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ABSTRACT

Dynamic Learning with Neural Networks and Support Vector Machines

Liang Tian

Neural network approach has proven to be a universal approximator for non-
linear continuous functions with an arbitrary accuracy. It has been found to be very
successful for various learning and prediction tasks. However, supervised learning
using neural networks has some limitations because of the black box nature of their
solutions, experimental network parameter selection, danger of overfitting, and con-
vergence to local minima instead of global minima. In certain applications, the fixed
neural network structures do not address the effect on the performance of prediction
as the number of available data increases. Three new approaches are proposed with
respect to these limitations of supervised learning using neural networks in order to
improve the prediction accuracy.

Dynamic learning model using evolutionary connectionist approach. In certain
applications, the number of available data increases over time. The optimization
process determines the number of the input neurons and the number of neurons in
the hidden layer. The corresponding globally optimized neural network structure
will be iteratively and dynamically reconfigured and updated as new data arrives to
improve the prediction accuracy. Improving generalization capability using recurrent
neural network and Bayesian regularization. Recurrent neural network has the inher-
ent capability of developing an internal memory, which may naturally extend beyond
the externally provided lag spaces. Moreover, by adding a penalty term of sum of
connection weights, Bayesian regularization approach is applied to the network train-
ing scheme to improve the generalization performance and lower the susceptibility
of overfitting. Adaptive prediction model using support vector machines. The learn-
ing process of support vector machines is focused on minimizing an upper bound of
the generalization error that includes the sum of the empirical training error and a
regularized confidence interval, which eventually results in better generalization per-
formance. Further, this learning process is iteratively and dynamically updated after
every occurrence of new data in order to capture the most current feature hidden
inside the data sequence.

All the proposed approaches have been successfully applied and validated on appli-
cations related to software reliability prediction and electric power load forecasting.
Quantitative results show that the proposed approaches achieve better prediction
accuracy compared to existing approaches.
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Chapter 1

Introduction

1.1 Motivation

Artificial neural networks are powerful methods for classification and function approx-

imation. Neural networks have better capabilities of fault tolerance, robustness, and

adaptability compared to traditional analytical models. However, neural networks

have some limitations such as experimental network parameter selection, danger of

overfitting, and convergence to local minima instead of global minima.

Optimization of neural network structure design to improve forecasting perfor-

mance is still a problem [1, 2, 3]. Although researchers have attempted to address

these related issues, there is no standard method of designing the neural network

structure to solve a specific problem efficiently [4]. Trial-and-error methods have

been employed, which usually involve substantial amount of computation. Genetic

algorithm is a powerful random search technique to deal with optimization prob-

lems [5]. It can discover the optimized network structure through global random

searching process [6, 7, 8, 9, 10].

Most of the existing neural network approaches use a static structure with a pre-

determined number of input neurons and a predetermined number of hidden neurons

1



1.2. Research Objectives 2

that are established during training. In certain applications, the number of available

data increases over time. The fixed network structure does not address the effect

on the performance of prediction as the number of data increases, and thus may not

provide the best results.

Most of the supervised learning using neural networks adopts the gradient descent

based back-propagation learning scheme to implement the empirical risk minimization

principle, which only minimizes the mean square error during the training process

and thus improves the training accuracy. In this case, the focus of the training

process is model fitting and tends to cause overfitting. The error on the training

data set is driven to a very small value for known data, but when out-of-sample

data are presented to the network, the error is unpredictably large, which yields

limited generalization capability. At the same time, due to the inherent nature of the

gradient descent based learning scheme, getting stuck into local minima instead of

global minima becomes common.

In the following sections, three new approaches are proposed with respect to the

above-mentioned limitations of supervised learning using neural networks in order to

obtain improvements. The proposed approaches will be tested and validated using two

different types of applications. The first application is related to software reliability

prediction, and the second application is electric power load short-term forecasting.

1.2 Research Objectives

This research focuses on improving both static and dynamic learning and general-

ization capabilities of different types of neural networks applied to forecasting. The

research objectives are:

1. Design dynamic learning model using evolutionary connectionist approach.
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2. Improve generalization capability using recurrent neural network and Bayesian

regularization.

3. Develop adaptive prediction model using support vector machines.

1.3 Organization of Dissertation

This dissertation is organized as follows. Chapter 2 presents the related work. It

focuses on overview of neural networks and genetic algorithm optimization techniques.

In addition, it summarizes the related research in neural network based software

reliability assessment and electric short-term load forecasting. Chapter 3 introduces

the proposed dynamic learning model using evolutionary connectionist approach, and

validation results when applied to software reliability prediction and short-term load

forecasting. Improving generalization capability using recurrent neural network and

Bayesian regularization approach is proposed and validated in Chapter 4. Chapter 5

outlines adaptive prediction model using support vector machines approach, and the

corresponding validation results. Chapter 6 shows some extended experiment results

and related discussion. Conclusions and future work are summarized in Chapter 7.



Chapter 2

Related Work

2.1 Neural Network Modeling

2.1.1 Artificial Neurons

A typical artificial neuron is shown in Fig. 2.1, with inputs xi and weights wi. The

weighted summation function is denoted by:

v = x1w1 + x2w2 + · · ·+ xnwn =

n∑

i=1

xiwi (2.1)

As shown in Fig. 2.2, we use the typical sigmoidal function as the nonlinear acti-

vation function, which is denoted by:

Summation

Function  v

Activation

Function

X1

X2

Xi

Xn

W1

W2

Wi

Wn

Output

Figure 2.1: Schematic representation of an artificial neuron
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Figure 2.2: Illustration plot of sigmoidal activation function

output =
1

1 + e−v
(2.2)

2.1.2 Artificial Neural Networks

An artificial neural network can be defined as [11]:

A data processing system consisting of a large number of simple, highly

interconnected processing element (artificial neuron) in an architecture

inspired by the structure of the cerebral cortex of the brain.

These processing elements are usually organized into a sequence of layers with

connections between the layers. Multilayer feed-forward neural network is one of the

most commonly used networks in various applications. As an example, the three-layer

feed-forward neural network architecture is shown in Fig. 2.3.

wij is the weight connecting the ith input neuron and the jth hidden neuron,

where 1 ≤ i ≤ k, and 1 ≤ j ≤ m. w′
j is the weight connecting the jth hidden neuron
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X i

X i+1

X i+k-1

W11

W12

W1m

Wk1

Wk2

Wkm

W’1

W’2

W’m

X i+k

Input

Layer

Hidden

Layer

Output

Layer

Figure 2.3: Three-layer feed-forward neural network

and the output neuron, where 1 ≤ j ≤ m.

2.1.3 Features of Artificial Neural Networks

Neural networks learn by example and they constitute a distributed associative mem-

ory. Also, they are fault tolerant and capable of pattern recognition [12].

Advantages of Neural Networks

• Learning from data, mimicking human learning ability

• Can approximate any multivariate nonlinear function

• Robust to the presence of noisy data

• Parallel structure and can be easily implemented in hardware

• Can be applied to broad classes of tasks

Limitations of Neural Networks

• Long training or learning time

• Do not explain basic internal relations of physical variables, and do not increase
our knowledge about the process

• Prone to bad generalizations due to large number of weights; tendency to overfit
the data; limited performance on unseen data
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• Little guidance is offered about neural network structure or optimization pro-
cedure

2.2 Genetic Algorithms and Evolutionary Com-

puting

2.2.1 Basic Structure of Genetic Algorithms

Genetic Algorithms (GA) are global search and optimization techniques modeled

from natural genetics, exploring search space by incorporating a set of candidate

solutions in parallel [13]. GA maintains a population of candidate solutions where

each candidate solution is coded as a binary string called chromosome. A chromosome

encodes a parameter set for a group of variables being optimized [13]. A set of

chromosomes forms a population, which is ranked by a fitness evaluation function.

The fitness evaluation function provides information about how good each candidate

solution is. This information guides the search of GA. More specifically, the fitness

evaluation results determine the likelihood that a candidate solution is selected to

produce candidate solutions in the next generation [13].

2.2.2 Mechanism of Evolutionary Computing

As shown in Fig. 2.4, the evolution from one generation to the next generation involves

three steps [13, 14, 15, 2, 16, 1]:

• Fitness evaluation

The current population is evaluated using the fitness evaluation function and

ranked based on their fitness values.

• Selection
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Population Initialization

Fitness Evaluation

Genetic Operations

Form New Generation

Fitness Evaluation

Selection of the

Best Strings

Figure 2.4: Illustration of genetic algorithm framework

GA stochastically select “parents” from the current population with a bias that

better chromosomes are more likely to be selected. This process is implemented

by using a selection probability that is determined by the fitness value.

• Reproduction

GA reproduce “children” from selected “parents” using genetic operations, such

as crossover or resemblance and mutation.

This cycle of fitness evaluation, selection, and reproduction terminates when an

acceptable solution is found, a convergence criterion is met, or when a predetermined

limit on the number of iterations is reached.
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2.2.3 Comparison with Orthogonal Least Squares Optimiza-

tion

The comparison between Genetic Algorithms and Orthogonal Least Squares Opti-

mization is described as follows [12]:

(1) Description

• Genetic Algorithm

Searches globally using a probabilistic random search technique analogous to

the natural evolution for optimum solutions.

• Orthogonal Least Squares

Searches locally, selecting from the given set of basis functions to find an optimal

subset of basis function.

(2) Search Strategy

• Genetic Algorithm

Employs a multipoint search strategy to continuously select the set of solutions

with higher fitness value, which is similar to natural reproduction. The fittest

survive whereas the rest are “disqualified”. The whole selection procedure is

carried out in a probabilistic random manner.

• Orthogonal Least Squares

A set of basis functions is selected for a network from a previously defined

set of basis functions that have varying shapes and locations. The selection

of basis functions depends on the associated approximation levels of the basis

function. The selection procedure maximally selects the basis functions with

higher approximation levels to form a subset of bases.
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(3) Search Space

• Genetic Algorithm

This is a random probabilistic method that searches globally. There are no

restrictions on the search space. If an optimal solution exists, GA is capable of

finding it.

• Orthogonal Least Squares

This is a structured search that only searches locally. Unless the global optimal

solution is included in the set of basis functions, Orthogonal Least Squares is

not capable of finding it.

(4) Efficiency

• Genetic Algorithm

Although GA is powerful in finding the optimal solution, the path it takes to

get to this solution is complicated and may not be repeatable because of the

random nature of this technique. There are often several paths the optimization

algorithm could take to arrive at the same solution, which makes this procedure

time-consuming.

• Orthogonal Least Squares

Orthogonal Least Squares does not guarantee an optimal solution but a solution

close to it if the initial set of basis functions covers the input space adequately.

The optimization is faster than GA, and the optimization procedure is easily

repeatable because of the nature of the search.
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2.3 Background of NN-based Software Reliability

Prediction

Software reliability is defined as the probability of a failure free operation of software

for a specified period of time in a given environment [17, 18, 19]. The best approach

to evaluate software reliability quantitatively is to use software reliability models. A

software reliability model is a set of mathematical equations that are used to describe

the behavior of software failures with respect to time and predict software reliability

performance such as the mean time between failures and the number of residual

faults [20, 17, 21].

Software reliability models must cover two different types of situations. One is

finding faults and fixing them, and the other is referring to “no fault removal”. “No

fault removal” actually means “deferred fault removal”. When the failures are identi-

fied, the underlying faults will not be removed until the next release [17, 21]. This sit-

uation is simple and usually occurs during validation test and operation phase. Most

of software reliability models deal with the process of finding and fixing faults that

usually occur during software verification process. Thus, if it is assumed that fault re-

moval process does not introduce new faults, the software reliability will increase with

the progress of debugging. A software reliability model describing such fault detection

and removal phenomenon is called a software reliability growth model [22, 23, 24].

The scope of this research is to propose new modeling approaches and apply them

to software reliability growth prediction for validation purposes. Most of the existing

analytical software reliability growth models depend on a priori assumptions about

the nature of software faults and the stochastic behavior of software failure process [25,

26, 27, 28, 29, 30]. As a result, each model has a different predictive performance

across various projects. A general model that can provide accurate predictions under

multiple circumstances is most desirable [27, 28, 29]. It has been shown that a neural
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network approach is a universal approximator for any non-linear continuous function

with an arbitrary accuracy [26, 8]. The underlying failure process can be learned and

modeled based on only failure history of a software system rather than based on a

priori assumptions [27, 31]. Consequently, it has become an alternative method in

software reliability modeling, evaluation and prediction. Karunanithi et al. [27, 28]

were the first to propose a neural network approach for software reliability growth

modeling. Adnan et al. [32, 33], Aljahdali et al. [34, 35], Ho et al. [36], Park et al. [29],

and Sitte [37] have also made contributions to software reliability growth prediction

using neural networks, and have obtained better results compared to the traditional

analytical models with respect to predictive performance.

Most of the published literature used neural network to model the relationship

between software failure time and the sequence number of failures. Some examples

are: execution time as input and the corresponding accumulated number of defects

disclosed as desired output [27, 28], and failure sequence number as input and failure

time as desired output [29]. Recent studies focus on modeling software reliability

based on time-lagged neural network structure. Aljahdali et al. [34] used the recent

days’ faults observed before the current day as multiple inputs to predict the number

of faults initially resident at the beginning of testing process. Cai et al. [26] and Ho

et al. [36] used the recent inter-failure time as multiple inputs to predict the next

failure time.

The effect of both the number of input neurons and the number of neurons in

hidden layers were determined using a selected range of predetermined values [26, 33].

For example, 20, 30, 40, and 50 input neurons were selected in Cai’s experiment [26],

while 1, 2, 3, and 4 input neurons were selected in Adnan’s experiment [33]. The

effect on the structure was studied by independently varying the number of input

neurons or the number of neurons in hidden layers [26] instead of considering all

possible combinations.
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2.4 Background of NN-based Short-Term Load Fore-

casting

One of the most crucial requirements for the operation activities of power systems

is short-term hourly load forecasting and the extension to several days in the future.

With the recent world-wide deregulation of the power utility industry, improving

the accuracy of short-term load forecasting (STLF) is becoming significant. It is

driven by the changing structure of the power utility industry, newly introduced

retailers, and other power marketing participants. As a result, highly accurate and

reliable short-term load forecasting provides optimal energy transaction allocation,

optimal scheduling plans and optimal bidding strategies under the new deregulation

environment [38, 39, 40, 41, 42].

Most of the existing load forecasting methods are based on either time series

models or curve-fitting procedures. The advantages of these models are easy physical

interpretations of model parameters. However, due to the inherent linear character-

istics, it seems inadequate for those models to discover the known highly nonlinear

interrelationship among load data profile and the relationship between load data and

some related variables such as temperature, humidity, and other weather factors. Re-

cent studies have used artifical neural network for load forecasting due to its proven

ability to be a universal approximator for any non-linear continuous function with an

arbitrary accuracy [8]. Thus, this data-driven approach can make it easier to model

the complex load forecasting problem when we have a large amount of data but at

the same time, very little a priori knowledge about the system that generates the

data [38, 40].

A number of research papers have reported successful experiments of applying

neural network approach to short-term load forecasting compared to traditional meth-

ods with respect to predictive performance [40, 43]. Most of the published literature
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used at least two or more variables as input variables to the neural network forecast-

ing system. Some examples of input variables are: load and temperature [44, 45, 46];

load, temperature and humidity [42]; load, temperature, seasons and day type [47];

load, temperature, day type, and electricity price [41]; load, temperature, seasons,

day type and day of week [48], etc. Each input variable could be a multi-dimensional

vector representing the profile data, which increases the input nodes of the neural

network. Chen et al. [41] used 100 input nodes to represent the profile data for input

variables load, temperature, day type, and electricity price. It is very common to find

many forecasting systems with huge amount of input nodes, which implies that too

many parameters need to be estimated based on comparatively too few sample data

points during the neural network training process, and thus may not yield satisfactory

forecasting performance [40]. Using the input variable that has the largest impact on

forecasting performance may be a good alternative.

Further, optimization of neural network structure design, including selecting the

number of input variables, input nodes and the number of hidden neurons, to im-

prove forecasting performance is becoming more and more important and desirable.

Charytoniuk et al. [45] proposed an optimal input variable selection approach based

on singular value decomposition techniques. Most effective delayed load inputs were

selected by correlation analysis in Barghinia et al. [44]. Huang et al. [46] employed

gray relational analysis for proper selection of input variables and input nodes in order

to improve learning efficiency of neural network. Several reasonable choices of delayed

load inputs of a particular day such as Monday-Sunday, were also suggested. Genetic

algorithm can be used as an optimization search scheme to determine the optimal

or near optimal network structure design. Srinivasan [49] successfully used a genetic

algorithm to evolve the optimum neural network structure including the connecting

weights between load, temperature input variables and the forecasted load during the

training process. Tsao et al. [50] applied evolutionary programming to optimize the
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weights and biases of a neural network. However, it is clear that there is no integrated

selection or optimization approach considering both the number of input nodes, the

number of neurons in the hidden layer, and all the possible combinations based on

minimal number of input variables.



Chapter 3

Dynamic Learning Using

Evolutionary Connectionist

3.1 Proposed Approach

In certain applications, the number of available data increases over time. The fixed

neural network structures do not address the effect on the performance of prediction as

the number of data increases. The proposed dynamic learning optimization process for

evolutionary connectionist model (D - ENN) is described by the following procedure.

1. For every occurrence of new data, optimize the neural network structure by

finding the optimal number of input neurons and the optimal or near-optimal

number of neurons in the hidden layer using the genetic algorithm based on

currently available history data.

2. Apply training data patterns to the optimized neural network structure until

the neural network converges, and predict next-step data.

3. Repeat the above steps as new data arrive.

16
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The fitness evaluation function is defined as:

fitness =
1

1 + err
(3.1)

err =

p∑

i=1

|x̂i − xi|2

p
(3.2)

where p is the number of exemplars used during the training process. x̂i and xi are

the predicted output and the actual output respectively during the back-propagation

learning process and err is the mean squared error.

The genetic algorithm optimization process is described in the following procedure:

1. Randomize population.

2. Evaluate the fitness function for each individual in the population.

3. Select the first two individuals with the highest fitness values and copy directly

to the next generation without any genetic operation.

4. Select the remaining individuals in the current generation and apply crossover

and mutation genetic operations accordingly to reproduce the individuals in the

next generation.

5. Repeat from the second step until all individuals in population meet the conver-

gence criteria or the number of generations exceeds the pre-defined maximum

values.

6. Decode the converged individuals in the final generation and obtain the op-

timized neural network structure with optimal number of input neurons, and

optimal number of neurons in the hidden layer.
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3.2 Data Sets Description and Pre-processing

3.2.1 Data Sets in Software Reliability Prediction Applica-

tion

The performance of the proposed approaches have been tested using the same real-

time control application and flight dynamic application data sets as cited in Park

et al. [29] and Karunanithi et al. [27]. We choose a common baseline to compare

the results with related work cited in the literature. All four data sets used in the

experiments are summarized as follows:

DATA SET # 1: Real-time command and control application consisting of 21,700

assembly instructions and 136 failures.

DATA SET # 2: Flight dynamic application consisting of 10,000 lines of code

and 118 failures.

DATA SET # 3: Flight dynamic application consisting of 22,500 lines of code

and 180 failures.

DATA SET # 4: Flight dynamic application consisting of 38,500 lines of code

and 213 failures.

DATA SET # 1 is obtained from Musa et al. [17]. DATA SET # 2, DATA SET

# 3, and DATA SET # 4 are equivalent to DATA-11, DATA-12, and DATA-13 as

cited in Park et al. [29] and Karunanithi et al. [27].

3.2.2 Data Sets in Short-Term Load Forecasting Application

The performance validation of our proposed approach is conducted using the same

actual power load measurements recorded daily over a period of two years in Berkeley,

California as cited in Karayiannis et al [42]. We choose a common baseline to compare

our results with related work cited in the literature and use the same data range of
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training (April 10 – June 9, 1999) and testing (Jan. 25 – March 26, 2001) in our

proposed approach.

3.2.3 Data Pre-processing

All the inputs and outputs of the network are scaled and normalized within the range

of [0.1, 0.9] to minimize the impact of absolute scale. For this purpose, the actual

values are scaled using the following relationship [51]:

y =
0.8

∆
x + (0.9 − 0.8 × xmax

∆
) (3.3)

where, y is the scaled value we feed into our network, x is the actual value before

scaling, xmax is the maximum value in the samples. xmin is the minimum value among

all the samples, and ∆ is defined as (xmax −xmin). After the training process, we test

the prediction performance by scaling back all the network outputs to their actual

values using the following equation:

x =
y − 0.9

0.8
× ∆ + xmax (3.4)

3.3 Application in Software Reliability Prediction

3.3.1 Modeling Rationale

Unlike traditional neural network based software reliability growth modeling ap-

proaches, we model the inter-relationship among software failure time. Suppose xi is

the failure time of the ith failure. We want to model xi+k by using xi, xi+1, . . . , xi+k−1,

representing a functional relationship between the observed software failures and the

future software failures.
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xi+k = f(xi, xi+1, . . . , xi+k−1) i = 1, 2, . . . (3.5)

where k is the number of the input neurons in the network.

Genetic algorithm is used to globally optimize the neural network architecture

after every occurrence of software failure time data. The optimization process de-

termines the number of the delayed input neurons k corresponding to the previous

failure time data sequence and the number of neurons in the hidden layer. The cor-

responding globally optimized number of delayed input neurons and the number of

neurons in the hidden layer will be iteratively and dynamically reconfigured as new

failure time data arrive in order to predict x̂i+k.

3.3.2 Performance Metrics

Our choice for using specific performance measures for assessing the predictive accu-

racy was based on similar measures used by other researchers. We believe it is reason-

able to compare our results with existing work using the same data sets and same per-

formance evaluation metrics. This provides us the opportunity to quantitatively gauge

the efficacy of our proposed approach. In addition, the relative error (RE) and/or

average relative error (AE) are widely used in [26, 52, 53, 28, 27, 31, 54, 29, 37, 55]

for assessment of predictive accuracy of cumulative patterns.

Let x̂i be the predicted value of failure time and xi be the actual value of failure

time. n is the number of data points in the test data set.

Relative Error (RE) is given by:

RE =

∣∣∣∣
x̂i − xi

xi

∣∣∣∣ (3.6)

Average Relative Prediction Error (AE) is given by:
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AE =
1

n

n∑

i=1

∣∣∣∣
x̂i − xi

xi

∣∣∣∣ × 100 (3.7)

Predictability represented by Relative Error (RE) is defined by the percentage

of the predicted values fall within a pre-determined range of RE compared to their

actual observed values.

The larger the value of Predictability, or the smaller the value of AE, the closer

are the predicted values to the actual values.

3.3.3 Test Results

To establish a baseline for the proposed dynamic evolutionary connectionist approach,

we first experimented with an evolutionary neural network approach. For each data

set, the first 50% of data are used for training purposes. At the same time, the

neural network architecture is optimized by using genetic algorithm based on training

performance. The remaining 50% of data will be used for testing the real predictive

power of the model.

The performance results of predictability represented by Relative Error (RE) in

both training and test process using the four data sets are shown in Table 3.1.

Table 3.1: Performance Results

RE ≤ 5% Training Process Test Process

DATA-1 67.24% 89.23%

DATA-2 80.00% 94.44%

DATA-3 89.61% 100.00%

DATA-4 94.62% 97.17%

For example, using DATA-2, 80% of the predicted values fall within 5% of their

actual observed values in the training data set, while 94.44% of the predicted values
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Figure 3.1: Performance using DATA-1 with training data set.

fall within 5% of their actual observed values in the test data set.

Fig. 3.1, Fig. 3.3, Fig. 3.5 and Fig. 3.7 show the predicted and actual values of the

failure time in all four data sets during training process. Fig. 3.2, Fig. 3.4, Fig. 3.6

and Fig. 3.8 show the predicted and actual values of the failure time in all four data

sets during test process.

Then, we experimented with the evolutionary neural network approach in a dy-

namic environment. To determine the next-step-predictability, we iteratively present

the failure time data one at a time to the dynamically learned and optimized network.

xi, xi+1, . . . , xi+k−1 are used to predict the value of xi+k, where k is the number of

delayed input neurons in the network we identified through genetic algorithm. Then

the predicted and the actual values of failure time are compared. The results of the

predictability represented by relative error (RE) using the four data sets are shown

in Table 3.2.

For example, using DATA-3, 96% of the next-step predicted values fall within
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Figure 3.2: Performance using DATA-1 with test data set.
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Figure 3.3: Performance using DATA-2 with training data set.
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Figure 3.4: Performance using DATA-2 with test data set.
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Figure 3.5: Performance using DATA-3 with training data set.
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Figure 3.6: Performance using DATA-3 with test data set.
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Figure 3.7: Performance using DATA-4 with training data set.
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Figure 3.8: Performance using DATA-4 with test data set.

Table 3.2: Performance Results

Predictability (RE ≤ 5%)

DATA-1 DATA-2 DATA-3 DATA-4

83% 89% 96% 95%

5% of their actual observed values. The results show that our proposed evolutionary

neural networks approach provides highly accurate on-line prediction capability.

Table 3.3 summarizes the average relative prediction error using our proposed

approach. The values of the prediction errors obtained are low. Fig. 3.9, Fig. 3.10,

Fig. 3.11 and Fig. 3.12 show the prediction performance profile in detail for all four

real-time control and flight dynamic application data sets. The proposed evolutionary

connectionist model dynamically learns and optimizes the neural network architecture

whenever a new failure time data arrives, and is easily implemented to predict failures
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in real-time.

Table 3.3: Comparison of Average Relative Prediction Error

Comparison of Test Data Sets (AE%)

Data Sets Proposed FFNN RNN FFNN

D - ENN (Ref. [29]) (Ref. [27]) (Ref. [27])

DATA-1 2.72 2.58 2.05 2.50

DATA-2 2.65 3.32 2.97 5.23

DATA-3 1.16 2.38 3.64 6.26

DATA-4 1.19 1.51 2.28 4.76

3.4 Application in Short-Term Load Forecasting

3.4.1 Modeling Rationale

Traditionally, power system load is characterized by a combination of four compo-

nents, which is given by:

Load = Lnormal + Lweather + Lspecial + Lrandom (3.8)

where Load is total system load, Lnormal is a standardized load shape according to

different type of day throughout the year. Lweather is the weather-related part of the

load, such as humidity and temperature, and Lspecial represents some unusual events

that contribute to the major deviation of typical load behavior. Lrandom represents

minor random factors that have impact on the load behavior [41].

Unlike the traditional mapping characteristics, we model the inter-relationship

among power load data independent of other factors.
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Figure 3.9: Prediction performance using DATA-1.
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Figure 3.10: Prediction performance using DATA-2.
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Figure 3.11: Prediction performance using DATA-3.
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Figure 3.12: Prediction performance using DATA-4.
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We assume that there exists nonlinear relationship between x(di+k) and x(di),

x(di+1), . . ., x(di+k−1), where x(di) is the corresponding load data in day di. Then,

we want to forecast x(di+k) using

x(di+k) = f(x(di), x(di+1), . . . , x(di+k−1)) i = 1, 2, . . . (3.9)

where k is the number of delayed load input neurons in the network.

Our proposed framework of evolutionary neural network modeling for short-term

load forecasting is described by the following procedure.

1. Collect the historical daily load data.

2. Optimize the neural network architecture by finding the optimal number of

input neurons and the optimal number of neurons in the hidden layer using the

genetic algorithm procedure described in Section 3.1.

3. Input the unknown data points to our well-trained and generalized neural net-

work and validate the predictive performance.

3.4.2 Performance Metrics

The following statistical metrics are used for comparing prediction performance,

namely, Mean Square Error (MSE) and Root Mean Square Error (RMSE).

MSE =
1

n

n∑

i=1

(x̂(di) − x(di))
2 (3.10)

RMSE =

√√√√ 1

n

n∑

i=1

(x̂(di) − x(di))2 (3.11)
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where x̂(di) is the predicted value of daily average load, x(di) is the actual value of

daily average load, and n is the number of days during training and testing. The

smaller the values of MSE and RMSE, the closer are the predicted values to the

actual values.

3.4.3 Test Results

The performance validation of our proposed approach was conducted using the ac-

tual power load measurements recorded daily over a period of two years in Berkeley,

California as cited in [42].

The performance results of predictability represented by Relative Error (RE) in

both training and test process are shown in Table 3.4. The larger the value of pre-

dictability, the closer are the predicted values to the actual values.

Table 3.4: Performance Results

RE ≤ 5% Training Process Test Process

Daily Average Load Data 94.23% 98.11%

Table 3.5 summarizes the results of daily average load forecasting using our pro-

posed approach based on the commonly used statistical metrics Mean Square Error

(MSE) and Root Mean Square Error (RMSE). Karayiannis et al. [42] applied both

feed-forward neural network (FFNN) and cosine radial basis function neural network

(RBFNN) approaches for daily average load forecasting based on input variables of

past load, temperature and humidity. These results are also summarized in Table 3.5.

For example, using our proposed approach with the same testing data set, the Root

Mean Square Error (RMSE) is 0.0187 by using load as the only input variable. The

error is lower than the results obtained by RBFNN approach (0.1120) and FFNN

approach (0.1702) in Karayiannis et al. [42] that use multiple input variables. The

results show that our proposed approach yields better generalization capability and
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lower prediction error compared to other neural network approaches.

Table 3.5: Performance Comparisons

Performance Proposed RBFNN FFNN

Metrics D - ENN [42] [42]

Training Data MSE 5.1942×105 3.2296×107 3.0120×107

04/10 – 06/09, 1999 RMSE∗ 0.0274 0.2160 0.2086

Testing Data MSE 2.4129×105 8.6792×106 2.0034×107

01/25 – 03/26, 2001 RMSE∗ 0.0187 0.1120 0.1702

Input Variables Used Load Load, Temperature,

only Humidity

* scaled by the mean value of load data.

3.5 Summary

In this chapter, we proposed an evolutionary optimization approach for neural net-

work architecture. In certain applications, the number of available data increases over

time. The optimization process determines the number of the input neurons and the

number of neurons in the hidden layer. The corresponding globally optimized neural

network structure will be iteratively and dynamically reconfigured and updated as

new data arrive to improve the prediction accuracy.

The proposed approach has been successfully applied and validated on applica-

tions related to software reliability prediction and electric power load forecasting. The

data sets used for software reliability prediction are four real-time control application

and flight dynamic application data sets. The data sets used for short-term load fore-

casting are the actual power load measurements recorded daily over a period of two

years in Berkeley, California. We choose a common baseline to compare the results
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with related work cited in the literature. Quantitative results show that the pro-

posed approach achieves better prediction accuracy compared to existing approaches.

For software reliability prediction, we obtain statistically higher prediction accuracy

compared to the existing neural network models. For short-term load forecasting,

the proposed approaches yield lower prediction error using minimal number of input

variables compared to the existing approaches that use multiple input variables.

The research contributions in this chapter are also summarized in the following

articles [56, 57, 58]:

• L. Tian and A. Noore, “On-line prediction of software reliability using an evo-

lutionary connectionist model,” Journal of Systems and Software, vol. 77, no.

2, pp. 173–180, Aug. 2005.

• L. Tian and A. Noore, “Evolutionary neural network modeling for software

cumulative failure time prediction,” Reliability Engineering and System Safety,

vol. 87, no. 1, pp. 45–51, Jan. 2005.

• L. Tian and A. Noore, “Short-term load forecasting using optimized neural

network with genetic algorithm,” in Proceedings of the 8th International Con-

ference on Probabilistic Methods Applied to Power Systems, (Ames, IA), pp.

135–140, Sep. 2004.



Chapter 4

Improving Generalization

Capability Using Recurrent Neural

Network and Bayesian

Regularization

4.1 Recurrent Neural Network

One of the major problems for multiple-input single-output purely static feed-forward

neural network modeling is that we have to determine the exact number of inputs

in advance. Earlier studies have selected this in an ad hoc manner and may not

yield a globally optimized solution. This is the reason for using genetic algorithm to

optimize the network structure. More importantly, for those applications where time

information is involved, feed-forward neural network does not have the capability of

incorporating dynamic temporal property internally, which may have impact on the

network prediction performance. If time can be represented by the effect it has on

processing, the network will perform better in terms of responsiveness to temporal se-

34
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quences. This responsiveness can be obtained by providing feedback of data generated

by the network back into the units of the network to be used in future iterations.

Recurrent neural network has the inherent capability of developing an internal

memory, which may naturally extend beyond the externally provided lag spaces, and

hence relaxing the requirements for the determination of external number of inputs

in time-related prediction applications [59].

Recurrent neural networks are feedback networks in which the current activation

state is a function of previous activation state and the current inputs. This feed-

back path allows recurrent networks to learn to recognize and generate time-varying

patterns [60].

A simple illustration of recurrent network is shown in Fig. 4.1.

For simplicity and comparison purposes, we first consider the most elementary

feed-forward network shown in Fig. 4.1(a), where the input, hidden, and output

layers each has only one neuron. When the input x(t0) at time t0 is applied to the

input layer, the output v(t0) of the hidden layer and the output y(t0) of the output

layer are given by:

v(t0) = Φ(w12 × x(t0)) (4.1)

y(t0) = Φ(w23 × v(t0))

= Φ(w23 × Φ(w12 × x(t0))) (4.2)

where Φ(·) is the activation function. As shown in Fig. 4.1(b), recurrent neural

network has feedback from the output layer to the hidden layer and feedback from

the hidden layer to the input layer through the recurrent neurons labeled R. The

corresponding feedback weights are w32 and w21, respectively. When the input x(t1)

is applied to the input layer, the output v(t1) of the hidden layer and the output y(t1)
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Figure 4.1: Static feed-forward neural network in (a) and recurrent neural network
in (b) with feedback connections.
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of the output layer are given by:

v(t1) = Φ(w12 × x(t1) + w21 × v(t0))

= Φ(w12 × x(t1) + w21 × Φ(w12 × x(t0))) (4.3)

y(t1) = Φ(w23 × v(t1) + w32 × y(t0))

= Φ(w23 × Φ(w12 × x(t1) + w21 × Φ(w12 × x(t0)))

+ w32 × Φ(w23 × Φ(w12 × x(t0)))) (4.4)

Without loss of generality, we assume that the input layer, the hidden layer,

and the output layer each has multiple neurons, and there could be more than one

hidden layer. Each processing element of a recurrent neural network is denoted by

the following generalized equations [61]:

p[l,n](ti) =

N[l]∑

m=1

w[l,m][l,n]q[l,m](ti−1) +

N[l−1]∑

m=1

w[l−1,m][l,n]q[l−1,m](ti) + b[l,n] (4.5)

q[l,n](ti) = Φ[l,n](p[l,n](ti)) (4.6)

where,

p[l,n](ti) is the internal state variable of the nth neuron in the lth layer

at time ti

q[l,n](ti) is the output of the nth neuron in the lth layer at time ti

b[l,n] is the bias of the nth neuron in the lth layer

w[l,m][l′,n] is the weight associated with the link between the mth neuron

of the lth layer to the nth neuron of the l
′th layer

Φ(·) is the activation function
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4.2 Bayesian Regularization

A desirable neural network model should have small errors not only in the training

data set, but also in the validation or testing data set [62]. The ability to adapt to

previously known data as well as unknown data requires improving generalization.

Regularization constrains the size of the network parameters. When the parameters

in a network are kept small, the response of the network will be smooth [62]. With

regularization, the performance function is modified by adding a term that consists

of the mean of the sum of squares of the neural network weights and biases. The

mean squared error with regularization performance, msereg, is given by:

msereg = β × mse + (1 − β) × msw (4.7)

where, β is the performance ratio and represents the relative importance of errors vs.

weight and bias values, mse is the mean squared error during training, and msw is

the mean squared weights and biases.

By using this modified performance function, msereg, the neural network is forced

to have smaller weights and biases, which causes the network to respond smoother,

represent the true function rather than capture the noise, and is less likely to overfit.

The major problem with regularization is to choose the performance ratio coeffi-

cient β. MacKay [63] has done extensive work on the application of Bayes rule for

optimizing regularization. Hessian matrix computation is required for regularization

optimization. In order to minimize the computational overhead, Foresee and Ha-

gan [64] proposed using a Gauss-Newton approximation to the Hessian matrix, which

is readily available while Levenberg-Marquardt algorithm is used as neural network

training scheme.

The Bayesian optimization of the regularization coefficient with a Gauss-Newton

approximation to the Hessian matrix is described in the following procedures [64]:
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1. Initialize β(β = 1) and the weights.

2. Minimize the performance function msereg by using Levenberg-Marquardt al-
gorithm.

3. Compute the effective number of parameters using Gauss-Newton approxima-
tion to the Hessian matrix available in the Levenberg-Marquardt training algo-
rithm.

4. Derive the new estimate of β.

5. Repeat from Step 2-4 until the convergence is obtained. Thus, the optimized
value for β is chosen.

Kwok et al. [65], Ishikawa [66], Gencay et al. [62], and Chua et al. [67] all reported

better generalization performance by using Bayesian regularization in other types of

neural networks. In this research, Bayesian regularization with recurrent training

scheme (RNN + BR) is used for improving the generalization capability.

4.3 Application in Software Reliability Prediction

4.3.1 Formulation of the Neuro-Predictor

In recurrent neural network structure, each processing element has the task of map-

ping both an external input and the previous internal state to some desired output.

Thus, the internal representation developed are sensitive to temporal context [60].

More specifically, in our failure time modeling, the input-output pattern fed into the

network is the failure temporal sequence. Thus, the recurrent network can learn and

recognize the inherent temporal patterns of input-output pair. For one-step-ahead

prediction, the input sequence and the desired output sequence should have one step

delay during the training process. The desired objective is to force the network to

recognize the one-step-ahead temporal pattern. A sample input sequence and the

corresponding one-step-ahead desired output sequence is defined as:
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InputSequence : x(t0), x(t1), · · · , x(ti−1), x(ti), x(ti+1), · · ·

OutputSequence : x(t1), x(t2), · · · , x(ti), x(ti+1), x(tt+2), · · ·

where x(ti) is the failure time in the training data sequence, and ti is the failure time

sequence index. The activation function in our modeling approach is linear for the

output layer, and it is hyperbolic tangent sigmoidal for hidden layer neurons. Once

the network is trained based on sufficient training data sequence, the unknown data

sequence will be presented to the network to validate the performance.

4.3.2 Performance Metrics

The performance metrics used are the same as described in Section 3.3.2, Relative

Error (RE) and Average Relative Prediction Error (AE).

4.3.3 Test Results

The performance results of predictability represented by Relative Error (RE) in both

training and test process using the four data sets are shown in Table 4.1.

Table 4.1: Performance Results

RE ≤ 5% Training Process Test Process

DATA-1 70.77% 88.81%

DATA-2 78.33% 91.23%

DATA-3 87.23% 98.87%

DATA-4 93.00% 97.30%
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For example, in data set DATA-2, 78.33% of the predicted values fall within 5%

of their actual observed value in the training data set, while 91.23% of the predicted

values fall within 5% of their actual observed value in the test data set. Similarly, the

results for other data sets show that our proposed approach provides highly accurate

generalization capability.

We next compute the average relative prediction error (AE) on all four data

sets. Table 4.2 summarizes the results of modeling the temporal inter-relationship

among software failure time sequence using our proposed recurrent neural network

with Bayesian regularization (RNN + BR). Park et al. [29] applied failure sequence

number as input and failure time as desired output in feed-forward neural network

(FFNN). Based on the learning pair of execution time and the corresponding accumu-

lated number of defects disclosed, Karunanithi et al. [27] employed both feed-forward

neural network (FFNN) and recurrent neural network (RNN) structures to model

the failure process. These results are also summarized in Table 4.2. In all four data

sets, the results show that using recurrent neural network with Bayesian regulariza-

tion yields a lower average relative prediction error compared to other neural network

approaches.

Fig. 4.2, Fig. 4.4, Fig. 4.6 and Fig. 4.8 show the predicted and actual values of the

failure time in all four data sets during training process. Fig. 4.3, Fig. 4.5, Fig. 4.7

and Fig. 4.9 show the predicted and actual values of the failure time in all four data

sets during test process. In all cases, the recurrent neural network with Bayesian

regularization produces promising results during both training and testing.



4.3. Application in Software Reliability Prediction 42

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Failure Sequence Number

F
ai

lu
re

 T
im

e 
of

 th
e 

ith
 S

of
tw

ar
e 

F
ai

lu
re

 (
H

ou
r)

predicted
actual

Figure 4.2: Performance using DATA-1 with training data set.
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Figure 4.3: Performance using DATA-1 with test data set.
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Figure 4.4: Performance using DATA-2 with training data set.
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Figure 4.5: Performance using DATA-2 with test data set.
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Figure 4.6: Performance using DATA-3 with training data set.
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Figure 4.7: Performance using DATA-3 with test data set.
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Figure 4.8: Performance using DATA-4 with training data set.
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Figure 4.9: Performance using DATA-4 with test data set.
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Table 4.2: Average Relative Prediction Error (%)

Comparison of Test Data Sets

Data Sets Proposed FFNN RNN FFNN

RNN + BR (Ref. [29]) (Ref. [27]) (Ref. [27])

DATA-1 1.83 2.58 2.05 2.50

DATA-2 2.06 3.32 2.97 5.23

DATA-3 0.97 2.38 3.64 6.26

DATA-4 0.98 1.51 2.28 4.76

4.4 Application in Short-Term Load Forecasting

4.4.1 Modeling Rationale

Unlike the traditional mapping characteristics, we model the inter-relationship among

power load data sequence. Using recurrent neural network and Bayesian regulariza-

tion, the input sequence and the corresponding one-step-ahead desired output se-

quence are defined as:

InputSequence : x(d0), x(d1), · · · , x(di−1), x(di), x(di+1), · · ·

OutputSequence : x(d1), x(d2), · · · , x(di), x(di+1), x(dt+2), · · ·

where x(di) is the corresponding load data in day di. Once the network is trained

based on the available training data sequence, the unknown data sequence will be

presented to the network to validate the performance.
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4.4.2 Performance Metrics

The performance metrics used are the same as described in Section 3.4.2, Mean Square

Error (MSE) and Root Mean Square Error (RMSE).

4.4.3 Test Results

The performance results of predictability represented by Relative Error (RE) in both

training and test process are shown in Table 4.3. The larger the value of predictability,

the closer are the predicted values to the actual values.

Table 4.3: Performance Results

RE ≤ 5% Training Process Test Process

Daily Average Load Data 90.16% 90.16%

Table 4.4 summarizes the results of daily average load forecasting using our pro-

posed approach based on the commonly used statistical metrics Mean Square Error

(MSE) and Root Mean Square Error (RMSE). Karayiannis et al. [42] applied both

feed-forward neural network (FFNN) and cosine radial basis function neural network

(RBFNN) approaches for daily average load forecasting based on input variables of

past load, temperature and humidity. These results are also summarized in Table 4.4.

For example, using our proposed approach with the same testing data set, the Root

Mean Square Error (RMSE) is 0.0286 by using load as the only input variable. The

error is lower than the results obtained by RBFNN approach (0.1120) and FFNN

approach (0.1702) in Karayiannis et al. [42] that use multiple input variables. The

results show that our proposed approach yields better generalization capability and

lower prediction error compared to other neural network approaches.
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Table 4.4: Performance Comparisons

Performance Proposed RBFNN FFNN

Metrics RNN + BR [42] [42]

Training Data MSE 5.4832×105 3.2296×107 3.0120×107

04/10 – 06/09, 1999 RMSE∗ 0.0282 0.2160 0.2086

Testing Data MSE 5.6354×105 8.6792×106 2.0034×107

01/25 – 03/26, 2001 RMSE∗ 0.0286 0.1120 0.1702

Input Variables Used Load Load, Temperature,

only Humidity

* scaled by the mean value of load data.

4.5 Summary

In this chapter, we proposed an modeling approach by using recurrent neural network

and Bayesian regularization for Improving generalization capability. Recurrent neural

network has the inherent capability of developing an internal memory, which may

naturally extend beyond the externally provided lag spaces. Moreover, by adding

a penalty term of sum of connection weights, Bayesian regularization approach is

applied to the network training scheme to improve the generalization performance

and lower the susceptibility of overfitting.

The proposed approach has been successfully applied and validated on applica-

tions related to software reliability prediction and electric power load forecasting. The

data sets used for software reliability prediction are four real-time control application

and flight dynamic application data sets. The data sets used for short-term load fore-

casting are the actual power load measurements recorded daily over a period of two

years in Berkeley, California. We choose a common baseline to compare the results

with related work cited in the literature. Quantitative results show that the pro-

posed approach achieves better prediction accuracy compared to existing approaches.
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For software reliability prediction, we obtain statistically higher prediction accuracy

compared to the existing neural network models. For short-term load forecasting,

the proposed approaches yield lower prediction error using minimal number of input

variables compared to the existing approaches that use multiple input variables.

The research contributions in this chapter are also summarized in the following

article [68]:

• L. Tian and A. Noore, “Software reliability prediction using recurrent neural

network with Bayesian regularization,” International Journal of Neural Sys-

tems, vol. 14, no. 3, pp. 165–174, June 2004.



Chapter 5

Adaptive Modeling Using Support

Vector Machines

5.1 SVM Learning in Function Approximation

As a novel type of machine learning algorithm, support vector machine (SVM) has

gained increasing attention from its original application in pattern recognition to the

extended application in function approximation and regression estimation [69, 70, 71,

72, 73, 74]. Based on the structural risk minimization (SRM) principle, the learning

scheme of SVM is focused on minimizing an upper bound of the generalization error

that includes the sum of the empirical training error and a regularized confidence

interval, which will eventually result in better generalization performance. Moreover,

unlike other gradient descent based learning scheme that requires nonlinear optimiza-

tion with the danger of getting trapped into local minima, the regularized risk function

of SVM can be minimized by solving a linearly constrained quadratic programming

problem, which can always obtain a unique and global optimal solution. Thus, the

possibility of being trapped at local minima can be effectively avoided [70, 75, 73, 76].

50
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5.1.1 Estimation of Real-Valued Functions

Notation

xi n-dimensional input vector, xi ∈ <n

yi target output value, yi ∈ <

φ high-dimensional feature space mapping function

w weights vector

b bias term

R regularized risk function

||w||2 weights vector norm

C regularization constant

ε Vapnik’s linear loss function with ε-insensitivity zone

ξi, ξ
∗
i slack variables

αi, α
∗
i Lagrange multipliers

K kernel function

The basic idea of SVM for function approximation is mapping the data x into a

high-dimensional feature space by a nonlinear mapping and then performing a linear

regression in this feature space [75]. Assume that a total of l pairs of training patterns

are given during SVM learning process,

(x1, y1), (x2, y2), . . . , (xi, yi), . . . , (xl, yl)

where the inputs are n-dimensional vectors xi ∈ <n, and the target outputs are

continuous values yi ∈ <. The SVM model used for function approximation is:
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f(x) = w · φ(x) + b (5.1)

where φ(x) is the high-dimensional feature space that is nonlinearly mapped from

the input space x. Thus, a nonlinear regression in the low-dimensional input space

is transferred to a linear regression in a high-dimensional feature space [75]. The

coefficients w and b can be estimated by minimizing the following regularized risk

function R [69, 77, 75, 76, 73, 74, 78, 70, 79]:

R =
1

2
||w||2 + C

1

l

l∑

i=1

|yi − f(xi)|ε (5.2)

where

|yi − f(xi)|ε =





0 if |yi − f(xi)| ≤ ε,

|yi − f(xi)| − ε otherwise.
(5.3)

||w||2 is the weights vector norm, which is used to constrain the model structure ca-

pacity in order to obtain better generalization performance. The second term is the

Vapnik’s linear loss function with ε-insensitivity zone as a measure for empirical error.

The loss is zero if the difference between the predicted and observed value is less than

or equal to ε. For all other cases, the loss is equal to the magnitude of the difference

between the predicted value and the radius ε of ε-insensitivity zone. C is the regular-

ization constant, representing the trade-off between the approximation error and the

model structure. ε is equivalent to the approximation accuracy requirement for the

training data points. Further, two positive slack variables ξi and ξ∗i are introduced.

We have

|yi − f(xi)| − ε =





ξi for data “above” an ε tube,

ξ∗i for data “below” an ε tube.

(5.4)
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Thus, minimizing the risk function R in Equation 5.2 is equivalent to minimizing

the objective function Rw,ξ,ξ∗.

Rw,ξ,ξ∗ =
1

2
||w||2 + C

l∑

i=1

(ξi + ξ∗i ) (5.5)

subject to constraints





yi − w · φ(xi) − b ≤ ε + ξi i = 1, . . . , l,

w · φ(xi) + b − yi ≤ ε + ξ∗i i = 1, . . . , l,

ξi, ξ
∗
i ≥ 0 i = 1, . . . , l.

(5.6)

This constrained optimization problem is typically solved by transforming into

the dual problem, and its solution is given by the following explicit form:

f(x) =
l∑

i=1

(αi − α∗
i )K(xi, x) + b (5.7)

5.1.2 Lagrange Multipliers

In Equation 5.7, αi and α∗
i are the Lagrange multipliers with αi×α∗

i = 0 and αi, α
∗
i ≥ 0

for any i = 1, . . . , l. They can be obtained by maximizing the following form:

−ε
l∑

i=1

(αi + α∗
i ) +

l∑

i=1

yi(αi − α∗
i ) −

1

2

l∑

i=1

l∑

j=1

(αi − α∗
i )(αj − α∗

j)K(xi, xj) (5.8)
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subject to constraints





l∑

i=1

α∗
i =

l∑

i=1

αi

0 ≤ αi, α
∗
i ≤ C i = 1, . . . , l.

(5.9)

After learning, only some of coefficients (αi − α∗
i ) in Equation 5.7 differ from

zero, and the corresponding training data points are referred to as support vectors.

It is obvious that only the support vectors can fully decide the decision function in

Equation 5.7.

5.1.3 Kernel Function

In Equation 5.7, K(xi, x) is defined as the kernel function, which is the inner product

of two vectors in feature space φ(xi) and φ(x). By introducing the kernel function,

we can deal with the feature spaces of arbitrary dimensionality without computing

the mapping relationship φ(x) explicitly [70]. Some commonly used kernel functions

are polynomial kernel function and Gaussian kernel function.

5.2 Adaptive Modeling

In certain applications, the number of available data increases over time during a

dynamic system. Accordingly, the SVM learning process is iteratively and dynami-

cally updated after every occurrence of new data in order to capture the most current

feature hidden inside the data sequence. After the SVM learning process is complete

based on the currently available data, next-step information will be predicted.
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Figure 5.1: Dynamic software reliability prediction framework.

5.3 Application in Software Reliability Prediction

5.3.1 Formulation of the SVM-Predictor

The proposed software reliability prediction system shown in Fig. 5.1 consists of a

failure history database and an iteratively and dynamically updated SVM learning-

predicting process. When a software failure, xi, occurs, the failure history database

is updated and the accumulated failure data (x1, x2, . . . , xi) is made available to the

SVM learning process. The number of failure data increases over time during a dy-

namic system. Accordingly, the SVM learning process is iteratively and dynamically

updated after every occurrence of new failure time data in order to capture the most

current feature hidden inside the software failure sequence. After the SVM learning

process is complete based on the currently available history failure data, next-step

failure information, x̂i+1, will be predicted.

In our proposed approach, unlike the existing mapping characteristics, we model

the inter-relationship among software failure time data. More specifically, the input-

output pattern fed into the network is the failure temporal sequence. The SVM

learning scheme is applied to the failure time data, forcing the network to learn and

recognize the inherent internal temporal property of software failure sequence. For

one-step-ahead prediction, the input sequence and the desired output sequence should

have one step delay during the learning process. The desired objective is to force the
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network to recognize the one-step-ahead temporal pattern. A sample input sequence

and the corresponding one-step-ahead desired output sequence is defined as:

Input Sequence : x0, x1, · · · , xi−1, xi, xi+1, · · ·

Output Sequence : x1, x2, · · · , xi, xi+1, xi+2, · · ·

where xi is the failure time of the ith failure in the learning process. Once the network

is trained based on all the currently available history failure data using the SVM

learning procedure, the one-step-ahead failure time will be predicted. Accordingly, the

SVM learning process is iteratively and dynamically updated after every occurrence

of new failure time data in order to capture the most current feature hidden inside

the software failure sequence.

5.3.2 Performance Metrics

The performance metrics used are the same as described in Section 3.3.2, Predictabil-

ity represented by Relative Error (RE) and Average Relative Prediction Error (AE).

5.3.3 Test Results

The results of the predictability represented by Relative Error (RE) using the four

data sets are shown in Table 5.1. For example, using DATA-3, 95.63% of the predicted

values fall within 5% of their actual observed values. The results show that our

proposed SVM predicting approach provides highly accurate prediction capability.

Table 5.2 summarizes the results of modeling the temporal inter-relationship

among software failure time sequence using our proposed SVM approach. We use

the same data sets as cited in Park et al. [29] and Karunanithi et al. [27] in order to
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Table 5.1: Performance Results

Predictability (RE ≤ 5%)

DATA-1 DATA-2 DATA-3 DATA-4

87.07% 93.88% 95.63% 95.31%

establish a common baseline for comparison purposes. Park et al. [29] applied failure

sequence number as input and failure time as desired output in feed-forward neural

network (FFNN). Based on the learning pair of execution time and the correspond-

ing accumulated number of defects disclosed, Karunanithi et al. [27] employed both

feed-forward neural network (FFNN) and recurrent neural network (RNN) structures

to model the failure process. These results are also summarized in Table 5.2. For

example, using our proposed approach with data set DATA-3, the average relative

prediction error (AE) is 1.24%. This error is lower than the results obtained by Park

et al. [29] (2.38%) using feed-forward neural network, Karunanithi et al. [27] (3.64%)

using recurrent neural network, and Karunanithi et al. [27] (6.26%) using feed-forward

neural network. In all four data sets, the next-step prediction results show that using

our proposed SVM approach yields a lower average relative prediction error compared

to other neural network approaches, and is easily implemented to predict failures dy-

namically. Fig. 5.2, Fig. 5.3, Fig. 5.4 and Fig. 5.5 show the predicted and actual

values of the failure time for each data set.

5.4 Application in Short-Term Load Forecasting

5.4.1 Formulation of the SVM-Predictor

In our proposed approach, unlike the traditional mapping characteristics, we model

the inter-relationship among power load data independent of other factors, such as
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Figure 5.2: Prediction performance using DATA-1.
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Figure 5.3: Prediction performance using DATA-2.
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Figure 5.4: Prediction performance using DATA-3.
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Figure 5.5: Prediction performance using DATA-4.
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Table 5.2: Comparison of Average Relative Prediction Error (AE%)

Data Sets Proposed FFNN RNN FFNN

SVM Approach (Ref. [29]) (Ref. [27]) (Ref. [27])

DATA-1 2.44 2.58 2.05 2.50

DATA-2 1.52 3.32 2.97 5.23

DATA-3 1.24 2.38 3.64 6.26

DATA-4 1.20 1.51 2.28 4.76

humidity and temperature. More specifically, in our proposed short-term load fore-

casting approach, the input-output pattern fed into the network is the daily average

load sequence. For one-day-ahead prediction, the input sequence and the desired

output sequence should have one day delay during the training process. The desired

objective is to force the network to recognize the one-day-ahead temporal load pat-

tern. A sample input sequence and the corresponding one-day-ahead desired output

sequence is defined as:

Input Sequence : x(d1), x(d2), · · · , x(di−1), x(di), x(di+1), · · ·

Output Sequence : x(d2), x(d3), · · · , x(di), x(di+1), x(di+2), · · ·

where x(di) is the daily average load value at day di in the training data sequence.

Gaussian kernel function is used in our support vector machine learning process. Once

the support vector machine is trained based on the training data sequence, the unseen

data sequence will be presented to the network to test the performance.
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5.4.2 Performance Metrics

The following statistical metrics are used for comparing prediction performance,

namely, Mean Square Error (MSE), Root Mean Square Error (RMSE), and Durbin-

Watson d Statistic.

MSE =
1

n

n∑

i=1

(x̂(di) − x(di))
2 (5.10)

RMSE =

√√√√ 1

n

n∑

i=1

(x̂(di) − x(di))2 (5.11)

Durbin-Watson d Statistic =

n∑

i=2

(ε̂(di) − ε̂(di−1))
2

n∑

i=1

(ε̂(di))
2

(5.12)

where x̂(di) is the predicted value of daily average load, x(di) is the actual value

of daily average load, and n is the number of days during training and testing. The

smaller the values of MSE and RMSE, the closer are the predicted values to the actual

values. ε̂(di) is the residual at day di and (ε̂(di) − ε̂(di−1)) represents the difference

between a pair of successive residuals. Durbin-Watson d Statistic is commonly used

to test for the presence of residual correlation. If the residuals are uncorrelated, the

value of d is close to 2, indicating no relationship between ε̂(di) and ε̂(di−1) and hence

implies the confidence in the validity of a model.

5.4.3 Test Results

Table 5.3 summarizes the results of daily average load forecasting using our pro-

posed approach based on the commonly used statistical metrics Mean Square Error
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(MSE) and Root Mean Square Error (RMSE). Karayiannis et al. [42] applied both

feed-forward neural network (FFNN) and cosine radial basis function neural network

(RBFNN) approaches for daily average load forecasting based on input variables of

past load, temperature and humidity. These results are also summarized in Table 5.3.

For example, using our proposed SVM approach with the same testing data set, the

Root Mean Square Error (RMSE) is 0.0512. These errors are lower than the results

obtained by RBFNN approach (0.1120) and FFNN approach (0.1702) in Karayiannis

et al. [42] that use multiple input variables. The value of Durbin-Watson d Statistic is

1.7315 in the training data set and is 1.7171 in the test data set of our proposed SVM

approach, and hence implies the confidence in the validity of our proposed approach.

The results show that our proposed SVM approach yields better generalization capa-

bility and lower prediction error compared to other neural network approaches.

Table 5.3: Performance Comparisons

Performance Proposed RBFNN FFNN

Metrics SVM Approach [42] [42]

Training Data MSE 1.8840×106 3.2296×107 3.0120×107

04/10 – 06/09, 1999 RMSE∗ 0.0522 0.2160 0.2086

Testing Data MSE 1.8114×106 8.6792×106 2.0034×107

01/25 – 03/26, 2001 RMSE∗ 0.0512 0.1120 0.1702

Input Variables Used Load Load, Temperature,

only Humidity

* scaled by the mean value of load data.
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5.5 Summary

In this chapter, we proposed an adaptive prediction model using support vector ma-

chines. The learning process of support vector machines is focused on minimizing

an upper bound of the generalization error that includes the sum of the empirical

training error and a regularized confidence interval, which eventually results in better

generalization performance. Further, this learning process is iteratively and dynami-

cally updated after every occurrence of new data in order to capture the most current

feature hidden inside the data sequence.

The proposed approach has been successfully applied and validated on applica-

tions related to software reliability prediction and electric power load forecasting. The

data sets used for software reliability prediction are four real-time control application

and flight dynamic application data sets. The data sets used for short-term load fore-

casting are the actual power load measurements recorded daily over a period of two

years in Berkeley, California. We choose a common baseline to compare the results

with related work cited in the literature. Quantitative results show that the pro-

posed approach achieves better prediction accuracy compared to existing approaches.

For software reliability prediction, we obtain statistically higher prediction accuracy

compared to the existing neural network models. For short-term load forecasting,

the proposed approaches yield lower prediction error using minimal number of input

variables compared to the existing approaches that use multiple input variables.

The research contributions in this chapter are also summarized in the following

articles [80, 81]:

• L. Tian and A. Noore, “Dynamic software reliability prediction: An approach

based on support vector machines,” International Journal of Reliability, Quality

and Safety Engineering, vol. 12, no. 4, Aug. 2005.

• L. Tian and A. Noore, “A novel approach for short-term load forecasting using
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support vector machines,” International Journal of Neural Systems, vol. 14,

no. 5, pp. 329–335, Oct. 2004.



Chapter 6

Results and Discussions

6.1 Effect of Training Size on Prediction Perfor-

mance

Most of the traditional neural network approaches use an arbitrary data partition for

training and testing [34, 26, 36, 29]. For example, 70% of the collected data were

used in the training phase, and the remaining 30% of the collected data were used

in the testing phase [34]. Approximately 20% of data were used for training, and all

the remaining data were used for validation in [29]. The fixed number of collected

data (last 30 failure data) were used for validation purposes in Cai’s experiments

irrespective of the total data set size [26]. Ho et al. [36] adopted a general 80%-

90% training and 10%-20% testing proportion out of total 74 data points, and more

specifically, 10 observations were used as out-of-sample testing set. Clearly, there

is no rigorous criteria on the training and testing partitioning with respect to the

performance validation.

Since our proposed approaches are tailored for dynamic applications, we investi-

gate the effect of the size of training patterns on the next-step prediction error. When

65
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the number of software failure time data is large, the amount of time taken for training

with all available data can be a limiting factor. The rate of occurrence of the failure

data depends on the maturity of the software. If the failure occurrence rate is high,

the amount of time available to accurately predict the next failure is small. With

these practical constraints, trade-offs between the size of data to be used for training

and the next-step prediction error become critical. Also, when selecting a subset of

data for training, we determine if the data from the earliest failure observations or

the most recent occurrences yields lower prediction error.

Assuming there are i data points available, the first set of experiment is performed

starting with the earliest observations in time to predict the (i + 1)th data. This is

the order in which the software failure time data is generated and is typically used for

training purposes. Table 6.1 summarizes the average relative error (AE) of next-step

prediction for four real-time control and flight dynamic application data sets when the

training pattern size is increased in increments of 10%. The second set of experiment

includes data starting with the most recent software failure data to predict the (i+1)th

data. Table 6.2 summarizes the average relative error of next-step prediction for all

data sets.

Table 6.1: Effect of Training Size on Average Relative Error (AE) Starting from the
Earliest Data

Percentage of the available failure data used for training

Data Set 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AE%(DATA-1) 33.29 12.69 6.78 57.83 6.67 7.15 7.98 7.71 2.90 2.26

AE%(DATA-2) 82.05 9.22 8.04 3.59 7.35 3.72 9.40 2.05 3.74 2.04

AE%(DATA-3) 5.05 7.61 9.23 12.09 6.98 5.04 3.71 5.90 1.18 0.28

AE%(DATA-4) 74.49 3.81 9.25 5.66 8.69 2.55 1.69 1.70 1.84 0.32
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Table 6.2: Effect of Training Size on Average Relative Error (AE) Starting from the
Most Recent Data

Percentage of the available failure data used for training

Data Set 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AE%(DATA-1) 14.94 33.10 78.46 4.16 2.30 2.28 34.58 4.16 2.41 2.26

AE%(DATA-2) 965.93 885.14 12.28 4.90 1.25 1.24 1.40 1.39 1.25 1.13

AE%(DATA-3) 0.72 1.48 1.45 0.66 0.40 0.35 0.32 0.40 0.32 0.28

AE%(DATA-4) 0.59 0.54 1.14 0.36 0.34 0.36 0.29 0.29 0.29 0.27

The results from Table 6.1 and Table 6.2 show that when all available data are

used, both approaches yield the best prediction performance and there is very little

difference between the two approaches. However, if the data set becomes large, or if

the rate of failure occurrence is high, then a subset of data selected from the most

recent set of data gives lower errors than data selected from the earliest observations.

In this research, we use all available time data as training patterns. The number of

delayed input neurons and the number of neurons in the hidden layer are computed

every time a new data is added to the dataset.

6.2 Results Summary in Software Reliability Pre-

diction

Our choice for using specific performance measures for assessing the predictive accu-

racy was based on similar measures used by other researchers. We believe it is reason-

able to compare our results with existing work using the same data sets and same per-

formance evaluation metrics. This provides us the opportunity to quantitatively gauge

the efficacy of our proposed approach. In addition, the relative error (RE) and/or
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average relative error (AE) are widely used in [26, 52, 53, 28, 27, 31, 54, 29, 37, 55]

for assessment of predictive accuracy.

Table 6.3 summarizes the results of our proposed three approaches when applied

to software reliability prediction modeling. Park et al. [29] applied failure sequence

number as input and failure time as desired output in feed-forward neural network

(FFNN). Based on the learning pair of execution time and the corresponding accumu-

lated number of defects disclosed, Karunanithi et al. [27] employed both feed-forward

neural network (FFNN) and recurrent neural network (RNN) structures to model the

failure process. These results are also summarized in Table 6.3. For example, using

our proposed D - ENN approach with data set DATA-3, the average relative predic-

tion error (AE) is 1.16%; using our proposed RNN - BR approach, the average relative

prediction error (AE) is 0.97%; using our proposed SVM approach, the average rela-

tive prediction error (AE) is 1.24%. These errors are lower than the results obtained

by Park et al. [29] (2.38%) using feed-forward neural network, Karunanithi et al. [27]

(3.64%) using recurrent neural network, and Karunanithi et al. [27] (6.26%) using

feed-forward neural network. In all four data sets, the next-step prediction results

show that using our proposed approaches yields a lower average relative prediction

error compared to other neural network approaches.

Table 6.3: Comparison of Average Relative Prediction Error

Comparison of Test Data Sets

Data Sets Proposed Proposed Proposed FFNN RNN FFNN

D - ENN RNN + BR SVM (Ref. [29]) (Ref. [27]) (Ref. [27])

DATA-1 2.72 1.83 2.44 2.58 2.05 2.50

DATA-2 2.65 2.06 1.52 3.32 2.97 5.23

DATA-3 1.16 0.97 1.24 2.38 3.64 6.26

DATA-4 1.19 0.98 1.20 1.51 2.28 4.76
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6.3 Discussions in Software Reliability Prediction

6.3.1 Data Type Transformation

There are two common types of software failure data: time-between-failures data

(time-domain data) and failure-count data (interval-domain data). The individual

times at which failure occurred are recorded for time-domain data collection. The

time can be either actual failure time or time between successive failures. The interval-

domain approach is represented by counting the number of failures occurring during

a fixed interval period, such as the number of failures per hour [82, 83].

Our proposed software reliability growth modeling approaches are flexible, which

can take different types of data as input. Our approaches were originally intended

for using time-domain data (actual failure time) as input to make predictions. If it

is assumed that the data collected are interval-domain data, it is possible to develop

new models by changing the input-output pair of the network.

One type of software failure data can be transformed into another type in or-

der to meet the input data requirement for a specific model. Interval-domain data

can be obtained by counting the number of failures occuring within a specified time

period in time-domain data. However, if it is needed to transform interval-domain

data to time-domain data, this conversion can be achieved by either randomly or

uniformly allocating the failures for the specified time intervals, and then recording

the individual times at which failure occurred. Some software reliability tools inte-

grate the capability of data transformation between two data types, such as CASRE

(Computer-Aided Software Reliability Estimation) [82].

Similar to what we have proposed in the previous chapters, we can model the

inter-relationship among the number of software failures, if the interval-domain data

are obtained. For example, suppose xi is the number of failures in the first i specified

time intervals, by using the proposed SVM approach, the input sequence and the
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corresponding one-step-ahead desired output sequence can be defined as:

Input Sequence : x0, x1, · · · , xi−1, xi, xi+1, · · ·

Output Sequence : x1, x2, · · · , xi, xi+1, xi+2, · · ·

Once the network is trained based on all the currently available history failure

data, the one-step-ahead prediction will be obtained.

CASRE [82] software tool was used to obtain the interval-domain data based on

the time-domain data. Since interval-domain data can be obtained by counting the

number of failures occuring within a specified time period in time-domain data, we

believe it is reasonable to take the average inter-failure time as the test interval when

we transform time-domain data to interval-domain data. Specifically, the test in-

tervals for the four data sets are 653 seconds (DATA-1), 2513 seconds (DATA-2),

3247 seconds (DATA-3), and 3653 seconds (DATA-4), respectively. We will experi-

ment with both types of software failure data in the following section to illustrate the

flexibility of our proposed approaches and their predictive performance.

6.3.2 Modeling Long-Term Behavior

The reason we focused on short-term prediction (one-step-ahead) in this research was

to establish a baseline for comparison purposes with other known approaches. We

also believe it is more meaningful to make one-step-ahead prediction in certain types

of applications in order to make early stage preventive action and avoid catastrophic

events.

Meanwhile, it is of great interest for modeling and predicting long-term behavior

of software failure process as well. For example, suppose xi is the number of failures

in the first i specified time intervals, and we are using x0, x1, · · · , xi−1 to predict xi.

Once the predicted value of xi, denoted by x̂i, is obtained, it is then used as input
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Figure 6.1: Long-term modeling performance using DATA-3 with time-domain data.

to the network to generate the predicted value of xi+1, denoted by x̂i+1. Further, x̂i

and x̂i+1 are used as input to obtain x̂i+2, and so forth.

We specifically conducted experiments to study the long-term modeling behavior

for all four data sets. As an example, Fig. 6.1 and Fig. 6.2 show the long-term (up

to five-step-ahead) predicted and actual values of the software failure data for DATA

SET # 3 in both time-domain and interval-domain situations using the proposed

adaptive support vector machines approach. The solid line represents the actual

value. The remaining group of five values on the same X-axis represent the long-

term predicted values, respectively.

Accordingly, Table 6.4 and Table 6.5 summarizes the quantitative prediction re-

sults for four data sets using the proposed adaptive support vector machines approach.

In order to alleviate the impact of different data size and scale, Mean Square Error

(MSE) metric is used. The smaller the values of MSE, the closer are the predicted

values to the actual values.
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Table 6.4: Comparison of Mean Square Error - Failure Time

Data Sets 1 Step Ahead 2 Steps Ahead 3 Steps Ahead 4 Steps Ahead 5 Steps Ahead

DATA-1 0.1057 0.2808 0.5201 0.8218 1.1431

DATA-2 1.2256 3.5840 6.4490 9.8304 13.8229

DATA-3 2.6422 8.0898 16.0485 25.7545 36.8780

DATA-4 2.6861 6.8639 12.1496 18.5289 26.3541

Table 6.5: Comparison of Mean Square Error - Number of Failures

Data Sets 1 Step Ahead 2 Steps Ahead 3 Steps Ahead 4 Steps Ahead 5 Steps Ahead

DATA-1 1.0279 2.5755 4.7273 7.7912 12.0222

DATA-2 1.1960 3.6810 7.2798 12.0711 18.5207

DATA-3 1.5196 5.7466 13.3444 25.3908 42.2251

DATA-4 1.5441 4.7364 9.2970 14.9019 21.2751

Meanwhile, based on the long-term modeling behavior as shown in Fig. 6.1 and

Fig. 6.2, we can easily obtain the corresponding inter-failure time and the number of

failures in a specified time interval for further interpretation of reliability measures.

For example, Once we have the prediction for the number of failures in the first j

specified time intervals, yj, we can obtain the number of failures in the jth specified

time interval, zj, by (yj − yj−1). Similar procedure can also be applied in order to

obtain inter-failure time data.

We also experimented with inter-failure time and the number of failures in a

specified time interval to study the long-term modeling behavior for all four data sets.

As an example, Fig. 6.3 and Fig. 6.4 show the next-step-predicted and actual values

of inter-failure time and the number of failures in a specified time interval for DATA

SET # 3 using the proposed adaptive support vector machines approach. The solid

line represents the actual value. The dotted line represents the next-step-predicted
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Figure 6.2: Long-term modeling performance using DATA-3 with interval-domain
data.

value, respectively.

Accordingly, Table 6.6 and Table 6.7 summarizes the quantitative prediction re-

sults for four data sets using the proposed adaptive support vector machines approach.

In order to alleviate the impact of different data size and scale, Mean Square Error

(MSE) metric is used. The smaller the values of MSE, the closer are the predicted

values to the actual values.

Table 6.6: Comparison of Mean Square Error - Inter-Failure Time

Data Sets 1 Step Ahead 2 Steps Ahead 3 Steps Ahead 4 Steps Ahead 5 Steps Ahead

DATA-1 0.1377 0.1647 0.1721 0.1739 0.1822

DATA-2 1.4272 2.3175 2.6395 2.9942 3.4509

DATA-3 2.9516 4.1425 5.7775 7.4656 9.4901

DATA-4 4.0592 4.6417 4.7899 4.6889 5.1295
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Figure 6.3: Inter-failure time modeling performance using DATA-3.
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Figure 6.4: Number of failure modeling performance using DATA-3.
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Table 6.7: Comparison of Mean Square Error - Number of Failures in Specified In-
tervals

Data Sets 1 Step Ahead 2 Steps Ahead 3 Steps Ahead 4 Steps Ahead 5 Steps Ahead

DATA-1 1.7671 2.1582 3.0106 4.4908 6.3827

DATA-2 1.0850 1.5328 2.8409 5.0395 8.5478

DATA-3 0.9955 1.8696 3.5994 6.3709 10.5746

DATA-4 1.7266 2.3597 3.0474 3.8957 4.1188

From the experimental results presented in the figures and tables, we can obtain

the following observations.

Using the proposed adaptive support vector machines approach as an example, we

illustrated that our modeling approaches are flexible to model software failure process

with both time-domain data and interval-domain data.

In short-term prediction situations (next-step-prediction), the results exhibit con-

sistently good prediction performance with both time-domain data and interval-

domain data independent of different characteristics of data sets.

The prediction performance is compromised with the increasing prediction steps

(long-term prediction). This is reasonable because of lacking input of the most recent

data patterns. Meanwhile, it is also shown that the effectiveness of long-term pre-

diction depends on the nature of the data set. For instance, it generates satisfactory

results for ‘smooth’ segments in the data sets. However, when it comes near the

‘turning point’ in the data sets, the effectiveness of long-term prediction is limited.

6.3.3 Comparison with Analytical Software Reliability Mod-

els

Software reliability models must cover two different types of situations. One is finding

faults and fixing them, and the other is referring to “no fault removal”. “No fault
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removal” actually means “deferred fault removal”. When the failures are identified,

the underlying faults will not be removed until the next release [17, 21]. This situation

is simple and usually occurs during validation test and operation phase. Most of

software reliability models deal with the process of finding and fixing faults that

usually occur during software verification process. Thus, if it is assumed that fault

removal process does not introduce new faults, the software reliability will increase

with the progress of debugging. A software reliability model describing such fault

detection and removal phenomenon is called a software reliability growth model [22,

23, 24].

Debugging and testing will reduce the error content but, at the same time, increase

development costs. Thus, software reliability assessment is important with respect to

determine optimal time to stop testing and also make sure the reliability requirement

has been met based on various software reliability measurement metrics [83].

In this section, we first summarize a category of stochastic reliability models for

the software failure process based on a Non-homogeneous Poisson Process (NHPP).

The category of NHPP software reliability models are realistic models for predicting

software reliability and have a very interesting and useful interpretation in debugging

and testing the software. Then, we apply those NHPP software reliability models

to the four data sets to test their performance and also compare with our proposed

modeling approaches.

Notation

m(t) expected number of errors detected by time t

a(t) error content function, i.e., total number of errors in the software

including the initial and introduced errors at time t

b(t) error detection rate per error at time t

• Goel-Okumoto Model. m(t) is defined as:
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m(t) = a(1 − e−bt)

a(t) = a

b(t) = b (6.1)

• NHPP Delayed S-Shaped Model. It is the modification of Goel-Okumoto model

to make it S-shaped. m(t) is defined as:

m(t) = a(1 − (1 + bt)e−bt)

a(t) = a

b(t) =
b2t

1 + bt
(6.2)

• NHPP Inflection S-Shaped Model. It is the same as Goel-Okumoto if β = 0.

m(t) is defined as:

m(t) =
a(1 − e−bt)

1 + βe−bt

a(t) = a

b(t) =
b

1 + βe−bt
(6.3)

• Weibull Model. It is the same as Goel-Okumoto model when c = 1. m(t) is

defined as:

m(t) = a(1 − e−btc) (6.4)

• Yamada Exponential Model. It attempts to account for testing-effort. m(t) is

defined as:

m(t) = a(1 − e−rα(1−e−βt))

a(t) = a

b(t) = rαβe−βt (6.5)
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• Yamada Rayleigh Model. It attempts to account for testing-effort. m(t) is

defined as:

m(t) = a(1 − e−rα(1−e−βt2/2))

a(t) = a

b(t) = rαβte−βt2/2 (6.6)

• Yamada Imperfect Debugging Model - I . It assumes exponential fault content

function and constant error detection rate. m(t) is defined as:

m(t) =
ab

α + b
(eαt − e−bt)

a(t) = aeαt

b(t) = b (6.7)

• Yamada Imperfect Debugging Model - II. It assumes constant introduction rate

α and the error detection rate. m(t) is defined as:

m(t) = a[1 − e−bt][1 − α

b
] + αat

a(t) = a(1 + αt)

b(t) = b (6.8)

• Pham-Nordmann Model. It assumes introduction rate is a linear function of

testing time, and the error detection rate function is non-decreasing with an

inflection S-shaped model. m(t) is defined as:

m(t) =
a[1 − e−bt][1 − α

b
] + αat

1 + β−bt

a(t) = a(1 + αt)

b(t) =
b

1 + βe−bt
(6.9)
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• Pham-Zhang NHPP Model. It assumes introduction rate is exponential func-

tion of the testing time, and the error detection rate is non-decreasing with an

inflection S-shaped model. m(t) is defined as:

m(t) =
1

1 + βe−bt
[(c + a)(1 − e−bt) − a

b − α
(e−αt − e−bt)]

a(t) = c + a(1 − e−αt)

b(t) =
b

1 + βe−bt
(6.10)

Parameter Estimation

Parameter (such as a, b) estimation is of primary importance in software reliability

prediction. Once the analytical solutions for m(t) is known for a given model, the pa-

rameters in the solution need to be determined. Parameter estimation is achieved by

applying a technique of Maximum Likelihood Estimation (MLE), the most important

and widely used estimation technique.

Performance Comparison

These NHPP software reliability growth models [84, 85, 86, 87, 88, 89, 90, 17,

91, 92, 93, 94] are applied to all four data sets with interval-domain data (number

of failures by time t). All the data points available are used for parameter estima-

tion. Parameter estimation using Maximum Likelihood Estimation (MLE) is done

via NHPP Software [83]. Each group of estimated parameters (such as a and b) are

then fed back into the corresponding models in order to investigate the capability of

each model for describing the software failure process. This procedure is extensively

used in Pham’s papers [86, 85], book [83], and other researcher’s works for checking

the ‘model fit’ performance.

In order to alleviate the impact of different data size and scale, Mean Square Error

(MSE) metric is used to compare the number of failures in the first i specified time

intervals according to the actual failure data and the predicted number of failures

obtained from different models. The smaller the values of MSE, the better the
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models describe the software failure process.

Then, we selected the top four to five models with the best performance in each

data set and recorded the results in Table 6.8.

Table 6.8: Comparison of Mean Square Error (MSE) Among NHPP Models

Model Name DATA-1 DATA-2 DATA-3 DATA-4

Delayed S-shaped SRGM [88] 173.6 75.6 171.4 356.4

Inflection S-shaped SRGM [92] - 13.5 - -

Weibull [17] 6.8 - 30.8 -

Yamada Imperfect Debugging-I [94] 13.9 11.1 25.1 12.5

Yamada Imperfect Debugging-II [94] 14.4 - - 21.1

Pham-Nordmann [93] 6.9 - 27.7 19.2

Pham-Zhang [86] - 23.6 28.0 -

Besides investigating the model describing capabilities of different models, it is

also very important to have each model undergone real predictive power test. Tradi-

tionally, a portion of the data set will be used for estimating the necessary parameters.

Then, the estimated parameters will be applied to the remaining unseen data for the

real predictive power test [85].

However, in our case, the proposed approaches are iteratively and dynamically

learning based on the continuously increasing data points. Then, the predictions are

made based on the most current learned models. Therefore, we need to make some

changes to the traditional predictive power test for analytical models. Specifically,

for fair comparison, we design a new evolving parameter estimation mechanism for

analytical software reliability models in order to be consistent with our proposed

evolving approaches. For instance, parameter estimation is conducted iteratively

after each newly arriving data point. Then, we make predictions based on the most

current estimated parameters using analytical models.
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In order to alleviate the impact of different data size and scale, we still use Mean

Square Error (MSE) metric to compare the number of failures in the first i specified

time intervals according to the actual failure data and the predicted number of failures

obtained from different models. The smaller the values of MSE, the better the real

prediction performance.

Table 6.9 summarizes the predictive performance comparisons between our pro-

posed modeling approaches and NHPP software reliability models using all four data

sets. For NHPP software reliability models, only those with MSE values around 300

or less are shown.

Table 6.9: (MSE) Comparison Between Our Approaches and NHPP Models

Model Name DATA-1 DATA-2 DATA-3 DATA-4

Delayed S-shaped SRGM [88] 0.6680 0.8869 - -

Yamada Imperfect Debugging-I [94] 107.3727 309.8692 - -

Proposed D - ENN 1.8364 3.3113 1.6014 2.8404

Proposed RNN + BR 2.2762 1.8358 0.8891 0.8316

Proposed SVM 0.7625 0.7306 1.2866 1.2097

From the experimental results presented in Table 6.8 and Table 6.9, we can obtain

the following observations.

Most of the existing analytical software reliability growth models depend on a

priori assumptions about the nature of software faults and the stochastic behavior of

software failure process. A model that fits well in DATA SET # 1 may not necessarily

fit well in DATA SET # 2. Further, those underlying assumptions are often violated

in practice. That is the reason why practitioners need to choose the best model as

testing progresses for a specific project.

The prediction effectiveness for analytical software reliability models depend on

the nature of the data set. For example, as shown in Table 6.9, Delayed S-shaped
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software reliability model can achieve considerably better prediction performance in

DATA SET # 1 and DATA SET # 2, than in DATA SET # 3 and DATA SET # 4.

Different from the analytical software reliability models, our proposed approaches

are based on totally data-driven methods in order to learn from the data set itself

and generalize a pattern embedded inside the data. This is corroborated by the facts

that our proposed approaches exhibit consistently accurate prediction performance

under multiple circumstances.

As also summarized in the previous section, the prediction performance is com-

promised with the increasing prediction steps. The explanation for this phenomenon

is that our proposed approaches are trying to discover very detailed inter-relationship

among each data set. They need the feed from the recent data in order to make ac-

curate predictions. However, the emphasis of a analytical software reliability model

is focused on the trend or ‘the big picture’ of the software failure process. Thus, the

best fit model (if any), may also provide satisfactory results for extreme-long-term

predictions with sparse data.

6.4 Results Summary in Short-Term Load Fore-

casting

Table 6.10 summarizes the results of daily average load forecasting using our proposed

three approaches based on the commonly used statistical metrics Mean Square Error

(MSE) and Root Mean Square Error (RMSE). Karayiannis et al. [42] applied both

feed-forward neural network (FFNN) and cosine radial basis function neural network

(RBFNN) approaches for daily average load forecasting based on input variables of

past load, temperature and humidity. These results are also summarized in Table 6.10.

For example, using our proposed ENN approach with the same testing data set, the

Root Mean Square Error (RMSE) is 0.0187. RMSE is 0.0286 using proposed RNN +
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BR approach, and is 0.0512 using proposed SVM approach. These errors are lower

than the results obtained by RBFNN approach (0.1120) and FFNN approach (0.1702)

in Karayiannis et al. [42] that use multiple input variables. The results show that our

proposed approaches yield better generalization capability and lower prediction error

compared to other neural network approaches.

Table 6.10: Performance Comparisons

Performance Proposed Proposed Proposed RBFNN FFNN

Metrics D - ENN RNN + BR SVM [42] [42]

Training Data MSE 5.1942×105 5.4832×105 1.8840×106 3.2296×107 3.0120×107

04/10 – 06/09, 1999 RMSE∗ 0.0274 0.0282 0.0522 0.2160 0.2086

Testing Data MSE 2.4129×105 5.6354×105 1.8114×106 8.6792×106 2.0034×107

01/25 – 03/26, 2001 RMSE∗ 0.0187 0.0286 0.0512 0.1120 0.1702

Input Variables Used Load Load Load Load, Temperature,

only only only Humidity

* scaled by the mean value of load data.

6.5 Discussions in Short-Term Load Forecasting

For comparison purposes, we also study the performance when multiple input vari-

ables such as temperature and humidity are considered. More specifically, using the

proposed SVM approach, the inputs to the model are the average daily load, temper-

ature, and humidity of the previous days. The corresponding one-day-ahead output

is the daily average load for the next day.

Table 6.11 summarizes the results of daily average load forecasting using our

proposed approach based on the commonly used statistical metrics Mean Square Error
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(MSE) and Root Mean Square Error (RMSE). For example, using our proposed SVM

approach with the same testing data set, the Root Mean Square Error (RMSE) is

0.0512 by using load as the only input variable and is 0.0542 by using multiple input

variables. These errors are lower than the results obtained by RBFNN approach

(0.1120) and FFNN approach (0.1702) in Karayiannis et al. [42] that use multiple

input variables.

Table 6.11: Performance Comparisons

Performance Proposed Proposed RBFNN FFNN

Metrics SVM Approach SVM Approach [42] [42]

Training Data MSE 1.8840×106 1.8773×106 3.2296×107 3.0120×107

04/10 – 06/09, 1999 RMSE∗ 0.0522 0.0521 0.2160 0.2086

Testing Data MSE 1.8114×106 2.0336×106 8.6792×106 2.0034×107

01/25 – 03/26, 2001 RMSE∗ 0.0512 0.0542 0.1120 0.1702

Input Variables Used Load Load, Temperature, Load, Temperature,

only Humidity Humidity

* scaled by the mean value of load data.



Chapter 7

Conclusion and Future Work

7.1 Contributions and Conclusion

Artificial neural networks are powerful methods for classification and function approx-

imation. Neural networks have better capabilities of fault tolerance, robustness, and

adaptability compared to traditional analytical models. However, neural networks

have some limitations such as experimental network parameter selection, danger of

overfitting, and convergence to local minima instead of global minima.

Optimization of neural network structure design to improve forecasting perfor-

mance is still a problem. Although researchers have attempted to address these

related issues, there is no standard method of designing the neural network structure

to solve a specific problem efficiently. Most of the existing neural network approaches

use a static structure with a predetermined number of input neurons and a prede-

termined number of hidden neurons that are established during training. In certain

applications, the number of available data increases over time. The fixed network

structure does not address the effect on the performance of prediction as the number

of data increases, and thus may not provide the best results.

Our research gave three solutions with respect to the above-mentioned limitations

85
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of supervised learning using neural networks. First, we proposed a dynamic learning

model using evolutionary connectionist. In certain dynamic applications, the num-

ber of available data increases over time. The optimization process determines the

number of the input neurons and the number of neurons in the hidden layer. The

corresponding globally optimized neural network structure will be iteratively and dy-

namically reconfigured and updated as new data arrive to improve the prediction

accuracy.

Second, we propose improving generalization capability using recurrent neural

network and Bayesian regularization. Recurrent neural network has the inherent ca-

pability of developing an internal memory, which may naturally extend beyond the

externally provided lag spaces. Moreover, by adding a penalty term of sum of con-

nection weights, Bayesian regularization approach is applied to the network training

scheme to improve the generalization performance and lower the susceptibility of

overfitting.

Third, we proposed an adaptive prediction model using support vector machines.

The learning process of support vector machines is focused on minimizing an upper

bound of the generalization error that includes the sum of the empirical training error

and a regularized confidence interval, which eventually results in better generalization

performance. Further, this learning process is iteratively and dynamically updated

after every occurrence of new data in order to capture the most current feature hidden

inside the data sequence.

All the proposed approaches have been successfully applied and validated on ap-

plications related to software reliability prediction and electric power load forecasting.

Numerical results show that the proposed approaches have improved existing perfor-

mance. For software reliability prediction, we obtain statistically higher prediction

accuracy compared to the existing neural network based models and NHPP soft-

ware reliability models. For short-term load forecasting, the proposed approaches
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yield lower prediction error using minimal number of input variables compared to the

existing approaches that use multiple input variables.

7.2 Future Work

Recent studies show that using testing time as the only influencing factor may not be

appropriate for predicting software reliability [95, 85]. Some environmental factors

should be integrated. Examples of related environmental factors are program com-

plexity, programmer skills, testing coverage, level of test-team members, and reuse

of existing code [95, 96]. Our proposed modeling approach is flexible to incorporate

the related environmental factors by changing the input variables. As part of our

on-going study, we plan to continue further research in this area.

Also, I intend to expand the research by investigating the applicability of applying

the proposed approaches to other application areas, and explore other possibilities of

improving dynamic learning and optimization of existing learning techniques.
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