observation of how the output waveform varied

as spot location was changed. After the spot was situated in the starting position

described earlier, it was moved under the POLY 2 monolith and out the other side. Three

different oscilloscope plots were captured, illustrated in Figures 4.41-4.43. Input device

voltages were + 15 V on the stator combs and a 5 V, 1kHz on the stage.

Figure 4.41: Waveform with Spot on Outside Edge of Monolith
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Figure 4.42: Waveform with Spot in Middle of Monolith

Figure 4.43: Waveform with Spot on Inside Edge of Monolith
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As the spot moves underneath the monolithic structure, the output waveform

doubles in frequency and experiences a phase shift on the other side. This corresponds

with the direction of motion of the stage. The DC level (at output waveform peak) is

higher on the outside than on the inside because of the POLY1 layer present on the inside

of the POLY 2 strip. It is highest when covered by the monolith. This is most likely a

result of diffraction effects discussed earlier.

4.8.2 Frequency Variation

To test the through-wafer setup frequency measuring capability, the input

frequency was varied from 500 Hz to 5kHz and the output frequency was observed. In

these tests the laser diode was driven with a 10mA DC signal, and the device was driven

at +10 V, 10 Vp-p. Figures 4.44-4.47 show how the output waveform varied over certain

values of the frequency range and Figure 4.48 plots modulation depth as a function of

input frequency. The values in the figure represent a normalized difference between

maximum output without interruption and output with stage interference, which is the

extent to which the signal is decreased by the presence of the stage in the path of the

optical probe. Modulation depth was determined by dividing maximum peak output (DC

level) by minimum peak output.
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Figure 4.44: Output Comparison at 500 Hz

Figure 4.45: Output Comparison at 1.8 kHz
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Figure 4.46: Output Comparison at 2.2 kHz

Figure 4.47: Output Comparison at 5 kHz
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Figure 4.48: Modulation Depth: Frequency Variation
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displacement at higher frequencies. Changes in the DC level of the signal can be

attributed to diffraction effects and drifting output power of the laser diode, which was

current controlled not power controlled.

4.8.3 Voltage Variation

The device drive voltage was also varied in magnitude to observe how the optical

output signal would change. Two sets of data were taken, one with the stator combs set at

+ 10 V and the stage varied between 8 and 22 V peak-to-peak, and the other with the

stator combs at + 15 V and the stage varied between 10 and 30 V peak-to-peak. During

both tests, frequency was kept constant at 500 Hz. The laser diode was powered with 10

mA DC. Figures 4.49-4.51 show the results of selected values from the + 15 V test. Both

tests had similar trends in optical output results. Modulation depths for both sets of data

are plotted in Figure 4.52.

Figure 4.49: Output Comparison at 10 Vpp
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Figure 4.50: Output Comparison at 15 Vpp

Figure 4.51: Output Comparison at 30 Vpp
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Figure 4.52: Modulation Depth: Voltage Variation
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Chapter 5

Loss Analysis and Conclusions

The experimental system used to perform the through-wafer optical

measurements, along with being very sensitive to outside vibrational interference, was

also very lossy. This chapter will discuss the probable reasons for losses in intensity, and

analyze sources of intensity loss in a preliminary integrated optical system that is the next

logical step in the progression of this research. Conclusions drawn from experimental

data and future directions of this research will also be presented.

5.1 Experimental Setup Loss Analysis

Even though many of the elements in the experimental setup had three directions

of maneuverability, it was very difficult to manually achieve perfect alignment.

Vibrational sensitivity also caused components to drift over time, making readjustment

necessary. As with any other optical system, these misalignments were a major source of

transmission losses.

Coupling losses from the laser diode to the first GRIN lens in the dual lens setup

used can be as high as 4 dB if not positioned within 10 µm of the lens’ focal point [36].
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The dual GRIN lens setup is very sensitive to position as well. A separation of 3 cm

causes 2 dB of attenuation, and off-axis alignment by as little as 0.3 mm can cause 3 dB

of loss to occur [36]. Light passing through the substrate experiences decreased

transmission intensity as well. Measurements taken with no die present in the system

gave ~0.05 µW of output power with an 8 µm detector fiber. Measurements taken

through the wafer over unpatterned regions gave ~ 0.025 µW of output power, a 50%

decrease in intensity. All of these losses occur before the optical probe is effected by

movement of the device stage.

After the translation stage causes a decrease in intensity, other factors cause loss

as well. Since the detector fiber was not located at the focal point of the second lens,

losses were caused from the angular divergence of the beam. At a distance of 1mm away

from the device surface, the beam diameter was ~350 µm (Figure 4.10). The 8 µm

detector fiber only covered 0.02% of the intensity distribution at this distance. Fiber

coupling to the InGaAs detector is another area of loss as well.

5.2 Loss Analysis of Proposed Integrated Through-
Wafer Optical Monitoring System

The setup shown in Figure 5.1 is an integrated through-wafer monitoring system

similar to the experimental setup. It uses integrated Fresnel lenses and plane waveguides

to direct light from an input to the device plane and out to a detector.
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Figure 5.1: Loss Areas in an Integrated Through-Wafer Optical Monitoring System

Due to its compact size and improved alignment, this system will not suffer from the high

vibrational sensitivity and off-axis alignment losses that were experienced in the

experimental setup. However, losses will occur elsewhere. The losses in the input and

output waveguides (A and F) will be negligible. However, coupling to and from them is

done using integrated Fresnel lenses (B and D), which have coupling efficiencies of 40-

98%, depending on the number of phase levels [29]. It has been shown by the

experiments in this research that the moving stage (C) can cause transmission intensities

to drop from 45 to 85%, and that the substrate causes a 50% decrease. The total

transmission percentage of this system is given in table 5.1 for both binary and multi-

level Fresnel lenses with and without stage interruption.

Table 5.1: Integrated Optical Monitoring System Transmission Percentage

Stage Interruption Uninterrupted
Binary Multi-level Binary multi-level

Percent
Transmission

4-1% 26-7% 8% 48%
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5.3 Conclusions and Future Work

The experimental results shown in Chapter 4 demonstrate the feasibility of a

through-wafer optical method of monitoring MEMS microstructures. Image capture

experiments gave assurance that a decrease in intensity of the through-wafer probe as it

passed under the features of the device stage would be enough to give a strong output

signal. Through-wafer power measurements show that the percent change in transmission

intensity is 75-20% for a 47 µm detector fiber, and 66-2% for an 8 µm detector. These

measurements also show that diffraction effects caused by device topology can enhance

the range of the output signal.

Output waveforms of the optically monitored continuously moving stage vary

with the location of the through-wafer probe, as well as the input voltage parameters of

the device. These changes are a result of the features of the MEMS device. Changing the

position of the probe with respect to the monolithic structure affects the phase of the

output signal. Increasing the frequency of the drive voltage causes an increase in signal

modulation depth. This modulation depth should be greatest at resonance, but is effected

by the monolithic structure to cause a lower value than theoretically expected. The shape

of the waveform is affected by the POLY 2 strip on the device stage due to increased

lateral displacement. Modulation depth decreases as the frequency is increased past the

point of resonance. Increasing the magnitude of the sinusoidal drive voltage also

increases modulation depth, and again, increased lateral displacement causes device

features to affect the shape of the output waveform.

Losses in the system due to component misalignment are a source of decreased

signal intensity. A more stable system with a finer degree of manipulation should be
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devised in order to reduce these losses and improve data gathering capabilities. Losses in

an integrated system primarily stem from through-wafer reflection losses and low

coupling efficiencies of binary integrated Fresnel lenses. Anti-reflection coatings on the

substrate and multi-level Fresnel lenses could increase system transmission

characteristics. The next step of this research is to co-integrate the optics used to deliver

the optical signal with MEMS devices to create a self-contained monitoring system. New

device designs more suitable for through-wafer probing should also be explored.

Ultimately, this monitoring system could be combined with integrated sources, detectors

and control circuitry to create a feedback and control system that will be in place for the

lifetime of the device.
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Appendix A

MATLAB MEMS Analysis Programs
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%   This program calculates the theoretical value of the displacement %
% of a comb drive actuator with varying flexure lengths (150-300um)
%
% and widths (3-4um)  (GEOMETRY B)                                    %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialize variables
clear all;
fig=1;
y=160e9;     % young's modulus for poly
t=2e-6;      % thickness of poly
w1a=3e-6;    % width of flexure = 3um
w1b=2e-6;    % width of flexure = 2um
m=1.206e-10; % mass of stage
w2=4e-6;     % thickness of fingers
g=2e-6;      % gap between fingers
z=8.854e-12; % permittivity of free space
vc=30;       % constant voltage value
la=350e-6;   % flexure at nominal length 300um

ka1=[];
deltxa1=[];
ka2=[];
deltxa2=[];
kva1=[];
deltxva1=[];
kva2=[];
deltxva2=[];

% start calculation loop for 3um

for l=150e-6:25e-6:450e-6;
k1=(y*(w1a^3)*t)/(l^3);
deltx1=16*z*(w2/g)*(vc^2)*(1/k1);
ka1=[ka1 k1]
deltxa1=[deltxa1 deltx1]

end;

% start calculation loop for 2um

for l=150e-6:25e-6:450e-6;
k2=(y*(w1b^3)*t)/(l^3);
deltx2=16*z*(w2/g)*(vc^2)*(1/k2);
ka2=[ka2 k2]
deltxa2=[deltxa2 deltx2]

end;

% voltage variation loop for 3um

for v=0:5:40;
kv1=(y*(w1a^3)*t)/(la^3);
deltxv1=16*z*(w2/g)*(v^2)*(1/kv1);
kva1=[kva1 kv1];
deltxva1=[deltxva1 deltxv1]

end;
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% voltage variation loop for 3um

for v=0:5:40;
kv2=(y*(w1b^3)*t)/(la^3);
deltxv2=16*z*(w2/g)*(v^2)*(1/kv2);
kva2=[kva2 kv2];
deltxva2=[deltxva2 deltxv2]

end;

wa1=sqrt(2*ka1/m);
w2b=sqrt(2*ka2/m);
f1=wa1/(2*pi)
f2=w2b/(2*pi)
l=150e-6:25e-6:450e-6
v=0:5:40

figure(fig);fig=fig+1;
plot(l,deltxa2,'b-',l,deltxa2,'ro',l,deltxa1,'g-',l,deltxa1,'ro');
title('Flexure Displacement (2um-blue, 3um-green)');
xlabel('Length of Flexure (m)');
ylabel('Displacement (m)');

figure(fig);fig=fig+1;
plot(l,f2,'b-',l,f2,'ro',l,f1,'g-',l,f1,'ro');
title('Resonant Frequencies (2um-blue, 3um-green)');
xlabel('Length of Flexures (m)');
ylabel('Resonant Frequency (Hz)');

figure(fig);fig=fig+1;
plot(l,ka2,'b-',l,ka2,'ro',l,ka1,'g-',l,ka1,'ro');
title('Spring Constant vs. Length of Flexures: 2um (blue) & 3um
(green)');
xlabel('Length of Flexures (m)');
ylabel('Spring Constant (N/m)');

figure(fig);fig=fig+1;
plot(v,deltxva2,'b-',v,deltxva2,'ro',v,deltxva1,'g-',v,deltxva1,'ro');
title('Voltage vs. Displacement: Length = 300um, Width = 2um (blue) &
3um (green)');
xlabel('Applied Voltage (V)');
ylabel('Displacement (m)');
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    This program calculates the theoretical value of the     %
% displacement of a comb drive actuator with varying flexure  %
% lengths (350-550um) and width 2um  (waveguide split = 150um) %
% (GEOMETRY A WITH MONOLITH)                                  %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialize variables
clear all;clc;
fig=1;
y=160e9;      % young's modulus for poly
t=2e-6;       % thickness of poly
w1b=2e-6;     % width of flexure = 2um
m=2.04e-10;   % mass of stage
w2=4e-6;      % thickness of fingers
g=2e-6;       % gap between fingers
z=8.854e-12;  % permittivity of free space
vc=20;        % constant voltage value
la=450e-6;    % flexure at length 450um

ka2=[];
deltxa2=[];

kva2=[];
deltxva2=[];

% start calculation loop for 2um

for l=350e-6:25e-6:550e-6;
k2=(y*(w1b^3)*t)/(l^3);
deltx2=32*z*(w2/g)*(vc^2)*(1/k2);
ka2=[ka2 k2]
deltxa2=[deltxa2 deltx2]

end;

% voltage variation loop for 2um

for v=0:5:40;
kv2=(y*(w1b^3)*t)/(la^3);
deltxv2=32*z*(w2/g)*(v^2)*(1/kv2);
kva2=[kva2 kv2];
deltxva2=[deltxva2 deltxv2]

end;

w2b=sqrt(2*ka2/m);

f2=w2b/(2*pi)
l=350e-6:25e-6:550e-6
v=0:5:40

figure(fig);fig=fig+1;
plot(l,deltxa2,'b-',l,deltxa2,'ro');
title('Flexure Displacement (2um), V=20v');
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xlabel('Length of Flexure (m)');
ylabel('Displacement (m)');

figure(fig);fig=fig+1;
plot(l,f2,'b-',l,f2,'ro');
title('Resonant Frequencies (2um), V=20v');
xlabel('Length of Flexures (m)');
ylabel('Resonant Frequency (Hz)');

figure(fig);fig=fig+1;
plot(l,ka2,'b-',l,ka2,'ro');
title('Spring Constant vs. Length of Flexure, V=20v');
xlabel('Length of Flexure (m)');
ylabel('Spring Constant (N/m)');

figure(fig);fig=fig+1;
plot(v,deltxva2,'b-',v,deltxva2,'ro');
title('Voltage vs. Displacement: Length = 450um, Width = 2um');
xlabel('Applied Voltage (V)');
ylabel('Displacement (m)');
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%    This program calculates the theoretical value of the     %
% displacement of a comb drive actuator with varying flexure  %
% lengths (350-550um) and width 2um.  Finger width = 10um      %
% # of fingers=32     150um gap  (GEOMETRY C)                 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialize variables
clear all;clc;
fig=1;
y=160e9;      % young's modulus for poly
t=2e-6;       % thickness of poly
w1b=2e-6;     % width of flexure = 2um
m=2.8724e-10; % mass of stage
w2=10e-6;     % thickness of fingers
g=2e-6;       % gap between fingers
z=8.854e-12;  % permittivity of free space
vc=20;        % constant voltage value
la=450e-6;    % flexure at length 450um

ka2=[];
deltxa2=[];

kva2=[];
deltxva2=[];

% start calculation loop for 2um

for l=350e-6:25e-6:550e-6;
k2=(y*(w1b^3)*t)/(l^3);
deltx2=16*z*(w2/g)*(vc^2)*(1/k2);
ka2=[ka2 k2]
deltxa2=[deltxa2 deltx2]

end;

% voltage variation loop for 2um

for v=0:5:40;
kv2=(y*(w1b^3)*t)/(la^3);
deltxv2=16*z*(w2/g)*(v^2)*(1/kv2);
kva2=[kva2 kv2];
deltxva2=[deltxva2 deltxv2]

end;

w2b=sqrt(2*ka2/m);

f2=w2b/(2*pi)
l=350e-6:25e-6:550e-6
v=0:5:40

figure(fig);fig=fig+1;
plot(l,deltxa2,'b-',l,deltxa2,'ro');
title('Flexure Displacement (2um), V=20v');
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xlabel('Length of Flexure (m)');
ylabel('Displacement (m)');

figure(fig);fig=fig+1;
plot(l,f2,'b-',l,f2,'ro');
title('Resonant Frequencies (2um), V=20v');
xlabel('Length of Flexures (m)');
ylabel('Resonant Frequency (Hz)');

figure(fig);fig=fig+1;
plot(l,ka2,'b-',l,ka2,'ro');
title('Spring Constant vs. Length of Flexure, V=20v');
xlabel('Length of Flexure (m)');
ylabel('Spring Constant (N/m)');

figure(fig);fig=fig+1;
plot(v,deltxva2,'b-',v,deltxva2,'ro');
title('Voltage vs. Displacement: Length = 450um, Width = 2um');
xlabel('Applied Voltage (V)');
ylabel('Displacement (m)');



114

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program creates a Gaussian beam profile, the transmission    %
% profile of the device stage, and a convolution of the two.        %
%               (ALL UNITS CORRESPOND TO MICRONS)                   %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

a=[];
aa=[];
aaa=[];
b=[];
bb=[];
bbb=[];
c=[];

% Gaussian beam profile
for x=-3:0.1:3,
   for y=-3:0.1:3,

aa=exp(-0.5*((x^2)+(y^2)));%-0.094 for 50 micron spot
%-0.5 for 25 microns,
%-3 for 10 microns (all FWHM)

aa=[aaa aa];
   end
   a=[a; aaa];
   aaa=[];
end

figure(1);
colormap(bone);
surf(a);

% stage transmission profile
for y=0:1:60,
   for x=0:1:500,
      if x<100
         bb=1; 
      elseif x<110
         bb=0.74;
      elseif x<114
         bb=0.70; 
      elseif x<118
         bb=0.21; 
      elseif x<226
         bb=0.7; 
      elseif x<230
         bb=0.21;
      elseif x<234
         bb=0.7;
      elseif x<294
         bb=0.74;
      elseif x<298
         bb=1;
      elseif x<328

bb=0.74;
      else
         bb=1;
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      end
      bbb=[bbb bb];
   end
   b=[b; bbb];
   bbb=[];
end

figure(2);
colormap(bone);
surf(b);

% convolution
c=conv2(a,b);

% angled view
figure(3)
mesh(c);
colormap(winter);
view(0,0);

% side view
figure(4);
mesh(c);
colormap(winter);
view(3);
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Appendix B

Microelectronics Center of North
Carolina (MCNC) Multi-User MEMS
Processing Service (MUMPS) and Film
Parameters

All devices used in this research were fabricated at MCNC in their MUMPS

facility. Their fabrication process uses multilevel photolithographic masking and

deposition of polysilicon by low-pressure chemical vapor deposition (LPCVD) combined

with LPCVD deposited oxide layers to create releasable microstructures. This process is

outlined in great detail at their web site [42]. The following table shows the film

parameters for MUMPS 20, the device fabrication run of the devices used.
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Table B.1 Film Parameters for MUMPS 20 [42]

Film
Thickness

(A)
Std. Dev.

(A)
Sheet Resist.

(ohm/sq.)
Resistivity
(ohm-cm)

Stress
(Mpa)

Nitride 5990 165 - - 132 (T)
POLY 0 5001 12 25.8 1.2E-3 24 (C)
Oxide 1 19794 533 - - -
Dimple 7115 342 - - -
POLY1 19428 45 10.8 2.0E-3 8 (C)
Oxide 2 7440 178 - - -
POLY 2 14837 68 20.0 2.9E-3 9 (C)

Metal
(Cr/Au)

5250 - 0.0506 2.6E-6 95 (T)

Figures B.1 and B.2 show polysilicon stress and resistivity trends for MUMPS runs 5-29.

Figure B.1: Polysilicon Stress Trends [42]
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Figure B.2: Polysilicon Resistivity Trends [43]
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