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ABSTRACT 

 

Early and Late Stage Mechanisms for Vocalization Processing in 

the Human Auditory System 

 

William James Talkington 

 

The human auditory system is able to rapidly process incoming acoustic information, 

actively filtering, categorizing, or suppressing different elements of the incoming acoustic 

stream. Vocalizations produced by other humans (conspecifics) likely represent the most 

ethologically-relevant sounds encountered by hearing individuals. Subtle acoustic 

characteristics of these vocalizations aid in determining the identity, emotional state, 

health, intent, etc. of the producer. The ability to assess vocalizations is likely subserved 

by a specialized network of structures and functional connections that are optimized for 

this stimulus class. Early elements of this network would show sensitivity to the most 

basic acoustic features of these sounds; later elements may show categorically-selective 

response patterns that represent high-level semantic organization of different classes of 

vocalizations. A combination of functional magnetic resonance imaging and 

electrophysiological studies were performed to investigate and describe some of the 

earlier and later stage mechanisms of conspecific vocalization processing in human 

auditory cortices. Using fMRI, cortical representations of harmonic signal content were 

found along the middle superior temporal gyri between primary auditory cortices along 

Heschl's gyri and the superior temporal sulci, higher-order auditory regions. Additionally, 

electrophysiological findings also demonstrated a parametric response profile to 

harmonic signal content. Utilizing a novel class of vocalizations, human-mimicked 

versions of animal vocalizations, we demonstrated the presence of a left-lateralized 

cortical vocalization processing hierarchy to conspecific vocalizations, contrary to 

previous findings describing similar bilateral networks. This hierarchy originated near 

primary auditory cortices and was further supported by auditory evoked potential data 

that suggests differential temporal processing dynamics of conspecific human 

vocalizations versus those produced by other species. Taken together, these results 

suggest that there are auditory cortical networks that are highly optimized for processing 

utterances produced by the human vocal tract. Understanding the function and structure 

of these networks will be critical for advancing the development of novel communicative 

therapies and the design of future assistive hearing devices.
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 Vocalizing species critically rely upon highly optimized neuronal circuits for 

effective auditory communication. The information within a vocal signal can include 

insight into the emotional state of an animal, its intentions, and especially in the case of 

humans, semantic content. Humans have arguably placed even greater demands and 

requirements on their auditory systems – a consequence of the added complexities and 

subtleties of spoken language and other non-verbal communication sounds. The transient 

nature of vocalizations also requires these processes to be very rapid; very subtle acoustic 

changes or events that impart significant meaning often evolve on a time-scale of 

milliseconds. Not surprisingly, neuronal preference to the vocalizations of one's species 

(conspecifics) has been demonstrated in the auditory structures of many primate and non-

primate species. Sensitivity to specific acoustic attributes or combinations of attributes 

intrinsic to vocalizations likely form the early stages of these networks. These neuronal 

biases for specific acoustic features ostensibly aid the rapid segregation of vocalizations 

and other behaviorally relevant sounds from an auditory scene.  

 This literature review will provide background information for the concept of 

“conspecific vocalization sensitivity” and how it has been shown previously to be 

represented in neuronal structures, especially auditory cortices. The focus of this review 

concerns how these functions are represented in the human auditory system and how they 

form the foundation of auditory-based communicative skills. Numerous auditory and 

speech pathologies affecting communication skills arise as inadequate or compromised 

cortical representations of vocalization sounds (e.g presbycusis, central auditory 

processing disorders (CAPD), autism, etc.). Thus, the background information presented 

here will build the scientific rationale for the experiments discussed in subsequent 

chapters that investigated the network structure and physiology of these complicated and 

significant human auditory pathways.  
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I. The Human auditory system – Basic anatomy and physiology 

 

 Auditory systems rapidly process incoming acoustic information, subserving 

functions such as identifying sound sources, assessing source locations, and in some 

species, creating highly accurate spatial renderings of their environmental surroundings 

(echolocation). Humans, through non-verbal and spoken language faculties, use sound as 

an efficient medium to transmit large amounts of semantic information and to express 

nuanced emotions. These skills are supported by a network of anatomical structures 

between the cochleae and cortex. Even though the experiments described in the following 

chapters investigated neuronal responses of cortical origins, brief and general 

descriptions of certain major structures in the entire auditory pathway and their putative 

functions are given below as background.  

 

The cochlea and auditory brainstem 

 

 Sound that enters the ears begins its transduction from physical phenomenon to 

biochemical/-electric signal at the tympanic membrane (ear drum) (Figure 1-1) (Noback 

et al., 2005). Oscillations of this membrane are transferred through an elegantly levered 

system of tiny bones (malleus, incus, and stapes) that in turn apply pressure to the 

primary sensory organ of the auditory system, the coiled and multi-chambered cochlea. 

Through a membrane called the oval window, these mechanical perturbations are 

transduced into fluid pressure waves. Along the length of the cochlea is a resonant 

structure called the basilar membrane (Figure 1-2) (ibid). The basilar membrane resonates 

at different frequencies along its length; following a logarithmic tonotopic (by frequency) 

distribution, high frequency sounds resonate the base, or oval-window end of the cochlea, 

and low frequency sounds resonate the other end apex. Resonation of the basilar 

membrane causes small hair cells (possessing rows of hair-like stereocilia) to produce a 

fluid shear force between the reticular and tectorial membranes. These structures and 

others form the basis of a structure referred to as the Organ of Corti that houses the 

majority of the molecular machinery of the cochlea (ten Donkelaar, 2011). The shearing 
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forces of the hair cells cause neurotransmitters to be released, exciting the dendritic end 

of the cochlear nerve; its cell bodies reside in the spiral ganglion. Action potentials then 

proceed down the cochlear nerve to the cochlear nucleus of the brainstem (Figure 1-3).   

 The cochlear nuclei are anatomically subdivided broadly into dorsal and ventral 

sections; this division results in to quasi-distinct information processing streams. The 

ventral section (especially the anterior section, AVCN) primarily functions for sound 

localization, projecting onto the bilateral superior olivary complexes (SOC) (ten 

Donkelaar, 2011). Projections between the SOCs and the inferior colliculus form the 

lateral lemnisci (LL). The dorsal section (DCN) primarily extracts spectral and temporal 

acoustic information for source identification, sending most of its projections onto the 

contralateral inferior colliculus (IC). Information from these two streams seems to 

predominantly converge and integrate at the level of the inferior colliculi. The IC 

primarily projects to the medial geniculate body (MGB), a portion of the thalamus that is 

dominated by auditory functions. The ventral portion of the MGB is laminar and displays 

tonotopic organization similar to its primary source of input, the laminar central nucleus 

of the IC (Morest, 1965, Oliver and Morest, 1984). The ventral MGB sends projections, 

via the acoustic radiations, to the transverse temporal gyri (Heschl’s gyri) in cortex, 

proposed locations for primary auditory cortices in humans (Kaas et al., 1999). The 

dorsal and medial portions of the MGB (which are non-laminar) send projections to the 

planum temporale and other “higher-order” auditory cortical regions. The overall 

functional layout of the MGB is somewhat elusive (except for the ventral MGB) and it is 

highly influenced by the cortex through modulatory corticofugal inputs, perhaps owing to 

its purported role as an interface between the cortex and brainstem structures (Miller and 

Schreiner, 2000, Winer et al., 2001). Generally, the anatomical elements of the auditory 

brainstem show some well-defined functional organization. Notably, most of these 

structures possess tonotopic axes. This organization persists in some manner to the level 

of primary auditory cortices; we utilized cortical tonotopy maps as functional landmarks 

with respect to harmonic content processing in Chapter 3. 
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Auditory cortex 

  

 The primary auditory cortex in primates is purported to lie along the superior 

temporal plane; the cytoarchitectonic architectures of these cortices have been best 

described in the macaque (Figure 1-4). “Core” areas are usually defined in auditory 

cortices by their architectonic specificity, predominant thalamic input from the ventral 

MGB (Figure 1-5), and highly defined functional topographies; tonotopic representations 

in these regions usually display very systematic organization (Kaas et al., 1999). 

Surrounding these core regions are belt regions, forming a ring around the central core. 

Parabelt regions form another band of anatomically distinct regions that are located 

laterally to the core/belt structures. Further from the core, tonotopic organization 

becomes less organized, likely reflecting more specialized computations of auditory 

signals such as the processing of sound-source identity and vocalization features (Petkov 

et al., 2008). Additionally, belt and parabelt regions further project laterally into the 

superior temporal sulci (STS) and other temporal lobe structures as well as into frontal 

regions. 

 The auditory cortex in humans has similarly been described in architectonic and 

functional studies. Anatomically, the human cortical locations of primary auditory, or 

core regions, likely occur along the Heschl’s gyri (Morosan et al., 2001, Rademacher et 

al., 2001). Belt and parabelts regions are likely to be found along the middle aspects of 

the STG, planum temporale, and into the STS (Morosan et al., 2005). Functionally, 

numerous attempts have been made to describe tonotopically-defined core regions in 

human auditory cortices (Formisano et al., 2003, Talavage et al., 2004, Lewis et al., 2009, 

Talkington et al., 2012). Generally, mirror-symmetric tonotopic maps can be revealed on 

or near Heschl’s gyri, oftentimes posterior to the gyri. Woods et al. have performed very 

detailed functional analyses of the proposed auditory cortical fields in humans in an 

attempt to identify core-belt-parabelt organization and tuning similar to that seen in 

macaque models (Figure 1-6) (Kaas and Hackett, 2000, Woods et al., 2010). 

 The elucidation of the functions of auditory cortex and related regions has often 

paralleled work and theory accomplished in the visual faculties (Rauschecker and Scott, 

2009). Similar to the visual system, two pathways for information were derived for the 
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auditory system: an anterior-ventral pathway for object identification (“what” pathways) 

and a posterior-dorsal pathway for sound localization and action (“where” and/or “how” 

pathways) (Goodale and Milner, 1992, Kaas and Hackett, 2000, Rauschecker and Tian, 

2000, Tian et al., 2001, Arnott et al., 2004, Lomber and Malhotra, 2008). The anterior-

ventral “what” pathway is thought to house cortical processing pathways that analyze the 

fine acoustic structure of incoming auditory stimuli, allowing for very precise 

identification of sound sources; in cases of living sound sources, the sex, health, 

emotional state, and even intent can be surmised by close analyses of their respective 

vocal signals.  

 One prominent dimension of vocalization sounds is the presence of strong harmonic 

content, combinations of acoustic frequency components that are interrelated by simple 

mathematical relationships. Vocal cords and homologous structures predominantly 

produce sound by vibrating columns of air, a physical arrangement that engenders strong 

harmonic acoustic energy (Riede et al., 2001, Fitch et al., 2002). Beyond tonotopic 

representations in primary auditory cortices, we surmised that early vocalization 

processing pathways in human auditory cortices should show sensitivity to the harmonic 

content of vocalizations and other sounds. Harmonics, or very specific combinations of 

frequency information, are proposed to form the basis of higher-order auditory circuits 

and networks in simulations as well as in biological networks that show “combination-

sensitive” neuronal activation; combination-sensitive activation usually is strongest when 

stimuli contain similar acoustic profiles to conspecific vocalizations or other 

ethologically relevant stimuli (Suga et al., 1983, Lewicki and Konishi, 1995, Medvedev 

et al., 2002, Medvedev and Kanwal, 2004, Kumar et al., 2007). Thus, in Chapter 2, we 

describe an experiment in which fMRI was used to characterize auditory cortices that 

showed parametric sensitivity to the harmonic energy, quantified with a harmonics-to-

noise ratio (HNR), of artificial iterated rippled noises (IRN) and animal vocalizations. 

Regions sensitive to HNR were anatomically compared to regions that were tonotopically 

organized as well as cortex that produced preferential fMRI BOLD activity to human-

produced vocalizations. Additionally, in Chapter 3, we recorded auditory evoked 

potentials (AEP) in response to IRN stimuli to describe processing of harmonic content in 
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auditory cortices at a finer temporal scale; Chapter 4 investigated the influence of native 

language experiences on HNR-sensitive AEPs.   

 

II. Voice-sensitivity in human auditory cortices 

 

Functional neuroimaging findings 

  

 The ability to recognize, process, and produce non-verbal and verbal (speech) 

vocalizations form the auditory foundation of human communication skills. These 

abilities likely rely upon highly optimized neuronal circuits that are exquisitely sensitive 

to the acoustic signal characteristics of those sounds. The visual dominance of the fMRI 

field led to the early functional descriptions of cortical regions that produced greater 

BOLD activity to images to faces versus other categories of visual objects (Kanwisher et 

al., 1997). Specifically, Kanwisher et al. claimed that the fusiform face area (FFA) was 

selective for processing faces rather than being a region involved in more general visual 

object processing (though see below).  

 These findings in the visual realm drove researchers to investigate the presence of 

functionally homologous regions in the auditory system that would produce the greatest 

activity to human voices, rationalizing that voices are analogous to “auditory faces.” A 

seminal study by Belin et al. revealed voices areas along the upper banks of the bilateral 

STS that preferentially responded to human vocal sounds (speech or non-verbal 

vocalizations) versus other categories of complex non-vocalization sounds (Belin et al., 

2000). Previously, Binder et al. had demonstrated anterior and middle regions of the 

bilateral STSs that responded with greater BOLD intensity to speech sounds (words, 

pseudo-words, and reversed speech) versus frequency-modulated tones. Due to the 

speech or speech-like nature of the stimuli, left hemisphere activation often produced 

greater expanses of activity, consistent with historical notions of left-hemisphere 

dominance for speech processing (Parker et al., 2005), though see (Hickok and Poeppel, 

2007). Others have also described hierarchies that are organized by the intelligibility of 

speech signals (Scott et al., 2000). These hierarchies are most organized in left 
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hemisphere temporal cortices (Davis and Johnsrude, 2003). Generally, as speech signals 

become more intelligible, preferential BOLD activity shifts spatially towards the STS. 

 The findings of Belin et al. more specifically showed that these central STS areas 

were sensitive to voices by including non-verbal vocalizations. The use of non-verbal 

human vocalizations also produced a slight right-hemisphere bias for BOLD activity 

(Belin et al., 2000). It was suggested that a dominant role for the right hemisphere is 

processing the more paralinguistic elements of vocal sounds. Specifically, the anterior 

temporal lobe been shown to be crucially involved with vocal identity of speakers using 

fMRI with both attention and adaptation paradigms (Belin and Zatorre, 2003, von 

Kriegstein et al., 2003). Interestingly, this skill is thought to be present before birth in 

humans and has been recorded in other non-human primate species (DeCasper and Fifer, 

1980, Kisilevsky et al., 2003, Petkov et al., 2008). Future work in the field of cortical 

vocalization processing networks will greatly benefit from similar studies performed in 

developing infants and children as well as non-human primates. A greater anatomical and 

functional understanding of analogous cortical networks in these populations will be 

crucial to revealing the more “primitive” and foundational elements that become fully 

developed in adult humans. Reviews of vocalization processing studies in infants and 

non-human primates are provided in Chapters 5 and 6. 

  

Electroencephalographic and magnetoencephalographic findings   

  

 Electromagnetic neuroimaging techniques (EEG, MEG, and derivatives) have also 

been used to describe human neuronal responses to vocalization sounds and speech. 

These methods are complementary to fMRI; both provide characterized neuronal 

behavior on a very fine temporal scale (millisecond resolution). Levy et al., motivated by 

the aforementioned fMRI voice-selective findings (Belin et al., 2000, Belin et al., 2002), 

designed an experiment to test the presence of a homologous electrophysiological effect 

(Levy et al., 2001). Comparing AEPs to the timbre of instrumental sounds (brass, wind, 

and string instruments) to those produced by the timbre of sung tones with matched 

fundamental frequencies, they described a “voice-specific response” (VSR) occurring at 

approximately 320ms after stimulus onset. This same group subsequently designed a set 
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of follow-up experiments to assess the effects of task and attention on the VSR. 

Participants ignoring the stimuli and performing a task focused on an auditory 

discrimination other than timbre had drastic effects on the VSR (Levy et al., 2003). In 

these instances, significant amplitude differences between voices and non-voice 

instrument sounds were non-existent. The authors interpreted the VSR to represent a 

marker for the allocation of attentional auditory resources.  

 MEG has also been used to assess the VSR (Gunji et al., 2003). Gunji et al. reported 

comparable N1m amplitudes in response to voice and non-voice stimuli. Sustained fields 

(SF) that occurred 400ms after stimulus onset produced somewhat stronger magnetic 

sources to voice stimuli. Though this response was relatively close to the VSR in time 

(~320ms), it was likely not produced by the same cortical generators and was much 

smaller in overall effect size. The cortical generators of the VSR were thought to be 

generated near the STS and radially-oriented, a configuration that does not tend to 

produce strong extracranial magnetic fields. Additionally, the subjects were not attending 

to the stimuli, which was shown to have an effect on the VSR (Levy et al., 2003). 

 The VSR seemed to insufficiently describe the neuronal mechanisms on voice 

processing as more findings were published. Murray et al. demonstrated that there are 

differential electrophysiological responses as early as 70ms to sounds produced by man-

made objects versus those produced by living beings (including vocalizations and non-

vocalizations) (Murray et al., 2006). Additionally, others had subsequently revealed 

various “voice-processing responses” to real and artificial vocalizations occurring earlier 

than the VSR related to paralinguistic features and/or vocal adaptation effects 

(Schweinberger, 2001, Lattner et al., 2003, Beauchemin et al., 2006, Zaske et al., 2009).   

Motivated by these findings, Charest et al. performed an oddball-detection (1000 Hz pure 

tone) experiment to directly compare the AEP responses to voice sounds with bird 

vocalizations and environmental sounds (Charest et al., 2009). They described a “Fronto-

Temporal Positivity to Voices” (FTPV) produced at fronto-temporal electrode locations 

(e.g. FC5/6) that occurred at approximately 164ms after stimulus onset. However, speech 

and non-verbal vocalizations were used in the “voice” category; both categories of 

sounds produce similar activation maps on the scalp when compared to non-voice 

stimuli, but the responses were greater in amplitude and more widely spread to the 
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speech-containing stimuli. Notwithstanding, the authors did show a preferential response 

to voice occurring at a response time much earlier than the VSR. 

 Concerns about responses that depended upon attention to the “voice-ness” of stimuli 

or responses that seemed to be dominated by speech stimuli prompted one group to re-

analyze previously reported data within the context of conspecific vocalization 

processing (De Lucia et al., 2010). De Lucia et al. investigated electrophysiological 

responses to animal vocalizations and non-verbal human vocalizations used in a previous 

study that investigated cortical processing differences between sounds produced by living 

and “man-made” sources (Murray et al., 2006). Their previous study required participants 

to discriminate between living and man-made sound sources. Thus, they reasoned that 

any discrimination between human and animal vocalizations would be implicit and 

attention would be primarily devoted to features other than “voice-ness”. Additionally, 

the authors claim that similar studies involving ERPs (Levy et al., 2001, 2003, Charest et 

al., 2009) were critically dependent upon reference electrode choice, a decision that can 

drastically alter the statistical outcomes of voltage waveform findings (spatial scalp 

distributions and latencies) (Nunez and Srinivasan, 2006, Murray et al., 2008).  De Lucia 

et al. therefore opted to use reference-independent global field power (GFP) calculations 

to avoid this potential confound (Lehmann and Skrandies, 1980, Murray et al., 2008).  

The earliest reliable GFP differences between animal and human vocalizations were 

found 169-219ms after stimulus presentation. Topographical analyses suggested that 

animal and human vocalization responses originated from indistinguishable networks; the 

GFP results reflected different strengths of network activation. Note, however, that a lack 

of topographical differences in this study does not preclude network differences at a finer 

spatial scale (Nunez and Srinivasan, 2006). 

 The methodology and findings of De Lucia et al., though more rigorous than previous 

studies, did not significantly change the current temporal landscape of conspecific 

vocalization processing in humans. The aforementioned Charest et al., using “simpler” 

ERP methods, reported very similar diverging electrophysiological responses between 

animal and human vocalization stimuli occurring after 164ms. Nonetheless, De Lucia et 

al. proposed a relatively comprehensive temporal hierarchy for human auditory 

processing based on their original study and subsequent analyses (Murray et al., 2006, De 
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Lucia et al., 2009). Their posited temporal hierarchy is four-tiered: (1) “general” sound 

processing (low-level spectrotemporal processing) occurs before approximately 70ms, (2) 

the differentiation between man-made (machinery and instruments) and living (non-

verbal human vocalizations and animal vocalizations) sound sources occurs in a window 

near 70-119ms, (3) human versus animal vocalization discrimination occurs between 

approximately 169-219ms, and (4) music versus non-music discrimination occurs around 

291-357ms. Note that the latter two tiers tend to support the previous findings of Charest 

et al. and Levy et al., respectively (Levy et al., 2001, 2003, Charest et al., 2009). 

 The currently proposed hierarchy of De Lucia et al. temporally situates the human 

brain’s ability to discriminate between conspecific and non-conspecific vocalizations at a 

relatively early time point in cortical auditory processes. However, if the human auditory 

system is optimized – intrinsically, through development, or a combination of both – for 

processing human vocalizations, one could reasonably hypothesize that there should be 

detectable processing differences in even “earlier” auditory structures and processes. The 

time point for this phenomenon described by De Lucia et al. may have been a product of 

their chosen human stimuli, stereotypically produced human vocalizations, and their 

experimental task design, a cognitive discrimination between man-made or living sound 

sources.  

 

III. Conspecific vocalization sensitivity 

  

 The aforementioned studies of vocalization processing in human auditory cortices 

have utilized numerous types of human and animal vocalizations, mechanical, and 

environmental sounds. However, none of the aforementioned studies have adequately 

controlled for conspecific vocal content when describing cortical regions as sensitive or 

preferential to human vocal signals. Specifically, the human vocalizations used have been 

stereotypical, that is, those sounds that are within the normal repertoire of human-

produced vocalizations. Language sounds and non-verbal vocalizations such as 

humming, coughing, yawning, crying, screaming, etc. are all commonly encountered 

conspecific human vocalizations. As a result, the auditory systems of fully developed 
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adults are likely very adept at processing these sounds. Over-learned stimuli may 

unintentionally activate routinely used higher-order cortical networks (or “schemata”) 

(Alain, 2007), overshadowing neuronal activity in more primary auditory regions. This 

would prevent investigations of the auditory networks that are most critical for 

discriminating between conspecific and non-conspecific vocalizations. Thus, we utilized 

a novel class of human vocalizations, human-mimicked versions of animal vocalizations, 

as a critical control for over-established auditory network activity. Human-mimicked 

animal vocalizations are an ideal platform for investigating vocalization processing in 

humans because they are naturally produced within the acoustic limits of the human 

vocal and articulatory structures (and thus are conspecific-produced), but they also 

minimize activity in networks involved with the processing of language and other 

stereotypical human vocalizations. Chapter 5 describes a human fMRI study that revealed 

conspecific vocalization sensitive regions predominantly near left primary auditory 

cortices (PACs), situated in much earlier auditory cortical stages than traditional voice-

sensitive regions in the bilateral STS. Additionally, Chapter 7 describes the temporal 

processing dynamics for this phenomenon with a set of electrophysiology experiments. 

Together, these findings provide complementary results for building a more complete 

spatiotemporal hierarchy of vocalization processing in human auditory cortices. 
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FIGURES 

FIGURE 1-1 

 

 

 

FIGURE 1-1. External ear, middle ear, and inner ear on right side viewed from the 

front. The oval window is positioned under the “face” of the stapes. This illustration and 

caption has been adapted from another source (Noback et al., 2005). 
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FIGURE 1-2 

 

 

 

FIGURE 1-2. The organ of Corti in the middle turn of the cochlea with four rows of 

outer hair cells; there are three rows in the basal turn and five in the apical half-turn, 

reflecting the fact that the basilar membrane is wider at the apex. Inner and outer pillar 

cells enclose the tunnel of Corti, which contains perilymph and is traversed by cochlear 

nerve fibers. The pillars have fenestrated stiff processes that cover the apical surface of 

the hair cells. This illustration and caption has been adapted from another source (Noback 

et al., 2005). 
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FIGURE 1-3 

 

 

FIGURE 1-3. Overview of the nuclei and projections in the human auditory 

brainstem. Abbreviations: ar acoustic radiation; bci brachium of colliculus inferior; CI 

colliculus inferior; cn cochlear nerve; Cod, Cov dorsal and ventral cochlear nuclei; CS 

colliculus superior; ct corpus trapezoideum; gtt gyrus temporalis transversus (Heschl’s or 

transverse temporal gyrus); ll lateral lemniscus; MGB medial geniculate body; pt planum 

temporale; sad stria acoustica dorsalis; SO superior olive. This illustration and caption 

has been adapted from another source (ten Donkelaar, 2011). 
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FIGURE 1-4 
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FIGURE 1-4. The locations of primary and secondary auditory areas in the cortex 

of macaque monkeys. (A) The primary areas are within the ventral bank of the lateral 

sulcus, and are not apparent in this lateral view of the intact brain. Only the parabelt, a 

third level of auditory processing, is apparent. The lateral sulcus (LS), superior temporal 

sulcus (STS), and the central sulcus (CS) are indicated for reference. (B) Cortex of the 

upper bank of the lateral sulcus has been removed (dashed line) to reveal the auditory 

core and belt on the lower bank of the lateral sulcus. The insula (INS) is an island of 

cortex between the two banks. c A schematic of auditory cortex organization. A core of 

primary-like areas includes AI, a rostral area (R), and a rostrotemporal area (RT). Each of 

these areas is tonotopically organized from low (L) to high (H) frequencies. Lines of 

isorepresentation are shown for AI and R. The core is surrounded by a belt of secondary 

areas denoted by location: CL, caudolateral area; CM caudomedial area; ML, middle 

lateral area; RM, rostromedial area; AL, anterolateral area; RTL, lateral rostrotemporal 

area; RTM, medial rostrotemporal area. The lateral parabelt, a third level of processing, 

has been divided into rostral (RPB) and caudal (CPB) zones. Many of the belt areas are at 

least crudely tonotopically organized (Kaas and Hackett, 2000). This illustration and 

caption has been adapted from another source; Chapter 19 of (Winer and Schreiner, 

2011) by Jon Kass. 
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FIGURE 1-5 
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FIGURE 1-5. Cortical and subcortical connections of the primate auditory system. Major 

cortical and subcortical regions are color coded. Subdivisions within a region have the 

same color. Solid black lines denote established connections. Dashed lines indicate 

proposed connections based on findings in other mammals. Joined lines ending in 

brackets denotes connections with all fields in that region. The belt region may include an 

additional field, MM (see Fig. 5). Abbreviations of subcortical nuclei: AVCN, 

anteroventral cochlear nucleus; PVCN, posteroventral cochlear nucleus; DCN, dorsal 

cochlear nucleus; LSO, lateral superior olivary nucleus; MSO, medial superior olivary 

nucleus; MNTB, medial nucleus of the trapezoid body; DNLL, dorsal nucleus of the 

lateral lemniscus; VNLL, ventral nucleus of the lateral lemniscus; ICc, central nucleus of 

the inferior colliculus; ICp, pericentral nucleus of the inferior colliculus; ICdc, dorsal 

cortex of the inferior colliculus; ICx, external nucleus of the inferior colliculus; MGv, 

ventral nucleus of the medial geniculate complex; MGd, dorsal nucleus of the medial 

geniculate complex; MGm, medialymagnocellular nucleus of the medial geniculate 

complex; Sg, suprageniculate nucleus; Lim, limitans nucleus; PM, medial pulvinar 

nucleus. Abbreviations of cortical areas: AI, auditory area I; R, rostral area; RT; 

rostrotemporal area; CL, caudolateral area; CM, caudomedial area; ML, middle lateral 

area; RM, rostromedial area; AL, anterolateral area; RTL, lateral rostrotemporal area; 

RTM, medial rostrotemporal area; CPB, caudal parabelt; RPB, rostral parabelt; Tpt, 

temporoparietal area; TS1,2, superior temporal areas 1 and 2. Frontal lobe areas 

numbered after the tradition of Brodmann and based on the parcellation of (Preuss and 

Goldmanrakic, 1991): 8a, periarcuate; 46d, dorsal principal sulcus; 12vl, ventrolateral 

area; 10, frontal pole; orb, orbitofrontal areas. This illustration and caption has been 

adapted from another source (Kaas and Hackett, 2000). 
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FIGURE 1-6 

 

 

FIGURE 1-6. Auditory cortical fields (ACFs). (A) Best-frequency map, showing best 

frequency at each voxel relative to the two other frequencies. Saturation codes the 

magnitude of frequency preference (range: 0.07–0.15% difference). Red = 3600 Hz, 

Green = 900 Hz, Blue = 225 Hz. ACFs (yellow lines) were assigned following the model 

of Kaas et al. (1999). Auditory core fields were identified by their mirror-symmetric 

tonotopic organization with surrounding belt fields divided at the boundaries between 

adjacent core ACFs. White lines indicate gyral boundaries. See text for ACF labels. (B) 

Model projected on average curvature map of the superior temporal plane (green = gyri, 

red = sulci), showing anatomical structures and grids used for quantification. 

Abbreviations: HG: Heschl’s gyrus; PT: planum temporale; STG: superior temporal 

gyrus; STS: superior temporal sulcus. This illustration and caption has been adapted from 

another source (Woods et al., 2010). 
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ABSTRACT 

 

 The ability to detect and rapidly process harmonic sounds, which in nature are typical 

of animal vocalizations and speech, can be critical for communication among 

conspecifics and for survival. Single-unit studies have reported neurons in auditory cortex 

sensitive to specific combinations of frequencies (e.g. harmonics), theorized to rapidly 

abstract or filter for specific structures of incoming sounds, where large ensembles of 

such neurons may constitute spectral templates. We studied the contribution of harmonic 

structure to activation of putative spectral templates in human auditory cortex by using a 

wide variety of animal vocalizations, as well as artificially constructed iterated rippled 

noises (IRNs). Both the IRNs and vocalization sounds were quantitatively characterized 

by calculating a global harmonics-to-noise ratio (HNR). Using fMRI we identified HNR-

sensitive regions when presenting either artificial IRNs and/or recordings of natural 

animal vocalizations. This activation included regions situated between functionally 

defined primary auditory cortices and regions preferential for processing human non-

verbal vocalizations or speech sounds. These results demonstrate that the HNR of sound 

reflects an important second-order acoustic signal attribute that parametrically activates 

distinct pathways of human auditory cortex. Thus, these results provide novel support for 

putative spectral templates, which may subserve a major role in the hierarchical 

processing of vocalizations as a distinct category of behaviorally relevant sound.   
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INTRODUCTION  

  

 In the mammalian auditory system, recognizing and ascribing meaning to real-world 

sounds relies on a complex combination of both “bottom-up” and “top-down” grouping 

cues that segregate sounds into auditory streams, and ultimately lead to the perception of 

distinct auditory events or objects (Wang, 2000, Cooke and Ellis, 2001, Hall, 2005). To 

increase signal processing efficiency, different classes of sound may be directed along 

specific cortical pathways based on relatively low-level signal attributes. In humans, 

animal vocalizations, as a category of sound distinct from hand-tool sounds, are reported 

to more strongly activate the left and right middle superior temporal gyri (mSTG), 

independent of whether or not the sound is correctly perceived, and independent of 

handedness (Lewis et al., 2005, Lewis, 2006, Lewis et al., 2006, Altmann et al., 2007). 

Consequently, at least portions of the mSTG appear to process “bottom-up” acoustic 

signal features, or primitives, characteristic of vocalizations as a distinct category of 

sound. However, what organizational principles, beyond tonotopic organizations derived 

from cochlear processing, might generally facilitate segmentation and recognition of 

vocalizations?   

 One such second-order acoustic signal attribute is the sound’s harmonic structure, 

which can be quantified by the harmonics-to-noise ratio (HNR) (Boersma, 1993, Riede et 

al., 2001). Sounds with greater HNR value generally correlate with the perception of 

greater pitch salience. For instance, a snake produces a hiss with a very low HNR value, 

near that of white noise (Fig. 2-1a-b). In contrast, sounds such as a wolf howl, and some 

artificially created iterated rippled noise sounds (IRNs; see Methods), tend to have a more 

tonal quality and greater pitch salience, being comprised of more prominent harmonically 

related frequency bands (“frequency stacks”) that persist over time (hear Supplementary 

Audios 1-10 online). In mammals, the harmonic structure of vocalizations stem from air 

flow causing vibrations of the vocal folds in the larynx, resulting in periodic sounds 

(Langner, 1992, Wilden et al., 1998). In other species, this process similarly involves soft 

vibrating tissues such as the labia in the syrinx of birds, or phonic lips in the nose of 

dolphins, which underscores the ethological importance of this basic mechanism of 
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“vocal” harmonic sound production for purposes of communication. HNR measures have 

proven useful for analyzing features of animal vocal production (Riede et al., 2001, Riede 

et al., 2005). In humans, HNR measures have also been used clinically to monitor 

recovery from voice pathologies (Shama et al., 2007), and used to assess signal 

characteristics of different forms of speech, such as sarcasm (Cheang and Pell, 2008). We 

previously reported that the “global” HNR values for human and animal vocalizations 

were substantially greater than for other categories of natural sound, suggesting that this 

could be a critical signal attribute that is explicitly processed in cortex to facilitate sound 

segmentation and categorization of vocalizations (Lewis et al., 2005).  

 Moreover, HNR is an attractive signal attribute to study from the perspective of 

neural mechanisms for auditory object or sound-source segmentation. Because 

harmonically structured sounds are comprised of specific combinations of acoustic peaks 

of energy at different frequencies (cf. Fig. 2-1b-d), HNR-sensitivity could potentially 

build off of tonotopically organized representations, thereby increasing receptive field 

complexity, similar to intermediate processing stages in the cortex for other sensory 

modalities. In several animal species (e.g. frogs, birds, bats, and primates), neurons in 

auditory cortex, or analogous structures, show facilitative responses to specific 

combinations of frequencies, notably including the harmonic structures typically found in 

conspecific vocalizations (Lewicki and Konishi, 1995, Rauschecker et al., 1995, 

Medvedev et al., 2002, Medvedev and Kanwal, 2004, Petkov et al., 2008). Ensembles of 

“combination-sensitive” neurons could filter for or extract harmonic features (or 

primitives). Such representations may reflect elements of theorized spectro-temporal 

templates that serve to group spectral and temporal components of a sound-source, 

resulting in coherent percepts (Terhardt, 1974, Medvedev et al., 2002, Kumar et al., 

2007). In humans, a substantial portion of auditory cortex presumably is, or becomes, 

optimized for processing human vocalizations and speech (Belin et al., 2000, Scott, 

2005). Thus, the presentation of sounds with parametrically increasing harmonic structure 

(HNR value)—approaching those typical of speech sounds—should grossly lead to the 

recruitment of greater numbers of, or greater activity from, combination-sensitive 

neurons. If observed, this would provide evidence for HNR-sensitivity, and thus support 
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for spectral templates in representing a neural mechanism for extracting and streaming 

vocalizations.  

 The above working model indicates that HNR-sensitive regions, based on 

combination-sensitive neural mechanisms, would require input from multiple frequency 

bands. Thus, HNR-sensitive regions, to minimize cortical wiring, should be located along 

or just outside of tonotopically organized areas, and so we mapped tonotopic functional 

landmarks in some individuals. Additionally, this hierarchical model indicates that HNR-

sensitive regions should largely be located along the cortical surface between 

tonotopically organized regions and regions preferential for human-produced 

vocalizations. Thus, as additional functional landmarks, we also mapped cortices 

sensitive to human non-verbal vocalizations and to speech. 
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MATERIALS AND METHODS 

 

Participants 

 

 We studied 16 right-handed adult English speaking participants (age 18 to 39 years; 

10 women), who underwent one to five of our scanning paradigms. All participants were 

free of neurological, audiological, or medical illness, had normal structural MRI and 

audiometric examinations, and were paid for their participation. Informed consent was 

obtained following guidelines approved by the West Virginia University Institutional 

Review Board.  

 

Iterated rippled noise (IRN) stimuli 

 

 As one measure for studying harmonic structure as an isolated signal attribute, we 

used iterated ripple noises, or IRNs (Yost, 1996b, Shofner, 1999), which have previously 

been used to study pitch and pitch salience processing in other human neuroimaging 

studies (Griffiths et al., 1998, Patterson et al., 2002, Penagos et al., 2004, Hall et al., 

2005). By delaying and adding segments of white noise back to itself, IRN sounds with 

periodic harmonic structure can be constructed, producing sounds perceived to have a 

tonal quality embedded in white noise (Fig. 2-1b; hear Supplementary Audios 6-10 

online). Wideband noise was systematically altered by temporal rippling, using custom 

Matlab code (V7.4, The Mathworks Inc., Natick MA, USA; Dr. William Shofner, 

personal communication). IRN stimuli were generated (44.1 kHz, 16-bit, monaural, ~6 

sec duration) by a cascade of operations delaying and adding back to the original noise 

(“IRNO” in the terminology of Yost, 1996), with a given gain (g; ranging 0 to +1, in 

steps of 0.1) a delay (d; 0.25, 0.5, 1, 2, 4, and 8 msec), and a wide range of number of 

ripple iterations (n; including 1, 2, 4, 8, 16, 32, 64, 100, 200, 300, … to 2000). The 

perceived pitch of the IRN changes inversely with delay, and we included pitches of 125, 

250, 500, 1000, 2000, and 4000 Hz, which were chosen to complement tonotopic 

mapping of cortex (see paradigm #1). Increasing the number of iterations and/or gain 
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qualitatively increases the clarity or strength of the perceived pitch (Penagos et al., 2004), 

which appears to be highly correlated with the harmonic content of the sound. In contrast 

to earlier studies using IRNs (ibid), we examined HNR measures of IRNs (see below), 

effectively manipulating pitch depth along the dimension of harmonic content. We 

created a much larger set of IRNs (~1700) so as to span a wide range of HNR values (see 

Supplementary Fig. 2-1). We then selected sixty-three IRNs to evenly sample across the 

dimension of HNR in steps of 3dB HNR (trimmed to 2.00 sec duration, and matched for 

overall root mean square (RMS) power: -12.0 ± 0.2 dB). More importantly, the 

quantitative HNR measure could be applied to behaviorally relevant real-world sounds 

(see below), and thus we sought to test a much wider range of IRN stimuli than have 

previously been studied, being comparable in HNR ranges observed for animal and 

human vocalizations.  

 

Animal and human vocalization stimuli  

 

 We collected 160 professionally recorded animal vocalizations (Sound Ideas Inc. 

Richmond Hill, Ontario, Canada), which were typically recorded using stereo 

microphones containing two directional monaural microphones (44.1 or 48 kHz, 16-bit).  

Only one channel (left) was retained (down-sampled to 44.1 kHz) to remove binaural 

spatial cues (Cool Edit Pro v1.2, Syntrillium Software Co., now owned by Adobe Inc.), 

and the monaural recording was presented to both ears. Sounds included a wide variety of 

animals producing sound through a vocal tract or analogous structure. Care was taken to 

select sounds derived from only one animal with relatively little background or ambient 

noise, and to avoid aliasing, clipping and reverberation that could introduce spectrogram 

artifacts (Wilden et al., 1998). Most sounds were trimmed to 2.0 ± 0.2 sec duration, 

though a few sounds were of shorter duration (minimum 1.6 sec) to allow for more 

natural sounding acoustic epochs. Sound stimuli were ramped in intensity 20 msec to 

avoid spectral transients at onset and offset. Most of the animal sounds were matched in 

total RMS power to the IRN stimuli (at -12 dB). However, since some of the vocalization 

recordings included quiet or silent gaps, the overall intensity was necessarily lower for 
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some stimuli to avoid clipping (mean=-12.6 dB, range -8.2 to -20 dB total RMS power).  

Human spoken phrases and non-verbal vocalizations used in fMRI paradigm #5 were 

collected using the same techniques described above.  

 As part of an analysis of the potential behavioral relevance of the global HNR value 

of human vocalizations, we also recorded adult-to-adult and adult-to-infant speech from 

10 participants, using professional recording equipment (44.1kHz, 16-bit, monaural) in a 

sound isolation booth (Industrial Acoustics, Inc., Bronx, NY). Each participant was 

provided with a brief script of topics for conversation, including describing weekend 

plans to another adult, and speaking to a baby (a baby doll was present) in an effort to 

make him smile. The script also included speaking onomatopoetic words describing 

different sub-categories of animal vocalizations, including phrases such as “a hissing 

snake” and “a growling lion”. The stress phonemes, such as the “ss” in hiss, were 

selected and subjected to the same HNR analysis as the other sound stimuli, as described 

below. 

  

Harmonics-to-noise ratio (HNR) calculation 

 

 We analyzed and calculated HNR values of all sound stimuli using freely available 

phonetic software (Praat, http://www.fon.hum.uva.nl/praat/). The HNR algorithm (below) 

determined the degree of periodicity within a sound signal, x(t), based on finding a 

maximum autocorrelation, r'x(τmax), of the signal at a time lag (τ) greater than zero 

(Boersma, 1993):  

   

This measure quantified the acoustic energy of the harmonics that were present within a 

sound over time, r'x(τmax), relative to that of the remaining “noise”, 1- r'x(τmax), which 

represents non-harmonic, irregular, or chaotic acoustic energy. Three parameters 

influence the estimate of the harmonic structure of a sound, including a time step (10 

msec), minimum pitch cutoff for its fundamental (75 Hz minimum pitch, 20kHz ceiling), 

and periods per window (1 per window). As extreme examples, white noise yielded an 
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HNR value of -7.6 with the above parameters, while a sample consisting of two pure 

tones (2 kHz and 4 kHz sine waves) produced an HNR value of +65.4.  

 Although no single set of HNR parameters is ideal for assessing all real-world sound 

stimuli (Riede et al., 2001) (Dr. Tobias Riede, personal communication), the periodic 

nature of the IRN stimuli lent themselves to a robust HNR-value estimate over the entire 

2 second duration. The HNR values of the selected IRNs ranged from -3.5 to +25.2 dB 

HNR (grouped in increments of 3dB HNR), with ±1.3 dB HNR average standard 

deviation (range 0.3 to 7.9). For the animal vocalizations, we carefully selected those 

having a relatively stable pitch and cadence over time, ranging from -6.5 to +32.7 dB 

HNR with ±5.4 dB HNR average standard deviation (range 0.8 to 10.9). The estimated 

pitches of the animal vocalizations (Fig. 2-1f) were also derived using a 75 Hz floor and 

5 kHz ceiling (Praat software). 

 Care must be taken in applying the HNR calculation. We derived HNR values over a 

two second duration, which proved to be adequate for relatively continuous or temporally 

homogeneous sounds. However, the HNR estimate was sensitive to abrupt acoustic 

transitions, such as fricatives and plosives, because it relies on providing a good estimate 

of the fundamental frequency of the sound sample (Boersma, 1993, Riede et al., 2005). 

We found that for some sound stimuli, and some sound categories such as sounds 

produced by hand tools, it was difficult to derive reliable HNR estimates, especially when 

using long (2 sec) duration sound samples. Thus, for many natural sound stimuli it may 

be more meaningful to examine shorter segments of time, characterizing discrete 

segments as the sound dynamically changes (Riede et al., 2001). 

 

FMRI imaging paradigms  

 

 Each participant (n=16) performed one to five different scanning paradigms (41 

scanning sessions total). In all paradigms we used a clustered acquisition design allowing 

sounds to be presented during scanner silence, and allowed a one-to-one correspondence 

between a stimulus presentation and a brain image acquisition (Edmister et al., 1999, Hall 

et al., 1999). 
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 Paradigm #1. “Tonotopy” localizers. In one scanning session (12 scanning runs, ~8 

min each; n=4 participants) we randomly presented 15 repetitions of 12 test sounds and 

120 silent events as a control. The test sounds included six pure tones (PTs) at 125, 250,  

2000, 4000, 12,000 and 16,000 Hz, plus six corresponding versions of band pass noise 

(BPN) stimuli having the same six center frequencies. The BPNs were generated from 

one white noise sample that was modified by 7
th

 order Butterworth filters to yield ±1 

octave bandwidths (Fig. 2-1d). The sound intensity of the PT and BPN stimuli had been 

assessed psychophysically prior to scanning by three participants and equated for 

perceived loudness (Fig. 2-1e). All stimuli consisted of five 400 msec bursts with 35msec 

on/off ramps, spanning 2 sec duration.   

 For purposes of a task, a second PT or BPN (2 sec) was presented 200 msec after 

each respective PT or BPN test sound, having a lower, the same, or a higher center 

frequency. The task sounds spanned a gradient of roughly 3% difference at the lower and 

higher center frequencies and 0.5% difference at the middle center frequency ranges to 

match for approximate discrimination difficulty. During scanning, participants, with eyes 

closed, responded by three alternative forced choices (3AFC) as to whether the second 

sound was lower, the same, or higher in pitch, responding quickly before the second 

sound had stopped playing.  

 A multiple linear regression analysis modeled the contribution to the blood oxygen 

level-dependent (BOLD) signal time series data for each of the 6 PTs and 6 BPNs, plus 

and error term (also see “Image analysis” below). A winner-take-all algorithm identified 

voxels showing the greatest average BOLD signal magnitude responses, relative to silent 

events, to one of the three different frequency ranges presented— low (125+250 Hz, 

yellow), medium (2+4 kHz, orange), and high (12+16 kHz, red)—separately for the PT 

and BPN stimuli. We then masked the winner-take-all map for significant activation to 

the PT or BPN tonotopy data separately for each individual at two conservative threshold 

settings (p<10
-4

 and p<10
-6

), and projected these data onto the cortical surface models for 

each individual (see Image analysis). The surface models were then highly inflated and 

unfolded to facilitate viewing of the functional data (unfolded flat maps not shown), and 

these were used to guide the generation of outlines around tonotopic progressions (see 

Results for outlining criteria). For illustration purposes, individual cortical surface models 
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of the left and right hemisphere were slightly inflated, smoothed, and cut away so as to 

reveal each individual’s unique cortical geography along Heschl’s complex, including 

Heschl’s gyrus (or gyri in some individual hemispheres), planum polare, and planum 

temporale. 

 Paradigm #2. IRN HNR paradigm. For the IRN paradigm we randomly presented 180 

pairs of IRN stimuli and 60 silent events (6 runs, ~7 min each, n=16). The 60 IRN test 

stimuli included six pitches across ten 3 dB increments in HNR value, ranging from -3.6 

to +25.2 dB (Fig. 2-1f). A second IRN “task” sound was presented 200 msec after the test 

sound, and included the above 60 sounds together with two additional IRNs at -6 dB 

HNR and one at +27. The test and task IRN sound pairs had the same pitch, but had 

either higher, the same, or lower HNR-value (ranging in difference from 0 to 5 dB HNR). 

Participants indicated whether the second sound was more tonal, the same, or more 

“noisy” than the first, responding (3AFC) before the second sound had stopped playing. 

A multiple linear regression analysis modeled the BOLD response using two terms plus 

an error term. The first term modeled variance in the time series data due to the presence 

of sound versus silent events. The second term assessed how much additional variance 

was accounted for by activity that linearly correlated with the HNR value of each sound 

(partial F-statistic). HNR-sensitive regions were selected based on the second term in the 

model. Individual data sets were thresholded to p<0.01, and whole-brain corrected for 

multiple comparisons using Monte Carlo randomization statistics (see Image analyses), 

yielding a whole-brain corrections of α<0.05. The IRN HNR-sensitive ROIs were also 

separately modeled for sensitivity to the 6 different IRN pitches, using a second 

regression analysis similar to that described for paradigm #1.  

 Paradigm #3. Loudness biased IRN control paradigm. When assessed 

psychophysically in a sound isolation booth, the perceived loudness of the different IRN 

stimuli with differing pitches and HNR-values proved difficult to precisely balance 

across individuals. Because increases in sound intensity have generally been reported to 

activate larger and/or varying extents of auditory cortex (Jancke et al., 1998, Bilecen et 

al., 2002, Yetkin et al., 2004), a subset of participants (n=4) also underwent a separate 

scan to directly test the effects of sound intensity versus HNR value of the IRN stimuli. 

In one condition the 60 IRN stimuli (test and task sound pairs) were reverse-biased for 
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sound intensity (Supplemental Figure 2-5a), applying a linear gradient from -5dB to 

+5dB average RMS power to the lower to higher HNR valued IRN stimuli in steps of 3 

dB HNR. In a second condition, the opposite forward-bias with intensity was applied. 

Scanning parameters and the listening task were identical to those for IRN paradigm #2 

(sometimes conducted during the same scanning session as paradigm #2), and 6 runs of 

each condition were randomly intermixed (12 or 18 runs, ~7 min each). Multiple linear 

regression analyses modeled sensitivity to HNR value, as described in paradigm #2, for 

each of the separate loudness conditions.  

 Paradigm #4. Animal vocalization HNR paradigm. We randomly presented 160 

unique animal vocalizations, 120 IRNs (the above described 60 IRNs, presented twice), 

and 40 silent events (7 runs, ~7 min each) using the same scanning parameters as those 

for paradigms #2-3 (n=11 of the 16 from paradigm #2, including the 4 participants from 

paradigm #1). For animal vocalization task sounds, the HNR values of the test sounds 

(original recordings) were modified by either adding white noise or by filtering out white 

noise (Cool Edit Pro v1.2 software). This allowed for the same 3AFC task as with the 

IRN paradigms, judging whether the task sound was more tonal, same, of noisier than the 

test sound. A multiple linear regression analysis included four terms: Two terms modeled 

variance due to the presence of vocalizations or IRN sounds versus silent events, 

respectively, while two additional terms assessed how much additional variance was 

accounted for by activity that linearly (positively or negatively) correlated with the HNR 

value of the vocalizations or IRN sounds. These latter two terms were used to generate 

HNR-sensitive ROIs, as described in paradigm #2.  

 A post-hoc non-linear regression analysis was additionally used to model the 

response profile between BOLD signal and HNR-value of the animal vocalizations (see 

Fig. 2-4, blue curves) using the equation: 

   0 0 1(1 * (-g2*HNR))BOLD b g g e  /    

Although the coefficients in this equation (b0, g0, g1, g2) do not necessarily reflect any 

physiologically relevant measures, this non-linear regression model was chosen as it 

could more closely fit the data (blue dots) and reflect biologically plausible floor and 

ceiling limits in BOLD signal “activation” levels than could a linear fit. This approach 
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also had the advantage of being able to reveal an HNR range where the slope might be 

changing more rapidly.  

 Paradigm #5. Human vocalization HNR paradigm. For this paradigm, we included 

unique samples of (a) 60 human speech phrases (balanced male and female speakers), (b) 

60 human non-verbal vocalizations and utterances, (c) 60 animal vocalizations (a subset 

from paradigm #4), and (d) 60 IRNs (from paradigm #2), together with 60 silent events 

(8 runs, ~7 min each). Each sound category was matched for HNR value range (+3 to +27 

dB HNR) and HNR mean (+11.6 dB HNR). Participants (n=6; five from paradigm #4) 

performed a 2AFC task, indicating whether the sound stimulus was produced by a human 

or not. A multiple linear regression analysis modeled the contribution to the BOLD signal 

from each of the four categories of sound, each relative to responses to silent events as 

the baseline control. 

 

Stimulus Presentation 

 

 For all paradigms, the high fidelity sound stimuli were delivered via a Windows PC 

computer with a sound card interface (CDX01, Digital Audio), a sound mixer (1642VLZ 

pro mixer, Mackie Inc.) and MR compatible electrostatic ear buds (STAX SRS-005 

Earspeaker system; Stax LTD., Gardena, CA), worn under sound attenuating ear muffs. 

Sound stimuli were presented at 80-83 dBC-weighted, as assessed at the time of scanning 

(Brüel & Kjær 2239A sound meter) using one of the IRN stimuli (1 kHz pitch, 11.3 dB 

HNR) as a “standard” loudness test stimulus. The sound delivery system imparted a 75 

Hz high pass filter (at rate of 18 dB/octave), and the ear buds exhibited a flat frequency 

response out to 20 kHz (±4 dB). 

 

Image acquisition 

 

 Scanning was conducted with a 3 Tesla General Electric Horizon HD scanner 

equipped with a body gradient coil optimized to conduct whole-head, spiral imaging of 

BOLD signals (Glover and Law, 2001). For paradigms #2-5, a sound pair or silent event 

was presented every 10 seconds, and 4.4 sec after onset of the test sound there followed 
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the collection of BOLD signals from axial brain slices (28 spiral “in” and “out” images, 

with 1.87x1.87x2.00 mm
3
 spatial resolution, TE = 36 msec, TR = 10 sec, 2.3 sec slice 

package, FOV = 24mm). The tonotopy localizer paradigms used a 12 second cycle to 

further minimize possible contamination of the sound frequencies emitted by the scanner 

itself. The presentation of each event was triggered by a TTL pulse from the MRI 

scanner. During every scanning session, T1-weighted anatomical MR images were 

collected using a spoiled GRASS pulse sequence; 1.2 mm slices, with 0.9375- x 0.9375-

mm in-plane resolution.  

 

Image analysis 

 

 Data were viewed and analyzed using AFNI (Cox, 1996) and related software plug-

ins (http://afni.nimh.nih.gov/). For each paradigm, the scanning runs from a single 

session (6 to 18 scans) were concatenated into one time series. Brain volume images were 

motion corrected for global head translations and rotations, by re-registering them to the 

20
th

 volume of the scan closest in time to the anatomical image acquisition. BOLD data 

of each participant were converted to percent signal changes relative to the mean of the 

responses to silent events on a voxel-wise basis for each scan run. Functional data 

(multiple regression coefficients) were thresholded based on partial F-statistic fits to the 

regression models, and significantly activated voxels were overlaid onto anatomical 

images.  

 Using the public domain software package Caret (http://brainmap.wustl.edu), three-

dimension cortical surface models were constructed from the anatomical images for 

several individuals (Van Essen et al., 2001, Van Essen, 2003), onto which the volumetric 

fMRI data were projected. For all paradigms, the combination of individual voxel 

probability threshold (partial F-statistic, typically p<0.01 or p<0.05), a cluster size 

minimum (typically 9 or 50 voxels), and an estimate of signal variance correlation 

between neighboring voxels (filter width at half maximum of 2 to 4 mm) yielded the 

equivalent of a whole-brain corrected significance level of α<0.05 (AFNI plug-in 

AlphaSim.  
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 For group-average analyses, each individual’s anatomical and functional brain maps 

were transformed into the standardized Talairach (AFNI-tlrc) coordinate space. 

Functional data were spatially low-pass filtered (4 mm Gaussian filter), then merged 

volumetrically by combining coefficient values for each interpolated voxel across all 

participants. Combined data sets were subjected to t-tests (typically p<0.05), and to a 

cluster size minimum (typically 9 voxels).  

 Averaged cortical hemisphere surface models were derived from three of our 

participants, using Caret software, on which the group-averaged fMRI results were 

illustrated. Briefly, six geographical landmarks, including the ridge of the STG, central 

sulcus, Sylvian fissure, the corpus callosum (defining dorsal and ventral wall divisions), 

and calcarine sulcus of each hemisphere of each participant were used to guide surface 

deformations to render averaged cortical surface models. Portions of these data can be 

viewed at 

http://sumsdb.wustl.edu/sums/directory.do?id=6694031&dir_name=LEWIS_JN09, 

which contains a database of surface-related data from other brain mapping studies. 

 

http://sumsdb.wustl.edu/sums/directory.do?id=6694031&dir_name=LEWIS_JN08
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RESULTS 

 

 The following progression of five experimental paradigms, using high spatial 

resolution fMRI (<2mm
3
 voxels), was designed to test for HNR-sensitive patches of 

auditory cortex in humans, using both artificially constructed iterated rippled noises 

(IRNs) and real-world recordings of animal vocalizations. This included identifying 

tonotopically organized cortices and regions sensitive to human vocalizations within 

individuals, allowing for a direct test of our proposed hierarchical model for processing 

vocalizations. In order to explore the possible behavioral significance that the HNR 

signal attribute might generally have in vocal communication across species, we further 

investigated the harmonic content of various “sub-categories” of human and animal 

vocalizations to provide further context.  

 

Estimated localizations of primary auditory cortices 

 

 Based on a cytoarchitectonic study (Rademacher et al., 2001), the location of primary 

auditory cortices (PAC; including A1, R, and possibly a 3
rd

 subdivision), tends to overlap 

the medial two thirds of Heschl’s gyrus (HG), though with considerable range in 

individual and hemispheric variability. Although the correspondence between functional 

estimates for PAC with histological and anatomical criteria remains to be resolved 

(Talavage et al., 2004), the identification of frequency-dependent response regions 

(FDRRs) allowed for more precise and direct localization of HNR-sensitive regions 

(addressed below) to tonotopically organized patches of auditory cortex within individual 

hemispheres. We identified the location of tonotopically organized cortices in a subset of 

our participants (n=4, paradigm #1), utilizing techniques similar to those described 

previously (Formisano et al., 2003).  

 We charted cortex sensitive to pure tones, and additionally to 1 octave band pass 

noises, at low (125 and 250 Hz, yellow in Fig. 2-2), medium (2,000 and 4000 Hz, 

orange), and high (12,000 and 16,000 Hz, red) center frequency ranges, wherein 

participants performed a three alternative forced choice (3AFC) tone or pitch 
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discrimination task. In contrast to previous fMRI tonotopy mapping studies (Wessinger et 

al., 2001, Schonwiesner et al., 2002, Formisano et al., 2003, Talavage et al., 2004, 

Langers et al., 2007), we derived perimeter boundary outlines of FDRRs based on the 

presence of tonotopic gradients at conservative threshold settings, as illustrated for three 

representative individuals who participated in three or more of our paradigms (Fig. 2-2a-

c, black outlines; also see Methods). The tonotopic subdivisions of the FDRRs were 

characterized by cortex that responded preferentially, but not exclusively, to particular 

pure tone frequency bands (Fig. 2-2a, histograms). Three criteria were used to define 

FDRR outlines. First, a red to orange to yellow contiguous progression, in any direction, 

had to be present along the individual’s cortical surface model using either the pure tone 

data or a combination of pure tone and band-pass noise data. However, outlines only 

encircled the high threshold (p<10
-6

) pure tone data. Second, some of the FDRR 

progressions showed a mirror image organization with neighboring progressions, as 

reported previously in human and non-human animal studies (ibid). In those instances 

activation gradients were divided roughly midway between the two FDRRs (e.g. Fig 2-

2a, left hemisphere midway along the yellow cortex). Third, FDRR progressions had to 

show continuity in both volumetric and surface projection maps to be included within an 

outline.  

 To our knowledge, this is the first fMRI study to chart the location of cortex sensitive 

to very high frequency tones (12,000 and 16,000 Hz, red). A right hemisphere bias for 

high frequencies (up to 14,000 Hz) and left hemisphere bias for low frequencies has been 

reported using auditory evoked potentials (Fujioka et al., 2002). However, the results of 

the present study demonstrated significant activation in both hemispheres to the high 

frequencies (red), which was even evident when examining responses to only the 16,000 

Hz pure tones relative to silence (see Supplementary Fig. 2-2). 

 FDRR organizations defined by pure tones and band-pass noises were largely 

congruent with one another (Fig. 2-2a; upper vs. lower panels), although the band-pass 

noises generally activated a greater expanse of auditory cortex, which may include “belt” 

regions as reported previously in human (Wessinger et al., 2001) and non-human 

primates (Rauschecker et al., 1995). Note, however, that the functionally defined FDRR 
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outlines may not accurately reflect genuine boundaries between primary and non-primary 

areas since they were dependent on relative threshold settings (Hall, 2005). Nonetheless, 

we could reliably reveal one to three FDRRs located along Heschl’s gyrus in each 

hemisphere of each participant, thereby refining estimated locations of PACs, and 

allowing for direct comparisons within individuals with the location of HNR-sensitive 

cortices, as addressed in the following section.    

  

Iterated rippled noises reveal HNR-sensitive patches of cortex 

 

 Next, we investigated our hypothesis that portions of cortex outside of FDRRs would 

be characterized by activity that increased with increasing harmonic content (HNR value) 

of the sound stimuli, representing “intermediate” acoustic processing stages. We used 

IRN sounds because they could be systematically varied in HNR value, yet not be 

confounded by additional complex spectro-temporal signal attributes that are typically 

present in real-world sounds such as vocalizations. Sixty IRN stimuli were used, 

spanning 10 different ranges of HNR value for each of 6 different pitches (Fig. 2-1f, 

green). In contrast to previous studies using IRNs to study pitch depth or pitch salience 

(Griffiths et al., 1998, Hall et al., 2002, Patterson et al., 2002, Krumbholz et al., 2003, 

Penagos et al., 2004), we included a much broader range of effective HNR values (and 

pitches) that was more comparable to ranges observed with vocalization sounds. 

Participants heard sequential pairs of IRN stimuli and performed a 3AFC discrimination 

task indicating whether the second sound was more tonal, the same, or noisier than the 

first (n=16, paradigm #2; see Methods).  

 Relative to silent events, IRN stimuli activated a broad expanse of auditory cortex, 

including the FDRRs (not shown). More importantly, all sixteen participants revealed 

multiple foci in auditory cortex characterized by increasing activity that showed a 

significant positive, linear correlation with parametric increase in HNR-value of the IRN 

stimuli. All of the illustrated IRN HNR-sensitive regions-of-interest (ROIs) showed 

significantly greater, positive BOLD signal activation relative to silent events (e.g. Fig. 2-
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3 error bars in charts). The topography of these regions was illustrated on cortical surface 

models generated for the same three individuals depicted previously (Fig. 2-3a-c, green).  

 In general, the IRN HNR-sensitive foci showed a patchy distribution along much of 

Heschl’s complex, the superior temporal plane, and in some hemispheres included cortex 

extending out to the mSTG. Within individuals, some of these foci partially overlapped 

portions of the outlined FDRRs. In these regions of overlap, the tonotopically organized 

frequency sensitive ranges were sometimes congruent with the pitch range of the IRN 

(Supplementary Fig. 2-3), though the degree to which representations of periodicity pitch 

versus spectral pitch overlap remains a controversial issue outside the scope of the 

present study (Langner, 1992, Jones, 2006). Nonetheless, these results show, at high 

spatial resolution within individuals, that substantial portions of IRN HNR-sensitive 

regions were located along and just outside the FDRRs. 

 Group-averaged IRN HNR-sensitive regions were projected onto an averaged cortical 

surface model (Fig. 2-3d; see Methods). These results revealed a left hemisphere bias for 

IRN HNR-sensitive activation, evident as more significant and expansive areas (green 

and light green) involving portions of HG and cortex extending out to the mSTG. In 

contrast to previous studies that localized cortex sensitive to increasing pitch depth, or 

pitch strength, using rippled noises or other complex harmonic stimuli (Griffiths et al., 

1998, Hall et al., 2002, Patterson et al., 2002, Penagos et al., 2004), the present results (i) 

indicated that the global HNR value of a sound represents a quantifiable acoustic signal 

attribute that is explicitly reflected in activation of human auditory cortex, (ii) 

demonstrated that IRN HNR-sensitive foci partially, but clearly did not completely 

overlap, with estimates of tonotopically organized cortices, suggestive of a hierarchical 

relationship, and (iii) showed that there was a left hemisphere lateralization bias for 

HNR-sensitivity, even though non-natural and relatively acoustically “simple” sound 

stimuli were used.  
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Control conditions for IRN pitch and loudness 

  

 As control measures, we explicitly examined IRN pitch and perceived loudness 

(intensity) as variables that might affect the cortical activation patterns (Bilecen et al., 

2002). A secondary analysis restricted to the IRN HNR-sensitive regions-of-interest 

(ROIs) tested for linear correlations with increasing or decreasing IRN pitch sensitivity, 

and failed to show any significant correlations (Supplementary Fig. 2-4).  

 To directly assess the effects of parametric increases or decreases in IRN stimulus 

intensity, a subset of the participants (n=4, paradigm #3) were tested using IRN stimuli 

where the HNR-values were forward- or reverse-biased with intensity (Supplementary 

Fig. 2-5; see Methods). Both forward- and reverse-biased IRN sounds yielded positive, 

linearly correlated activation foci that overlapped one another, demonstrating that the 

identification of IRN HNR-sensitive regions was not simply due to unintended 

differences in perceived loudness of the IRNs with different HNR values.   

 

Animal vocalizations also reveal HNR-sensitive cortices 

 

 Next, we investigated whether we could reveal HNR-sensitive regions using 

recordings of natural animal vocalizations, and, if they existed, whether they overlapped 

with IRN HNR-sensitive regions. One possibility was that there might be a single HNR-

sensitive processing “module” that would show HNR-sensitivity independent of the type 

of sound presented. Alternatively, because animal vocalizations contain additional signal 

attributes statistically more similar to human vocalizations than to IRNs, HNR-sensitivity 

using vocalizations might reveal additional or different foci along “higher-level” stages 

of auditory cortex, such as mSTG (Lewis et al., 2005, Altmann et al., 2007). As in the 

previous paradigm, we employed a 3AFC harmonic discrimination task, and included 

IRNs and silent events as controls (n=11, paradigm #4, see Methods).  

 Relative to IRNs, animal vocalizations activated a wider expanse of auditory cortex, 

and with greater intensity, including near maximal BOLD signal responses within the 

FDRRs and IRN HNR-sensitive regions (see Fig. 2-4d IRN foci charts, and Fig. 2-5 
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histograms). Moreover, all participants revealed activation foci showing a significant 

positive, linear correlation with increase in HNR-value of the animal vocalizations (Fig. 

2-4a-c, blue cortex). Similar to the IRN HNR-sensitive regions (green cortex), these foci 

also showed a patchy distribution. However, within individuals there was only a 

moderate degree of overlap between IRN and animal vocalization HNR-sensitive regions 

(blue-green intermediate color) at these threshold settings, despite similarity in the range 

of HNR values used. Most vocalization HNR-sensitive regions were located further 

peripheral (lateral and medial) to the FDRRs and IRN HNR-sensitive regions, including 

regions along the mSTG in both hemispheres. Response profiles for nearly all animal 

vocalization HNR-sensitive ROIs (Fig. 2-4a-c, charts) revealed at least a trend for also 

showing positive, linear correlations with the HNR value of the IRN sound stimuli. 

However, the IRNs were generally less effective at driving activity in these regions, 

which is evident in all the charts (green lines; also Fig. 2-5 histograms). In some 

hemispheres, the animal vocalization data points resembled more of a negative 

exponential or sigmoid-shaped response curve. Thus, in addition to linear fits we also 

modeled these data using an exponential function (see Methods), thereby constructing a 

more biologically plausible activation profile that respected floor and ceiling limits in 

BOLD signal (e.g. Fig 2-4a, right hemisphere; also see Supplementary Fig. 2-6 for 

additional individual charts).   

 Group-averaged data, similar to the individual data sets, demonstrated that the HNR-

sensitive regions defined using animal vocalizations (Fig. 2-4d, blue), as opposed to 

using IRNs (green), were located further laterally, predominantly along the mSTG, with a 

strong left-lateralization. Moreover, animal vocalization HNR-sensitive regions in all 

participants showed greater response magnitudes than those defined using IRNs (Fig. 2-

4d, charts). However, within the IRN HNR-sensitive ROIs (charts in green boxes) the 

linear correlations with animal vocalizations were relatively flat, appearing to have 

reached a ceiling plateau in both hemispheres. Within the animal vocalization HNR-

sensitive ROIs (charts in blue boxes) both the IRN and animal vocalizations yielded 

positive, linear correlations with the HNR values, but the IRN data were of relatively 

lower response magnitudes and slightly less steep slopes, and thus tended to not meet 

statistical significance at our threshold settings.  
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 In sum, these results revealed the existence of HNR-sensitive regions when using 

animal vocalizations and/or IRN stimuli, but the two respective activation patterns 

showed only a moderate degree of overlap (Fig. 2-4, blue vs. green). The extent of 

overlap appeared to be in part due to floor and ceiling effects with the BOLD signal, in 

that the animal vocalizations, regardless of HNR value, lead to near maximal activation 

(green boxed charts). However, other acoustic signal differences between vocalizations 

and IRNs are also likely to have contributed to the degree of overlap. Activation of the 

mSTG may have required sounds with more specific effective stimulus bandwidths, 

specific power spectral density distributions of different harmonic peaks (e.g. the 1/ƒ
α
-

like power spectrum density in panels of Fig. 2-1a vs 2-1b; ƒ= frequency, 1<α<2), and/or 

different specific frequencies, harmonics and sub-harmonics that are present in natural 

vocalizations but not IRNs (see Discussion). Nonetheless, these results demonstrated that 

there exists cortex, especially in the left hemisphere, that is generally sensitive to the 

degree of harmonic structure present in artificial sounds and real-world vocalizations. 

 

HNR-sensitive regions lie between FDRRs and human voice-sensitive cortices  

 

 Our working model for HNR-sensitivity, as representing intermediate processing 

stages, assumes that portions of auditory cortex of adult human listeners are optimally 

organized to process the signal attributes characteristic of human vocalizations and 

speech. Thus, as a critical comparison, we localized cortex sensitive to human non-verbal 

vocalizations (Hvocs) and to human speech (Speech) in a subset of the participants (n=6, 

paradigm #5). In the same experimental session, we also presented animal vocalizations 

(Avocs), IRN stimuli, and silent events (see Methods). For this paradigm, all four sound 

categories (Speech, Hvocs, Avocs, and IRNs) had the same restricted range of HNR 

values (mean = +11.2, range +3 to +25 dB HNR), and participants indicated by 2AFC 

whether or not the sound was produced by a human (see Methods). 

 As expected, all four sound categories presented yielded significant activation 

throughout the FDRRs, IRN HNR-sensitive ROIs, and other portions of auditory cortex 

(not shown, though see group-average data in Fig. 2-5 histograms). More specifically, we 
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charted the locations of foci that showed differential activation to one versus another 

category of sound in relation to the previously charted FDRRs and HNR-sensitive regions 

(Fig. 2-5, colored cortical maps). In particular, regions sensitive to human non-verbal 

vocalizations (violet and pink) relative to animal vocalizations, speech (purple) relative to 

human non-verbal vocalizations, and regions preferential for animal vocalizations (light 

blue) relative to IRNs, were all superimposed onto averaged cortical surface maps. The 

HNR-sensitive regions (dark blue and green hues) and FDRRs (yellow and outlines) were 

those depicted previously (refer to Fig. 2-5 color key). Although the combined 

overlapping patterns of activation are complex, a clear progression of at least three tiers 

of activation was evident (Fig. 2-5a; rainbow colored arrows). FDRRs (yellow and 

outlines, derived from Fig. 2-2) represented the first tier, and were located mostly along 

the medial two thirds of Heschl’s gyri, consistent with probabilistic locations for primary 

auditory cortices (Rademacher et al., 2001). FDRRs were surrounded by, and partially 

overlapped with, HNR-sensitive regions defined using IRNs (green), and those regions 

were flanked laterally by HNR-sensitive regions defined using animal vocalizations (dark 

blue). Together, these HNR-sensitive regions were tentatively regarded as encompassing 

a second tier, although they may be comprised of multiple processing stages.  

 Regions preferential for processing human vocalizations comprised a third tier, which 

included cortex extending into the STS. This included patches of cortex preferential for 

speech (purple) relative to human non-verbal vocalizations, which were strongly 

lateralized to the left STS, consistent with earlier studies (Zatorre et al., 1992, Belin et al., 

2000, Binder et al., 2000, Scott and Wise, 2003), and patches of cortex preferential for 

human non-verbal vocalizations (pink) relative to animal vocalizations, which were 

lateralized to the right hemisphere, also consistent with earlier studies (Belin et al., 2000, 

Belin et al., 2002).  

 Within all ROIs representative of these three tiers (Fig. 2-5, color coded histograms), 

human vocalizations produced the greatest degree of activation, even within the IRN 

HNR-sensitive regions (green boxes). However, when progressing from IRN HNR-

sensitive regions to animal vocalization HNR-sensitive regions to speech-sensitive 

regions, activation became significantly preferential for human vocalizations (e.g. purple 

and pink boxed histograms). This three tiered spatial progression was generally consistent 
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with proposed hierarchically organized pathways for processing conspecific vocalizations 

in both human (Binder et al., 2000, Davis and Johnsrude, 2003, Scott and Wise, 2003, 

Uppenkamp et al., 2006) and non-human primates (Rauschecker et al., 1995, Petkov et 

al., 2008), and with the identification of an auditory “what” stream for processing 

conspecific vocalizations and calls (Rauschecker et al., 1995, Wang, 2000).  

 

Sub-categories of vocalizations fall along an HNR continuum  

 

 Do the global HNR values of human or non-human animal vocal communication 

sounds have any behavioral relevance? We further sought to determine whether our 

approach of exploring global HNR values could be useful for further characterizing 

different sub-categories of human and animal vocal communication sounds, concordant 

with ethological considerations in the evolution of vocal production (Wilden et al., 1998, 

Riede et al., 2005, Bass et al., 2008)  

 In addition to the vocalizations used in neuroimaging paradigms 4 and 5, we also 

derived HNR value ranges and means for several conceptually distinct sub-categories of 

human communication sounds (see Methods). Indeed, various sub-categories of 

vocalizations could be at least roughly organized along the HNR continuum (Fig. 2-6, 

colored ovals and boxes). In the lower HNR ranges this included hisses and a sub-

category that included growls, grunts, and groans, most of which are vocalizations 

associated with threat warnings or negative emotional valence. Whispered speech, as a 

sub-category, was also characterized by relatively low HNR values, consistent with its 

social function as an acoustic signal with a low transmission range and reduced speech 

perceptibility (Cirillo, 2004). At the other extreme, vocal singing and whistling sounds 

(though not produced by vibrating tissue folds) were characterized by significantly higher 

HNR values than those typical for conversational speech. We also derived HNR values of 

spoken phrase segments from adults (n=10) when speaking in monologue to other adults 

versus when speaking to a realistic infant doll (Fig. 2-6, rectangles; see Methods). 

Interestingly, in addition to generally increasing in pitch, each participant’s voice was 

characterized by significantly greater harmonic structure when speaking to an infant. 
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 Also noteworthy was that the vocalization sub-categories tended to have 

onomatopoetic descriptors (in many languages), which when spoken stress phonemes that 

correlate with the HNR structure of the corresponding category of sound. For instance, 

we recorded phrases from multiple speakers and found the “ss” in “hissing” to be 

consistently lower in HNR value range than the “gr” in “growling”, which was lower 

than the “oo” in “mooing” (Fig. 2-6, top; see Methods). Moreover, onomatopoetic words 

(in Japanese) have previously been associated with activation of the bilateral (left>right) 

STG/STS (Hashimoto et al., 2006), overlapping blue to violet/purple regions in Figure 2-

5. Together, these results suggest that variations of harmonic structure during vocal 

production, by animals or humans, can be used to convey fundamentally different types 

of behaviorally relevant information.  
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DISCUSSION 

 

 The main finding of the present study was that bilateral portions of Heschl’s gyri and 

mSTG (left > right) showed significant increases in activation to parametric increases in 

overall harmonic structure of either artificially constructed IRNs and/or natural animal 

vocalizations. Within individuals, these HNR-sensitive foci were situated between 

functionally defined primary auditory cortices and regions preferential for human 

vocalizations in both hemispheres, but with a significant left-lateralization. We propose 

that the explicit processing of harmonic content serves as an important bottom-up, 

second-order signal attribute in a hierarchical model of auditory processing, which are 

comprised pathways optimized for extracting vocalizations. In particular, HNR-sensitive 

cortex may function as an integral component of computationally theorized spectro-

temporal template staging, which serves as a basic neural mechanism for the segregation 

of acoustic events (Medvedev et al., 2002, Kumar et al., 2007). Thus, higher-order signal 

attributes, or primitives, that are characteristic of behaviorally relevant real-world sounds 

experienced by the listener may become encoded along intermediate processing stages 

leading to the formation of spectro-temporal templates, which dynamically develop to 

statistically reflect these acoustic structures. In the mature brain, matches between 

components of an incoming sound and these templates may subsequently convey 

information onto later processing stages to further group acoustic features, segment the 

sound, and ultimately lead to its identification, meaning or relevance. 

 However, why didn’t the IRN and animal vocalization HNR-sensitive regions (i.e. 

Fig. 2-4; green vs blue foci) of auditory cortex completely overlap to indicate a single, 

centralized stage of HNR processing? Our results were consistent with previous 

neuroimaging studies manipulating pitch salience or temporal regularity of IRNs or 

complex tones (cf. Figs. 2-3 – 2-5; green), all of which revealed bilateral activation along 

lateral portions of Heschl’s gyri and/or the STG (Griffiths et al., 1998, Patterson et al., 

2002, Krumbholz et al., 2003, Penagos et al., 2004, Hall et al., 2005). HNR-sensitivity for 

animal vocalizations may not have overlapped the entire IRN HNR-sensitive region 

because other features of animal vocalizations, regardless of their HNR value, 
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contributed to the maximal or near maximal BOLD activation within both FDRRs and 

IRN HNR-sensitive locations (i.e. Fig. 2-5). As a result, animal vocalization HNR-

sensitivity may not have been detectable. Conversely, IRN HNR-sensitive regions may 

not overlap animal vocalization HNR-sensitive regions due to serial hierarchical 

processing of acoustic features. IRNs, with relatively simple harmonic structure (equal 

power at every integer harmonic), appeared to be effectively driving early stages of 

frequency combination-sensitive processing. However, the IRNs were less capable of 

significantly driving subsequent stages along the mSTG, and thus were effectively 

filtered out from the pathways we identified for processing vocalizations. The other 

signal attributes required to drive higher stages (mSTG and STS) presumably include 

more specific combinations and distributions of power of harmonic and sub-harmonic 

frequencies that more closely reflect the statistical structure of components characteristic 

of vocalizations (Darwin, 1984, Shannon et al., 1995, Giraud et al., 2000). The series of 

acoustic paradigms that we employed at minimum serve to identify cortical regions for 

further study highlighting additional acoustic attributes. Although other higher-order 

signal attributes that would further test this model remain to be explored, the present data 

indicate that harmonic structure represents a major, quantifiable second-order attribute 

that can differentially drive intermediate processing stages of auditory cortex, consistent 

with a hierarchical stectro-temporal template model for sound processing.   

 The apparent hierarchical location of HNR-sensitive regions may be a corollary to the 

intermediate cortical stages of other sensory systems. For example, V2, V4 and TEO in 

human visual cortex (Kastner et al., 2000) and S2 in primate somatosensory cortex (Jiang 

et al., 1997) have “larger” and more complex receptive fields relative to their respective 

primary sensory areas, showing sensitivity to textures, shapes, and patterns leading to 

object segmentation.  In all three modalities, these intermediate cortical stages may be 

integrating specific combinations (second-order features) of input energy across spatially 

organized maps corresponding to their respective sensory epithelia. In this regard, HNR-

sensitive regions appear to represent cortical processing stages analogous to intermediate 

hierarchical stages in other sensory modalities, potentially reflecting a general processing 

mechanism of sensory cortex.  
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Cortical organization for processing different categories of real-world sounds 

 

 The present results supported and further extended our previous findings, in that the 

preferential activation of mSTG by animal vocalizations, compared to hand-tool sounds, 

was likely due to the greater degree of harmonic content in the vocalizations (Lewis et 

al., 2005, Lewis et al., 2006). Thus, HNR-sensitive stages could be facilitating the 

processing of vocalizations as a distinct category of real-world sound. However, an 

auditory evoked potential study examining responses to sounds representative of living 

objects (which included vocalizations) versus man-made objects, both of which were 

explicitly matched overall in HNR values, reported a differential processing component 

between the two categories starting ~70 msec from the onset of sound (Murray et al., 

2006). Thus, it is clear that complex signal attributes other than global HNR value are 

contributing grossly to early stages of sound categorization. Nonetheless, HNR-

sensitivity should be considered when exploring processing pathways for different 

categories of sound.  

 Human vocalizations, as a sub-category of sound distinct from animal vocalizations, 

are generally characterized by more idiosyncratic combinations of frequencies, specific 

relative power distributions, as well as other spectral and temporal attributes not taken 

into consideration here (Rosen, 1992, Shannon et al., 1995, Wilden et al., 1998, Belin et 

al., 2000, Cooke and Ellis, 2001, Belin et al., 2004). These other more subtle signal 

attribute differences appear to be necessary to evoke activation of the speech-sensitive 

regions we and others have observed along the STG/STS regions.  Those regions are 

thought to represent subsequent hierarchical stages involved more with processing 

acoustic primitives or symbols just prior to extracting linguistic content (Binder et al., 

1997, Cooke and Ellis, 2001, Scott and Wise, 2003, Price et al., 2005). Thus, the 

contributions of HNR relative to other higher-order signal attributes toward the 

processing of human vocalizations, as an apparently distinct sub-category of 

vocalizations, remains to be explored. 
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Relation of HNR-sensitivity to speech processing 

  

 Evidence for the presence of spectral templates in humans has significant 

implications for advancing our understanding how one may process and learn to 

recognize sounds, including speech. In early development, experience with behaviorally 

relevant vocalizations produced by one’s caretakers, and perhaps one’s own voice, could 

help establish the receptive fields of auditory neurons to exhibit sensitivity to their 

specific frequency combinations, thereby reflecting the statistical distributions of 

harmonic structure of human (conspecific) vocalizations.  These experiences and 

subsequent cortical encodings will be unique to each individual’s listening experience. 

Large cortical ensembles of frequency combination-sensitive neurons may thus develop 

(e.g. Fig. 2-4a-c HNR-sensitive patches unique to each individual) to comprise spectral 

and spectro-temporal templates, and these templates could serve as Bayesian-like 

networks to rapidly group or stream vocalizations from a person or sound-source 

(Medvedev et al., 2002, Kumar et al., 2007). As a side note, such principles have already 

been implemented in automated speech recognition algorithms, in the form of “weft-

resynthesis” (Ellis, 1997), which may be an important biologically-inspired mechanism 

for the future development of hearing devices optimized for amplifying speech sounds.  

 On a larger scale of auditory cortex, and common across individuals, a hierarchical 

organization appears to become further established. In our data, sounds containing 

increasing degrees of acoustic structure, defined here as becoming more characteristic of 

human vocalizations, preferentially recruited cortex extending out to the mSTG and STS 

in both hemispheres (Fig. 2-5, rainbow colored progressions). However, the left 

hemisphere had more, and better organized, cortex devoted to HNR-sensitive processing, 

and also a stronger bias for processing human speech sounds (Binder et al., 2000, Boemio 

et al., 2005). Interestingly, at birth, humans are reported to already have a left hemisphere 

superiority for processing human linguistic stimuli (Pena et al., 2003). Thus, there may be 

a predisposition for the left hemisphere to process harmonic sounds, perhaps even being 

influenced by listening experiences in utero.  

 Interestingly, modifying one’s voice to speak to infants, ostensibly to make them 

happy, was strongly associated with an increase in the harmonic structure of spoken 
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words and phrases (Fig. 2-6, rectangles). This largely appeared to be due to the 

elongation of vowel sounds, accompanied by a decrease in noise and other “complicated” 

acoustic features. Though speculative, this could serve as a socially interactive 

mechanism to help train the auditory system of a developing infant to recognize and 

perceive the basic statistical structure of human vocalizations. He or she would then 

eventually learn to process more complex variations in spectral, temporal, and spectro-

temporal structure that convey more specific and behaviorally relevant meaning or 

communicative content, such as with phonemes, words, prosody, and other basic units of 

vocal communication and language.  

 In sum, although the HNR-value of a sound is by no means the only important 

acoustic signal attribute for processing real-world sounds, our results indicate that 

harmonic structure is parametrically reflected along human auditory cortical pathways for 

processing vocalizations. This attribute may serve as an integral component for 

hierarchical processing of sounds, notably including vocalizations as a distinct category 

of sound. Consequently, the HNR acoustic signal attribute should be considered when 

studying and distinguishing among neural pathways for processing and recognizing 

human vocalizations, auditory objects, and other “conceptually” distinct categories of 

real-world sounds. 
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FIGURES AND TABLES 

FIGURE 2-1 

 

FIGURE 2-1.  Sound stimulus attributes. a, 3D spectrograms of five vocalizations (2 

sec duration), including one from a snake, two from birds, and two from mammals. In all 

plots, the frequency was limited to 10,000 Hz for illustration purposes, and the z-axis 

represents log-power (relative intensity, scale in panel c in log exponentials). The HNR 

value for each sound is indicated. b, Spectrograms of IRNs derived from one white noise 

sample (leftmost panel). The IRNs with greater HNR value correlate with more 

prominent frequency bands (peaks) at all harmonics (1 kHz in these examples), and had a 

more tonal quality. Spectrogram of an example (c) pure tone (PT) and (d) band pass noise 

(BPN) used for the frequency-dependent response regions (FDRR/tonotopy) localizer 

scans. Note the similarity of these peaks to those of the IRNs. e, Audiometric profile used 

to match perceived loudness of PT and BPN stimuli for the FDRR localizer scans. (f) 

Charts comparing “estimated pitch” versus HNR value of IRNs and animal vocalizations. 

Light green dots depict IRNs for which a pitch could not be accurately estimated 

computationally, though was determined by the IRN delay. There was no significant 

linear correlation between the pitch and HNR value for either stimulus set. 
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FIGURE 2-2 
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FIGURE 2-2. Functional localization of frequency-dependent response regions 

(FDRRs) in auditory cortex of three participants (a-c). Cortical hemisphere models of 

one participant (top panels) illustrate typical “cuts” (thin black outlines and black boxes) 

made to optimally view auditory cortex along the superior temporal plane and middle 

superior temporal gyri (mSTG) in this and subsequent figures. The cortical models of 

each hemisphere were slightly inflated and smoothed to facilitate viewing of Heschl’s 

complex, including Heschl’s gyrus (HG), Heschl’s sulcus (HS; white dotted line), and the 

first transverse sulcus (FTS; white dashed line). The fainter dashed outline in panel b 

(right) depicts a prominent FDRR defined by the BPNs. The dotted, dashed, and solid 

black FDRR outlines distinguish these three representative individuals in this and 

subsequent figures. Refer to text for FDRR outlining criteria. 
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FIGURE 2-3 
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FIGURE 2-3. Cortex sensitive to the degree of harmonic structure of iterated 

rippled noises (IRNs). a-c, Individual data sets showing location of IRN HNR-sensitive 

cortical foci (α<0.05, corrected) relative to the location of FDRRs specific to each 

individual (dotted, dashed, and solid outlines from Fig. 2-2). Charts show the linear 

correlation between HNR value and BOLD activity (percent signal change relative to 

silent events) combined across the multiple foci along Heschl’s complex and the mSTG 

(mean plus s.d.). The 180 IRN data points were binned at 3 dB HNR intervals for clarity. 

d, Group-average overlap of HNR-sensitive cortex after thresholding each individual data 

set (individual α<0.05, and two t-test levels, α<0.05 and α<0.01, corrected) and projected 

onto averaged brain surface models derived from these three participants ( right 

hemisphere model shown in green mesh inset).  
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FIGURE 2-4 
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FIGURE 2-4. Cortex sensitive to the degree of harmonic structure of animal 

vocalizations. a-c, Individual cortical maps illustrating animal vocalization HNR-

sensitive cortex (blue), based on a linear regression model. IRN HNR-sensitive foci 

(green) and FDRR outlines (black) are from Fig. 2-3. Charts show the relation between 

HNR value and BOLD signal from the animal vocalization foci (blue) and IRN HNR-

sensitive foci (green). The IRN data depicted in the charts were the control stimuli from 

paradigm #4 (as opposed to the data from paradigm #3 in Fig. 2-3), allowing for a direct 

comparison of relative activation response magnitudes (BOLD signal). All data are in 

percent BOLD signal change relative to the mean responses to silent events (red dot at 

zero, mean plus s.d.). d, Group-averaged maps of HNR-sensitive cortex to animal 

vocalizations (n=11, blue: t-tests, see color key) and to IRN stimuli (green, from Fig. 2-

3d) on the averaged surface model from Fig. 2-3. White outlines encircle regions of 

overlap between IRN and animal vocalization HNR-sensitive regions. In the charts, thin 

curves are those from different individuals, normalized to the mean BOLD response 

within each ROI defined by the animal vocalization data. Not all participants showed 

significant bilateral activation (n=10 left, n=9 right hemisphere). Thick curves show the 

respective response averages. Some hemispheres revealed foci showing a significant 

negative, linear correlation with HNR value of the IRN and/or animal vocalizations (data 

not shown). When present, these foci were typically located along the medial wall of the 

lateral sulcus, and were more commonly observed in the right hemisphere. However, 

these negatively correlated HNR-sensitive foci were not significant in the group-averaged 

data. 
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FIGURE 2-5 

 

FIGURE 2-5. Location of HNR-sensitive cortices relative to human vocalization 

processing pathways and FDRRs. Data are illustrated on slightly inflated (a) and “flat 

map” (b) renderings of our averaged cortical surface models. Volumetric averages of 

FDRR (yellow) and volumetrically-aligned FDRR boundary outlines (black) were 

derived from data in Fig. 2-2. HNR-sensitive data are from Fig. 2-4d. Data from 

paradigm #5 (Speech, Hvoc, Avoc, IRN) are all at α<0.01, corrected. Refer to key for 

color codes. Intermediate colors depict regions of overlap. The “rainbow” arrows in panel 

a depict two prominent progressions of processing tiers showing increasing specificity 

for the acoustic features present in human vocalizations. Overlap of IRN and animal 

vocalization HNR-sensitivity are indicated (white outlines). Histograms from several 

ROIs show group-averaged response magnitudes (mean plus s.d.) to each of the four 

sound categories used in paradigm #5 (refer to text for other details). 
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FIGURE 2-6 

 

FIGURE 2-6. Typical HNR value ranges for various sub-categories of vocalizations. 

Oval and box widths depict the minimum to maximum HNR values of the sounds we 

sampled, charted relative to the group-averaged HNR-sensitive response profile of the 

left mSTG (from Fig. 2-4d). Green and blue dots correspond to sound stimuli illustrated 

in Fig. 2-1a-b. Blue ovals depict sub-categories of animal vocalizations explicitly tested 

in paradigm #4. Ovals and boxes with violet hues depict sub-categories of human 

vocalizations (12-18 samples per category), and blue tick marks indicate the mean HNR 

value. For instance, conversational speech, including phrases explicitly tested in 

paradigm #5, had a mean of +12 dB HNR, within a range from roughly +5 to +20 dB 

HNR. Adult-to-adult speech (purple box; mean = +17.2 dB HNR) and adult-to-infant 

speech (violet box; mean = +14.0 dB HNR) produced by the same individual speakers 

were significantly different (t-test p<10
-5

). Stress phonemes of three spoken 

onomatopoetic words depicting different classes of vocalizations are also indicated. Refer 

to Methods for other details. 
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SUPPLEMENTARY FIGURE 2-1 

 

 

SUPPLEMENTARY FIGURE 2-1. Representative sample of constructed iterated 

rippled noises (IRN). HNR values of IRNs as a function of gain and number of 

iterations. IRNs were constructed so as to span HNR values from -6 to +25 dB HNR, 

being comparable to the observed range for animal vocalizations. Different gains had to 

be included (not shown) to construct a more complete set of IRNs with low HNR values. 

For comparison, the orange rectangles indicate the approximate range of IRNs reported 

by Griffiths et al., (1998), based on number of iterations.  
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SUPPLEMENTARY FIGURE 2-2 
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SUPPLEMENTARY FIGURE 2-2. Cortical activation to 16,000 Hz pure tone 

stimuli versus silent events (red) was present in both hemispheres in three 

participants (a-c) tested with this high frequency. Subject #14 (panel c) had difficulty 

hearing the 16 kHz pure tone, especially in one ear, as assessed by audiometry prior to 

scanning. Interestingly, for this individual we had to lower the threshold setting to 

p<0.0001 to reveal activation for this PT frequency, yet activation was still present in 

both hemispheres. Most of the 16 kHz sensitive regions overlapped, or were in close 

proximity to the high frequency ranges within the outlined FDRRs from Figure 2-2 

(black outlines). Note that the differences in activation in Figure 2-2 (red) were due to the 

presence of the 12 kHz stimulus not represented here. 
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SUPPLEMENTARY FIGURE 2-3 
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SUPPLEMENTARY FIGURE 2-3. Pure tone tonotopy versus IRN-tonotopy. 

Colored cortex and FDRR outlines from Figure 2-2. Charts depict activation to pure tones 

(yellow and orange) and IRNs of the corresponding periodicity pitch (light and dark 

green). Note that many, but not all, of the FDRR ROIs showed the same frequency-

preference trend (e.g. in charts: orange > yellow and dark green > light green). The IRN 

pitch maps were not as evident as the tonotopic maps, presumably due to the fact that our 

IRNs contain power at all harmonics. This may also be due to not being able to use IRN 

pitches above roughly 5 kHz, they surpassed the psychophysical upper limit of musical 

pitch perception (Langner, 1992, Rosen, 1992), and they became distorted when 

presented through our sound delivery system. 
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SUPPLEMENTARY FIGURE 2-4 

 

SUPPLEMENTARY FIGURE 2-4. Sensitivity to IRN pitch. Within the IRN HNR-

sensitive regions (green) there were no significant correlations in activation with the 

periodicity pitch of the IRN (charts). Also see Figure 2-1 for IRN pitch range.   

 



 

 

67 

 

SUPPLEMENTARY FIGURE 2-5 

 

SUPPLEMENTARY FIGURE 2-5. Intensity vs HNR-sensitivity to IRNs. In contrast 

to the PT and BPN stimuli, which could be equated for perceived loudness across 

individuals (e.g. Fig. 2-1e), the IRN stimuli proved to be more difficult to match 

perceptually. Thus, participants (n=4) were tested to directly assess the effects of 

parametric increases or decreases in IRN stimulus intensity. a, Graphical depiction of the 

60 IRN stimuli showing a forward- or reversed-bias with stimulus intensity (total RMS 

power).  b-c, Individual data sets (2 of 4 shown) illustrating activity under the two 

separate conditions performed during the same scanning session: dark green = HNR 

biased with loudness, light green = HNR biased against loudness. Both conditions 

revealed cortex sensitive to the HNR value of the IRNs.  
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SUPPLEMENTARY FIGURE 2-6 
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SUPPLEMENTARY FIGURE 2-6. Response profiles (BOLD percent signal change) 

for regions showing HNR-sensitivity to animal vocalizations in 6 participants. Charts 

depict the sigmoid-response fit for the mSTG ROIs.  
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ABSTRACT 

 

 Communicative vocalizations of most mammals are typically characterized by strong 

harmonic content. Using functional magnetic resonance imaging (fMRI) we previously 

reported that the harmonics-to-noise ratio (HNR) value of a sound, whether naturally 

produced or artificially constructed, represents an acoustic signal attribute to which early 

cortical stages of the human auditory system show parametric sensitivity. However, the 

temporal processing dynamics of HNR as an acoustic signal attribute in a range that is 

typical of ethologically-relevant sounds remained unknown. In the present study we 

recorded cortical auditory evoked potentials (AEP) in response to artificially constructed 

iterated ripple noise (IRN) sounds that parametrically spanned an ethologically-relevant 

range of HNR values. The N1-P2 AEP complex, shown to be sensitive to speech and 

speech-like sounds, generally demonstrated a positive and  monotonically increasing 

response to HNR value (-3 to +24 dB HNR). Somewhat surprisingly, however, low HNR 

value ranges showed a decrease in AEP responses (from white noise (-7.6dB HNR) to -3 

dB HNR). Moreover, this biphasic response profile persisted even when testing IRN 

sounds that were reverse biased with intensity (perceived loudness). Together with our 

previous fMRI findings, these results provide converging neuroimaging evidence that 

early auditory cortices in humans contain a processing stage involved in signal feature 

detection of harmonic content – a characteristic attribute of many communicative 

vocalizations and utterances.  
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INTRODUCTION 

 

 Rapid segregation of vocalizations from complex and noisy auditory scenes is critical 

for effective communication. This skill likely relies upon neuronal pathways optimized 

for extracting and analyzing acoustic signal attributes characteristic of vocalizations 

(Bregman, 1990, Billings et al., 2011). Vocal cords and articulatory structures produce 

sounds predominantly by vibrating columns of air – a physical arrangement that 

generates strong harmonic content as well as other idiosyncratic combinations of non-

linear acoustic components (Fitch et al., 2002, Lewis et al., 2005). Harmonic signal 

content represents a prominent low-level spectral feature of natural vocalization sounds 

across numerous species (Riede et al., 2001, Lewis et al., 2009) that is quantifiable with a 

harmonics-to-noise ratio (HNR) (Boersma, 1993). 

 We have shown that different categories of animal and human vocalizations are 

separable along a continuum of HNR values (Lewis et al., 2009). Using functional 

magnetic resonance imaging (fMRI), we further reported regions of auditory cortex along 

the middle superior temporal gyri (mSTG) that were parametrically sensitive to the HNR 

values of animal vocalizations. Those findings suggested that harmonic attributes 

represent bottom-up signal features that may be critical to rapidly process communicative 

utterances. Studying the neuronal representations of vocalization acoustics is often 

hindered by their spectrotemporal complexity. Thus, we and others have used 

acoustically simpler sounds, such as iterated rippled noise (IRN), to elucidate the 

functions of auditory circuits. 

 IRN is artificially-produced sound created by subjecting a sample of broadband 

Gaussian-distributed noise to an iterative delay-and-add process (Yost, 1996a). The 

perceived pitch strength or depth of IRN has been shown to vary with the number of 

iterations and the gain applied during each iterative cycle (Yost, 1996b). The IRN pitch 

percept has been used extensively to test and refine pitch processing models in 

psychophysical and neuroimaging settings (fMRI, electroencephalography (EEG),  and 

magnetoencephalography (MEG)) (Patterson et al., 1996, Yost, 1996b, Griffiths et al., 

2001, Patterson et al., 2002, Krumbholz et al., 2003, Hall et al., 2005, Soeta et al., 2005, 
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Jones, 2006, Hall and Plack, 2007). Our earlier fMRI study also utilized IRNs (Lewis et 

al., 2009); however, these IRN stimuli were not used to study pitch-processing, but rather 

were used to systematically explore HNR as a quantifiable, cortically-represented 

spectral signal attribute that may be crucial to vocalization processing. 

 No studies, to our knowledge, have used electrophysiological measures to 

systematically examine cortical responses to IRNs that span the spectrum of HNR values 

found in behaviorally-relevant communicative vocalizations and utterances (Lewis et al., 

2009). We chose to examine the effects of IRN HNR values on the auditory N1-P2 

complex, a pair of late auditory evoked potential (LAEP) components thought to be 

generated near primary auditory cortices (PACs) (Näätänen and Picton, 1987, Tremblay 

et al., 2001, Jaaskelainen et al., 2004, Martin et al., 2008, Picton, 2011). The magnitude 

of the N1-P2 complex is thought to reflect the expansiveness and synchrony of cortex 

responding to a stimulus. We hypothesized that maximal N1-P2 amplitudes would be 

centered on IRN HNR values characteristic of conversational human speech 

(approximately 6-15dB HNR) (Lewis et al., 2009). 
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MATERIALS AND METHODS 

 

 This study was comprised of two separate experiments designed to examine 

electrophysiological auditory evoked potentials, specifically the N1-P2 complex 

(Tremblay et al., 2001, Martin et al., 2008), to parametric changes of the harmonic 

content (measured with Harmonics-to-Noise Ratio, HNR) in artificial iterated rippled 

noise (IRN) stimuli (Expt. 1) and whether these responses were insensitive to deliberate 

intensity-biasing (Expt. 2). 

 

Participants 

 

 Native English-speaking and right-handed healthy adults (n=16) participated in the 

following two experiments. Sixteen subjects participated in Experiment 1; however, one 

subject in Expt. 1 was eliminated from group averaging and analyses for excessive 

artifacts (Expt. 1: n = 15/16, mean age = 26.2 years, SD = 4.97 years, 7 female). Fifteen 

of the subjects from Expt. 1 participated in Expt. 2 (n = 15, mean age = 26.2 years, SD = 

5.06 years, 8 female); one subject failed to return and participate in Expt. 2. They all self-

reported normal hearing and no history of audiological or neurological disorders. 

Research protocols were approved by the West Virginia University Institutional Review 

Board and in conformance with the Declaration of Helsinki. Each subject provided 

informed consent after receiving explanations of all experimental procedures and 

received a stipend.  

 

Stimuli 

 

 Iterated Rippled Noise (IRN) stimuli were created with unfiltered Gaussian noise and 

a custom MatLab (MathWorks, Natick, MA; William Shofner, personal communication) 

script through the “IRNO” process with iteration, gain, and delay (n, g, d) as design 

variables(Yost, 1996a). The delay value was set to 2ms (producing a 500Hz pitch) and 

each IRN stimulus was adjusted to 200ms in duration with 2ms linear on/off ramps. The 

harmonic content of IRN stimuli was quantified with a Harmonics-to-Noise Ratio (HNR) 
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calculation using the freely available software Praat (http://www.fon.hum.uva.nl/praat/; 

Time step: 0.01s; Minimum pitch: 75Hz; Silence threshold: 0.1; Periods per window: 

1.0)(Boersma, 1993). HNR values allow one to contrast the relative strengths of 

harmonic versus noisy signal components in a wide variety of acoustic stimuli, including 

complex sounds like vocalizations (Lewis et al., 2009). The number of iterations (i) and 

gain (g) values were varied to generate IRNs that had approximate HNR values of -7.6 

(white noise; i=0, g=N/A), -3 (i=1, g=0.4), +3 (i=2, g=1.0), +9 (i=0.9, g=16), +15 (i=64, 

g=1.0), and +24dB (i=1100, g=1.0). White noise (-7.6dB) represents the lower limit of 

the HNR value calculation; the other values were chosen to span an HNR range that 

effectively encompassed HNR-values derived from behaviorally-relevant vocal 

communication categories (cf. Fig. 2-6 of Chapter 2). 

 

Electrophysiology procedures common to all experiments 

 

 Electroencephalographic (EEG) recordings were collected with Neuroscan SynAmps 

hardware and Scan 4.3 Acquire software using 21-channel Quik-Caps (Ag/Ag-Cl sintered 

electrodes; 10-10 system). Data from each channel were sampled at 1 kHz and filtered 

on-line from 0.1-100Hz. All experimental sessions consisted of six EEG recording runs 

that lasted approximately seven minutes. Each run contained 408 IRN stimulus trials (68 

stimuli per HNR value); stimulus onsets were separated by a random uniformly-

distributed inter-stimulus interval (ISI) from 900-1100ms to minimize timing-based 

habituation effects. During each run, participants watched silent and subtitled films to 

divert their attention from the IRN stimuli (Pettigrew et al., 2004). IRN stimuli were 

delivered to the right ear of each subject using electrostatic ear buds (STAX SRS-005 

Earspeaker system; Stax LTD., Gardena, CA) with a Windows PC installed with 

Presentation software (version 11.1, Neurobehavioral Systems, Inc.) and a CDX01 

Digital Audio sound card interface. Audio output loudness was adjusted to the comfort 

level of each subject (70-80dB) while still retaining clear sound percepts of all stimuli, 

regardless of HNR value or loudness bias. 
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Experiments 1 and 2: HNR-dependent auditory evoked potentials 

 

 Experiment 1 investigated HNR-dependent N1-P2 amplitude responses using the IRN 

stimuli described above that were equated to one another for overall stimulus intensity 

(dB RMS power, Root Mean Square). Experiment 1 will be interchangeably referred to 

as the “iso-intensity” condition. 

 Experiment 2 was designed as a critical control paradigm for Experiment 1 to assess 

any potential effects of IRN intensity upon N1-P2 amplitudes or latencies. IRNs with 

greater iteration numbers are perceived to be louder (Soeta et al., 2007); thus, this 

experiment aimed to control for any inadvertent perceptual salience biases related to 

stimuli loudness. This experiment was designed to mimic one of our previous fMRI 

control paradigms (reproduced here in Fig. 3-1) (Lewis et al., 2009). For Experiment 2, 

the IRN stimuli were modified to linearly decrease in overall intensity with increasing 

HNR values. This modification ensured that IRNs with progressively higher HNR values 

were physically and perceptually quieter than those with lower HNR values. Specifically, 

the relative intensity of the 3dB HNR IRN was held constant and a -0.75dB RMS/dB 

HNR intensity ramping-function was applied to the other stimuli. In this paradigm, white 

noise stimuli (-7.6dB HNR) were physically the most intense and perceived to be the 

loudest, +24dB HNR IRNs were perceived to be the quietest. A cohort of five individuals 

not participating in the EEG portion of the study listened to the intensity-biased IRN 

stimuli in all pair-wise combinations and made loudness judgments. Each subject 

appropriately rated the sounds in a manner that reflected our biasing function. 

 

Data analysis 

 

 All analyses were performed in the MatLab environment with open-source EEG-

analysis software EEGLAB (ver. 10.2.5.8) (Delorme and Makeig, 2004) and an 

associated plugin ERPLAB (www.erpinfo.org). Continuous EEG data for each subject 

were initially combined across runs and high-pass filtered (0.1 Hz). Data were low-pass 

filtered at 30Hz for plotting purposes only. Individual event epochs were defined by 

700ms windows with 200ms pre-stimulus and 500msec post-stimulus periods. Epochs 

http://www.erpinfo.org/
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were extracted from the EEG data for each IRN event type (-7.6 (white noise), -3, +3, +9, 

+15, +24dB) and baseline corrected with responses from the 200ms pre-stimulus periods. 

Epochs were rejected with a moving window peak-to-peak artifact detection function in 

ERPLAB; the entire epoch was included in artifact rejection, the voltage threshold was 

100 V, the moving window width was 200ms, and the window step size was 50ms. N1 

and P2 amplitudes for each subject were measured and calculated in responses to 

different HNR-valued IRNs; the AEPs were averaged for each subject across the fronto-

central electrodes Fz, F3, and F4 (Fig. 3-2). N1 responses were defined as the mean 

potential value between 85 and 135ms and P2 response between 150 and 200ms (Picton, 

2011); N1-P2 amplitudes were the differences between these two values for each 

condition. N1-P2 amplitudes for each condition (all HNR values) were entered into a 

one-way repeated measured ANOVA that included a within-subjects factor of HNR (six 

aforementioned values); a separate ANOVA was performed for each experiment 

(sections 3.1 and 3.2). Post-hoc comparisons between N1-P2 amplitude means for 

different HNR values were corrected for multiple comparisons with Bonferroni 

corrections. Both ANOVAs had an alpha level of 0.05 and the Greenhouse-Geisser 

epsilon correction was used when sphericity could not be assumed (Jennings and Wood, 

1976). 
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RESULTS 

 

 Two experimental paradigms, utilizing AEPs, were conducted by presenting listeners 

with IRNs that systematically varied in harmonic content. Experiment 1 was designed to 

determine if there is an HNR-dependent response profile present in the auditory N1-P2 

AEP complex. In conjunction with the first experiment, Experiment 2 was designed to 

control for possible systematic biases produced by overall signal intensities (perceivable 

loudness differences) of IRNs that might have influenced HNR-dependent response 

profiles in auditory cortex. 

 

Experiment 1: HNR-dependence of the auditory N1-P2 complex  

 

 Figure 3-2 shows the group-averaged waveform morphology and scalp topography 

for all of the HNR conditions in Experiment 1 (iso-intensity). This topography was 

similar to those of all other conditions in both experiments and is consistent with a 

stereotypical auditory N1-P2 complex response, with the greatest amplitudes occurring at 

fronto-central electrodes (Vaughan and Ritter, 1970, Tremblay et al., 2001). Figure 3-3A 

displays group-averaged (n=15) evoked potentials to IRN stimuli that were equally 

intense in RMS power but differed in their harmonic content (HNR). A main effect of 

HNR was seen on N1-P2 amplitudes (Table 3-1; F5,70 = 63.574, P = 0.000), supporting 

our hypothesis that IRN stimuli with greater HNR values would generally evoke stronger 

N1-P2 responses.  More specifically, however, the profile did not show the greatest 

amplitudes in the HNR range reflective of most human vocalizations (approximately 6-

15dB HNR) as we had predicted. Rather, a monotonically increasing amplitude trend was 

seen between HNR values between approximately -3 and +24 dB; an inverse relationship 

was seen between -7.6 and -3dB. Pairwise comparisons (Table 3-2) between HNR 

conditions indeed revealed that the N1-P2 values produced by white noise (-7.6dB HNR) 

were significantly higher than those produced by -3dB HNR IRNs (P = 0.024). AEP 

responses to white noise were indistinguishable from those produced by +3dB HNR 

IRNs (P=1.0). We reasoned that the overall monotonically-increasing N1-P2 amplitude 
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trend could have been related to the perceived loudness of the IRN sounds at different 

HNR ranges, which was addressed with Experiment 2.  

 

Experiment 2: Loudness bias control 

 

 Our earlier fMRI study examined the effects of forward- and reverse-biasing IRN 

intensities as functions of HNR values upon blood oxygen level dependent (BOLD) 

responses (Lewis et al., 2009). We found that neighboring or overlapping regions of 

auditory cortex (near or within HG) on the order of 2-4mm along the cortical surface 

were parametrically sensitive to HNR values regardless of intensity biases (Fig. 3-1, dark 

and light green hues). Experiment 2 of the present study involved a similar modification 

of the IRN stimuli used in Experiment 1 by reverse-biasing their intensities with 

increasing HNR values. The intensity of the +3dB HNR IRN stimulus was held constant 

and the other five IRN stimuli were intensity adjusted by a linear -0.75dB RMS/dB HNR 

function, thus making the white noise and +24 dB stimuli the most and least intense 

stimuli, respectively. A cohort of participants (n=5) not involved with the 

electrophysiological experiments perceptually rated each intensity-biased sound in pair-

wise combinations between all stimuli. All of these subjects perceived noticeable 

loudness decreases with each increasing HNR valued stimulus, thereby corroborating our 

intensity modifications.  

 The results of Experiment 2 revealed some effects of the intensity biasing procedure, 

noticeable especially at the most extreme HNR values. Specifically, the more negative 

end of the HNR range produced proportionally greater N1-P2 responses than in 

Experiment 1 (cf. Fig. 3-3B and 3-3A); conversely the more positive end of the HNR 

scale produced smaller responses. Nonetheless, a main effect for HNR values still 

persisted in the results of this experiment (Table 3-1; F5,70 = 21.482, P = .000). This 

finding is not surprising because these responses are known to be sensitive to the 

intensity of auditory stimuli (Näätänen and Picton, 1987, Picton, 2011). The general 

biphasic response profile seen in Experiment 1 was still apparent, strengthening its 

validity. 
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DISCUSSION 

 

Summary of findings 

 

 We demonstrated that the amplitude of the N1-P2 AEP complex shows a nonlinear 

parametric sensitivity profile to harmonic content (HNR) in artificially-constructed IRN 

stimuli. Specifically, we 1) described this effect across an HNR range that reflects 

ethologically-relevant acoustic signal features, 2) showed that it persists even when 

compensating for possible intensity effects, and 3) revealed that its profile is biphasic in 

low HNR ranges. These results are compared and contrasted with similar findings from 

pitch-depth processing models and with respect to human cortical pathways that may be 

optimized to process the subtleties of vocalizations. 

 

HNR findings and their relation to perception-based pitch-processing models 

  

 Other human electro- and magnetoencephalographic studies incorporating IRNs or 

similar stimuli have focused more on pitch and/or pitch-depth processing mechanisms 

that rely heavily upon perceptual features of sound signals. (Griffiths et al., 1998, 

Patterson et al., 2002, Krumbholz et al., 2003, Jones, 2006, Hall and Plack, 2009, Barker 

et al., 2012). EEG and MEG studies using IRNs or similar stimuli have investigated both 

pitch-onset responses (POR) and sound-onset responses (SOR). PORs recorded via MEG 

or EEG occur approximately 130-300ms after pitch onset (Krumbholz et al., 2003, Jones, 

2006); in these studies, PORs were generated in response to the transition between white 

noise and an IRN that produces a perceived pitch that is inversely dependent upon the 

time delay applied during its creation (Yost, 1996a). Krumbholz et al. demonstrated that 

PORs reliably increase in amplitude with greater IRN iteration number – a parameter that 

is correlated with overall pitch strength (Yost, 1996b). EEG has produced similar results 

to those found with MEG and additionally showed that IRN-evoked PORs are reliably 

produced by high- or low-passed stimuli (Jones, 2006). Collectively, the authors of these 
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studies suggested that these responses were largely driven by the temporal regularity of 

the stimuli (periodicity pitch). 

 The above POR studies were designed to avoid purported confounds produced by 

SORs or energy-onset responses (EOR), the phenomena traditionally viewed to generate 

the auditory N1 (Näätänen and Picton, 1987). However, an MEG study investigating 

SORs to IRNs produced very similar results to the aforementioned POR studies (Soeta et 

al., 2005); N1m peak amplitudes increased as a function of IRN iteration number. 

Additionally, others have suggested that the SOR and POR are produced by very similar 

cortical generators (Seither-Preisler et al., 2004). Our current results, or at least a subset 

of our findings, are largely consistent with the above mentioned SOR and POR studies. 

However, our stimuli encompassed a much broader spectrum of acoustic characteristics, 

especially along the dimension of harmonic content (HNR). We specifically manipulated 

IRN iteration numbers as well as the gain applied during each delay-and-add process; 

gains for our stimuli ranged between 0.1 to 1.0. Doing so allowed us to achieve HNR 

values much closer to those exhibited by white noise samples (-7.6 dB). The “least 

structured” IRNs in many earlier studies were created with one iteration and a unity gain 

(although see Soeta et al., 2005that also used a white noise “IRN” of zero iterations). 

According to our HNR estimates, the IRNs with the lowest HNR values in many studies 

would be approximately 0dB (IRNs where iteration and gain values were equal to one 

(n=g=1)), which may have precluded earlier studies from observing the biphasic response 

reported here. Hence, our use of a broader set of IRN stimuli (with respect to HNR 

values), through greater variations of the iteration and gain values, allowed us to more 

fully encompass the quantifiable HNR range exhibited by natural real-world 

vocalizations (Lewis et al., 2009). 

 IRNs or similar stimuli have also been used in numerous studies that have 

investigated pitch-processing with psychophysical assessments and/or functional 

neuroimaging (Griffiths et al., 1998, Patterson et al., 2002, Hall et al., 2006, Hall and 

Plack, 2009).  However, Hall et al. (2009) questioned the use of IRNs in pitch processing 

studies; their criticism stemmed from a perceived lack of appropriate control stimuli to 

IRN sounds. Specifically, they suggested that previous findings of IRN-specific activity 

may be dominated not by IRN pitch per se but by slow spectrotemporal modulations that 
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are randomly produced during IRN creation (Hall and Plack, 2009, Barker et al., 2012, 

Steinmann and Gutschalk, 2012). They addressed these concerns by producing a new 

class of IRN-derived stimuli that do not have perceptible pitches (IRNo, “no pitch” IRN). 

Contrasting BOLD activity produced by IRN and IRNo stimuli revealed very minimal 

differences, suggesting that perceived pitch may not be the driving factor of IRN-

produced cortical activity. Thus, the goal of the present study was to advance a model of 

acoustic signal feature processing based on quantifiable measures (HNR) that 

encompassed a biologically relevant parameter range. 

 

IRNs within an ethologically-relevant range of HNR 

 

 We designed our study to examine cortical responses to harmonic auditory content – 

a hallmark signal attribute of vocalization sounds(Riede et al., 2001). We have previously 

shown that different classes of vocalizations could be partially distinguished along the 

HNR continuum, including hisses, growls, groans, whispers, calls and speech (Lewis et 

al., 2009). For the current AEP study, we created a set of IRN stimuli that spanned a wide 

array of HNR values, notably encompassing the ethologically-relevant range found in 

communicative vocalizations described in our previous work (cf. Fig. 2-6 of Chapter 2). 

Our current results demonstrated that HNR is robustly represented in the N1-P2 complex 

(Fig. 3-3). The N1-P2amplitude response profile to IRNs was generally monotonically 

increasing with HNR values except for the range between -7.6dB (white noise) and -3dB 

HNR (see below). This finding contradicted our initial hypothesis that predicted the 

greatest amplitudes in response to IRNs with HNR values near those found in 

conversational speech (approximately 6-15 dB HNR).  

 The vertex scalp components that comprise the N1-P2 are thought to be generated 

near primary and secondary auditory cortices along and near Heschl’s gyrus (Näätänen 

and Picton, 1987, Martin et al., 2008, Picton, 2011), suggesting that HNR-sensitivity 

occurs in early cortical auditory stages. Concordantly, our previous fMRI results (Fig. 3-

1) showing similar BOLD effects along left and right Heschl’s gyri and STG using the 

same basic IRN stimuli further corroborate this notion (Lewis et al., 2009). HNR-

sensitive regions revealed with fMRI were spatially situated between tonotopically-
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sensitive regions (along HG) and areas preferentially activated by human vocalizations 

(STG/STS). We interpreted IRN HNR-sensitive regions in the context of cortical 

template theories (Griffiths and Warren, 2002, Kumar et al., 2007) incorporating 

combination-sensitive neurons (Suga et al., 1983, Misawa and Suga, 2001, Medvedev et 

al., 2002) that show a preference to harmonic acoustic signals. These harmonic templates 

possibly represent foundational elements of early auditory cortical circuits and may 

crucially aid in the fine level processing of vocalization sounds. 

 

HNR feature detection models 

  

 In contrast to perception-based pitch models, we are interpreting our results within 

the theoretical contexts of species-invariant feature extraction models. These models 

posit that combination-sensitive neurons, spectrotemporal templates, or other acoustic 

information filters act as bottom-up neuronal mechanisms for segregating and streaming 

auditory event information into distinct processing pathways (Suga et al., 1983, 

Margoliash and Fortune, 1992, Kanwal et al., 1999, Medvedev et al., 2002). These 

functional networks are posited to emerge in early auditory networks, become 

increasingly complex, and eventually combine in a hierarchical manner (Näätänen et al., 

2001, Griffiths and Warren, 2002, Warren et al., 2005, Obleser et al., 2007). Our findings 

support a model that includes dedicated stages for harmonic processing. 

 The processing of concurrent or specific combinations of harmonics is thought to 

represent one means of auditory streaming (Rauschecker et al., 1995, Medvedev et al., 

2002, Carlyon, 2004). For instance, presenting a listener with a sound containing 

mistuned harmonics can lead to the perception of two “distinct” sounds being presented 

simultaneously (Alain et al., 2001). Within our experimental paradigm, IRN stimuli can 

be viewed as “activating” or “matching” templates that are sensitive to integer-multiple 

harmonics spaced at intervals of 500Hz; increased N1-P2 amplitudes represent greater 

synchrony in these activated templates. These or similar templates would likely aid in the 

processing the strong harmonic content of vocalization sounds. Increasing the gain and 

iterations used during each IRN delay-and-add process would result in sound stimuli that 

more effectively engage or match these neuronal templates (i.e. the statistics of more 
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harmonic IRN noise approaches the optimal input for the described receptive fields). 

HNR as a signal attribute aids in quantifying this quality; IRNs with higher HNR values 

increasingly reflect better template matches. However, such a simple spectral template-

matching representation appears to only be found in earlier cortical stages, precluding 

IRNs from activating more complex templates found in higher-order auditory regions 

such as the STS (Lewis et al., 2009, Talkington et al., 2012). 

 Similar to the current study, we previously identified cortical foci with fMRI that 

were parametrically sensitive to the HNR values of IRNs (Fig. 3-1) (Lewis et al., 2009). 

Those foci were anatomically near and overlapping with primary auditory cortices (PAC) 

along Heschl’s gyrus (HG) and extended partially onto the mSTG; N1-P2 responses are 

generally thought to originate in similar cortical areas (Näätänen and Picton, 1987, 

Picton, 2011). Regions showing BOLD sensitivity to the HNR values of animal 

vocalizations showed partial overlap with those exhibiting IRN HNR-sensitivity, but 

generally occurred more laterally along the mSTG closer to human voice-sensitive areas 

near the STS (Belin et al., 2000, Belin et al., 2002). Higher-order cortices may be 

composed of templates for more behaviorally-relevant and familiar sounds, such as 

conspecific vocalizations (Talkington et al., 2012) and other categories of sound with 

more complicated “naturalistic” spectrotemporal characteristics (Belin et al., 2000, Belin 

et al., 2002, Fecteau et al., 2004, Leaver and Rauschecker, 2010, Lewis et al., 2012, 

Talkington et al., 2013). Collectively with our previous fMRI findings, our current results 

provide converging multi-modal neuroimaging evidence supporting harmonic content 

processing as distinct stages in the early auditory cortical networks of humans with 

typical hearing – individuals who rely on processing the complex subtleties of 

communicative vocalizations and speech signals on a daily basis.   
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HNR-sensitivity and perceived loudness 

 

 Previous studies have reported that the perceived loudness of IRNs or similar stimuli 

increases proportionally with the number of iterative delay-and-add cycles used to 

generate the sounds; this effect persists even if all of the sounds are equally intense 

(identical RMS power) (Soeta et al., 2007). IRNs are often perceived to be increasingly 

louder as a function of iteration number and gain, even after equalizing sound intensities 

(Soeta et al., 2007, Lewis et al., 2009). This phenomenon has been attributed to greater 

sensations of pitch strength of IRN stimuli, a perceptual attribute that is generally 

correlated with our HNR measures (Yost, 1997). More synchronously activated cortical 

regions could lead to a louder percept, confounding the interpretations of a template-

based model. Thus, similar to our earlier fMRI study, we created intensity-biased IRN 

stimuli that decreased in overall intensity with respect to their HNR values to minimize 

possible confounds related to signal intensity or perceived loudness. The results of 

Experiment 2 corroborated the results of Experiment 1, showing a similar and robust 

biphasic N1-P2 amplitude response profile to the HNR signal attribute. There were slight 

intensity-related effects for very high and low HNR values (e.g. -7.6db and +24dB); 

however, this result was not surprising given the steep slope of our intensity-biasing 

function and previous findings that show larger AEPs as a function of stimulus intensity 

(Näätänen and Picton, 1987). Combined with our intensity-biased fMRI experiment, the 

current data provide critical support for the stable cortical representation of this acoustic 

attribute and the biphasic response profile seen in Experiment 1. 

 

Biphasic HNR-dependent N1-P2 amplitude response profile 

 

 The most surprising finding of the present study was the shape of the HNR-sensitivity 

profile represented in the auditory N1-P2. As mentioned earlier, we unexpectedly 

revealed a biphasic N1-P2 amplitude response profile with respect to increasing IRN 

HNR values. These results contradict those from the aforementioned studies that have 

shown simpler monotonically-increasing amplitude functions as IRN iterations are 

increased. In particular, minimal N1-P2 amplitudes were produced by IRNs in an HNR 
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range approximately around -3dB HNR resulting in a “dip” in the otherwise increasing 

response profile. Individual subjects usually produced the smallest N1-P2 amplitudes in 

response to either the -3dB or the +3dB IRNs. Group-level averaged data (Fig. 3-3) 

showed the smallest amplitude responses at the -3dB HNR value. 

 One possibility is that the biphasic response findings reflect an example of a 

stochastic resonance or facilitation phenomenon (Wiesenfeld and Moss, 1995, 

McDonnell and Ward, 2011). A broad definition of stochastic resonance in neuronal 

systems describes it as beneficial noise within the context of signal detection and signal 

processing (McDonnell and Abbott, 2009). Specifically, stimuli that are sub- or near-

threshold can become more easily detectable with the addition of noise to the 

signal(Douglass et al., 1993, Levin and Miller, 1996, Russell et al., 1999, Moss et al., 

2004); the greatest detection probabilities for perithreshold stimuli occur with 

intermediate added signal noise. Confirmation of stochastic facilitation would require 

modulation of IRN HNR values with respect to other stimuli in simple perception and/or 

discrimination experiments (Srebro and Malladi, 1999, Moss et al., 2004). Alternatively, 

the current data seems to have the appearance of an inverse stochastic resonance curve. 

Models and real-world analysis of Hodgkin-Huxley systems suggest that intermediate 

amounts of noise can minimize neuronal activity (Paydarfar et al., 2006, Gutkin et al., 

2009, Tuckwell and Jost, 2012). The N1-P2 amplitudes in response to very low HNR 

IRNs (around -3dB) could reflect a similar activity minimum in the human auditory 

system.  

 A related possibility is that the biphasic response profile represents a functional 

overlap of two (or more) potential cortical mechanisms (linear amplifiers/filters) useful 

for auditory scene analysis. Such a system could be formed by two acoustic filters: one 

specialized for the streaming of harmonic information in a range commonly found in 

mammalian vocalizations (typically 0dB to +24dB HNR) and another filter that may act 

to suppress or accommodate to noisy acoustic elements of a scene or background (-7.6dB 

to approximately -3dB or 0dB HNR) that are not as likely to represent distinct 

vocalization sources. These filters may be represented in distinct neuronal populations 

that could show partial to complete spatial overlap; nonetheless, our current AEP and 
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former fMRI results together suggest that these HNR-sensitive regions are located near 

the confluence of HG (near PACs) and the STG.  

 Given the combined strength of our previous fMRI results with the current 

electrophysiological data, we believe that harmonic signal processing is instantiated as a 

distinct intermediate cortical processing stage in the human auditory system, perhaps 

including our two proposed filtering functions that work in concert to simultaneously 

optimize harmonic signal enhancement and noise suppression. This putative signal 

processing principle could be tested and included in future models of the human auditory 

system or in prosthetic device algorithms designed to mimic its biological operations. 

Additionally, this cortical response pattern could be used to complement traditional 

audiometric measures when fitting a patient for hearing prosthetics that are designed 

specifically for the enhancement of vocalizations and speech. 
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FIGURE 3-1.  Intensity vs HNR-sensitivity to IRNs from our earlier fMRI study 

using IRNs that varied parametrically with HNR value. (a) Graphical depiction of 60 

IRN stimuli showing a forward- or reversed-bias with stimulus intensity (total RMS 

power).  (b-c) Cortical models of the left and right hemisphere auditory cortex for two 

participants illustrating functionally-defined regions of interest. Brain models were 

slightly inflated and smoothed to facilitate viewing of Heschl’s gyrus (HG) and 

surrounding cortex. The green whole brain green mesh inset approximates the location of 

cortex cortical patches illustrated.  Black dashed and dotted outlines depict frequency-

dependent response regions (FDRRs) in auditory cortex, derived from a separate 

tonotopy mapping paradigm to estimate the locations of primary auditory cortices (PACs) 

for each participant. Individual data sets (2 of 4 shown) illustrating IRN HNR-sensitivity 

(green) under two separate conditions performed during the same fMRI scanning session: 

dark green = HNR forward-biased (FB) with loudness, light green = HNR reverse-biased 

(RB) against loudness. Both conditions revealed cortex sensitive to the HNR value of the 

IRNs located along and immediately surrounding PACs (α<0.05, corrected for multiple 

comparisons). Charts show the linear correlation between HNR value and blood-oxygen 

level dependent (BOLD) activity (percent signal change relative to silent events; mean 

plus s.d.). The IRN data points were binned at 3 dB HNR intervals for clarity. L=left 

hemisphere, mSTG = middle superior temporal gyrus. Modified from Lewis et al., (2009) 

with permission from the Journal of Neuroscience. 
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FIGURE 3-2 

 

 

FIGURE 3-2. Group averaged (n=15) scalp topography and waveform morphology 

across all IRN HNR conditions from Expt. 1 (Iso-Intensity condition). Electrodes F3, 

Fz, and F4 (circled) were used in all analyses. 
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FIGURE 3-3 

 

 

FIGURE 3-3. Average waveforms for electrodesF3, Fz, and F4 for white noise and 

the five IRN stimuli with parametrically varying HNR values. (A) N1-P2 complex 

responses to IRNs that had equal RMS intensity (Expt. 1; Iso-Intensity). (B) Response 

profile to IRNs that were reversed-biased with intensity (Expt. 2; Intensity-Biased), 

similar to the fMRI paradigm illustrated in Fig. 1.  
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TABLE 3-1. Group-averaged N1-P2 amplitudes and statistics for both experiments. 

Expt. 1: Iso-Intensity; Expt. 2: Intensity-Biased.  All results reported are the average 

responses from electrodes F3, Fz, and F4. Standard deviations are in parentheses. 

 

  HNR (dB)  Statistics 

  -7.6 -3 +3 +9 +15 +24  df = 5,70 

Iso-Intentisy  1.636 0.752 1.38 2.832 3.84 4.107  F = 63.574                   

Amplitude (V)  (1.234) (1.225) (1.579) (1.711) (1.435) (1.702)  p = .000 

          = .657 

Intensity-Biased  1.795 1.291 1.408 3.012 3.401 3.264  F = 21.482                  

  (1.515) (1.428) (1.292) (1.454) (1.242) (1.686)  p = .000 

          = .579 
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TABLE 3-2. Pairwise HNR condition comparisons for both experiments. Expt. 1: 

Iso-Intensity; Expt. 2: Intensity-Biased. Significance values in parentheses; the alpha 

values for both experiments were set at 0.05 and probabilities under this threshold are in 

boldface type. 

 

HNR (dB)  Iso-Intensity  Intensity-Biased 

A        B  A – B (Sig.)  A – B (Sig.) 

-7.6 -3  0.884 (0.024)  0.505 (0.246) 

 +3  0.257 (1.000)  0.387 (0.740) 

 +9  -1.196 (0.014)  -1.216 (0.004) 

 +15  -2.204 (0.000)  -1.605 (0.002) 

 +24  -2.471 (0.000)  -1.469 (0.012) 

-3 +3  -0.628 (0.308)  -0.117 (1.000) 

 +9  -2.080 (0.000)  -1.721 (0.001) 

 +15  -3.088 (0.000)  -2.110 (0.000) 

 +24  -3.355 (0.000)  -1.974 (0.004) 

+3 +9  -1.452 (0.000)  -1.604 (0.001) 

 +15  -2.460 (0.000)  -1.992 (0.000) 

 +24  -2.727 (0.000)  -1.856 (0.004) 

+9 +15  -1.008 (0.001)  -0.389 (1.000) 

 +24  -1.275 (0.000)  -0.252 (1.000) 

+15 +24  -0.267 (1.000)  0.136 (1.000) 
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ABSTRACT 

In the present study, we recorded cortical auditory evoked potentials (AEP) from native 

Mandarin speakers in response to artificially constructed iterated ripple noise (IRN) 

sounds that parametrically spanned an ethologically-relevant range of HNR values. 

Similarly to native English speakers, the N1-P2 AEP complex demonstrated a positive 

and monotonically increasing amplitude response to HNR values between -3dB to +24 

dB; low HNR value ranges showed a decrease in AEP amplitude responses (from white 

noise (-7.6dB HNR) to -3 dB HNR). The results from native Mandarin speakers were 

quantitatively indistinguishable from those produce by native English speakers. Together 

with our AEP findings from Chapter 3, these results provide converging evidence of a 

stable representation of HNR as a cortically represented acoustic signal attribute, 

regardless of individual language experiences.  
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INTRODUCTION 

 Long-term experiences with tonal versus non-tonal spoken languages has been shown 

to shape auditory brainstem encoding of acoustic features such as pitch (Krishnan et al., 

2005, Krishnan and Gandour, 2009, Krishnan et al., 2010a, b).                                     

Generally, when compared to speakers of non-tonal languages such as English, the 

auditory brainstem responses (ABR) produced by Mandarin (or Thai) speakers more 

efficiently encode or “track” the pitch of linguistically relevant pitch contours. Pitch 

tracking is often measured with an auditory brainstem phenomenon referred to as the 

frequency following response (FFR) that has been shown to be sensitive to the intensity 

and frequency of tonal stimuli (Stillman et al., 1978) and can represent portions of speech 

signals (Krishnan et al., 2004, Johnson et al., 2005). 

 Thus, we questioned if and how robust the biphasic N1-P2 amplitude response pattern 

to the harmonic content (HNR) of IRN stimuli (described in Chapter 3) would appear in 

native Mandarin speakers. As individuals with life-long experience distinguishing tones 

and tonal variations in complex harmonic vocalizations, we hypothesized that Mandarin 

speakers would produce an equivalent or stronger response pattern (more defined 

biphasic “dip” response) to IRNs of varying HNR values. We proposed this notion due to 

their reliance on accurate harmonic signal processing for successful language 

comprehension and production.   
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MATERIALS AND METHODS 

 

Participants 

 

 Using a paradigm identical to Experiment 1 of Chapter 3, the current experiment 

studied native Mandarin-speaking right-handed participants (n=5, two female, average 

age = 27.6 years). Each subject used Mandarin as their primary language at home; the 

subjects received between 7.5-15 years of formal English instruction, but no subject had 

used English on a daily basis for more than 3 consecutive years. Thus, in contrast to our 

monolingual English subjects from Chapter 3, the current cohort of subjects was highly 

proficient at both hearing and producing tonal Mandarin speech sounds. 

 

Stimuli, Electrophysiology Procedures, and Data Analyses 

 

 Refer to the Chapter 3 Materials and Methods section for details on the IRN stimuli, 

and data collection parameters implemented in this experiment.  Other than the subject 

population and subsequent analyses performed in this chapter, the current experiment 

mirrors Experiment 1 from Chapter 3. Additional analyses included a two-way repeated 

measures ANOVA to compare the two subject groups, native speakers of English and 

Mandarin, respectively. 
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RESULTS 

 

 Figure 4-1A displays group-averaged (n=5) evoked potentials in native Mandarin 

speakers to IRN stimuli that were equally intense in RMS power but differed in their 

harmonic content (HNR). Similar to Expt. 1 in Chapter 3, a main effect of HNR was seen 

on N1-P2 amplitudes (F5,20 = 14.695, P= 0.003).  Our hypothesis that Mandarin speakers 

would produce a biphasic N1-P2 response profile was confirmed. A monotonically 

increasing amplitude trend was seen between HNR values between approximately -3 and 

+24 dB; an inverse relationship was seen between -7.6 and -3dB. Pairwise comparisons 

between HNR conditions indeed revealed that the N1-P2 values produced by white noise 

(-7.6dB HNR) were significantly higher than those produced by -3dB HNR IRNs (P = 

0.048). AEP responses to white noise were indistinguishable from those produced by 

+3dB HNR IRNs (P=1.0).  

 In addition to confirming the biphasic response profile in native Mandarin speakers, 

we also aimed to compare their responses to native English speakers to determine 

whether lifelong language experience modulates this cortical response. Figure 4-1B 

displays the results from Experiment 1 in Chapter 3 from native English speaking 

subjects (equivalent to Figure 3-3A). Comparing the two groups demonstrated no 

differences between their respective HNR-dependent AEP trends (F5,90 = 0.678, 

P=0.577). 
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DISCUSSION 

 Extensive acoustic training or experience with behaviorally relevant pitches or sounds 

is thought to modify function in the relevant structures or networks subserving the 

auditory mechanisms described above. Concordantly, previous studies have investigated 

the effects of expert musical skill and language experience on auditory processes (Wong 

et al., 2007, Chen et al., 2008, Krishnan et al., 2009b). The auditory abilities and 

responses of Mandarin speakers, and other tonal language speakers, are often compared 

to those of speakers from non-tonal languages with the rationale that one’s listening 

experiences and the behavioral need to discriminate tones and tonal changes may 

influence cortical, and even subcortical, network processing. For instance, the frequency-

follower response (FFR), likely generated in the inferior colliculi or lateral lemnisci 

(Stillman et al., 1978), has been shown to produce stronger pitch-following responses in 

native Mandarin speakers relative to English speakers (Krishnan et al., 2004). In 

particular, dynamic pitch-varying IRN-derived stimuli homologous to Mandarin Tone 2 

have shown greater pitch-tracking to behaviorally (i.e. linguistically) relevant sounds in 

the brainstems of native Mandarin speakers (Krishnan et al., 2009a).  

 We recorded HNR-dependent AEP amplitudes from a cohort of native Mandarin 

speakers. No quantitative differences in their biphasic response trend were found when 

compared to the results from their English-speaking counterparts. However, a larger 

cohort of Mandarin speaking subjects (n=5 currently) may reveal subtle differences that 

are currently lacking statistical strength. A lack of differences between these two groups 

may be consistent with the notion that tonal language experience imparts processing 

advantages useful for dynamic frequency tracking in stimuli (Krishnan et al., 2010c). 

Nonetheless, these results support the robust representations of harmonic content in 

human auditory cortices regardless of language experience; this suggests that harmonic 

signal encoding is a fundamental processing feature that is common to all hearing 

individuals. 
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FIGURES 

FIGURE 4-1 

 

 

FIGURE 4-1. Average waveforms for electrodes F3, Fz, and F4 for white noise and 

the five IRN stimuli with parametrically varying HNR values. (A) N1-P2 complex 

responses in native Mandarin speakers to IRNs that had equal RMS intensity. (B) N1-P2 

complex responses in native English (USA) speakers to IRNs that had equal RMS 

intensity (Chapter 3 - Expt. 1; Iso-Intensity). 
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ABSTRACT 

  

 Numerous species possess cortical regions that are most sensitive to vocalizations 

produced by their own kind (conspecifics). In humans, the superior temporal sulci (STS) 

putatively represent homologous voice-sensitive areas of cortex. However, STS regions 

have recently been reported to represent auditory experience or “expertise” in general 

rather than showing exclusive sensitivity to human vocalizations per se. Using functional 

magnetic resonance imaging and a unique non-stereotypical category of complex human 

non-verbal vocalizations – human-mimicked versions of animal vocalizations – we found 

a cortical hierarchy in humans optimized for processing meaningful conspecific 

utterances. This left-lateralized hierarchy originated near primary auditory cortices and 

progressed into traditional speech-sensitive areas. These results suggest that the cortical 

regions supporting vocalization perception are initially organized by sensitivity to the 

human vocal tract in stages prior to the STS. Additionally, these findings have 

implications for the developmental time course of conspecific vocalization processing in 

humans as well as its evolutionary origins. 
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INTRODUCTION 

 

 In early childhood, numerous communication disorders develop or manifest as 

inadequate processing of vocalization sounds in the central nervous system (Abrams et 

al., 2009). Cortical regions in several animals have been identified that are most sensitive 

to vocalizations produced by their own species (conspecifics) including some bird 

species, marmosets and cats, macaque, chimpanzee and humans (Belin et al., 2000, Tian 

et al., 2001, Wang and Kadia, 2001, Hauber et al., 2007, Petkov et al., 2008, Taglialatela 

et al., 2009). Voice-sensitive regions in humans have been traditionally identified 

bilaterally within the superior temporal sulci (STS) (Belin et al., 2000, Belin et al., 2002, 

Lewis et al., 2009). However, by showing preferential STS activity to artificial non-vocal 

sounds after perceptual training, recent studies consider these regions to be “higher-

order” auditory cortices that function as substrates for more general auditory experience – 

contrary to these areas behaving in a domain-specific manner solely for vocalization 

processing (Leech et al., 2009, Liebenthal et al., 2010). Thus, we questioned whether 

preferential cortical sensitivity to intrinsic human vocal tract sounds, those uniquely 

produced by human source-and-filter articulatory structures (Fitch et al., 2002), could be 

revealed in earlier “low-level” acoustic signal processing stages closer to frequency-

sensitive primary auditory cortices (PACs).  

 Within human auditory cortices, we predicted that there should be a categorical 

hierarchy reflecting an increasing sensitivity to one’s conspecific vocalizations and 

utterances. Previous studies investigating cortical voice-sensitivity in humans have 

compared responses to stereotypical speech and non-speech vocalizations with responses 

to other sound categories, including animal vocalizations and environmental sounds 

(Belin et al., 2000, Belin et al., 2002, Fecteau et al., 2004). However, these comparisons 

did not always represent gradual categorical differences, especially when using broadly 

defined samples of “environmental sounds”. Thus, in the current study, we utilized 

animal vocalizations together with naturally-produced human-mimicked versions (Lass et 

al., 1983). Human-mimicked animal vocalizations acted as a crucial intermediate 

vocalization category of human-produced stimuli, acoustically and conceptually bridging 
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between animal vocalizations and stereotypical human vocalizations. We therefore 

avoided confounds associated with using over-learned acoustic stimuli when 

characterizing these early vocalization processing networks (e.g. activation of acoustic 

schemata (Alain, 2007)). Using high-resolution functional magnetic resonance imaging 

(fMRI), our findings suggest that the cortical networks mediating vocalization processing 

are not only organized by verbal and prosodic non-verbal information processing (left 

and right hemispheres, respectively), but also that the left hemisphere processing 

hierarchy becomes organized along an acoustic dimension that reflects increasingly 

meaningful conspecific communication content. 
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MATERIALS AND METHODS 

 

Participants 

  

 We studied 22 right-handed participants (11 female; average age: 27.14 years ± 5.07 

years std. dev.). All participants were native English speakers with no previous history of 

neurological, psychiatric disorders, or auditory impairment, and had self-reported normal 

ranges of hearing. Each participant had typical structural MRI scans, was free of medical 

disorders contraindicative to MRI, and was paid for their participation. Informed consent 

was obtained from each participant following procedures approved by the West Virginia 

University Institutional Review Board. 

  

Vocalization sound stimulus creation and acoustic attributes  

 

 We prepared 256 vocalization sound stimuli. Sixty-four stimuli were in each of four 

sound categories, including human-mimicked animal vocalizations, corresponding real-

world animal vocalizations, foreign speech samples (details below), and nine 

predetermined English speech examples with neutral affect (performed by 13 native-

English speaking theatre students). The animal vocalizations were sourced from 

professionally recorded compilations of sounds (Sound Ideas, Inc, Richmond Hill, 

Ontario, Canada; 44.1 kHz, 16-bit). The three remaining vocalization categories were 

digitally recorded in our laboratory within a sound-isolated chamber (Industrial Acoustics 

Company, Inc.) using a Sony PCM-D1 Linear PCM recorder (sampled at 44.1kHz, 16-

bit). 

 Six non-imaging volunteers recorded human-mimicked versions of corresponding 

animal vocalization stimuli. Each mimicker attempted to match the spectrotemporal 

qualities of the real-world animal vocalizations. A group of four listeners then assessed 

the acoustic similarity of each animal-mimic pair until reaching a consensus for the 

optimal mimicked recordings. A subset of our fMRI subjects (n=18/22) psychophysically 

rated all of the animal vocalization and human-mimics after their respective scanning 
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sessions. Subjects were asked to rate each stimulus (button response) along a 5-point 

Likert-scale continuum to assess the “animal-ness” (low-score, 1 or 2) or “human-ness” 

(high score, 4 or 5) quality of the recording. Stimuli rated ambiguously along this 

dimension were given a score of three (3). The number of subjects who correctly 

categorized each animal or human-mimicked vocalization is displayed in Table 5-1. 

 The foreign speech samples used in this study were performed by native speakers of 

six different non-Romantic and non-Germanic languages: 1) Akan, 2) Farsi, 3) Hebrew, 

4) Hindi, 5) Mandarin, and 6) Yoruban. The Hindi, Farsi, and Yoruban speech samples 

were produced by female speakers and the Mandarin, Hebrew, and Akan speech samples 

were produced by male speakers. The foreign speakers were asked to record short phrases 

with communicative content in a neutral tone. The speech content was determined by the 

speakers. However, it was suggested that they discuss everyday situations to help ensure 

a neutral emotional valence in the speech samples. 

 The English vocalizations were modified versions of complete sentences used in an 

earlier study (Robins et al., 2009); additional phrasing was added to each stimulus to 

increase its overall length so that it could be spoken over a long enough timeframe (see 

below) with neutral emotional valence. All sound stimuli were edited to within 2.0 ± 0.5 

second duration, matched for average root mean square (RMS) power, and a linear 

onset/offset ramp of 25ms was applied to each sound (Adobe Audition 2.0, Adobe Inc.). 

All stimuli were recorded in stereo, but subsequently converted to mono (44.1 kHz, 16-

bit) and presented to both ears, thereby removing any binaural spatial cues present in the 

signals. 

 All of the sound stimuli were quantitatively analyzed; the primary motivation for 

these analyses was to acoustically compare the stimuli in each animal-mimic pair (Table 

5-1). The harmonic content in each stimulus was quantified with a harmonics-to-noise 

ratio (HNR) using Praat software (http://www.fon.hum.uva.nl/praat/) (Boersma, 1993). 

HNR algorithm parameters were the default settings in Praat (Time step (s): 0.01; Min. 

Pitch (Hz): 75; Silence threshold: 0.1; Periods per window: 1.0). Weiner entropy and 

spectral structure variation (SSV) were also calculated for each sound stimulus (Reddy et 

al., 2009, Lewis et al., 2012). We used a freely-available custom Praat script to calculate 

Weiner entropy values (http://www.gbeckers.nl/; Gabriel J.L. Beckers, Ph.D.); the script 

http://www.fon.hum.uva.nl/praat
http://www.gbeckers.nl/
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was modified to additionally calculate SSV values which are derived from Weiner 

entropy values. 

 

Scanning paradigms 

 

 Participants were presented with 256 sound stimuli and 64 silent events as baseline 

controls using an event-related fMRI paradigm (Lewis et al., 2004). All sound stimuli 

were presented during fMRI scanning runs via a Windows PC (CDX01, Digital Audio 

sound card interface) installed with Presentation software (version 11.1, Neurobehavioral 

Systems, Inc.) through a sound mixer (1642VLZ pro mixer, Mackie) and high-fidelity 

MR-compatible electrostatic ear buds (STAX SRS-005 Earspeaker system; Stax LTD., 

Gardena, CA), worn under sound-attenuating ear muffs. The frequency response of the 

ear buds was relatively flat out to 20 kHz (4dB) and the sound delivery system imparted 

75Hz high-pass filtering (18dB/octave) to the sound stimuli. 

The scanning session consisted of eight distinct functional imaging runs; the 256 

vocalization and 64 silent stimuli were presented in pseudo-random order (with no 

consecutive silent event presentations) and counterbalanced by category across all runs. 

Participants were instructed to listen to each sound stimulus and press a predetermined 

button on an MRI-compatible response pad as close to the end of the sound as possible 

(“End-of-Sound” (EOS) task). This task aimed to ensure that the participants were 

closely attending to the sound stimuli, but not necessarily making any overt and/or 

instructed cognitive discrimination. 

 Using techniques described previously from our laboratory, a subset of participants 

(n=5) participated in an fMRI paradigm designed to tonotopically map auditory cortices 

(Lewis et al., 2009). Briefly, tonotopic gradients were delineated in each subject’s 

hemispheres using a “Winner-Take-All” (WTA) algorithm for calculating preferential 

blood-oxygenated level dependent (BOLD) responses to three different frequencies of 

pure-tones (PT) and one-octave band-pass noises (BPN) relative to “silent” events: 

250Hz (Low), 2000Hz (Medium), and 12,000Hz (High). An uncorrected node-wise 

statistical threshold of p<0.001 was applied to each subject’s WTA cortical maps; 

tonotopic gradients were then spatially-defined in regions that exhibited contiguous Low-
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Medium-High progressions of preferential frequency responses along the cortical mantle. 

The tonotopic gradients of all subjects were then spatially averaged, irrespective of 

gradient direction, on the common group cortical surface model (created by averaging the 

surface coordinates of all 22 fMRI participants, see below). This effectively created a 

probabilistic estimate of primary auditory cortices (PAC) for our group of participants to 

be used as a functional landmark. These results were in agreement with anatomical 

studies that implicate the likely location of human PAC to be along or near the medial 

two-thirds of Heschl’s gyrus (HG) (Morosan et al., 2001, Rademacher et al., 2001). 

 

Magnetic resonance imaging data collection and pre-processing 

 

 Stimuli were presented during relative silent periods without functional scanner noise 

by utilizing a clustered-acquisition fMRI design (Edmister et al., 1999, Hall et al., 1999). 

Whole-head, spiral in-and-out images (Glover and Law, 2001) of the BOLD signals were 

acquired on all trials during functional sessions including silent events as a control 

condition using a 3T GE Signa MRI scanner. A stimulus or silent event was presented 

every 9.3 seconds, and 6.8 seconds after event onset BOLD signals were collected as 28 

axial brain slices approximately centered on the posterior superior temporal gyrus (STG) 

with 1.875 x 1.875 x 2.00 mm
3
 spatial resolution (TE = 36 msec, OPTR = 2.3 sec volume 

acquisition, FOV = 24 mm). The presentation of each stimulus event was triggered by the 

MRI scanner via a TTL pulse. At the end of functional scanning, whole brain T1-

weighted anatomical MR images were acquired with a spoiled GRASS pulse sequence 

(SPGR, 1.2 mm slices with 0.9375 x 0.9375 mm
2
 in plane resolution). Both paradigms 

utilized identical functional and structural scanning sequences. 

 All functional datasets were pre-processed with Analysis of Functional NeuroImages 

(AFNI) and associated software plug-in packages (http://afni.nimh.nih.gov/) (Cox, 1996). 

The 20
th

 volume of the final scan, closest to the anatomical image acquisition, was used 

as a common registration image to globally correct motion artifacts due to head 

translations and rotations.  

  

 

http://afni.nimh.nih.gov/
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Individual subject analysis 

 

 Three-dimensional cortical surface reconstructions were created for each subject from 

their respective anatomical data using Freesurfer (http://surfer.nmr.mgh.harvard.edu) 

(Dale et al., 1999, Fischl et al., 1999). These surfaces were then ported to the AFNI-

affiliated surface-based functional analysis package Surface Mapping with AFNI 

(SUMA) for further functional analyses (http://afni.nimh.nih.gov/afni/suma) (Saad et al., 

2006). BOLD time-series data were volume-registered, motion-corrected, and corrected 

for linear baseline drifts. Data were subsequently mapped to each subject’s cortical 

surface model using the SUMA program 3dVol2Surf; data were then smoothed to 4mm 

FWHM on the surface using SurfSmooth which implements a heat-kernel smoothing 

algorithm (Chung et al., 2005). Time-series data were converted to percent signal change 

(PSC) values relative to the average of silent-event responses for each scanning run on a 

node-wise basis. Functional runs were then concatenated into one contiguous time series 

and modeled using a GLM-based analysis with AFNI’s 3dDeconvolve. Regression 

coefficients for each subject were extracted from functional contrasts (e.g. MvsA, FvsM, 

etc.) to be used in group-level analyses (see below). Group analyses were further initiated 

by standardizing each subject’s surface and corresponding functional data to a common 

spherical space with icosahedral tessellation and projection using SUMA’s 

MapIcosahedron (Argall et al., 2006). 

 

Group-level analyses 

 

 Regression coefficients for relevant functional contrasts generated with AFNI/SUMA 

were grouped across the entire subject pool and entered into two-tailed t-tests. These 

results were then corrected for multiple comparisons in the following manner using 

Caret6 (Van Essen et al., 2001, Hill et al., 2010): (1) permutation-based corrections were 

initiated by creating 5000 random permutations of each contrast’s t-score map; (2) t-maps 

were smoothed by an average neighbors algorithm with four iterations (0.5 strength per 

iteration); (3) Threshold-free cluster enhancement (TFCE) was applied to each 

permutation map (Smith and Nichols, 2009), optimized for use on cortical surface models 

http://surfer.nmr.mgh.harvard.edu/
http://afni.nimh.nih.gov/afni/suma


 

 

111 

 

with parameters: E=1.0, H=2.0 (Hill et al., 2010); (4) a distribution ranking maximum 

TFCE scores was created to find the 95
th

 percentile statistical cutoff value; (5) this value 

was then applied to the original t-score map to produce the dataset in Figure 5-1. 

 Lateralization indices were calculated for each of the functional contrasts described 

within this manuscript (Fig. 5-1, M>A, F>M, E>M, and M>E). We accomplished this 

using a threshold- and whole-brain region of interest (ROI)-free method (Jones et al., 

2011). For each functional contrast, we created distributions of non-thresholded t-test 

scores within each hemisphere. After log-transforming these distributions, the centers of 

each (-4 ≤ t ≤ 4) were fit with parabolic equations to approximate noise in the 

distributions. Subtracting these noise-approximations from the original score distributions 

and integrating the results provided a quantitative measure for an individual contrast’s 

strength of activation within a hemisphere. Left and right hemisphere scores were then 

plotted against one another; the absolute distances of these points from the zero-

difference “bilateral” line (slope = 1) represented the relative lateralization of a given 

function (Fig. 5-1 illustrates these scores graphically.). 

 

Psychophysical affective assessments of sound stimuli 

 

 A cohort of non-imaged individuals (n=6) were asked to rate all of the paradigm’s 

stimuli along the affective dimension of emotional potency, or intensity. In our sound 

isolation booth, participants were seated and asked to rate each stimulus along a 5-point 

Likert scale: 1) Little or no emotional content, to 5) High levels of emotional content. 

Note that this scale does not discriminate between positive or negative valence within the 

stimuli; this scale simply provides a measure of total emotional content (Aeschlimann et 

al., 2008). Cronbach’s α scores were calculated to ensure the reliability of this measure 

(Cronbach, 1951); the entire set of subjects produced a value of 0.8846 and subsequent 

removal of each subject individually from the group data consistently produced values 

between 0.8458 and 0.894, well above the accepted consistency score of 0.7 (Nunnally, 

1978). Response means were compared pair-wise between each category with non-

parametric Kruskal-Wallis tests. These aforementioned tests helped to ensure consistent 

perceptual effects of our stimuli classes among participants. 
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RESULTS 

 

 Twenty-two native English-speaking (monolingual) right-handed adults were 

recruited for the fMRI-phase of this project which utilized a clustered acquisition imaging 

paradigm in which subjects pressed a button as quickly as possible to indicate the end of 

each sound. Sound stimuli (2.0 ± 0.5s) originated from one of four vocalization 

categories: 1) real-world animal vocalizations, 2) human-mimicked versions of those 

animal vocalizations, 3) emotionally neutral conversational foreign speech samples that 

were incomprehensible to our participants, and 4) emotionally neutral English phrases. 

To create functional landmarks, we mapped the PACs of a subset of participants (n=5) 

using a modified tonotopy paradigm from our previous work (Lewis et al., 2009). The 

anatomical extent of each subject’s estimated tonotopically-sensitive cortices were 

combined into a group spatial average and depicted by a “heat-map” representation (Fig. 

5-1, gray-scale gradient, also see Fig. 5-3 for individual maps). The intensity gradient of 

these averaged data represents the degree of spatial overlap across subjects, providing a 

probabilistic estimate of PAC locations within our participants. These results were 

consistent with previous findings indicating that the location of human PACs can be 

reliably estimated along or near the medial two-thirds of HG (see Methods). 

 To assess our hypothesis that the use of non-stereotypical human vocalizations might 

reveal earlier stages of species-specific vocalization processing, we sought to identify 

cortical regions preferentially activated by human-mimicked animal vocalizations. 

Preferential group-averaged BOLD activity to the human-mimicked stimuli relative to 

their corresponding animal vocalizations was strongly left-lateralized and confined to a 

large focus in the group-averaged dataset. This activation encompassed regions from the 

lateral-most aspects of HG, further extending onto the STG, and marginally entering the 

STS (M>A; Fig. 5-1, yellow, p<0.05 Threshold-Free Cluster Enhancement (TFCE) and 

permutation-corrected (Smith and Nichols, 2009)). BOLD values in regions defined by 

this contrast and others discussed below are highlighted in Figure 5-2. This mimic-

sensitive focus (yellow) was located near and partially overlapping functional estimates 

of PAC. Even within some individuals, the activation foci for human mimic sounds 
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bordered or partially overlapped their functional PAC estimates (Fig. 5-3; yellow near or 

within black dotted outlines). Right-hemisphere mimic-sensitive activity in the group-

averaged data set was confined to a small focus along the upper bank of the STS (Fig. 5-

1, yellow). We also calculated a lateralization index (LI) (Jones et al., 2011) with whole 

brain threshold- and ROI-independent methods (Fig. 5-1; LIM>A=-2.68) that strongly 

supported this robust left-lateralization at the group level. 

 When contrasted with the animal vocalizations, the corresponding human mimic 

vocalizations were generally well matched for low-level acoustic features such as rhythm, 

cadence, loudness, and duration. Acoustic and psychophysical attributes were also 

derived to quantify some of the differences between the mimic-animal vocalizations at 

sound-pair and categorical levels. One acoustic attribute we measured is related to 

harmonic content, a signal quality that is significantly represented in vocalizations (Riede 

et al., 2001, Lewis et al., 2005); this was accomplished by quantifying a harmonics-to-

noise ratio (HNR) for each stimulus (see Methods). We previously reported harmonic 

processing as a distinct intermediate stage in human auditory cortices by showing cortical 

regions that were parametrically sensitive to the harmonic content of artificial iterated 

rippled noise (IRN) stimuli and real-world animal vocalizations (Lewis et al., 2009). In 

the present study, HNR values for human-mimicked vocalizations were typically greater 

than their corresponding animal vocalizations; these differences persisted at the 

categorical level (t-test, p<0.05) (Table 5-1).  

 Two other acoustic attributes we calculated were related to signal entropy measures. 

Also known as the spectral flatness measure (SFM), Weiner entropy quantifies the 

spectral density in an acoustic signal in the form of resolvable spectral bands (Reddy et 

al., 2009). Consequently, white noise (“simple” diffuse spectrum) and pure tones (infinite 

spectral power or density at one frequency) lie at the extreme ends of this attribute’s 

range (white noise: 0, pure tone: -). This attribute has been used previously to 

characterize environmental sounds (Reddy et al., 2009, Lewis et al., 2012). Generally, 

vocalizations produce the most negative values since they usually contain very 

specifically structured spectral content (often a fundamental frequency and a few 

formants). Human-mimicked animal vocalizations from the current study typically had 

less negative entropy values than their animal vocalization counterparts (Table 5-1), 
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implying that they possessed relatively less ordered acoustic structure. Group-level 

analysis confirmed the Weiner entropy differences between these two categories (t-test, 

p<0.0005).  

 Spectral structure variance (SSV), derived from Weiner entropy measures, is a 

measure of the dynamicity of an acoustic signal’s spectral distribution over time. Using 

this measure, white noise and pure tone signal produced similar values near zero, 

reflecting the slow-varying statistics (stationary and nearly-stationary statistics for pure-

tones and white noise, respectively). Sounds containing dynamic spectral statistics such 

as vocalizations (especially speech and object-like action sounds) are reported to produce 

greater SSV values (Reddy et al., 2009, Lewis et al., 2012). Between animal 

vocalizations and corresponding human-mimicked sounds, SSV values were generally 

lower for human mimics (t-test, p<0.05). Together, the acoustic signal changes (increases 

in HNR, Weiner entropy, and SSV) seen between these two categories of sounds were 

suggestive of the human-mimics having more “simplified” spectrotemporal dynamics 

(see Discussion). 

 After scanning sessions, a subset (n=18/22) of our fMRI participants 

psychophysically rated the animal and human-mimicked stimuli. Each stimulus was rated 

along a 5-point Likert-scale for the perceived “animal-ness” (low-score, 1 or 2) or 

“human-ness” (high-score, 4 or 5). Ambiguous stimuli that were not perceived as 

distinctly human- or animal-produced were rated medially along this dimension with a 

score of three (3). Participants, who were naïve to the stimuli during scanning sessions, 

were relatively proficient at correctly categorizing sounds after being informed of the 

presence of animal and mimic categories. The numbers of subjects that were able to 

correctly categorize each stimulus are listed in Table 5-1 (i.e. animal vocalizations given 

a 1 or 2 score, human vocalizations given a 4 or 5 score). The accuracy for correctly 

categorizing both animal vocalizations and human-mimicked versions were comparable 

across both categories (t-test, p=0.941; animal vocalizations: 77.95%; human-mimicked 

vocalizations: 78.56%). An analysis of the fMRI data including BOLD responses only to 

the correctly categorized stimuli did not produce any qualitative differences from the 

group-averaged responses to all of the experimental stimuli (data not shown). The 

relatively low numbers of errors and the fact that the BOLD data and psychophysical data 
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were collected under different conditions (naïve and in the scanner vs. non-naïve and 

outside of the scanner) also precluded a rigorous “error trials” analysis.  

 To further identify where these human vocal tract-sensitive regions (M>A) were 

located in the auditory processing hierarchy, we also compared the responses to mimic 

stimuli with responses to foreign and English speech samples. Preferential activation to 

unfamiliar foreign speech, which is incomprehensible with respect to locutionary 

(semantic) content (Austin, 1975), relative to human-mimicked animal vocalizations 

(F>M) should reflect the general processing of dynamic spectrotemporal acoustic features 

typical of spoken languages and utterances at later auditory stages. Cortical regions 

preferentially responding to foreign speech from six different non-Romance and non-

Germanic languages (Akan, Farsi, Hebrew, Hindi, Mandarin, and Yoruban) 

predominantly radiated posterolaterally out from the left-hemisphere mimic-sensitive 

focus and into the left STS, as well as medially onto HG (Figure 5-1, red). 

 In addition to basic speech sensitivity, contrasting the BOLD activity between 

English speech vocalizations and the mimic stimuli (E>M) specifically highlighted 

cortical sensitivity to the subtle differences in acoustic cues that convey comprehensible 

locutionary communication in one’s native language relative to the more fundamental 

vocal tract sound signals. This condition revealed a strongly left-lateralized expanse of 

activity (Fig. 5-1, dark blue) situated further into the STS than foreign-vs-mimic sensitive 

regions. Responses to the spoken verbal stimuli in our paradigm, whether foreign or 

native, produced the most strongly left-lateralized networks along the STG and STS (Fig. 

5-1; LIF>M=-4.47; LIE>M=-5.48). Importantly, our experimental design emphasized 

conspecific vocal-tract sensitivity and thus did not incorporate any overt phonological, 

syntactic, or semantic “language tasks” that may have produced more bilateral activation 

(Hickok and Poeppel, 2007). Collectively, these results form the basis of a left-

hemisphere auditory processing hierarchy that is organized by increasingly complex and 

precise statistical representations of conspecific communication sounds. Directed 

laterally and anterolaterally along the cortical ribbon (Chevillet et al., 2011), this 

hierarchy ultimately culminated in the cortical representations of conspecific utterances 

that express locutionary (semantic) information, similar to models of intelligible speech 

processing (Scott et al., 2000, Davis and Johnsrude, 2003, Friederici et al., 2010). 
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Individual subjects revealed similar left hemisphere hierarchies that seemed to emerge 

from around PACs (e.g. Fig. 5-3, yellow to red to blue progressions emanating near HG, 

extending onto the STG, and into the STS).  

 Although affective cues are typical of many vocal expressions, we used neutral 

foreign and English speech samples to avoid cortical activity related to the phatic 

elements of language. However, the animal vocalizations and their corresponding 

mimicked versions likely possessed some appreciable amounts of emotional prosodic 

content. A perceptual screening of our sound stimuli by participants not included in the 

neuroimaging study did indeed indicate that the mimic sounds were significantly higher 

in emotional valence content (emotional prosody) than the neutral English and foreign 

speech stimuli (n=6, p<0.0001, Kruskal-Wallis tests of 1-5 Likert ratings). Right 

hemisphere networks are proposed to process affective prosodic cues of vocalization 

stimuli (e.g. slow pitch-contour modulations) rather than locutionary content (Zatorre and 

Belin, 2001, Friederici and Alter, 2004, Ethofer et al., 2006a, Kotz et al., 2006, Ross and 

Monnot, 2008, Grossmann et al., 2010). Concordantly, there was a distinct expanse of 

strongly right-lateralized hemisphere activity that responded preferentially to the mimic 

stimuli relative to the English speech samples (M>E; Figure 5-1, cyan). This included a 

temporal cluster along the right posterior STG that extended into the planum temporale 

and onto posterior and lateral aspects of HG near functionally-estimated PACs. 

Additionally, another cluster of foci was revealed within the right inferior frontal cortices 

along the inferior frontal gyri (IFG) that extended into the anterior insula. Together, these 

results strengthen and further specify the purported hemispheric biases for vocal 

information processing. 
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DISCUSSION 

 

Lateralized Cortical Sensitivity to the Human Vocal-Tract 

  

 The present data revealed a cortical hierarchy in human auditory cortices for 

processing meaningful conspecific utterances; this hierarchy emerged near left primary 

auditory cortices in a region that showed species-specific sensitivity to the acoustics of 

the human vocal tract. We accomplished this by utilizing human-mimicked animal 

vocalizations – making the animal vocalizations a highly precise control condition 

because they were well matched for numerous low-level acoustic signal attributes. Both 

of these sound categories lacked familiarity relative to stereotypical human vocalizations 

and the human-mimic sounds were not within the normal repertoire of frequently 

encountered or produced human communicative sounds. This minimized any possible 

effects related to initiating over-established acoustic schemata (Alain, 2007). As a result, 

we satisfied our primary aim to create an intermediate non-stereotypical category of 

complex human vocalizations that was “naturally-produced” yet contained little or no 

human-specific communicative content. 

 The human-mimicked animal vocalizations used in this study varied qualitatively in 

their overall imitation “accuracy” when compared to their corresponding animal 

vocalizations. Attempting to match the pitches of the animal vocalization, the mimickers 

likely relied more upon the use of their vocal folds (cords). Furthermore, straining the 

limits of their vocal abilities and the physical limitations of their vocal structures likely 

emphasized additional nonlinear acoustic elements that are unique to or characteristic of 

the human vocal tract (Fitch et al., 2002). While a definitive analysis of human-specific 

vocal acoustics was beyond the objectives of the current study, we nonetheless aimed to 

acoustically describe our animal vocalization and human-mimic stimuli in part by using 

three quantitative measures: HNR, Weiner entropy, and SSV. Each of these attributes has 

been used previously to describe various categories of sound including vocalizations, tool 

sounds, and other environmental sounds (Riede et al., 2001, Lewis et al., 2009, Reddy et 

al., 2009, Lewis et al., 2012). The increased harmonic content (greater HNR values) seen 



 

 

118 

 

for human-mimics versus animal vocalizations may reflect a greater reliance on the vocal 

folds when attempting to match pitches. This effect may further be paralleled by the 

relative increases in the signal entropy of the mimics. Nonlinear acoustic phenomena 

emphasized during vocal strain would effectively spread the overall spectral density of 

human-mimicked vocalizations (Fitch et al., 2002). In addition to the harmonic and 

spectral entropy changes we observed, human-mimicked versions of animal vocalizations 

further revealed a decrease in their spectral dynamicity (SSV measures). By straining 

themselves to go beyond their typical vocal repertoires, mimickers may have been less 

likely to implement highly-learned and complicated articulatory routines that are 

typically used during language production. Overall, the quantitative changes observed 

within these three acoustic signal attributes (Table 5-1) are consistent with the notion that 

the human-mimicked animal vocalizations generally represented acoustically 

“simplified” versions of their real-world counterparts, simplified in a manner that 

emphasized acoustic phenomena that are unique to the human vocal tract. 

 A notable sound category not included in the current experiment was stereotypical 

non-verbal human vocalizations; this category would include sounds such as humming, 

coughing, crying, yawning, etc. Our rationale for not including this category reflected 

both experimental limitations (longer scanning sessions) and theoretical considerations. 

Scientifically, our primary goal was to describe a cortical network in auditory cortex that 

reflected increasing representation of locutionary information – information in vocal 

utterances that reflects their ostensible meaning. While many non-verbal human 

vocalizations can be produced using prosodic cues that express specific intentions (a 

questioning “hmm?”, coughing conspicuously to gain someone’s attention, etc.), the 

same stimuli can oftentimes be purely reflexive and produced with no overt 

communicative motivation. We felt that our chosen spectrum of sounds – animal 

vocalizations, their human-mimicked counterparts, foreign and English speech – 

represented a straightforward and incremental progression along a dimension of 

communicative expression that culminated in discernible locutionary content, an 

utterance mechanism presumably unique to humans (Austin, 1975). 

 The results of our experiment newly suggest that “voice-sensitivity” for humans 

predominantly emerges along the boundary between the left HG and STG in close 
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proximity to primary auditory cortices. These results, reporting a left-lateralized 

conspecific vocalization hierarchy near PACs, contrasts with previous studies showing 

either bilateral voice-sensitivity located more laterally along the STG/STS (Belin et al., 

2000, Binder et al., 2000) or right-hemisphere biased effects when using stereotypical 

verbal or non-verbal vocalizations (Belin et al., 2002). The present findings have 

significant implications for both the evolutionary and developmental trajectory of this 

cortical function in human and non-human primates, as addressed in the following 

sections.  

 

The Evolution of Conspecific “Voice-Sensitivity” 

 

 The evolution of cortical networks that mediate vocal communication and language 

functions, and more specifically the lateralization of these functions and supporting 

anatomical structures, is a burgeoning area of research (for review see Wilson and 

Petkov, 2011). Specific anatomical differences between primate species point to left-

hemisphere biases for the structures that would putatively support the emergence of 

language functions. For instance, diffusion tensor imaging (DTI) tractography results 

demonstrate a striking expansion and increasing connectivity of the left arcuate fasciculus 

between macaques, chimpanzees and humans (Rilling et al., 2008). Additionally, 

posterior temporal lobe regions such as the planum temporale in chimpanzees display 

asymmetries in gross anatomical structure, similar to those seen in humans (Gannon et 

al., 1998, Hopkins et al., 1998). Neuroimaging techniques are increasingly being used to 

describe whole-brain networks for vocalization processing in lower primates (Gil-da-

Costa et al., 2006). Functional neuroimaging (fMRI) in Old World monkeys (macaques) 

has demonstrated bilateral foci showing preference for species-specific vocalizations with 

a more selective focus occurring along the right anterior superior temporal plane (Petkov 

et al., 2008). Another macaque study using positron emission tomography (PET) revealed 

preferential left anterior temporal lobe activity to species-specific vocalizations (Poremba 

et al., 2004). PET neuroimaging in great apes (chimpanzees) has revealed a right 

hemisphere preference for certain conspecific vocalizations and utterances (Taglialatela 

et al., 2009). However, the responses to conspecific vocalizations in chimpanzees were 
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not directly compared to those produced by other species thereby precluding 

interpretations regarding species-specificity per se. While the auditory pathways in lower 

and higher non-human primates that process vocalization sounds require further study, 

findings hitherto support the presence of at least some lateralized functions in networks 

for processing conspecific vocalizations.  

 With regard to vocal communication networks in primates, the present data suggest 

that early left hemisphere auditory networks in humans are hierarchically organized to 

efficiently extract locutionary (semantic) content from conspecific speech utterances. By 

contrasting neuronal activity to a species’ (e.g. chimpanzee) conspecific utterances versus 

human-mimicked versions, subtle differences may be revealed along various intermediate 

cortical processing stages. We propose that a hierarchy of “proto-network” homologues 

similar to the one we have described may be revealed in other primates, especially the 

great apes, by using a similar experimental rationale. This may further our understanding 

of the evolutionary underpinnings of vocal communication processing. 

 

Vocalization Processing in a Neurodevelopmental Context 

 

 The present findings also have significant implications for language development in 

children. Early stages in human auditory processing pathways may be, or develop 

through experience to become, optimized to process the statistically representative 

qualities unique to the human vocal tract. This arrangement would promote maximal 

extraction of conspecific communicative content from complex auditory scenes (i.e. 

socially-relevant vocal communication from other humans). Seminal steps of this process 

would likely involve encoding the fundamental acoustic signatures of personally 

significant vocal tracts, initially including the voices of one’s caretakers’, one’s own 

voice and, for social animals, the voices of other conspecifics. For example, human 

infants generally produce more positive and preferential responses to ‘motherese’ and 

other baby-directed vocalizations (Cooper and Aslin, 1990, Mastropieri and Turkewitz, 

1999). Those responses may be driven heavily by the relatively stable statistical structure 

of basic “simplified” vocalizations (Fernald, 1989), notably vowels and other utterances 

possessing relatively simple amplitude envelopes, elevated pitch and strong harmonic 
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content, the latter being a hallmark acoustic attribute of vocal communication sounds 

across most species (Riede et al., 2001, Lewis et al., 2005, Lewis et al., 2009). While it 

remains unclear whether sensitivity to intrinsic human vocal tract sounds reflects domain-

specific functions (nature) or auditory experience (nurture), the auditory experiences that 

initiate or influence these functions may begin in utero (DeCasper et al., 1994b) while a 

fetus experiences harmonically-structured vocal sounds. Nonetheless, a longer 

developmental timeframe would ostensibly follow this initial sensitivity, during which an 

emergent sensitivity to more subtle and complex socially-relevant acoustic signal cues 

appears as more advanced communicative and language abilities develop (Wang, 2000). 

 Near-infrared spectroscopy (NIRS) has been implemented to demonstrate the 

emergence of voice-sensitivity in infant auditory cortices between four and seven months 

of age, showing a right hemisphere bias when processing emotional prosody (Grossmann 

et al., 2010). Recently, an fMRI study involving infant participants ranging in age from 3-

7 months revealed regions along the right anterior temporal cortices that were 

preferentially activated by stereotypical non-speech human vocalizations versus common 

environmental sounds (Blasi et al., 2011). Our findings in conjunction with the results 

from infant studies lead us to posit that the right hemisphere, having a propensity for 

processing acoustically “simpler” prosodic cues (when compared to complexly adjoined 

speech sounds), possesses greater vocalization sensitivity during early development. Left 

hemisphere structures subsequently follow, reflecting a combination of cortical 

development constraints (Leroy et al., 2011) and the behavioral need to perform the more 

rapid spectrotemporal analyses (Zatorre and Belin, 2001, Obleser et al., 2008) required to 

extract more specific communicative information from locutionary vocalizations and 

other communicative utterances (Austin, 1975). This developmental paradigm may also 

reflect the increasing cortical influences by social and attention-related cortical networks 

(Kuhl, 2007, 2010). Regardless, we believe that testing immature auditory systems using 

the current experiment’s rationale will help clarify the typical developmental trajectory of 

auditory circuits that become optimized for extracting conspecific communication 

content. This will help provide insight into the etiology of various language and social-

affective communication disorders that begin to develop during early stages of a child’s 
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language development including specific language impairments (SLI) and autism 

(Gervais et al., 2004, Shafer and Sussman, 2011).                       

 

 

 

 

  



 

 

123 

 

FIGURES AND TABLES 

FIGURE 5-1 
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FIGURE 5-1. Conspecific vocalization processing hierarchy in human auditory 

cortex. a, Group-averaged (n=22) functional activation maps displayed on composite 

hemispheric surface reconstructions derived from all subjects. b, To better visualize the 

data, we inflated and rotated cortical projections within the dotted-outlines in (a). The 

spatial locations of tonotopic gradients from five subjects were averaged (black-to-white 

gradients) and located along HG. Mimic-sensitive regions (M>A) are depicted by yellow 

hues, sensitivity to foreign speech samples versus mimic vocalizations (F>M) are 

depicted by red hues, and sensitivity to native English speech versus mimic vocalizations 

(E>M) is depicted by dark blue. Regions preferentially responsive to mimic vocalizations 

versus English speech samples (M>E) are depicted by cyan hues. Corresponding colors 

indicating functional overlaps are shown in the figure key. All data are TFCE-enhanced 

and permutation-corrected for multiple comparisons to p<0.05. To quantify the laterality 

of these functions, we calculated and plotted lateralization indices using threshold- and 

whole-brain region of interest (ROI)-free methods. Lateralization indices showed 

increasingly left-lateralized function (negative values indicate a leftward bias) for 

processing conspecific vocalization with increasing amounts of locutionary information; 

LIM>A=-2.68, LIF>M=-4.47, LIE>M=-5.48, LIM>E=+3.59. Additional anatomy: pre-central 

gyrus (PreCenGy), and inferior frontal gyrus (IFG). 
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FIGURE 5-2 
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FIGURE 5-2. Quantitative representation of BOLD fMRI activation. Mean BOLD 

signal responses (n=22 subjects) to the four vocalization categories were quantified for 

each focus or region identified in Fig. 5-1. Data correspond to the means ± s.e.m. The 

functional regions identified in Fig. 5-1 are indicated under each four-bar cluster. Left 

hemisphere regions from Fig. 5-1: M>A (yellow), F>M (red), and E>M (dark blue); right 

hemisphere regions from Figure 5-1: M>A (yellow), M>E-Temporal and M>E-Frontal 

(cyan). 
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FIGURE 5-3 
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FIGURE 5-3. Vocalization-sensitive regions near primary auditory cortices in 

individual participants. Individual cortical maps showing the locations of vocalization-

sensitive cortices with respect to tonotopically-organized regions (Primary Auditory 

Cortices, PAC). Tonotopic organization (dotted outlines) occurred primarily along 

regions within and surrounding Heschl’s gyrus (HG). Areas activated by the M>A, F>M, 

and E>M functional contrasts from Fig. 5-1 are highlighted. Cortex that was 

preferentially sensitive to mimicked versions of animal vocalizations versus 

corresponding real-world animal vocalizations (M>A, yellow) often occurred near or in 

some instances overlapped an individual’s PAC. More lateral regions along the superior 

temporal gyrus (STG) and within the superior temporal sulcus (STS) often showed 

preference to neutral foreign (F>M, red) and English phrases (E>M, blue) over non-

stereotypical human-mimicked animal vocalizations. 
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TABLE 5-1 
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TABLE 5-1. Acoustic attributes and psychophysical results for real-world animal 

vocalizations and their corresponding human-mimicked versions. Each animal-mimic 

pair is listed (mimic values are in bold type) along with each sound’s respective acoustic 

measurements including HNR, Weiner entropy, and SSV. The last column displays the 

proportion of subjects for each stimulus who correctly categorized the vocalizations as 

animal- or human-produced (i.e. animal vocalizations given a 1 or 2 score, human 

vocalizations given a 4 or 5 score). The acoustic attributes were also calculated for the 

foreign and English stimulus categories (standard deviations in parentheses) for 

comparison, though we did not include these measures in any detailed analyses: HNR, 

English: 8.708dB (4.220), Foreign: 7.864dB (5.077); Weiner Entropy, English: -5.891 

(0.959), Foreign: -5.861 (1.152); SSV, English: 4.077, (1.717), Foreign: 3.500 (1.975). 
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ABSTRACT 

 

 Humans and several non-human primates possess cortical regions that are most 

sensitive to vocalizations produced by their own kind (conspecifics). However, the use of 

speech and other broadly defined categories of behaviorally relevant natural sounds has 

led to many discrepancies regarding where voice-sensitivity occurs, and more generally 

the identification of cortical networks and pathways that may be sensitive or selective for 

certain aspects of vocalization processing. In this prospective review we examine 

different approaches for exploring how vocal communication processing, including 

pathways that may be, or become, specialized for conspecific utterances. In particular, we 

address the use of naturally produced non-stereotypical vocalizations (mimicry of other 

animal calls) as another category of vocalization for use with human and non-human 

primate auditory systems. We focus this review on two main themes, including progress 

and future ideas for studying vocalization processing in great apes (chimpanzees) and in 

very early stages of human development, including fetuses and infants. Advancing our 

understanding of the fundamental principles that govern the evolution and early 

development of cortical pathways for processing non-verbal communication utterances is 

expected to lead to better diagnoses and early intervention strategies in children prone to 

develop communication disorders, and have implications for intelligent hearing aid and 

implant design for those with a reduced ability to hear speech in noisy environments.  
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INTRODUCTION 

 

 Vocalizations represent some of the most complex sounds of the natural world. The 

acoustic signals of even very short utterances can be rapidly processed to extract distinct 

meaning. This can include alerting the listener to danger, a mate, or food: More specific 

socially relevant information such as the identity of the source (e.g. species, gender, or 

specific individual), its intent, health status, or emotional state in some instances also be 

quickly surmised. The auditory systems of vocalizing mammals, notably including 

humans and non-human primates, develop to rapidly decompose incoming vocal 

communication signals (on second or sub-second timescales), utilizing multiple 

hierarchical processing stages from the brainstem to higher order auditory cortices.  

 The information gleaned from these acoustic analyses leads to recruitment of other 

cortical regions and subsequently engenders responses, ranging from conspecific 

recognition, to attentional modification, to evasive motor responses. Early auditory 

circuits must rapidly filter incoming signals for the most behaviorally-relevant content 

while simultaneously suppressing more irrelevant information (background “noise”, 

contextually unimportant vocalizations, etc.).  Stimuli with very subtle acoustic variations 

can impart drastically different meaning; human language faculties arguably represent the 

most salient examples of this property – slight changes in pitch articulation can cause a 

speech segment to be perceived, for example, as sad, angry, or fearful.   

 Much of the early work that described mammalian auditory systems has incorporated 

the use of acoustically “simple” stimuli, including pure tones, band-pass noise, 

amplitude-modulated tones, and harmonic complexes. The major benefits of using 

simpler stimuli to elucidate the signal processing architecture and function of these 

networks are obvious; simple sound stimuli permit the design of very exact and 

controlled experimental manipulations that produce physiological responses with greater 

interpretable power. While these experiments have garnered much information about the 

function of hierarchically organized auditory networks, they generally do not reflect the 

nature of sounds that are experienced in real-world situations. Naturalistic sounds like 

vocalizations can be composed of extremely nuanced combinations of acoustic 
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phenomenon. This quality of vocalization signals becomes especially problematic when 

attempting to design precise experiments that can produce generalizable results. By 

probing the neuronal/auditory system with natural (often behaviorally relevant) stimuli, 

which it has arguably become optimized to process not only give insight into its 

respective operation, but are likely to reveal more cross-modal “whole-brain” 

physiological and behavioral responses.  

 While canonical auditory regions (i.e. primary auditory cortices (PAC), belt and 

parabelt regions) obviously play fundamental roles in vocalization processing, the 

influence of other “non-auditory” cortical and cognitive systems are increasingly 

becoming necessary to consider and model when examining how the auditory system 

extracts or derives meaningful representations for naturalistic vocalization stimuli.  For 

instance, vocalizations often lead to assessments of the emotional and intentional states of 

other animals (conspecific or otherwise). This implies that the perception of vocal 

communication sounds tap into motor systems, including mirror neuron systems 

(Rizzolatti et al., 1996), and into introspective systems, including posterior and anterior 

insular systems (Craig, 2009), thereby entailing rather widespread cortical networks and 

pathways.  

 This prospective review considers two major themes: First, the more advanced 

communication abilities that humans have with non-speech utterances should presumably 

be present in some capacity in non-human primates (Fitch, 2011). Thus, one focus is to 

examine a comparison of cortical processing of natural vocalizations across primate 

species, especially great apes. Second, a listener’s ability to attain a sense of “meaning” 

behind communicative utterances, and subtleties therein, requires extensive periods 

(years) of learning. Since much of the foundation of processing pathways and networks 

that are ultimately recruited for sound perception may develop in early stages of life, 

another focus of this review will be an analysis of fetal to early childhood human 

neurodevelopment in vocal signal processing. Based on these two themes, we address 

future research directions that we feel will facilitate significant advances in our 

understanding of basic hearing perception mechanisms. These advances in turn will 

contribute to a better understanding of vocal communication impairments, leading to 

more targeted therapeutic treatments, and to methods for developing more intelligent 
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biologically-inspired hearing prosthetics. In the following sections we address non-

speech utterances as a gross-level category of vocalizations, cortices that are sensitive to 

human (conspecific) voice, and low-level acoustic signal processing of vocalization 

features. This is followed by a prospective review of non-human primate studies and by 

human studies involving the development of the auditory system at very early stages of 

life.   
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Utterances, paralinguistic signals, and non-speech 

 

 Throughout human evolution, spoken language perception has arguably become the 

most important function for the human auditory system. According to one set of linguistic 

theories, speech acts and utterances can be divided into four main categories (Austin, 

1975). This includes locutionary utterances (speech), which convey semantic information 

and are expressed through use of many different acoustic signal forms ranging from 

simple phonemes, to words, to grammatically complex word combinations, as evidenced 

by the 6000 or so language systems currently spoken on our planet. However, humans 

commonly produce and hear other forms of non-locutionary communicative utterances on 

a daily basis, including many that transcend language boundaries. This includes phatic 

expressions to convey social information such as emotional status (e.g. a wince revealing 

pain, or a grunt of obeisance), perlocutionary expressions that are intended to cause a 

desired psychological consequence to a listener (e.g. tone in voice to persuade, convince, 

scare, or inspire), and illocutionary expressions wherein the utterance itself conveys the 

idea that the speaker will undertake an obligation (e.g. promising, ordering, greeting, 

warning, congratulating). Given that the auditory system must develop to accommodate 

processing of these types of acoustic cues, social interactions are likely to be critical for 

normal development. Germane to this idea is the hypothesis that social interaction is also 

essential for natural speech learning (Kuhl, 2007),  

 The use of spoken language to examine acoustic signal processing and general 

mechanisms mediating hearing perception has encountered a number of problems. For 

instance, congenitally deaf individuals can also easily acquire locutionary communication 

skills in the form of sign language and written language. Thus, there are likely to be a 

myriad of processing stages and hierarchies that link the complexities of language 

processing networks with those more central to hearing perception. In other words, vocal 

communication and language systems need not be mutually dependent on one another. 

While humans are the only species known to fully process, extract, and comprehend 

locutionary acoustic information (language), other vocalizing social species, such as 

monkeys and great apes, presumably have evolved to utilize some of these other non-
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locutionary classes of utterances, which may be essential for effective social 

communication. Thus, to understand more rudimentary cortical mechanisms for 

processing communicative vocalizations, researchers have increasingly been 

investigating the processing of non-verbal vocalizations and paralinguistic signals (e.g. 

calls, grunts, coughs, sighs, etc.) not only in humans, but also in non-human primates. 

The use of non-locutionary utterances as behaviorally relevant, naturalistic stimuli 

permits more direct comparisons across species, wherein identical sets of sound stimuli 

can be used, as addressed in a later section. As a result of this basic approach, 

considerable interest remains in the pursuit of characterizing cortical regions or pathways 

that may show sensitivity or selectivity to the voice or vocal tract signal attributes that 

may be inherent to a given species—that is, sensitivity to “conspecific” vocalizations.  
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Cortical sensitivity to human voice 

 

 Cortical regions sensitive to human (conspecific) voice (or speech) have been 

traditionally identified bilaterally within the superior temporal sulci (STS) when 

examining responses to stereotypical sounds, including speech, animal vocalization, 

environmental sounds, and non-verbal sounds such as coughs, sighs, and moans (Belin et 

al., 2000, Belin et al., 2002, Fecteau et al., 2004, Lewis et al., 2009). However,  more 

recent studies consider these STS regions to represent “higher-order” auditory cortices 

that function more generally as substrates for auditory experience, showing activity to 

artificially constructed non-vocal sounds after perceptual training (Leech et al., 2009, 

Liebenthal et al., 2010). The STS regions may not function in a domain-specific manner 

solely for vocalization processing. Rather, humans may typically develop to become 

“experts” at processing voice and speech signals, which consequently leads to 

recruitment and development of circuits in the STS that compete to process those signals 

in a domain-general manner (Pascual-Leone and Hamilton, 2001). Additionally, some of 

the samples of vocalizations and control natural sounds used to test for voice sensitivity 

have included broadly defined “categories”, which may contain more subtle sub-

categories upon which the auditory system is organized.   

 Using a novel class of non-stereotypical vocalization sounds, human-mimicked 

animal vocalizations, Talkington et al. reported a left hemisphere dominant activation to 

naturally produced sounds unique to the human conspecific vocal tract (Talkington et al., 

2012). This was contrary to previous findings that described human-voice or species-

specific sensitivity as a right hemisphere dominant or bilateral function (Belin et al., 

2000, Fecteau et al., 2004). This “category” of vocalization sounds allowed them to probe 

intermediate cortical networks that show fine-grained sensitivities to the acoustic 

subtleties of the human vocal tract. Moreover, their results suggest that the cortical 

pathways supporting vocalization perception are initially organized by sensitivity to the 

human vocal tract in stages prior to the left STS. This and other studies have started 

examining different categories of calls, either across or within primate species, as 

addressed in section 5. These types of studies have consequently led to a resurgence of 
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the search for auditory cortices showing sensitivity to specific bottom-up “lower-level” 

acoustic signal attributes that may be inherent to communicative utterances and sub-

classes therein. Such signal attributes may serve as primitives, which early and 

intermediate stages of the auditory system use to rapidly process sound, as addressed 

next. 

 

  



 

 

140 

 

Acoustic signal processing of vocalization 

 

 Where in the auditory processing hierarchies does vocalization-sensitivity begin to 

emerge? Numerous “simple” acoustic signal attributes are known or thought to be 

represented in early cortical processing stages, including the filtering or extraction of 

signal features such as bandwidths, spectral shapes, onsets, and harmonic relationships, 

which together have a critical role in auditory stream segregation and formation, 

clustering operations, and sound organization (Medvedev et al., 2002, Nelken, 2004, 

Kumar et al., 2007, Elhilali and Shamma, 2008, Woods et al., 2010). Later stages are 

thought to represent processing that segregates spectro-temporal patterns associated with 

complex sounds, including the processing of acoustic textures, location cues, 

prelinguistic analysis of speech sounds (Griffiths and Warren, 2002, Obleser et al., 2007, 

Overath et al., 2010), and auditory objects defined by their entropy and spectral structure 

variation (Reddy et al., 2009, Lewis et al., 2012). Subsequent cortical processing 

pathways, such as projections between posterior portions of the superior temporal gyri 

(STG) and sulci (STS), may integrate corresponding acoustic streams over longer time 

frames (Maeder et al., 2001, Zatorre et al., 2004, Griffiths et al., 2007, Leech et al., 2009, 

Goll et al., 2011, Teki et al., 2011).  

 Sounds containing strong harmonic content, notably including human and animal 

vocalizations, evoke bilateral activity along various portions of the superior temporal 

plane and STG, which subsequently feed into regions that are relatively specialized for 

processing speech and/or prosodic information (Zatorre et al., 1992, Obleser et al., 2008, 

Lewis et al., 2009, Rauschecker and Scott, 2009, Leaver and Rauschecker, 2010, 

Talkington et al., 2012). Studies of vocal and song call processing in birds and lower 

mammals have added much to our understanding of low-level build-up of receptive fields 

that represent species-specific information (Medvedev et al., 2002, Kumar et al., 2007). 

This includes spectro-temporal template models of auditory function, which posit that 

there exists an increasingly complex hierarchy of “templates” for specific sounds or 

classes of sounds. Each subsequent stage represents another level of processing that 

likely combines numerous inputs from earlier and parallel stages.  
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 In humans, sensitivity to harmonic content (defined by a harmonics-to-noise ratio; 

HNR) as been interpreted in the context of such models. For instance, Lewis et al 

reported cortical regions showing parametric sensitivity to the HNR values of artificially 

constructed iterated rippled noises (IRNs; Figure 6-2, green) and of animal vocalizations 

(blue) (Lewis et al., 2009). These stages of HNR-sensitivity in humans were juxtaposed 

between tonotopically-defined regions (yellow) and STS regions sensitive to speech 

(purple). Conceivably, specific combinations of tonotopic outputs could converge to form 

cortical networks that are sensitive to harmonic qualities, representing intermediate stages 

of vocalization processing. Interestingly, different categories of animal calls and 

utterances could in part be grouped based on harmonicity (HNR values) of different types 

of vocalizations (Figure 6-3). The search for regions “selective” for processing 

conspecific vocalizations may critically depend on the specific category or sub-category 

of vocalization sound(s) under consideration. Additionally, revealing voice-sensitive 

regions may further depend on specific task factors, reflecting how the vocal information 

is to be used. This may also help to reveal the signal features that lead to difference in 

processing between the left and right hemispheres. Collectively, the results from 

identifying bottom-up signal processing should impact the design of intelligent hearing 

aids and implants, which may enhance or retain such features relative to background 

acoustic noise (Coath et al., 2005, Coath and Denham, 2005, Coath et al., 2008). The 

issue of categories of non-speech vocalizations will also apply to the study of non-human 

primate auditory systems, which are considered next.  
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Non-human primate cortical vocalization processing 

 

 Given their evolutionary proximity to humans, data concerning the structures and 

pathways that are involved in the perception and processing of naturalistic vocalizations 

are particularly relevant to discussions of human language origins. Typically, functional 

neuroimaging techniques such as positron emission tomography (PET) and functional 

magnetic resonance imaging (fMRI) have been employed to visualize activity during 

passive listening to conspecific vocalizations in macaque monkeys (Gil-da-Costa et al., 

2004, Poremba et al., 2004, Gil-da-Costa et al., 2006, Petkov et al., 2008). However, a 

relatively early study with Japanese macaques, Macaca fuscata, is relevant to this 

discussion as well (Heffner and Heffner, 1984). Here, the researchers evaluated the 

ability of their subjects to discriminate between two variants of a species-specific call 

type before and after unilateral or bilateral ablation of the superior temporal gyrus.  

Whereas the discriminative performance of monkeys who sustained unilateral ablation of 

the right superior temporal gyrus was unaffected, those subjects with unilateral ablation 

of the left superior temporal gyrus were temporarily unable to complete the auditory 

discrimination task.  Those individuals that received subsequent bilateral ablations never 

recovered their discriminative ability.  The authors concluded that perception of species-

typical vocalizations is mediated in the superior temporal gyrus with the left hemisphere 

playing a predominant role (Heffner and Heffner, 1984).  It is noteworthy that monkeys 

who received an ablation to the left superior temporal gyrus (but not the right), did 

subsequently regain their discriminative abilities. 

 More recently, Poremba, et al., (2004) utilized positron emission tomography (PET) 

to determine whether or not increased neuronal metabolic activity is observed in the 

superior temporal gyrus of rhesus monkeys during passive listening to a variety of 

auditory stimuli including conspecific vocalizations.  The authors reported that only 

rhesus monkey vocalizations (and not phase-scrambled conspecific vocalizations, human 

vocalizations, ambient background noise, or environmental sounds) resulted in 

significantly greater metabolic activity in the left dorsal temporal pole of the superior 

temporal gyrus.  In a second study, Gil-da-Costa and colleagues (2006) similarly utilized 
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PET to visualize cerebral metabolic activity in the rhesus monkey brain during the 

presentation of conspecific vocalizations.  In contrast to the results reported by Poremba 

et al., (2004), the authors report significant activation in the posterior region of the 

temporal lobe (their ‘temporoparietal’ (Tpt) area) in response to passive listening to 

conspecific vocalizations when compared to non-biological sounds.  Significant 

activation was also observed in the monkey ventral premotor cortex.  No differences 

between the two conspecific call types (coos vs. screams) were observed, but both 

vocalizations evoked greater activity in the monkey temporoparietal area, ventral 

premotor cortex, and the posterior parietal cortex as compared to nonbiological sounds. 

 Romanski and colleagues (2004) examined the response properties and selectivity of 

neurons in the rhesus macaque ventrolateral prefrontal cortex (vlPFC) to the presentation 

of species-specific vocalizations (Romanski et al., 2005).  The authors were interested, 

among other things, in whether or not certain neurons in the vlPFC would respond 

similarly to morphologically distinct calls that have similar functional referents.  They 

report that of the cells they recorded from, most were selective for more than one 

vocalization type (average of 3).  However, they found that the neurons were likely 

responding to calls with similar acoustic characteristics and signal features, as opposed to 

similar functional referents. 

 While a considerable number of studies have utilized macaque monkeys to examine 

processing pathways for conspecific vocalizations, surprising little work has been done in 

other primate species, notably great apes. However, Taglialatela et al., (2009) recently 

used PET to visualize cerebral metabolic activity in chimpanzees in response to passive 

listening to two broad categories of conspecific vocalizations, proximal vocalizations 

(PRV) and broadcast vocalizations (BCV) (Taglialatela et al., 2009). PRV are relatively 

low intensity vocalizations typically produced by individuals in direct proximity of one 

another, and are seemingly directed towards these individuals. BCV are much higher 

amplitude calls as compared to the PRV, are also produced by individuals in the presence 

of conspecifics, but appear to be directed to distant individuals. Two important findings 

emerge from this study. First, right-lateralized activity was observed in the posterior 

temporal lobe, including the planum temporale, when chimpanzees were presented with 

PRV (but not time-reversed conspecific calls). However, similar lateralized activity was 
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not observed during passive listening to BCV. These results suggested that a functional 

distinction may exist between calls classified broadly as BCV and PRV that corresponds 

to differences in their processing in the chimpanzee brain. Thus, these findings 

complement the human literature addressed in earlier sections, suggesting that the 

primate auditory system may develop distinct pathways for processing different 

categories of socially relevant vocalizations.  

 Previous behavioral work has found evidence of group-level structural variation in 

the pant hoot vocalizations (Taglialatela’s BCV category) produced by both wild and 

captive chimpanzees (Arcadi, 1996, Marshall et al., 1999, Crockford et al., 2004). For 

example, Crockford and colleagues (2004) report structural differences in the pant hoots 

of male chimpanzees living in neighboring communities, but not between groups from a 

distant community. These results could not be accounted for by genetic or habitat 

differences suggesting that the male chimpanzees may be actively modifying the 

structure of their calls to facilitate group identification (Crockford et al., 2004). 

Therefore, chimpanzees may be using pant hoots as a means for discriminating among 

familiar and unfamiliar individuals. 

 Secondly, although some consistencies are evident between the results reported in the 

single chimpanzee study (Taglialatela et al, 2009), and those published previously from 

monkey species (Gil-da-Costa et al. 2006; Poremba et al. 2004, Petkov et al., 2008), 

important differences are apparent.  Consistent with what has been reported for monkeys, 

right-lateralized activity is observed in the chimpanzee superior temporal gyrus in 

response to conspecific vocalizations.  However, Poremba et al., (2004) reported right-

lateralized activity in posterior regions of the superior temporal gyrus to all auditory 

stimuli, and left-lateralized activity in the temporal pole only in response to conspecific 

vocalizations (Poremba et al., 2004). Furthermore, Gil-da-Costa et al. (2006) reported 

significant activation in response to conspecific vocalizations in monkey temporoparietal, 

posterior parietal, and ventral premotor cortex, but did not observe any lateralized 

activation, even in the left temporal pole as reported previously by Poremba et al. (2004).  

Petkov and colleagues (2008) identified a region of auditory cortex in the macaque brain 

that is selectively active during the perception of species-specific vocalizations (Petkov et 

al., 2008), and this region was located in the anterior temporal lobe.  When compared to 
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the data from chimpanzees (Figure 6-4), significant activation was observed in the 

anterior portions of the right superior temporal gyrus following the presentation of both 

BCV and PRV (compared to time-reversed conspecific vocalizations).  Taglialatela and 

colleagues did not specifically aim to identify a conspecific-sensitive region in 

chimpanzees in their study. Therefore future studies should seek to specifically determine 

if these anterior portions of the chimpanzee superior temporal gyrus are selective for 

conspecific vocalizations and/or different categories of natural calls. In addition, Petkov 

et al., (2008) reported that this anterior monkey “voice” region was specifically sensitive 

to the vocalizations produced by familiar conspecifics. Such investigations have yet to be 

carried out in chimpanzees, but would be important for a) reconciling the human and 

monkey findings (addressed above), and b) obtaining a clearer picture of the more recent 

phylogenetic changes associated with the evolution of spoken language processing in the 

human brain. 

 Of course, the communicative behaviors of most primate species – including human 

language - typically span more than one sensory modality, and therefore include signals 

that go beyond the auditory stream. To this end, a number of researchers have aimed to 

examine auditory/visual processing in response to the presentation of conspecific 

vocalizations and their concomitant facial expressions.  The results of these studies 

primarily indicate that multimodal communicative information (i.e. monkey vocalizations 

and the corresponding facial expressions) appear to be integrated in the rhesus monkey 

VLPFC as well as in auditory cortex (Sugihara et al., 2006; Ghazanfar et al. 2005).  For 

example, Sugihara et al., (2006) presented conspecific vocalizations with or without 

accompanying video/still images of the face of a vocalizing rhesus macaque (Sugihara et 

al., 2006).  They found multisensory neurons in the rhesus macaque VLPFC that exhibit 

enhancement or suppression in response to the presentation of face/vocalization stimuli.  

Romanski (2012) has proposed that the integration of vocalizations and faces that occurs 

in the macaque prefrontal cortex may represent an evolutionary precursor to the 

processing of multisensory linguistic input in the frontal lobe of the human 

brain(Romanski, 2012).  This is an intriguing hypothesis, particularly when considering 

recent data indicating that both spoken language and symbolic gestures are processed by 

a common network in humans that includes the inferior frontal gyrus and posterior 
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temporal lobe (Xu et al, 2009).  Thus, the picture that emerges is that inferior frontal 

regions as well as temporal cortex in non-human primates is involved in constructing 

meaning from incoming signals in multiple modalities.  However, future studies with 

chimpanzees will be critical to evaluate this hypothesis. 

 Along these lines, another potentially fruitful area of research will likely be the 

increased incorporation of more than one species in a single experimental paradigm. In 

addition to developmental studies (addressed in the following section), the roots of 

human auditory structures, function, and skill can be investigated best by examining 

homology that exists in closely related species. This is not to imply that the anatomy and 

physiology of closely related extant species represent the exact conditions that were 

necessary to form the bases of human function; these species have also continued to 

evolve away from their precursors concomitantly with humans. Recently, Joly et al. 

performed near identical experiments in two species, humans and rhesus monkeys (Joly 

et al., 2012). During their respective experiments, members of both species heard speech 

sounds (French), non-verbal emotional human vocalizations, monkey vocalizations of 

different emotional valence, and spectrally “scrambled” versions of all stimuli. 

 Studies such as these are important for they provide a) an opportunity to directly 

compare the processing of auditory signals by different species, and b) they consider the 

fact that just as all human language utterances may not be functionally equivalent, the 

same may be true of nonhuman primate vocalizations.  Therefore, researchers will be 

challenged to closely examine the actual vocal communicative behavior of the species 

under study and move beyond a "species-specific" vocalization model to one that 

examines different categories or classes of calls in a meaningful and ecologically relevant 

way. 
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Vocalization processing in human infant auditory circuits 

 

 Most auditory cortical mapping and other physiological studies in both human and 

non-human primates thus far have largely been performed with adult subjects. The 

operation of very efficient and streamlined mature systems may act to “conceal” or mask 

critical intermediate auditory processes that help lead to coherent percepts. Given 

technical advances in human neuroimaging (i.e. fMRI, EEG/ERP, infrared (fNIRS)), the 

immature auditory systems of developing humans (and non-human primates) represent an 

increasingly valuable context for advancing our understanding of vocalization 

processing; investigating these networks as they are forming will garner greater 

understanding of their eventual mature forms and processes. Behavioral and 

physiological responsiveness and preferences for specific acoustic information, namely 

human vocalizations and speech, is evident in human fetuses.  In particular, the strongest 

behavioral responses in fetuses (e.g. fetal heart rate change) and physiological changes in 

infants (e.g. infant sucking) were to maternal vocalizations; they also exhibit preferential 

responses to their mother tongue early in life (DeCasper and Fifer, 1980, Moon et al., 

1993, DeCasper et al., 1994a, Kisilevsky et al., 2003, Kisilevsky et al., 2009, 

Beauchemin et al., 2011, Sato et al., 2012). These preferential responses to maternal 

voices and other vocal signals argue for the presence of cortical networks that are (or 

become) optimized for processing these acoustic signals (see below). Whether these early 

preferences in auditory circuits are genetically ore epigenetically predetermined (Werker 

and Tees, 1999) to some degree (domain-specific) or are mostly experience-dependent 

remains largely unknown, and represents an exciting topic of future study. Parsimony, 

however, argues for a combination of both. Auditory (and other sensory systems) may 

begin with “experience-expectant” network structures (proto-networks) and processes 

that eventually give way to more “experience-dependent” organizational activity. 

Regardless, neuroimaging methods have begun to reveal the structure and function of 

early auditory communication processing networks during infant development.  

 Neuroimaging and other neurophysiological methods are increasingly revealing the 

early network structures and processing stages that emerge in the developing auditory 
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system. Developmental neuroscience within the context of vocalization processing has 

thus far begun to contribute greatly towards hemispheric specialization. Previous findings 

in fully developed adult subjects generally have favored models that posit left/right 

hemisphere differences defined by different temporal processing timescales (Zatorre et 

al., 1992, Poeppel, 2003). The processing of rapid acoustic signal changes is thought to 

be a left hemisphere dominant or even bilateral function (e.g. consonant sounds)while the 

right hemisphere shows the greatest sensitivity to spectrally-stable envelope-level 

structure (e.g. vowel-like speech sounds or sounds containing strong prosodic cues), 

though findings in this research are sometimes conflicting (Boemio et al., 2005, Hickok 

and Poeppel, 2007, Obleser et al., 2008, Overath et al., 2008, Zatorre and Gandour, 

2008). One group has tested this theory in infants ranging from three days old to three 

and six months old with temporally modulated noise samples using various methods 

including EEG and functional near-infrared spectroscopy (fNIRS) (Telkemeyer et al., 

2009, Telkemeyer et al., 2011). FNIRS, sensitive to changes in hemoglobin and 

deoxyhemoglobin concentrations indirectly evoked by local neural activity, is 

increasingly being used to measure cortical responses in infants due to its relative non-

invasiveness and ability to be used in more natural settings (Quaresima et al., 2012). 

Responses across all of these age groups remained relatively stable; sounds with rapid 

modulations produced fairly bilateral response patterns whereas the strongest responses 

to slowly modulating stimuli were dominant in the right hemisphere.  

 Evidence for hemispheric specialization for certain types of vocalizations in infants 

and young children is growing and is arguably critical for fully understanding the 

operations (and potential dysfunctions) of these circuits. When specifically investigating 

speech sounds, it appears that there may already be a left hemisphere processing 

dominance even in newborn babies (Dehaene-Lambertz et al., 2002, Pena et al., 2003, 

Sato et al., 2012). Future studies, especially those including infants, will require taking 

gestational versus post-natal ages into account. Gestational age has been shown to alter 

auditory responses to speech sounds, perhaps reflecting “critical periods” of auditory 

development (Caskey et al., 2011, Key et al., 2012, Pena et al., 2012). The left 

hemisphere preference for intelligible speech is also reliably shown in four year olds; 



 

 

149 

 

segmental (phonological) and suprasegmental (prosodic) speech information processing 

appears to be clearly defined along hemispheric boundaries (Wartenburger et al., 2007). 

 Auditory neurophysiological evidence from infants concerning the processing of 

prosodic cues in utterances thus far points to a right hemisphere dominance for this 

function.  The right hemisphere in four year olds seems to present a clear dominance for 

processing prosodic envelope-level information in vocalization signals (Wartenburger et 

al., 2007), consistent with dual-pathway models of language function (Friederici and 

Alter, 2004). Other studies have shown that this prosodic preference in the right 

hemisphere exists at numerous developmental time points. Grossman et al. showed a 

right hemisphere preference for human voice sounds; this effect was amplified when 

considering network modulations caused by different categories of prosodic cues 

(Grossmann et al., 2010). Even earlier in the developmental timeframe, Cheng et al. has 

reported right-lateralized mismatch ERP responses in newborns (less than five days old) 

between speech samples of varying emotional valence (Cheng et al., 2012); responses to 

negative valence stimuli were especially strongest, perhaps reflecting an evolutionary 

processing bias for threatening stimuli (Vuilleumier, 2005). These finding generally 

corroborate the results from similar studies performed in adults showing stronger right 

hemisphere activation for emotionally evocative stimuli (Grandjean et al., 2005). Many 

studies investigating these functions often include linguistic content which may preclude 

stronger lateralization results; it is likely that shared overlapping functions exist across 

the hemispheres. Experimental design of prosodic cues studies also plays a large role in 

lateralization of results (Kotz et al., 2006). Additionally, functional and lesion studies 

suggest that the processing of emotional speech and emotional non-verbal stimuli are 

predominantly, though not exclusively, governed by the left and right hemispheres, 

respectively (Crosson et al., 2002, Ethofer et al., 2006b, Pell, 2006). Within this 

framework, preferential right temporo-parietal responses to the prosodic pitch contours of 

speech are seen in three month old infants and are thought to represent facilitation of 

burgeoning left hemisphere networks during the learning of syntactic speech structures 

(Homae et al., 2006). This idea forms the basis of prosodic bootstrapping theories of 

language acquisition (Gleitman and Wanner, 1982, Jusczyk, 1997) and may explain 

infant preferences for vocalizations with strong prosodic cues. 
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 In addition to strong preferences for maternal voices and speech in general, infants 

generally show behavioral biases for many relatively simplistic harmonic vocalization 

sounds that contain strong prosodic cues, oftentimes occurring in the form of “motherese 

speech” in social settings. These utterances usually have elongated and exaggerated 

vowels or vowel-like sounds and often have no intelligible speech content. A preference 

for acoustically “simple” vocalizations is not only seen in the behavior and physiology of 

infants themselves, but also manifests reciprocally in the behavior of adults. Most people 

revert to producing motherese or similar vocalizations when in the presence of an infant 

or toddler, ostensibly for the purpose of pleasing them. Laughter, smiling, and other 

positive responses in the infant provide early non-verbal feedback to adults that likely 

encourages more bonding interactions (Caron, 2002, Mireault et al., 2012), a social 

phenomenon that may have behavioral and acoustic evolutionary origins (Gamble and 

Poggio, 1987, Knutson et al., 2002, Vettin and Todt, 2005, Davila Ross et al., 2009). 

These interactions not only promote bonding and other important social relationships but 

may also be useful for initiating sources of regular acoustic information useful for 

building and refining vocalization processing networks in the developing auditory 

system. Indeed, understanding the role of a developing infant’s social environment during 

auditory development will crucial to understanding the vocal perception (Kuhl, 2007, 

2010). 

 The functional architectures of these auditory communication networks are 

presumably formed and constrained in part by their respective physical architectures. 

Understanding the functional aspects of auditory development will be greatly enhanced 

by also describing concomitant changes in anatomical features. Leroy et al. performed an 

extensive cortical maturation study in an infant cohort over the first several months of life 

(Leroy et al., 2011). Calculating a maturation index (MI) derived from T2-weighted 

magnetic resonance signals, the authors demonstrated that portions of the STS (especially 

the ventral banks) are of the more slowly developing perisylvian cortical regions, 

especially when compared to frontal regions. The right STS showed earlier maturation 

when compared to the left STS however, consistent with other structural and genetic 

right-sided asymmetries found in the early developing brain (Sun et al., 2005, Hill et al., 

2010). Conversely, the authors show also maturation correlations between white and gray 
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matter in regions that corresponding to the frontal and posterior territories of the left 

arcuate fasciculus. The left arcuate fasciculus that is thought to be myelinated more 

rapidly in the left hemisphere of infants (Dubois et al., 2009) and functional activity in 

corresponding left posterior STG/STS regions of infants often show the highest 

correlations with age (Grossmann et al., 2010, Blasi et al., 2011). This area may 

correspond to a postero-temporal region of cortex called Spt that is instrumental for 

sensory-motor integration, specifically with regard to speech processing (Hickok et al., 

2009). The arcuate fasciculus is also proposed to be the structural foundation for the 

phonological loop and human language faculties at large (Aboitiz et al., 2010). A 

comparative anatomical study involving macaques, chimpanzees, and humans 

highlighted the increased cortical connectivity of  “language-supporting” regions in 

humans that may have spurred the development of extensive language skills (Rilling et 

al., 2008). 

 Recently, it has been suggested that general voice-sensitivity emerges in the infant 

brain between four and seven months of age predominantly in posterior right temporal 

regions (Grossmann et al., 2010). The “voice” category in this study included speech and 

non-speech signals that were contrasted against “non-voice” stimuli generally used in 

adult studies (cars, airplanes, telephones, etc.) (Belin et al., 2000). The findings from 

Grossman et al. may have represented the infant homolog to adult Temporal Voice Areas 

(TVA); these areas have traditionally been defined with broadly defined vocalization and 

non-vocalization categories (ibid). Blasi et al. has also demonstrated a right hemisphere 

bias for processing neutral non-verbal vocalizations versus non-voice environmental 

sounds that would likely be familiar to infants in the right anterior superior temporal 

cortex (Blasi et al., 2011). However, another fNIRS study using similar stimuli from 

Blasi et al. described age-dependent preferential voice responses in bilateral temporal 

cortices (Lloyd-Fox et al., 2012). These studies investigated voice-sensitivity in a manner 

that was similar to experiments performed in adults. While all of the findings do show 

varying degrees of human voice sensitivity, contrasting activity to human vocalizations 

(verbal or non-verbal) with activity to sounds that are clearly not products of human 

vocal tracts (man-made mechanical objects, environmental sounds, etc.) likely produces 

results that only reflect their extreme categorical differences. Namely, these contrasts 
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cross numerous categorical boundaries both acoustically and conceptually (Engel et al., 

2009). This would likely conceal sub-threshold activity in more intermediate 

vocalization-specific networks where more subtle acoustic and conceptual distinctions 

are realized. Additionally, within the voice categories, the representative stimuli also 

crossed many categorical boundaries (e.g. speech vs. non-speech, native vs. foreign 

speech, emotional vs. neutral non-verbal vocalizations, etc.) which likely lead to very 

broad and relatively non-specific cortical network activations. Future work should utilize 

distinct yet closely related categories of vocalization sounds when describing regions and 

activity profiles that show human voice-sensitivity. Contrary to previous findings (Belin 

et al., 2000, Fecteau et al., 2004), Talkington et al. described strongly left-lateralized 

conspecific vocalization sensitive regions near primary auditory cortices using non-

stereotypical human-mimicked animal vocalizations (Talkington et al., 2012). 

 While the focus of this review is centered on auditory system processing, it would not 

be prudent to completely ignore the multisensory nature of communication. Recently, 

Grossman et al. recorded ERPs from 4 and 8-month old infants as they watched dynamic 

audio-visual pairings of monkey faces and vocalizations as well as human-mimicked 

versions of the same stimuli in order to measure their capacity for multisensory 

integration and perception of vocalization production (Grossmann et al., 2012, 

Talkington et al., 2012). Similar to Talkington et al., the authors reasoned that using non-

stereotypical stimuli in unfamiliar contexts provided for stronger tests and interpretations 

of neuronal mechanisms. 

 Comprehensive examinations of infants and toddlers will provide fundamental details 

regarding the anatomical and functional principles that become fully instantiated in 

mature neuronal circuits. Critical neurobehavioral milestones during development can be 

paired with concomitant changes in anatomy and function as nascent auditory networks 

and “proto-networks” form. This will promote the formation of more direct and accurate 

models for describing the relationships between anatomical structures, physiology, 

perception, and higher-order cognitive functions. These improved models will greatly aid 

in determining the etiology of auditory-related communication disorders as well as 

provide critical information for evidence-based therapies that can be implemented during 

specific developmental periods. 
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FIGURES 

FIGURE 6-1 

 

FIGURE 6-1.  Conspecific vocalization processing hierarchy in human auditory 

cortex. A. Group-averaged (n=22) functional activation maps displayed on composite 

hemispheric surface reconstructions derived from the subjects. B. To better visualize the 

data, we inflated and rotated cortical projections within the dotted-outlines. The spatial 

locations of tonotopic gradients from five subjects were averaged (black-to-white 

gradients) and located along Heschl’s gyrus (HG). Mimic-sensitive regions (M>A) are 

depicted by yellow hues, sensitivity to foreign speech samples versus mimic 

vocalizations (F>M) is depicted by red hues, and sensitivity to native English speech 

versus mimic vocalizations (E>M) is depicted by dark blue. Regions preferentially 

responsive to mimic vocalizations versus English speech samples (M>E) are depicted by 

cyan hues. Corresponding colors indicating functional overlaps are shown in the figure 

key. All data are corrected for multiple comparisons to p<0.05. This illustration has been 

adapted with permission from Talkington et al., (2012). 
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FIGURE 6-2 

 

FIGURE 6-2. Location of cortices parametrically sensitive to harmonic content 

(HNR-sensitive) relative to human vocalization processing pathways and 

tonotopically-organized regions that estimate the location of primary auditory 

cortices. Data are illustrated on slightly inflated (upper panel) and “flat map” (lower 

panel) renderings of averaged human cortical surface models. Data are all at α<0.01, 

corrected. Refer to key for color codes. Intermediate colors depict regions of overlap. The 

curved “rainbow” arrows depict two prominent progressions of processing tiers showing 

increasing specificity for the acoustic signal features present in human vocalizations. 

Overlap of IRN (green) and animal vocalization (blue) HNR-sensitivity are indicated 

(white outlines). This illustration and caption adapted from from Lewis et al., (2009). 
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FIGURE 6-3 

 

 

FIGURE 6-3. Typical HNR value ranges for various sub-categories of mammalian 

vocalizations. Oval and box widths depict the minimum to maximum harmonic content 

(HNR values) of the sounds sampled, charted relative to the group-averaged HNR-

sensitive response profile of the left mSTG (e.g. from Fig. 6-2). Green and blue dots 

correspond to IRN and animal vocalization sound stimuli, respectively, from Fig. 6-2. 

Blue ovals depict sub-categories of animal vocalizations explicitly tested. Ovals and 

boxes with violet hues depict sub-categories of human vocalizations (12-18 samples per 

category), and blue tick marks indicate the mean HNR value. For instance, conversational 

speech had a mean of +12 dB HNR, within a range from roughly +5 to +20 dB HNR. 

Adult-to-adult speech (purple box; mean = +14.0 dB HNR) and adult-to-infant speech 

(violet box; mean = +17.2 dB HNR) produced by the same individual speakers were 

significantly different (t-test p<10-5). Stress phonemes of three spoken onomatopoetic 

words depicting different classes of vocalizations are also indicated. This illustration and 

caption adapted from Lewis et al., (2009). 
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FIGURE 6-4 

 
 

FIGURE 6-4. Significant areas of activation in chimpanzees for (B) broadcast 

vocalizations (BCV) relative to time-reversed vocalizations (TRV) and for (C) proximal 

conspecific vocalizations (PRV) relative to TRV. Top images are 3D rendered MR 

images of chimpanzee right (RH) and left hemispheres (LH) with significant (t ≥ 4.31) 

PET activation overlaid. This illustration and caption adapted from Taglialatela et al., 

2009.  
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CHAPTER 7:                                                                              

The temporal dynamics of conspecific vocalization processing 

in human auditory cortices 



 

 

158 

 

ABSTRACT 

The human auditory system is likely most sensitive to vocalizations produced by other 

humans (conspecifics). Presumably, the activity in early auditory cortical networks reflect 

processing preferences for these vocalizations. Previous studies have used stereotypical 

human-produced verbal and non-verbal vocalizations to investigate human voice 

sensitive cortical responses. By utilizing a novel category of non-stereotypical 

vocalizations, human-mimicked animal vocalizations, we have demonstrated early 

differential processing between human and animal-produced vocalizations using auditory 

evoked potentials. Specifically, the N1 responses to human-mimicked vocalizations are 

significantly greater than those produced by their corresponding animal vocalizations. 

This differential N1 response (approximately 75-135ms) precedes previous findings that 

claim species-specific vocalization processing in human auditory cortices occurs around 

164ms. The current findings support previous fMRI findings using similar stimuli that 

revealed a left-lateralized conspecific vocalization sensitive region of auditory cortex 

near primary auditory cortices (PAC). Additionally, perceptual responses to these 

categories of sounds drive the amplitude of the later P300 response. Vocalizations 

perceived as human-produced generate greater amplitude P300 components than those 

sounds perceived as animal-produced. Collectively, these results suggest that preferential 

processing of conspecific vocalizations may occur as early as auditory cortical stages 

within or near PACs.  
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INTRODUCTION 

 
 The human auditory system is capable of extremely rapid sound decomposition and 

processing. Language faculties eloquently demonstrate these auditory skills; a plethora of 

information, emotion, and intent can be relayed from speaker to listener in a matter of a 

few seconds. Electrophysiological methods allow us to probe the underlying processes 

that subserve auditory communicative functions on biologically-relevant time scales. 

Complementary to the spatial processing hierarchies in auditory cortices that can be 

deduced using fMRI, EEG permits investigations of the temporal processing of complex 

vocalization sounds.  

 Face-sensitive and voice-sensitive regions have been identified in human cortex with 

fMRI (Kanwisher et al., 1997, Belin et al., 2000). Motivated by these studies, scientists 

have also investigated the temporal analogs of those findings. Face-sensitive ERP 

components have been found that produce the largest amplitude responses to face stimuli, 

occurring at approximately 170ms after stimulus onset (so called “N170 responses”) 

(Bentin et al., 1996). Similar investigations in the auditory modality investigate the 

presence of “voice-sensitive” AEP responses. Early studies that compared AEPs between 

instrument-produced sounds described a “voice-specific response” (VSR) occurring at 

approximately 320ms after stimulus onset (Levy et al., 2001). However, this response 

seems to be very sensitive to the attentional states of participants (Levy et al., 2003); in 

this regard, the VSR may represent a neurophysiological marker for the allocation of 

attentional auditory resources.  

 Later studies that investigated responses to vocal adaptation effects and the 

processing of paralinguistic acoustic features of vocalizations described responses 

occurring earlier than the VSR (Schweinberger, 2001, Lattner et al., 2003, Beauchemin et 

al., 2006, Zaske et al., 2009). These findings were followed by those of Charest et al. that 

described a “Fronto-Temporal Positivity to Voices” (FTPV) at fronto-temporal electrode 

locations (e.g. FC5/6) occurring approximately 164ms after stimulus onset. The FTPV 

was identified by comparing AEP responses to voice sounds with responses to bird 

vocalizations and environmental sounds (Charest et al., 2009). Additional GFP findings 

from De Lucia et al. suggest a similar timeframe for species-specific vocalization 
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processing approximately 169-219ms after stimulus presentation (De Lucia et al., 2010). 

Similar to the rationale of Chapter 5, however, we reasoned that the stereotypical nature 

of the human vocalizations used in the aforementioned studies was not properly 

controlled. 

 This study incorporated short (180ms) animal vocalizations and human-mimicked 

versions of those stimuli to investigate the temporal processing dynamics of conspecific 

vocalization sensitivity in early auditory cortical circuits. We hypothesized that 

differential AEP responses between these two categories of sound would be reflected in 

the N1 component. This AEP component is thought to be generated near PACs (Näätänen 

and Picton, 1987) and would potentially reflect activity in the mimic-sensitive regions 

described in Chapter 5. Confirmation of our hypothesis would provide converging 

neurophysiological evidence (fMRI and EEG/AEP) of early auditory cortical networks 

that are optimized to process the acoustic qualities of conspecific vocalizations. 
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MATERIALS AND METHODS 

 

Participants 

 

 We recorded EEG signals from eleven adult native English speaking participants 

(mean age: 25.5 yrs. ± 4.4 s.d.; five female; ten right handed, one ambidextrous). All 

participants were free of neurological, audiological, or medical illness, and were paid for 

their participation. Informed consent was obtained following guidelines approved by the 

West Virginia University Institutional Review Board. 

 

Stimuli 

 

 Animal vocalizations were sourced from various professionally recorded (sampled at 

44.1 kHz) CD collections (Sound Ideas Inc. Richmond Hill, Ontario, Canada and The 

Hollywood Edge, Hollywood, CA). Human mimicked animal vocalization stimuli were 

recorded by vocal actors in a sound isolation booth using a Sony PCM-D1 recorder 

(sampled at 44.1kHz). Recording was performed in stereo, but all sounds were converted 

to mono and played binaurally to minimize spatial cues. Additionally, all sound stimuli 

were shortened to 180 ms and low pass filtered by 10kHz. The attacks of the recorded 

and sourced stimuli were left in their original states to preserve acoustic attributes that 

may be important for categorical processing. The attacks of the recorded and sourced 

stimuli were left in their recorded states to preserve acoustic attributes that may be 

important for categorical processing. A 1 ms cos
2
 ramp was applied to the end of each 

stimulus and the entire stimuli set was equated for root mean square (RMS) power. 

Stimuli were presented binaurally to subjects through electrostatic ear buds (STAX SRS-

005 Earspeaker system; Stax LTD., Gardena, CA) via Presentation software (version 

11.0, Neurobehavioral Systems, Inc.) running on a Windows PC. Overall loudness of the 

stimuli was adjusted to a comfortable level for each subject. 

 

 



 

 

162 

 

Electrophysiology procedures 

 

 Sixty-four channel electroencephalographic (EEG) recordings were collected with 

NeuroscanSynAmps hardware, Scan 4.3 Acquire software, and Quik-Caps (Ag/Ag-Cl 

sintered electrodes; 10-10 system). Impedances were kept below 10k at all electrodes. 

All scalp electrodes were referenced to the left-mastoid, as well as an electrode placed on 

the right mastoid. All data was re-referenced to the algebraic average of the left and right 

mastoid electrode recordings before any further processing or analyses (Luck, 2005). A 1 

kHz sampling rate was applied to all channels and signals were filtered on-line from 

0.05-200Hz. 

 

 Stimulus presentation procedures 

 

 All EEG recording occurred in a sound isolation booth to minimize acoustic and 

electrical interference. Each EEG session consisted of six total runs (two separate 

experiments; see below) lasting approximately six minutes apiece; each run contained 

162 stimuli (81 animal vocalizations and 81 corresponding human-mimicked versions). 

Inter-stimulus intervals (ISI) were random and uniformly distributed between 2300-

2700ms to minimize habituation and to allow enough time for subject responses during 

the latter half of the experiment.  

 During the first three runs, participants watched a muted subtitled movie of their 

choice. After these runs, the subjects were informed that they would be performing a 

discrimination task while fixating on the wall of the booth. Using a four-button 

Neuroscan response pad, subjects were asked to respond after the presentation of each 

stimulus to indicate whether it was produced by an animal or a human. Either the extreme 

left or right buttons corresponded to the respective vocalization categories; button 

designations were counterbalanced across the entire subject group and across genders. 

Subjects were instructed to attempt a high level of accuracy. Though rapid response 

latencies were not stressed, subjects were encouraged to respond before the next stimulus 

presentation.   
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Data Analysis 

 

All analyses of EEG and ERP data were performed using the MatLab-based open-source 

software packages EEGLAB (version 10.2.5.8; (Delorme and Makeig, 2004)) and 

ERPLAB (www.erpinfo.org). Continuous EEG data from each subject were combined 

for each segment of the experiment (passive and task trials). High-pass filters (0.1 Hz) 

were applied to these concatenated EEG datasets to remove slow baseline fluctuations. 

Epochs were defined around event timestamps with 200ms pre-stimulus baseline periods 

and 1500ms post-stimulus periods; baseline correction was performed with the pre-

stimulus periods.  Epochs that exceeded ±100μV at any time point were rejected as 

artifact trials and not included in subsequent averaging. 

 N1, P2, and P300 amplitudes were defined as the average amplitudes in predefined 

timeframes (N1= 85-135ms; P2=160-200ms; P300=400-800ms) (Luck, 2005). N1 and P2 

amplitudes were measured from frontal scalp electrodes Fz, F3, and F4. Global field 

power (GFP) measures were measured for the P300 (Lehmann and Skrandies, 1980). 

GFP represents a reference-independent field strength measurement across entire 

electrode montages; simply, they measure the strength of a given potential (Murray et al., 

2008). N1, P2, and P300 amplitudes were entered into repeated measures ANOVAs to 

test for main effects of vocalization category (animal vocalizations or human mimics). 

Greenhouse-Geisser corrections were applied in cases where sphericity could not be 

assumed (Jennings and Wood, 1976). Also, all pairwise comparisons were corrected for 

multiple comparisons with Bonferroni correction. 

  

http://www.erpinfo.org/
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RESULTS 

 

 Figure 7-1 shows the group-averaged (n = 11) N1-P2 AEP waveform complex for the 

passive task experiment. The N1 amplitudes in response to human-mimicked 

vocalizations was greater than those in response to the corresponding real world animal 

vocalizations (Avg. N1 values, animal: -2.09μV, SD = 1.66, human-mimics: -3.54μV, SD 

= 2.15). A main effect of vocalization category was seen for N1 amplitudes (F1,10 = 

18.992, P = 0.001), supporting our hypothesis that human-mimicked animal vocalizations 

would produce greater N1 average amplitudes. P2 amplitudes between the two categories 

of sound appeared to be comparable (Avg. P2 values, animal: 5.48μV, SD = 2.24, 

human-mimics: 5.23μV, SD = 2.13). Indeed, no main effect of category was seen in the 

P2 component (F1,10 = 0.780, P = 0.398). 

 The second portion of the experimental sessions required that participants actively 

discriminate stimuli. After the presentation of each stimulus event, subjects responded in 

a 2AFC design whether they believed they had heard a vocalization produced by a human 

or an animal. Figure 7-2 shows the group-averaged GFP P300 responses, a response that 

is elicited when subjects identify “target” stimuli in an oddball paradigm or when they 

make cognitive discriminations (Polich, 2007). A main effect of vocalization categories 

and associated perceptual responses was revealed (F3,30 = 4.966, P = 0.006). The 

averaged P300 response amplitudes from largest to smallest are as follows: human-

mimicked vocalizations perceived as human (HH; 3.45μV, SD = 1.46), animal 

vocalizations perceived as human (AH; 3.28μV, SD = 1.39), human-mimicked 

vocalizations perceived as animal (HA; 2.89μV, SD = 1.16), and animal vocalizations 

perceived as animal (AA; 2.86μV, SD = 1.14). Pairwise comparisons revealed that the 

HH condition produced significantly greater P300 amplitudes than both conditions in 

which the stimuli were perceived as animal vocalizations (HH vs AA, P = 0.045, HH vs 

HA, P = 0.039). The HH condition did not significantly differ from the AH condition (P 

= 1.0). The two conditions in which subjects perceived animal vocalizations (AA vs HA) 

also did not differ in their respective amplitudes (P = 1.0). Thus, the perceived category 
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of incoming stimulus events seems to be the strongest determining factor of P300 

amplitudes.   
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DISCUSSION 

 

 This chapter describes an EEG-based experiment to elucidate temporal dynamics of 

conspecific vocalization processing in human auditory cortices. Similar to Chapter 5, a 

novel category of vocalizations, human-mimicked animal vocalizations, was used to 

critically control for cortical activity to over-learned conspecific vocalizations (speech, 

other stereotypical non-verbal vocalizations). Doing so allowed us to reveal human voice 

preferring AEP responses in the time frame of the N1 component, which is generated 

near primary auditory cortices.  

 Previous studies investigating similar phenomena included speech and non-verbal 

vocalizations in their “voice” categories (Charest et al., 2009). Concerns about attentional 

modulation confounds and potential preferential responses to speech signals prompted De 

Lucia et al. to re-analyze previously reported data within the context of conspecific 

vocalization processing (De Lucia et al., 2010). The previous study by this group had 

investigated electrophysiological processing differences between sounds produced by 

living and “man-made” sources (Murray et al., 2006); this study included a 

discrimination task not related to vocalization sounds. Differences between EEG-based 

signals in response to animal and human vocalizations were found in the timeframe of 

169-219ms after stimulus presentation. Note, however, that this finding is very similar to 

previous assertions that vocalization segregation occurs at approximately 164ms (Charest 

et al., 2009). 

 Nonetheless, De Lucia et al. proposed a four-tiered temporal cortical processing 

hierarchy for human audition:  (1) “general” sound processing (low-level spectrotemporal 

processing) occurs before approximately 70ms, (2) the differentiation between man-made 

and living sound sources occurs in a window near 70-119ms, (3) human versus animal 

vocalization discrimination occurs between approximately 169-219ms, and (4) music 

versus non-music discrimination occurs around 291-357ms. The latter two tiers support 

the original findings of Charest et al. and Levy et al., respectively (Levy et al., 2001, 

2003, Charest et al., 2009). The findings of the current study suggest that the brain’s 

ability to discriminate between human-produced and animal-produced vocalizations 
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occurs much earlier than their proposed third tier. Specifically, our results suggest that 

these processing differences exist in the N1 component, perhaps as early as 75-135ms. 

Additionally, the P300 results seen here likely reflect perceptual-driven processes that 

may affect the semantic organization of vocalization categories (Talkington et al., 2012). 

 These findings support our assumption that the human brain is optimized – 

intrinsically, through development, or a combination of both – for processing human 

vocalizations. If true, early cortical networks near PACs (or sooner) should show some 

preferential sensitivity to the human vocal tract. Future work will be able to examine the 

nature of this categorical boundary between these vocalization classes in 

neurophysiological responses such as auditory evoked potentials. Understanding these 

mechanisms will aid in the design of new hearing prosthetics that perform biologically 

inspired auditory signal processing. Additionally, understanding these intermediate 

processing stages will assist in the development of new neurologically-based 

rehabilitative therapies targeting communication disorders. 
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FIGURES 

FIGURE 7-1 

 

FIGURE 7-1. Averaged AEP waveforms for electrodes F3, Fz, and F4 in response to 

human-mimicked animal vocalizations and their corresponding animal 

vocalizations. Significant N1 amplitude differences were seen between the two 

categories; the respective P2 amplitudes are not significantly different. See text for 

amplitude values and results of statistical analyses.  
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FIGURE 7-2 

 

FIGURE 7-2. Averaged GFP waveforms in response to animal vocalizations and 

human-mimicked versions, separated by perceptual responses. The P300 (or P3) 

response potential is labeled and defined in the timeframe of 400-800ms. Animal 

vocalization perceived as animal-produced (A-A); animal perceived as human (A-H); 

human perceived as human (H-H); human perceived as animal (H-A). See text for 

amplitude values and results of statistical analyses. 
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CHAPTER 8:                                                                             

General discussion and suggestions for future studies 
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SUMMARY 

 

 The goals of this dissertation were to identify and describe the cortical networks and 

mechanisms that subserve conspecific vocalization processing in humans. These 

networks form the foundational elements of the human language faculties – skills 

representing thousands of years of refinement and arguably the richest medium for 

information exchange. Compromised neuronal representations of vocalization sounds are 

the hallmark of numerous neurological diseases and conditions. Collectively, the findings 

presented herein suggest that human auditory cortical networks are most optimized to 

process the vocal patterns of their conspecifics. These preferences likely have an 

evolutionary origin, as other species show similar species-specific hearing and 

communicative phenomena. Additionally, these networks may be partially instantiated 

from birth and subsequently undergo further developmental refinement through lifelong 

experiences. More specifically, the experiments described in the previous chapters 

conclude that (1) early auditory networks show sensitivity to basic acoustic attributes that 

are characteristic of vocalizations (i.e. strong harmonic content) and (2) that a cortical 

preference exists for conspecific vocalizations versus non-species vocalizations in 

predominantly left-lateralized cortical regions near primary auditory cortices (PACs), 

even when those utterances are outside the typical repertoire of human-produced 

vocalizations. Ultimately, the present findings add critical information to the wider body 

of knowledge concerning the structure and function of the cortical networks that allow 

humans to meet the dynamic demands of their respective auditory environments. 
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DISCUSSION 

 

HNR sensitivity in human auditory cortices 

 

 Vocalizations represent some of the most complex sound events in the natural world. 

Very subtle acoustic changes have the power to impart radically different meanings to a 

given utterance. Generally, due to the structure of most vocal apparatuses (e.g. vocal 

cords), harmonic content represents one of the more predominant acoustic dimensions of 

vocalizations (Riede et al., 2001, Fitch et al., 2002, Miller and Engstrom, 2010). 

Additionally, harmonic sounds tend to form statistically distinguishable auditory objects 

when compared to typical acoustic backgrounds in the environment that are more chaotic 

or noisy. The desire and need to be heard may have been a driving evolutionary force; 

more salient sounds that were easily separable from other, less ethologically relevant 

sounds, would have proven more useful as a communication medium. Harmonics, 

combinations of mathematically related frequencies, form the bases of numerous models 

to explain the nature of auditory circuits in animals (Lewicki and Konishi, 1995, 

Rauschecker et al., 1995, Medvedev et al., 2002, Medvedev and Kanwal, 2004, Kumar et 

al., 2007). Additionally, specific harmonic arrangements can impart categorical 

differences between different classes of stimuli (Le Prell et al., 2002). 

 Chapters 2 and 3 of this dissertation investigated the cortical representation of 

acoustic harmonic content of artificial IRN stimuli and animal vocalizations (Chapter 2 

only). Both chapters identify and describe parametric sensitivities to the HNR of these 

stimuli and support the representation of this acoustic attribute in early auditory cortical 

networks. These findings support theories of auditory cortical organization that posit the 

existence of spectrotemporal templates that are most sensitive to specific combinations of 

acoustic attributes (Terhardt, 1974, Griffiths and Warren, 2002, Kumar et al., 2007). 

Spectrotemporal templates for vocalizations are likely built upon combinations of 

specific harmonic acoustic components that reflect conspecific vocalizations and other 

biologically relevant vocalizations (Suga et al., 1983, Lewicki and Konishi, 1995, 

Medvedev et al., 2002). Sensitivity to harmonics likely only represents one acoustic 
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dimension of vocalizations to which auditory cortices show sensitivity. Extremely 

complicated multi-dimensional spectrotemporal templates that integrate across the entire 

acoustic landscape probably form the networks necessary for adequate vocalization 

comprehension (Rauschecker et al., 1995, Griffiths and Warren, 2002). Our 

aforementioned studies incorporating IRN stimuli were restricted to very simple integer-

harmonic spectral patterns. Future studies that utilize HNR as a quantitative measure of 

spectral template “matching” will benefit from the creation of artificial stimuli that more 

accurately reflect the acoustic characteristics of natural vocalizations. Extending the 

rationale of this dissertation’s IRN stimuli, more advanced stimuli (conceptually and 

acoustically) will permit increasingly detailed investigations of the hierarchical structures 

and relationships in the auditory networks that support high-level auditory skills such as 

source identification, emotional prosodic cue processing, and eventually language 

comprehension.  

 

Conspecific vocalization processing in human auditory cortices 

  

 Overlapping networks that show sensitivity to various acoustic attributes or 

combinations thereof eventually materialize as cortical regions that show preferential 

activity to a specific category of sound. Similar to face sensitive regions (e.g. FFA) in the 

occipito-temporal regions of human cortices (Kanwisher et al., 1997), voice-selective (or 

preferential) cortical regions have traditionally been localized to the bilateral STS in so 

called temporal voice areas (TVA) (Belin et al., 2000). However, in Chapter 5, by 

utilizing a novel set of human vocalizations, human-mimicked versions of animal 

vocalizations, we identified a left-lateralized region of cortex near primary auditory 

cortices that showed preferential activity to conspecific vocalizations. Additionally, in 

Chapter 6 using electrophysiology, we also demonstrate an early preference for human 

produced vocalization in auditory evoked potential (AEP) components reflecting activity 

near PACs. Using a non-stereotypical category of human vocalizations minimized 

cortical activity in regions that are optimized to process regularly encountered human 

vocalizations such as language, yawning, coughing, crying, screaming, etc. The 

functional contrast between human mimic stimuli and animal vocalizations revealed 
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cortical regions that were most sensitive to the acoustic characteristics of the human 

vocal tract. 

 When compared to activity related to language, whether foreign or native, this 

conspecific vocalization preferring region seems to form the basis for a left-lateralized 

temporal hierarchy used for the extraction of locutionary (or semantic) information from 

perceived human vocalization sounds (Austin, 1975, Scott et al., 2000). Conversely, right 

hemisphere networks appeared to preferentially process the more emotional prosodic 

cues within vocalizations (Ethofer et al., 2006a). Findings from developmental 

neuroscience studies suggest that the right hemisphere is dominant during the refinement 

of auditory communication skills (Grossmann et al., 2010, Blasi et al., 2011), and may 

represent an evolutionary link for these faculties (Petkov et al., 2008). Continued 

experimentation in these two subject groups will likely be a fruitful area of research as 

they represent the anatomical and functional cortical bases for vocalization processing in 

the adult human brain. Additionally, the use of closely related, yet distinct stimulus 

categories (e.g. human-mimicked vs. real world animal vocalizations) will aid in 

revealing cortical regions that are most critical for the semantic organization of the 

human auditory system. Understanding the mechanisms of these cortical processing 

differences will provide the opportunity to more fully understand the compromised 

function exhibited in numerous auditory communicative disorders. Our results thus far 

clearly demonstrate the existence of specialized human cortical networks used for 

processing the vocalizations of other humans in a species-specific manner. Furthermore, 

these networks are situated near cortical regions that perform more “basic” auditory 

processing, highlighting the fundamental importance of this skill.  
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