

University of Southern Maine USM Digital Commons

Publications

Casco Bay Estuary Partnership (CBEP)

1-1983

Environmental Benchmark Studies in Casco Bay-Portland Harbor, Maine, April 1980

Peter F. Larson

U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center

Anne C. Johnson U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center

Lee F. Doggett U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center

Malcom Baldridge U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center

John V. Byrne U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center

Follow this and additional works at https://digitalcommons.usm.maine.edu/cbep-publications

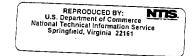
Recommended Citation

Larson, P.F., Johnson, A.C., Doggett, L.F., Baldridge, M., Byrne, J.V., & Gordon, W.G. (1983). Environmental Benchmark Studies in Casco Bay-Portland Harbor, Maine, April 1980. Woodshole,MA: U.S Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Center. Retrieved from:

This Report is brought to you for free and open access by the Casco Bay Estuary Partnership (CBEP) at USM Digital Commons. It has been accepted for inclusion in Publications by an authorized administrator of USM Digital Commons. For more information, please contact jessica.c.hovey@maine.edu.

Authors

Peter F. Larson, Anne C. Johnson, Lee F. Doggett, Malcom Baldridge, John V. Byrne, and William G. Gordon



NOAA Technical Memorandum NMFS-F/NEC-19

Northeast Monitoring Program

Environmental Benchmark Studies in Casco Bay—Portland Harbor, Maine, April 1980

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Fisheries Center Woods Hole, Massachusetts

January 1983

NOAA TECHNICAL MEMORANDUM NMFS-F/NEC

The Northeast Fisheries Center (NEFC) conducts targeted research to provide needed information for fisheries resource and habitat managers in the Northwest Atlantic. The NEFC operates facilities in Gloucester and Woods Hole, Massachusetts; Narragansett, Rhode Island; Milford, Connecticut; Sandy Hook, New Jersey; and Oxford, Maryland. It also administers the NMFS's National Systematics Laboratory in Washington, D.C., and Atlantic Environmental Group in Narragansett, Rhode Island. This targeted research focuses on: (1) harvesting, aquaculture, and utilization of fisheries resources; and (2) the health of the marine environment as it affects the production and edibility of fisheries resources. Users of this information include federal and state agencies, private industry, and the general public.

The real-time need for this information by decision makers often precludes publication in formal journals. The NOAA Technical Memorandum NMFS-F/NEC series identifies informal documents prepared by NEFC authors or similar material prepared by others for NEFC purposes, where formal review and editorial processing are not appropriate or feasible. However, documents within this series reflect sound professional work and can be referenced in formal journals. Any use of trade names within this series does not imply endorsement.

Copies of this and other NOAA Technical Memorandums are available from the National Technical Information Service, 5285 Port Royal Rd., Springfield, VA 22161. Recent issues of NOAA Technical Memorandum NMFS-F/NEC are noted below:

4. Fishery Management Techniques, A Review. By Michael P. Sissenwine and James E. Kirkley. October 1980. v + 10 p.

5. The Status of the Marine Fishery Resources of the Northeastern United States. By Margaret M. McBride and Bradford E. Brown. December 1980. vii + 13 p., 4 figs., 3 tables.

6. Economic and Biological Data Needs for Fisheries Management, With Particular Reference to the New England and Mid-Atlantic Areas. By Guy D. Marchesseault, Joseph J. Mueller, and Ivar E. Strand, Jr. December 1980. v + 10 p., 1 fig., 3 tables.

7. Methodology for Identification and Analysis of Fishery Management Options. By Brian J. Rothschild, Richard C. Hennemuth, Jacob J. Dykstra, Leo C. Murphy, Jr., John C. Bryson, and James D. Ackert. December 1980. v + 10p., 5 figs., 1 app.

8. Phytoplankton Community Structure in Northeastern Coastal Waters of the United States. I. October 1978. By Harold G. Marshall and Myra S. Cohn. August 1981. Revised and reprinted October 1981. v + 14 p., 4 figs., 1 app.

(continued on inside back cover)

BIBLIOGRAPHIC INFORMATION

PB83-184069

Environmental Benchmark Studies in Casco Bay - Portland Harbor, Maine, April 1980 (Northeast Monitoring Program).

Jan 83

Peter F. Larsen, Anne C. Johnson, and Lee F. Doggett.

PERFORMER: National Marine Fisheries Service, Woods Hole, MA. Northeast Fisheries Center. NOAA-TM-NMFS-F/NEC-19

Prepared in cooperation with Bigelow Lab. for Ocean Sciences, West Boothway Harbor, ME.

In April 1980, the authors undertook a broad scale benthic survey of Casco Bay for the purpose of establishing an environmental benchmark against which subsequent natural and man-induced fluctuations could be measured. Due to the complex topography, hydrography and anthropogenic inputs, great care was taken to insure that all possible variations in the soft bottom habitat were included. Based on the results of this survey, a long-term monitoring program of selected stations was instituted, and the results of this effort will be presented in forthcoming documents. This present report summarizes the physical and biological data from the 1980 broadscale survey.

KEYWORDS: *Environmental surveys, *Water pollution, *Casco Bay, *Baseline studies, *Water pollution sampling.

Available from the National Technical Information Service, Springfield, Va. 22161

PRICE CODE: PC A09/MF A01

i

ార్లు సంగారం సంగారం సంగారం సంఘానం సంఘానం సంగారం స్పారం సంఘానం సంఘానం సంఘానం సంఘానం సంఘానం స్పారం స్పారం సంఘానం సంఘానం సంఘానం సంఘానం సంఘానం సంఘానం సంఘానం సంఘానం సామానికి సంఘానం సంఘా

TOR THAN & A - SHOA MATER

·

.

NOAA Technical Memorandum NMFS-F/NEC-19

This TM series is used for documentation and timely communication of preliminary results, interim reports, or special purpose information; and has not received complete formal review, editorial control, or detailed editing.

Northeast Monitoring Program NEMP III 81 B,D,G 0120

Environmental Benchmark Studies in Casco Bay—Portland Harbor, Maine, April 1980

Peter F. Larsen, Anne C. Johnson, and Lee F. Doggett

Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575

U.S. DEPARTMENT OF COMMERCE

Malcolm Baldridge, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries Northeast Fisheries Center

Woods Hole, Massachusetts

January 1983

1

• .

TABLE OF CONTENTS

111

Forewordv
List of Figuresvii
List of Tablesxi
Introductionl
Methods
Results and Discussion10
Depth, Temperature and Salinity10
Sediments15
Sediment Carbon and Nitrogen25
Trace Metals
Hydrocarbons
The Fauna
Density
Biomass
Species Per Station
Diversity
Classification Analysis90
Summary and Tentative Conclusions104
Acknowledgements
Literature Cited
Appendix 1
Appendix 2

/

• •

· · ·

. .

· ·

-

FOREWORD

This issue of the NOAA Technical Memorandum NMFS-F/NEC series is a report (Technical Report No. 22) prepared by the Bigelow Laboratory for Ocean Sciences, under Contract No. NA-80-FA-C-00008 to the National Oceanic and Atmospheric Administration's (NOAA) National Marine Fisheries Service (NMFS). The contract was awarded as a part of NOAA's Northeast Monitoring Program (NEMP), and was monitored by Mr. Robert N. Reid of NMFS's Northeast Fisheries Center. The report was submitted to NEMP in September 1982 as a final report on a benchmark survey of the benthos in the Casco Bay, Maine, area.

The report has been reprinted virtually as submitted, with only minimal changes in format. References to specific trade names in this report do not imply endorsement by NOAA/NMFS.

v

John B. Pearce, Manager Northeast Monitoring Program ÷.

· · · ·

.

LIST OF FIGURES

Figure	Page	
1.	The location of Casco Bay 2	
2.	Key to maps of upper and lower Casco Bay 3	
3.	Some of the major existing facilities representing	
	threats to environmental quality in Casco Bay 4	
4.	Locations of the 56 benthic stations sampled in	
`	Casco Bay, April 1980 7	
5.	Station depths in feet 13	
6.	The annual temperature and salinity cycle at	
 	Boothbay Harbor (Garfield and Welch, 1978)	
7. ₋	The distribution of mean grain size in phi units	
	throughout Casco Bay 20	
8.	Regression of mean grain size in phi units against	
	depth in feet 22	
9.	The distribution of sand, silt and clay in the	
	Casco Bay samples 24	
10.	The distribution of organic carbon in the surficial	
	sediments of Casco Bay 26	
11.	The relationship between organic carbon and	
	bottom depth 29	
12.	The relationship between organic carbon and mean	
· .	grain size (phi units)	
13.	The distribution of cadmium (ppm dry weight) in	
	the surficial sediments of Casco Bay, Maine	
14.	The distribution of chromium (ppm dry weight) in	
	the surficial sediments of Casco Bay, Maine	

V

vii

Figure

15.	The distribution of copper (ppm dry weight) in
	the surficial sediments of Casco Bay, Maine
16.	The distribution of lead (ppm dry weight) in
	the surficial sediments of Casco Bay, Maine
17.	The distribution of nickel (ppm dry weight) in
	the surficial sediments of Casco Bay, Maine
18.	The distribution of zinc (ppm dry weight) in
	the surficial sediments of Casco Bay, Maine
19.	Distribution of density (individuals/m ²) of
	macrobenthos in Casco Bay, Maine
20.	The relationship between density and bottom depth 66
21.	The relationship between density and mean
	grain size 67
22.	Distribution of biomass (grams wet weight per
	0.1m ²) of macrobenthos in Casco Bay, Maine
23.	Relative proportion of biomass of major faunal
	components in Casco Bay
24.	The relationship between biomass and bottom depth 75
25.	The relationship between biomass and mean
	grain size 76
26.	The relationship between biomass and organic
	carbon content of the sediments
27.	The distribution of number of species per station
	throughout Casco Bay 79
28.	The relationship between species per station and
	bottom depth

Figure		Page
29.	The relationship between species per station and	
÷.	mean grain size	. 82
30.	The relationship between species per station and	
	sediment organic carbon	. 83
31.	The distribution of macrobenthic H' diversity in	
	Casco Bay, Maine	. 84
32.	The relationship of H' diversity and bottom	
	depth	. 87
33.	The relationship of H' diversity and mean	
	grain size	. 88
34.	The relationship of H' diversity and sediment	
	organic carbon	. 89
35.	Dendrogram of hierarchical classification	
,	of stations in Casco Bay, Maine. Lower numbers	
	refer to station numbers. Numbers on branches	
	refer to site-groups	. 9.2
36.	Distribution of site-groups in Casco Bay	. 93
37.	Dendrogram of hierarchical classification of	
	species data. Letters refer to species-groups	. 95
38.	Constancy of species-groups at site-groups	. 101
39.	Fidelity of species-groups to site-groups	. 102

ix

N.

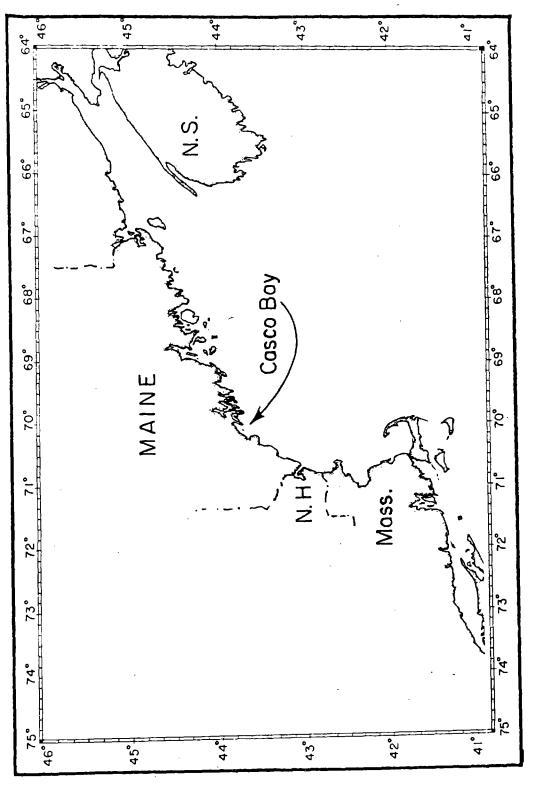
-

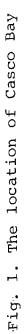
LIST OF TABLES

Vii

Table	Pag	e
1.	Location, depth, bottom temperature and salinity	
	of stations sampled in Casco Bay, April 1980 1	1
2.	Sediment characteristics, organic carbon and	
	Kjeldahl nitrogen values for Casco Bay stations 1	7
3.	ANOVA table of multiple regression analysis of	
	organic carbon on mean grain size, bottom depth	
	and their interaction 3	1
4.	Concentrations of metals (ppm dry weight) in surface	
	sediments of Casco Bay, Maine 3	2
5.	Correlation matrix for Casco Bay trace metal samples 4	7
6.	Comparison of trace metal levels at several	
	New England locations 4	9
7.	Phylogenetic listing of taxa encountered during benthic	
	sampling of Casco Bay, April 1980 5	4
8.	Species per station, density/m 2 , biomass (g/m 2 wet	
	weight), diversity (H'), evenness (J') and species	
	richness at each of the 56 Casco Bay stations	
	sampled	0
9.	Mean density of invertebrates in unconsolidated	
	sediments of temperate and boreal inshore waters	
	(modified from Maurer <i>et al</i> . 1978) 6	8
10.	Membership of species-groups	7
11.	Mean, ranges and standard deviations of various	
	physical and biological parameters by site-group 10	5
12.	Patterns of significant differences between site-groups	
	based on Duncan's multiple range test	6

xi


,


.

INTRODUCTION

Casco Bay, a large, complex bay, located on the south central coast of Maine, is noted for its scenic beauty as well as for its importance to business and commerce (Fig. 1). Within the approximately 400 square kilometers comprising Casco Bay are 300 kilometers of coastline and upwards of 400 islands (U.S. FWS, 1980). Included within Casco Bay is the city of Portland, the largest in Maine, which ranks as one of the busiest ports in New England, largely due to heavy petroleum traffic. Portland is also the largest fishing port in Maine. Presently, 27% of the coastal population of Maine is situated on Casco Bay. The growth of this segment of Maine's population will be accelerated by the increased use of Portland Harbor. Current expansion projects include a major ship building facility, a fish pier, and a containerized cargo dock. Some of the major existing facilities representing potential threats to environmental quality are located in Fig. 3. At the same time that human and industrial density is increasing in the Casco Bay region, seals, eagles, black guillemots, and other species indicative of a clean or undisturbed environment, are still found and the area remains heavily utilized for commercial fishing.

In spite of the potential for conflict between development and the traditional use of the nearshore waters for commercial fishing and recreation, little systematic environmental evaluation has been accomplished in Casco Bay. Hulburt (1968, 1970) and Hulburt and Corwin (1970) investigated several aspects of the physical oceanography and phytoplankton of the region while Jones (1980), and Parker and Garfield (1981a, b) provided background information on microplankton production

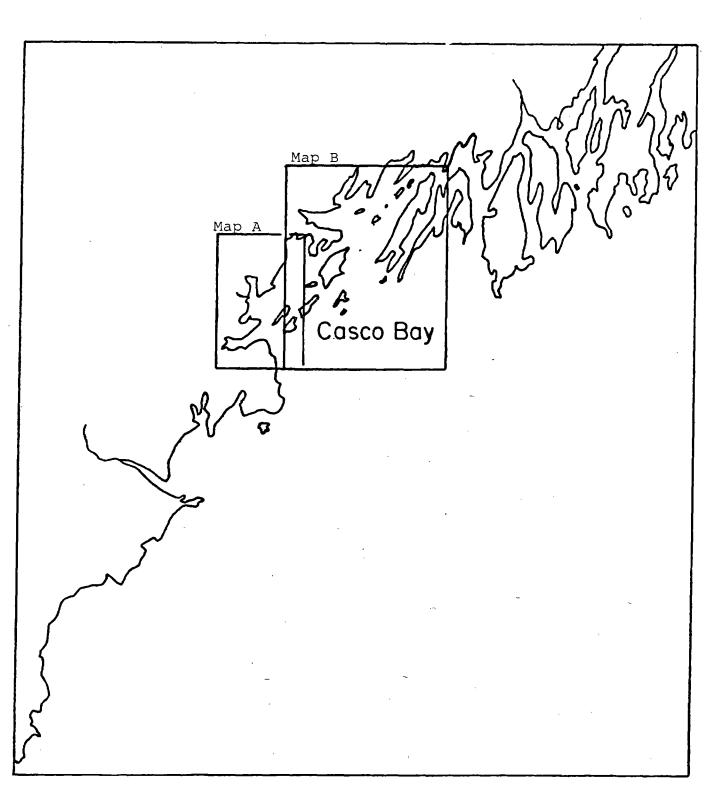
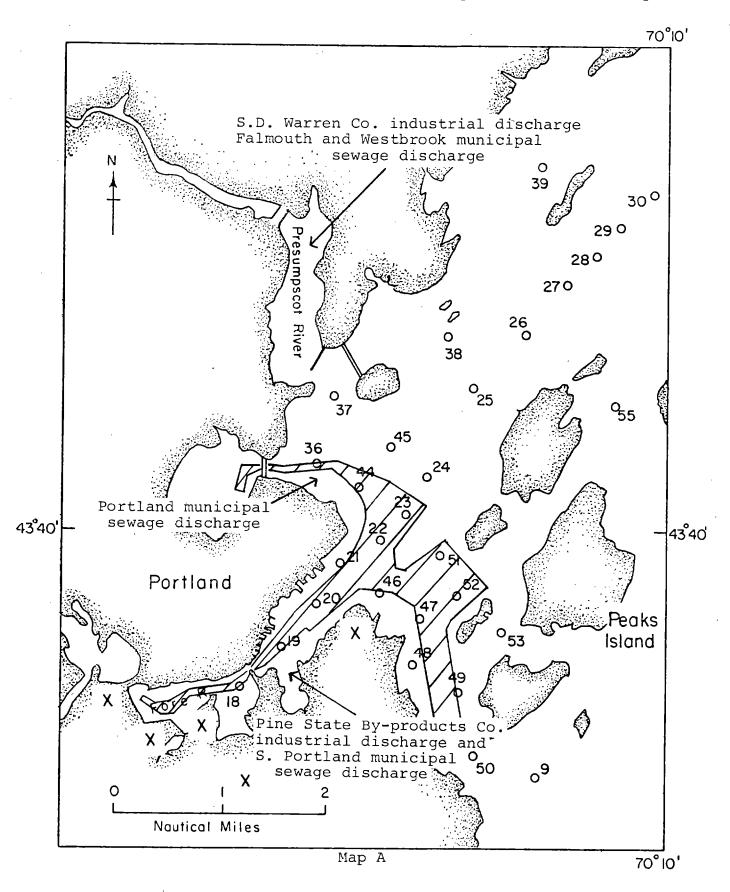
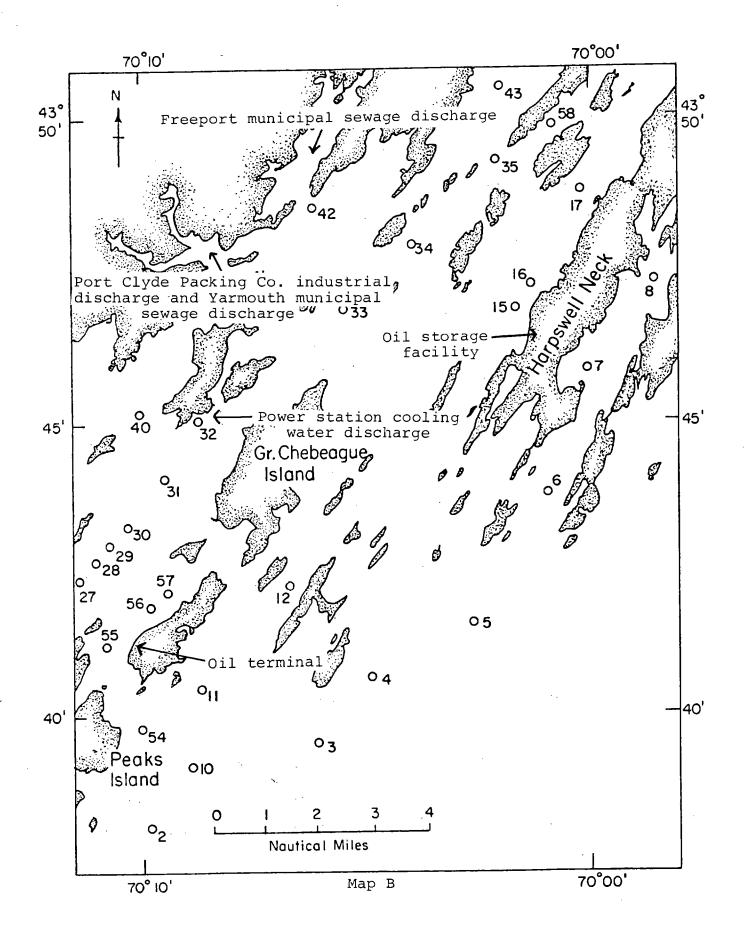




Fig. 2. Key to maps of upper and lower Casco Bay.

Fig. 3. Some of the major existing facilities representing threats to environmental quality in lower Casco Bay.

- \boldsymbol{X} Oil and gasoline tank farm
 - Dredged area

and hydrography of Casco Bay, respectively. To date, the most comprehensive faunal records are from the early surveys of Verrill (1874) and Kingsley (1901). Few quantitative studies of the shallow-water marine benthic communities in the boreal zone of the eastern United States exist (Dexter, 1944, 1947; Hanks, 1964; Shorey, 1973; Bilyard, 1974; Larsen, 1979), and none consider the Casco Bay region.

In April 1980, we undertook a broad scale benthic survey of Casco Bay for the purpose of establishing an environmental benchmark against which subsequent natural and man-induced fluctuations could be measured. Due to the complex topography, hydrography and anthropogenic inputs, great care was taken to insure that all possible variations in the soft bottom habitat were included. Based on the results of this survey, a long-term monitoring program of selected stations was instituted, and the results of this effort will be presented in forthcoming documents. This present report summarizes the physical and biological data from the 1980 broadscale survey.

METHODS

The basic sampling design involves four transects along the long axis of Casco Bay with additional stations placed in areas of interest, such as the major sounds between the islands and near potential point sources of pollution. Station density is highest near Portland where steep environmental gradients might be expected due to freshwater inflow and more concentrated development. Station locations are presented in Fig. 4.

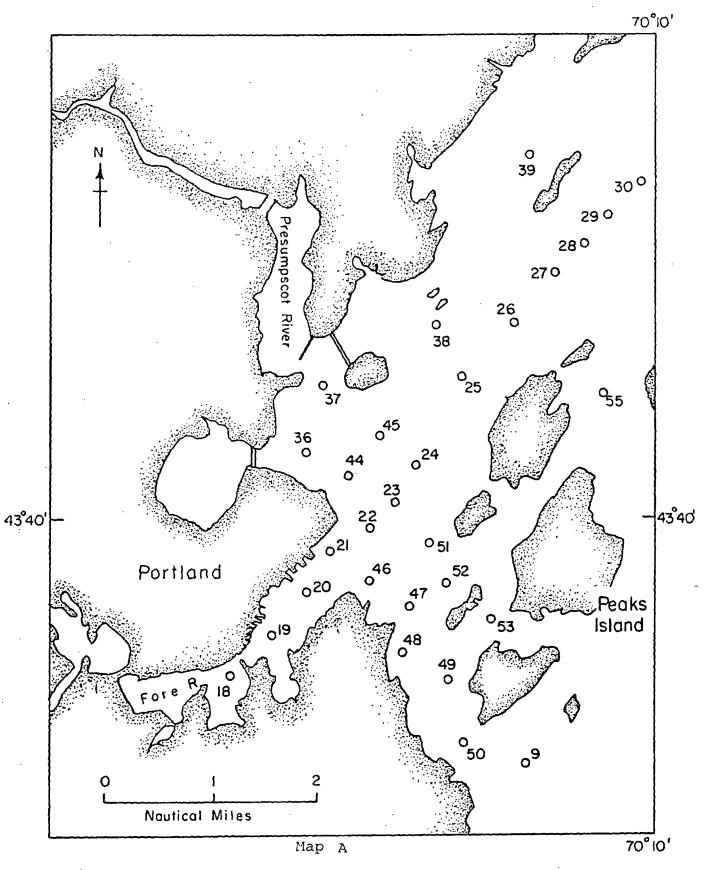
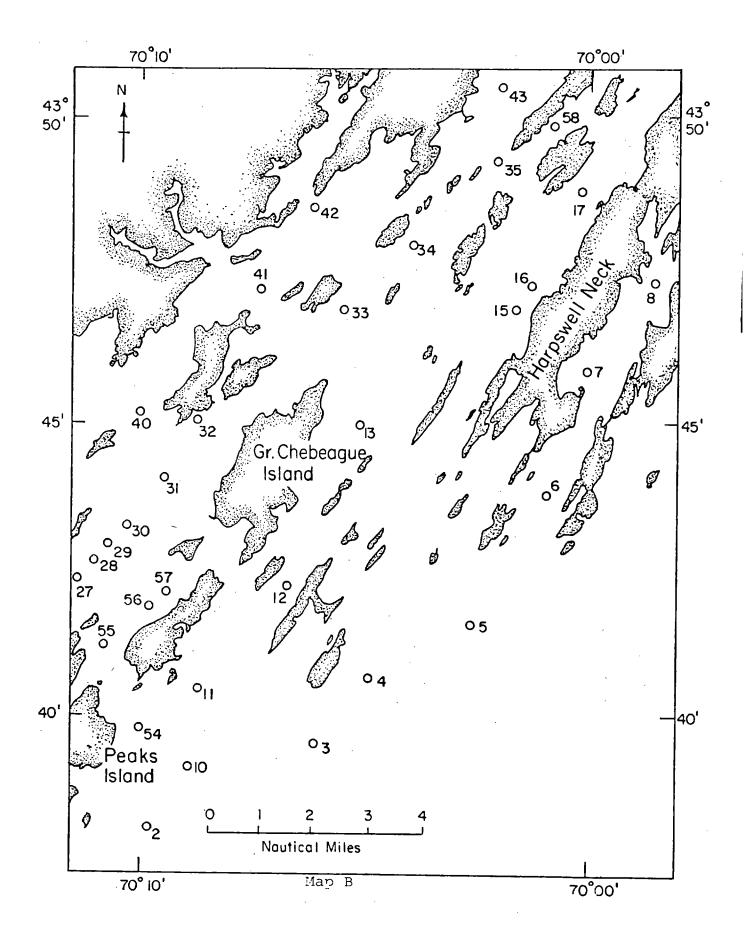



Fig. 4. Locations of the 56 benthic stations sampled in Casco Bay, April, 1980.

A single 0.1 m² Smith-McIntyre grab sample was taken at each station. Subsamples for sediment grain size, organic carbon and Kjeldahl nitrogen analyses were removed from each grab. At 32 stations additional subsamples were removed for heavy metal and hydrocarbon analyses. In each case, prescribed procedures for the preparation of subsample containers and the subsampling process were followed, and the subsamples were frozen for delivery to the appropriate analytical laboratory. Sediment grain size, organic carbon and Kjeldahl nitrogen analyses were done by GEOMET Technologies, Inc., Melville, New York, and heavy metal and hydrocarbon analyses were done by the National Marine Fisheries Service. The main-body of the sample was sieved on nested 0.5 and 1.0 mm screens. The debris remaining on the screens was fixed in 5% buffered formalin and returned to the laboratory for faunal analysis. Bottom temperature and salinity were determined at each station using a Beckman RS5-3 portable salinometer.

In the laboratory all organisms were transferred to 70% ethanol, removed from the 1.0 mm size fraction and identified to the lowest taxonomic level possible. Wet weight biomass was determined for the major taxonomic groupings.

All data were entered and processed by the University of Maine Computer Center through the Bigelow Laboratory Computer Center. Data analyses included informational diversity and its components, calculated by standard formulas given by Margalef (1958) and Pielou (1970), and numerical classification in both the normal and inverse modes. The Canberra metric dissimilarity index and the flexible sorting clustering strategy were used in the latter procedure because of their demonstrated success in marine benthic studies. The data were log transformed.

Nodal analysis, for both constancy and fidelity, was applied to interface the results of the two classifications. Following the convention presented in Boesch (1977), a constancy index was calculated as $C_{ij} = a_{ij}/(n_i n_j)$, where a_{ij} is the number of occurrences of Species-Group *i* in Site-Group *j* and n_i and n_j are the numbers of entities in each group considered. The fidelity index was calculated as $F_{ij} = (a_{ij} \int_{j}^{\Sigma} n_j)/(n_j \int_{j}^{\Sigma} a_{ij})$, the symbols having the same meaning as above. Fidelity values less than 1 suggest a negative relationship and values of over 1 a positive relationship between a species-group and a site-group.

RESULTS AND DISCUSSION

Depth, Temperature and Salinity

The depths of the 56 stations sampled range from 7 to 140 feet, i.e. 2-43 m (Table 1). All stations exceeding 70 feet in depth are offshore of the outer islands and most inner Bay stations are in the 25-50 foot depth range (Fig. 5). Depths are measured by fathometer and are not corrected for tidal stage.

Bottom water temperatures in April range from 2.9 to 6.3° C with most stations being between 3.0 and 5.0° C. Statistical analysis of water temperature and depth indicates that vernal warming of surface waters is already well progressed by April. This is a very highly significant relationship, p > .9999, with a correlation coefficient of -0.60222. With the exception of two stations, salinity throughout the Bay varied within the narrow range of $30.3 - 32.9^{\circ}$ /oo (Table 1). The two stations outside of this range are the relatively shallow stations 35 and 41 with salinities of 25.6 and 19.8 $^{\circ}$ /oo, respectively. Heavy

- Table 1. Location, depth, bottom temperature and salinity of stations sampled in Casco Bay, April, 1980.
- EX 8001 April 1980

~-

~

				•	· · · · · ·
Station Number	Latitude	Longitude	Depth (m)	Temp ^O C	Sal (0/00)
2	43 ⁰ 37'.97	70 ⁰ 09'.34	30.5	3.6	32.3
3	43 ⁰ 39'.69	70 ⁰ 05'.82	33.6	3.7	31.9
4	43 ⁰ 40'.88	70 ⁰ 04'.70	33.6	3.6	32.1
5	43 ⁰ 41'.06	70 ⁰ 02'.57	42.7	3.4	32.9
6	43 ⁰ 43'.68	70 ⁰ 00'.64	19.8	2.9	
7	43 ⁰ 45'.81	69 ⁰ 59'.56	11.3	4.0	31.6
8	43 [°] 47'.00	69 ⁰ 58'.54	15.3	3.7	32.1
9	43°37'.54	70 ⁰ 11'.91	16.8	4.2	31.0
10	43 ⁰ 39'.15	70 ⁰ 08'.40	38.1	3.6	32.1
11	43 ⁰ 40'.95	70 ⁰ 08'.26	24.4	3.1	32.7
12	43 [°] 42'.11	70 ⁰ 06'.66	20.4	3.3	32.5
13	43 ⁰ 45'.02	70 ⁰ 04'.94	14.6	3.8	32.2
15	43 ⁰ 46'.47	70 ⁰ 01'.83	17.1	3.5	32.3
16	43 ⁰ 47'.20	70 ⁰ 01'.13	15.3	3.7	
17	43 ⁰ 48'.84	69 ⁰ 59'.83	11.3	4.8	1
18	43 ⁰ 38'.61	70 ⁰ 15'.73	13.7	4.6	31.1
19	43 ⁰ 38'.98	70 ⁰ 15'.18	13.7	4.5	31.0
20	43 ⁰ 39'.48	70 [°] 14'.56	10.4	4.4	31.1
21	43 ⁰ 39'.69	70 [°] 14'.41	7.6	4.6	30.5
22	43 ⁰ 39'.93	70 ⁰ 13'.79	12.2	4.9	30.6
23	43 ⁰ 40'.16	70 ⁰ 13'.62	7.6	5.2	30.4
24	43 ⁰ 40'.55	70 ° 13'.30	18.3	4.7	31.0
25	43 [°] 41'.11	70 ⁰ 12'.68	9.2	4.3	31.1
26	43 ⁰ 41'.75	70 ⁰ 12'.08	9.2	4.2	31.5
27	43 ⁰ 41'.97	70 [°] 11'.53	13.1	4.6	31.6
28	43 ⁰ 41'.36		14.6	4.4	31.7
29	43 ⁰ 42'.88	70 [°] 10'.51	13.7	4.5	31.7
30		70 ⁰ 09'.96	12.2	4.4	31.7
31	43 ⁰ 43'.99	70 ⁰ 08'.95	12.2	6.3	
32	43 ⁰ 44'.97		7.6	4.6	31.3
33		70 ⁰ 05'.65	11.6	4.0	32.0
34	43 ⁰ 47'.69		10.7	4.0	32.2
35		70 ⁰ 01'.86	7.6	4.9	25.6
36	43 ⁰ 40'.66	70 ⁰ 14'.44	7.9	4.5	30.7

EX 8001 April 1980

Station Number	Latitude	Longitude	Depth (m)	Temp ^O C	Sal (o/oo)
37	43 ⁰ 41'.12	70 ⁰ 14'.51	2.1	4.9	30.3
38	43 ⁰ 41'.75	70 ⁰ 12'.08	8.2	4.4	31.4
39	43 ⁰ 43'.34	70 ⁰ 11'.94	10.7	4.3	31.5
40	43 ⁰ 44'.94	70 ⁰ 10'.00	13.1	4.4	31.6
41	43 ⁰ 47 '. 04	70 ⁰ 07'.15	7.3	5.7	19.8
42	43 ⁰ 48'.22	70 ⁰ 05'.98	6.1	5.2	31.6
43	43 ⁰ 50'.06	70 ⁰ 01'.99	7.6	5.9	30.3
44	43 ⁰ 40'.51	70 ⁰ 13'.84	5.5	4.5	31.0
45	43 ⁰ 40'.80	70 ⁰ 13'.30	5.5	4.4	31.1
46	43 ⁰ 39'.50	70 ⁰ 13'.95	7.6	4.4	31.2
47	43 ⁰ 39'.36	70 ⁰ 13'.09	16.8	4.5	31.1
48	43 ⁰ 38'.70	70 ⁰ 13'.35	9.2	4.5	31.0
49	43 [°] 38'.51	70 ⁰ 12'.86	15.3	4.4	31.2
50	43 ⁰ 37 '. 87	70 ⁰ 12'.41	21.4	4.6	30.6
51	43 ⁰ 39'.61	70 ⁰ 12'.01	16.2	4.3	31.2
52	43 ⁰ 39'.45	70 ⁰ 12'.75	15.3	4.4	31.2
53	43 ⁰ 39'.31	70 ⁰ 12'.19	15.3	4.4	31.2
54	43 ⁰ 39'.25	70 ⁰ 09'.26	32.0	3.6	32.3
55	43 ⁰ 41'.18	70 ⁰ 10'.97	25.6	4.0	31.7
56	43 ⁰ 41 '. 90	70 ⁰ 09'.83	13.7	4.4	31.4
57	43 ⁰ 41'.99	70 ⁰ 09'.60	14.3	4.3	31.5
58	43 ⁰ 49'.93	70 ⁰ 00'.46	2.1	7.8	20.1

BOTTOM DEPTH

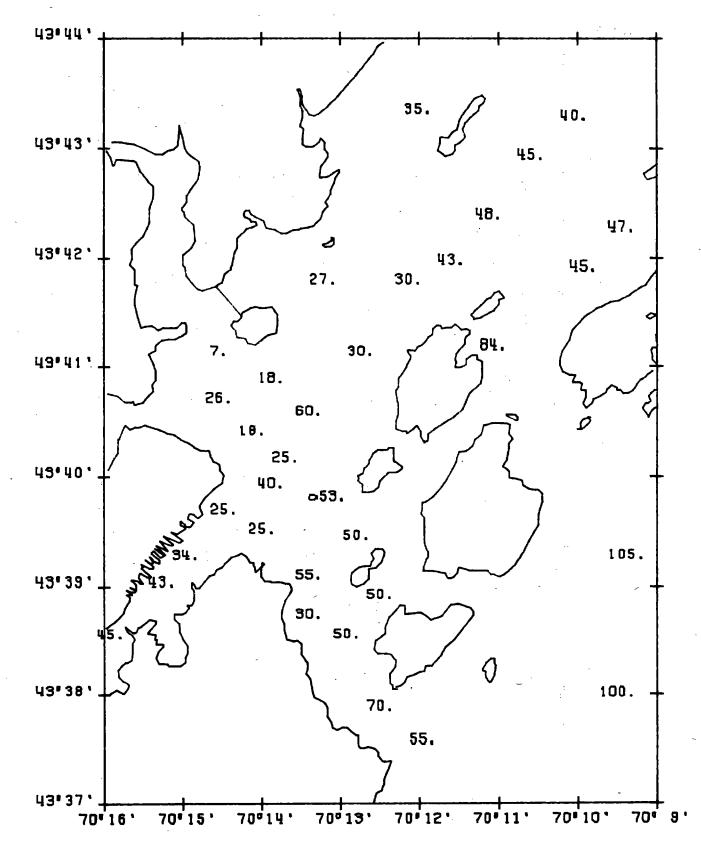
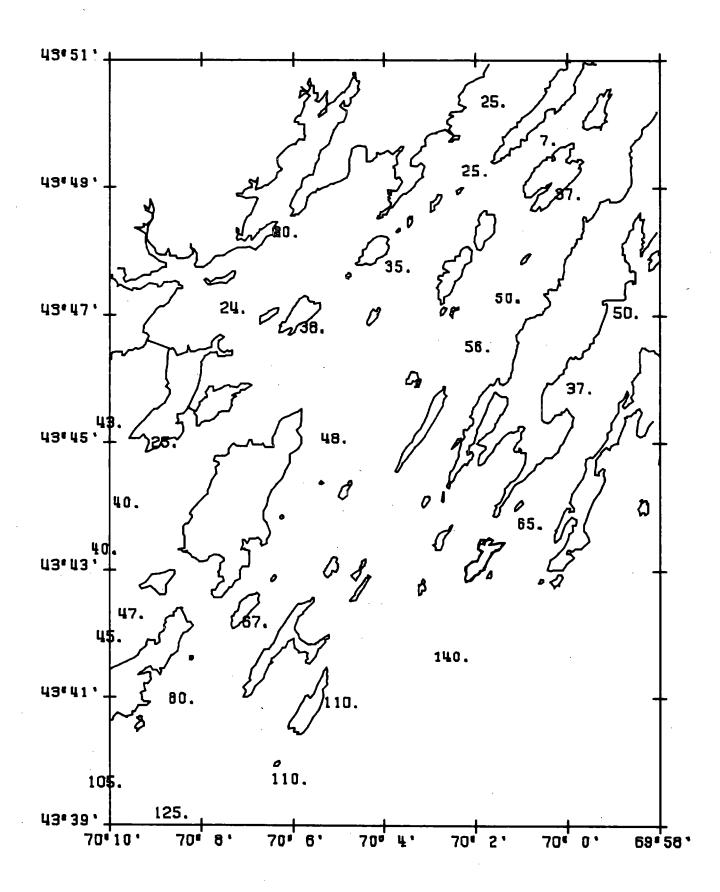
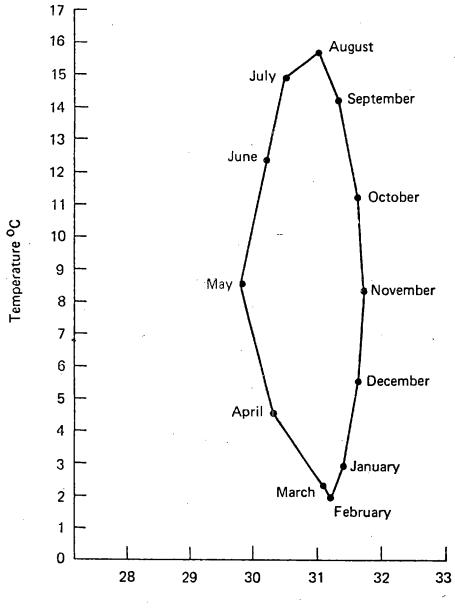



Fig. 5. Station depths in feet.

BOTTOM DEPTH


rains and the spring freshet of the Royal River presumably combined to temporarily depress the salinity at these stations.

No long-term temperature and salinity records are available for Casco Bay. Long-term records taken since 1906 at Boothbay Harbor, 30 kilometers to the east, however, are closely representative of Casco Bay (N. Garfield, personal communication). The annual temperature-salinity cycle based on monthly means of Boothbay Harbor is presented in Fig. 6. During the period of 1950 to the present, surface water temperature at Boothbay Harbor varied between the extremes of -2.3° C and 23.0° C, while salinity ranged from 25.0 to 33.6 $^{\circ}$ /oo (W.R. Welch, personal communication).

Sediments

The sediments of Casco Bay are predominantly fine (Table 2). Graphic mean grain size (Folk, 1974) ranges from -0.305 to 8.471 on the phi scale although the grand mean is in the fine silt range at 6.345. Only 8 stations have mean grain sizes in the sand range while 34 are in the silt range and 13 can be classified as clay. The sand stations are in areas of tidally scoured bottoms, such as the main approach to Casco Bay, or in areas recently dredged. Generally, coarser sediments are found offshore and in outer Portland Harbor, whereas fine sediments are characteristic of the central and upper part of the Bay (Fig. 7).

Regression of mean grain size in phi units against bottom depth in feet demonstrates that a significant relationship exists between the two (Fig. 8). The correlation coefficient of -0.3317 is significant at the 98% level. Remembering, in this and subsequent regressions, that since the phi scale is an inverse measure, this regression indicates that coarser sediments may be expected in the deeper portions of the sampling

Salinity 0/00

Fig. 6. The annual temperature and salinity cycle at Boothbay Harbor. (Garfield and Welch 1978).

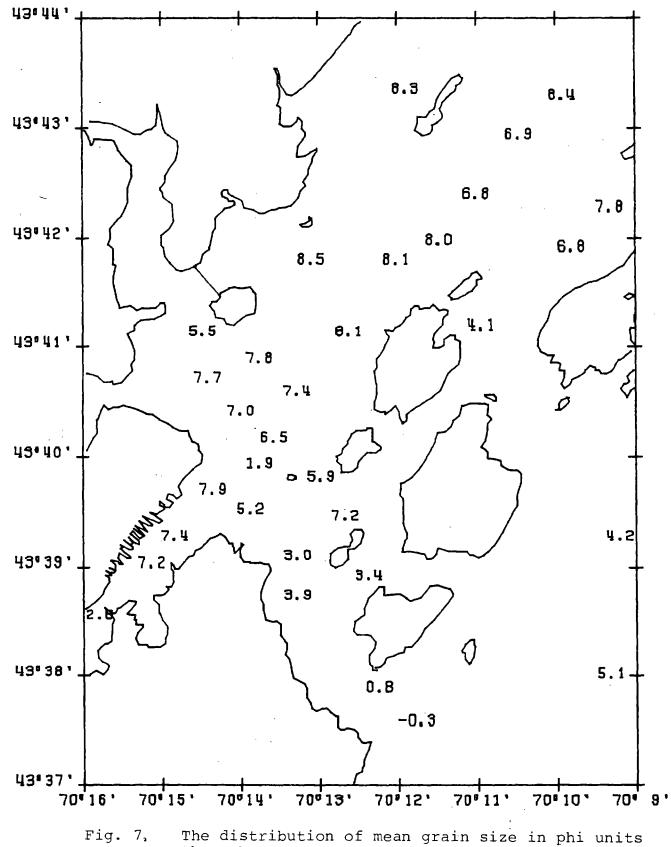
EX 8001	April 1980				
	Mean grain size (Ø)	Sediment Type (from mean)	Sorting	Organic Carbon (mg/g)	Total Kjeldah Nitrogen (mg/g)
	5.122	medium silt	very poorly sorted	8.6	0.254
	3.677	very fine sand	extremely poorly sorted	17.9	0.517
	4.513	coarse silt	very poorly sorted	15.7	0.474
	6.706	fine silt	very poorly sorted	21.2	0.555
	7.305	very fine silt	very poorly sorted	25.7	1.096
	7.923	very fine silt	very poorly sorted	26.5	1.294
	4.523	coarse silt	very poorly sorted	13.3	0.328
	- 0.305	very coarse sand	moderately well sorted	4.7	0.038
	7.940	very fine silt	very poorly sorted	21.1	0.555
	5.805	medium silt	very poorly sorted	19.1	0.382
	6.391	fine silt	very poorly sorted	20.9	0.493
	6.468	fine silt	very poorly sorted	21.6	0.536
	6.960	fine silt	very poorly sorted	23.9	0.775
	8.158	coarse clay	very poorly sorted	38.2	0.800
	8.444	coarse clay	very poorly sorted	35.6	0.817
	2.594	fine sand	extremely poorly sorted	14.7	0.071
	7.152	very fine silt	very poorly sorted	26.2	0.512
	7.435	very fine silt	very poorly sorted	26.6	0.472

Sediment characteristics, organic carbon and kjeldahl nitrogen values for Casco Bay stations. Table 2.

-

Total Kjeldah ¹ ₁) Nitrogen (mg/g)	0.523	0.062	0.504	0.654	0.594	0.921	0.738	0.606	0.641	0.601	0.714	0.774	0.552	0.883	0.834	0.948	0.465	1.211	0.653	0.665
Organic Carbon (mg/g)	33.2	4.6	24.8	35.2	25.1	37.2	39.3	25.3	24.1	30.7	36.7	41.3	26.1	34.0	33.1	233.0	44.5	41.2	36.6	. 36.9
Sorting	very poorly sorted																			
Sediment Type (from mean)	very fine silt	medium sand	fine silt	very fine silt	coarse clay	coarse clay	very fine silt	fine silt	fine silt	coarse clay	coarse clay	coarse clay	very fine silt	coarse clay	coarse clay	very fine silt	medium silt	coarse clay	coarse clay	coarse clay
Mean grain size (Ø)	7.879	1.869	6.487	7.363	8.074	8.068	7.999	6.773	6.870	8.410	8.471	8.277	7.384	8.281	8.340	7.682	5.476	8.526	8.334	8.564
Station <u>Number</u>	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

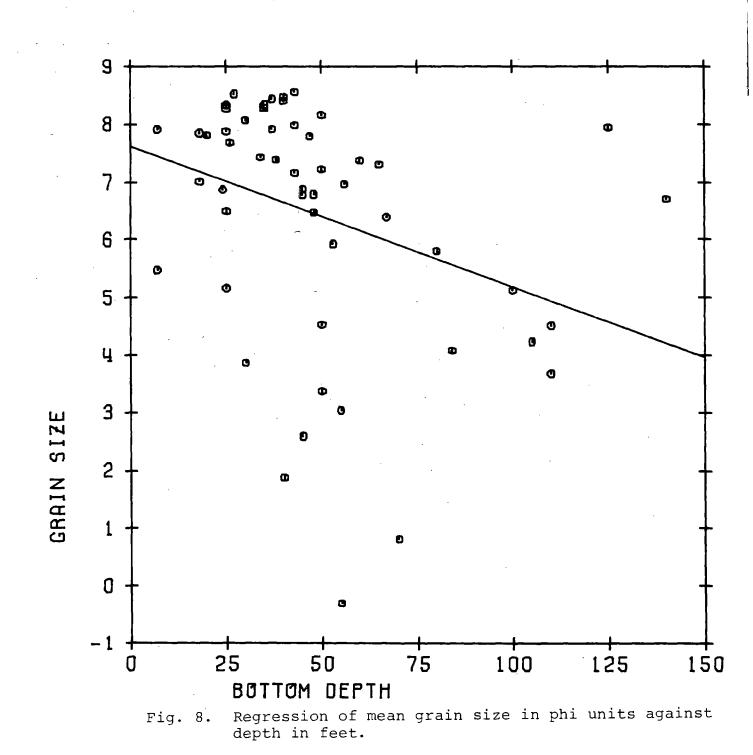
Total Kjeldah <mark>]</mark>]) Nitrogen (mg/g)	0.343	0.505	0.681	0.529	0.512	0.326	0.041	0.336	0.081	0.380	0.503	0.561	0.204	0.220	0.653	0.503	0.612
Organic Carbon (mg/g)	23.1	25.4	. 30.7	33.4	39.5	15.2	5.5	11.2	1.5	19.4	26.1	37.8	10.8	10.9	28.5	23.4	26.0
Sorting	very poorly sorted	extremely poorly sorted	very poorly sorted	poorly sorted	very poorly sorted												
Sediment Type (from mean)	fine silt	very fine silt	coarse clay	very fine silt	very fine silt	medium silt	very fine sand	very fine sand	coarse sand	medium silt	very fine silt	very fine sand	coarse silt	coarse silt	fine silt	very fine silt	very fine silt
Mean grain size (Ø)	6.861	7.810	8.328	7.006	7.848	5.152	3.041	3.864	0.810	5.919	7.215	3.365	4.238	4.072	6.769	7.794	7.911
Station <u>Number</u>	41	42	43	44	45	46	. 47	. 87	50	51	52	53	54	55	56	57	58


. . .

~

Note: (1) All values are reported as mg/g dry sediment weight.


,


GRAIN SIZE

throughout Casco Bay.

GRAIN SIZE

EX8001 CASCO BAY

area. In many coastal areas sediments become coarser with increasing distance from shore and/or from river mouths because estuaries serve as traps for fine sediments. Since depth, too, commonly increases with distance from shore, a positive relationship between depth and coarse sediments might usually be expected in coastal waters. Due to the complex topography of the Casco Bay region, we cannot separate the effects of depth, distance from shore, or even distance from river mouths in regard to gross sediment parameters. We feel confident, however, that all three factors are operative in controlling the grain size distribution, hence the scatter around the regression line. Because we cannot meaningfully quantify distance from shore or distance from source, we use depth alone to represent a complex of related factors.

Fifty of the 55 stations have very poorly sorted sediments (Table 2). With the exception of station 9, a coarse sand station which is moderately well-sorted, the remaining stations are either poorly or extremely poorly sorted.

The percentage of sand, silt and clay were calculated for each sample and are plotted in Fig. 9 (see also Appendix 1). This presentation suggests that most samples contain approximately equal proportions of silt- and clay-sized particles and the mean grain size is largely a function of the amount of sand in the sample.

Consideration of grain size distributions and sorting coefficients does not in itself fully characterize the finer sediments of Casco Bay. Our experience in taking grab samples shows that the sediments are also extremely soft, i.e. have a very low bearing strength. Repeated lowerings of our specially modified grab often failed to obtain a

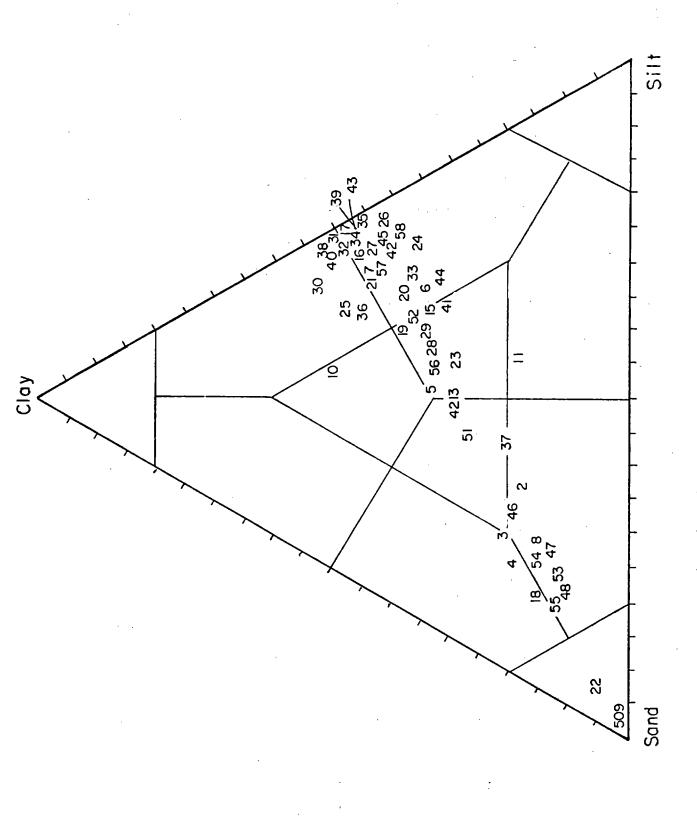
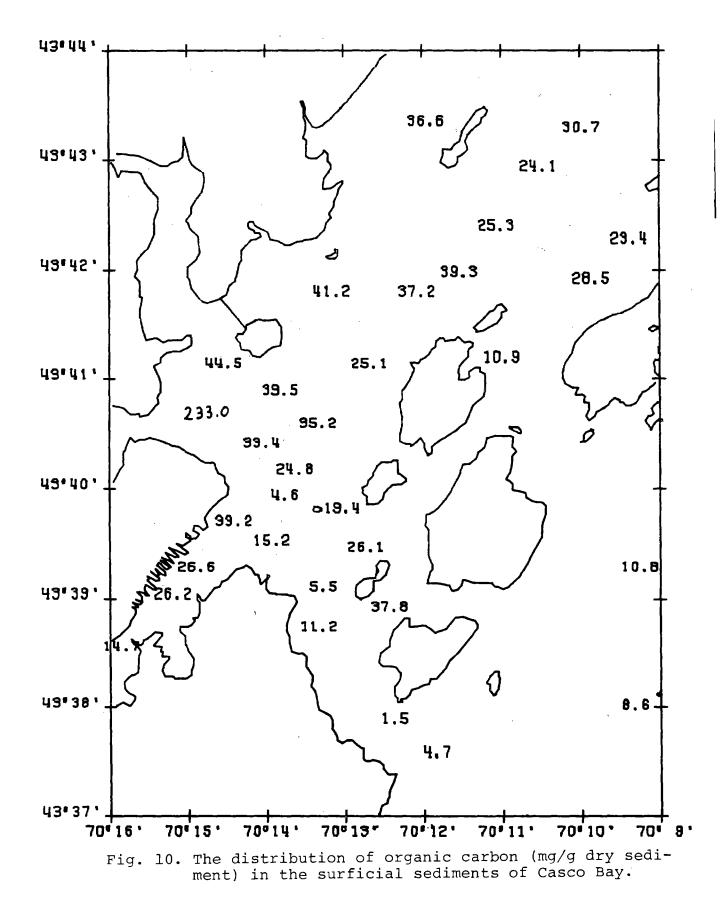
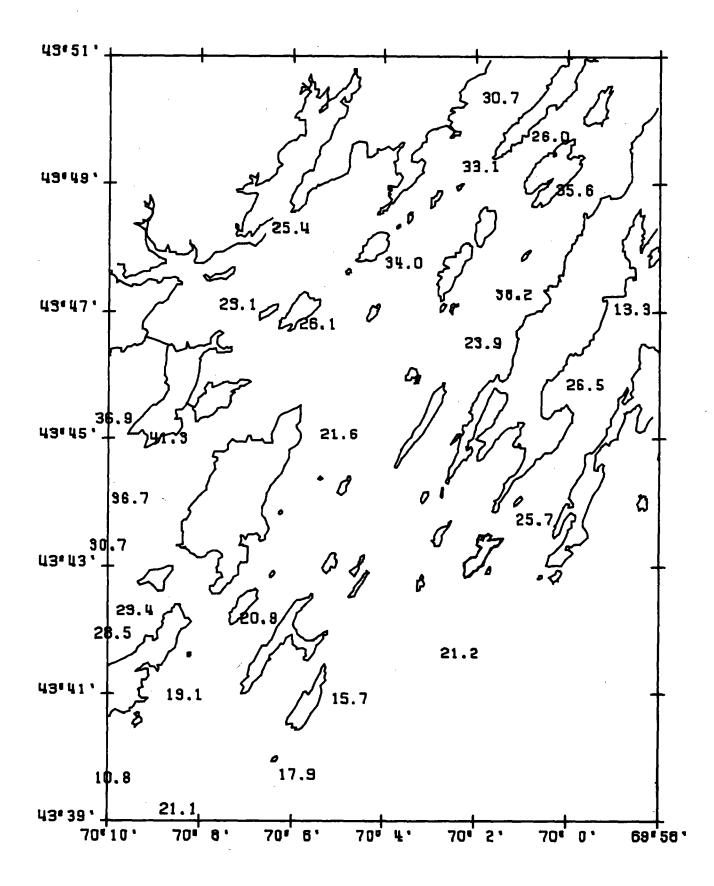


Fig. 9. The distribution of sand, silt and clay in the Casco Bay samples.

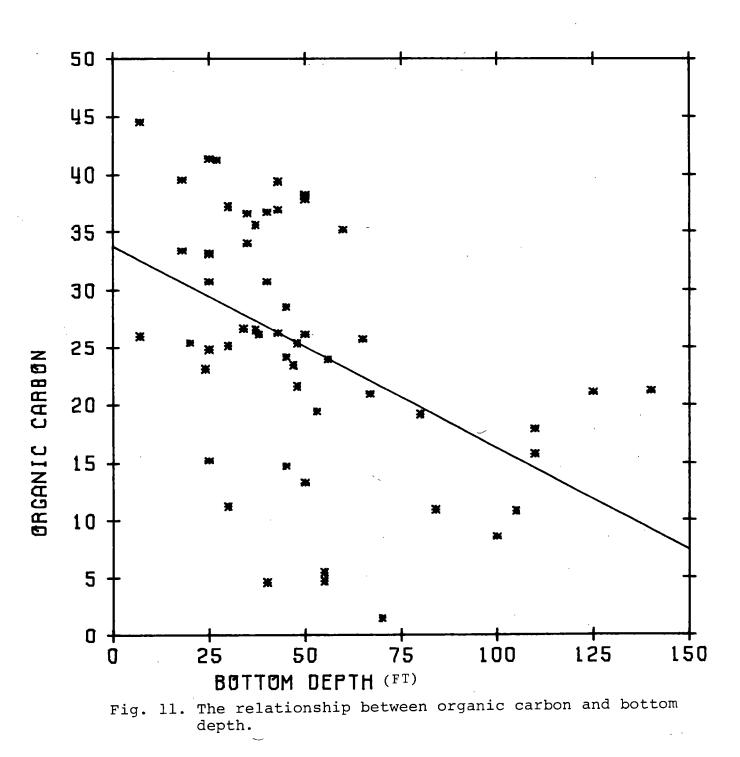

sample, although it had obviously been fully immersed in mud. In these situations, we were forced to move the station slightly to find a more cohesive bottom. Even here, however, the sediments visually resembled a loose gel. In these cases, the bucket screens offered little impediment to the grab's penetration into the bottom, and many organisms were caught on the screens. In essence, the sediments were so low in bearing strength that the grab sank to an unknown depth with the surface layers being sieved by the bucket screens in the process.

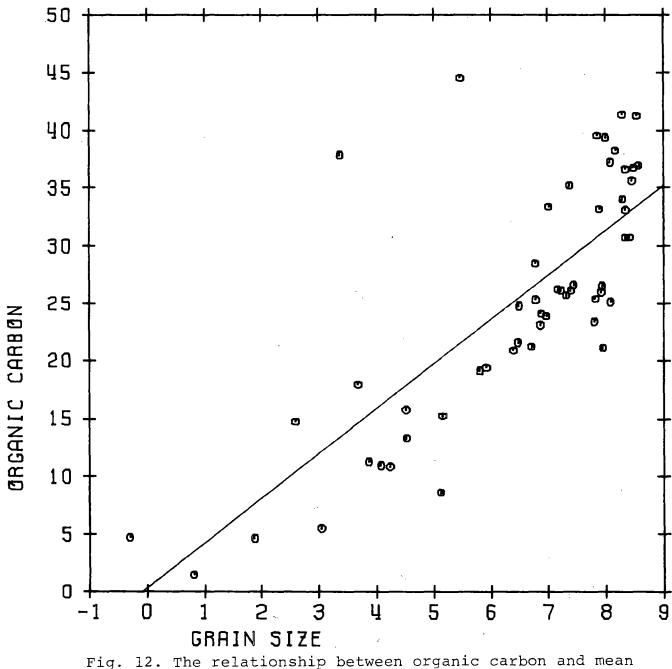

Timson (personal communication) observed a similar sedimentary phenomenon in Muscongus Bay, Maine, while working with sidescan sonar. He describes it as a nepheloid or gel layer which is intermediate between the water column and bottom. We call it fluid mud and believe it is caused by tidal currents which are strong enough to prevent complete deposition of silt and clay-sized particles, but which do not have a sufficient excursion to disperse them from the system. If this is true, we would expect variations in the depth and extent of the layer over a spring-neap tidal cycle. In any event, the phenomenon must have a profound effect on the nature of the benthic community and is worthy of additional study.

Sediment Carbon and Nitrogen

Sediment organic carbon values as determined by chromic acid digestion are presented in Table 2 and Fig. 10. Values range from 1.5 to 44.5 mg/g dry weight with an overall mean of 25.2 mg/g. Station 36, which exhibited 233.0 mg/g organic carbon due to a high proportion of wood chips, is an extreme outlier and is excluded from organic carbon numerical analyses. The station is located at the mouth of the Presumpscot River on a deposit of wood chips resulting from past

ORGANIC CARBON




disposal of paper mill wastes into the river. No other station is so influenced.

Examination of Fig.10 shows that organic carbon levels lower than the average are generally confined to the approaches to Portland Harbor and the offshore stations. Stations with organic carbon levels considerably higher than average occur in a group in lower Casco Bay off Portland and Falmouth and at scattered sites close to land in the upper Bay. In an attempt to elucidate potential controlling factors of organic carbon distribution, organic carbon levels are regressed against bottom depth (complex factor), mean grain size and distance from Portland, the principal population and industrial center. Significant relationships exist for both bottom depth and mean grain size (Figs. 11 and 12). These relationships suggest that organic carbon levels decrease with increasing depth and increase with decreasing mean grain size. The correlation coefficients are -0.4756 and 0.7742, respectively, and both are significant at the 99.9% level. We show above, however, that bottom depth and mean grain size are themselves related and therefore, it is not clear from this analysis whether organic carbon level is influenced by one or both of these factors. By employing multiple regression analysis, it is shown that organic carbon level is significantly related only to mean grain size (Table 3).

EX8001 CASCO BAY

1 98

30

V

grain size (phi units).

Table 3. ANOVA table of multiple regression analysis of organic carbon on mean grain size, bottom depth and their interaction.

Source	Degrees of	Type IV	F	
	Freedom	Sum of Squares	Value	PR>F
Mean Grain Size	1	451.0196	10.84	0.0018
Depth	1	8.5920	0.21	0.6515
Grain Size-Depth	1	2.9443	0.07	0.7917
Error	50	2079.9867		

Total Kjeldahl nitrogen values are also presented in Table 2. Values range from 0.038 to 1.294 mg/g. To date no attempt has been made to interpret these results. They are included for completeness.

Trace Metals

Subsamples from 32 stations were analyzed by atomic absorption spectrometry for the metals cadmium, chromium, copper, lead, nickel and zinc. Results, as ppm dry weight, are presented in Table 4.

Cadmium is present in the sediments of Casco Bay in concentrations ranging from 0.20 to 0.90 ppm with a mean value of 0.50 ppm. Highest cadmium values occur in the Portland vicinity and at station 53, the former domestic dumpsite for Peaks Island residents (Fig. 13). Lowest cadmium levels are found at the offshore stations while the remaining stations deviate little from the mean.

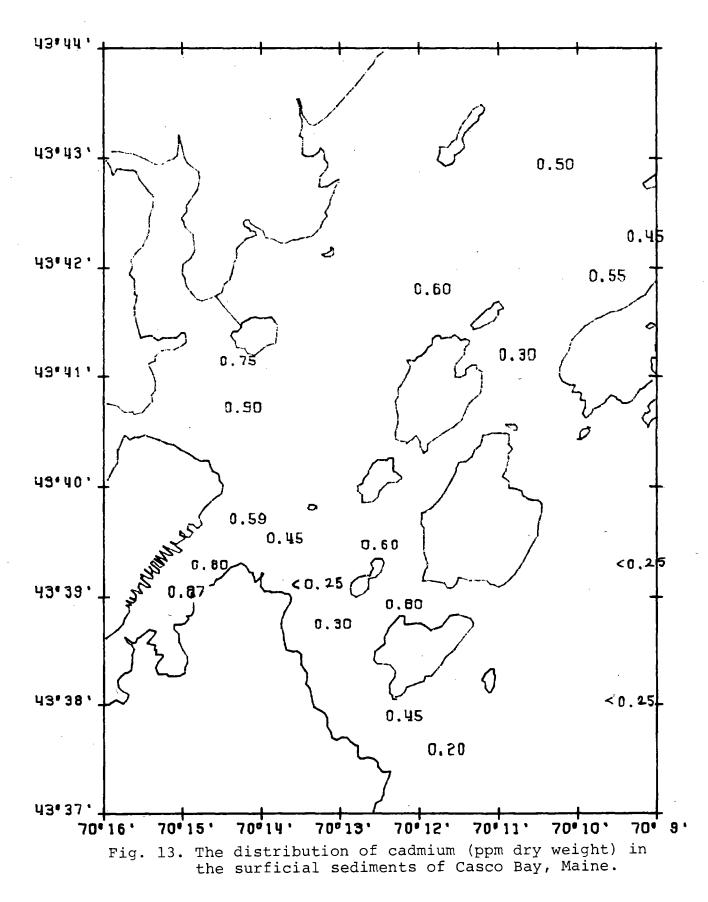
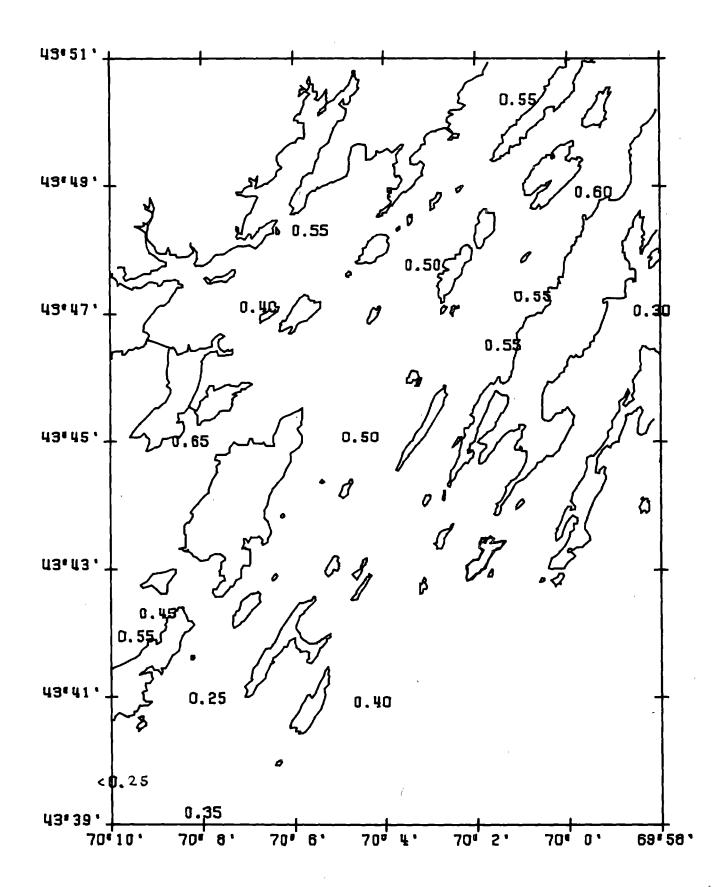

Chromium levels average 34.5 ppm and range from 5.85 to 55.0 ppm (Table 4). The approaches to Portland Harbor exhibit the lowest

Table 4. Concentration of metals (ppm dry weight) in surface sediments of Casco Bay, Maine.

Sta. No.	Cd	Cr	Cu	Ni	РЪ	Zn
2	< 0.25	27.0	9.45	11.0	13.5	39.0
4	0.40	26.0	8.38	18.5	18.5	49.4
8	0.30	23.0	8.70	13.0	12.0	43.0
9	0.20	8.50	2.40	4.5	10.5	20.85
10	0.35	39.1	14.0	22.8	29.7	70.8
11	0.25	31.0	11.4	18.5	24.0	59.5
13	0.50	36.5	11.8	19.5	21.5	65.5
15	0.55	38.0	20.0	20.0	33.5	73.5
16	0.55	54.0	16.4	27.5	25.0	30.5
17	0.60	47.5	16.6	32.0	19.5	84.5
19	0.87	49.2	44.5	23.65	61.4	81.9
20	0.80	46.5	32.0	18.5	51.0	100.
21	0.59	36.6	25.5	22.87	45.0	90.1
26	0.60	55.0	19.7	22.5	35.0	89.0
29	0.50	50.0	16.3	20.0	29.5	74.5
32	0.65	40.0	15.8	22.0	21.5	66.0
34	0.50	49.4	15.8	23.7	20.2	71.67
36	0.90	10.8	13.8	6.60	59.0	80.0
37	0.75	34.5	19.2	14.0	35.5	83.5
41	0.40	31.0	13.1	21.0	16.5	61.0
42	0.55	43.0	14.8	23.0	20.5	68.0
43	0.55	50.4	16.1	24.4	19.0	73.8
46	0.45	26.0	15.0	14.0	30.5	70.5
47	< 0.25	21.5	9.90	12.0	9.0	36.0
48	0.30	18.0	10.2	9.35	22.5	44.5
50	0.45	5.8	4.45	5.75	16.5	21.0
52	0.60	34.5	20.2	20.5	35.5	80.5
53	0.80	44.0	22.6	9.05		87.0
54	< 0.25	23.5	7.95	12.5	18.0	41.0
55	0.30	20.5	8.70	11.0	1,7.5	40.5
56	0.55	43.0	17.0	23.0	32.0	81.0
57	0.45	41.5	14.6	16.0	28.0	64.0

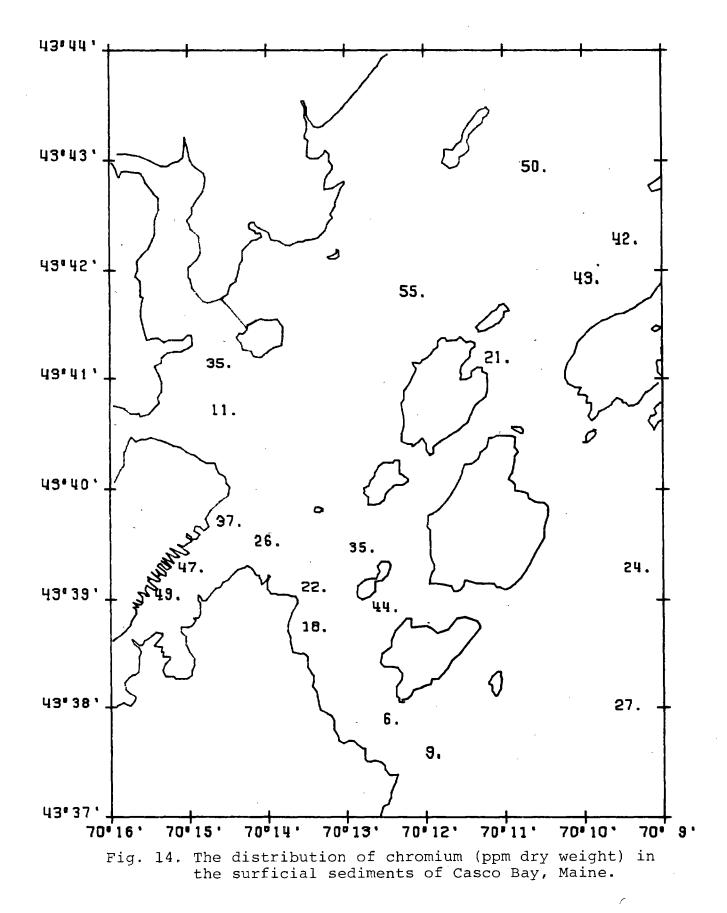

.

í

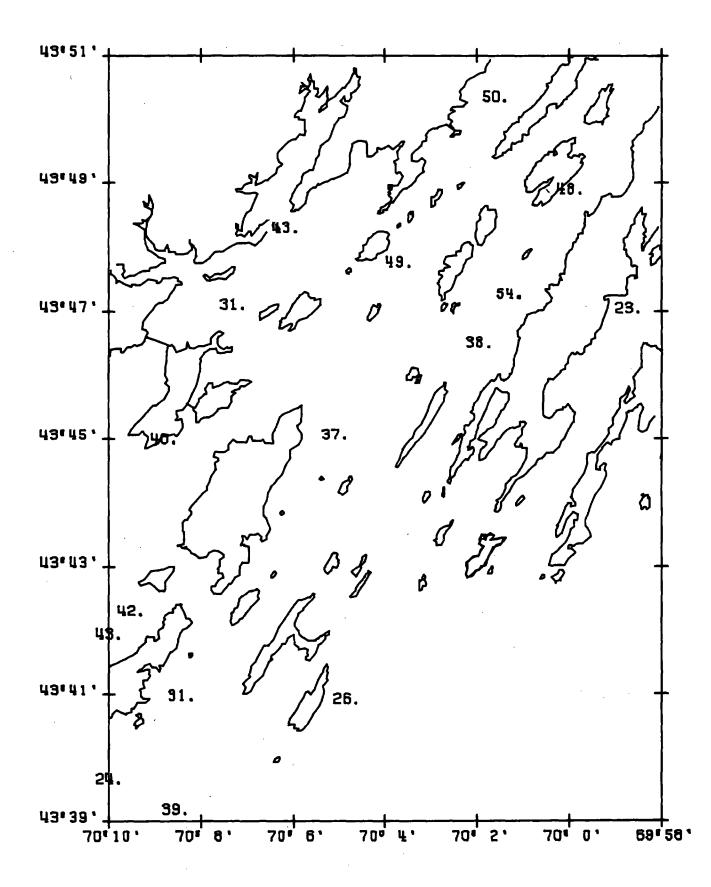
CADMJUM

CADMIUM

chromium levels and the Portland area in general is characterized by low to moderate chromium levels (Fig. 14). Stations in Portland Harbor proper and in mid and upper Casco Bay generally have higher than average values.

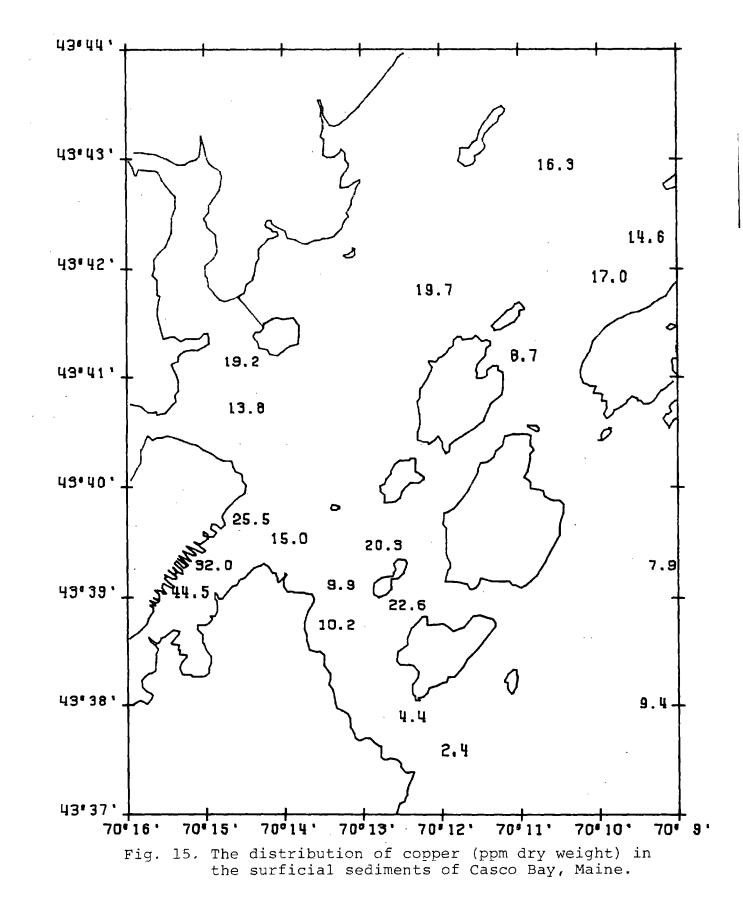

Sediment levels of copper in Casco Bay range from 2.40 to 44.5 ppm with an overall mean of 15.5 (Table 4). Only five stations exhibit copper levels of over 20 ppm. These are the three stations in Portland Harbor and stations 52 and 53 (Fig. 15). The gradient of decreasing copper levels down the Fore River is suggestive of an upstream source. Once again, lowest copper levels are found in the sandy main shipping channel into the Bay and at the offshore stations. Upper Bay stations generally are close to the mean in copper concentration.

Lead concentrations in the sediments range from 9.0 to 61.4 ppm with an average of 26.8 (Table 4). Its distribution is similar to that of copper, i.e. high concentrations in Portland Harbor with a decreasing gradient down the Fore River, low concentrations in the tidal channel and at most offshore sites, and low to moderate values throughout the remainder of the Bay (Fig. 16).

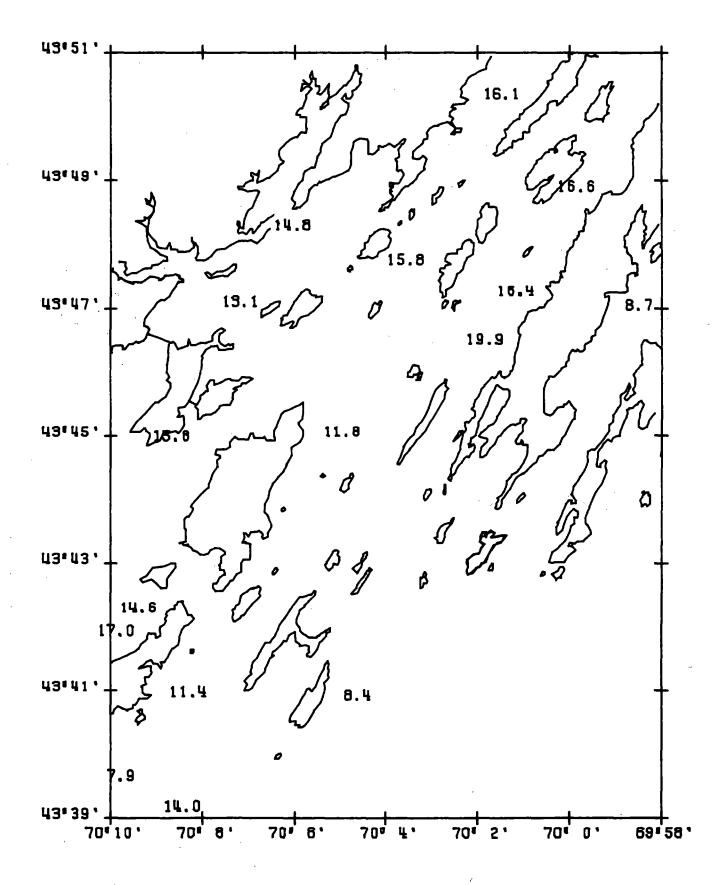

Unlike the other metals, nickel does not show a strong pattern in its distribution (Fig. 17). Concentrations range from 4.53 to 32.0 ppm with a mean of 17.6 ppm. The extreme high value occurs at station 17 in upper Casco Bay. Low values are found principally in channel areas and just offshore, but even this pattern is not as clearly developed as for the other metals.

Zinc concentrations in Casco Bay sediments average 65.4 ppm and range from 20.5 to 100.5 ppm (Table 4). Highest values occur in

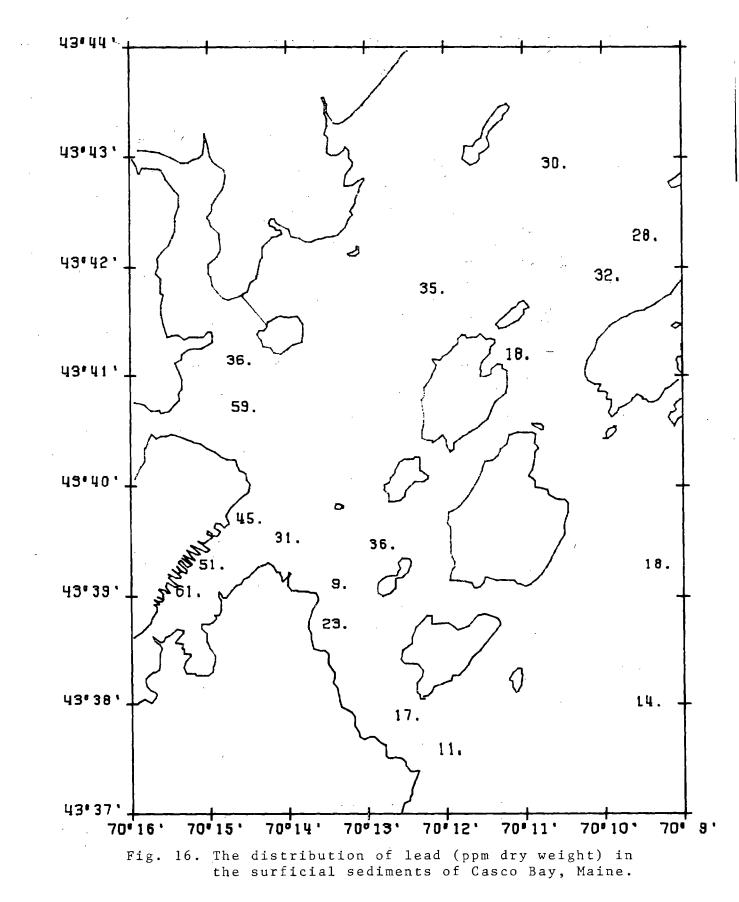
CHROMIUM

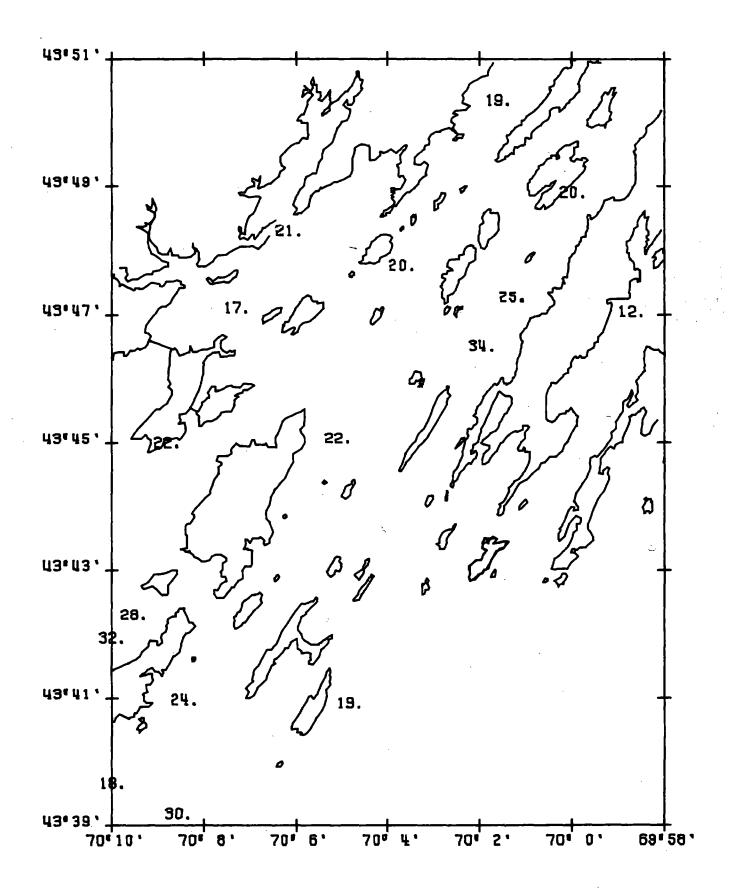


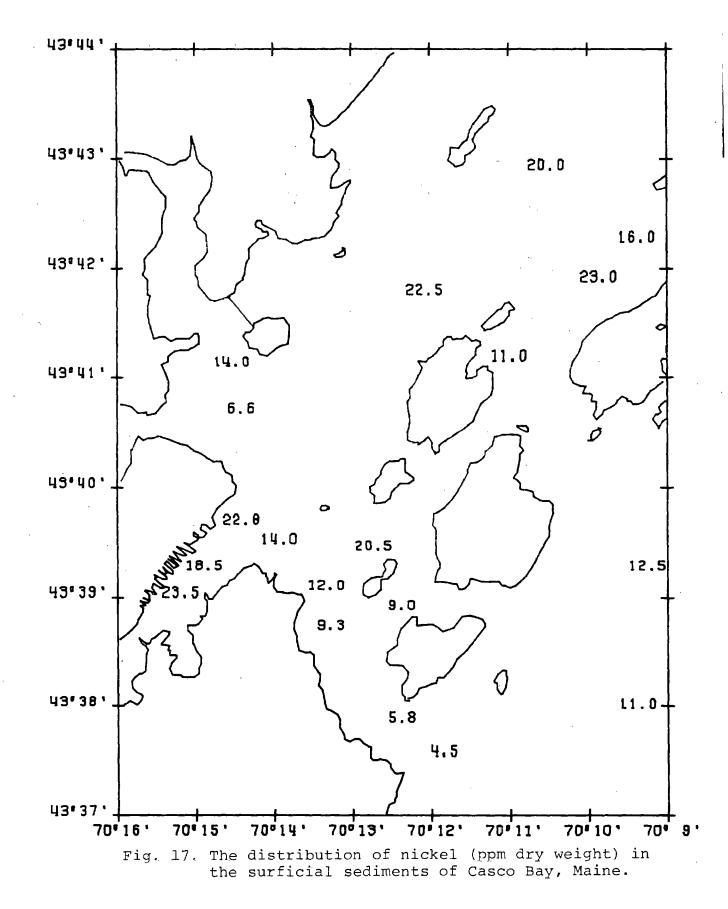
CHROMIUM

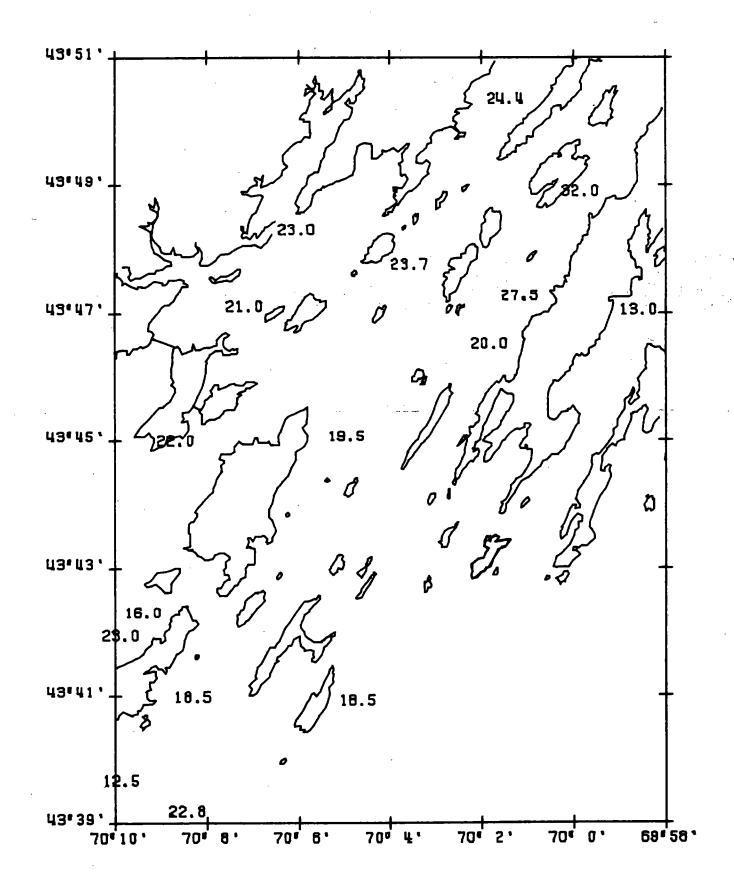


COPPER


J


COPPER



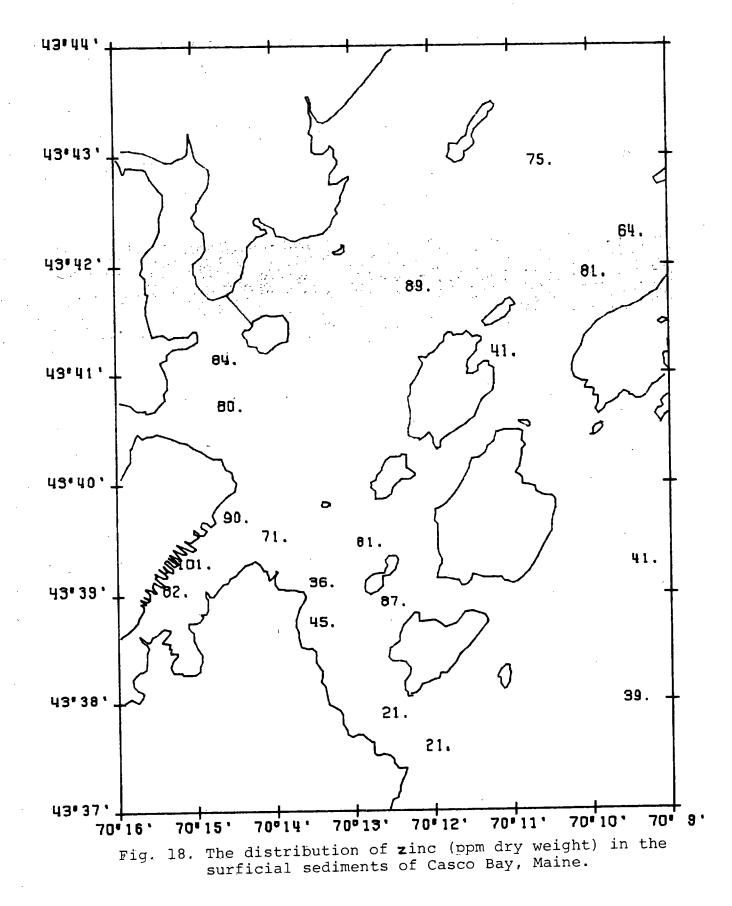


NICKEL

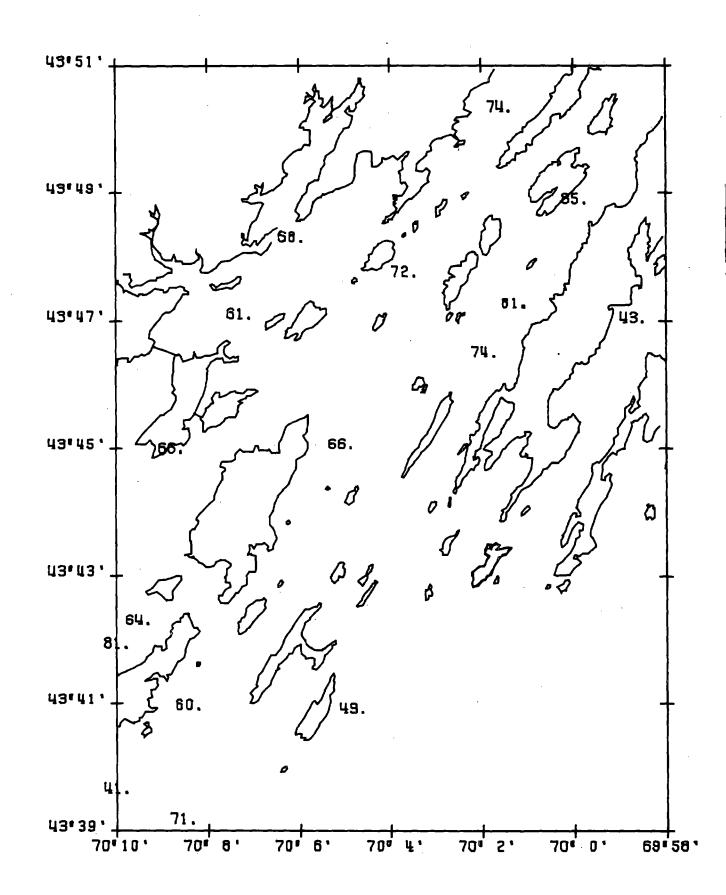
NICKEL

Q

Portland Harbor although stations with values well above the mean are found scattered throughout the Bay (Fig. 18). Low values are again grouped in the outer shipping channel and offshore of the islands.


Whereas upland drainage may be an important source of metals deposited in coastal sediments, it does not seem to explain the elevated levels in the Fore River (called the Stroudwater River in its non-tidal portion). The Fore River has a small drainage area (28 sq. miles) relative to the two other principal rivers entering Casco Bay, the Presumpscot (590 sq. mi.) and the Royal (142 sq. mi.), which show little or no elevation of metal levels near their mouths. In addition, above Portland, the Fore River is largely surrounded by tidal marshes and residential developments serviced by municipal sewers which discharge elsewhere. It seems likely, therefore, that the elevated metal levels in Portland Harbor sediments result from anthropogenic introductions within the harbor and the industrialized lower Fore River estuary. Additional sampling above Portland will be required to prove this hypothesis.

Linear correlations were computed for the six metals as well as percent organic carbon and mean grain size on the phi scale (Table 5). This analysis shows that, as demonstrated elsewhere (i.e. de Groot *et* al., 1976), metal levels in Casco Bay surficial sediments are highly correlated with fine grained sediment and levels of organic carbon. That these factors are significant is a reflection of the large surface area of fine-grained sediments and the sorptive capacity of many organic compounds. These relationships help to explain the areal distribution of the metals as, for example, the uniformally low levels encountered in the coarse sediments in the main entrance to Casco Bay.


44

C,

ZINC

The six metals were also highly correlated to each other in terms of their distribution and concentration (Table 5). The only exceptions to this generalization are the correlations of nickel with cadmium and lead with chromium.

Comparison of trace metal levels in Casco Bay sediments with levels found in other recent New England investigations will help to put these results into perspective. Five studies utilizing comparable methodology are available for comparison. Lyons *et al*. (in press) examined trace metal levels in five northern New England estuaries. They concluded from sediment profiles that three of them, Machias Bay, Cape Rosier and the Seabrook River estuary show little increase in trace metal

	Org. C	Cd	Cr	Cu	P,b	Ni	Zn	X grain size
Organic Carbon	1.000						••••	
Cadmium	0.762	1.000						
Chromium	0.822	0.461	1.000					
Copper	0.578	0.705	0.635	1.000				
Lead	0.476	0.775	0.287	0.802	1.000			
Nickel	0.675	0.319	0.826	0.466	0.175	1.000		
Zinc	0.853	0.786	0.766	0.775	0.724	0.625	1.000	
Mean Grain Size	0.774	0.495	0.761	0.528	0.470	0.813	0.775	1.000

Table 5. Correlation matrix for Casco Bay trace metal samples

¹ n = 32 except for lead and organic carbon where n = 31. Significant at 99% confidence interval if $r \ge 0.449$ for n = 32 and $r \ge 0.456$ for n = 31.

concentrations over the past century and are probably representative of pre-industrial levels. Two other estuaries, the Saco and Kennebec, exhibit recent anthropogenic enrichment due to industrial and/or sewage inputs. Armstrong et al. (1976) determined trace metal values of the sediments of the Great Bay estuary which has been historically subjected to industrial discharges. Lyons and Gaudette (1979) investigated concentrations in Jeffreys Basin, a fine-grained depositional area off the coast of southern Maine and New Hampshire. They concluded that the relatively high levels found there are the result of fine-grained sediment export from estuaries. Two southern New England estuaries, the unpolluted Mystic River estuary and the impacted Branford Harbor, were contrasted by Lyons and Fitzgerald (1980). Finally, Greig et al. (1977) analyzed a large number of sediment samples from Long Island Sound, a large, highly "urbanized" estuary. For purposes of comparison we have used only their results from the eastern half of the Sound, stations 72-143, to avoid the overbearing influence of inputs from the New York City area.

Trace metal levels at the 11 New England sites are contrasted in Table 6. It is important to remember that trace metal distributions in Casco Bay are very heterogenous and the mean values are only a gross representation of the conditions in a given subarea. Cadmium levels in Casco Bay compare favorably with the three other sites having reported values. The mean value is close to that of the unimpacted Mystic River estuary and considerably lower than the values reported for Branford Harbor and eastern Long Island Sound. Casco Bay sediments appear to be moderately enriched in terms of chromium. The mean concentration is nearly twice that of the pre-industrial levels of northern New

Table 6. Comparison of trace metal levels at several New England locations.

	1:	Cd		1	Cr		1	Cu		ļ
offe	×	range	o.U.	×	range	s.D.	×	range	S.D.	l
Casco Bay (this study)	0.47	06.0-0	0.23	34.5	5.8- 55.0	13.4	15.5	2.4- 44.5	8.0	
Kennebec River Estuary, ME ¹ (Lyons et al., in press)				29	I	I	33	I	I	
Saco River Estuary, ME ¹ (Lyons et al., in press)	-			274	I	i	15	I	I	
Penobscot Bay, ME ^l (Lyons et al., in press)				18	I	i	6	1	I	
Machias Bay, ME ^l (Lyons et al, in press)				16	i	I	6	I	I	
Seabrook River Estuary, NH ^l (Lyons et al., in press)				19	I	I	٢	I	1	
Great Bay Estuary, NH (Armstrong et al., 1976)				142	9.6-594	112	16.4	2.9-129	14.8	
Jeffreys Basin (Lyons and Gaudette, 1979)		·		56.3	20.1-83.7	I	16.4	2.4- 35.1	I	
Mystic River Estuary, CT ² (Lyons and Fitzgerald, 1980)	0.41	I	I				4.4	I	t	
Branford Harbor, CT ² (Lyons and Fitzgerald, 1980)	1.16	I	I				34.5	I	I	
Eastern Long Island Sound ³ (Greig et al., 1977)	2.7	I	1.0	57,7	I	56.7	20.0	I	26.4	49

49

_

			·	×	range	S.D.	1×	range	S.D.
Casco Bay (this study)	17.6	4.5-32.0	6.7	26.8	9.0- 61.4	13.1	65.4	20.8-100.5	20.5
Kennebec River Estuary, ME ^l (Lyons et al., in press)				33	I	ł	64		
Saco River Estuary, ME ^l (Lyons et al., in press)	`			36	I	I	47	I	I
Penobscot Bay, ME ¹ (Lyons et al., in press)				12	ł	I	32	I	I
Machias Bay, ME ^l (Lyons et al., in press)				13	ł	I	35	I	I
Seabrook River Estuary, NH ¹ (Lyons et al., in press)				۰ ص	I	I	29	I	I
Great Bay Estuary, NH (Armstrong et al., 1976)				40.7	0.80-145	22.1	60.6	13.4-212	28.5
Jeffreys Basin (Lyons and Gaudette, 1979)				31.2	9.5- 58.6	I	75.4	30.7-102.4	I
Mystic River Estuary, ${ m CT}^2$ (Lyons and Fitzgerald, 1980)				14.5	I	I	56.5	I	I
Branford Harbor, CT ² (Lyons and Fitzgerald, 1980)				265	I	I	54.5	ı	I
Eastern Long Island Sound ³ (Greig et al., 1977)	7.6	I	6.6	16.2	I	14.5	48.0	I	43.7

Comparison of trace metal levels at several New Engl Table 6.

.

ç

England estuaries, but an order of magnitude lower than the Saco and Great Bay estuaries, both of which are highly enriched with chromium due to tannery operations (Armstrong *et al.*, 1976; Mayer and Fink, 1980; Lyons *et al.*, in press).

Copper levels in Casco Bay are also elevated relative to the non-industrialized estuaries and are comparable to the other impacted sites with the exceptions of the Kennebec River estuary, Maine and Branford Harbor, Connecticut. Long Island Sound is the only other site from which nickel data are available and the mean value is much lower than that of Casco Bay.

The mean value of lead in Casco Bay sediments is higher than that of the four non-industrialized sites and Long Island Sound, but generally lower than the other industrialized estuaries. Mean zinc concentration, on the other hand, is only exceeded by that reported for Jeffreys Basin.

These results show that trace metals are not distributed homogenously in the Casco Bay region. Whereas a strong correlation exists between metal concentrations and both mean grain size and organic carbon concentrations, there is also a strong geographic pattern not completely explained by these relationships or the location of freshwater inputs. In general, high trace metal levels are found in the Portland area, which includes the lower Fore River estuary, low levels are found in scour channels, relatively low concentrations are encountered at the offshore sites and moderate levels occur in the very fine sediments of central and upper Casco Bay. In addition, four metals exhibit a gradient down the lower Fore River estuary suggesting an upstream addition.

Comparisons with other New England sites indicate, with the possible exception of cadmium, that trace metal concentrations in Casco Bay are elevated well above presumed pre-industrial levels. Mean values of each of the other metals examined are comparable to levels reported from other industrialized New England areas.

Realizing that trace metal concentrations from stations in the Portland area are generally much higher than the mean, and that the mean is reduced by low concentrations elsewhere in the Bay, it is concluded that the sediments of Portland Harbor and the lower Fore River estuary are impacted by trace metals. Sediment profile studies are needed to put the present levels into a historical context.

Hydrocarbons

The 32 hydrocarbon subsamples are in the process of analysis. These results will be integrated into our overall analysis as soon as they are available. Preliminary results indicate high levels of one or more groups of hydrocarbons in Casco Bay sediments.

Visual examination of the samples indicated very high levels of sediment hydrocarbons in the Portland area. Indeed, a couple of samples were extremely difficult to pick because hydrocarbons formed a film on the picking trays, forceps and organisms. Oil was also observed at one of the sandy stations that is presumably well-flushed.

The Fauna

The 56 0.1m² grab samples sieved to 1.0 mm yielded 264 putative species (Table 7). Two hundred and thirteen of these were identified to the species level. The molluscs, annelids and arthropods were the best represented groups accounting for 16.6, 42.0 and 26.1% of the species respectively. Species list for individual stations are presented in Appendix 2.

Many of the species occurrences are interesting in terms of their presence or abundance. For instance, one of the dominant polychaetes, Aglaophamus neotenus, was described only very recently (Blake, 1980). Among the isopods, both the Virginian Cassidinidia lunifrons and the Arctic Munna fabricii were found within the limited confines of Casco Bay. Undescribed members of the amphipod genera Melita and Monoculodes were encountered as were individuals of the genera Bathymedon, Halimedon and Gitanopsis. These latter, and perhaps several other records, represent range extensions which will be treated in another contribution.

Density

Numbers of individuals ranged from 120 to $36,380/m^2$ with a mean of $8,743/m^2$ (Table 8). The lowest value occurred at station 36 in the wood chip deposits while the highest value was recorded at the nearby station 37 which was located in a mussel reef. Density distribution is presented in Fig. 19. Values exceeding $10,000/m^2$ are generally found at the offshore stations and at several stations in the lower Bay.

Three regions of low density stations are noticeable. These are stations 47, 49 and 50 in the main channel into the Bay, stations 18, 19

Table 7. Phylogenetic listing of taxa encountered during benthic sampling of Casco Bay, April 1980.

PHYLUM - CNIDARIA

Class Hydrozoa Campanularia sp. Sertularia pumila Hydroid A Hydrozoa

Class Anthozoa Anemone A Anemone B Cerianthus borealis

PHYLUM PLATYHELMINTHES

Notoplana atomata Platyhelminthes

PHYLUM RHYNCHOCOELA

Cerebratulus lacteus Lineus ruber Nemertea A Nemertea B Nemertea C Nemertea E Nemertea E Nemertea F Nemertea G Nemertea H Nemertea I Nemertea J Nemertea K

PHYLUM BRYOZOA

Caberea ellisi Membraniporidae

PHYLUM MOLLUSCA

Class Gastropoda Alvania arenaria Alvania carinata Calliostoma occidentale Cocculina sp. Cylichna alba Cylichna gouldi Doto coronata Hydrobia sp. Lacuna vincta Littorina littorea Littorina obtusata Nassarius trivittatus Oenopota bicarinata Philine finmarchia Skeneopsis planorbis

Class Scaphopoda Dentalium entale

Class Vivalvia Anomia aculeata Arctia islandica Astarte borealis Astarte undata Bivalvia Cardita borealis Cerastoderma pinnulatum Chlamys islandica Crenella decussata Gemma gemma Lyonsia hyalina Macoma balthica Modiolus modiolus Mulinia lateralis Mya arenaria Mytilus edulis Nucula annulata Nucula delphinodonta Nucula tenuis Pandora gouldiana Periploma leanum Periploma papyratium Pitar morrhuana Solemya borealis Tellina agilis Tracia conradi Thyasira flexuosa Yoldia limatula

PHYLUM ANNELIDA

Class Polychaeta Aglaophamus circinata Aglaophamus neotenus Ampharete acutifrons Ampharete arctica Apistobranchus tullbergi Aricidea jeffreysii Aricidea quadrilobata Aricidea suecica Archiannelida Asabellides oculata Autolytus sp. Brada granosa Brada villosa Capitella capitata ?Chaetopterus sp. Cirratulidae Clymenella torquata Diplocirrus hirsutus Dodecaceria sp. Eteone flava Eteone heteropoda

Eteone longa Eucylymene collaris Eusyllis blomstrandi Exogone hebes Exogone verugera Gattyana cirrosa Goniada maculata Harmothoe extenuata Harmothoe imbricata Hartmania moorei Heteromastus filiformis Laonice cirrata Lepidonotus squamatus Lumbrineris acuta Lumbrineris brevipes Lumbrineris fragilis Lumbrineris tenuis Maldane sarsi Maldanopsis elongata Mediomastus ambiseta Melinna cristata Microphthalmus aberrans Myriochele heeri Nephtys bucera Nephtys ciliata Nephtys incisa Nephtys sp. Nereidae Nereis grayi Nereis pelagica Nereis sp. Nereis virens Nereis zonata Ninoe nigripes Notomastus latericus Ophelina acuminata Ophioglycera gigantea Owenia fusiformis Oweniidae Paraonis gracilis Paraonis lyra Parapionosyllis longocirrata Petaloproctus tenuis Pherusa affinis Pholoe minuta Phyllodoce groenlandica Phyllodoce maculata Phyllodoce mucosa Phyllodocidae Polychaete B Polycirrus eximus Polycirrus medusa Polycirrus phosphoreus Polydora ligni Polydora quadrilobata Polydora socialis Polydora sp.

Potamilla neglecta Praxillella gracilis Praxillella praetermissa Praxillella sp. Prionospio steenstrupi Pygospio elegans Rhodine loveni Sabella penicillus Scalibregma inflatum Scoloplos robustus Scoloplos sp. Sphaerodoropsis minuta Sphaerosyllis erinaceus Spio filicornis Spio setosa Spiophanes bombyx Spirorbis borealis Spirorbis sp. Stauronereis caecus Stauronereis rudolphi Sternaspis scutata Streblospio benedicti Syllidae Syllis cornuta Syllis gracilis Terebellid A Terebillid B Terebellidae Terebellides stroemi Tharyx sp. Trichobranchus glacialis Trochochaeta multisetosa

Class Oligochaeta Oligochaeta

PHYLUM SIPUNCULA

Golfingia verrillii Phascolion strombi Phascolopsis gouldii

PHYLUM ECHIURIDA

Echiurus echiurus

PHYLUM ARTHROPODA

Subclass Cirripedia Balanus balanoides

Subclass Malacostraca Order Cumacea Campylaspis rubicunda Diastylis abbreviata Diastylis cornuifer

Diastylis polita

Diastylis quadrispinosa Diastylis sculpta Eudorella hispida Eudorella truncatula Leptostylis longimana Oxyurostylis smithi Petalosarsia declivis Order Isopoda Cassidinidea lunifrons Chirodotea coeca Edotea triloba Jaera sp. Limnoria lignorum Munna fabricii Ptilanthura tenuis Order Mysidacea Erythrops erythrophthalma Meterythrops robustus Mysis stenolepis Neomysis americana Order Amphipoda Aeginina longicornis Ampelisca abdita Ampelisca agassizi Ampelisca macrocephala Ampelisca vadorum Anonyx liljeborgi Argissa hamatipes Bathymedon sp. Byblis gaimardi Caprella unica Casco bigelowi Corophium crassicorne Corophium insidiosum Corophium tuberculatum Corophium volutator Dexamine thea Dulichia monacantha Erichthonius rubricornis Gammarus oceanicus Gitanopsis sp. Halimedon sp. Haploops tubicola Harpinia propinqua Hippomedon serratus Leptocheirus pinguis Mayerella limicola Melita n. sp. Metopella angusta Monoculodes n. sp. Monoculodes tesselatus Orchomenella pinguis Paracaprella tenuis Photis macrocoxa Phoxocephalus holbolli Pleustes panoplus Pleusymtes glaber

Pontogeneia inermis Protomedeia fasciata Psammonyx nobilis Stenopleustes gracilis Stenopleustes inermis Unicola irrorata Order Decapoda Cancer borealis Cancer irroratus Pagurus arcuatus Pagurus longicarpus Pagurus pubescens

PHYLUM ECHINODERMATA

Class Holothuroidea Chirodota laevis Molpadia oolictica

Class Echinoidea Echinarachnius parma Strongylocentrotus droebachiensis

Class Stelleroidea Amphipholis squamata Asterias sp. Ophiopholis aculeata Ophiura sarsi

PHYLUM HEMICHORDATA

Saccoglossus kowalevskii Stereobalanus canadensis

PHYLUM A

PHYLUM B

Species per station, density/m², biomass $(g/m^2 \text{ wetweight})$ diversity (H^1) , evenness (J^1) and species richness at each of the 56 Casco Bay Stations sampled. Table 8.

١

EX 8001 April 1980

	•					
Station Number	Number of Species	Diversity	Evenness	Richness	Density ¹	Biomass ²
	59	1.9304	0.3282	7.3643	26330	1309
	86	4.1760	0.6498	11.7428	13920	1910
	72	2.6690	0.4326	8.8945	29290	1308
	75	3.1303	0.5025	9.3895	26470	1213
	56	3.1812	0.5478	8.4796	6560	438
	24	1.8956	0.4134	3.4871	7320	278
	41	1.8979	0.3542	5.5763	13040	509
	30	2.7714	0.5648	3.9337	15910	314
	62	4.3474	0.7301	9.0952	8180	502
	51	2.9477	0.5197	7.3361	9120	511
	50	3.1251	0.5537	7.5945	6340	251
	40	2.8565	0.5367	6.0841	6080	312
	27	3.1872	0.6703	4.1918	4940	204
	24	3.0717	0.6700	4.0565	2900	65
	7	0.8195	0.2919	1.0357	3280	193
	27	3.5031	0.7453	. 4.6469	2170 +	1307
	32	3.7421	0.7484	5.5749	2600	491
	27	3.1345	0.6592	4.5637	2980	225
	41	3.0870	0.5762	5.4651	15090	612
	63	4.1177	0.6943	8.7590	+ 0776	726
	42	2.8865	0.5353	5.6421	14320	813

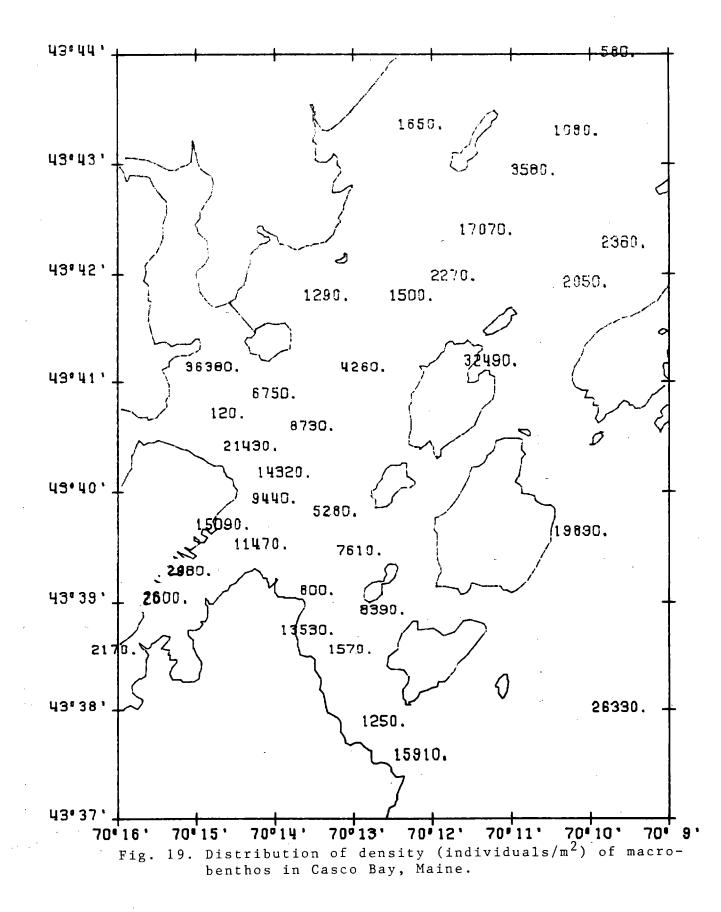
	Biomass ²	942	277	183	203	692	294	89	109	53	674	104	215	18	732	54	. 95	30	686	314	83	839	606	783	
	Density	8730	4260	1500	2270	17070	3580	1080	580	1060	9250	2320	6180	120	36380	1290	1650	750	8080 +	2720	440	21430 +	6750	11470	
	Richness	3.8394	3.1382	3.3928	4.6083	5.9120	4.0813	2.7765	3.2016	0.8577	4.5389	2.5703	1.2448	2.8170	2.6832	2.2635	2.3502	3.2426	4.0331	3.2110	1.5855	5.2151	3.0700	4.6842	
	Evenness	0.6140	0.5813	0.5153	0.6414	0.4441	0.5897	0.7069	0.8076	0.1789	0.5829	0.3996	0.2660	0.9308	0.5706	0.2827	0.6696	0.7584	0.4550	0.2588	0.6408	0.6363	0.4526	0.5531	
	Diversity	2.9194	2.5123	2.1486	3.0147	2.4389	2.7384	2.6916	3.0748	0.4153	2.9144	1.5613	0.8433	2.7925	2.5812	1.0136	2.4780	2.9628	2.1876	1.0994	1.7990	3.4091	1.9882	2.8139	
ı	Number of Species	27	20	18	26	45.	25	14	14	5	32	15	6	8	23	12	. 13	15	29	19	7	42	21	36	c
	Station <u>Number</u>	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46.	

April 1980

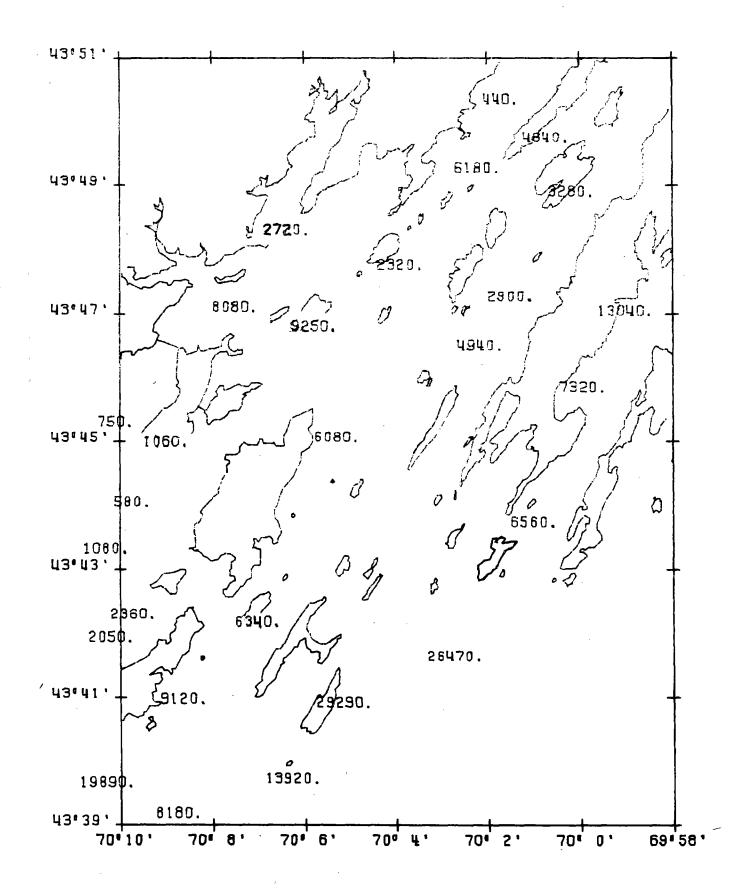
EX 8001

61

 2 grams wet weight/m²


1 individuals/m²

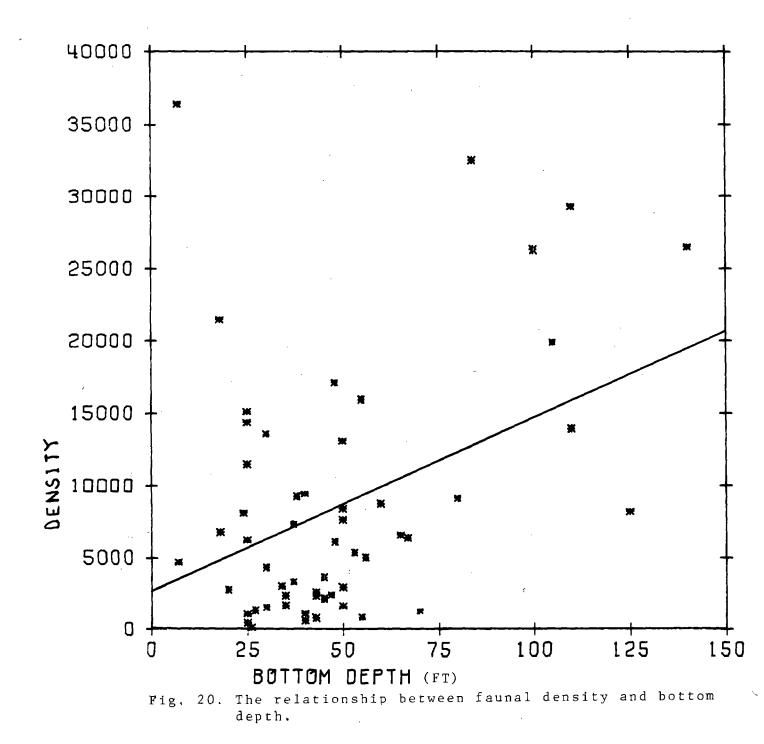
EX 8001	April 1980					
Station Number	Number of <u>Species</u>	Diversity	Evenness	Richness	Density	Biomass ²
47	23	3.6386	0.8284	4.5641	800 +	257
48	. 46	3.6013	0.6520	6.2413	13530	707
49	33	3.9507	0.7974	5.9333	1570 +	157
50	32	4.2826	0.8728	6.0062	1250 +	158
51	37	3.5376	0.6791	5.7425	5280	629
52	29	2.3345	0.4856	4.0696	7610 +	156
53	49	3.2982	0.6006	6.5357	8390 +	261
54	65	2.1533	0.3576	8.4262	19890	963
55	53	1.6535	0.2901	6.3071	32490 +	1727
56	27	2.9585	0.6222	4.8845	2050	265
57	25	2.7581	0.5939	4.3925	2360	328
58	24	3.0389	0.6628	3.7460	4640	354
lindividuals/m ²	2	grams wet weight/m ²				


62

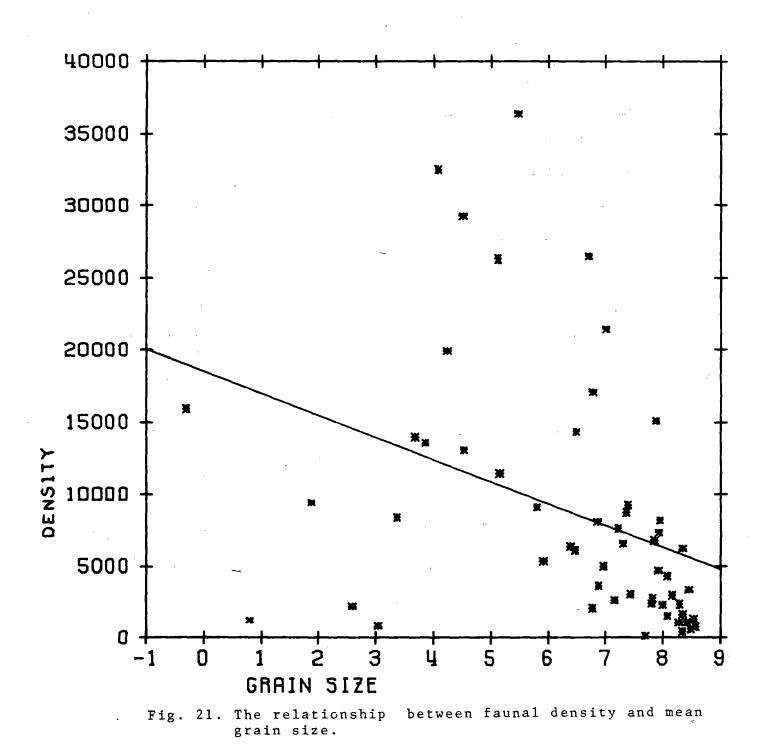
`

DENSITY

DENSITY


and 20 in Portland Harbor and several stations in the middle and upper Bay. Reasons for these low densities are not completely obvious. Stations with similar sediments located around stations 47, 49 and 50 have much higher densities. Further data are needed before we can speculate on whether this is a natural or pollution-induced phenomenon. Stations 18, 19 and 20 exhibited the highest levels of trace metals, so perhaps the reduced densities there are impact related. The middle and upper Bay stations with low animal densities are those where extremely soft sediments were encountered. We believe that these sediments offer so little bearing strength that only a depauperate community can develop.

Correlation analysis was used to add insight into factors that might be influencing density levels. Density is correlated with both depth and mean grain size (Fig. 20 and 21). These relationships, both of which are significant at the 99%, level indicate that density increases with increasing depth and decreases with decreasing mean grain size. The latter relationship adds support to the hypothesis that physical properties at some fine-grained stations prevent the development of a normal community. Density is not significantly correlated with temperature, salinity or organic carbon content.


Correlation analyses were also run between density and the six trace metals. Two of the metals, chromium and nickel, were negatively correlated to density at over the 95% level. While not attaining the conventionally accepted 95% level of significance, it is interesting to note that cadmium, zinc, copper and lead are all negatively correlated with density. The significance levels are 94, 93, 88 and 76%,

respectively.

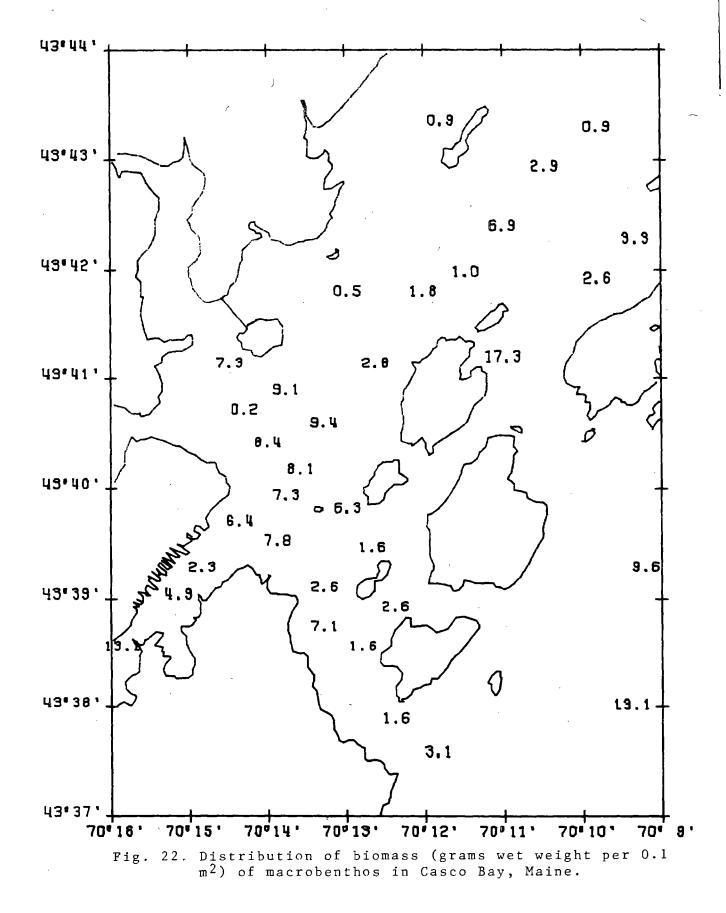
EXBOD1 CASCO BAY

Comparing Casco Bay faunal densities with those from other temperate and boreal areas demonstrates the comparative richness of the region (Table 9). Such high density and biomass (see below) indicates a high or extended period of productivity. Data on primary productivity

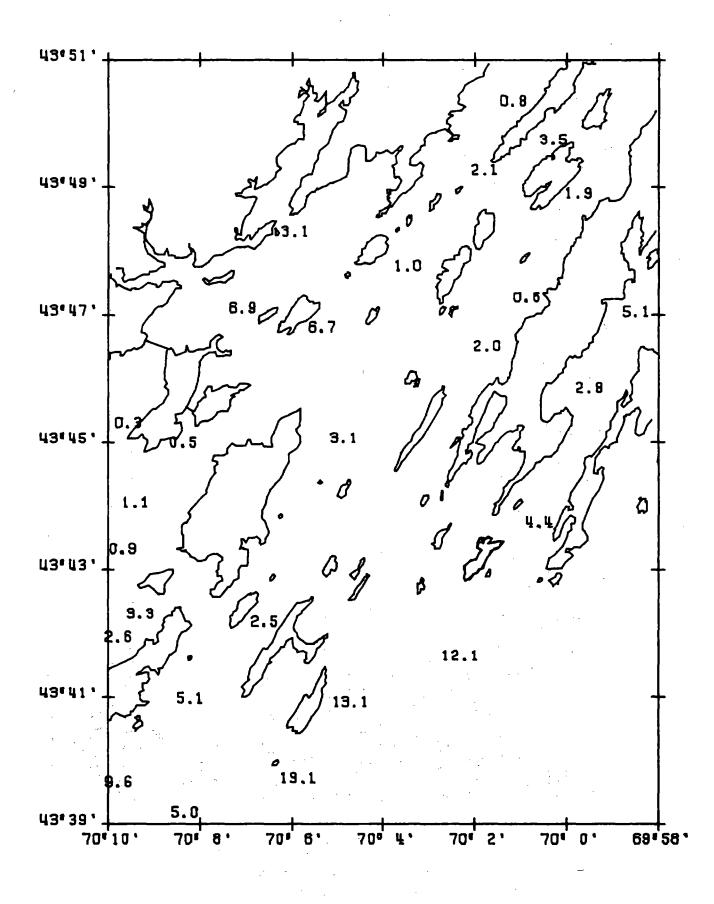
Table 9. Mean density of invertebrates in unconsolidated sediments of temperate and boreal inshore waters (modified from Maurer et

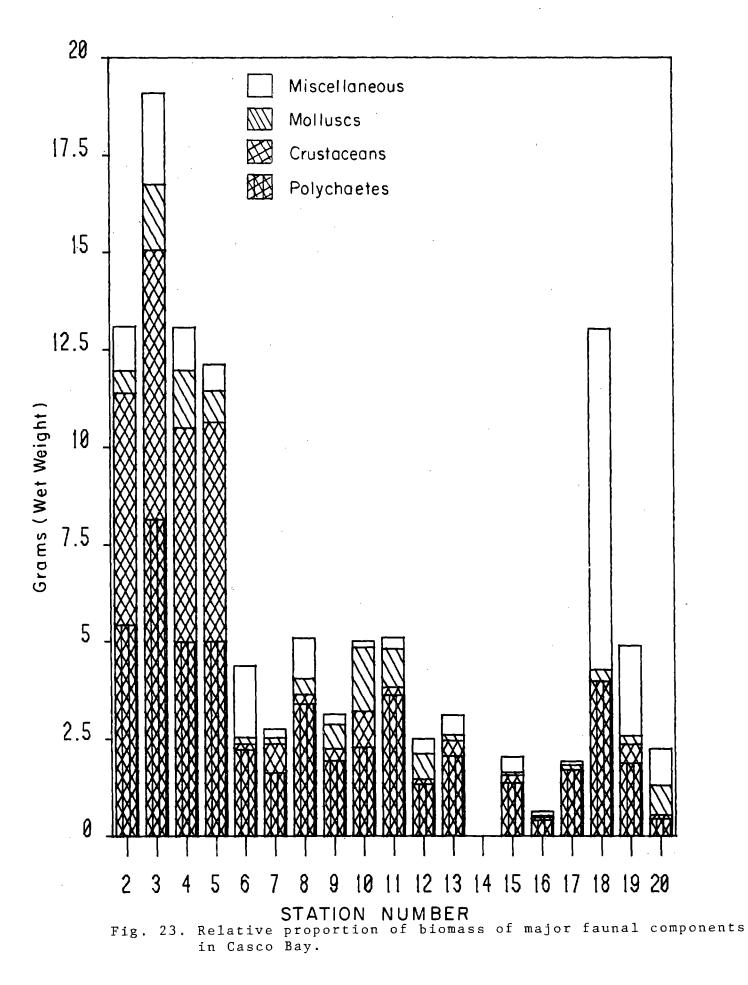
al. 1978)		
Location	Mean Density/m ²	Source
Casco Bay, Maine	8,743	this study
Sheepscot Estuary, Maine		
Gradient Study	4,928	Larsen & Doggett (1978)
Shallow Water Study	771	Larsen (1979)
Mystic River, Massachusetts	3,000	Rowe <i>et al</i> . (1972)
Moriches Bay, New York	1,300	0'Connor (1972)
Delaware Bay	722	Maurer <i>et al</i> . (1978)
False Bay, South Africa	2,200	Field, (1971)
Gullmars Fjord, Sweden	4,198	Rosenberg (1973)
Lambert Bay, South Africa	1,153	Christie (1976)

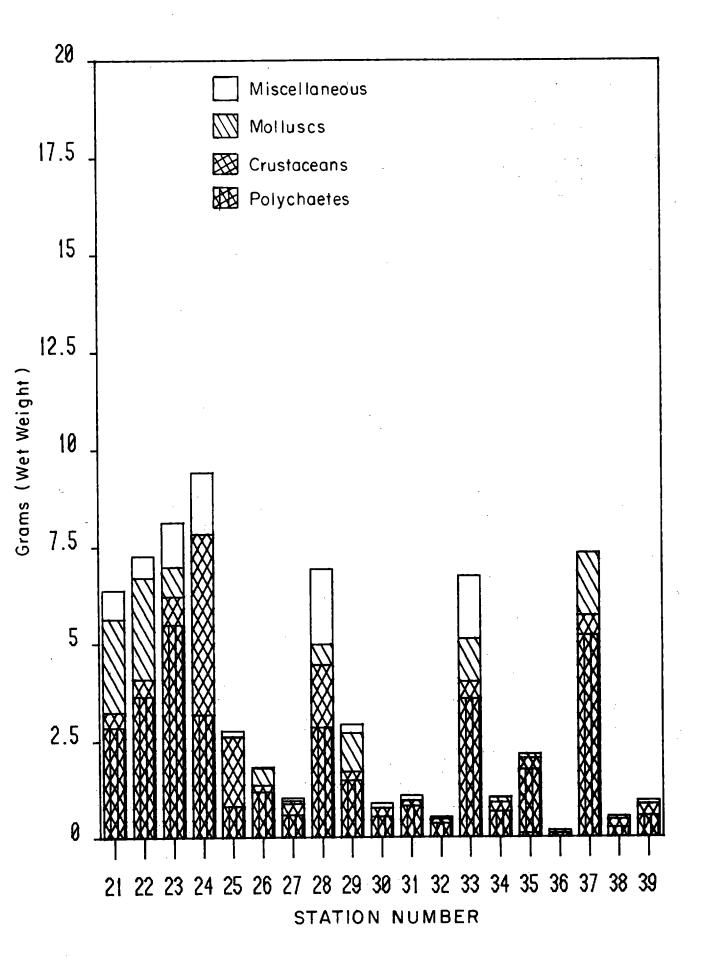
of Casco Bay are presently being generated by other researchers at the Bigelow Laboratory. These data may provide an explanation for the observed faunal densities.

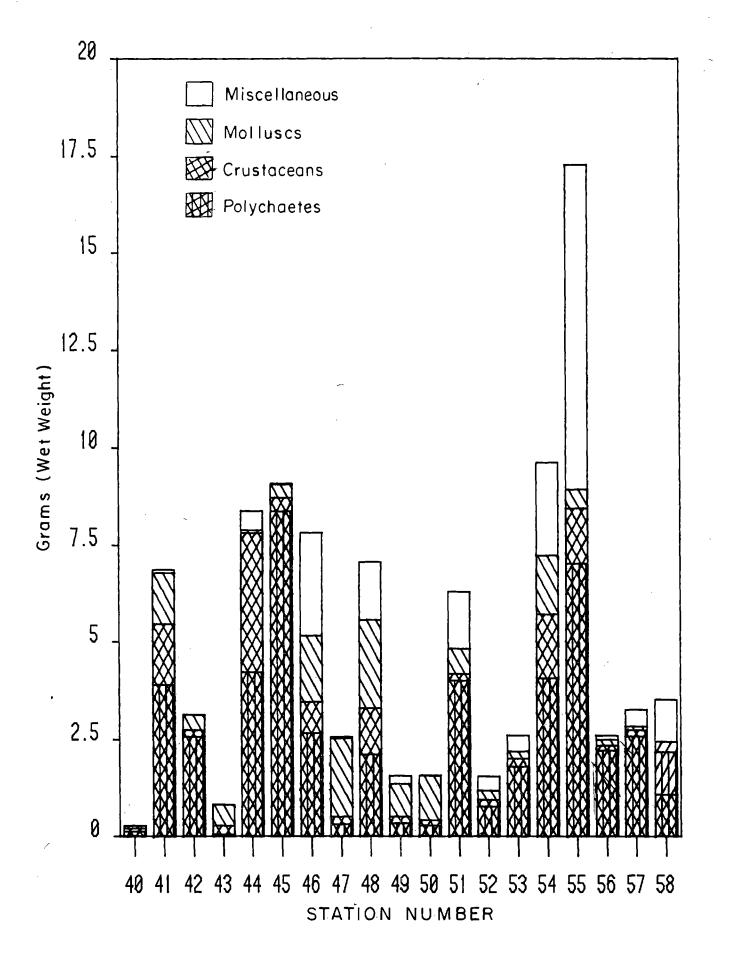

Biomass

Biomass of the 1.0 mm sieve fraction averaged 49.6 g/m^2 on a wet weight basis. The range at individual stations was 1.8 to 191.0 g/m^2 (Table 8). In all cases animals weighing over one gram were excluded from the analysis. Annelids constituted 49.6% of the fauna in terms of wet weight. Arthropods, molluscs, echinoderms and miscellaneous phyla accounted for 19.3, 11.6, 1.9 and 17.6% of the biomass, respectively.


There was considerable variation in total biomass between stations but relative dominance of higher taxa was fairly consistent (Fig. 22 and 23). Annelids were biomass dominants at 43 of the 56 stations. Arthropods were dominant at stations 2, 4 and 5 due to the abundance of Ampelisca agassizi and Haploops tubicola and at stations 24 and 25 due to Casco bigelowi. Molluscs were also biomass dominants at only five stations. These were stations 47 - 50 because of the presence of Nucula delphinodonta and Nassarius trivittatus and at the sparsely populated station 43. Stations 18 - 20 in Portland Harbor were dominated in terms of biomass by various miscellaneous taxa.


Like density, biomass exhibits a strong positive correlation (99.9%) with depth and a strong negative correlation (99.0%) with mean grain size (Figs. 24 and 25). Furthermore, it is negatively correlated with organic carbon (99.9%) (Fig. 26). In addition, biomass is also positively correlated at the 99.9% level with density and number of species per station. It is negatively correlated with all of the trace metals. Three of these relationships, cadmium, chromium and zinc are significant at the 95% level. Levels of significance for copper, nickel and lead are 83, 89 and 79%, respectively.


BIOMASS



BIOMASS

.

EXBDD1 CASCO BAY

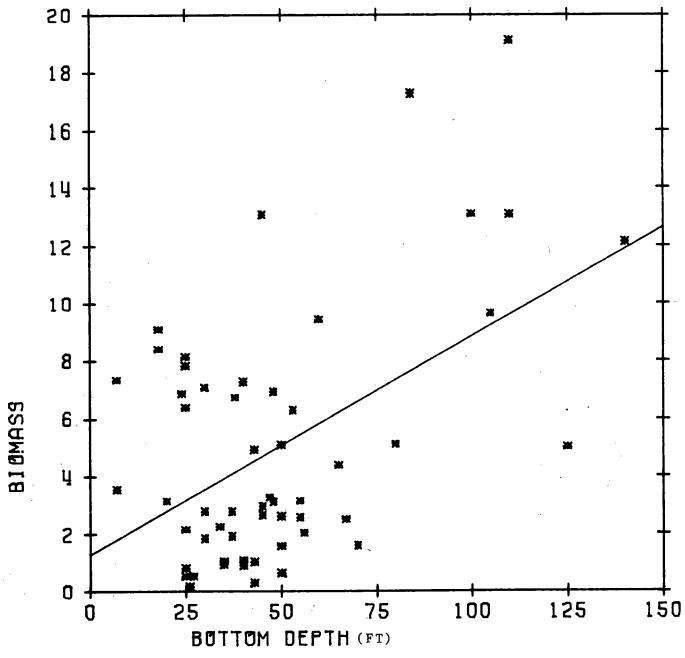


Fig. 24. The relationship between biomass and bottom depth.

EX8001 CASCO BAY

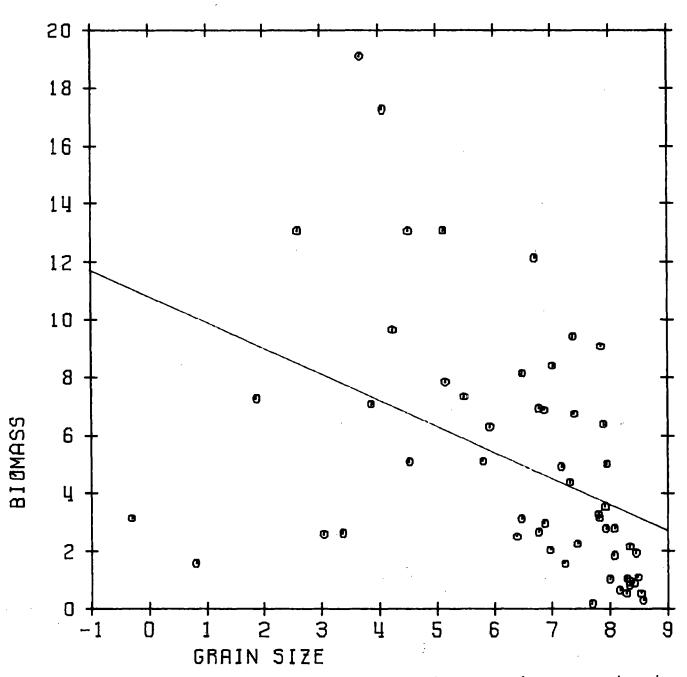
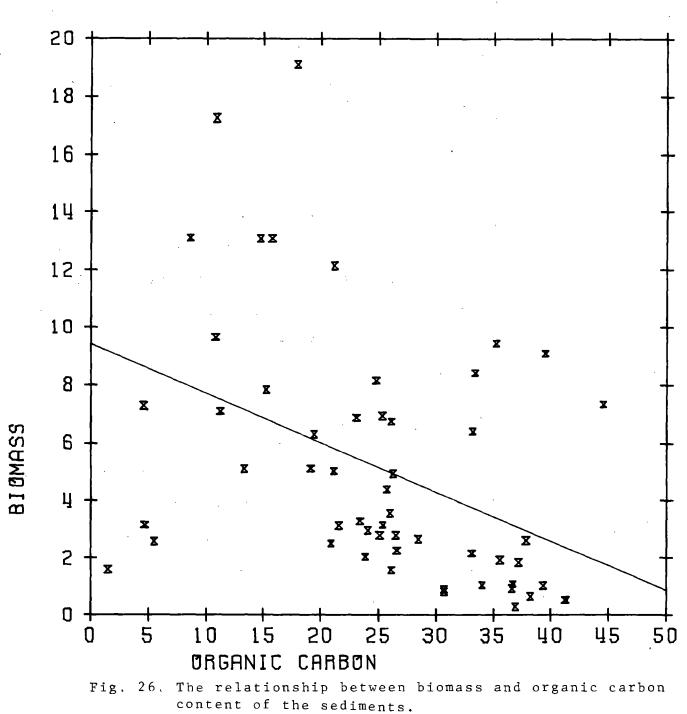
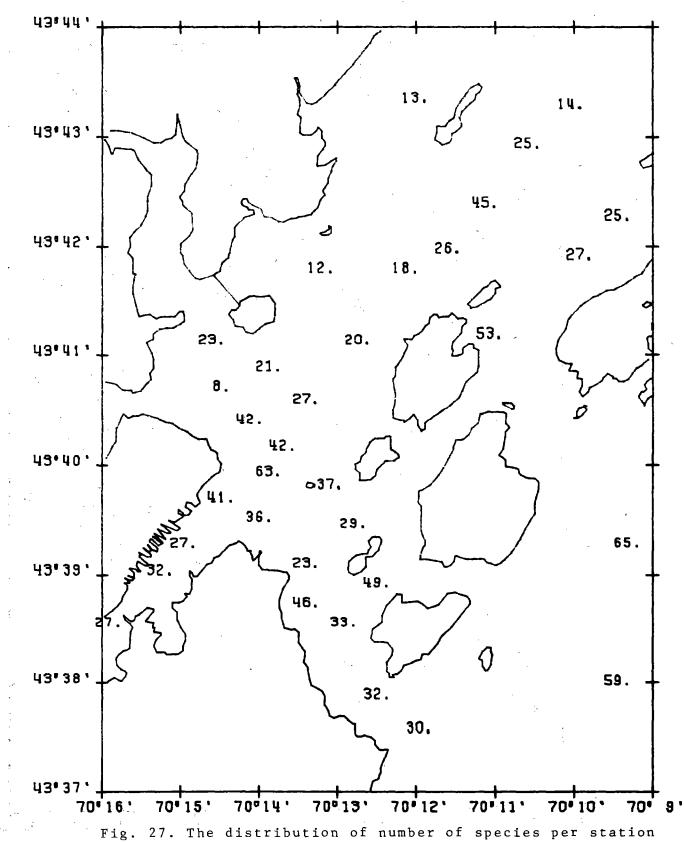



Fig. 25. The relationship between biomass and mean grain size.

EX8D01 CASCO BAY

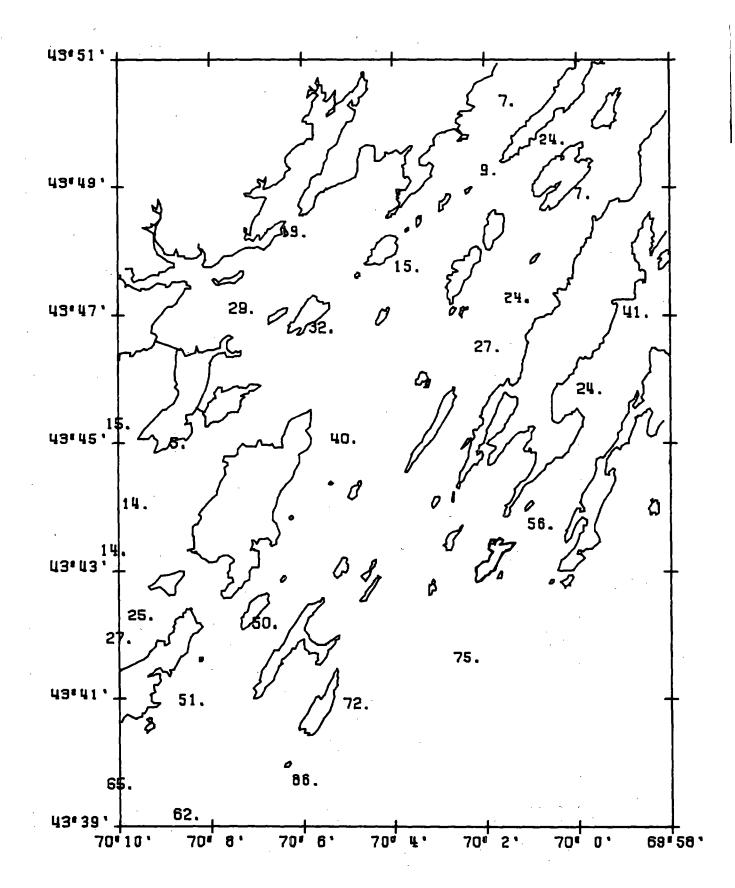
-

Species Per Station

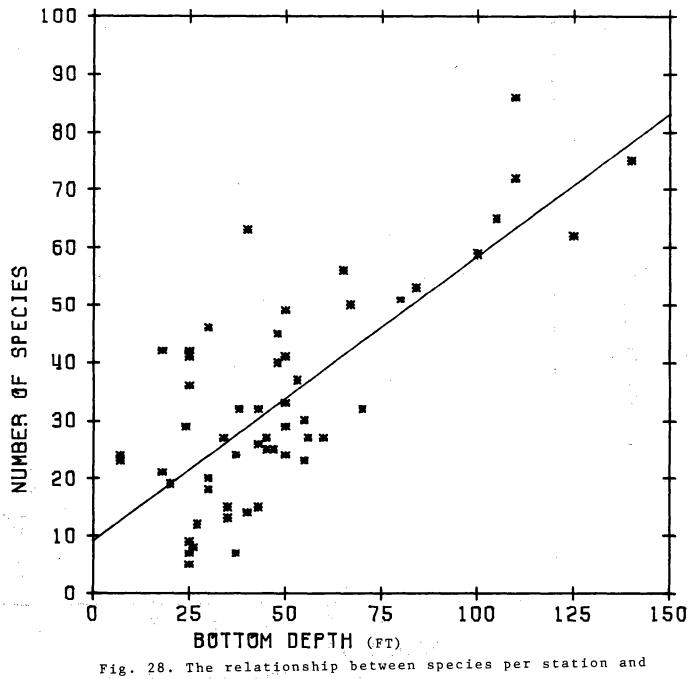

The number of species per station $(0.1m^2)$ ranged from 5 to 86 with a mean of 33.1 (Table 8). The offshore stations consistently had the highest numbers of species and moderate numbers are characteristic of lower Casco Bay. Less than 20 species were found at many of the finer-grained stations and in the wood chips of station 36. Indeed, stations 17, 32, 35, 36 and 43 were occupied by less than 10 species (Fig. 27).

The number of species per station is very strongly correlated (99.9% level) with increasing depth (Fig. 28). It is also negatively correlated at the 99.9% level with mean grain size and organic carbon (Figs. 29 and 30). Number of species is the only biological parameter to be significantly correlated with salinity (98% level).

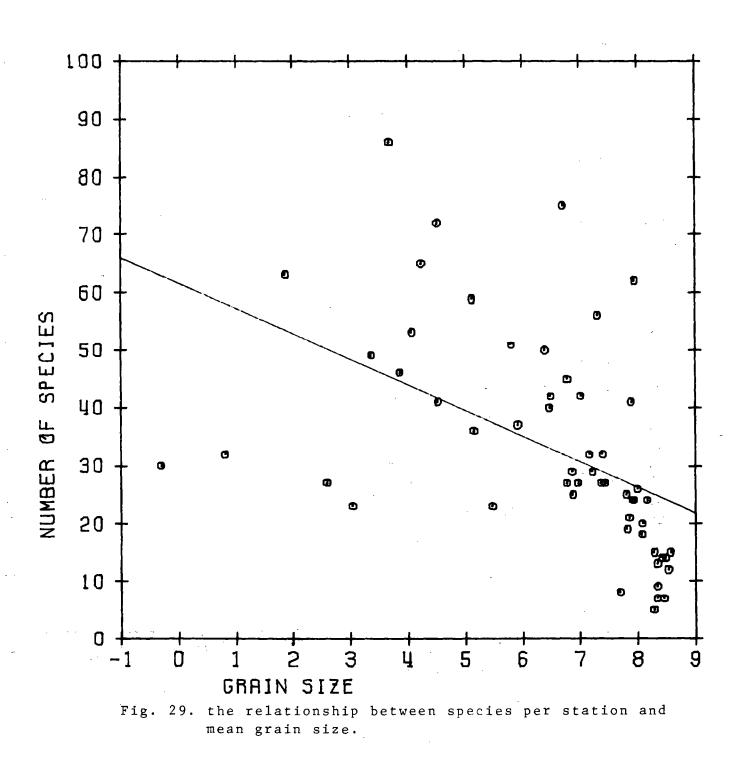
As with density and biomass, species per station is negatively correlated with each of the metals. Two of these relationships, cadmium and zinc, are significant at the 99% and 95% levels, respectively. Other non-significant correlations and their significance levels are: chromium 94%; nickel 93%; copper 82% and lead 75%.

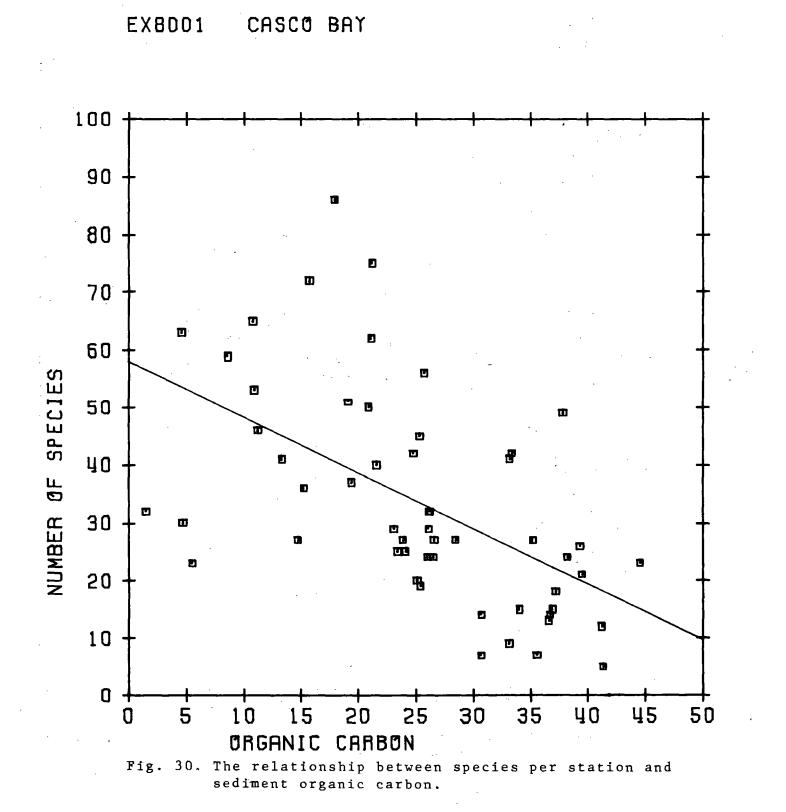

Diversity

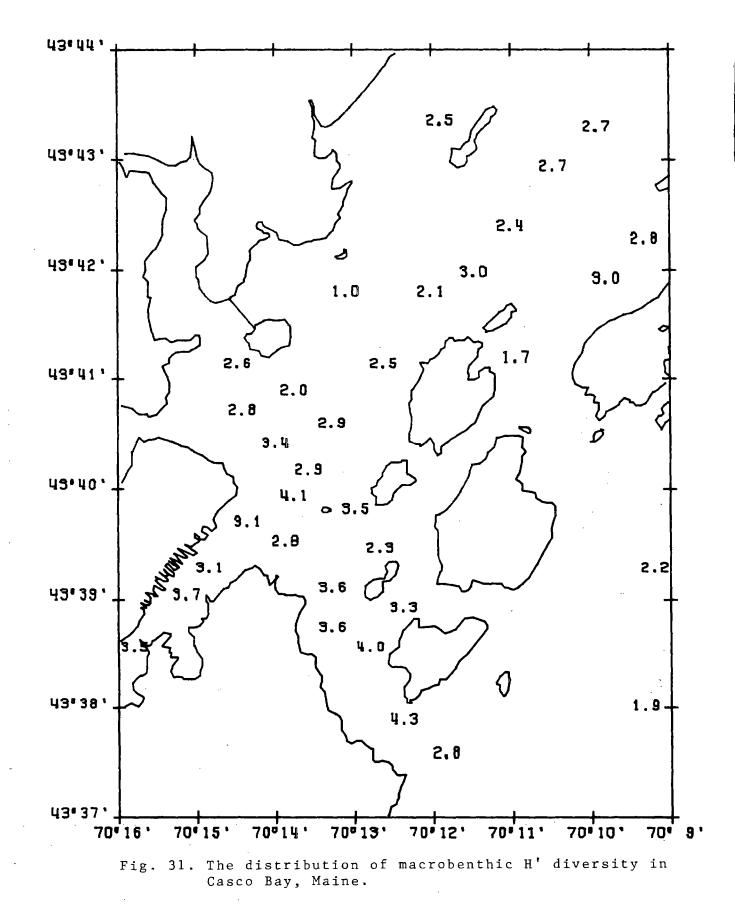
Informational diversity, as measured by the Shannon index, ranged from 0.415 at station 32 to 4.347 at station 10 (Table 8). The overall mean was 2.72. High values of H' diversity are found at some offshore stations and generally throughout the Portland region including the trace metal impacted, low density stations 18-20 (Fig. 31). An explanation for this unusual result can be found in an examination of evenness and species richness levels (Table 8). In general, the high NUMBER OF SPECIES

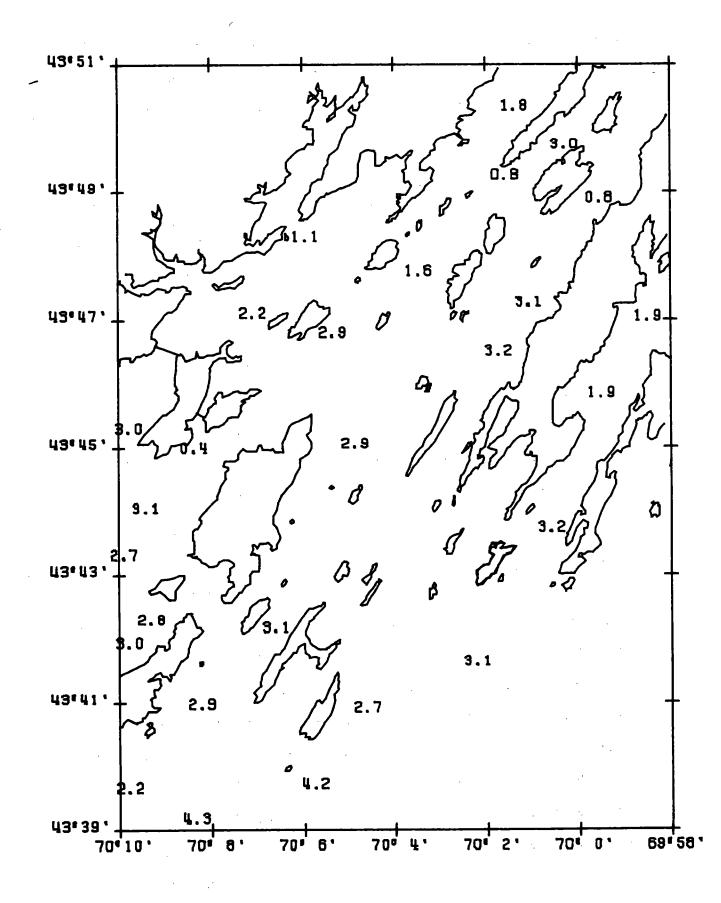


throughout Casco Bay.


NUMBER OF SPECIES

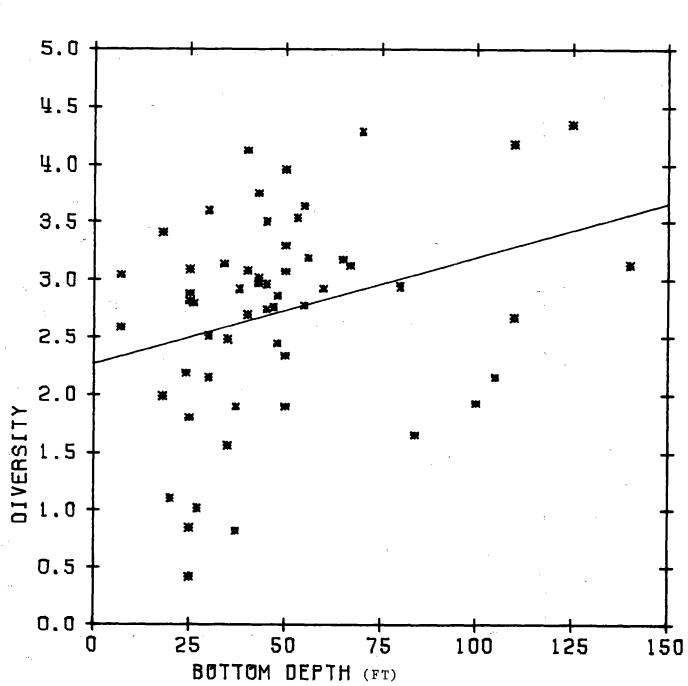



bottom depth.


EXBDO1 CASCO BAY

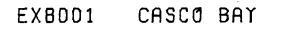
DIVERSITY

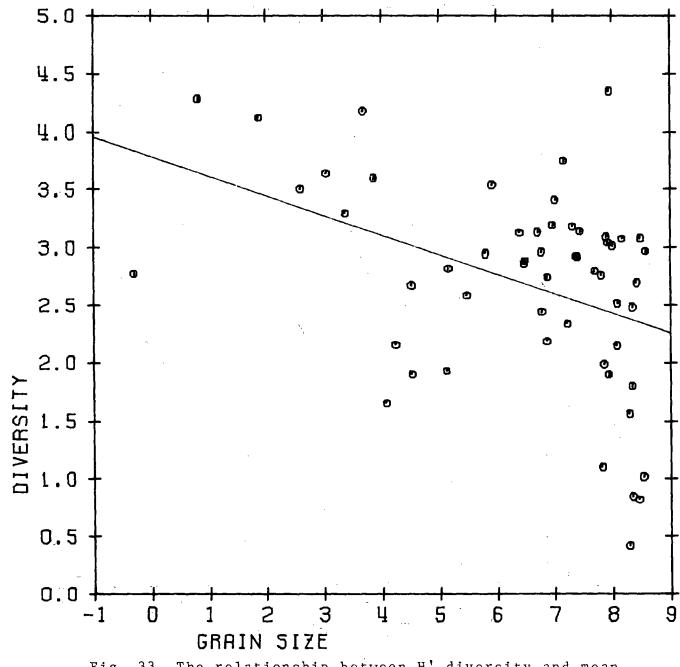
DIVERSITY

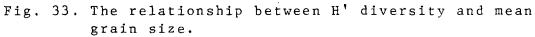


diversity values at many stations seems to be caused by high species richness. Naturally, these are the stations with high numbers of species. At other stations, however, evenness appears to be the dominant component of diversity. For example, stations 15, 16, 18, 19, 20 and 36 only have moderate to low species richness levels but are among the highest stations in evenness which results in diversity levels of over 3.0 at stations where conventional logic would predict depressed diversity.

Extremely low diversity is limited to stations with very fine sediments. Not all the fine-grained stations exhibit such low diversity, however, and the explanation for this is analogous to that presented above.

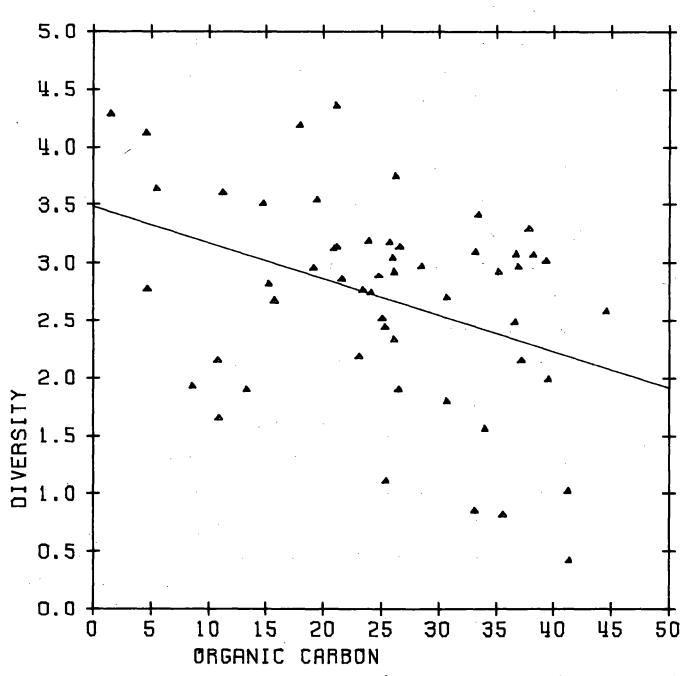

Like the other biological parameters discussed, informational diversity is positively correlated with bottom depth, at the 95% level, and negatively correlated with mean grain size and organic carbon, both at the 99% level (Figs. 32, 33 and 34). As would be expected, diversity is positively correlated at the 99.9% level with species number, but shows no relationship to density. Additionally, diversity is not significantly correlated with any of the trace metals and is not even consistent in the sign of the correlation coefficient.

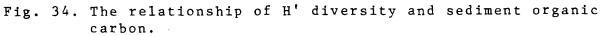

Whereas, we believe all of the biological parameters should be re-evaluated in greater depth once the hydrocarbon data can be factored into the analysis, all of them, except diversity, presently add insight into the existing conditions in Casco Bay and will aid us in providing an integrated overview of the biological functioning and health of the system. Diversity, on the other hand, is not presently useful in this regard. Once all the data are available, diversity should again be



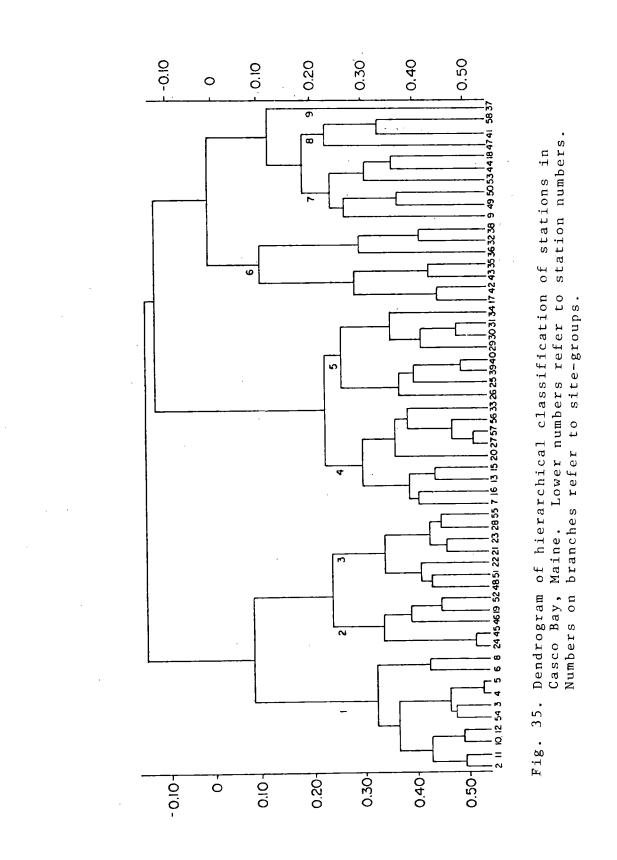
EX8001 CASCO BAY

Fig. 32. The relationship of H' diversity and bottom depth.





evaluated, but other related tools, such as fit to a lognormal distribution, should be looked at as well. It may be that H' diversity is simply not the appropriate index to illuminate the finer nuances of a heterogeneous system like Casco Bay.


Classification Analysis

Classification or cluster analysis is a useful way of objectively examining patterns in complex data sets which cannot easily be uncovered by other techniques. It is a hypothesis generating technique which can suggest relationships between biological and physical factors that may be causal to observed community distributions. Although the method is numerical, and therefore objective, the interpretation is subjective. One way to minimize subjectivity is to produce a large number of site-groups and species groups and then combine them until the most meaningful pattern is produced using a minimum of groups. The goal is to produce the most comprehensive but simple explanation for the observed phenomena.

We are at an intermediate step in this process. We have produced station and species dendrograms based on faunal data. We have defined a moderate number of site-groups and species-groups and have initiated a comparison of the groups with the extrinsic factors now on hand. In order to conserve resources we intend to wait until all of the physical data are available before finalizing our interpretation. We have, however, included our analysis to date because it does provide useful information about Casco Bay and illustrates the strength of the analysis that will be available soon. The dendrogram which resulted from the classification of the 56 stations using species abundances as attributes (normal classification) is presented in Fig. 35. For the time being we have truncated this dendrogram at the nine group level. Examination of Fig. 35 shows that all of these groups are fairly discrete but some, for example groups 2 and 3, are candidates for further fusion. We have a great deal of faith in this classification because it shows good spatial discrimination (Fig. 36).

The 10 members of site-group 1 are principally deep-water offshore stations. Site-groups 2, 3 and 7 are limited to the Portland region. Stations in site-groups 2 and 3 are intermingled in outer Portland Harbor and are adjacent to one another on the dendrogram. This suggests a close faunal affinity between them. Site-group 7 stations are found on the edge of the patch of site-group 2 and 3 stations and are far removed from them in the dendrogram. This reflects a real difference in faunal composition undoubtedly controlled by physical factors. Site-group 4 is widely scattered throughout Casco Bay with all but one of the member stations occurring near shore. Site-group 5 dominates the central portion of the Bay while site-group 6 members ring the Bay at shallow stations. The three member site-group 8 exhibits no spatial pattern and site-group 9 is a single station outlier consisting of the mussel reef comminity at station 37.

The dendrogram resulting from the inverse classification is presented in Fig. 37. Only those noncolonial species occurring at over 10% of the stations were used in this procedure. We have tentatively truncated this dendrogram at the 14 group level. The most significant feature of this analysis is the distinct separation of species-group N

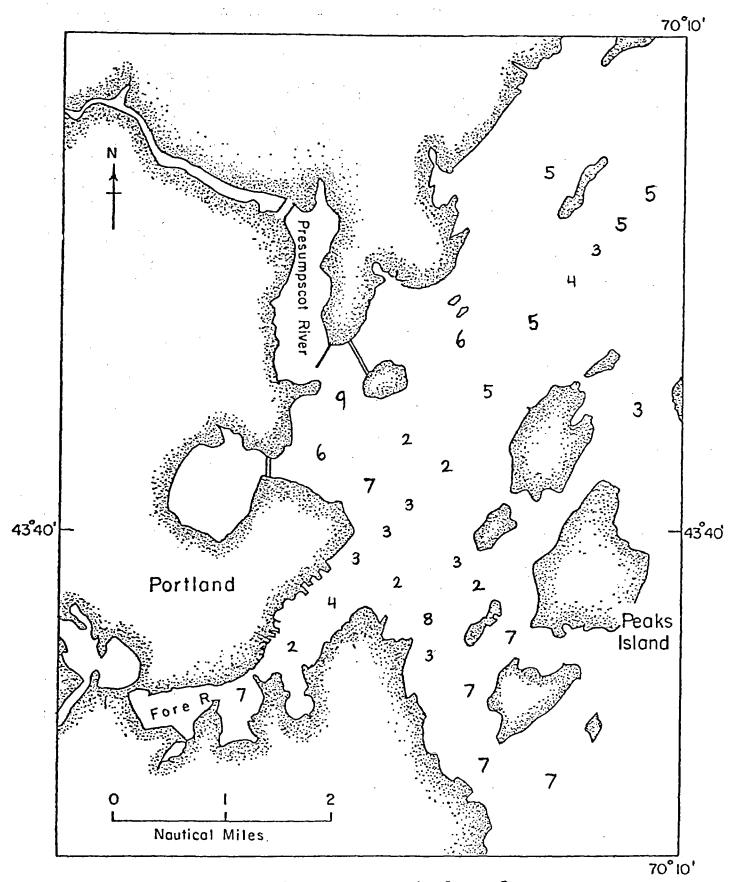
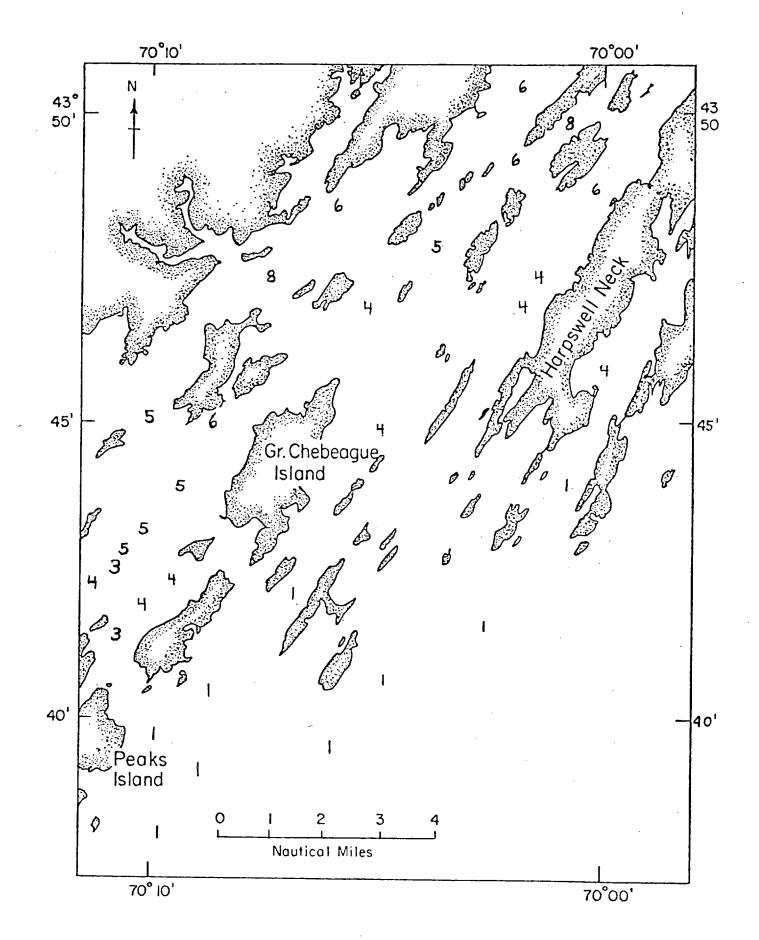
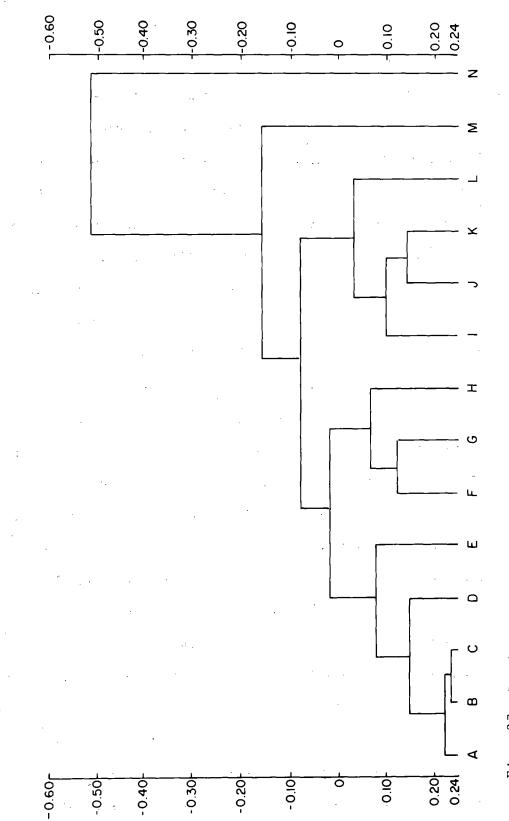




Fig. 36. Distribution of site-groups in Casco Bay.

e -,

from the others. This group is not a single species outlier, but the largest group and the separation suggests a basic difference in distribution between species-group N members and members of the other groups. The membership of each species-group is presented in Table 10.

By examining the constancy and fidelity of species-groups at the various site-groups it is possible to achieve insight into the distribution of the species-groups and perhaps into the controlling ecological mechanisms. This process is called nodal analysis.

The patterns of constancy and fidelity of the species-groups at the site-groups is summarized in Figs. 38 and 39. The width of the rows and columns is proportional to the size of the groups. Site-group 1 is occupied in medium to very high constancy by all species-groups with the exception of species-groups H-K. These latter four groups also demonstrate a fidelity of less than unity at site-group 1 indicating an avoidance of the member stations. It is the only site-group where species-groups E, F and M are highly constant and G and M are highly faithful. With the exceptions of species-groups F and G, site-groups 2 and 3 are occupied by similar species-groups but differ in relative constancy and fidelity especially in terms of species-groups A, B and C. Site-group 4 is best characterized by the presence of species-groups I and N. Species-group I is highly constant and faithful only at site-groups 4 and 5. These two mid-Bay site-groups differ from one another in that site-group 4 has six species-groups present at low to medium constancy which do not occur at site-group 5 stations.

Site-group 6 is impoverished. Only species-group J is present at moderate constancy. Site-group 7 has similarities to site-groups 2 and

Species-groups

Species-group A

Cerianthus borealis Crenella decussata Periploma papyratium Thyasira flexuosa Eteone longa Pherusa affinis Pholoe minuta Sabella penicillus Phoxocephalus holbolli

Species-group B

Modiolus modiolus Mya arenaria Nucula annulata Pitar morrhuana Ampharete acutifrons Stauronereis caecus Stenopleustes inermis

Species-group C

Cerastoderma pinnulatum Paraonis gracilis Harpinia propinqua Orchomenella pinguis Phoxis macrocoxa Nemertea C Phyllodoce mucosa Casco bigelowi Leptocheirus pinguis Corophium crassicorne

Ampharete arctica

Owenia fusiformis

Potamilla neglecta

Lumbrineris fragilis

Species-group E

Species-group F

Euclymene collaris Maldane sarsi Spiophanes bombyx Edotea triloba Dulichia monacantha Chirodota laevis

Species-group G

Cardita borealis Asabellides oculata Goniada maculata Harmothoe imbricata Ophelina acuminata Phyllodoce maculata Diastylis quadrispinosa Amphipholis squamata Nereis virens Unicola irrorata

Species-group I

Yoldia limatula Aricidea suecica Eudorella hispida Erythrops erythropthalma Meterythrops robusta

Species-group J

Anemone A Nassarius trivittatus Mulinia lateralis Neomysis americana Ampelisca abdita Melita n. sp.

Species-group K

Hydrobia **sp.** Gemma gemma Tellina agilis

Species-group L

Nemertea D Nemertea H

.

Hartmania moorei

Species-group M

Alvania carinata Aricidea quadrilobata Rhodine loveni Spio filicornis Stermaspis scutata Leptostylis longimana Ampelisca agassizi Anonyx liljeborgi Metopella angusta

Species-group N

Cerebratulus lacteus Nucula delphinodonta Aglaophamus neotenus Aricidea jeffreysii Lumbrineris tenuis Mediomastus ambiseta Nephtys incisa Ninoe nigripes Prionospio steenstrupi Scoloplos sp. Tharyx sp. Oligochaeta Diastylis sculpta Eudorella truncatula Argissa hamatipes

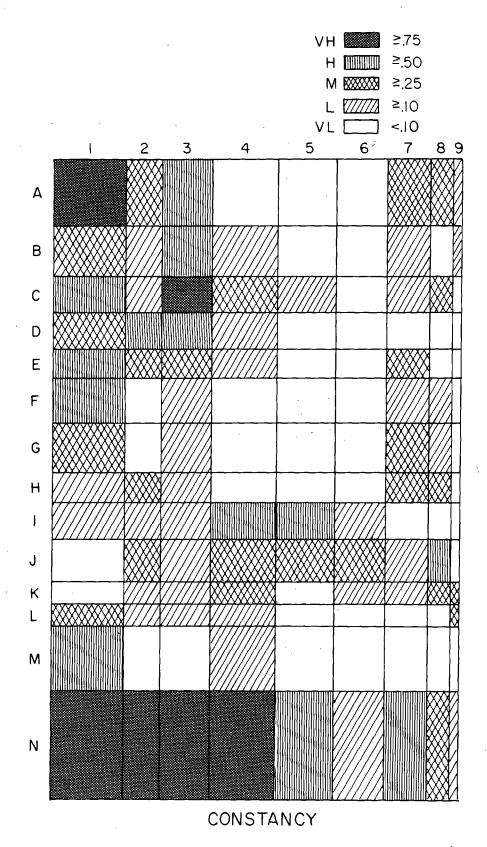


Fig. 38. Constancy of species-groups at site-groups.

≥3
 ≥2
≥1
<pre>< </pre>

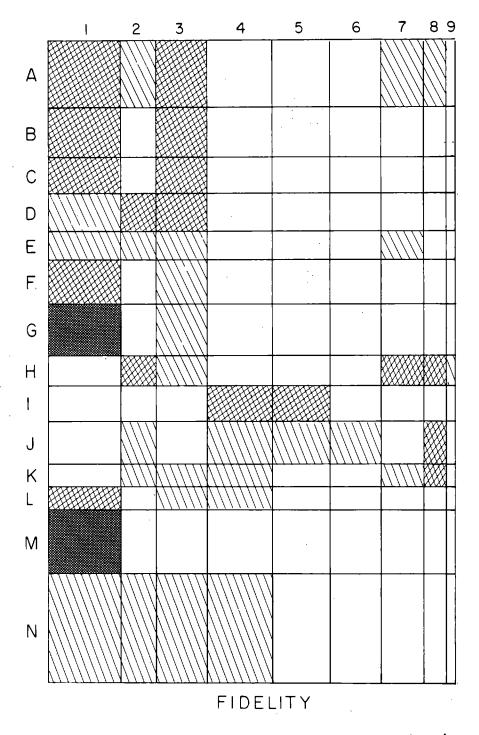


Fig. 39. Fidelity of species-groups to site-groups.

3 in terms of species-group affiliations but differs in constancy and/or fidelity levels of species-groups B, C, D and G. Species-groups H, J and K are most characteristic of site-group 8, as they are present in medium to high constancy and with high fidelity. Site-group 9 consists of one station which is qualitatively different from all other stations in several regards.

Species-group N is unique in that it occurs at all the site-groups and is present in high to very high constancy at six of the nine site-groups. Naturally, with such widespread constancy its fidelity to individual site-groups is very low. Examination of the frequency of occurrence of the member species of species-group N shows that they occur at from 53.6 to 87.5% of the stations sampled. This explains the distinct separation of species-group N from the others in the dendrogram (Fig. 37). Excepting the special cases of site-groups 6 and 9, we can characterize the fauna of Casco Bay by species-group N. This group of very tolerant, numerically dominant species which are undoubtedly typical of nearshore bottoms over a large area. Superimposed on this homogeneous fauna are smaller groups of species which are responding to finer environmental distinctions and hence have a more restricted range within Casco Bay. It is from among these other groups that initial changes in community structure, potentially indicative of environmental degradation, should be sought.

Several physical and biological parameters are compared in Table 11 on a site-group basis. The observed differences were subjected to standard analysis of variance and the site-groups differed significantly (> 95%) from one another in each of the measured parameters. This is strong evidence that the numerical classification, using only species

occurrences and abundances, dissected Casco Bay into ecologically meaningful components. Analysis of variance also demonstrated that the site-groups were significantly different in regard to four of the trace metals, cadmium, chromium, nickel and zinc.

The data was subjected to Duncan's multiple range test to determine which site-groups differed in the measured parameters. Results of this procedure are presented in Table 12. Zinc is not included because Duncan's test is not powerful enough, in this case, to break out the dissimilar site-groups. Groups represented by the same letter in the table are not different. For instance, by comparing Tables 11 and 12 we can conclude that site-group A is significantly deeper than all the others which do not differ significantly among themselves. Likewise, site-group 9, located on a mussel reef, has a significantly greater density than site-groups 1 and 3 which are in turn significantly denser than the remainder of the groups. Some of the other results are not so straightforward. In terms of biomass site-groups 1 and 3 are significantly richer than site-groups 4, 5 and 6, but the intermediate groups cannot be statistically differentiated from either the high or low biomass stations.

We are extremely encouraged that the chosen classification techniques produced groupings that are statistically valid. We are confident that once all of the data are available we will be able to provide a comprehensive analysis and benchmark of the present state of the benthic environment of Casco Bay.

SUMMARY AND TENTATIVE CONCLUSIONS

Casco Bay is a major coastal resource heavily utilized for commerce. commercial fishing and recreation. Facilities and activities Table 11. Mean, ranges and standard deviations of various physical and biological parameters by site-group.

laure II. Arcau, tanges and standed deviations of various physical and plotogical parameters by site-group.			1				fund enco	סדרמד מ		רכמו אמומ	שפרפד מ ישפרפד מ	DY SILE-RIUU	
Group Depth (m) Temperature			Temperatur	eratur	e (°C)			Grain	Grain Size (phi)		Org	Organic Carbon (mg/g)	mg/g)
x range SD x range	SD	, I X		rang		SD	1×	ц, н	range	SD	١×	range	SD
29.0 15.3-42.7 8.8 3.5 3.7-2.9	15.3-42.7 8.8 3.5	3.5		3.7-2		0.3	5.622	3.67	.677-7.940	1.430	17.4	8.6-25.7	5.3
12.0 5.5-18.3 5.3 4.5 4.4-4.7	5.5-18.3 5.3 4.5	4.5		4.4-4.		0.1	6.946	5.15	5.152-7.848	1.039	28.4	15.2-39.5	9.4
13.3 7.6-25.6 6.4 4.6 4.0-5.2	7.6-25.6 6.4 4.6	4.6		4.0-5		0.4	5.266	1.86	1.868-6.773	2.080	18.5	4.6-33.2	10.1
12.4 10.4-17.1 3.7 4.2 3.7-4.6	10.4-17.1 3.7 4.2	4.2	:.	3.7-4		0.3	7.432	6.46	6.468-8.158	0.593	28.2	21.6-39.3	6.3
11.4 9.2-13.7 1.7 4.6 4.0-6.3	9.2-13.7 1.7 4.6	4.6		4.0-6		0.7	8.134	6.87	6.870-8.564	0.540	32.7	24.1-37.2	5.4
8.0 6.1-11.3 1.6 4.9 4.4-5.9	6.1-11.3 1.6 4.9	4.9		4.4-5		0.5	8.201	7.68	7.682-8.526	0.324	34.6	25.4-41.2	6.2 ¹
11.3 5.5-21.4 7.4 4.5 4.2-4.6	5.5-21.4 7.4 4.5	4.5		4.2-4.		0.2	2.694	-0.30	-0.305-7.006	2.811	18.4	4.7-37.8	16.5
8.7 2.1-16.8 7.5 6.0 4.5-7.8	2.1-16.8 7.5 6.0	6.0		4.5-7.		1.7	5.938	3.01	3.014-7.911	2.563	18.2	5.5-26.0	11.1
2.1 4.9	1	\$ 1		4	6	ł	ł		5.746		, 	44.5	1
Density (#/m ²) Biomass (g/m ²) ²			Biomass (g	omass (g	/m ²)	8	S	Species	per Station	u		Diversity (H ¹	
SD x	SD x	SD x		rang	5	SD		1×	range	SD	i×	range	SD
15915 6340-29290 8895 89.1 25.1-	8895 89.1	89.1		25.1-	25.1-191.0	53.3	-	62	41-86	13	2.96	1.90-4.35	0.85
7432 2600-11395 3234 65.6 15.6	3234 65 . 6	65.6		15.6	15.6-94.2	33.1		29	21-36	9	2.76	1.99-3.74	0.67
15318 5280-32490 8540 84.7 62.9-1	8540 84.7	84.7		62.9	-172.7	39.3		47	37-63	6	3.05	1.65-4.12	0.82
4455 2050-9250 2595 27.3 6.5	2595 27.3	27.3		6.5	6.5-67.4	17.5		28	24-40	Ŝ	2.87	1.90-3.19	0.39
1965 580-3580 1335 14.8 3.	1335 14.8	14.8		с. С	3.0-29.4	9.5		18	13-27	5	2.52	1.56-3.07	0.48
2155 120-6180 8518 13.3 1.8	8518 13.3	13.3	-	1.8	1.8-31.4	10.9		10	5-19	Ś	1.25	0.42-2.79	0.80
8453 1250-21430 8518 50.6 15.7-1	8518 50.6	50.6		15.7	-130.7	46.7		36	27-49	8	3.54	2.77-4.28	0.53
4508 800-8080 3643 43.2 25.7	3643 43.2	43.2		25.7	25.7-68.6	22.5		25	23-29	£.	2.96	2.19-3.63	0.73

1 not including station 36
2 excludes animals over 1 gm.

ł

2.58

I

ł

23

ł

l

73.2

. | |

> \$ 1

36380

1

δ

Table 12. Patterns of significant difference between site-groups based on Duncan's multiple range test. Groups represented by the same letter(s) are not different.

			Sit	ce-grou	ıp				,
•	1	2	3	4	5	6	7	8	9
	<u></u>		<u> </u>	<u> </u>					
Depth	A	В	В	В	В	В	В	В	В
Temperature	В	В	В	В	В	В	B	А	A+B
Salinity	A	A+B	A+B	A+B	A+B	В	A+B	C	A+B
Mean Grain Size	С	A+B+C	C+D	A+B	A	A	D	B+C	C+D
Organic Carbon	С	A+B	B+C	A+B	A	A	B+C	B+C	A ·
Density	В	С	В	С	С	С	С	C	А
Biomass	A	A+B	A	В	В	В	A+B	A+B	A+B
Species per Station	A	С	В	с	D+E	E	С	C+D	C+D+E
Diversity	A+B	A+B	A+B	A+B	B+C	С	A	A+B	A+B+C
Cadmium	В	А	A+B	A	A	A	A+B	В	Α
Chromium	B	A+B	В	А	А	A+B	В	В	A+B
Nickel	A+B	А	A+B	A	A	A	В	A+B	A+B

potentially threatening to the environment occur throughout the Bay but are most concentrated in the region of Portland.

Casco Bay is characterized by a boreal climate and a large tidal range (3 m). Sediments range from sand in tidally scoured channels to clay in the inner reaches of the Bay. Interior portions of the Bay have extremely soft bottom sediments which may be described as fluid mud or gel. Stations in these areas are occupied by an aberrant community with low species richness and low density. Further work is needed to fully document this phenomenon.

Trace metals are not homogeneously distributed throughout Casco Bay. Sandy and offshore stations tend to be low in metal concentration, while Portland Harbor appears to contain anthropogenic inputs. Comparisons with 10 other New England sites confirms that Casco Bay sediments are impacted in terms of the trace metals sampled.

The fauna of Casco Bay is rich in terms of diversity, density and biomass. These parameters, and others, are positively correlated with bottom depth and negatively correlated with mean grain size and organic carbon content. Most biological parameters are negatively correlated with at least some of the trace metals. We await the hydrocarbon data to complete our analysis.

Numerical classifications dissected Casco Bay into nine site-groups occupied by 14 species-groups. The site-groups are spatially realistic and differ significantly (>95%) in regard to both physical and biological factors. One species-group is widely distributed and is considered typical, boreal shallow-water fauna.

ACKNOWLEDGMENTS

This contribution represents the combined efforts of several persons and organizations. Sampling was facilitated by the excellent support of Paul DeRocher and Mike Dunton aboard the Maine Department of Marine Resources (DMR) vessel R/V *Explorer*. Joslyn Kelly and Robert Wells of the Bigelow Laboratory, and Ellen Montgomery of Colby College were responsible for much of the pre-sorting of faunal samples. Trace metal analyses were accomplished by Vincent Zdanowicz of the National Marine Fisheries Service (NMFS). Advice on the interpretation of the metals data was provided by Henri Gaudette and Berry Lyons of the University of New Hampshire. David Sampson of DMR and Jean Garside of the Bigelow Laboratory provided statistical advice and data processing support. Drafting was undertaken by Jim Rollins of the Bigelow Laboratory. Special thanks go to Margaret Colby, Pat Oathout and Teve MacFarland for the painstaking manuscript typing, and to Robert Reid of NMFS for general support and encouragement throughout.

LITERATURE CITED

- Armstrong, P.B., G.M. Hanson and H.E. Gaudette. 1976. Minor elements in sediments of Great Bay estuary, New Hampshire. Environ. Geol. 1: 207-214.
- Bilyard, G.R. 1974. The feeding habits and ecology of *Dentalium* entale stimpsoni, Henderson (Mollusca:Scaphapoda). Veliger 17: 126-138.
- Boesch, D.F. 1977. Application of numerical classification in ecological investigations of water pollution. Ecol. Res. Ser. EPA-600/3-77-033. 114 pp.
- Christie, N.D. 1976. A numerical analysis of the distribution of a shallow littoral sand macrofauna along a transect at Lamberts Bay, South Africa. trans. R. Soc. S. Afr. 42: 149-172.
- de Groot, A.J., W. Salomons and E. Allersona. 1976. Processes affecting heavy metals in estuarine sediments. In: Estuarine Chemistry (Burton, J.D., and P.S. Liss, eds.) Academic Press, London, pp. 131-157.
- Dexter, R.W. 1944. The bottom community of Ipswich Bay, Massachusetts. Ecol. 25: 352-59.
- Dexter, R.W. 1947. The marine communities of a tidal inlet at Cape Ann, Massachusetts: A study in bio-ecology. Ecol. Monogr. 17: 262-294.
- Field, J.G. 1971. A numerical analysis of changes in the soft bottom fauna along a transect across False Bay, South Africa. J. Exp. Mar. Biol. Ecol. 7: 215-253.

- Folk, R.L. 1974. <u>Petrology of Sedimentary Rocks</u>. Hemphill Publishing Company, Austin, Texas. 182 pp.
- Garfield, N., and W.R. Welch. 1978. A preliminary temperature/salinity analysis of Boothbay Harbor hydrographic data. Contrib. 78015 Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Me. unpublished.
- Greig, R.A., R.N. Reid and D.R. Wenzloff. 1977. Trace metal concentrations in sediments from Long Island Sound. Mar. Poll. Bull. 8: 183-188.
- Hanks, R.W. 1964. A benthic community in the Sheepscot River estuary, Me. U.S.F.W.S. Fishery Bull., 63: 343-353.
- Hulburt, E.M. 1968. Stratification and mixing in coastal waters of western Gulf of Maine during summer. J. Fish. Res. Bd. Can. 25: 2609-2621.
- Hulburt, E.M. 1970. Relation of heat budget to circulation in Casco Bay, Maine. J. Fish. Res. Bd. Canada 27: 2255-2260.
- Hulburt, E.M., and N. Corwin. 1970. Relation of phytoplankton to turbulence and nutrient renewal in Casco Bay, Maine. J. Fish Res. Bd. Can. 27: 2081-2090.
- Jones, V.J. 1980. Biological measurements made on euphotic zone microplankton during R.V. Eastward Cruise E-4C-80 July 7-17, 1980. Bigelow Laboratory Technical Report No. 3. 63 pp.

Kingsley, J.S. 1901. Preliminary catalogue of marine invertebrata of Casco Bay, Maine. Proc. Portland Soc. Nat. Hist. 2: 159-183.

Larsen, P.F. 1979. The shallow-water macrobenthos of a northern New England estuary. Mar. Biol. 55: 69-78.

Larsen, P.F., and L.F. Doggett. 1978. Benthos study of the Sheepscot River estuary. Bigelow Laboratory Technical Report 10-78. 555 pp.

Lyons, W.B., P.B. Armstrong and H.E. Gaudette. in press. Sedimentary trace metal concentrations in northern New England estuaries. Sea

Grant Publ. University of New Hampshire, Durham, N.H. 14 pp.

Lyons, W.B., and W.F. Fitzgerald. 1980. Trace metal fluxes to nearshore Long Island Sound sediments. Mar. Poll. Bull. 11: 157-161.

- Lyons, W.B., and H.E. Gaudette. 1979. Sediment geochemistry of Jeffreys Basin, Gulf of Maine: inferred transport of trace metals. Oceanologica Acta 2: 477-481.
- Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3: 36-71.
- Maurer, D., L. Watling, P. Kinner, W. Leathem, and C. Wethe. 1978. Benthic invertebrate assemblages of Delaware Bay. Mar. Biol. 45: 65-78.
- Mayer, L.M., and L.K. Fink, Jr. 1980. Granulometric dependence of chromium accumulation in estuarine sediments in Maine. Est. Coast. Mar. Sci. 11: 491-503.
- O'Connor, J.S. 1972. The macrofauna of Moriches Bay, New York. Biol. Bull. 142: 84-102.

Parker, C., and N. Garfield, III. 1981a. Station data obtained in Northwestern Gulf of Maine coastal area, April, 1979. 124 pp. Parker, C., and N. Garfield, III. 1981b. Station data obtained in

Northwestern Gulf of Maine coastal area, October 1979. 117 pp. Pielou, E.C. 1970. An introduction to mathematical ecology. Wiley-Interscience. New York. 286 pp. Rosenberg, R. 1973. Succession in benthic macrofauna in a Swedish

fjord subsequent to the closure of a sulphite pulp mill. Oikos 24: 244-258.

- Rowe, G.T., P.T. Polloni and J.I. Rowe. 1972. Benthic community parameters in the lower Mystic River. Int. Rev. ges. Hydrobiol. 57: 573-584.
- Shorey, W.K. 1973. Macrobenthic ecology of a sawdust-bearing substrate in the Penobscot River estuary (Maine). J. Fish. Res. Bd. Canada 30: 493-497.
- U.S. Fish and Wildlife Service. 1980. An ecological characterization of coastal Maine. FWS/OBS-80129. Department of Interior, Washington, D.C.
- Verrill, A.E. 1874. Explorations of Casco Bay in 1873. Proc. Amer. Assoc. Adv. Sci. (Portland Meeting) 22: 340-395.

Appendix 1.

Appendix 1. Sediment data by station

2 53.7 28.0 18.3 3 58.6 19.5 22.0 4 64.0 17.4 18.6 5 32.0 34.5 33.5 6 15.3 47.9 36.8 7 9.1 46.5 44.4 8 63.3 21.3 15.4 9 99.2 $.3$ $.4$ 10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8 33 14.7 47.9 37.4	Station	% sand	% silt	% clay	
4 64.0 17.4 18.6 5 32.0 34.5 33.5 6 15.3 47.9 36.8 7 9.1 46.5 44.4 8 63.3 21.3 15.4 9 99.2 $.3$ $.4$ 10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	2	53.7	28.0		
5 32.0 34.5 33.5 6 15.3 47.9 36.8 7 9.1 46.5 44.4 8 63.3 21.3 15.4 9 99.2 $.3$ $.4$ 10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	3	58.6	19.5	22.0	
6 15.3 47.9 36.8 7 9.1 46.5 44.4 8 63.3 21.3 15.4 9 99.2 $.3$ $.4$ 10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	4	64.0	17.4	18.6	
79.1 46.5 44.4 8 63.3 21.3 15.4 9 99.2 $.3$ $.4$ 10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	5	32.0	34.5	33.5	
8 63.3 21.3 15.4 9 99.2 .3.410 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	6	15.3	47.9	36.8	
999.2.3.41020.829.0 50.2 1134.646.419.01236.634.628.91335.135.030.01520.445.634.0164.948.846.3171.449.249.41871.513.714.81921.740.138.12016.644.339.12110.545.544.02289.95.24.92330.540.229.42410.054.435.62513.038.848.2263.153.843.0277.148.644.42826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	7	9.1	46.5	44.4	
10 20.8 29.0 50.2 11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	8	63 .3	21.3	15.4	
11 34.6 46.4 19.0 12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	9	99.2	.3	.4	
12 36.6 34.6 28.9 13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	10	20.8	29.0	50.2	
13 35.1 35.0 30.0 15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	11	34.6	46.4	19.0	
15 20.4 45.6 34.0 16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	12	36.6	34.6	28.9	
16 4.9 48.8 46.3 17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	13	35.1	35.0	30.0	
17 1.4 49.2 49.4 18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	15	20.4	45.6	34.0	
18 71.5 13.7 14.8 19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	16	4.9	48.8	46.3	
19 21.7 40.1 38.1 20 16.6 44.3 39.1 21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	17	1.4	49.2	49.4	
2016.644.3 39.1 21 10.545.544.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	18	71.5	13.7	14.8	
21 10.5 45.5 44.0 22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	19	21.7	40.1	38.1	
22 89.9 5.2 4.9 23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	20	16.6	44.3	39.1	
23 30.5 40.2 29.4 24 10.0 54.4 35.6 25 13.0 38.8 48.2 26 3.1 53.8 43.0 27 7.1 48.6 44.4 28 26.7 40.3 33.0 29 23.0 42.7 34.4 30 6.2 40.1 53.7 31 1.7 48.0 50.3 32 4.4 47.8 47.8	21	10.5	45.5	44.0	
2410.054.435.62513.038.848.2263.153.843.0277.148.644.42826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	22	89.9	5.2	4.9	
2513.038.848.2263.153.843.0277.148.644.42826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	23	30.5	40.2	29.4	
263.153.843.0277.148.644.42826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	24	10.0	54.4	35.6	
277.148.644.42826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	25	13.0	38.8	48.2	
2826.740.333.02923.042.734.4306.240.153.7311.748.050.3324.447.847.8	26	3.1	53.8	43.0	
2923.042.734.4306.240.153.7311.748.050.3324.447.847.8	27	7.1	48.6	44.4	
306.240.153.7311.748.050.3324.447.847.8	28	26.7	40.3	33.0	`
311.748.050.3324.447.847.8	29	23.0	42.7	34.4	
32 4.4 47.8 47.8	30	6.2	40.1	53.7	
	31	1.7	48.0	50.3	
33 14.7 47.9 37.4	32	4.4	47.8	47.8	
	33	14.7	47.9	37.4	

Table A-1. The percentage of sand, silt and clay particles in each Casco Bay sediment sample taken in April 1980.

Station	% sand	% silt	%claý	
34	3.0	49.4	47.6	
35	1.7	50.8	47.5	
36	15.2	39.9	44.9	
37	45.7	33.6	20.7	
38	1.9	47.3	50.9	
39	1.7	50.4	48.0	
40	2.1	46.4	51.5	
41	20.7	47.9	· 31.4	
42	7.3	51.9	40.9	
43	2.4	50.8	46.8	
44	16.5	50.6	32.9	
45	6.1	52.2	41.7	
46	57.2	23.9	19.0	
47	65.5	21.3	13.2	
48	73.7	16.1	10.2	
49				
50	97.2	1.2	1.5	
51	41.9	31.3	26.8	
52	19.7	42.4	37.9	
53	69.6	18.8	11.6	
54	66.4	18.6	15.0	
55	73.5	14.3	12.2	
56	27.8	39.4	32.7	
57	9.3	48.4	42.3	
58	5.3	54.6	40.0	

.

-

.

Appendix 2. Faunal data by station

Preceding page blank

RANK	SPECIES NAME	COUNT	CUM COUNT	X	сим %
1	AMPELISCA AGASSIZI	1793.	1793.	68.10	68,10
2	PRIONOSPIO STEENSTRUPI	456.	2249.	17.32	85.42
3	NINDE NIGRIPES	44.	2293.	1.67	87.09
5	CASCO BIGELOWI Mediomastus ambiseta	42.	2335.	1.60	88.68
6	PHOTIS MACROCOXA	26. 26.	2361. 2387.	0,99 0,99	89.67 90.66
7	THARYX SP.	24,	2411.	0.91	91.57
8	AMPHARETE ARCTICA	21.	2432.	0,80	92,37
9	SCOLOFLOS SF.	17.	2449.	0.65	93.01
10	HARPINIA PROPINQUA	17.	2466.	0.65	93,66
11	ASABELLIDES OCULATA	14.	2480.	0,53	94.19
12	CRENELLA DECUSSATA	12.	2492+	0.46	94.64
13 14	RHODINE LOVENI Sabella penicillus	12,	2504	0.46	95.10
15	EUDORELLA TRUNCATULA	10. 7.	2514. 2521.	0.38	95.48
16	DIASTYLIS SCULPTA	7.	2528.	0.27 0.27	95.75 96.01
17	CEREBRATULUS LACTEUS	/; 6;	2534.	0,27	96.01
18	PERIFLOMA PAPYRATIUM	6,	2540.	0.23	96.47
19	LUMBRINERIS FRAGILIS	6.	2546.	0,23	96.70
20	GONIADA MACULATA	6.	2552.	0.23	96.92
21	PARADNIS GRACILIS	5.	2557.	0,19	97.11
22 23	STENOPLEUSTES INERMIS	5.	2562.	0.19	97.30
23	PHOLOE MINUTA SPIO FILICORNIS	4.	2566.	0.15	97.46
25	PETALOSARSIA DECLIVIS	4.	2570. 2574.	0,15	97,61 97,76
26	MYA ARENARIA		2577.	0.11	97.87
27	AMPHARETE ACUTIFRONS	3,	2580.	0.11	97.99
28	ARICIDEA SUECICA	3,	2583.	0.11	78.10
29	MELLINA CRISTATA	3.	2586.	0.11	98.21
30	LEPTOSTYLIS LONGIMANA	3.	2589.	0.11	98.33
31	ERICTHONIUS RUBRICORNIS	3.	2592,	0.11	98.44
32 33	NEMERTEA D	2.	2594,	0,08	98.52
34	BRADA GRANOSA	2. 2.	2596. 2598.	0.08	98.59
35	LUMBRINERIS TENUIS	2.	2600	0.08	98.67 98.75
36	NEPHTYS INCISA	2.	2602.	0.08	98.82
37	HARMOTHOE IMBRICATA	2.	2604.	0.08	98,90
38	STERNASFIS SCUTATA	2.	2606.	0.08	98.97
39	PRAXILLELLA GRACILIS	2.	2608.	0.08	99.05
40 41	OPHELINA ACUMINATA DIASTYLIS ABBREVIATA	2.	2610.	0.08	99.13
42	DIASTYLIS QUADRISFINDSA	2. 2.	2612.	0.08	99,20
43	EDOTEA TRILOBA	2.	2614. 2616.	0.08	99.28
44	ARGISSA HAMATIFES	2.	2618.	0.08	99.35 99.43
45	THYASIRA FLEXUOSA	1.	2619.	0.04	99.47
46	NUCULA ANNULATA	1.	2620.	0.04	99.51
47	FITAR MORRHUANA	1.	2621.	0.04	99.54
48	EXOGONE VERUGA	1.	2622,	0.04	99.58
49 50	PHYLLODOCE MUCDSA DLIGOCHAETA	1.	2623.	0.04	99.62
51		1.	2624,	0.04	99.66
52	MAYERELLA LIMICOLA	1.	2625. 2626.	0.04 0.04	99,70 99,73
53	CAMFYLASFIS RUBICUNDA	1.	2627.	0.04	99.77
54	DIASTYLIS CORNUIFER	1.	2628.	0.04	99.81
55	DXYUROSTYLIS SMITHI	1.	2629,	0.04	99.85
56	DULICHIA MONACANTHA	1.	2630.	0.04	99.89
57	PHOXOCEPHALUS HOLBOLLI	1.	2631.	0,04	99.92
58 59	PROTOMEDEIA FASCIATA	1.	2632.	0.04	99.96
37	MONOCULODES N.SF.	1.	2633.	0.04	100.00
	OF SPECIES 59				

-

.

~

INDIVIDUALS FER M2 26330

.

с	FUISE EX8001 STATION 03	GRAB 1					
RANK	SPECIES NAME			соинт	син соимт	%	син %
1	AMPELISCA AGASSIZI			385.	385,	27.66	27.66
2 .				217.	602.	15.59	43.25
3	PRIONOSPIO STEENSTRUPI			134.	736,	9.53	52.87
4	RHODINE LOVENI			.67.	803.	4.81	57.69
5	MALDANE SARSI			65.	868,	4,67 3,38	62.36 65.73
6 7	FROTOMEDEIA FASCIATA CRENELLA DECUSSATA			47. 45.	915. 960.	3.38	68.97
é	LEPTOCHEIRUS FINGUIS			40,	1000,	2,87	71.84
9	THARYX SP.			39.	1039.	2,80	74.64
10	ERICTHONIUS RUBRICORNIS	•		36,	1075.	2.59	77.23
11	HARFINIA FROFINQUA			23.	1098.	1.65	78.88
12	DIASTYLIS QUADRISPINOSA			21.	1119.	1,51	80.39
13	AMPHARETE ARCTICA			18. 18.	1137. 1155.	1,29	81.68 82.97
14	EUDORELLA TRUNCATULA PHYLLODOCE MUCOSA			15.	1170.	1.08	84.05
16	THYASIRA FLEXUOSA			11.	1181,	0.79	64.84
17	AMPELISCA MACROCEPHALA			11.	1192.	0.79	85.63
18	ASARELLIDES OCULATA			10.	1202,	0.72	86.35
19	FHOTIS MACROCOXA			10	1212.	0.72	87.07
20	TEREBELLID B			9.	1221.	0.65	87.72
21 22	MEDIOMASTUS AMBISETA Ophelina acuminata			9. 9.	1230. 1239.	0.65 0.65	88.36 89.01
23	NINCE NIGRIFES			é.	1247.	0.57	89.58
24	SPIO FILICORNIS			7.	1254.	0.50	90.09
25	ASTARTE UNDATA			٤.	1260.	0.43	90,52
26	NUCULA DELFHINODONTA			6.	1266.	0.43	90.95
27	LUMBRINERIS FRAGILIS			6.	1272.	0,43	91.38
28	AMPHARETE ACUTIFRONS			6.	1278. 1283.	0.43 0.36	91.81 92.17
29 30	PÉRIFLOMA PAPYRATIUM UNCIOLA IRRORATA			5. 5.	1288.	0.36	92.53
31	SABELLA PENICILLUS			4,	1292,	0.29	72,82
-32	FHOLOE MINUTA			4.	1296.	0.29	93.10
33	DIASTYLIS ABBREVIATA			4,	1300.	0,29	93.39
34	DIASTYLIS SCULPTA			4,	1304.	0.29	93.68
35	EDOTEA TRILOBA			4.	1308.	0.29	93.97
36 37	STEREOBALANUS CANADENSIS CERIANTHUS BOREALIS			3.	1311, 1314,	0.22	94.18 94.40
38	AMPHIPHOLIS SQUAMATA		*	3.	1317.	0.22	94.61
39	HARTMANIA MOOREI			3.	1320.	0.22	94.83
40	HARMOTHOE IMBRICATA			з.	1323.	0.22	95.04
41	LEFTOSTYLIS LONGIMANA			3.	1326,	0,22	95.26
42	MUNNA FABRICII			3.	1329.	0.22	95,47
43 44	ANONYX LILJEBORGI Stenofleustes inermis			3. 3.	1332. 1335.	0.22 0.22	95,69 95,90
45	NOTOFLANA ATOMATA			2.	1337.	0.22	96,05
46	PERIFLOMA LEANUM			2.	1337.	0,14	96.19
47	CARDITA BOREALIS			2.	1341.	0.14	96.34
48	OWENIA FUSIFORMIS		,	2.	1343.	0.14	96.48
49	SYLLIS GRACILIS			, 2 ,	1345.	0.14	96.62
50	EUCLYMENE COLLARIS			2.	1347.	0.14	96.77
51 52	PHYLLODOCE MACULATA ETEONE LONGA			2. 2.	1349. 1351.	0.14	96.91 97.05
53	MELINNA CRISTATA		,	2.	1353.	0.14	97.20
54	NEFHTYS INCISA			2.	1355.	0.14	97.34
55	PRAXILLELLA GRACILIS			2,	1357.	0.14	97.49
56	STERNASFIS SCUTATA			2.	1359.	0,14	97.63
57 58	GITANOFSIS SF. HALIMEDON SF.			2.	1361.	0.14	97.77
59	DULICHIA MONOCANTHA			2.	1363. 1365.	0.14 0.14	97.92 98.06
60	NEMERTEA G			1.	1366.	0.07	98.13
61	THRACIA CONRADI			1,	1367.	0.07	4 98,20
62	CHLAMYS ISLANDICA			1.	1368.	0.07	98.28
63	LYONSIA HYALINA			1.	1369.	0.07	98.35
64 65	MODIOLUS MODIOLUS TRICHOBRANCHUS GLACIALIS			- 1.	1370. 1371.	0.07	98.42
66	TROCHOCHAETA MULTISETOSA			1.	1371.	0.07 0.07	98.49 98.56
67	EXOGONE HEBES			1.	1373.	0.07	98.63
68	PHERUSA AFFINIS			1.	1374.	0.07	98.71
69 70	AGLAOPHANUS CIRCINATA			1	1375.	0.07	98.78
70	SCALIBREGMA INFLATUM SCOLOPLOS SP.		*	1.	1376. 1377.	0.07	98,85
72	GONIADA MACULATA			1.	1378,	0.07 0.07	98.92 98.99
73	ARICIDEA JEFFREYSII			1.	1378.	0.07	98.99 99.07
74	FARAONIS GRACILIS			1.	1380.	0.07	99.14
75	TEREBELLIDES STROEMI			1.	1381.	0.07	99.21
76	METERYTHROPS ROBUSTA			1.	1382.	0.07	99.28
77 78	PETALOSARSIA DECLIVIS DIASTYLIS CORNUIFER			1.	1383.	0.07	99,35
79	CANCER BOREALIS			1.	1384. 1385.	0.07 0.07	99.42 99.50
80	PLEUSYMTES GLABER			1.	1386.	0.07	99,50
81	BATHYMEDON SF.			1.	1387.	0.07	99.64
82	PHOXOCEPHALUS HOLBOLLI			1.	1388.	0.07	99.71
83 64	ARGISSA HAMATIPES PONTOGENEIA INERMIS			1.	1389.	0,07	99.78
85	COROPHIUM CRASSICORNE			1.	1390. 1391.	0,07	99.86
86	METOFELLA ANGUSTA			1.1.	1391.	0,07 0,07	99,93 100,00
				± •		VIV/	100100
NUMBER	OF SPECIES 86						
NUMBER	OF INDIVIDUALS 1392.						
a ser a da terra da t							

INDIVIDUALS FER M2 13920

~

ANK	SPECIES NAME	COUNT	CUM COUNT	% 41.48	CUM 41.
1	FRIONOSPIO STEENSTRUFI	1215. 1020.	1215. 2235.	34.82	76
2 3	AMPELISCA AGASSIZI Haploops tubicola	137.	2372.	4.68	80
4	CRENELLA DECUSSATA	79.	2451	2.70	83
5	NUCULA DELPHINODONTA	48.	2499.	1.64	85
6	MEDIOMASTUS AMBISETA	46.	2545.	1.57	86
7	PHOXOCEPHALUS HOLBOLLI	34.	2579.	1.16	80
́в	HARPINIA PROFINQUA	33.	2612.	1.13	89
9	EUDORELLA TRUNCATULA	29.	.2641	0.99	90-
10	SABELLA PENICILLUS	19.	2660.	0.65	90
11	FHOTIS MACROCOXA	17.	2677.	0.58	91.
12	LEPTOCHEIRUS PINGUIS	16.	2693.	0.55	91
13	PHYLLODOCE MUCOSA	15.	2708.	0.51	92
14	DULICHIA MONOCANTHA	15.	2723.	0.51	92
15	AMPELISCA MACROCEPHALA	14.	2737. 2747.	0.48 0.34	93 93
16	ASTARTE BOREALIS	10.	2757	0.34	94
17	AMPHARETE ARCTICA	10:	2766,	0.34	94
18	NINOE NIGRIPES	7. 8.	2774	0.27	94
19	PERIFLOMA PAPYRATIUM	8,	2782.	0.27	94
20 21	THARYX SP. DIASTYLIS QUADRISPINOSA	8.	2790.	0.27	95
22	ORCHOMENELLA PINGUIS	8.	2798.	0.27	95
23	ETEONE LONGA	7.	2805.	0.24	95
23 24	DIASTYLIS SCULPTA	7.	2812,	0.24	96
25	HARMOTHOE IMBRICATA	6.	2818.	0.20	96
26	CASCO BIGELOWI	6.	2824.	0.20	96
27	TEREBELLIDAE	5,	2829.	0.17	96
28	RHODINE LOVENI	5.	2834.	0.17	96
29	GONIADA MACULATA	5.	2839.	0.17	96
30	STENOPLEUSTES INERMIS	5.	2844.	0.17	97
31	ERICTHONIUS RUBRICORNIS	5.	2849.	0.17	97
32	NUCULA ANNULATA	4.	2853.	0.14	97
33	ALVANIA CARINATA	4,	2857.	0.14	97
34	POLYDORA QUADRILOBATA	4.	2861.	0.14	97
35	PHOLOE MINUTA	4,	2865.	0.14	97
36	LUMBRINERIS FRAGILIS	4.	2869.	0.14	97
37	CERASTODERMA FINNULATUM	3.	2872.	0.10	98
38	THYASIRA FLEXUOSA	3.	2875.	0.10	98
39	MELINNA CRISTATA	3.	2878.	0.10	98
40	EDOTEA TRILOBA	3. 3.	2881. 2884.	0.10 0.10	98 98
41 42	COROPHIUM CRASSICORNE ANONYX LILJEBORGI	3.	2887.	0.10	98
43	CARDITA BOREALIS	2.	2887.	0.07	78
44	AMPHARETE ACUTIFRONS	2.	2891.	0.07	98
45	TRICHOBRANCHUS GLACIALIS	2,	2893.	0.07	98
46	ASARELLIDES OCULATA	2.	2895.	0.07	98
47	SCOLOFLOS SF.	2.	2897,	0.07	98
48	OPHELINA ACUMINATA	2,	2899.	0.07	98
49	ARICIDEA JEFFREYSII	2,	2901.	0.07	99
50	NEFHTYS INCISA	2.	2903.	0.07	99
51	MUNNA FABRICII	2.	2905.	0.07	99
52	CHIRIDOTA LAEVIS	2.	2907.	0.07	99
53	NEMERTEA G	2.	2909.	0.07	99
54	CERIANTHUS BOREALIS	2.	2911.	0.07	99
55	DENOFOTA BICARINATA	1.	2912.	0.03	99
56	MYA ARENARIA	1.	2913.	0.03	99
57	LACUNA VINCTA	1.	2914.	0.03	99
58 50	TEREBELLIDES STROEMI	1,	2915.	0.03	99 00
59 60	NEREIS GRATI	1.	2916. 2917.	0.03	99 99
60 61	OLIGOCHAETA SPIO FILICORNIS	1,	2717.	0.03	99
61 62	LAONICE CIRRATA	1.	2918.	0.03	99
63	OWENIA FUSIFORMIS	1,	2920.	0.03	99
64	STAURONEREIS CAECUS	1.	2921.	0.03	99
65	PARAONIS GRACILIS	1.	2922.	0.03	99
66	MALDANE SARSI	1,	2923.	0.03	99
67	BRADA VILLOSA	1.	2924.	0.03	99
68	PHERUSA AFFINIS	1.	2925.	0.03	99
69	HALIMEDON SP.	1.	2926.	0.03	99
70	ARGISSA HAMATIPES	1.	2927.	0.03	99
71	CEREBRATULUS LACTEUS	1.	2928.	0.03	99
72	PHYLUM A	1.	2929.	0.03	100
		1			

.

INDIVIDUALS PER M2 29290

. .

.

,

-

(CRUISE EX8001 STATION 05 GRAB	1					
RANK	SPECIES NAME			COUNT	CUM COUNT	%	CUM %
1	AMPELISCA AGASSIZI			1115.	1115.	42,12	42.12
2	MALDANE SARSI			380.	1495.	14.36	56,48
3	HAPLOOPS TUBICOLA			311.	1806,	11,75	68,23
4	FRIONOSPIO STEENSTRUFI			183.	1989.	6,91	75.14
5	AMPHARETE ARCTICA			162,	2151.	6.12 4.91	81.26 86.17
6	RHODINE LOVENI			130.	2281. 2324.	1.62	87,80
78	THARYX SP.			26.	2324.	0.98	88.79
8 9	SPIO FILICORNIS ASABELLIDES OCULATA			24.	2374.	0.91	87.67
10.	LUMBRINERIS FRAGILIS			20.	2394.	0.76	90.44
11	ERICTHONIUS RUBRICORNIS			18.	2412.	0.68	91.12
12	BYELIS GAIMARDI			16.	2428.	0.60	91.73
13	MEDIOMASTUS AMBISETA			16,	2444.	0,60	92.33
14	CAPRELLA UNICA			11.	2455.	0.42	92,75
15	ASTARTE UNDATA			11.	2466.	0.42	93.16
16	NINOE NIGRIPES			11.	2477.	0.42	93.58
17	DIASTYLIS QUADRISPINOSA			10.	2487. 2497.	0.38 0.38	93.96 94.33
18	MELINNA CRISTATA				2506.	0.34	94.67
19 20	HARFINIA FROFINQUA Fholoe minuta			9.	2515.	0.34	95.01
21	SABELLA PENICILLUS			9.	2524.	0.34	95.35
22	CARDITA BOREALIS			в.	2532.	0.30	95.66
23	STERNASFIS SCUTATA			8.	2540.	0.30	95.96
24	EUDORELLA TRUNCATULA			7.	2547.	0,26	96.22
25	PERIFLOMA FAFYRATIUM			6،	2553.	0.23	96.45
26	NUCULA DELFHINODONTA	1	·.	6.	2559.	0.23	96.68
27	CEREBRATULUS LACTEUS		• '	5.	2564.	0.19	96.86
28	PHYLLODOCE MUCOSA			5.	2569.	0.19	97.05
29	CRENELLA DECUSSATA			4.	2573.	0.15	97.20
30	THYASIRA FLEXUOSA		1. A. 1. A. 1.	4.	2577. 2581.	0.15 0.15	97.36 97.51
31 32	GONIADA MACULATA Dulichia Monacantha			3.	2584.	0.11	97.62
33	TRICHOBRANCHUS GLACIALIS			3.	2587.	0,11	97.73
34	PARADNIS GRACILIS			3.	2590.	0.11	97.85
35	NOTOMASTUS LATERICUS			3.	2593.	0.11	97.96
36	DIFLOCIRRUS HIRSUTUS			3.	2596.	0.11	98.07
37	AEGININA LONGICORNIS			2.	2598.	0.08	98,15
38	PHOTIS MACROCOXA			2,	2600,	0,08	98.22
39	LEPTOCHEIRUS PINGUIS			2.	2602.	0.08	98.30
40	HALIMEDON SP.			2.	2604.	0.08	98.38
41	ALVANIA CARINATA			2.	2606.	0.08	98.45
42 43	MODIOLUS MODIOLUS		•	2 · 2 ·	2608. 2610.	0.08 0.08	98,53 98,60
43	AMFHIPHOLIS SQUAMATA Oligochaeta			2.	2612,	0.08	78.80
45	STAURONEREIS CAECUS			2.	2614.	0.08	98,75
46	NEPHTYS INCISA			2,	2616.	0.08	98.83
47	SCALIBREGMA INFLATUM			2.	2618.	0.08	98,90
48	LAONICE CIRRATA			2.	2620.	0.08	98,99
49	LEPTOSTYLIS LONGIMANA			1.	2621.	0.04	99.02
50	PTILANTHURA TENUIS			1.	2622.	0.04	99.06
51	MUNNA FABRICII			1.	2623.	0.04	99.09
52	ORCHOMENELLA PINGUIS			1.	2624.	0.04	99.13
53 54	FHOXOCEPHALUS HOLBOLLI			1.	2625. 2626.	0.04	99.17
54 55	UNCIOLA IRRORATA Pleustes panoplus			1.	2627.	0.04	99.21 99.24
56	METOPELLA ANGUSTA			1.	2620.	0.04	99.28
57	PONTOGENEIA INERMIS			1.	2629.	0.04	99.32
58	ANONYX LILJEBORGI			1.	2630.	0.04	99.36
59	AMPELISCA MACROCEPHALA			1.	2631,	0.04	99.39
60	PHASCOLION STROMBI			1.	2632.	0.04	99,43
61	CERIANTHUS BOREALIS			1.	2633.	0.04	99.47
62	NUCULA ANNULATA CERASTODERMA PINNULATUM			1.	2634.	0.04	99.51
63 64	CHIRIDOTA LAEVIS			1.	2635. 2636,	0.04	99.55
64 65	STRONGYLOCENTROTUS DROEBACHIENSIS			1.	2636.	0.04	99.58 99.62
66	OFHIOFHOLIS ACULEATA			1,	2638.	0.04	99.66
67 .	OPHIURA SARSI			1.	2639,	0.04	99.70
68	FARAFIONOSYLLIS LONGOCIRRATA			1.	2640.	0.04	99.73
69	SPHAERODOROPSIS MINUTA			- 1.	2641.	0.04	99.77
70	EUSYLLIS BLOMSTRANDI			1.	2642.	0.04	99.B1
71	ARICIDEA QUADRILOBATA			1.	2643.	0.04	99.85
72 73	PRAXILLELLA PRAETERMISSA ETEONE LONGA			1.	2644.	0.04	99.89
73 7 4	POTAMILLA NEGLECTA			1.	2645, 2646,	0.04	99.92 99.96
75	PHYLLODOCE MACULATA			1.	2647.	0.04	100.00
-	·				17 1	2127	******
NUMBER	R OF SFECIES 75						
NUMBER	OF INDIVIDUALS 2647.						

INDIVIDUALS FER M2 26470

.

, , , , , , , , .

	CRUISE EX8001 STATION 06	GRAB 1				
RANK	SPECIES NAME		COUNT	CUM COUNT	%	CUM %
1	PRIONOSFIO STEENSTRUPI		371.	371.	56,55	56,55
2	STERNASFIS SCUTATA		33.	404.	5.03	61.59
3	MEDIOMASTUS AMBISETA		30.	434,	4.57	66,16
4	THARYX SP.		21.	455.	3.20	
5	SPIO FILICORNIS		16,	471.	2.44	71.80
6	NINDE NIGRIPES		12,	483.	1.83	73,63
7	AMFHIPHOLIS SQUAMATA		11.	494.	1,68	75,30
8	HALIMEDON SF.		9.	503.	1.37	76.68
9	CEREBRATULUS LACTEUS		7.	510.	1.07	77.74
10	EUBORELLA TRUNCATULA		7,	517.	1,07	78.81
11	DWENIA FUSIFORMIS		7.	524.	1.07	79.89
12	PARAONIS GRACILIS		7.	531.	1.07	
13	STENOPLEUSTES INERMIS					80.94
14	SCOLOPLOS SF.		6.	537.	0.91	81.86
15	AGLAOPHAMUS NEDTENUS		6.	543.	0.91	82.77
16	ARICIDEA QUADRILOBATA		6.	549.	0.91	83.69
17	NUCULA DELFHINDDONTA		6.	555.	0.91	84.60
19	ALVANIA CARINATA		6.	561.	0.91	85.52
19	OLIGOCHAETA		6.	567,	0,91	86.43
20	MALDANE SARSI		5. 5.	572.	0.76	87.19
21	ARICIDEA JEFFREYSII			577,	0.76	87,96
22	AMPHARETE ARCTICA		5.	582.	0.76	88.72
23	DIFLOCIRRUS HIRSUTUS		5.	587.	0,76	89.48
24			5.	592.	0.76	90.24
25	LUMBRINERIS FRAGILIS		5,	597.	0.76	91.01
25	STEREOBALANUS CANADENSIS		4.	601.	0.61	91.62
26	DULICHIA MONOCANTHA		4.	605.	0,61	92.23
	EDOTEA TRILOBA		4.	609.	0,61	92.84
28	HARTMANIA MOOREI		4.	613.	0.61	93.44
29	ARGISSA HAMATIFES		3,	616.	0.46	93.90
30	MONOCULODES TESSELATUS		3.	619.	0.46	94.36
31 32	AFISTOBRANCHUS TULLBERGI		3.	622.	0.46	94.82
32	NEMERTEA D		2.	624.	0.30	95.12
	BATHYMEDON SF.		2.	626.	0.30	95.43
34 35	HARFINIA FROFINQUA		2.	628.	0.30	95.73
	METOPELLA ANGUSTA		2,	630.	0.30	96.04
36 37	AMPELISCA AGASSIZI		2,	632.	0.30	96.34
38	MELITA N.SP.		2.	634.	0.30	96.65
	SABELLA FENICILLUS		2.	636.	0.30	96.95
39	THYASIRA FLEXUDSA		2.	638.	0.30	97.26
40	PERIFLOMA PAPYRATIUM		2.	640.	0.30	97.56
41	ANEMONE A		1.	641.	0.15	97.71
42	ECHIURUS ECHIURUS		1.	642.	0.15	97.87
43	NEMERTEA C		1.	643.	0,15	98.02
44	MAYERELLA LIMICOLA		1.	644.	0.15	98.17
45	ORCHOMENELLA FINGUIS		1.	645.	0.15	98.32
46	PHOTIS MACROCOXA		1.	646,	0.15	98.48
47	TEREBELLIDAE		1.	647.	0.15	98.63
48	PRAXILLELLA GRACILIS		1.	648.	0.15	98.78
49	TRICHOBRANCHUS GLACIALIS		1.	649.	0.15	98,93
50	NEFHTYS INCISA		1.	650.	0.15	99.0B
51	RHODINE LOVENI		1.	651.	0.15	99.24
52	ARICIDEA SUECICA		1.	652.	0.15	99.39
53	PHOLOE MINUTA	-	1.	653.	0.15	99.54
54	SPIOFHANES BOMBYX		1.	654.	0.15	99.69
55	PRAXILLELLA SP.	-	1.	655.	0,15	99.85
56	CERASTODERMA FINNULATUM		· 1.	656.	0.15	100.00
NUMBE	R OF SPECIES 56					

NUMBER OF INDIVIDUALS 656. Individuals per M2 6560

.

	CRUISE EX8001 STATION 07	GKAB 1							
RANK	· SPECIES NAME					COUNT	CUH COUNT	X	сын %
1	EUTIORELLA TRUNCATULA					491.	491.	67,08	67.08
2	FRIONOSPIO STEENSTRUPI		'			87.	578.	11.89	78.96
3	DIASTYLIS SCULPTA					51.	629,	6.97	85,93
4	AGLAOPHANUS NEOTENUS					37.	666.	5.05	90.98
Ś	NEPHTYS INCISA					11.	677.	1,50	92.49
6	ERYTHROPS ERYTHROPHTHALMA					11.	688.	1,50	93.99
7	ARICIDEA SUECICA		1			8.	696.	1,09	95.08
8	MEDIOMASTUS AMBISETA			•	,	5.	701.	0.68	95.76
9	CEREBRATULUS LACTEUS					4.	705.	0.55	96.31
10	SCOLOFLOS SF.					3	708,	0.41	96.72
11	EUDORELLA HISPIDA					3.	711.	0.41	97.13
12	HALIMEDON SF.					3.	714.	0,41	97.54
13	LUMBRINERIS FRAGILIS			•		2.	716.	0.27	97.81
14	THARYX SP.					2.,	718.	0.27	78.09
15	DULICHIA MONOCANTHA					2,	720,	0.27	98.36
16	DRCHOMENELLA FINGUIS					- 2.	722,	0.27	98.63
17	BATHYMEDON SP.					- 2.	724,	0.27	98.91
18	NEOMYSIS AMERICANA					. 2.	726.	0.27	99,18
19	GEMMA GEMMA					1,	727.	0.14	99.32
20	CERASTODERMA PINNULATUM					1.	728.	0.14	99.45
21	NASSARIUS TRIVITTATUS					1.	729.	0.14	99.59
22	ARICIDEA JEFFREYSII					1.	730.	0.14	99.73
23	ETEONE LONGA					1.	731.	0.14	99,86
24	ARGISSA HAMATIFES					1.	732.	0.14	100.00
NUMB	ER OF SPECIES 24								
NUMB	ER OF INDIVIDUALS 732.								
INDI	VIDUALS PER M2 7320								

.

.

~

/

_

.

RANK	SPECIES NAME	COUNT	CUM COUNT	7.	CUM %
1	PRIONOSFIO STEENSTRUFI	977,	977.	74.92	74.9
2	MEDIOMASTUS AMBISETA	56.	1033.	4.29	79.2
3	EUDORELLA TRUNCATULA	42.	1075.	3.22	82.44
4 5	LUMBRINERIS TENUIS	37,	1112.	2.84	85.28
6	ARICIDEA JEFFREYSII	18.	1130.	1.38	86.68
7	NINOE NIGRIFES Afistobranchus tullbergi	16.	1146.	1.23	87.88
8	NUCULA DELFHINODONTA	15.	1161.	1.15	89.0
9	ARGISSA HAMATIPES	13.	1174.	1.00	90.03
10	OLIGOCHAETA	13.	1187.	1.00	91.03
11	SCOLOFLOS SF.	11.	1198.	0.84	91.87
12	AGLAOFHAMUS NEOTENUS	11,	1209.	0.84	92,71
13	PHYLLODOCE MUCOSA	11.	1220.	0.84	93.56
14	DWENIA FUSIFORMIS	10.	1230.	0.77	94.33
15	STERNASPIS SCUTATA	8.	1238.	0.61	94.94
16	PARADNIS GRACILIS	6.	1244. 1250.	0.46	95.40
17	ETEONE LONGA	6. 6.	1250.	0.46	95.86
18	CRENELLA DECUSSATA	o. 5.	1258.	0.46 0.38	96.32
19	ORCHOMENELLA PINGUIS	5.	1261.	0.38	96.70 97.09
20	PHOLOE MINUTA	4,	1270.	0.31	97.39
21	AMPHARETE ARCTICA	4.	1274.	0.31	97.70
22	OPHELINA ACUMINATA	3.	1277.	0.23	97.93
23	NEMERTEA D	2.	1279.	0,15	98.08
24	CHIRIDOTA LAEVIS	2,	1281.	0.15	98.24
25	PHERUSA AFFINIS	2,	1283.	0.15	98.39
26	THARYX SF.	2,	1285.	0.15	98.54
27	LUMBRINERIS FRAGILIS	2.	1287.	0.15	98.70
28	NEOMYSIS AMERICANA	2.	1289.	0.15	98.85
29	AMPELISCA VADORUM	2.	1291.	0.15	99.00
30	CASCO BIGELOWI	2.	4293.	0,15	99.16
31 32	CYLICHNA GOULDI	1.	1294.	0.08	99,23
32 33	THYASIRA FLEXUDSA	1.	1295.	0.08	99.31
33	GEMMA GEMMA Yoldia limatula	1.	1296.	0.08	99.39
35	PERIPLOMA PAPYRATIUM	1.	1297.	0.08	99.46
36	NEMERTEA C	1.	1298.	0.08	99.54
37	CERIANTHUS BOREALIS	1.	1299.	0.08	99.62
38	SABELLA PENICILLUS	1.	1300.	0.08	99.69
39	HARTMANIA MODREI	1.	1301.	0.08	99.77
40	ETEONE FLAVA	1.	1302.	0.08	99.85
41	METOPELLA ANGUSTA	1.	1303. 1304.	0.08	99.92
		1.	1304.	0.08	100.00

NUMBER OF INDIVIDUALS 1304. INDIVIDUALS PER M2 13040

~

	CRUISE EX8001 STATION 09 GRAB	1			
RANK	SPECIES NAME	COUNT	CUM COUNT	7	CUM %
1	OLIGOCHAETA	776.	776.	48.77	48,77
2	ARCHIANNELIDA	186.	962.	11.69	60.47
3	PARADNIS LYRA	161.	1123.	10.12	70.58
4	THARYX SP.	95.	1218.	5.97	76.56
5	CEREBRATULUS LACTEUS	72.	1290.	4.53	81.08
6	EXOGONE VERUGA	63.	1353.	3,96	85.04
7	FRAXILLELLA PRAETERMISSA	48.	1401.	3.02	88.04
8	EXOGONE HEBES	37.	1438.	2.33	90.38
9	ARICIDEA JEFFREYSII	33.	1471,	2.07	92.46
10	AMPHARETE ARCTICA	25.	1496.	1,57	94.03
11	CHIRODOTEA COECA	22.	1510.	1,38	95.41
12	STAURONEREIS RUDOLPHI	19.		1.19	96.61
13	SYLLIS CORNUTA	10.	1547.	0.63	97.23
14	LUMBRINERIS ACUTA	9,	1556.	0.57	97.80
15	POLYCIRRUS PHOSPHOREUS	7,	1563.	0.44	98.24
16	FLATYHELMINTHES	4.	1567.	0.25	98.49
17	PRIONOSPIO STEENSTRUPI	4.	1571.	0,25	98.74
18	PHOLOE MINUTA	3.	1574.	0.19	98.93
19	LUMBRINERIS TENUIS	3.	1577.	0.19	99.12
20	ASTARTE BOREALIS	2.	1579.	0.13	99.25
21	NASSARIUS TRIVITTATUS	2.	1581.	0.13	99.37
22	LUMBRINERIS FRAGILIS	2.	1583.	0.13	99.50
23	CERASTODERMA PINNULATUM	1.	1584.	0.06	99.56
24	OWENIA FUSIFORMIS	1.	1585.	0.06	99.62
25	POTAMILLA NEGLECTA	1.	1586.	0.06	99.69
26	OPHIOGLYCERA GIGANTEA	1.	1587.	0.06	99.75
27	GONIADA MACULATA	1.	1588.	0.06	99.81
28	AGLAOPHAMUS CIRCINATA	1.	1589.	0.06	99.87
29	DIASTYLIS SCULPTA	1.	1590.	0.06	99.94
30	PSAMMONYX NOBILIS	· 1.	1591.	0.06	100.00
NUMBE	R OF SPECIES 30				

~

· · ·

-

NUMBER OF INDIVIDUALS 1591.

INDIVIDUALS PER M2 15910

5

RANK	SFECIES NAME		COUNT	CUM COUNT	%	CUM %
1	FRIDNOSPID STEENSTRUPI		165.	165.	20,17	20.1
2	NUCULA DELFHINDDONTA		. 87.	252.	10.64	30.8
3	SPID FILICORNIS		81.	333.	9.90	40.7
4	AMPELISCA AGASSIZI		78.	411.	9.54	50.2
5	THARYX SF.		49.	460,	5.99 4.89	56.2
6 7	ARCTICA ISLANDICA Ampharete acutifrons		40, 32,	500, 532.	3.91	61.1 65.0
é	CASCO BIGELOWI		25.	557.	3.06	68.0
9	NINDE NIGRIFES		23.	580,	2.81	70.9
10	MEDIOMASTUS AMBISETA		21.	601.	2.57	73.4
11	EDOTEA TRILOBA		_ 20,	621.	2.44	75.9
12	CRENELLA DECUSSATA		18.	639.	2.20	78.1
13	MALDANE SARSI	1	17.	656.	2,08	80.2
14	STERNASPIS SCUTATA		16.	672,	1,96	82.1
15	THYASIRA FLEXUOSA		16.	688.	1,96	84.1
16	ALVANIA CARINATA		15.	703.	1.83	85.9
17	SCOLOPLOS SP.		11.	714.	1.34	87.2
18	DULICHIA MONOCANTHA		7,	721.	0.86	88.1
19	TEREBELLID A		6.	727,	0.73	88.8
20	OLIGOCHAETA		6.	733.	0.73	89.6
21	ARICIDEA SUECICA		5.	738.	0.61	90.2
22	AMPHARETE ARCTICA		5,	743.	0.61	90.8
23	EUDORELLA TRUNCATULA		5.	748.	0.61	91.4
24	LEPTOCHEIRUS PINGUIS		5.	753.	0.61	92.0
25 26	FERIFLOMA FAFYRATIUM SABELLA FENICILLUS		5. 4.	758. 762.	0.61 0.49	92.6 93.1
28	DIFLOCIKRUS HIRSUTUS		. 4.	766.	0.47	93.6
28	NUCULA ANNULATA			770.	0.49	94.1
28	APISTOBRANCHUS TULLBERGI		. 3.	773.	0.37	94.5
30	NEPHTYS INCISA		3.	776.	0.37	94.8
31	MONOCULODES TESSELATUS		3,	779,	0.37	95.2
32	PARADNIS GRACILIS		2.	781	0.24	95.4
33	RHODINE LOVENI		2.	783.	0.24	95.7
34	FHYLLODOCE MUCOSA		2.	785.	0.24	95.9
35	ETEONE LONGA		2.	787.	0.24	96.2
36	OWENIA FUSIFORMIS		2.	789.	0.24	96.4
37	LUMBRINERIS TENUIS		2.	791.	0.24	96.7
38	YOLDIA LIMATULA		2.	793.	0.24	96.9
39	CEREBRATULUS LACTEUS		. 2,	795.	0.24	97.1
40	CHAETOPTERUS SP.		1,	796.	0.12	97.3
41	TEREBELLIDES STROEMI		1.	797.	0.12	97.4
42 43	HARMATHDE IMBRICATA PHERUSA AFFINIS		1.	798. 799.	0.12	97.5
44	SCALIBREGMA INFLATUM		1.	800.	0.12	97.6 97.8
45	ARICIDEA QUADRILOBATA		1.	801.	0.12	97.9
46	SPIOPHANES BOMBYX		1.	802.	0.12	98.0
40	LAONICE CIRRATA		1.	803.	0.12	98.1
48	PHOLOE MINUTA		1.	804.	0.12	98.2
49	DIASTYLIS CORNUIFER		1.	805.	0.12	98.4
50	DIASTYLIS SCULPTA		1.	804.	0.12	98.5
51	DIASTYLIS QUADRISPINOSA		1.	807.	0.12	98.6
52	LEPTOSTYLIS LONGIMANA		i.	808	0.12	98.7
53	PETALOSARSIA DECLIVIS		1,	B09.	0.12	98.9
54	HALIMEDON SP.		· 1.	810.	0.12	99.0
55	STENDPLEUSTES INERMIS		1.	811.	0.12	99.1
56	ANONYX LILJEBORGI		1.	012.	0.12	99.3
57	ARGISSA HAMATIPES		1.	813.	0.12	99.3
58	AMPELISCA MACROCEPHALA		1.	814.	0.12	99.5
59	CERASTODERMA FINNULATUM		1.	815.	0.12	99.6
60	CYLICHNA GOULDI		1.	816.	0.12	99.7
61	CHIRIDOTA LAEVIS		1.	817.	0.12	99.8
62	ASTERIAS SP.		1.	818.	0.12	100.0
NUMBER	OF SPECIES 62					
	OF INDIVIDUALS 818.					

- ·

.

.

	ISE EX8001 9			COUNT	CUM COUN
RANK	SFECIES NA			505.	505
	FRIONOSFID STEEM	ISTRUP1		. 77.	582
-	SFID FILICORNIS			63,	645
-	MEDIOMASTUS AMB			27,	672
	FARADNIS GRACIL			25.	697
5	AMPELISCA VADORU			20,	717
6	ARCTICA ISLANDI			18.	735
7	NUCULA DELFHINO	DONTA		18,	753
8	NINCE NIGRIFES			17.	770
9	THYASIRA FLEXUO	SA		16.	786
10	STERNASPIS SCUT	A1A		12.	798
11	THARYX SP.			12.	810
12	EUDORELLA TRUNC			10.	820
13	PHOTIS MACROCOX	A		8.	828
14	SCOLOPLOS SP			7,	835
15	ALVANIA CARINAT			7.	842
16	CEREBRATULUS LA	CTEUS		6.	848
17	EDOTEA TRILOBA			5.	853
18	AMPHARETE ARCTI			4.	857
19 .	CRENELLA DECUSS	ATA		4.	861
20	OLIGOCHAETA			4.	865
21	DIASTYLIS SCULF	TA		3.	868
22	SABELLA PENICIL	LUS		3.	871
23	RHODINE LOVENI			3.	874
24	HIPPOMEDON SERR	ATUS		3.	877
25	STENOFLEUSTES I	NERMIS		2.	879
26	PERIPLOMA PAPYR	ATIUM		2.	881
27	NUCULA ANNULATA	1		2.	. 883
28	FHOLDE MINUTA			2.	885
29	ARICIDEA JEFFRE	YSII		2.	887
30	NEFHTYS INCISA			2,	889
31	EUDORELLA HISPI	DA			87
32	HARPINIA PROPIN	IQUA		- 2.	. 87
33	ARGISSA HAMATIF			2.	
`34	METOPELLA ANGUS	STA		2.	875 876
35	MODIOLUS MODIOL	.US		1.	87
36	MYA ARENARIA			1.	87
37	NUCULA TENUIS			1.	87
38	PITAR MORRHUANA	4		1.	
39	DIFLOCIRRUS HIP			1.	
40	LUMBRINERIS TEM			1.	90 90
41	AGLAOPHAMUS NEO	DTENUS		1.	
42	AMPHARETE ACUT			1.	
43	EUCLYMENE COLL			1.	
44	ETEONE LONGA			1,	
45	LUMBRINERIS FR	AGILIS		1,	
46	BATHYMEDON SP.			1.	
47	HALIMEDON SP.			1.	
48	MONOCULODES N.	SF.		1.	
49	OXYUROSTYLIS S			1.	
49 50	FHOXOCEFHALUS	HOLBOLLI		1	
	ORCHOMENELLA F	INGUIS		1	. 91
51	ONCHOMENCEER /				
	OF SPECIES	51			

.

.

% 55.37 8.44 6.91 2.96 2.74 2.19 1.97 1.97

1.86 1.75 1.32

 $\begin{array}{c} 1.32\\ 1.10\\ 0.87\\ 0.77\\ 0.65\\ 0.44\\ 0.33\\ 0.33\\ 0.33\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.22\end{array}$

0.22 0.22 0.11 0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11

0.11

0.11

CUM % 55.37 43.82 70.72 73.68 76.43 76.43 76.43 80.59 82.57 84.43 84.18 87.50 88.82 89,91 90.79 91.56 92.98 93.53 93.97 94.41

94.85

95.18 95.50 95.83 96.16 96.38 96.60 96.82 97.04 97.26 97.48 97.70 97.92

98.14 98.25 98.35

98.46 98.57 98.68 98.79 99.01 99.12 99.23 99.34 99.45 99.56 99.56 99.56 99.78 99.89

100.00

1 FRIONOSFI 2 NUCULA DE 3 MEJIDMAST 4 SPIO FILI 5 MAYERELLA 6 STERNASPI 7 NINDE NIG 8 EUIORELLA 9 ARICIDEA 10 STENOFLEU 11 THYASIRA 12 SCOLOFLEU 13 HALIMEDON 14 FARAONIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 APISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 27 CEREBRATU 28 MYRIOCHAE 30 AGLAOFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMFLISCA 34 ARGISSA H	LIMICOLA S SCUTATA RIFES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SP. SP. SP. SP. CRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	COUNT 351. 30. 27. 23. 18. 17. 16. 15. 12. 11. 10. 9. 8. 8. 8. 8. 5. 5. 4. 4.	CUM COUNT 351. 361. 408. 408. 449. 466. 482. 497. 509. 520. 530. 539. 547. 551. 561. 567. 572. 581.	2 55,36 4,26 2,68 2,58 2,58 2,58 1,89 1,74 1,58 1,42 1,26 0,95 0,79 0,79 0,79	CUM % 55.36 60.09 64.35 67.98 70.82 73.50 76.03 78.39 80.28 82.02 83.60 85.02 85.02 85.02 85.49 87.54 98.49 90.22
2NUCULA DE3MEDIDAST4SFIO FILI5MAYERELLA6STERNASPI7NINDE NIG8EUUORELLA9ARICIDEA10STENOFLU11THYASIKA12SCOLOFLOS13HALIMEDON14FARAONIS15FHOTIS MA16ALUANIA C17DIASTYLIS18SABELLA F19DULICHTA20AFISTOBRA21ANEMORE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SF26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOFHAM31LUMBRINER32LEFTOSTYL33BATHYMEDIO34HARFINIA35AFGLISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA AKENA42FHOLOE MI	LPHINODONTA US AMBISETA CORNIS LIMICOLA S SCUTATA RIFES STES INERMIS FLEXUOSA SP. SP. SP. GRACILIS CROCOXA ARINATA SCULPTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	30. 27. 23. 18. 17. 16. 15. 12. 11. 10. 9. 8. 8. 8. 8. 5. 5. 5. 5.	381, 408, 431, 449, 466, 497, 509, 520, 530, 539, 547, 555, 561, 567, 572, 571, 581,	4,73 4,26 3,63 2,84 2,68 2,52 2,37 1,89 1,74 1,58 1,42 1,26 0,95 0,79	60.09 64.35 67.98 70.82 73.50 76.03 76.03 80.28 82.02 83.60 85.02 84.28 87.54 88.49 88.49 89.43 90.22
3MEDIOMAST4SFIO FILI5MAYERELLA6STERNASPI7NINDE NIG8EUDORELLA9ARICIDEA10STENOFLEU11THYASIRA12SCOLOFLOS13HALIMEDON14FARAQNIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA P19DULICHIA20AFISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SF26ETEONE LO27CERERATU28MURICHEL29OLIGDCHAE30AGLAOPHAM31LUMBRINER32LEFTOSTYL33BATHYMEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI	US AMBISETA CORNIS LIMICOLA S SCUTATA RIFES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SP. SP. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	27. 23. 18. 17. 16. 15. 12. 11. 10. 9. 8. 8. 8. 8. 5. 5. 5. 4.	408. 431. 449. 464. 482. 497. 509. 520. 530. 539. 547. 555. 561. 567. 572. 581.	4,26 3,63 2,68 2,68 2,52 2,37 1,69 1,74 1,58 1,42 1,26 1,26 0,95 0,79	64.35 67.98 70.82 73.50 76.03 78.39 80.28 82.02 83.60 85.02 84.28 87.54 88.49 88.49 89.22
4 SFID FILI 5 MAYERELLA 6 STERNASFI 7 NINDE NIG 8 EUDORELLA 9 ARICIDEA 10 STENOFLEU 11 THYASIRA 12 SCOLOFLOS 13 HALIMEDON 14 FARAQNIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 APISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARXX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLADFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI	CORNIS LIMICOLA S SCUTATA RIPES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SF. SF. SF. SGACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	23, 18, 17, 16, 15, 12, 11, 10, 9, 8, 8, 8, 6, 5, 5, 5, 4, 4,	431. 449. 466. 482. 497. 509. 520. 530. 539. 547. 555. 561. 561. 567. 572. 581.	3,63 2,84 2,52 2,52 2,37 1,89 1,74 1,58 1,42 1,26 0,95 0,79	67.98 70.82 73.50 76.03 78.39 80.28 82.02 83.60 85.02 84.28 87.54 88.49 88.49 89.43 90.22
5 MAYERELLA 6 STERNASPI 7 NINDE NIG 8 EUIDRELLA 9 ARICIPEA 10 STENOFLEU 11 THYASIRA 12 SCOLOFLOS 13 HALIMEDON 14 FARAGNIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 APISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOFHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMFELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI	LIMICOLA S SCUTATA RIFES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SP. SP. SP. SP. CRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	18. 17. 16. 15. 12. 11. 10. 9. 8. 8. 8. 6. 6. 5. 5. 5. 4.	449. 466. 482. 497. 509. 530. 539. 547. 555. 561. 567. 572. 581.	2:84 2.68 2.52 2.37 1.89 1.74 1.58 1.26 1.26 0.95 0.79	70,82 73,50 76,03 78,39 80,28 82,02 83,60 85,02 86,28 87,54 88,49 88,49 85,43 90,22
6STERNASPI7NINDE NIG8EUDORELLA9ARICIDEA10STENOFLEU11THYASIRA12SCOLOFLOS13HALIMEDON14FARAQNIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA P19DULICHIA20APISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SF26ETEONE LO27CERERATU28MYRIOCHEL29OLIGOCHAE30AGLAOPHAM31LUMBRINER32LEFTOSTYL33BATHYMEDIO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI	S SCUTATA RIFES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SP. SP. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	17. 16. 15. 12. 11. 10. 9. 8. 8. 8. 8. 5. 5. 5. 5. 4. 4.	466. 482. 509. 520. 530. 539. 547. 555. 561. 567. 572. 581.	2.68 2.52 2.37 1.89 1.74 1.58 1.42 1.26 1.26 1.26 0.95 0.95 0.79	73.50 76.03 78.39 80.28 82.02 83.60 85.02 84.28 87.54 88.49 89.43 90.22
 7 NINGE NIG 8 EUTORELLA 9 ARICIDEA 10 STENOFLEU 11 THYASIRA 12 SCOLOFLOS 13 HALIMEDON 14 FARAQNIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 APISTOBRA 21 ANEMOME A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOFHAM 31 LUMBRINER 32 EFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM ARENA 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI 	RIFES TRUNCATULA SUECICA STES INERMIS FLEXUOSA SF. SF. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	16. 15. 12. 11. 10. 9. 8. 8. 8. 8. 5. 5. 5. 4. 4.	482, 497, 509, 530, 539, 547, 555, 561, 567, 572, 577, 581,	2.52 2.37 1.89 1.74 1.58 1.42 1.26 1.26 0.95 0.95 0.79	76.03 78.39 80.28 82.02 83.60 85.02 86.28 87.54 88.49 89.43 90.22
 B EUDORELLA 9 ARICIDEA 10 STENOFLEU 11 THYASIKA 12 SCOLOFLOS 13 HALIMEDON 14 FARAGNIS 15 FHOTIS MA 16 ALUANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 AFISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOFHAM 31 LUMBRIMER 32 LEPTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI 	TRUNCATULA SUECICA STES INERMIS FLEXUOSA SP. SP. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	15. 12. 11. 10. 9. 8. 8. 8. 5. 5. 5. 4. 4.	497, 509, 520, 530, 539, 547, 561, 561, 562, 572, 577, 581,	2.37 1.89 1.74 1.58 1.42 1.26 1.26 0.95 0.95 0.79	78.39 80.28 82.02 83.60 85.02 86.28 87.54 88.49 89.43 90.22
9ARICIDEA10STENOFLEU11THYASIRA12SCOLOFLOS13HALIMEDON14FARAONIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA P19DULICHIA20AFISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOPELLA25THARYX SF26ETEONE LO27CEREBRATU28MURICHEL29OLIGOCHAE30AGLAOFHAM31LUMBRINER32LEFTOSTYL33BATHYMEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI	SUECICA STES INERMIS FLEXUOSA SP. SP. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONDCANTHA NCHUS TULLBERGI	12, 11, 10, 9, 8, 8, 8, 5, 5, 5, 5, 4, 4,	509. 520. 530. 547. 555. 561. 567. 572. 577. 581.	1.89 1.74 1.58 1.42 1.26 1.26 0.95 0.95 0.79	80,28 82,02 83,60 85,02 86,28 87,54 88,49 89,43 90,22
10 STENOFLEU 11 THYASIKA 12 SCOLOFLOS 13 HALIMEDON 14 FARAQNIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHIA 20 APISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARXY SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI	STES INERMIS FLEXUOSA SF. SF. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	11. 10. 9. 8. 8. 6. 5. 5. 5. 4. 4.	520, 530, 539, 555, 561, 567, 572, 577, 581,	1.74 1.58 1.42 1.26 1.26 0.95 0.95 0.79	82.02 83.60 85.02 86.28 87.54 88.49 89.43 90.22
11THYASIRA12SCOLOFLOS13HALIMEDON14FARAQNIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA P19DULICHIA20APISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOFHAE31LUMBRINER32LEPTOSTYL33BATHYMEDO34HARFINIA35AMPELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40PERIFLOMA41MYA ARENA42FHOLOE MI	FLEXUOSA SF. SF. GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	10. 9. 8. 6. 5. 5. 4. 4.	530. 539. 547. 555. 561. 567. 572. 572. 581.	1.58 1.42 1.26 1.26 0.95 0.95 0.79	83-60 85.02 86.28 87.54 88.49 89.43 90.22
12SCOLOFLOS13HALIMEDON14FARAONIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA F19DULICHIA20AFISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SF26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOFHAM31LUMBRINER32LEFTOSTYL33BATHYMEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA AKENA42FHOLOE MI	SP. SP. GRACILIS CROCOXA ARINATA SCULPTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	9. 8. 8. 5. 5. 5. 4. 4.	539, 547. 555. 561. 567. 572, 572. 581.	1.42 1.26 1.26 0.95 0.95 0.79	85.02 86.28 87.54 88.49 89.43 90.22
13HALIMEDON14FARAQNIS15FHOTIS MA16ALVANIA C17DIASTYLIS18SABELLA P19DULICHIA20APISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOPELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOFHAM31LUMBRINER32LEFTOSTYL33BATHYHEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI	SP. GRACILIS CROCOXA ARINATA SCULPTA ENICILLUS MONDCANTHA NCHUS TULLBERGI	8, 8, 6, 5, 5, 5, 4, 4,	547. 555. 561. 567. 572. 577. 581.	1.26 1.26 0.95 0.95 0.79	86,28 87,54 88,49 89,43 90,22
14 FARAQNIS 15 FHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA F 19 DULICHTA 20 AFISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLADFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMFELISCA 34 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	GRACILIS CROCOXA ARINATA SCULFTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	8. 6. 5. 5. 4. 4.	555. 541. 547. 572. 577. 581.	1.26 0.95 0.95 0.79	87.54 88.49 89.43 90.22
15 PHOTIS MA 16 ALVANIA C 17 DIASTYLIS 18 SABELLA P 19 DULICHIA 20 APISTOBRA 21 ANEMONE A 22 MONDCULOD 23 ANONYX LI 24 METOFELLA 25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYNEIO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI	CROCOXA ARINATA Sculpta Enicillus Monocantha Nchus Tullbergi	6. 6. 5. 5. 4. 4.	561, 567, 572, 577, 581,	0.95 0.95 0.79	88.49 89.43 90.22
16ALVANIA C17IIASTYLIS18SABELLA P19DULICHIA20AFISTOBRA21ANEMONE A22MONDCULOD23ANONYX LI24METOPELLA25THARYX SF26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOPHAM31LUMBRINER32LEFTOSTYL33BATHYMENO34HARFINIA35AMFELISCA36ARGISSA37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA AFENA42FHOLOE MI	ARINATA SCULPTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	6. 5. 5. 4. 4.	567, 572, 577, 581,	0,95 0,79	89.43 90.22
17 DIASTYLIS 18 SABELLA P 19 DULICHTA 20 APISTOBRA 21 ANEMONE A 22 MONOCULOD 23 ANONYX LI 24 METOFELLA 25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLADFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMFELISCA 34 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	SCULPTA ENICILLUS MONOCANTHA NCHUS TULLBERGI	5. 5. 4. 4.	572. 577. 581.	0.79	90.22
18SABELLA P19UULICHIA20APISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOPHAM31LUMBRINER32LEPTOSTYL33BATHYMEDO34HARFINIA35AMPELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40PERIFLOMA41MYA ARENA42FHOLOE MI	ENICILLUS Monocantha Nchus Tullbergi	5. 4. 4.	577. 581.		
19 UULICHIA 20 AFISTOBRA 21 ANEMONE A 22 MONGCULOD 23 ANONYX LI 24 METOPELLA 25 THARYX SF 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMFELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	MONOCANTHA NCHUS TULLBERGI	4. 4.	581.	0.79	
20AFISTOBRA21ANEMONE A22MONOCULOD23ANONYX LI24METOFELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLADFHAM31LUMBRINER32LEFTOSTYL33BATHYMEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI	NCHUS TULLBERGI	4,		A / 7	91.01
21ANEMONE A22MONDCULOD23ANONYX LI24METOFELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOPHAM31LUMBRINER32LEPTOSTYL33BATHYMEDO34HARFINIA35AMPELISCA36ARGISSA37DENTALIUM38NUCULA AN39ARCTICA I40PERIFLOMA41MYA ARENA42FHOLOE MI				0.63	91.64
22MONGCULOD23ANONYX LI24METOFELLA25THARYX SF26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOFHAM31LUMBRINER32LEFTOSTYL33BATHYHEDO34HARFINIA35AMFELISCA36ARGISSA37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI			585.	0.63	92.27
23ANONYX LI24METOFELLA25THARYX SP26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLADFHAM31LUMBRINER32LEFTOSTYL33BATHYMEDO34HARFINIA35AMFELISCA36ARGISSA H37DENTALIUM38NUCULA AN39ARCTICA I40FERIFLOMA41MYA ARENA42FHOLOE MI		4,	589.	0.63	92.90
24METOPELLA25THARYX SF26ETEONE LO27CEREBRATU28MYRIOCHEL29OLIGOCHAE30AGLAOPHAM31LUMBRINER32LEPTOSTYL33BATHYMEDO34HARFINIA35AMPELISCA36ARGISSA37DENTALIUM38NUCULA AN39ARCTICA I40PERIFLOMA41MYA ARENA42FHOLOE MI		3.	592,	0.47	93.38
25 THARYX SP 26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYNEIO 34 HARPINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI		3.	595.	0.47	93.85
26 ETEONE LO 27 CEREBRATU 28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI		3.	598.	0.47	94.32
27 CEREBRATU 20 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI		3.	601.	0.47	94.79
28 MYRIOCHEL 29 OLIGOCHAE 30 AGLAOPHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI		3.	604.	0.47	95.27
29 OLIGOCHAE 30 AGLAOFHAM 31 LUMBRINER 32 LEFTOSTYL 33 BATHYHEIO 34 HARFINIA 35 AMFELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA AKENA 42 FHOLOE MI	LUS LACTEUS	з.	607.	0,47	95.74
30 AGLADPHAM 31 LUMBRINER 32 LEPTOSTYL 33 BATHYMEDO 34 HARPINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI		2.	609,	0.32	96.06
31 LUMBRINER 32 LEPTOSTYL 33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA 37 DENTALIUM 38 NUCULA AN 39 ARCTICA IN 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI		2.	611.	0,32	96.37
32 LEPTOSTYL 33 BATHYHEIOO 34 HARPINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI	US NEDTENUS	2.	613.	0.32	96.69
33 BATHYMEDO 34 HARFINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI	IS TENUIS	2.	615.	0.32	97.00
34 HARPINIA 35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI	IS LONGIMANA	1.	616.	0.16	97,16
35 AMPELISCA 36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI	N SP.	1.	617.	0.16	97,32
36 ARGISSA H 37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 PERIFLOMA 41 MYA ARENA 42 FHOLOE MI	PROPINQUA	1.	618.	0.16	97.48
37 DENTALIUM 38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	AGASSIZI	1.	619.	0.16	97,63
38 NUCULA AN 39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	AMATIPES	, 1.	620.	0.16	97.79
39 ARCTICA I 40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	ENTALE	1.	621.	0.16	97.95
40 FERIFLOMA 41 MYA ARENA 42 FHOLOE MI	NULATA	1.	622.	0.16	98.11
41 MYA ARENA 42 PHOLOE MI	SLANDICA	1.	623.	0.16	98,26
42 FHOLOE MI	PAPYRATIUM	1.	624.	0.16	98.42
	RIA	1.	625.	0.16	98.58
	NUTA	1.	626.	0.16	98.74
43 RHODINE L		1.	627,	0.16	98.90
44 EUCLYMENE	COLLARIS	. 1.	628.	0.16	99.05
45 ARICIDEA		1.	629.	0.16	99,21
46 ARICIDEA	VUADRILUHATA	1.	630.	0.16	99.37
47 PHYLLODOC	QUADKILUHATA JEFFREYSII	1	631.	0.16	99.53
48 PHERUSA A	JEFFREYSII	1.	632.	0.16	99.68
49 MOLFADIA	JEFFREYSII E MUCOSA	1.	633.	0,16	99.84
50 NEMERTEA	JEFFREYSII E MUCOSA FFINIS		634.	0.16	100.00
	JEFFREYSII E MUCOSA FFINIS DOLICTICA	1.			
NUMBER OF SPECIES	JEFFREYSII E MUCOSA FFINIS DOLICTICA				

	CRUISE EXBOO1 STATION 13	GRAB 1					
				COUNT	CUM COUNT	%	CUM %
RANK	SPECIES NAME			267,	267.	43.91	43.91
1	PRIONOSFID STEENSTRUFI			135.	402.	22,20	66.12
2	EUDORELLA TRUNCATULA			47.	449.	7.73	73.85
3	MEDIOMASTUS AMBISETA		,	43.	492.	7.07	80.92
4	SCOLOPLOS SP,			22.	514.	3,62	84.54
5	AGLADPHAMUS NEOTENUS		· ·	14.	528,	2.30	86.84
6	ARICIDEA QUADRILOBATA			8.	536,	1.32	88,16
7	ARICIDEA JEFFREYSII			8.	544.	1.32	89.47
8	NUCULA DELFHINDDONTA		1	8.	552.	1.32	90.79
9	ERYTHROPS ERYTHROPHTHALMA			5.	557.	0.82	91,61
10	CEREBRATULUS LACTEUS			4.	561.	0.66	92.27
11	NEPHTYS INCISA			4.	565,	0.66	92.93
12	ANEMONE A_		ŕ	3.	568.	0.49	93.42
13	OLIGOCHAETA			3.	571.	0.49	93,91
14	MAYERELLA LIMICOLA			3.	574.	0.49	94.41
15	EUDORELLA HISPIDA			3.	577.	0.49	94.90
16	CASCO BIGELOWI			2,	579,	0.33	95.23
17	LUMBRINERIS TENUIS			2,	581.	0.33	95.56
18	ETEONE LONGA			2.	583.	0.33	95.89
19	STAURONEREIS CAECUS			2.	585.	0.33	96.22
20	SPID FILICORNIS			2.	587.	0.33	96.55
21	GEMMA GEMMA			2.	589.	0.33	96.87
22	ARGISSA HAMATIPES		•	2,	591.	0.33	97.20
23	MELITA N.SP.			1	592.	0.16	97.37
24	ARCHIANNELIDA			1.	593.	0.16	97.53
25	LUMBRINERIS FRAGILIS		•	1,	594,	0.16	97.70
26	BRADA VILLOSA			1.	595.	0.16	97.86
27	HARTMANIA MOOREI			1,		0.16	78. 03
28	AFISTOBRANCHUS TULLBERGI		1	1.	597.	0.16	98,19
29	STERNASPIS SCUTATA			1,	578.	0.16	98,35
30	PARAONIS GRACILIS			. 1	599.	0.16	98,52
31	NEMERTEA H			1.	600 .	0.16	98.68
32	MODIOLUS MODIOLUS			1.	601.	0.16	98.85
33	NUCULA ANNULATA			1.	602.	0.16	99.01
34	NASSARIUS TRIVITTATUS			1.	603.	0.16	99.18
35	DIASTYLIS SCULFTA			1.	604	0.16	99.34
36	HALIMEDON SP.			1.	605.	0.16	99.51
37	PHOTIS MACROCOXA			1.	606.	0,16	99.67
38	HARFINIA PROPINQUA			1.	607.	0.16	99.84
39	ORCHOMENELLA FINGUIS			1.	608.	0.16	100.00
40	AMPELISCA ARDITA			1.	8001		
NUM	SER OF SPECIES 40						
NUM	BER OF INDIVIDUALS 608.						

-

.

RANK	SPECIE	S NAME		COUNT	CUM COUNT	%	CUM :
1	PRIONOSPID S		ر	112.	112.	22.67	22.
2	EUDORELLA TRI		-	99.	211.	20.04	42,
3	AGLADFHAMUS			86.	297.	17.41	60.
4	MEDIOMASTUS			74.	371.	14.98	75.
5	SCOLOFLOS SF			28.	399.	5.67	80,
6	ARICIDEA SUE			25.	424.	5.06	85.
7	DIASTYLIS SC	ULP TA		14.	438.	2,83	88.
ė	ANEMONE A			10.	448.	2.02	90.
9	OLIGOCHAETA			۶.	457.	1.82	92.
10	CEREBRATULUS	LACTEUS		6,	463.	1.21	93
11	EUDORELLA HI	SFIDA		5.	468,	1.01	94
12	DULICHIA MON	DCANTHA		з.	471.	0.61	95
13	ARGISSA HAMA	TIPES		3.	474.	0.61	95
14	MELITA N.SP.			3.	477.	0.61	96
15	AMPELISCA AB	DITA		2.	479.	0.40	96
16	PHASCOLOPSIS	GOULDII		2.	481.	0.40	97
17	NASSARIUS TR	IVITTATUS		2.	483.	0.40	97
18	NEPHTYS INCI	5A		2.	485.	0.40	98
19	HALIMEDON SP	•		1.	486.	0,20	98
20	OWENIA FUSIF	DRMIS		1.	487.	0.20	9B
21	LUMBRINERIS	FRAGILIS		1.	488.	0.20	98
22	STERNASPIS S			1,	489.	0.20	98
23	ARICIDEA QUA	DRILOBATA		1.	490.	0.20	99
24	THARYX SP.			1.	491.	0.20	99
25	LUMBRINERIS			1.	492.	0.20	99
26	PHYLLODOCE M			1,	493.	0.20	99
27	SPIO FILICOR	NIS		1.	494.	0.20	100
IUMBER	OF SPECIES	27					
	OF INDIVIDUAL	5 494.					

		ATION 16	GRAB 1				
(RUISE EX8001 ST	HITON TO			OUN COUNT	%	CUM %
	SPECIES NAM	F	-	COUNT	CUM COUNT 100.	34.48	34.48
RANK	FRIONOSPIO STEENS	TRUPI		100.	162.	21.38	55.86
1	AGLADE HAMUS NEOTE	NUS		62,		8,97	64.83
2 3	MEDIOMASTUS AMBIS	ETA		26,	213	8,62	73.45
4	SCOLOFLOS SF			25.	236.	7,93	81.38
5	EUDORELLA TRUNCAT	ULA		23.	238.	2,76	84.14
	ANEMONE A			. B.,		2,76	86.90
6	DIASTYLIS SCULPTA	5		.8.	252.	2.07	88.97
7 ·	LUMBRINERIS TENUI	s		6،	258.	1.72	90.69
8	OLIGOCHAETA			5.	263.	1.72	92.41
9	NEOMYSIS AMERICAN	AL		5.	268.		93.79
10	ERYTHROPS ERYTHRO	THALMA		4.	272.	1,38	94.83
11	ENTIMEUPS ENTITIES			3.	275.	1.03	95.52
12	ARICIDEA SUECICA	-		2.	277.	0.69	93.32
13	OWENIA FUSIFORMI	•		2.	279.	0.69	
14	AMPELISCA ABDITA			2.	281.	0.69	96.90 97.24
15	STENOFLEUSTES IN	LKM15		1,		0.34	
16	NEPHTYS INCISA			1.	283.	0.34	97.59
17	LUMBRINERIS FRAG			1.	284.	0.34	97.93
18	FHYLLODOCE MUCOS	A		1.	285.	0.34	98.28
19	THARYX SP			1.	286.	0.34	98.62
20	CYLICHNA ALBA			1.	287.	0.34	98.97
21	NASSARIUS TRIVIT	TATUS		1.	288.	0.34	99.31
22	CEREBRATULUS LAC	TEUS		1.	289,	0.34	99.65
23	OXYUROSTYLIS SMI			1.		0.34	100.00
24	PHOTIS MACROCOXA			•			
NUMBE	R OF SPECIES	24		-			
NUMBI	ER OF INDIVIDUALS	290.					

...

۰.

131

С	RUISE EXBOO1	STATION 17	GRAB 1				
RANK	SPECIES	S NAME		, соля	CUM COUNT	%	син %
1	AGLAOPHAMUS I	NEOTENUS	-	276.	276.	84.15	84,15
2	ANEMONE A			40.	316.	12.20	96.34
3	MULINIA LATE	RALIS		7.	323,	2.13	98.48
4	NEPHTYS INCIS	5A		2.	325.	0,61	99.09
5	PRIONOSPIO S	TEENSTRUPI		1.	326.	0.30	99.39
6	DULICHIA MON	DCANTHA		1.	327.	0.30	99.70
7	NEOMYSIS AME	RICANA		1.	328.	0.30	100.00
NUMBER	OF SPECIES	7					
NUMBER	OF INDIVIDUALS	5 328,		-			
INDIVI	DUALS PER M2	3280					

,

~

}

ł

	UISE EX8001 STATION 19 GRAP 1	COUNT	CUM COUNT	%	CUM X
RANK	SPECIES NAME	43,	43.	19.82	19.82
1	OLIGOCHAETA	39,	82.	17.97	37,79
2	LUMBRINERIS TENUIS	37.	119.	17.05	54,84
3	ARICIDEA JEFFREYSII	30.	149.	13.82	68.66
4	LIMNORIA LIGNORUM	14.	163.	6.45	75.12
5	AMPHARETE ARCTICA	6.	169.	2.76	77,88
6	POLYDORA SOCIALIS	6.	175.	2.76	80.65
7	NINDE NIGRIPES	5.	180.	2.30	82,95
8	FHOTIS MACROCOXA	5,	185.	2.30	85.25
9.	ETEONE LONGA	5.	190.	2.30	87,56
10	FRIONOSPID STEENSTRUPI	4,	194.	1.84	87,40
11	PHOLOE MINUTA		197.	1.38	90.78
12	GEMMA GEMMA	3.	200.	1.38	92.17
13	LUMBRINERIS FRAGILIS	2.	202.	0,92	93.09
14	TELLINA AGILIS	2.	204.	0.92	94.01
15	MEMBRANIFORIDAE	2.	206,	0,92	94.93
16	NEPHTYS INCISA	2,	208.	0.92	95.85
17 .	NEREIS VIRENS	· 1.	207,	0.46	96.31
18	YOLDIA LIMATULA	1.	210	0.46	96.77
19	MYA ARENARIA	. 1.	211.	0.46	97.23
20	LYONSIA HYALINA	1.	212.	0,46	97.70
21	NASSARIUS TRIVITTATUS	1.		0.46	98.16
22	COROPHIUM INSIDIOSUM	1.	214.	0.46	98.62
23	UNICOLA IRRORATA	1.	215.	0.46	99.08
24	SCOLOPLOS SF.	1,	216+	0,46	99.54
25	OPHELINA ACUMINATA	1.	217	0.46	100.00
26	AGLAOFHAMUS NEOTENUS	+			
27	CERIANTHUS BOREALIS	1			
NUMBER	OF SPECIES 27				
	OF INDIVIDUALS 217.+				

INDIVIDUALS PER M2 2170+

 \sim

-

7

-

	CRUISE EXBOO1	STATION 19	GRAB 1				
RANK	SPECIES	S NAME		COUNT	CUM COUNT	7.	CUM %
1	LUMBRINERIS 1	TENUIS		73.	73.	28.08	28.08
2	NINDE NIGRIPE	S		31.	104.	11.92	40.00
3	AGLADPHAMUS N	NEOTENUS		30.	134.	11.54	51.54
4	NUCULA DELPHI	INDDONTA		19.	153.	7,31	58,85
5	FRIONDSFID ST	TEENSTRUPI		15.	168.	5.77	64.62
6	FHYLLODOCE MU	JCOSA		13.	181.	5.00	69.62
7	EUDORELLA TRU	JNCATULA		11.	192.	4.23	73,85
8	ORCHOMENELLA	PINGUIS		10.	202.	3.85	77.69
9	ARICIDEA JEFF	REYSII		9.	211.	3,46	61.15
10	AMPHARETE ARC	CTICA		8.	219.	3,08	84,23
11	OLIGOCHAETA			6.	225.	2.31	86.54
12	TELLINA AGILI	IS		4.	229.	1,54	88.08
13	NEMERTEA C			4.	233.	1.54	87,62
14	PHOLOE MINUTA	4		3.	236.	1.15	90.77
15	YOLDIA LIMAT	ULA		з.	239.	1,15	91.92
16	ETEONE LONGA			2.	241.	0.77	92,69
17	FHERUSA AFFIN			2.	243.	0.77	93,46
18	NEFHTYS INCIS			2.	245.	0.77	94.23
19	METERYTHROPS			2.	247.	0.77	95,00
20	MEDIOMASTUS A	AMBISETA		1.	248,	0,38	95.30
21	LUMBRINERIS F	RAGILIS		1.	249.	0.38	95,77
22	FOTAMILLA NEC	GLECTA	•	1.	250.	0.38	96.15
23	NEREIS SP.			1.	251.	0.38	96.54
24	GEMMA GEMMA			1.	252.	0,38	96.92
25	NUCULA ANNULA	ATA		1.	253.	0.38	97.31
26	MODIOLUS MODI	IOLUS		1.	254.	0.38	97.69
27	ANEMONE A			1.	255.	0,38	98,08
28	NEMERTEA E			1.	256.	0.38	98.46
29	CERIANTHUS BO			1,	257.	0.38	98.85
30	DIASTYLIS SCU			1.	258.	0.38	99.23
31	AMPELISCA ARI		-	1.	259.	0.38	99.62
32	LEPTOCHEIRUS	PINGUIS		1.	260.	0.38	100.00
NUMB	ER OF SPECIES	32					

NUMBER OF INDIVIDUALS 260.

INDIVIDUALS PER M2 2600

LI	VUISE EX8001	STATION 20		COUNT	CUM COUNT	%	CUM %
RANK	SPECIES NO	ME		113.	113.	37.92	37.92
1	NUCULA DELPHINO	ATAO		68.	181.	22,82	60.74
2	FRIONOSPIO STEEM	ISTRUFI		18.	199,	6.04	66.78
3	EUDORELLA TRUNCA	ATULA		15.	214.	5.03	71.81
4	MEDIOMASTUS AME	ISETA		15.	229.	5.03	76,85
5	LUMBRINERIS TEN	JIS			240.	3.69	B0.54
5.	ANEMONE A			. 11.	240.	2,35	82.89
7	AGLAOFHAMUS NEO	TENUS		6.	253.	2.01	84.90
é	NINDE NIGRIFES		-	.5.	258,	1,68	86,58
9	THARYX SP.			4.	262,	1,34	87,92
10	DIASTYLIS SCULP	TA		4.	266.	1.34	89,20
11	ARGISSA HAMATIP			4.	270,	1.34	90.60
12	OLIGOCHAETA				274.	1.34	91.9
13	OWENIIDAE			4.	277	1.01	92.9
14	CEREBRATULUS LA	CTEUS		3.		1.01	93.9
15	PHYLLODOCE MUCO	SA		3.	280.	0.67	94.6
	GEMMA GEMMA			2.	282+	0.67	95.30
16	HYDROBIA SF.			2,	284.	0.67	95.9
17	NASSARIUS TRIVI	TTATUS		2,	286.	0.67	96.6
18	ORCHOMENELLA FI	NGUIS		2.	288.	0.67	97.3
19	LEPTOCHEIRUS PI	NGUIS		2,	290.	0.67	97.9
20	ARICIDEA JEFFRE	YSII		2,	292.	0.34	98.3
21	YOLDIA LIMATULA	1011		1,	293.	0.34	98.6
22	NUCULA ANNULATA			1.	294.	0.34	98.9
23	CERASTODERMA PI	NNEL ATTIM		-1.	295.	0.34	99.3
24	TELLINA AGILIS	HILO ETT OT		1.	296.	0.34	97.3
25	NEOMYSIS AMERIC	ANA		1.	297.		100.0
26	NEMERTEA C			t,	298.	0.34	100.0
27	NEMERIEAL						
NUMBER	R OF SPECIES	27					
NUMBER	R OF INDIVIDUALS	298.					

-

,

INDIVIDUALS PER M2 2980

.

_

.

,

	CRUISE EX8001	STATION 21	GRAB 1				
RANK	SPECIES	NAME		соинт	CUN COUNT	7.	син %
1	NUCULA DELFHI			540.	540.	35.79	35.79
2	FRIDNOSPID ST	EENSTRUPI		335.	875.	22.20	57.99
3	LUMBRINERIS T	ENUIS		182.	1057.	12.06	70,05
4	ARICINEA JEFF	REYSII		92.	1149.	6.10	76.14
5	MEDIOMASTUS A	MBISETA		53.	1202.	3.51	79.66
6	SCOLOFLOS SF:			49.	1251,	3,25	82.90
7	EUDORELLA TRU	INCATULA		38.	1289.	2.52	85,42
8	PHOXOCEPHALUS	HOLBOLLI		36.	1325.	2.39	87,81
9	AGLAOFHAMUS N	EOTENUS		31.	1356.	2.05	89.86
10	DIASTYLIS SCU	ILF'TA		29.	1385.	1.92	91,70
11	ORCHOMENELLA	FINGUIS		18.	1403.	1,19	92,98
12	NINDE NIGRIFE	S		17.	1420.	1.13	94,10
13	FHOTIS MACROC	OXA		14.	1434.	0.93	95.03
14	OLIGOCHAETA			14.	1448.	0.93	95,96
15	FHYLLODOCE MU			5,	1453.	0.33	96.29
16	FITAR MORRHUA			5.	1458.	0.33	96.62
17	BATHYMEDON SP			4.	1462.	0.27	96.89
18	DULICHIA MONO			4.	1466.	0.27	97.15
19	CEREBRATULUS	LACIEUS		4.	1470.	0.27	97.42
20	THARYX SP.			4.	1474.	0.27	97.68
21	ETEONE LONGA			4.	1478.	0.27	97.95
22 23	PERIPLOMA PAP			4.	1482.	0.27	98.21
	CERIANTHUS BO			3.	1485.	0.20	98.41
24 25	ARGISSA HAMAT	IFES		2.	1487.	0.13	98.54
20	NEMERTEA C AMPHARETE ACU	TIEDONE		2, 2,	1489.	0.13	98.67
28	FOTAMILLA NEG			2.	1491.	0.13	96.81
27 28	MYA ARENARIA	LEUTA		2. 2.	1493. 1495.	0.13 0.13	98,94
28 29	NUCULA ANNULA	T.A.		2.	1495.	0.13	99.07 99.20
30	CHIRIDOTA LAE			1.	1498.	0.13	99.20
31	STENOFLEUSTES			1.	1499.	0.07	99.34
32	CASCO BIGELOW			1,	1500.	0.07	99.40
33	SABELLA PENIC			1.	1501.	0.07	99.47
34	OWENIA FUSIFO			1.	1502.	0.07	99.54
35	FHERUSA AFFIN			1	1503.	0.07	99,60
36	NEPHTYS INCIS			1.	1504.	0.07	99.67
37	CAPITELLA CAP	ITATA		1.	1505.	0.07	99.73
38	FARAONIS GRAC	ILIS		1.	1506.	0.07	99.80
39	STAURONEREIS	CAECUS		1.	1507.	0.07	99.87
40	MODIOLUS MODI	OLUS		1.	1508.	0.07	99,93
41	CRENELLA DECU			1.	1509.	0.07	100.00
NUMB	ER OF SPECIES	41					
NUMB	ER OF INDIVIDUALS	1509.					

c	RUISE EX8001 STATION 22	GRAB 1	L						
L						COUNT	CUM COUNT	z	CUM Z
RANK	SPECIES NAME					269.	269.	28,50	28.50
1	PRIONOSPID STEENSTRUPI					120.	389,	12.71	41.21
2	MEDIOMASTUS AMBISETA					71.	460.	7,52	48.73
з	LUMBRINERIS TENUIS					59.	519,	6.25	54.98
4 ,	ARICIDEA JEFFREYSII					54.	573.	5,7Ω	60.70
5	AMPHARETE ARCTICA					48,	621.	5.08	65.78
6	NUCULA DELPHINDDONTA					29.	650,	3.07	68,86
7	EUDORELLA TRUNCATULA					28.	678.	2.97	71.82
8	NINDE NIGRIFES					26.	704.	2.75	74.58
9	THARYX SP.					23.	727,	2,44	77.01
10	CRENELLA DECUSSATA					19,	746.	2,01	79.03
11	FHOXOCEFHALUS HOLBOLLI					17.	763.	1.80	80.83
12	NASSARIUS TRIVITTATUS					15.	778,	1.59	82,42
13	ARCHIANNELIDA					12.	790.	1.27	83.69
14	AMPELISCA VADORUM					10,	800+	1.06	84.75
15	COROFHIUM CRASSICORNE					10.	810.	1.06	85.80
16	SCOLOPLOS SP.					۶.	819.	0.95	86.76
17	DIASTYLIS SCULFTA					8.	827.	0,85	87.61
18	OLIGOCHAETA					8,	835.	0.85	88.45
19	FOLYDORA SP.			•		7.	842.	0.74	89.19
20	UNCIDLA IRRORATA					7.	849.	0.74	89.94
21	ETEONE LONGA					6.	855.	0.64	90.57
22	PHOLDE MINUTA					5.	860.	0.53	91.10
23	HARFINIA FROFINGUA					5,	865.	0.53	91.63
24	LEPTOCHEIRUS PINGUIS					5.	B70.	0.53	92.16 92.69
25	CERASTODERMA PINNULATUM SYLLIS GRACILIS					, S.	875+	0.53	93.11
26	AUTOLYTUS SP.					4.	879.	0.42	93.54
27	PITAR MORRHUANA					4.	883,	0.42	93,96
28 29	POLYDORA SOCIALIS					4.	887.	0.42	94.39
29	OPHELINA ACUMINATA					4.	891.	0.42	94.81
	FHERUSA AFFINIS					4.	895.		95.13
31	NEMERTEA F				•	3.	898.	0.32	95.44
32	NEMERTEA C					<u>,</u> 3،	901.	0.32	95.76
33	ORCHOMENELLA PINGUIS					3.	904.	0.32 0.32	75.08
34 35 .	EUCLYMENE COLLARIS					3.	907.		96.40
	SCOLOPLOS ROBUSTUS					3.	910.	0.32	96.61
36 37	CHIRIDOTA LAEVIS					2,	912.	0.21	96.82
38	NEMERTEA G					2.	914.	0.21	97.03
39.	CEREBRATULUS LACTEUS					2.	916+	0.21	97.25
40	PROTOMEDEIA FASCIATA					2.	918, 920,	0.21	97,46
41	GEMMA GEMMA					2.	922.	0.21	97.67
42	PERIFLOMA PAPYRATIUM					. 2.		0.21	97.88
43	TELLINA AGILIS					2.	926.	0.21	98.09
44	HYDROBIA SP.					2.	928.	0.21	98.30
45	NEREIS PELAGICA					1.		0.11	98.41
46	AMPHIPHOLIS SQUAMATA					1.	930,	0.11	98,52
47	CERIANTHUS BOREALIS					1,		0.11	98.62
48	CANCER BOREALIS					1.		0.11	98.73
49	PAGURUS FUBESCENS					1		0.11	98.83
50	STENOPLEUSTES GRACILIS					1		0.11	98,94
51	STENOPLEUSTES INERMIS					1		0,11	99.05
52	EDOTEA TRILOBA					1.	· · · · · · · · · · · · · · · · · · ·	0.11	99.15
53	DOTO CORONATA					1.	-	0.11	99.26
54	COCCULINA SP.					1.		0.11	99.36
55	ASTARTE UNDATA					1		0.11	99.47
56	FANDORA GOULDIANA					1	940.	0.11	99,58
57	LYONSIA HYALINA					1	941.	0.11	77.68
58	EXOGONE HERES					1	. 942.	0,11	99.79
59	FOLYDORA QUADRILOBATA					1	. 943.	0.11	99.89
60	LUMBRINERIS FRAGILIS					Ī.	. 944.	0.11	100.00
61	SPIOPHANES BOMBYX					+			
62	MEMBRANIPORIDAE					+			
63	SERTULARIA PUMILA								
								-	
NUWB	ER OF SPECIES 63								
NUMB	ER OF INDIVIDUALS 944.+								

INDIVIDUALS FER M2 9440+

,

,

	CRUISE EX8001 STATION 23	GRAB 1				
RANK	SPECIES NAME	-	COUNT	CUM COUNT	7	CUM %
1	PRIONOSPIO STEENSTRUPI		638,	638.	44.55	44.55
2	AGLAOPHAMUS NEOTENUS		160.	818.	12.57	57,12
3	LUMBRINERIS TENUIS		173.	991.	12.08	69,20
4	NUCULA DELFHINODONTA		156.	1147.	10.89	80,10
5	EUDORELLA TRUNCATULA		65,	1212.	4,54	84,64
6	ARICIDEA JEFFREYSII		35,	1247.	2.44	87,08
7	MEDIOMASTUS AMBISETA		29.	1276.	2.03	89.11
8	ORCHOMENELLA FINGUIS		20.	1296.	1.40	90.50
9	DIASTYLIS SCULPTA		17.	1313.	1.19	91.69
10	NINCE NIGRIFES		16.	1329.	1.12	92.81
11	OLIGOCHAETA		16.	1345.	1.12	93.92
12	AMPELISCA ABDITA		11.	1356.	0.77	94.69
13	AMPHARETE ARCTICA		9,	1365.	0.63	95.32
14	ARGISSA HAMATIPES		7.	1372.	0.49	95.81
15	STAURONEREIS CAECUS		6.	1378,	0.42	96,23
16	CASCO BIGELOWI		5.	1383.	0.35	96.58
17	NEFHTYS INCISA		5.	1388.	0.35	96,93
18	HARPINIA PROPINQUA		4,	1392.	0.20	97.21
19	FHOXOCEPHALUS HOLBOLLI		3.	1395.	0.21	97.42
20	CERIANTHUS BOREALIS		3.	1398.	0.21	97.63
21	ETEONE LONGA		з.	1401.	0.21	97.83
22	SCOLOPLOS SP. 🗠		3,	1404.	0.21	98.04
23	LEPTOCHEIRUS PINGUIS		2.	1406.	0.14	98,18
24	BATHYMEDON SP.	·	2.	1408.	0.14	98,32
25	AMPHARETE ACUTIFRONS		2.	1410.	0.14	98,46
26	SABELLA PENICILLUS		2,	1412.	0.14	98.60
27	PHYLLODOCE MUCUSA		2.	1414.	0.14	98.74
28	MICROPHTHALMUS ABERRANS		2.	1416.	0.14	98.88
29	FITAR MORRHUANA		2.	1418,	0.14	99.02
30	CRENELLA DECUSSATA		2.	1420.	0.14	99,16
31	NEOMYSIS AMERICANA		1.	1421.	0.07	99.23
32	METERYTHROPS ROBUSTA		1.	1422.	0.07	99.30
33	COROFHIUM CRASSICORNE		1.	1423.	0.07	99.37
34	MONOCULODES N.SP.		1.	1424.	0.07	99.44
35	NEMERTEA C		1.	1425.	0.07	99.51
36	SYLLIS GRACILIS		1.	1426.	0.07	99.58
37	CLYMENELLA TORQUATA		1.	1427.	0.07	99.65
38	PHERUSA AFFINIS		1.	1428.	0.07	99,72
39	PARAONIS GRACILIS		1.	1429,	0.07	99.79
40	PHOLOE MINUTA		1.	1430.	0.07	99.86
41	YOLDIA LIMATULA		1.	1431.	0.07	99.93
42	GEMMA GEMMA		1.	1432.	0.07	100.00
NUMBE	ER OF SPECIES 42					
NUMB	ER OF INDIVIDUALS 1432.					

~

.

INDIVIDUALS FER M2 14320

-

~

~

CEI	JISE EXBOO1 STATION 24 GRAB 1				
CRE	IDE ENOUS	COUNT CU	M COUNT	%	CUM %
RANK	SPECIES NAME	227+	227.	26.00	26.00
	AGLADFHAMUS NEDTENUS		433	23.60	49.60
1	PRIONOSPIO STEENSTRUPI	206.	629.	22.45	72.05
2 · 3	ARICIDEA JEFFREYSII	196.	706,	8.82	80.87
	MEDIOMASTUS AMBISETA	77.	746.	4.58	85,45
4 5	CASCO BIGELOWI	40.	777.	3,55	89.00
	OLIGOCHAETA	31	795.	2,06	91.07
6 7	EUDORELLA TRUNCATULA	18.	811.	1.83	92,90
8	ORCHOMENELLA FINGUIS	16,	824.	1,49	94.39
8 9	NINCE NIGRIFES	13.	834.	1.15	95.53
	LEPTOCHEIRUS PINGUIS	10	840.	0.69	96.22
10	ETEONE LONGA	6.	840.	0.69	96.91
11	AMPELISCA ABDITA	6.		0.46	97.37
12	PHOXOCEPHALUS HOLBOLLI	. 4.	850,	0.34	97.71
13	SCOLOFLOS SP	з.	853.	0.34	78.05
14		3,	856.	0.23	78,28
15	LUMBRINERIS TENUIS	2.	858.		98.51
16	NEPHTYS INCISA	2.	860.	0.23	98.74
17	THARYX SP.	2.	862,	0,23	98.97
18	NEMERTEA H	2.	864.	0.23	99.20
19	DULICHIA MONOCANTHA	. 2	866+	0.23	99.31
20	UNCIDLA IRRORATA	1.	867.	0.11	99.31
21	NEREIS VIRENS	. 1.	868.	0.11	99.54
22	PHYLLODOCE MUCOSA	1.	869,	0.11	
23	FOLYDORA LIGNI	1.	B70.	0.11	99,66
24	NEMERTEA C	1.	871.	0.11	99,77
25	DIASTYLIS SCULPTA	1.	872.	0.11	99.89
26	FHOTIS MACROCOXA	1.	873.	0.11	100.00
27	NEOMYSIS AMERICANA				
NUMBER	OF SPECIES 27				
NUMBER	OF INDIVIDUALS 873.				

8730 INDIVIDUALS FER M2

-

-

_

	CRUISE EX8001 STATION 25 GRAB 1				
RANK	SPECIES NAME	COUNT	CUM COUNT	X	CUM %
1	AGLAOPHAMUS NEDTENUS	219.	219.	51.41	51.41
2	ANEMONE A	50,	269.	11,74	63.15
3	CASCO BIGELOWI	47.	316.	11.03	74,18
4	PRIONOSFIO STEENSTRUPI	37,	353.	8,69	82.86
5	DIASTYLIS SCULFTA	19.	372.	4.46	87.32
6	EUDORELLA TRUNCATULA	14.	386.	3.29	90,61
7	MEDIOMASTUS AMBISETA	8.	394,	1.88	92.49
8	ARICIDEA JEFFREYSII	7,	401.	1.64	94.13
9	NEOMYSIS AMERICANA	7.	408.	1.64	95.77
10	METERYTHROPS ROBUSTA	3.	411.	0.70	96.48
11	OLIGOCHAETA	2.	413.	0.47	96.95
12	POTAMILLA NEGLECTA	2.	415.	0.47	97.42
13	ORCHOMENELLA FINGUIS	2.	417.	0.47	97,89
14	AMPELISCA ABDITA	2.	419.	0.47	98.36
15	MELITA N.SF.	2.	421.	0.47	98.83
16	LUMBRINERIS TENUIS	1,	422.	0.23	99.06
17	NINDE NIGRIPES	1.	423.	0.23	99.30
18	ERYTHROPS ERYTHROPHTHALMA	1.	424.	0.23	99.53
19	ARGISSA HAMATIPES	1.	425.	0.23	99.77
20	YOLDIA LIMATULA	1.	426.	0.23	100.00
NUMBE	R OF SPECIES 20				
NUMBE	R OF INDIVIDUALS 426.				

INDIVIDUALS PER M2	4260
--------------------	------

ANK .	SPECIES NAME		COUNT	CUM COUNT	7	CUM %
1	AGLAOFHAMUS NEDTENUS		98.	98 ,	65.33	65.3
2	ANEMONE A		12.	110.	8.00	73.3
з	PRIONOSPIO STEENSTRUPI	· ·	8,	118.	5.33	78.6
4	ARICIDEA JEFFREYSII	· /	7.	125.	4,67	83.3
5	MEDIOMASTUS, AMBISETA		5.	130.	3,33	86.6
6 `	EUDORELLA TRUNCATULA	•	3.	133.	2,00	68.6
7	NEOMYSIS AMERICANA		3,	136.	2.00	90.6
8	DULICHIA MONOCANTHA		2.	138.	1.33	92.0
9	ERYTHROPS ERYTHROPHTHALMA		2.	140.	1.33	93.3
10	LITTORINA OBTUSATA		2.	142.	1,33	94.6
11	OLIGOCHAETA		1.	143.	0,67	95.3
12	NEPHTYS INCISA		· 1.	144.	0.67	96.0
13	METERYTHROPS ROBUSTA		1	145.	0.67	96.6
14	COROFHIUM CRASSICORNE		1.	146.	0.67	97.3
15	HARFINIA FROFINQUA		1.	147.	0.67	98.0
16	MELITA N.SP.	•	· 1.	148.	0.67	98.6
17	PHOTIS MACROCOXA		1.	149.	0.67	99.3
16	YOLDIA LIMATULA		1,	150.	0.67	100.0
UMBER	OF SPECIES 18		•			

INDIVIDUALS PER M2 1500

,

•

-

ANK	SPECIES NAME	COUNT	CUM COUNT	7	CUM %
1	FRIONOSPIO STEENSTRUPI	112.	112.	49.34	49.3
2	EUDORELLA TRUNCATULA	18.	130.	7.93	57.2
3	ARICIDEA JEFFREYSII	16.	146.	7.05	64.3
4	NINDE NIGRIFES	14.	160.	6,17	70.4
5	NUCULA DELFHINODONTA	10,	170.	4,41	74.8
6	SCOLOFLOS SF.	7.	177.	3.08	77.9
7	AGLAOFHAMUS NEOTENUS	7.	184.	3.08	81.0
8	MEDIOHASTUS AMBISETA	6.	190.	2.64	83.7
9	OLIGOCHAETA	5.	195.	2,20	85.9
10	ARICIDEA SUECICA	5,	200.	2.20	88.1
11	ERYTHROPS ERYTHROPHTHALMA	4.	204.	1.76	89.6
12	DIASTYLIS SCULPTA	3.	207.	1,32	91.1
13	ARGISSA HAMATIPES	3.	210.	1.32	92.5
14	OWENIA FUSIFORMIS	3,	213.	1.32	93.8
15	CEREBRATULUS LACTEUS	2.	215.	0.88	94.7
16	NEPHTYS INCISA	2.	217.	0.88	95.5
17	MONOCULODES TUBERCULATUS	1.	218.	0.44	96.0
18	METERYTHROP'S ROBUSTA	1.	219,	0.44	96.4
19	MYSIS STENOLEFIS	1,	220.	0.44	96.9
20	MODIOLUS MODIOLUS	1.	221.	0.44	97.3
21	YOLDIA LIMATULA	1.	222.	0.44	97.E
22	MOLPADIA DOLICTICA	1.	223.	0.44	98.2
23	PARADNIS GRACILIS	1.	224.	0.44	99.đ
24	THARYX SP.	1.	225.	0.44	99.1
25	LUMBRINERIS TENUIS	1.	226.	0.44	99.5
26	SPIO FILICORNIS	1.	227.	0,44	100.0
	OF SPECIES 26				

.

INDIVIDUALS PER M2

	CRUISE EX8001 STATION 28	GRAB 1				
RANK	SPECIES NAME		COUNT	CUM COUNT	%	CUM %
1	FRIONOSPIO STEENSTRUPI		1099.	1088.	63.74	63,74
2	LEFTOCHEIRUS FINGUIS		98.	1186.	5.74	69.48
3	NUCULA DELEHINODONTA		83.	1269.	4.86	74.34
4	EUDORELLA TRUNCATULA		60.	1329,	3,51	77.86
5	LUMBRINERIS TENUIS		60.	1389.	3.51	81.37
6	DIASTYLIS SCULPTA		52,	1441.	3,05	84.42
7	NINCE NIGRIPES		47.	1488.	2,75	87.17
8	ORCHOMENELLA PINGUIS		45,	1533.	2.64	89.81
	ARGISSA HAMATIPES		22.	1555.	1,29	91.10
9			15.	1570.	0.88	91.97
10	MEDIOMASTUS AMBISETA AGLAOFHAMUS NEOTENUS	-	15,	1585	0.88	92.85
11			13.	1578.	0.76	93.61
12	BATHYMEDON SP.		12.	1610.	0.70	94.32
13	ARICIDEA JEFFREYSII			1617.	0.53	94.84
14	FHYLLODOCE MUCOSA Nemertea D		8,	1627,	0.47	95.31
15	PHOXOCEPHALUS HOLBOLLI			1635.	0.47	95.78
16			7.	1642,	0.41	96.19
17	FHOTIS MACROCOXA		6.	1648,	0.35	96.54
18	ARICINEA SUECICA		5,	1653.	0.29	96.84
19	FARADNIS GRACILIS		. 5,	1658.	0.29	97.13
20	OPHELINA ACUMINATA		5,	1663.	0.29	97.42
21.	NEFHTYS INCISA		4.	1667,	0.23	97.66
22	CEREBRATULUS LACTEUS		3.	1670,	0.18	97.83
23	NEMERTEA C		3.	1673.	0.18	78.01
24	HARPINIA PROFINQUA		3.	1676.	0.18	99.18
25	STENOFLEUSTES INERMIS		3,	1679.	0.18	98.36
26	DULICHIA MONOCANTHA		3.	1692.	0.18	98.54
27	SCOLOPLOS SP.		3,	1685.	0.18	98.71
28	SPID FILICORNIS		2,	1687.	0,12	78.83
29	NEMERTEA H		2,	1687.	0.12	78,95
30	MAYERELLA LIMICOLA		2,	1691.	0.12	99.06
31	MELITA N.SF.		2.	1693.	0.12	99.18
32	PHOLOE MINUTA		2.	1695.	0,12	99.30
33	OLIGOCHAETA		2, 1,	1696.	0.06	99.36
34	PLATYHELMINTHES		1.	1697.	0.06	99.41
35	HALIMEDON SF.		1.	1678.	0.06	99.47
36	METOPELLA ANGUSTA		1.	1699+	0.06	99.53
37	UNCIOLA IRRORATA		1.	1700	0.06	99.59
38	STAURONEREIS CAECUS		1.	1701.	0.06	99.65
39	SFID SETOSA		1.	1702.	0.06	99.71
40	TEREBELLID B				0.06	99,77
41	HARTMANIA MOOREI		1.	1703. 1704.	0.08	99,82
42	THARYX SP.		1.		0.08	99.88
43	GONIADA MACULATA		1.	1705.	0.08	99.88 99.94
44	FITAR MORRHUANA		1.	1706. 1707.	0.08	100.00
45	NUCULA ANNULATA		1.	1/0/+	0.08	100100
NUME	ER OF SPECIES 45					

٠

ء

NUMBER OF INDIVIDUALS 1707,

.

INDIVIDUALS FER M2 17070

.

-

~

С	RUISE EXBOO1 STATION,	29 GRAB 1				
RANK	SPECIES NAME		COUNT	CUM COUNT	7	CUM X
1	NUCULA DELPHINODONTA		110,	110.	30.73	30.7
2	FRIDNOSFID STEENSTRUFI		97.	207.	27.09	57.8
3	EUDOKELLA TRUNCATULA		68.	275.	18.99	76.B
4	NINDE NIGRIFES		33,	308.	9.22	86.0
Ś	DIASTYLIS SCULPTA		11.	319.	3.07	89.1
6	LUMBRINERIS TENUIS		. 8.	327.	2.23	91.3
7	CEREBRATULUS LACTEUS		4.	331.	1.12	92.4
8	AMPHARETE ACUTIFRONS		3.	334.	0.84	93.3
9	SCOLOFLOS SP.		3.	337.	0.84	94.1
10	NEFHTYS INCISA		3.	340.	0.84	94.9
11	AGLADPHAMUS NEOTENUS		2.	342.	0.56	95.5
12	ARICIDEA SUECICA		2,	344.	0.56	96.0
13	SPID FILICORNIS		2.	346.	0,56	96.6
14 /	MEDIOMASTUS AMBISETA		. 1.	347.	0.28	96.9
15	FARAONIS GRACILIS		1.	348.	0.28	97,2
16	EUDORELLA HISPIDA		1,	349.	0.28	97.4
17	ARGISSA HAMATIPES		. 1.	350.	0.28	97.7
18	MELITA N.SP.		1,	351.	0.28	98.(
19	CASCO BIGELOWI		1.	352.	0,28	98,3
20	ERYTHROPS ERYTHROPHTHAL	MA	1.	353.	0,28	98.6
21	YOLDIA LIMATULA		1.	354,	0,28	98.8
22	THYASIRA FLEXUOSA		1.	355.	0.28	99.1
23	NUCULA ANNULATA		. 1.	356.	0,28	99.4
24	NASSARIUS TRIVITTATUS		1.	357.	0.28	99.7
25	MOLFADIA OOLICTICA		1.	358.	0.28	100.0
NUMBER	OF SPECIES 25					
NUMBER	OF INDIVIDUALS 358.		· · · ·			
INDIVI	DUALS PER M2 3580					

~	CF RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 14	RUISE EXBOOI SPECIE EUIORELLA TR FRIONOSPIO S NINOE NIGRIF ERYTHROFS ER SFIO FILICOR CEREBRATULUS MELITA N.SF. SCOLOPLOS SF DIASTYLIS SC MEDIOMASTUS NEFHTYS INCI GONIADA MACL ARICIDEA SUE ARGISSA HAM	UNCATULA TEENSTRUPI ES YTHROPHTHALMA NIS LACTEUS ULPTA AMBISETA SA JLATA CCICA	GRAH 1	 COUNT 43. 29. 5. 4. 4. 3. 3. 2. 2. 1. 1.	CUM COUNT 43. 72. 78. 83. 87. 91. 95. 98. 101. 103. 105. 106. 107. 108.	% 39,81 26,85 5,56 4,63 3,70 3,70 2,78 2,78 1,85 1,85 1,85 0,93 0,93	CUM % 39.81 66.67 72.22 76.85 80.56 84.26 87.96 87.96 90.74 93.52 95.37 97.22 98.15 99.07 100.00
	NUMBER	OF SPECIES	14					
	NUMBER	COF INDIVIDUAL	S 108,					
	INDIVI	DUALS PER M2	1080					

i.

1.e

-

RANK	SFECIES NAME	COUNT	CUM COUNT	2	CUM %
1	FRIONOSPIO STEENSTRUPI	23.	23.	39.66	39.66
2	NINDE NIGRIFES	· 6.	29.	10.34	50.00
3	NEOMYSIS AMERICANA	5.	34.	8.62	58.62
4	NEPHTYS INCISA	4	38,	6.90	65.52
5	SCOLOFLOS SP.	3.	41.	5.17	70.69
6	MEDIOMASTUS AMBISETA	з.	44.	5,17	75,86
7	CEREBRATULUS LACTEUS	3.	47.	5.17	81.03
8	ARICIDEA SUECICA	2.	49.	3.45	84.48
9	AGLAOPHAMUS NEOTENUS	2.	51.	3,45	87,93
10	EUDORELLA TRUNCATULA	2.	53.	3.45	91.38
11	DIASTYLIS SCULPTA	2.	55.	3.45	94.83
12	OLIGOCHAETA	1.	56,	1.72	96.55
13	ARGISSA HAMATIPES	1.	57.	1.72	98,28
14	DEXAMINE THEA	1.	58.	1.72	100.00

ζ

NUMBER OF INDIVIDUALS

INDIVIDUALS PER M2

58.

580

1

-

CRUISE EX8001	STATION 32	GRAF 1				
RANK SPECIES 1 AGLAOPHAMUS NI 2 FRIONOSFIO STI 3 DULICHIA MONOI 4 CASCO BIGELOW 5 BIVALVIA	EDTENUS EENSTRUFI CANTHA		COUNT 100. 3. 1. 1.	CUM COUNT 100. 103. 104. 105. 106.	% 94.34 2.83 0.94 0.94 0.94	CUM % 94.34 97.17 98.11 99.06 100.00
NUMBER OF SPECIES	5		-			
NUMBER OF INDIVIDUALS	106.					
INDIVIDUALS PER M2	1060					

	CRUISE EX8001	STATION 33	GRAB 1				
RANK	SPECIES	NAME		COUNT	CUM COUNT	7	CUM %
1	FRIONOSPIO ST	EENSTRUPI		434,	434.	46.92	46.92
2	EUDORELLA TRU	INCATULA		. 94.	528.	10.16	57,08
3	AGLAOPHAMUS N			71.	599.	/ 100	64.76
4	NUCULA DELPHI	NODONTA		.61.	660.	5.59	71.35
5	DIASTYLIS SCU	LFTA		55.	715.	5,95	77,30
6	ARICIDEA JEFF	REYSII		52.	767.	5,62	82.92
7	MEDIOMASTUS A	MRISETA		37.	B04.	4,00	86,92
8	LUMBRINERIS 1	TENUIS		24.	828.	2,59	89.51
9	OLIGOCHAETA			17.	845.	1.84	91.35
10	NINDE NIGRIFE	S		17.	832.	1.84	93.19
11	SCOLOFLOS SF			16.	878.	1,73	94.92
12	ERYTHROPS ERI	THROPHTHALMA		12.	890.	1.30	96.22
13	YOLDIA LIMAT	ULA		6.	896.	0.65	96.86
14	ARGISSA HAMAT	IPES		4.	900.	0.43	97.30
15	NEMERTEA H			3.	903.	0.32	97,62
16	CEREBRATULUS	LACTEUS		2.	905.	0.22	97.84
17	THARYX SP.			2,	907.	0.22	98.05
18	MYRIDCHELE HE			2.	909.	0.22	98.27
19	NEPHTYS INCIS	SA		2,	911.	0.22	98.49
20	ORCHOMENELLA	FINGUIS		2.	71 (0.22	98.70
21	NEMERTEA D	•		1.	914.	0.11	98.81
22	MICROFHTHALM	IS ABERRANS		1.	915.	0.11	98.92
23	ETEONE FLAVA			1.	916.	0.11	99.03
24	AMPHARETE ARC	TICA '		1.	917.	0.11	99.13
25	MALDANE SARSI			1.	918.	0.11	99.24
26	HARTMANIA MOD	REI		1.	919.	0.11	99.35
27	ETEONE HETERO	PODA		1.	920.	0.11	99.46
28	CASSIDINIDEA	LUNIFRONS		1.	921.	0.11	99.57
29	DULICHIA MONO	CANTHA		1.	922.	0.11	99.68
30	HALIMEDON SP.			1.	923.	0.11	99.78
31	GEMMA GEMMA			1.	924,	0.11	99.89
32	HYDROBIA SP.			1.	925.	0.11	100.00
NUMBE	R OF SPECIES	32					
NUMPE	R OF INDIVIDUALS	925.					,

C	RUISE EX8001 STATION 34	GRAB 1				
RANK	SPECIES NAME		COUNT	CUM COUNT	%	CUM %
1	AGLAOPHAMUS NEOTENUS		172.	172.	74.14	74.14
2	SCOLOFLOS SP.		20.	192.	8.62	82.76
3	OWENIA FUSIFORMIS		12.	204.	5.17	87.93
4	NEOMYSIS AMERICANA		11.	215,	4.74	92.67
5	EUDORELLA TRUNCATULA		4,	219,	1.72	94.40
6	ARGISSA HAMATIPES		4.	223.	1.72	96.12
7	DIASTYLIS SCULPTA		1.	224.	0.43	96.55
в	COROPHIUM TUBERCULATUM		. 1.	225.	0.43	96.98
9	PHOTIS MACROCOXA		1.	226.	0.43	97.41
10	ERYTHROPS ERYTHROPHTHALMA		1.	227.	0.43	97.84
11	CEREBRATULUS LACTEUS		1.	228.	0,43	98.28
12	ARICIDEA SUECICA		1.	229.	0,43	98.71
13	AMPHARETE ARCTICA		1.	230.	0.43	99.14
14	YOLDIA LIMATULA		1.	231.	0.43	99.57
15	CYLICHNA ALBA		1.	232.	0.43	100.00
NUMBER	OF SPECIES 15	·				
NUMBER	OF INDIVIDUALS 232.					

ì

ς.

INDIVIDUALS PER M2 2320

-

-

		CRUISE	EX8001	ST	NOITA	35	GRAB	1				
	RANK		SPEC	IES NAM	E				COUNT	CUM COUNT	· %	СИМ %
	1	AGL	AOPHAMU	IS NEDTE	NUS				519,	519.	83.98	83.98
	2	OWE	NIA FUS	IFORMIS					73.	592	11.81	95.79
•	3	NED	MYSIS A	MERICAN	A				16.	608.	2,59	78.38
	4	AME	ELISCA	ABDITA					5.	613.	0.81	99.19
	5	EUD	ORELLA	TRUNCAT	ULA				1.	614.	0.16	99.35
	6	MEL	ITA N.S	P.					1.	615.	0.16	99.51
	7	CAS	CO BIGE	LOWI					1.	616.	0.16	77.68
	8	MUL	INIA LA	TERALIS					1.	617.	0.16	99.84
	9	NAS	SARIUS	TRIVITT	ATUS				1.	618.	0.16	100.00
	NUMBE	ROFS	PECIES		9							
	NUMBE	ROFI	NDIVIDU	ALS	618.							
	INDJU	IDUALS	PER M2	é	180							

,

;

,

CRUISE EX8001 ST	TATION 36	GRAB 1			7	сим %
KANN SPECIES NAM 1 NEMERTEA B 2 AGLAOPHAMUS NEOTI 3 COROFHIUM INSIDII 4 AMFELISCA ABDITA 5 CHIRODOTEA COECA 6 FHOLOE MINUTA 7 NEFHTYS BUCERA 8 FRIONOSPIO STEEN	ENUS DSUM		CDUNT 3. 3. 1. 1. 1. 1. 1.	CUM COUNT 3. 6. 7. 8. 9. 10. 11. 12.	25.00 25.00 8.33 8.33 8.33 8.33 8.33 8.33 8.33	25.00 50.00 58.33 66.67 75.00 83.33 91.67 100.00
NUMBER OF SPECIES	8					
NUMBER OF INDIVIDUALS	12.					
INDIVIDUALS PER M2	120					

.

·~.

٠

_

	CRUISE EX8001 STATION 37 GRAB 1				
RANK	SPECIES NAME	COUNT	CUM COUNT	%	CUM %
1	OLIGOCHAETA	1462.	1462.	40.19	40.19
2	BALANUS BALANDIDES	904.	2366.	24.85	65.04
3	MYTILUS EDULIS	508.	2874.	13.96	79.00
4 5	STREBLOSPIO PENEDICTI	161.	3035.	4.43	83.42
5	POLYDORA LIGNI	150,	3185.	4.12	87,55
6	THARYX SP.	101.	3286,	2,78	90,32
7	JAERA SP.	90.	3376.	2.47	92,80
в	LITTORINA LITTOREA	87.	3463.	2.39	95.19
9	HETEROMASTUS FILIFORMIS	47.	3510.	1.29	96.48
10	NEREIS VIRENS	43,	3553.	1.18	97.66
11	GAMMARUS OCEANICUS	15.	3568.	0.41	78.08
12	MACOMA BALTHICA	13.	3581.	0.36	98.43
13	FYGOSPIO ELEGANS	12.	3593.	0.33	98,76
14	MYA ARENARIA	8.	3601.	0.22	78.78
15	PHOLOE MINUTA	7.	3608.	0.19	99.18
16	COROFHIUM TUBERCULATUM	5.	3613.	0.14	99.31
17	CAPITELLA CAPITATA	5.	3618.	0.14	99.45
18	COROPHIUM VOLUTATOR	4.	3622.	0.11	99.56
19	ETEDNE LONGA	4.	3626.	0.11	99.67
20	FOLYDORA SF.	4.	3630.	0.11	99.78
21	NEMERTEA D	3.	3633.	0.08	99.86
22	HYDROBIA SP.	3,	3636.	0.08	99.94
23	CALLIOSTOMA OCCIDENTALE	2.	3638.	0.05	100.00
NUMB	R OF SPECIES 23				
NUMBE	ER OF INDIVIDUALS 3638.			-	

INDIVIDUALS FER M2 36380

RANK 1 2 3 4 5 6 7 8 9 10 11 12	AGL AOF H	PECIES H AMUS NE(N.SP. AETA LA TRUN(IGELOWI HROFS R LONGA STUS AM SP. TE ARCT	DTENUS ENSTRUPI CATULA DBUSTA BISETA	38	GRAĐ	1		-	COUNT 111. 6. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1.	CUM	COUNT 111. 117. 119. 121. 122. 124. 125. 126. 127. 128. 129.	4 1 0 0 0 0 0 0 0 0 0 0 0 0 0	% • 65 • 55 • 78 • 78 • 78 • 78 • 78 • 78 • 78 • 78	CUM % 86.05 90.70 92.25 93.80 94.57 95.35 96.12 96.90 97.67 98.45 99.22 100.00
NUMBI	ER OF SPECI	ES	12				1.1							
NUMB	ER OF INDIV	IDUALS	129.											
INDI	VIDUALS PER	M2	1290											

	CRUISE EX8001	STATION 39	GRAB 1				
RANK	SPECIES N	AME		COUNT	CUM COUNT	7.	CUM %
1	AGLAOFHAMUS NEO	TENUS		55.	55.	33,33	33.33
2	PRIONOSPIO STEE	NSTRUPI		51.	106.	30,91	64.24
3	MELITA N.SP.			21,	127.	12.73	76.97
4	SCOLOPLOS SF.			19.	146.	11.52	88.48
5	MEDIOMASTUS AMB	ISETA		. S.	151.	3.03	91,52
6	NINDE NIGRIFES			4.	155.	2.42	93.94
7	ARICIDEA JEFFRE			. 3.	150.	1.82	95.76
8	EUDORELLA TRUNC			2.	160.	1.21	96.97
9	CEREBRATULUS LA			1.	161.	0.61	97.58
10	ARICIDEA SUECIC			1.	162.	0.61	98.18
11	ERYTHROPS ERYTH			1.	163.	0.61	98.79
12	NEOMYSIS AMERIC			1.	164.	0.61	99.39
13	METERYTHROPS RD	BUSTA		1.	165.	0.61	100.00
NUMBE	R OF SPECIES	13					
NUMBE	R OF INDIVIDUALS	165.					
INDIV	IDUALS PER M2	1650					

Į.

.

	CRUISE EXBOO1 (STATION 40	GRAB 1			
RANK	SPECIES NAME		COUNT	CUM COUNT	X
1	AGLAOPHAMUS NEOTENUS		23.	23.	30.67
2	ANEMONE A		15.	38.	20.00
3	ARICIDEA JEFFREYSII		12.	50.	16.00
4	FRIONOSFIO STEENSTRUFI		· 9.	59.	12.00
5	MELITA N.SF.		3.	62.	4.00
6	NINDE NIGRIFES		2,	64.	2,67
7	NEOMYSIS AMERICANA		· 2.	66+	2.67
8	YOLDIA LIMATULA		2.	68.	2.67
9	CEREFRATULUS LACTEUS		1.	69.	1.33
10	ARICIDEA SUECICA		1,	70,	1,33
11	ERYTHROPS ERYTHROPHTHALMA		1.	71.	1,33
12	ORCHOMENELLA FINGUIS		1.	72.	1.33
13	ARGISSA HAMATIPES		, 1. .	73.	1.33
14	NUCULA DELPHINODONTA		1.	74.	1.33
15	CERASTODERMA FINNULATUM		1.	75.	1.33
NUMBE	ER OF SPECIES 15		· .		

NUMBER OF INDIVIDUALS 75,

INDIVIDUALS FER M2 750

 \sim

Ļ

.

CUM % 30.67 50.67 66.67 78.67 82.67 85.30 90.67 92.00 93.33 94.67 96.00 97.33 98.67 100.00

	CRUISE EX8001 STATION 41 GRAB 1				
RANK	SPECIES NAME	COUNT	CUM COUNT	×	CUM %
1	AMFELISCA ABDITA	365.	365,	45.17	45.17
2	NEPHTYS SP.	297.	662.	36.76	81.93
3	FOLYDORA LIGNI	35.	697,	4.33	86,26
4	PHOTIS MACROCOXA	21.	718.	2.60	88.86
5	MEDIOMASTUS AMBISETA	13,	731.	1.61	90.47
6	NASSARIUS TRIVITTATUS	12.	743.	1.49	91,96
7	TELLINA AGILIS	10,	753.	1.24	93.19
8	FRIONOSPIO STEENSTRUFI	6.	759.	0.74	93,94
9	DULICHIA MONOCANTHA	6.	765.	0.74	94.6B
10	OLIGOCHAETA	5.	770,	0.62	95.30
11	ORCHOMENELLA PINGUIS	5.	775.	0.62	904.92
12	CIRRATULIDAE	4.	779.	0.50	96.41
13	EUDORELLA TRUNCATULA	4.	783.	0,50	96.91
14	OXYUROSTYLIS SHITHI	4.	787.	0.50	97.40
15	CAPITELLA CAPITATA	3.	790.	0,37	97.77
16	HETEROMASTUS FILIFORMIS	з.	793.	0.37	98.14
17	NINDE NIGRIPES	2.	795.	0.25	98,39
18	PHOLOE MINUTA	2.	797.	0.25	78.64
19	PHERUSA AFFINIS	2.	799.	0.25	98.89
20	ANEMONE A	1.	800.	0.12	79.01
21	SCOLOPLOS SP.	1.	B01.	0.12	99.13
22	ARICIDEA JEFFREYSII	1.	802.	0.12	99.26
23	PHYLLODOCE MACULATA	1,	803.	0.12	99.38
24	SYLLIDAE	1.	804.	0.12	99.50
25	ETEONE LONGA	1.	805.	0.12	99.63
26	MALDANOFSIS ELONGATA	1.	806.	0.12	99,75
27	MELITA N.SF.	1.	807.	0.12	99.88
28	MULINIA LATERALIS	1.	808.	0,12	100.00
29	CAMPANULARIA	+			
NUMBE	ER OF SPECIES 29				
NUMBE	R OF INDIVIDUALS 800.+			-	
INDI	VIDUALS PER M2 8080+				

Έ R	UISE EX8001	STATION	42 GRA	B 1	~			
2					COUNT	CUM COUNT	7.	CUM %
RANK	SPECIES	NAME			235.		86.40	86.40
1	AGLAOPHAMUS N	EOTENUS			233.		2,21	88.60
2.	SFIRORBIS BOR	EALIS			4.	245.	1.47	90.07
3	DULICHIA MONO	CANTHA			4.		1,47	91.54
4	NASSARIUS TRI	VITTATUS			7	757	1.10	92.65
5	NEPHTYS INCIS				3.	255.	1,10	93.75
6	MULINIA LATER	ALIS			3.	258.	1.10	94.85
7	HYDROBIA SP.				2.	260.	0.74	95.59
в	DIASTYLIS SCU				2.	262.	0.74	96.32
9	SPIRORBIS SP.				1.	263.	0.37	96.69
10	AEGININA LONG	ICORNIS			1.	264.	0.37	97.06
11	EUDORELLA TRU	NCATULA			1.	265.	0.37	97.43
12	AMPELISCA ABI				1.	266.	0.37	97,79
13	ORCHOMENELLA				1.	267.	0.37	98.16
14	METERYTHROPS				1.	268.	0.37	98,53
15	NEOMYSIS AMER	ICANA			1.	269.	0.37	98.90
16	ANEMONE A				1.	270.	0.37	99.26
17	POLYDORA LIG				1.	271.	0.37	99.63
. 18	NEREIS VIRENS	5			1.	272.	0.37	100.00
19	GEMMA GEMMA							
NUMBER	OF SPECIES	19						
NUMBER	OF INDIVIDUALS	3 272.	,					

-

INDIVIDUALS PER M2 2720

C	RUISE EX8001	STATION 43	GRAÐ 1				
RANK	SPECIES	NAME		COUNT	CUH COUNT	X	CUM
1	AGLADPHAMUS NE	OTENUS		24.	24.	54.55	54.
2	NEOMYSIS AMERI	CANA		12,	36.	27,27	81.0
3	ANEMONE A			4.	40.	9.09	90.9
4	METERYTHROPS R	OBUSTA		1.	41.	2,27	93.1
5	YOLDIA LIMATUL	A		1.	42.	2.27	95.4
6	MULINIA LATERA		-	1	43.	2,27	97.7
7	NASSARIUS TRIV			1.	44.	2.27	100.0
NUMBER	OF SPECIES	7			×		
NUMBER	OF INDIVIDUALS	44.					
INDIU	DUALS PER M2	440					

.

/

	CRUISE EX8001 STATION 44 (GRAB 1				
RANK	SPECIES NAME		COUNT	CUM COUNT	7	CUM %
1	AMPELISCA ABUITA		563.	563.	26.27	26.27
2	COROPHIUM CRASSICORNE		440.	1003.	20,53	46.80
3	FRIONOSPID STEENSTRUPI		264.	1267.	12.32	59.12
4	LUMBRINERIS TENUIS		207.	1474.	9,66	68.78
5	AGLAOFHAMUS NEOTENUS		116.	1590.	5.41	74.20
6	ARICIDEA JEFFREYSII		106.	1696.	4.95	79.14
7	PHOTIS MACROCOXA		75.	1771.	3,50	82.64
8	MEDIOMASTUS AMBISETA		51.	1822.	2,38	85.02
9	DULICHIA MONOCANTHA		. 46.	1868.	2.15	87.17 89.27
10	FHOXOCEPHALUS HOLBOLLI		45.	1913.	2.10 1.77	91.04
11	ORCHOMENELLA FINGUIS		38.	1951.	1.68	92,72
12	EUDORELLA TRUNCATULA		36.	1987.	1.68	94.31
13	NINCE NIGRIFES		34.	2021.	1.26	95.57
14	PHYLLOIOCE MUCOSA		27.	2048.	0.65	
15	DIASTYLIS SCULPTA		14.	2062.	0.60	76.83
16	FHOLOE MINUTA		13.	2075. 2086.	0.51	97.34
17	ETEONE LONGA		11. 7.	2088.	0.33	97.67
18	AMPHARETE ACUTIFRONS		_		0.23	97.90
19	SCOLOFLOS SF.		· 5.	2098.	0,23	98,13
20	NEPHTYS INCISA		5,	2103.	0.23	98.37
21	SACCOGLOSSUS KOWALEVSKII		J, 4.	2112.	0,19	78,55
22	POTAMILLA NEGLECTA Nemeritea a		4.	2112.	0.19	98,74
23 24	OLIGOCHAETA		3.	2119.	0.14	98.88
24 25	AMFHARETE ARCTICA		3.	2122.	0.14	99.02
25	MACOMA BALTHICA		3.	2125.	0.14	99.16
27	OWENIA FUSIFORMIS		2,	2127.	0.09	99.25
28	LUMBRINERIS BREVIPES		2.	2129.	0.09	99.35
29	ARGISSA HAMATIPES		2,	2131.	0.09	99.44
30	ASABELLIDES OCULATA		1.	2132.	0.05	99.49
31	STAURONEREIS CAECUS		1.	2133.	0.05	99.53
32	MICROPHTHALMUS ABERRANS		1.	2134.	0.05	99,58
33	POLYCIRRUS MEDUSA		1.	2135.	0.05	99.63
34	FHYLLODOCE MACULATA		1.	2136.	0.05	99.67
35	METERYTHROPS ROBUSTA		1.	2137.	0.05	99.72
36	DIASTYLIS FOLITA		1.	2138.	0.05	99.77
37	UNCIOLA IRRORATA		1.	2139.	0.05	99.81
38	NEMERTEA H		1.	2140.	0.05	99.86
39	CERIANTHUS BOREALIS		1.	2141.	0.05	99,91
40	NUCULA DELFHINODONTA		1.	2142.	0.05	99.95
41	TELLINA AGILIS		1.	2143.	0.05	100.00
42	HYDROID A		+			
NUMB	ER OF SPECIES 42					
NUMB	ER OF INDIVIDUALS 2143.+					

INDIVIDUALS PER M2 21430+

,

	CRUISE EXBOO1	STATION 45	GRAB 1				
RANK	SPECIES	NAME		COUNT	CUM COUNT	7.	CUM %
1	AGLAOPHAMUS N	EOTENUS		406.	406.	60.15	60.15
2 3	FRIONOSFIO ST	EENSTRUPI		110.	516.	16.30	76.44
	ARICIDEA JEFF	REYSII		55.	571.	8.15	84.59
4	THARYX SP.			53.	624.	7.85	92.44
5	NINOE NIGRIFE	5		13,	637,	1.93	94.37
6	NEREIS VIRENS			9.	646.	1.33	95.70
7	MEDIOMASTUS A	MBISETA		6.	652.	0.89	96.59
8	COROFHIUM CRA	SSICORNE		5,	657.	0.74	97.33
9	SCOLOFLOS SP,			4.	661.	0.59	97.93
10	MICROPHTHALMU	S ABERRANS		. 3.	664.	0.44	98.37
11	YOLDIA LIMATU	LA		1.	665.	0.15	98.52
12	CEREBRATULUS	LACTEUS		1.	666,	0.15	98.67
13	DXYURDSTYLIS	SMITHI		1.	667.	0.15	98.81
14	EUDORELLA TRU	NCATULA		1.	668.	0.15	98.96
15	AMPELISCA ABD	ITA		1.	669.	0.15	99.11
16	FHOXOCEPHALUS			1.	670.	0.15	99.26
17	UNCIOLA IRROR			1.	671.	0.15	99.41
18	CASCO BIGELOW	I		1.	672.	0,15	99.56
19	OLIGOCHAETA			. 1.	673.	0.15	99.70
20	ETEONE LONGA			1.	674.	0.15	99.85
21	NEPHTYS INCIS	A		1.	675.	0.15	100.00
NUMB	ER OF SPECIES	21					
NUMBI	ER OF INDIVIDUALS	675.					
INDI	VIDUALS FER M2	6750					

.

				x	CUM X
RANK	SPECIES NAME	COUNT		43.85	43,85
1	NUCULA DELPHINODONTA	503.	503.		
2	LUMBBINERIS TENUIS	206.	709.	17.96	61.81
3	PHOXOCEPHALUS HOLBOLLI	159.	868.	13.86	75.68
4	EUDORELLA TRUNCATULA	42.	910.	3.66	79.34
5	PHOTIS MACROCOXA	39.	949.	3.40	82.74
6	PHYLLODOCE MUCDSA	28.	977.	2.44	85.18
7	PRIONOSPIO STEENSTRUPI	27.	1004.	2.35	87.53
8	AMPELISCA ARDITA	27.	1031.	2.35	89.89
9	NINCE NIGRIPES	24.	1055.	2.07	91.98
10	ORCHOMENELLA PINGUIS	20.	1075.	1.74	93.72
11	AGLAOPHAMUS NEOTENUS	11.	1086.	0.96	94.68
12	DIASTYLIS SCULPTA	11.	1097.	0.96	95.64
13	UNCIDLA IRRORATA	<u>6</u> ,	1103.	0.52	96.16
14	ARICIDEA JEFFREYSII	5.	1108.	0.44	96.60
15	ETEONE LONGA	4.	1112.	0.35	96.95
16	AMPHARETE ARCTICA	4.	1116.	0.35	97.30
17	LEPTOCHEIRUS FINGUIS	4.	1120.	0.35	97.65
18	OLIGOCHAETA	· 3.	1123.	0,26	97.91
19	CEREBRATULUS LACTEUS	. 3.	1126.	0,26	98.17
. 20	EDOTEA TRILOBA	3.	1129.	0.26	98.43
21	NEMERTEA C	2.	1131.	0.17	98.60
22	CERIANTHUS BOREALIS	2.		0.17	98,78
23	COROPHIUM CRASSICORNE	2.	1135.	0.17	98.95
24	CASCO BIGELOWI	2.	1137,	0.17	99.13
25	MEDIOMASTUS AMBISETA	1.	1138,	0.09	99,22
26	NEREIS VIRENS	1.	1139.	0.09	99.30
27	PHYLLODOCE GROENLANDICA	1.	1140.	0.09	99.39
28	SCOLOPLOS SP.	1.	1141,	0.09	99.48
29	PHOLOE MINUTA	1.	1142.	0.09	99.56
30	NEPHTYS INCISA	1.	1143.	0.09	99.65
31	LUMBRINERIS FRAGILIS	1.	1144.	0.09	99.74
32	GOLFINGIA VERRILLII	1.	1145.	0.09	99.83
33	CANCER IRRORATUS	1.	1146.	0.09	99.91
34	YOLDIA LIMATULA	1.	1147.	0.09	100.00
35	MEMBRANIFORIDAE	+			
36	MEMBRANIPORIDAE	+			

36 NUMBER OF SPECIES NUMBER OF INDIVIDUALS 1147.+ INDIVIDUALS PER M2 11470 +

~

/

C	RUISE EX8001	STATION 47	GRAB 1				
RANK	SFECIES NAME			COUNT	CUM COUNT	%	CUM %
1	DIASTYLIS SCULPTA			20.	20,	25.00	25.00
2	NASSARIUS TRIVITTATUS			11.	31.	13.75	38.75
3	LUMBRINERIS TENUIS			9.	40.	11.25	50.00
4	NINDE NIGRIFES			9.	49,	11.25	61,25
5	EUDORELLA TRUNCATULA			5.	54.	6.25	67.50
6	FHYLLODOCIDAE			3.	57,	3,75	71.25
7	AMPHIPHOLIS SQUAMATA			з.	60.	3,75	75,00
8	AMPHARETE ACUTIFRONS			2.	62,	2,50	77.50
9	FHERUSA AFFINIS			2.	64.	2.50	80.00
10	PAGURUS LONGICARPUS			2.	66.	2.50	82.50
11	AMPELISCA ABDI	TA		2.	68.	2.50	85.00
12	LEPTOCHEIRUS PINGUIS			2.	70.	2.50	87.50
13	UNCIOLA IRRORATA			2.	72.	2.50	90.00
14	ETEONE LONGA			1.	73.	1.25	91,25
15	NEREIS VIRENS			1.	74.	1,25	92,50
16	ARGISSA HAMATIPES			1.	75.	1.25	93,75
17	ANDMIA ACULEATA			1.	76,	1.25	95.00
18	CRENELLA DECUSSATA			1.	77.	1.25	96.25
19	ASTARTE UNDATA			1.	78,	1.25	97,50
20	CERASTODERMA FINNULATUM			1.	79.	1.25	98.75
21	ASTERIAS SP.			1.	80.	1.25	100.00
22	MEMBRANIPORIDAE			+			
23	MEMBRANIFORIDA	E		+			
NUMBER	OF SPECIES	23					
NUMBER	OF INDIVIDUALS	80.+					

INDIVIDUALS FER M2 800+

.

.

RANK	SPECIES NAME	1	солит	CUM COUNT	z	CUH %
1	NUCULA DELPHINODONTA		454,	454.	33.56	33,56
2	DUDTIC HACDOCOVA		190.	644,	14.04	47.60
3	EDOTEA TRILOBA		91.	735.	6.73	54.32
4	EUDORELLA TRUNCATULA		88,	823.	6.50	60.83
Ś	ORCHOMENELLA FINGUIS		86.	909.	6.36	67,18
6	DIASTYLIS SCULPTA		68.	977,	5.03	72.21
7	FHYLLODOCE MUCDSA		61.	1038.	4.51	76.72
. 8	AMPELISCA VADORUM		44.	1082,	3.25	79.97
9	FHOXOCEPHALUS HOLBOLLI		39.	1121.	2.88	82.85
10	LUMBRINERIS TENUIS		36.	1157.	2.66	85.51
. 11	CRENELLA DECUSSATA		23.		1.70	87.21
12	UNCIDLA IRRORATA		23.	1203.	1.70	88.91
13	FRIONOSPIO STEENSTRUPI		21.	1224.	1.55	90.47
14	COROPHIUM CRASSICORNE	-	16.	1240.	1,18	91.65
15	HARFINIA PROPINQUA		15.	1255	1,11	92.76
16	ARICIDEA JEFFREYSII		13.	1268,	0.96	93.72
17	NINDE NIGRIFES		13.	1281,	0.96	94+68
18	PITAR MORRHUANA		7.	1288.	0.52	95,20
19	SCOLOPLOS SP.	· · · · ·	6.	1294.	0.44	95.64
20	LUMBRINERIS FRAGILIS		6.	1300.	0.44	96.08
21	ANEMONE B		4.	1304.	0.30	96,38
22	NUCULA ANNULATA		4.	1308.	0.30	96.67
23	MYA ARENARIA	,	4.	1312.	0.30	96.97
23	ECHINARACHNIUS FARMA		3.	1315.	0.22	97.19
25	AMPHARETE ARCTICA		3.	1318.	0.22	97.41
26	CERIANTHUS BOREALIS		3.	1321.	0.22	97.63
20 27	FHILINE FINMARCHIA		3.	1324.	0.22	97.85
27			3.	1324.	0.22	98.08
28	CARDITA BOREALIS NASSARIUS TRIVITTATUS		3.	1330.	0.22	98.08
30	AGLAOFHAMUS NEOTENUS	·	2.	1332.	0.15	98.45
31	PHOLOE MINUTA		2.	1334.	0.15	98.60
32	PERIFLOMA FAFYRATIUM		2.	1334.	0.15	98.74
32			2.	1338.	0.15	
	MODIOLUS MODIOLUS					78.87
34	LYONSIA HYALINA	· .	2, 2,	1340.	0.15	99.04
35 36	LEFTOCHEIRUS FINGUIS	· · · ·		1342. 1343.	0.15 0.07	99.19 99.26
	PHERUSA AFFINIS		1.			
37	SPIDPHANES BOMBYX		1.	1344.	0.07	99.33
38	ETEONE LONGA	· · ·	1.	1345.	0.07	99.41
39			1.	1346.	0.07	99.48
40	LINEUS RUBER		1.	1347.	0.07	99.56
41	NEMERTEA E		1.	1348.	0.07	99.63
42	CEREBRATULUS LACTEUS		1.	1349.	0.07	99.70
43	NEMERTEA C		1.	1350.	0,07	99.78
44	CERASTODERMA FINNULATUM		1.	1351.	0.07	99.85
45	MACOMA BALTHICA		1.	1352.	0.07	99.93
46	ARGISSA HAMATIFES		1.	1353.	0.07	100.00
NUMBER	OF SPECIES 46					

INDIVIDUALS FER M2 13530

-

RANK	SPECIES NAME	COUNT	CUM COUNT	%	CUM ;
1	PRIONOSPIO STEENSTRUFI	41.	41,	26.11	26.1
2	ECHINARACHNIUS FARMA	17.	58,	10.83	36.9
3	NUCULA DELPHINODONTA	17.	75.	10.83	47.7
4	UNCIOLA IRRORATA	11.	86.	7.01	54.7
5	POLYDORA QUADRILOBATA	8.	94.	5.10	59.1
6	NEMERTEA F	6.	100.	3,82	63.
7	DODECACERIA SP.	5.	105.	3.18	66.1
8	PHYLLODOCE MACULATA	5.	110.	3.18	70.
9	PHOLOE MINUTA	5.	115.	3.18	73.2
10	EDOTEA TRILOBA	5.	120,	3.18	76.
11	NASSARIUS TRIVITTATUS	5.	125.	3.18	79.
12	LUMBRINERIS TENUIS	4.	129.	2,55	82.
13	PHOXOCEPHALUS HOLBOLLI	4.	133.	2.55	84.
14	CRENELLA DECUSSATA	4.	137.	2.55	87.
15	OLIGOCHAETA	3.	140.	1.91	87.
16	AMPHIPHOLIS SQUAMATA	2,	142.	1.27	90.
17	PHASCOLION STROMBI	1.	143.	0.64	91.0
18	ASTERIAS SP.	1.	144.	0.64	91.
19	TEREIBELLIDAE	1.	145.	0.64	92.
20	SYLLIS GRACILIS	1.	146.	0.64	92.9
21	POLYDORA SOCIALIS	1.	147.	0.64	93.0
22	AMPHARETIDAE	1.	148.	0.64	94.
23	GATTYANA CIRROSA	1.	149.	0.64	94.9
24	HARMOTHOE EXTENUATA	1.	150.	0.64	95.5
25	OPHELINA ACUMINATA	- 1.	151.	0.64	96.1
26	LIMNORIA LIGNORUM	1.	152.	0.64	96.6
27	CANCER BOREALIS	1.	153.	0.64	97,4
28	PAGURUS ARCUATUS	1.	154.	0.64	. 98.0
29	MYA ARENARIA	1.	155.	0.64	98.7
30	CARDITA BOREALIS	1.	156.	0.64	99.3
31	DENOPOTA BICARINATA	1.	157.	0.64	100.0
32	SERTULARIA PUMILA	+			
33	MEMBRANIFORA SP.	+			
JHBER	OF SPECIES 33				

INDIVIDUALS PER M2 1570+

-

	CRUISE EX8001 STATION 50	GRAB 1		COUNT	CUM COUNT	%	CUM %
5.4.11	SPECIES NAME			COUNT 17,	17.	13.60	13.60
RANK 1	POLYCIRRUS EXIMUS			12,	29.	9.60	23.20
2	AMPHARETE ARCTICA			10.	39.	8.00	31.20
3	NASSARIUS TRIVITTATUS			10.	49.	8,00	39.20
4	PHOXOCEPHALUS HOLBOLLI		. '		58.	7.20	46.40
5	ARCHIANNELIDA			ý.	67.	7,20	53,60
6	FRIONOSFID STEENSTRUPI			7.	74.	5,60	59.20
7	EUCLYMENE COLLARIS		+*	6.	80.	4.80	64.00
é	DLIGOCHAETA			6.	86.	4.80	68.80
	EXOGONE HEBES			5.	91.	4.00	72.80
10	CEREBRATULUS LACTEUS			5.	96.	4.00	76.80
11	FOLYDORA SOCIALIS			4.	100.	3,20	80.00
12	NEMERTEA F			4.	104.	3,20	83.20
13	THARYX SF'.			3.	107.	2.40	85.60
14	FHOLDE MINUTA		1	3.	110.	2,40	88.00
15	CHIRODOTEA COECA		11 A.	· 1.	111.	0.80	88.80
16	SPHAEROSYLLIS ERINACEUS			1.	112.	0.80	89.60
17	SPIOPHANES BOMBYX			1.	113.	0.80	90.40
18	AGLADPHAMUS CIRCINATA			· 1.	114.	0.80	91.20
19	HARMOTHDE EXTENUATA			1.	115.	0.80	92.00
20	OWENIIDAE			1	116.	0.80	92.80
21	PHYLLODOCE MACULATA			1.	117.	0.80	93.60
22	PARADNIS LYRA			1	118.	0.80	94.40
23	AMPHIPHOLIS SQUAMATA		**	1.	119.	0.80	95.20
24	ECHINARACHNIUS PARMA			1.	120.	0.80	96.00
.25	PHILINE FINMARCHIA			1.	121.	0.80	96,80
26	AMPELISCA AGASSIZI		,	1.	122.	0.80	97.60
27	HALIMEDON SP.			1,	123.	0.80	98.40
28	ANDNYX LILJEBORGI		,	1.	124.	0.80	99.20
29	UNCIOLA IRRORATA			1.	125.	0.80	100.00
30	FDOTEA TRILOBA		•	+			
31	MEMBRANIFORIDAE			. +			
32	MEMBRANIFORIDAE			• -			
NUM	BER OF SPECIES 32						
	BER OF INDIVIDUALS 125.+		•	1			

/

-

-

INDIVIDUALS FER M2 1250+

.

.

.

.

••

 γ_{ij}

•

.

• * • ,

,	CRUISE EXBOO1 STATION 51	GRAÐ 1				
RANK	SPECIES NAME		COUNT	CUM COUNT		
1	LUMBRINERIS TENUIS		145.	145.	~ *	CUM X
2	NUCULA DELPHINODONTA		92.	237.	27.46	27.46
3	NINDE NIGRIPES		82,	319.	17.42	44.89
4	PRIDNOSPIO STEENSTRUPI		46.	365.	15.53	60.42
5	EUDORELLA TRUNCATULA		34.	399.	8.71	69.13
6	AGLAOPHAMUS NEOTENUS			415.	6.44	75.57
7	CEREBRATULUS LACTEUS		10.	426.	3.03	78.60
8	ARICIDEA JEFFREYSII		10.	436.	2.08	80.68
9	DIASTYLIS SCULPTA		8.	444.	1.89	82,58
10	PITAR MORRHUANA		7.	451.	1.52	84.09
11	PHOXOCEPHALUS HOLPOLLI		6.	457.	1.33	85.42
12	PARAONIS GRACILIS		6.	463.	1,14 1,14	86.55
13	AMPHARETE ARCTICA		6,	469.	1.14	87.69
14	MYA ARENARIA		6.	475.	1.14	88.83
15	PHYLLODOCE MUCOSA		5.	480.	0.95	87.96
16	NEPHTYS INCISA		5.	485.	0.95	90.91
17	AMPELISCA -AGASSIZI		4.	487.	0.76	91.86
18	ARGISSA HAMATIPES		4,	493.	0.76	92,61
19	PHOLOE MINUTA		4.	497.	0.76	93.37
20	HARPINIA PROPINQUA		3.	500.	0.57	94.13
21	ASABELLIDES DCULATA		. 3.	503.	0.57	94.70
22	ETEONÉ LONGA		3.	503.		95.26
23	CERIANTHUS BOREALIS		3.	509.	0.57	95.83
24	PERIPLONA PAPYRATIUM		3.	512.	0.57	96.40
25	ORCHOMENELLA PINGUIS		2.	512.	0.57	96.97
26	SCOLOPLOS SP.		2.	516.	0.38 0.38	97.35
27	ARCTICA ISLANDICA		2.	516.	0.38	97.73
28	PAGURUS LONGICARPUS		1.	519.	0.38	98.11
29	STENOPLEUSTES INERMIS		1.	520.	0.19	98.30
30	PHOTIS MACROCOXA		1.	521.	0.19	98.48
31	EUCLYMENE COLLARIS		1.	522.		98.67
32	ANEMONE A		1.	523.	0.19	98.86
33	NEMERTEA E		1.	524.	0.19	99.05
34	MODIOLUS MODIOLUS		1.	525.	0.19	99.24
35	YOLDIA LIMATULA		1.	525,	0.19	99.43
36	CERASTODERMA FINNULATUM		1.	527	0.19	99.62
37	NASSARIUS TRIVITTATUS		1.	528.	0.19	99.81
NUMBER	OF SPECIES 37		1,	J28,	0.19	100.00
	OF INDIVIDUALS 528.					

INDIVIDUALS PER M2

7

5280

-

COUNT	CUM COUNT	%	CUM %
459	459.	60.32	60.32
79.	538.	10.38	70,70
44.	582,	5,78	76.48
35.	617.	4.60	81.08
32.	649,	4.20	85,28
24.	673.	3.15	88.44
23.	696.	3.02	91.46
19.	715.	2.50	93.96
11	726,	1.45	95.40
5.	731,	0.66	96.06
4.	735.	0.53	96.58
3.	738.	0.39	96.98
2,	.740.	0.26	97.24
2.	742.	0,26	97.50
2.	744.	0.26	97.77
2.	746.	0.26	98.03
2.	748.	0.26	98.29
2.	750.	0.26	98.55
2,	752.	0.26	98.82
1.	753.	0.13	98.95
1.	754.	0.13	99.08
1.	755.	0.13	99.21
1.	756.	0.13	99.34
1.	757.	0.13	99.47
· 1.	758.	0.13	99,61
1,	.759.	0.13	99.74
1.	760.	0.13	99.87
1.	761.	0.13	100.00
+			

,

.

~

RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19	SPECIES N PRIONOSPID STEE AGLAOPHAMUS NEO ARICIDEA JEFFRE LUMBRINERIS TEN NUCULA DELFHINO FHYLLOBOCE MUCO SCOLOPLOS SP. EUDORELLA TRUNC NINOE NIGRIFES OLIGOCHAETA OWENIA FUSIFORM PHOXOCEPHALUS H CEREBRATULUS LA MEDIOMASTUS AME AMFHARETE ARCTI ETEONE LONGA NEPHTYS INCISA MODIOLUS MODIOL PITAR MORRHUAME	NSTRUFI TENUS YSTI UIS TONTA SA ATULA IIS IOLROLLI ICTEUS IISETA ICA
10		
	OWENIA FUSIFORM	IS
12	FHOXOCEFHALUS H	IOL ROLL I
13	CEREBRATULUS LA	CTEUS
14		
15		CA
16		
17		
	MODIOLUS MODIOL	us
		4
20	NEMERTEA C	
21	FHOLOE MINUTA MALDANOFSIS ELC	
22	MACOMA BALTHICA	
23	SOLEMYA BOREAL	
24	HYDROBIA SP.	10
25	AMPELISCA ARDI	TΔ
26	LEPTOCHEIRUS P	TNGUIS
27	NEOMYSIS AMERI	
28	SERTULARIA FUM	ILA
2,9	SERIOLARIA TON	
NUMBER	OF SPECIES	29

CRUISE EXBOO1

•

GRAB 1

STATION 52

NUMBER	0F	INDIVIDUALS	761.+

INDIVIDUALS	PER	M2	7610+
THUTATTONEO			

167

. -

ANK	SPECIES NAME	COUNT	CUM COUNT	%	CUM %
1	OLIGOCHAETA	281.	281.	33,49	33.4
2	PHOLDE MINUTA	156,	437.	18.59	52.0
3	ARICIDEA JEFFREYSII	128,	565.	15.26	67.3
4	PHOXOCEPHALUS HOLBOLLI	43,	608.	5.13	72.4
5	FRIONOSPID STEENSTRUFI	43.	651.	5.13	77.5
6	MEDIOMASTUS AMBISETA	28.	679.	3.34	80.9
7	LUMBRINERIS TENUIS	22.	701.	2.62	83.5
8	THARYX SP.	19.	720.	2.26	85.8
9	SYLLIS CORNUTA	19.	739.	2.26	88.0
10	CORDPHIUM INSIDIOSUM	10.	749.	1.19	89.2
11	ETEONE LONGA	9.	758,	1.07	90.3
12	ALVANIA ARENARIA	8.	766.	0.95	91.3
13	NUCULA DELFHINODONTA	7.	773.	0,83	92.1
14	AMPHIPHOLIS SQUAMATA	7.	780.	0.83	92.9
15	NINDE NIGRIPES	- 7,	787.	0.83	93.8
16	SCOLOPLOS ROBUSTUS	6.	793.	0.72	94.5
17	CRENELLA DECUSSATA	5.	798.	0.60	95.1
18	ASABELLIDES OCULATA	4,	802.	0.48	95.5
19	SCOLOFLOS SF.	4.	806.	0.48	96.0
20	NEREIS ZONATA	3.	809.	0.36	96.4
21	CEREBRATULUS LACTEUS	2.	811.	0,24	96.6
22	PHYLLODOCE MACULATA	2.	813.	0,24	96.9
23	SYLLIDAE	2.	815.	0.24	97.1
24	HARMOTHDE IMBRICATA	2.	817.	0.24	97.3
25	SYLLIS GRACILIS	2.	819.	0.24	97.6
26	CERIANTHUS BOREALIS	1.	820.	0.12	97.7
27	PHASCOLOPSIS GOULDII	1.	821.	0.12	97.8
28	COCCULINA SP.	1.	822.	0.12	97.9
29	PERIPLOMA PAPYRATIUM	1.	823.	0.12	98.0
30	MODIOLUS MODIOLUS	1.	824.	0.12	98.2
31	PANDORA GOULDIANA	1.	825.	0.12	98.3
32	ASTARTE UNDATA	1,	826.	0.12	98.4
33	CARDITA BOREALIS	1.	827.	0.12	98.5
34	SKENEOFSIS FLANORBIS	1,	828.	0.12	98.6
35	CANCER IRRORATUS	1,	829.	0.12	
36	HAPLOOPS TUBICOLA	1.	830.	0.12	98.9
37	LIMNORIA LIGNORUM	1,	831.	0.12	99.0
38	POLYCHAETE B	1,	832.	0.12	99.1
39	SPIRORBIS SP.	1.	033.	0.12	99.2
40	AUTOLYTUS SP.	1.	834.	0.12	99.4
41	EXOGONE HERES	1.	835.	0.12	99.5
42	POLYDORA SP.	1.	836.	0.12	99.6
43	LEFIDONOTUS SQUAMATUS	1.	837.	0.12	99.7
44	NEPHTYS CILIATA	1.	938.	0.12	99.8
45	PHYLLODOCIDAE	1.	839.	0.12	100.0
46	MEMBRANIPORIDAE				
47	CABEREA ELLISI	+			
48	HYDROZOA				
49	SERTULARIA FUMILA	+			
JMBER	OF SPECIES 49				
UMBER	OF INDIVIDUALS 839.+				

`

.

,

		LRUISE EXBOUL STATION 54	GRHE I					
	RANK	SPECIES NAME			COUNT	CUM COUNT	%	CUM %
	1	FRIONOSPIO STEENSTRUFI			1354.	1354.	68.07	68.07
	2	AMPELISCA AGASSIZI			264.	1618.	13.27	81.35
	3	NINDE NIGRIFES			45,	1663.	2+26	83.61
	4	SPID FILICORNIS			34.	1697.	1.71	85.32
	รี	MEDIOMASTUS AMBISETA			28.	1725,	1,41	86.73
	6				.23.	1748	1,16	87.88
	7	SCOLOPLOS SP.			22.	1770.	1,11	88.99
		LUMBRINERIS TENUIS			21.	1791.	1.06	90.05
	8	PHOTIS MACROCOXA						
	9	SABELLA PENICILLUS			16.	1807,	0.80	90.85
	10	THARYX SP.			12.	1819.	0.60	91.45
	11	NUCULA DELPHINODONTA		*	12.	1831.	0.60	92.06
	12	EUDORELLA TRUNCATULA			11.	1842.	0,55	92.61
	13	CASCO BIGELOWI		All and the second second	11.	1853.	0.55	93.16
	14	EDOTEA TRILOBA		1.4	9.	1862.	0.45	93.61
	15	ETEONE LONGA			.7.	1869.	0.35	93.97
	16	ARGISSA HAMATIPES		· · · · · · · ·	6.	1875.	0.30	94.27
	17	DIASTYLIS SCULPTA			5.	1880.	0.25	94.52
	18	PHOXOCEPHALUS HOLBOLLI			5.	1895.	0.25	94.77
	19	CRENELLA DECUSSATA			5.	1890.	0,25	95.02
	20	CERIANTHUS BOREALIS			4.	1894.	0.20	95.22
	21	ASARELLIDES OCULATA			. 4.	1898.	0.20	95.42
	22	RHODINE LOVENI			4.	1902.	0,20	95.63
•	23	PARADNIS GRACILIS			4.	1906.	0.20	95.83
	24	STENOPLEUSTES INERMIS			4.	1910.	0.20	96.03
	25	ORCHOMENELLA PINGUIS			4.	1914.	0.20	96.23
						1918.	0.20	96.43
	26	LEPTOCHEIRUS PINGUIS			4.			
	27	NEMERTEA K			3.	1921.	0.15	96.58
	28	NEMERTEA D			3.	1924.	0.15	96.73
•	29	NEMERTEA I	*		3.	1927.	0.15	96.88
	30	CEREBRATULUS LACTEUS			3.	1930.	0.15	97.03
	31	AMPHARETE ACUTIFRONS			, 3 .	1933.	0.15	97.18
	32	OLIGOCHAETA			3.	1936,	- 0.15	97.34
	· 33	PHYLLODOCE MUCOSA		,	3.	1939.	0.15	97.49
	34	STERNASPIS SCUTATA			з.	1942.	0.15	97.64
1	35	PETALOSARSIA DECLIVIS			3.	1945.	0.15	97.79
	36	AMPELISCA MACROCEPHALA			з.	1948.	0.15	97,94
	37	CERASTODERMA FINNULATUM		· .	. 3.	1951.	0.15	98.09
	38	FERIPLOMA FAFYRATIUM			з,	1954.	0.15	98.24
	39	NEMERTEA J			2.	1956.	0.10	98.34
	40	AGLAOPHAMUS NEDTENUS			2.	1958.	0.10	98.44
	41	DULICHIA MONOCANTHA		100	2.	1960.	0.10	98.54
	42	DIASTYLIS ARBREVIATA		· .	2.	1962.	0.10	98.64
-	43	MODIOLUS MODIOLUS			2.	1964.	0.10	98.74
	44	NUCULA ANNULATA			2.	1966.	0.10	98.84
. `	45	THYASIRA FLEXUOSA			2.	1968.	0.10	98.94
	46	FITAR MORRHUANA			2.	1970.	0.10	99.04
	47	NEMERTEA H			ĩ.	1971.	0.05	99.09
-	48	HARTMANIA MOOREI			1 .	1972.	0.05	99.14
	49	HARMOTHOE IMBRICATA			1.	1973.	0.05	99.20
	50	AMPHARETE ARCTICA			1.	1974.	0.05	99.25
	51	PRAXILLELLA GRACILIS			. 1	1975.	0.05	99.30
	52	SPIDPHANES BOMBYX		-	1.	1976.	0.05	99.30
	53	PHOLOE MINUTA			1.	1976.		99.35
	54				-		0.05	
		OFRELINA ACUMINATA			1.	1978.	0.05	99.45
	55	PHERUSA AFFINIS	- ,	,	1.	1979.	0.05	99.50
	56	GONIADA MACULATA		-	i .	1980.	0.05	99.55
	57	LAONICE CIRRATA			1.	1981.	0.05	99.60
	58	NEPHTYS INCISA			1.	1982.	0.05	99.65
	59	DIASTYLIS QUADRISPINOSA			1.	1983.	0.05	99.70
	60	CAMPYLASPIS RUBICUNDA	10 C		1.	1984.	0,05	99.75
	61	ANONYX LILJEBORGI			1.	1985.	0.05	99.80
	62	HAFLOOPS TUBICOLA			1.	1986.	0.05	99.85
	63	MYTILUS EDULIS			1.	1987.	0.05	99.90
	64	ARCTICA ISLANDICA			1.	1988.	0.05	99.95
	65	YOLDIA LIMATULA			1.	1989.	0.05	100.00
	NUMBE	R OF SPECIES 65						

GRAB 1

STATION 54

NUMBER OF INDIVIDUALS 1989.

CRUISE EX8001

.

÷,

·

.

INDIVIDUALS PER M2

19890

.

169

-

C	RUISE EX8001 STATION :	55 GRAB	1					
RANK	SPECIES NAME				COUNT	CUM COUNT	x	CUM %
1	PRIONOSPIO STENNSTRUPI				2562.	2562.	78.96	78.86
2	MEDIOMASTUS AMBISETA				119.	2681.	3.66	82.52
3	LEPTOCHEIRUS PINGUIS				104.	2785.	3.20	85.72
4	LUMBRINERIS TENUIS			-	71.	2856.	2.19	87.90
5	PHOXOCEPHALUS HOLBOLLI				62.	2918.	1.91	87.81
6	EUDORELLA TRUNCATULA				37.	2955.	1.14	90.95
7	HARPINIA PROPINQUA				25.	2980.	0.77	91,72
8	ORCHOMENELLA PINGUIS				24.	3004.	0.74	92.46
9	ETEONE LONGA				22.	3026.	0.68	93.14
10	DIASTYLIS SCULPTA				20.	3046.	0.62	93.75
11	ARICIDEA JEFFREYSII				19.	3065.	0.58	94.34
12	CERIANTHUS BOREALIS				16.	3081.	0.49	94.83
13	PHOTIS MACROCOXA				16.	3097.	0.49	95.32
14	THARYX SP.				14.	3111.	0.43	95.75
15	PHOLDE MINUTA				13.	3124.	0.40	96.15
16	PHYLLODOCE MUCOSA				13.	3137.	0.40	96.55
17	AGLAOPHAMUS NEOTENUS				12.	3149.	0.37	96.92
18	NEREIS GRAYI				11.	3160.	0.34	97.26
19	OLIGOCHAETA				11.	3171.	0.34	97.60
20	POTAMILLA NEGLECTA				7.	3178.	0.22	97.81
21	ARGISSA HAMATIPES				6.	3184.	0.18	98.00
· 22	NINDE NIGRIPES				5.	3189,	0.15	98.15
23	AMPELISCA AGASSIZI				4.	3193.	0.12	98.28
24	PARADNIS GRACILIS				4.	3197.	0.12	98.40
25	NUCULA DELPHINODONTA				4.	3201.	0.12	98.52
26	CEREBRATULUS LACTEUS				3.	3204.	0.09	98.61
27	OWENIA FUSIFORMIS				3.	3207.	0.09	98,71
28	CLYMENELLA TORQUATA				3.	3210.	0.09	98.80
29	BRADA VILLOSA				3.	3213.	0.09	98.89
30	OPHELINA ACUMINATA				3.	3216.	0.07	98.98
31	COROPHIUM CRASSICORNE				2,	3218.	0.06	99.05
32	ASABELLIDES OCULATA				2,	3220.	0.06	99.11
33	NEREIDAE				2.	3222.	0.06	99.17
34	PHERUSA AFFINIS				2.	3224.	0.06	99.23
35	AMPHARETE ARCTICA				2.	3226.	0.06	99.29
36	STAURONEREIS CAECUS				2.	3228.	0.06	99.35
37	NEPHTYS INCISA				2.	3230.	0.06	79.41
38	MODICLUS MODICLUS				2.	3232.	0.06	99.48
39	YOLDIA LIMATULA				2,	3234.	0.06	99.54
40	NUCULA ANNULATA				2.	3236.	0.06	99.60
41	CERASTODERMA FINNULATUM				2.	3238,	0.06	99.66
42	NEMERTEA D				1.	3239.	0.03	99.69
43	NEMERTEA C				1.	3240.	0.03	99.72
44	LEPTOSTYLIS LONGIMANA				1.	3241.	0.03	99.75
45	CASCO BIGELOWI				1.	3242.	0.03	99.78
46	MELITA N.SP.				1.	3243.	0.03	99.82
47	HARMOTHOE IMBRICATA				1.	3244.	0.03	99.85
48	CAPITELLA CAPITATA				. 1.	3245.	0.03	77.88
49	SCOLOPLOS SP.				1.	3246.	0.03	99.91
· 50	LUMBRINERIS FRAGILIS				1.	3247.	0.03	99.94
51	CARDITA BOREALIS				1.	3248.	0.03	99.97
52	PERIFLOMA PAPYRATIUM				1.	3249.	0.03	100.00
53	HYDROZOA				+			
NUMBER	OF SPECIES 53							

NUMBER OF INDIVIDUALS 3249.+

32490+

INDIVIDUALS PER M2

	CRUISE EX8001 STATION 56	GRAB 1					
RANK	SPECIES NAME	1		COUNT	CUM COUNT	x	CUM %
1	PRIONOSFIO STEENSTRUFI			92.	92.	44.88	44.88
2	EUDORELLA TRUNCATULA			41.	133.	20.00	64.88
3	NINDE NIGRIPES		· · · ·	10.	143.	4.88	69.76
4	SCOLOFLOS SP.			. 8.	151.	3.90	73.66
5	NUCULA DELPHINODONTA			8.	159.	3.90	77.56
6	ERYTHROPS ERYTHROPHTHALMA			6.	167.	3.90	B1,46
7	NEPHTYS INCISA		· ·	4.	171.	1.95	83,41
8	CEREBRATULUS LACTEUS		•	4.	175.	1,95	85.37
. 9	DIASTYLIS SCULPTA			4.	179.	1.95	87,32
10	BATHYMEDON SP.		1	· 4.	183.	1.95	89.27
11	ARICIDEA SUECICA			3,	186.	1,46	90.73
. 12	MEDIOMASTUS AMBISETA		-	2.	188.	0.98	91.71
13	THARYX SP.			2.	190.	0.98	92.68
14	ARICIDEA JEFFREYSII	•	,	2.	192.	0.98	93.66
15	HARTMANIA MOOREI			1.	193.	0.49	94.15
16	LUMBRINERIS TENUIS	-		1.	194.	0 • 49	94.63
17	AGLAOPHAMUS NEOTENUS			1.	195.	0.49	95.12
19	YOLDIA LIMATULA		•	1.	196.	0.49	95.61
19	PITAR MORRHUANA			1.	197.	0.49	96.10
. 20	PHILINE FINMARCHIA			1.	198.	0.49	96.59
21	HALIMEDON SP.			1.	199.	0.49	97.07
. 22	EUDORELLA HISPIDA			1.	200.	0.49	97.56
23	STENOPLEUSTES INERMIS			1.	201.	0.49	98.05
24	ARGISSA HAMATIPES			·1 •	202.	0.49	98.54
. 25	METOPELLA ANGUSTA			1.	203.	0.49	99.02
26	ORCHOMENELLA PINGUIS			1.	204.	0.49	99.51
27	METERYTHROPS ROBUSTA			1.	205.	0.49	100.00
NUMB	ER OF SPECIES 27						
NUMB	ER OF INDIVIDUALS 205.						
IUDI	VIDUALS PER M2 2050						

_

~

× .

~

-

.

.

.

	CRUISE EX8001 STATION 57 GRAB 1				
RANK	SPECIES NAME	COUNT	сим соинт	x	CUM %
1	PRIONOSFIO STEENSTRUPI	109.	109.	46.19	46.19
2	EUDORELLA TRUNCATULA	53.	162.	22.46	68.64
3	SCOLOPLOS SP.	16.	178.	6.78	75.42
4	NEPHTYS INCISA	11.	189.	4.66	80.08
5	CEREBRATULUS LACTEUS	6.	195.	2.54	82.63
6	ERYTHROPS ERYTHROPHTHALMA	4.	199.	1.69	84.32
7	MEDIOMASTUS AMBISETA	4.	203.	1.69	86.02
8	NUCULA DELPHINODONTA	3,.	206.	1.27	87,29
9	METERYTHROPS ROBUSTA	3.	209.	1.27	88.56
10	ARGISSA HAMATIPES	3,	212.	1.27	89.83
11	PETALOPROCTUS TENUIS	з.	215.	1.27	91.10
12	ARICIDEA JEFFREYSII	з.	218.	1,27	92.37
13	NINDE NIGRIPES	3.	221.	1.27	93.64
14	NASSARIUS TRIVITTATUS	2.	223.	0.85	94.49
15	BATHYMEDON SP.	2.	225.	0.85	95.34
16	OWENIIDAE	2,	227.	0.85	96.19
17	YOLDIA LIMATULA	1.	228.	0.42	96.61
18	CERASTODERMA PINNULATUM	1.	229.	0.42	97.03
19	DIASTYLIS SCULPTA	1.	230.	0.42	97.46
20	AMPELISCA VADORUM	1.	231.	0.42	97.88
21	STENOPLEUSTES INERMIS	1.	232.	0.42	9B.30
22	PARADNIS GRACILIS	1.	233.	0.42	98.73
23	LUMBRINERIS TENUIS	1.	234.	0.42	99.15
24	THARYX SP.	1.	235.	0.42	99.58
25	OLIGOCHAETA	1.	236.	0.42	100.00
NUMB	ER OF SPECIES 25				
NUMBI	ER OF INDIVIDUALS 236.				
INDI	VIDUALS PER M2 2360				

172

5

•*

-

~

-

.

/

C	RUISE EX0001	STATION 58	GRAB 1				
RANK	SPECIES	NAME		COUNT	CUM COUNT	×	CUM %
1	POLYDORA LIGN	łI		112.	112.	24.14	24.1
2	AGLAOPHAMUS N	ÆÖTENUS		109.	221.	23.49	47.6
3	AMPELISCA ABE	ITA		77.	298.	16.59	64.2
4	SCOLOFLOS SF.			40.	338.	8.62	72.8
5	POLYDORA SP,			39.	377.	8.41	81.2
6	TELLINA AGILI			32.	409.	6.90	88.1
7	MEDIOMASTUS A			19.	428.	4.09	92.2
8	ORCHOMENELLA	PINGUIS		9.	437.	1.94	94.1
9	NEOMYSIS AMER	ICANA		5.	442,	1.09	95.2
10	OLIGOCHAETA			4.	446.	0.86	96.1
11	ASABELLIDES C	CULATA		3.	449.	0.65	96.7
12	NASSARIUS TRI	VITTATUS		3.	452.	0.65	97.4
13	STREBLOSPIO B	ENEDICTI		1.	453.	0.22	97.6
14	THARYX SP.			1.	454.	0.22	97.8
15	ETEONE LONGA			1.	455.	0.22	98.0
16	PHERUSA AFFIN	IIS		1.	456.	0.22	98.2
17	MYTILUS EDULI			1.	457.	0.22	98.4
18	MULINIA LATER	ALIS		1.	458.	0.22	98.7
19	GEMMA GEMMA			. 1.	459.	0.22	98.9
20	PARACAPRELLA			1.	460.	0.22	99.1
21	DIASTYLIS SCU	ILPTA		1.	461.	0.22	99.3
22	HALIMEDON SP.			1.	462.	0.22	99.5
23	DULICHIA MONO	ICANTHA		1.	463.	0.22	99.7
24	PHOXOCEPHALUS	HOLPOLLI		1.	464.	0.22	100.0
NUMBER	OF SPECIES	24					
NUMBER	OF INDIVIDUALS	464.					
INDIVI	DUALS PER M2	4640					

☆ U. S. GOVERNMENT PRINTING OFFICE: 1983--600-861--364

,

•

ł