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ABSTRACT 

Study of Transit Bus Duty Cycle and its Influence on Fuel Economy and Emissions of Diesel – 

Electric Hybrids 

Jairo A. Sandoval León 

The Center for Alternative Fuels, Engines, and Emissions (CAFEE) of West Virginia University 

(WVU) is developing the Integrated Bus Information System (IBIS), an information resource on transit 

bus emissions for vehicle procurement purposes.  IBIS provides the transit bus industry with exhaust 

emissions information, including an emissions database, and predictive models for fuel economy (F.E.) 

and emissions.  Inputs for the models are in the form of drive cycle metrics, but the knowledge of such 

metrics is not readily available for transit agencies.   

The first part of this dissertation was an effort to close the gap between engineering drive cycle 

metrics and the information available to transit bus operators.  In cooperation with WMATA Transit, 

an extensive evaluation to characterize transit bus operation was performed.  This evaluation was 

based on GPS and ECU logs of diverse bus routes.  Instantaneous speed and road grade were 

determined for all the routes.  Transit operation was classified in four main service groups: Inner-City, 

Urban, Suburban, and Commuter.  Characterizing transit bus operation played an important role 

because it defined the parameters, and their ranges, to be used in F.E. and emissions models.   

The second part of the dissertation studied the effects that drive cycles have over emissions and 

F.E. of diesel-electric hybrid buses, focusing specifically in MY 2007-2009 diesel-electric series-

hybrid 40’ transit buses.  Using ANL’s PSAT, the hybrid bus was dynamically modeled and validated 

against chassis dynamometer test data.  As part of the vehicle dynamic model, a model was developed 

for fuel consumption and NOx emissions of the Cummins ISB 260H diesel engine.  The vehicle model 

was simulated over a variety of duty cycles assuming zero grade, producing a database of 

instantaneous fuel and NOx rates, with all tests satisfying SAE J2711’s restriction for state of charge.   

A regression based method was devised for predicting cycle F.E., CO2, and NOx, in which the 

inputs were average speed, percentage idle, and characteristic acceleration.  Fuel consumption and NOx 

were broken into the idle and driving contributions.  The driving portion was predicted with average 

speed without idle and characteristic acceleration without grade, and then aggregated with the idle 

contribution.  The proposed approach produced excellent predictions with coefficients of determination 

of 0.96 for F.E., 0.99 for CO2, and 0.99 for NOx.    

A tool was developed to allow transit agencies to place hybrid buses in routes that take the most 

advantage of the hybrid-electric capabilities and to evaluate emissions impacts in strategic planning 

and vehicle procurement.  The selection of the best routes is based on fuel savings.  Depending on the 

route, hybrid transit buses have the potential for saving between 0.5 and 1.2 gallons of fuel per hour 

per vehicle and 5 to 12 kg of CO2 per hour. 
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Chapter 1. INTRODUCTION 

Academic studies and in-use data from transit agencies have shown that the performance of hybrid-

electric buses is highly sensitive to driving behavior.   

When procuring new buses, transit agencies need to decide whether to buy conventional or hybrid 

technology; a decision that is affected by several factors: capital investment, fuel prices, emissions, 

familiarity with the technologies, and federal and/or state incentives, among others.  Life cycle cost 

and emissions evaluations play a key role in the analysis because they provide a global and detailed 

perspective on each particular choice (U.S. FTA, 2007).  A drawback of this approach is that it 

requires accurate information on duty cycles, fuel consumption, distance specific emissions, and their 

interdependences.   

On the other hand, transit agencies may conduct fuel economy comparison tests, in which they run 

both conventional and alternative-technology buses on certain routes for a period of time.  Such 

comparisons usually do not collect emissions data; they are expensive and time consuming, and, 

normally, are not affordable alternatives for small transit agencies.  Several factors must be considered 

when performing fuel economy comparisons (Chiang, 2007), for example, comparison among 

equivalent configurations, equal service schedules, evaluation time, maintenance schedule, fuel 

measurement method, a well defined test plan and pre-test evaluation of the selected vehicles.  

Therefore, an educated approach to the effects of duty cycle on emissions and fuel economy is needed. 

Engines for automotive applications are certified over the Federal Test Procedure (FTP) in the U.S. 

Heavy-duty diesel engines must comply with the EPA emissions standards presented in Table 1-1 

(source: DieselNet.com).  Prior to 2004, engines sold in the state of California had a different, more 

stringent, standard.  For emissions certification only the engine, separate from the vehicle, is tested 

using an engine dynamometer test facility.  Table 1-2 (source: DieselNet.com) presents the emissions 

regulations imposed by the European Union for heavy-duty diesel engines used in transit buses where 

the limits were converted from g/kWh to g/bhp∙hr.  The dynamometer cycles used are: ECE R-49 for 

Euro I and Euro II, European Stationary Cycle (ESC), European Transient Cycle (ETC), and European 

Load Response (ELR) test for smoke opacity.   

On the other hand, chassis-dynamometer vehicle tests measure fuel economy and emissions for the 

vehicle as a system.  Several test cycles exist for both light- and heavy-duty vehicles.  EPA Tier 2 and 

California LEVII (low emissions vehicle II) Standards require certification of passenger vehicles and 

light-duty trucks (EPA: up to 10,000 lbs –4,536 kg– GVWR, California: up to 14,000 lbs –6,350 kg– 
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GVWR).  For transit buses in the U.S., emissions standards are not based on chassis-dynamometer 

tests of complete vehicles, but engines are certified to the emissions levels required in Table 1-1. 

In order to comply with the 0.01 g/bhp∙hr particulate matter standard, diesel engines use diesel 

particulate filters (DPF), which have been proven to reduce engine-out PM levels by over 95%.  The 

stringent PM standard also poses a challenge in the particulate measurement system; laboratories 

throughout the U.S. were required to update their equipment (CFR 1065, 2006).  The 0.2 g/bhp∙hr NOx 

standard is being met with the implementation of advanced combustion control, exhaust gas 

recirculation, and selective catalytic reduction (SCR) urea injection systems. 

It is possible that in the near future the European Union will start regulating emissions of ultrafine 

PM, less than 0.1 μm in size, by particle number measurement; which will replace or complement the 

current filter based mass measurement methods (UNECE-GRPE, 2006, Giechaskiel et al., 2009).  For 

this purpose, the Particle Measurement Programme (PMP), managed by the Joint Research Centre 

(JRC), was established in 2001.  The PMP program developed the protocols and technologies 

necessary to put in place such particle number regulations (Martini et al., 2009). 

Table 1-1  Summary of EPA Emissions Standards for Heavy-Duty Diesel Engines, g/bhp∙hr 

Engine Model Year CO HC NMHC NOx PM 

1988 15.5 1.3  10.7 0.60 

1990 15.5 1.3  6.0 0.60 

1991 15.5 1.3  5.0 0.25 

1994 15.5 1.3  5.0 0.10 

1998 15.5 1.3  4.0 0.10 

2004 15.5 1.3 0.5 2.5
A 

0.10 

2007   0.14 1.2-1.5
B
 0.01 

2010   0.14 0.2 0.01 

A – NMHC + NOx 

B – Family Emission Limit (FEL) as a phase-in towards 0.2 g/bhp∙hr 

Table 1-2  European Union Emission Standards for Heavy-Duty Diesel Engines, g/bhp∙hr (Smoke in m
-1

) 

Tier Date Test CO HC NMHC NOx PM Smoke 

Euro I 1992, > 114 hp ECE R-49 3.4 0.8 
 

6.0 0.27 
 

Euro II 
1996.10 ECE R-49 3.0 0.8 

 
5.2 0.19 

 
1998.10 ECE R-49 3.0 0.8 

 
5.2 0.11 

 

Euro III 2000.10 
ESC / ELR 1.6 0.5 

 
3.7 0.07 0.8 

ETC 4.1 
 

0.6 3.7 0.12 
 

Euro IV 2005.10 
ESC / ELR 1.1 0.3 

 
2.6 0.015 0.5 

ETC 3.0 
 

0.4 2.6 0.022 
 

Euro V 2008.10 
ESC / ELR 1.1 0.3 

 
1.5 0.015 0.5 

ETC 3.0 
 

0.4 1.5 0.022 
 

Euro VI 2013.01 
ESC 1.1 0.10 

 
0.3 0.007 

 
ETC 3.0 0.12 

 
0.3 0.007 

 

Emissions results from chassis-dynamometer testing represent specific driving conditions set by 

the test schedule (speed-time or speed-distance) and are not easily extrapolated for other drive cycles, 



Chapter 1 – Introduction 

 

3 

e.g. cycles with different average speed, stops per mile, accelerations, idle, etc.  The work developed in 

this dissertation will provide fuel economy and emissions figures of diesel-electric hybrid transit buses 

under a wide range of driving conditions.  A regression model was developed to assist transit agencies 

achieve best advantage from their hybrid buses.  This dissertation focused specifically model year 

2007-2009 40’ diesel-electric hybrid buses.   

 

1.1. Background 

Current research is under way at the Center for Alternative Fuels, Engines, and Emissions 

(CAFEE) of West Virginia University (WVU) with the aim of predicting overall impact on emissions 

footprint of hybrid and conventional transit buses given driving characteristics.  The core of this 

research program is the Integrated Bus Information System (IBIS).  IBIS is an online based system that 

allows evaluation of the emissions and fuel efficiency implications of existing and emerging 

technology transit vehicles for the purposes of bus procurement and strategic planning (APTA, 2008; 

Marlowe, 2009).  Some of the features of IBIS are: searchable databases of transit vehicle emissions 

studies and predictive emissions modeling tools.  

Marlowe (2009) developed two tools for IBIS.  The first one is a multivariate polynomial 

regression tool capable of generating regression models based on distance specific emissions and drive 

cycle metrics.  Second, he developed a tool that expands the number of inputs to the emissions 

database using existing tests; this tool breaks second-by-second data into micro-trips, creates new 

cycles, and estimates emissions generating new entries into the dataset.  In the case of hybrids, given 

that the concatenated micro-trips are segments of overall cycles, they are not guaranteed to represent 

charge sustaining operation (zero delta battery state of charge, SOC).  Emissions tests must be reported 

to zero SOC (SAE J2711, SAE International, 2002) but the current IBIS approach cannot correct the 

new dataset inputs for SOC.  Also, SOC was not measured on a continuous basis in the test programs 

that collected the IBIS data.  Backbone models for clean diesel, CNG, and diesel-electric hybrid buses 

were developed.   

WVU (U.S. FTA, 2007) estimated emissions and fuel consumption for CNG, B20 biodiesel, diesel, 

and diesel-electric hybrid buses (MY 2007, 40’).  The report addressed life cycle costs of transit buses 

over their expected life of 12 years.  A summary of the results for the diesel-electric hybrid technology 

is presented in Table 1-3.  The cycles in Table 1-3 are presented in ascending average speed.  These 

data show that there are noticeable trends in NOx, CO2, and fuel economy; PM and NMHC on the 

other hand do not exhibit such obvious behavior.  These results cannot be extrapolated to other drive 

cycles or test weights. 
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Table 1-3  Summary of Estimated Emissions for MY 2007 Diesel-Electric Hybrids (U.S. FTA, 2007) 

Pollutant Emissions 
Cycle 

Manhattan OCTA CBD 

NOx (g/mi) 5.54 4.41 4.14 

PM (g/mi) 0.013 0.006 0.017 

NMHC (g/mi) 0.10 0.00 0.10 

CO2 (g/mi) 2,504 1,972 1,869 

Fuel Economy (mpg) 3.86 4.90 5.17 

 

The penetration of hybrid technologies in the U.S. transit industry has been significant during the 

last decade.  The American Public Transportation Association (APTA) reported that in 2005 there 

were nearly 500 Diesel-Electric hybrid transit buses in the U.S. (Wayne et al., 2009).  Their number 

has growth considerably ever since, Figure 1-1 shows the distribution of existing and ordered diesel 

hybrids larger than 30 ft through 2013 (APTA, 2009).  Based on these data, the diesel hybrid U.S. 

transit bus fleet is expected to reach at least 4,300 buses by 2014, which is almost 7% of the U.S. fleet.  

On the other hand the penetration of Gasoline-Electric hybrids buses remains minimal, with their 

number reaching less than 200 by 2014.  

 

Figure 1-1  Active/Ordered Diesel-Electric Hybrid Buses by Model Year (Source: APTA, 2009) 

 

1.2. Objectives 

The outcome of this dissertation helps to expand the IBIS knowledge database in two areas.  First, 

transit bus operation was characterized beyond the drive cycles available in the literature, through an 

evaluation of in-use routes and their properties.  This study had the cooperation of the Washington 

Metropolitan Area Transit Authority (WMATA).  Characterization of transit bus operation played an 

important role because it defined the parameters (and their ranges) to be used in fuel economy and 
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emissions prediction models.  The most significant parameters were average speed, percentage idle, 

and characteristic acceleration. 

Second, the effect of duty cycle on diesel-electric hybrid bus emissions and fuel economy was 

studied, and a regression based emissions model was developed.  This emissions regression model will 

be added to IBIS, where it will allow transit agencies to place hybrid buses in routes that take the most 

advantage of the hybrid-electric capabilities. 

The objectives of this dissertation were identified as two overall goals and a set of tasks that lead to 

the completion of the goals. 

Overall Goals: 

1. To carry out an evaluation to characterize transit bus operation.  This assessment seeks to bridge 

the gap between the engineering metrics of drive cycles and the information available to transit 

authorities about their bus operation, by developing correlations between the information available 

to transit agencies and the cycle metrics.   

2. To develop a modeling tool to evaluate the effects of driving (duty) cycle on the performance and 

emissions of diesel-electric hybrid transit buses to help transit agencies place hybrids on service 

routes that maximize their benefits.  The base vehicle was a 40’ transit bus, model year 2007-2009. 

 

Tasks for Duty Cycle Characterization: 

 Collect data from transit bus operation.  Reduce and process the data. 

 Characterize and categorize driving patterns, e.g. highly transient inner city, express routes, 

suburban, commuter, etc.    

 Determine the metrics and ranges of interest. 

 Correlate cycle metrics with the data available to transit agencies. 

 Develop an interface for IBIS to estimate cycle metrics from user inputs 

Tasks for Hybrid Emissions Modeling: 

 Determine the factors and parameters required for the model.   

 Obtain engine dynamometer emissions data for emissions and fuel economy models. 

 Construct and tune up a dynamic model for the hybrid bus in the Powertrain Systems Analysis 

Toolkit (PSAT) software. 

 Determine the emissions prediction procedure.   

 Project, given a drive cycle, emissions and F.E. from hybrid and conventional bus.   
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 Predict emissions over different routes and give an assessment as to what routes are most suitable 

for hybrid buses, i.e. the ones that best capitalize the hybrid system.   

 Develop a regression based modeling tool that allows transit agencies to evaluate on what routes to 

place their hybrid buses.   

 

1.3. Contributions 

This dissertation presents two main contributions, the first one being bridging the gap between 

engineering cycle metrics and the data available to the transit industry.  Relationships were developed 

to correlate transit bus activity information available to transit agencies with engineering drive cycles 

and metrics.  These relationships are the link between bus operation and the corresponding emissions 

and fuel economy figures.  No scholarly articles were found related to the subject. 

The second main contribution is a regression based NOx, CO2, and fuel consumption model (an 

addition to IBIS) which will allow transit agencies to place hybrid buses in routes that take the most 

advantage of the hybrid-electric capabilities.  Regressions were based on simulations of the dynamic 

model under conditions dictated by the drive cycle analysis. 

The proposed cycle emissions and F.E. prediction approach can be extended to other vehicle 

technologies such as conventional diesel, CNG, gasoline, etc. 

 

1.4. Research Approach 

In order to characterize transit bus activity, time-speed data was collected from a variety of transit 

bus routes.  Road grade was estimated from topographic map and GPS location.  Relationships 

between bus service and the engineering cycle metrics defined in the literature (e.g. average speed, 

standard deviation of speed, percentage idle, and kinetic intensity) were explored.   

An emissions and fuel consumption model was developed for the MY 2007 diesel engine; this 

engine model was then integrated into the PSAT model of the hybrid bus.  The engine emissions model 

was constructed from chassis-dynamometer test data; the model relied upon the accuracy of ECU 

broadcasts of engine torque and speed.  Data for the engine model was from a MY 2006 Cummins ISB 

260H engine. The model was appropriately scaled to match emissions standard of the MY 2007 

engine.  The model includes NOx, CO2, and fuel consumption. 

NOx and CO2 emissions and fuel consumption were approached by introducing to the simulation 

tool maps and genetic algorithms.  As hybrid buses are equipped with Diesel Particulate Filters (DPF) 

which produce extremely low levels of particulate emissions on a mass basis, PM emissions were not 
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considered; emissions of HC and CO are also very low and were also neglected.  The distribution of 

size of the emitted ultrafine particles is still a concern to public health, but particle sizing analysis was 

beyond the scope of this study.        

Computer simulations, using PSAT as the core development software, were used to estimate fuel 

economy, CO2, and NOx over a variety of driving conditions. Simulations represented a series diesel-

electric hybrid bus, model year 2007-2009.  Chassis-dynamometer emissions test data from the WVU 

TransLab Database were used for calibration, improvement and validation of the simulation models.   

The combination of the dynamic vehicle model, the engine emissions and fuel consumption model, 

and the use of regression analysis made it possible to predict emissions over different routes and to 

give an assessment as to what routes are most suitable for hybrid buses, i.e. the ones that best capitalize 

the hybrid system. 

1.4.1. Engine Model for Emissions and Fuel Consumption  

The engine emissions and fuel consumption model was based on artificial neural networks (ANNs) 

and 2D-steady-state maps.  The general theory of ANNs was discussed in Section 2.6.5.  There is 

extensive literature on ANN models for engine emissions, some relevant examples were presented in 

Sections 2.6.5 and 2.7.3. 

An ANN requires being trained with sample data before it learns enough to be used.  It was not 

possible to obtain engine dynamometer test data for an engine equivalent to the one on the hybrid bus; 

therefore, the author had to rely on chassis-dynamometer tests.  A dataset suitable for ANNs training 

was produced using laboratory emissions measurements and ECU broadcasts of fuel rate, torque, and 

speed.  The accuracy of this approach leans on several assumptions, starting for the fact that there are 

no direct measurements of engine speed and torque.  The ECU broadcast of torque was given as 

percentage which was converted to engineering units with the engine’s lug curve.  Since the ECU does 

not report negative values of (percent) torque, there was no information regarding the motored (no 

fuel) torque curve. 

As a general rule the primary inputs to the ANN are engine speed and torque with some derivative 

to account for transients.  In more specialized cases, and depending on the availability of information, 

other inputs have been used, e.g. oil temperature, coolant temperature, turbocharger boost pressure, 

injection timing, etc. 

The possibility that the test data corresponded to a different engine than the one that was to be 

simulated was considered; the ANN model can be scaled to represent the desired engine.  As an 

example of this procedure, Tóth-Nagy et al. (2006) performed linear scaling of inputs and outputs of 

the ANN producing adequate results.  Such scaling was not necessary since the engine from the test 

vehicle was the same as in the dynamic model. 
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As mentioned before, NOx emissions were be corrected by the ratio of certification levels from the 

test engine (MY 2006) to the MY 2007 diesel engine.  This method was used by Wayne et al. 2009 to 

estimate MY 2007-2009 emissions figures of transit buses based on emissions results of MY 2003-

2005 buses. 

1.4.2. Vehicle Dynamic Model Development and Validation 

The possibility of modeling a 2-mode hybrid bus was considered but a suitable controller was not 

available.  As the development of the vehicle dynamic model was not the purpose of this dissertation 

but rather a tool towards completion of the objectives, it was decided to pursue modeling of a series 

hybrid bus.  A 40 ft New Flyer hybrid powered with BAE Systems HybriDrive® series propulsion 

system was used as the target.  BAE Systems provided technical specifications which allowed 

developing or scaling the various hybrid components.  This process was developed in cooperation with 

Bell (2011). 

The control strategy that was the most similar to the one of the test bus was PSAT’s load following 

controller.  The controller was modified to better regulate battery SOC under sustained high power 

conditions by limiting traction motor output until SOC was brought to a desired level.  The PI engine 

speed controller was tuned to provide stability and improved response. 

It was noted that PSAT did not maintain engine accessory loads during braking and stops.  This 

problem was solved by an enhancement of the braking and stop controller in which accessory loads 

were sustained.  This improvement over the default controller made it possible to create a vehicle 

model that better resembled the actual vehicle. 

Validation of the dynamic model was performed at the vehicle level and not on a second-by-second 

basis.  This approach was sensible because, first, the control strategies were different and, second,  the 

objective was not to develop a model to exactly match the test bus but a model that was representative 

of the hybrid transit bus technology. 

1.4.3. Prediction of Cycle Fuel Economy and Emissions 

The dynamic model was simulated over 95 different routes that represented transit bus operation.  

The results were decomposed into the idle and driving contributions of fuel consumption and NOx 

emissions.  The idle contribution was not zero as today’s hybrid buses do not exercise engine shut-off 

at stops. 

Polynomial least squares regressions were developed to predict the driving contribution of fuel 

consumption and NOx emissions. CO2 emissions were determined assuming complete fuel carbon 

conversion to CO2.  The uncertainty on the prediction was evaluated and reported. 
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The effects of grade on emissions performance of the hybrid bus were not explored, but were left 

as future work.  This decision was based on the fact that instantaneous road grade may not be available 

to transit agencies in a way that could be used for the predictive models. 

 

1.5. Outline 

Chapter 2 presents a literature review relevant to this study.  Chapter 3 evaluates the gains that can 

be achieved in transit vehicles from regenerative braking and studies the effects on tractive energy of 

road grade and test weight.  Chapter 4 presents the transit bus route data collection and analysis.  The 

diesel engine fuel consumption and emissions model is developed in Chapter 5.  Chapter 6 presents the 

development and validation of the vehicle dynamic model.  Chapter 7 evaluates the influences of 

transit bus duty cycle in fuel economy and emissions and the development of the regression based 

emissions model that will be implemented in IBIS.  Finally, Chapter 8 presents the conclusions and 

recommendations from the work developed in the dissertation. 
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Chapter 2. LITERATURE REVIEW 

 

2.1. Vehicle Energy Demand 

As a vehicle is driven, energy is supplied by the power unit (such as an internal combustion engine, 

an electric motor or a fuel-cell) to a transmission system and, finally, to the wheels.  The purpose of the 

transmission system is to maintain the power unit within its operational and most efficient envelope at 

all vehicle speeds.  Depending on the specifics of the transmission system, up to 20% of the energy 

supplied by the propulsion system is lost by friction, i.e. efficiencies of above 80% are observed.  The 

remaining energy (transferred to the wheels) is used to accelerate and elevate the vehicle, and to 

overcome driveline drag forces, rolling friction at the wheels, and air resistance (Walston et al., 1976).  

These terms form the road load which can be expressed as a force, Froad, or as power, VFP road

d

road  , 

where V is vehicle speed.  The tractive power Proad may also be called 
roadE , which will be used in 

Section 2.1.3 to represent energy supply to the vehicle by the drivetrain.   

When a vehicle makes a turn, energy is also consumed to change its momentum’s direction.  Since 

chassis dynamometer testing does not account for this fact, it will not be discussed here. 

In this section we discuss in detail the road load components, the different driving modes and the 

opportunity for energy recuperation.   

 

2.1.1. Road Load 

Vehicle 3D dynamics can be simplified to longitudinal dynamics when only the forces in the 

longitudinal direction are of interest and all other forces can be neglected (e.g. winds, cornering, 

moments, etc.)  With that in mind, the energy required to drive a vehicle has four components in form 

of forces that constitute the road load, Froad: 

Equation 2.1  Road Force 

inertiagravmechaeroroad FFFFF  . 
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The road load equation (Equation 2.1) comes from Newton’s second law or equilibrium of forces 

applied parallel to the road or in the direction of the vehicle’s motion. This equation is accompanied by 

equilibrium of torques, which are not considered here.  More information on the subject may be found 

in Gillespie (1992).   

The components of the road load are described next: 

 Aerodynamic drag, Faero: the aerodynamic drag corresponds to the energy used to overcome the 

force exerted by the airflow around the vehicle.  This force is distributed along the vehicle surface, 

depends on air pressure distribution and shear. The aerodynamic drag is accompanied by an 

aerodynamic lift force which decreases the effective vehicle mass for mechanical drag purposes, 

however, this effect is very small (Buckley, 1995).  It is customary to express the aerodynamic 

drag force as 

Equation 2.2  Aerodynamic Force 

2

2

1
rfdAiraero VAcF    

where ρAir is air density, Af is vehicle frontal area, cd is drag coefficient, and Vr is wind speed 

relative to the vehicle.  The term 
221 rAir V   is the dynamic pressure.  The drag coefficient is 

nearly constant for fully developed turbulent flows, a condition that is determined by the Reynolds 

Number, wVeR  , where w is the vehicle width and ν is the kinematic viscosity of air.  The 

SAE Recommended Practice for Truck and Bus Wind Tunnel Testing suggests to use this 

approximation for Re ≥ 2 × 10
6
 (SAE J1252, SAE International, 1981), which corresponds to 25 

mph for an 8 ½ ft wide bus and 35 mph for a mid-size sedan.  If more data are available, the drag 

coefficient may be expressed as a function of vehicle speed,  Vcc dd  .  Typical values of the 

drag coefficient for commercial vehicles are presented in Table 2-1.   

The drag coefficient is highly dependent on vehicle shape but is also affected by the relative wind 

direction.  This condition has been modeled, from experimental data, as a forth order polynomial 

with respect to yaw angle, Y,  Ycc dd  ;  the coefficients are determined through coastdown 

procedures (SAE J2263, SAE International, 1996).  The drag coefficient reaches a minimum at 0° 

yaw and increases with yaw angle (Buckley et al., 1976).   

Table 2-1  Suggested Drag Coefficients for Commercial Vehicles, Hucho (1998) 

Vehicle Type Drag Coefficient Range 

Cars 0.26 – 0.45 

Vans 0.32 – 0.50 

Buses 0.40 – 0.66 

Tractor-Trailers 0.48 – 0.76 

Tractor-Semitrailers 0.55 – 0.86 
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 Mechanical Drag Force, Fmech: It consists of driveline drag or friction, Fdriveline, and rolling 

resistance at the wheels, Frolling: 

Equation 2.3  Mechanical Drag Force 

rollingdrivelinemech FFF   

The driveline drag was shown to be linear with speed (Walston et al., 1976): 

Equation 2.4  Driveline Drag Force 

VcbFdriveline   

where the coefficients b and c are determined through a driveline drag test; b is related to coulomb 

damping while c is to viscous damping.   

The rolling resistance force is proportional to the component of the vehicle weight ( gm  ) that is 

perpendicular to the road surface force.  Although the force is distributed among the wheels, it can 

be modeled as a single force: 

Equation 2.5  Rolling Resistance Force 

 cos gmcF rrolling
 

where α is the angle between the road and the horizontal axis, cr is the rolling  resistance 

coefficient, m is the vehicle mass, and g is the gravitational constant.  The rolling resistance 

coefficient is determined experimentally and is affected by road surface and tire conditions.  Also, 

cr may be determined as a function, usually linear, of vehicle speed.  Rolling resistance depends on 

the construction of the tire and the compounds used. 

Mechanical drag has also been modeled as a second order polynomial in speed, combining 

driveline and tire drag (SAE J2263, SAE International, 1996).   

 Grade, Fgrav: The grade or gravitational force is the force used to increase the altitude of the 

vehicle (α > 0).  It is the given by the component of the vehicle weight parallel to the road. The 

grade force stores energy in the vehicle as potential energy and which can be released in downhill 

driving (α < 0).  The grade force is: 

Equation 2.6  Grade Force, α 

 sin gmFgrav
 

or alternatively, 

Equation 2.7  Grade Force, h 

ds

dh
gmFgrav   
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where h is the elevation and s is the distance travelled ( Vdtds  ).  The grade angle is related to the 

commonly used percent grade by 







 

100

%
tan 1 grade

 . 

 Inertia, Finertia: The inertia force includes both inertia due to vehicle mass (translational inertia) and 

inertia of the rotating parts (Guzzella and Sciarretta, 2007), and can be expressed as: 

Equation 2.8  Inertia Force 

 
dt

dV
mmF rinertia   

where the term in parenthesis is the effective vehicle mass, me, which contains the actual vehicle 

mass, m.  The effective inertia mass of the rotating components, mr, is 

Equation 2.9  Effective inertia mass of rotating components 

 ew

w

r II
r

m 2

2

1
  

where Iw is the moment of inertia of the wheels and all the rotating parts on the wheel-side of the 

transmission, Ie is the moment of inertia of the engine and the rotating parts on the engine-side of 

the transmission, rw is the wheel radius, and γ is the overall gear ratio (
wheelsengine   ).  It is 

assumed that there is no wheel slip; transmission inefficiency is neglected.  The mass due to 

rotating components is necessary for simple simulations in which only a general model of the 

vehicle is used.  On the other hand, when the simulation has sub-models for all vehicle parts, 

inertia would be included in such sub-models and the term mr would not be necessary.  For chassis 

dynamometer testing, m includes curb and load masses; mr shall not be considered during 

emissions testing but shall be used for track coastdown data analysis (SAE J2263, SAE 

International, 1996).   

 

The above components comprise the road load (Froad, also called the traction force, Ftrac) or 

vehicle’s energy demand (Proad).  In addition to this energy, there are parasitic losses and auxiliary 

loads that need to be supplied by the vehicle’s propulsion system. 

Replacing Equation 2.2 to Equation 2.8 into Equation 2.1 we obtain the final form of the road load 

equation: 

Equation 2.10  Road Load Equation - Force 

     
dt

dV
mmgmgccVbVAcF errfdAirroad   sincos

2

1 2
 

and the tractive power: 
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Equation 2.11  Road Load Equation - Power 

     
dt

dV
VmmgVmgVccVbVVVAcEP errfdAirroadroad   sincos

2

1 22  

 

 

 

 

The power demand on the engine of a conventional vehicle can be calculated by 

Equation 2.12  Engine Power 

ACC

dr

road
engine P

P
P 


 

where dr is drivetrain efficiency and PACC is the power drain of vehicle accessories and hotel loads. 

 

2.1.2. Driving Modes 

The vehicle operation can be classified depending on the value of the traction force (Guzzella and 

Sciarretta, 2007) in three modes as follows:  

 Traction mode if Froad (or Proad since only forward motion is considered) is greater than zero; the 

propulsion system provides energy to the vehicle.  

 Braking mode if Froad (or Proad) is less than zero; the braking system reduces the vehicle’s kinetic 

and potential energy while rolling and aerodynamic forces continue to act.   

 Coasting mode if Froad (or Proad) is equal to zero; the propulsion system is disengaged from the 

wheels and the change in kinetic and potential energy matches the rolling and drag losses.  To be 

more precise, in an actual vehicle the change in mechanical energy would also be providing for the 

friction losses in the drivetrain. 

Figure 2-1 shows the different driving modes in a section of the Orange County Transit Authority 

(OCTA) cycle for transit buses.  The coasting curve is the local solution to the first order PDE 

Equation 2.10 with Froad = 0 and depends on the specific parameters of the bus.  Observe that during 

the last seconds of the traction mode the vehicle is decelerating while the tractive power is still 

positive; if the accelerator pedal was released, the vehicle would follow a coasting curve. Instead, to 

follow the drive cycle further deceleration is required and the brake pedal is depressed.   

 

Aerodynamic     Loads due         Rolling          Elevation      Inertial 

      Drag          to Driveline     Resistance           Load            Load 

                           Friction 
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2.1.3. Energy Recuperation and Fuel Consumption 

As mentioned above, the vehicle’s propulsion system must provide energy to overcome 

aerodynamic and mechanical drag, to increase the elevation, and to accelerate the vehicle.  The first 

two factors dissipate energy and the last two store energy in the vehicle, thus may be recovered to 

some extent.  Kinetic and potential energies are mechanical forms of energy and they can be converted 

directly from one to another.  In braking events of a conventional vehicle, the engine does not supply 

power but it can consume some (due to for example friction or compression braking).  If the 

powertrain is disengaged from the wheels, the kinetic energy stored in the vehicle is dissipated at 

braking in two ways, one part goes to rolling and drag losses, and the other part is dissipated into heat 

by the braking elements.  Potential energy is normally dissipated in steep downhill driving because it 

tends to accelerate the vehicle above safe driving speeds.  In special downhill cases, such potential 

energy change is just enough to overcome the losses (Proad = 0) and the vehicle can be driven without 

drivetrain power at nearly constant speed. 

 

Figure 2-1  Driving Modes in a Section of the OCTA Cycle 

Energy is available for recuperation through regenerative braking whenever the tractive power is 

negative, i.e. the vehicle’s mechanical energy needs to be decreased but the aerodynamic drag and 

rolling resistance loads do not suffice to remove this energy, and an external force needs to be applied.  

This energy can be either dissipated into heat through a friction brake system or recovered for later use 

through, for example, an electric motor-battery system.    

Energy recuperation may be assessed by means of the mean net tractive energy, etrac,net, which 

represents the net energy required to drive the vehicle per unit distance travelled.  Net tractive energy, 

Etrac,net, is defined in terms of the tractive or propulsion energy, Etrac, the braking energy, EBR, and the 

regeneration efficiency, ηregen, as follows 
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Equation 2.13  Net Tractive Energy 

BRregentracnettrac EEE  ,
 

The mean net tractive energy is etrac,net = Etrac,net / D. Where D is distance traveled, 

ii

T

tVVdtD  0 ; i represents time interval and the over-bar represents the average value over the 

time interval and T is the dive cycle time. 

Tractive energy, Etrac, is equal to the summation of the positive tractive power of Equation 2.11 

(Guzzella and Sciarretta, 2007, Sovran and Blaser, 2003) over the drive cycle.  It can be expressed in 

integral form as 

Equation 2.14  Tractive Energy 

 





0

,
0

,iroadE

iiroad

T

roadtrac tEdtEE


  

Similarly, the braking energy is defined as the integral of negative tractive power (absolute value), 

Equation 2.15  Braking Energy 

 





0

,
0

,iroadE

iiroad

T

roadBR tEdtEE


  

When looking at the vehicle as a whole, engine braking is discounted from EBR since it reduces the 

required braking effort (Sovran and Blaser, 2003). 

The braking energy capture-redeployment efficiency or simply regeneration efficiency, ηregen, is 

defined as the fraction of the total available braking energy (EBR) that is actually delivered back to the 

wheels.  ηregen is affected by the use of friction brakes (i.e. when braking power is above the hybrid 

system’s limits) and by the efficiencies of transmission, electric motor, power converter, and energy 

storage hardware; the theoretical limit being a perfect recuperation device 100% efficient (ηregen = 1).   

Note that for conventional vehicles (ηregen = 0) Equation 2.13 reduces to Equation 2.14, and Etrac,net 

= Etrac.  Also note that tractive and braking energies depend upon vehicle parameters (e.g. cd∙Af, cr, m, 

mr), drive cycle; that is, all the parameters involved in the road load equation (Equation 2.10 and 

Equation 2.11). 

Net tractive energy can be converted to fuel efficiency (gal/mi or L/100 km) with the consideration 

of average drivetrain and engine conversion efficiencies.  In such case, it is essential to account for fuel 

consumption due to idle and hotel loads.  This kind of analysis has been discussed by O’Keefe et al. 

(2007).  Also, Sovran and Blaser (2003) presented a comprehensive analysis of fuel consumption and 

developed the following equation for drive-cycle fuel consumption, g~  [volume of fuel per unit 

distance driven] 



Chapter 2 – Literature Review 

 

17 

Equation 2.16  Fuel Consumption Equation 
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where ρfuel is fuel density, dr~  is the energy-transfer-weighted average drivetrain efficiency, ηb,max and 

b~  are maximum and fuel-consumption-weighted average brake thermal efficiencies, 

ACCbE ,
 is the 

energy required by vehicle accessories or hotel loads, Hf is the heating value of the fuel, tbrkg is the 

braking time, tidle is the idle time, and  
brkgfm  and  

idlefm  are the fueling rates at braking and idle, 

respectively.   

In Equation 2.16 each of the terms in brackets is mass of fuel consumed; the first term corresponds 

to the powered driving section.  Equation 2.16 assumes that when compared with the conventional 

vehicle the hybrid will have the same road load and will require the same tractive energy.  In a follow-

up paper, Sovran and Blaser (2006) considered the fact that due to the increased weight of the hybrid 

system components a hybrid vehicle would be heavier than its conventional counterpart.  With that in 

mind, the amount mf of fuel consumed in powered driving would be expressed as, Sovran and Blaser 

(2006): 

Equation 2.17  Hybrid Fuel Consumed in Powered Driving 
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, 

where the subscript 0 refers to the conventional vehicle and the non-zero parameters refer to the hybrid 

vehicle.  Equation 2.17 denotes the benefits of hybridization.  Note that, since accessory loads are 

considered separately, mf,0 in Equation 2.17 should be only fuel used for propulsion.  Combining 

Equation 2.16 and Equation 2.17 we obtain another useful fuel consumption equation: 

Equation 2.18  Fuel Consumption Equation 
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The concepts described in this section have been used in the literature (e.g. Sharer et al., 2007) to 

evaluate performance of hybrid vehicles and their response to duty cycle.   
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2.2. Driving Characterization  

Given that vehicle fuel economy and emissions are driving pattern dependent, an analysis of the 

wide operative envelope of transit buses has to account for the various driving conditions encountered.  

For this purpose, drive cycles are studied, and their properties extracted in the form of cycle metrics.  

Cycle metrics describe or characterize the drive cycles.  A desirable characteristic of cycle metrics is 

that they must be independent of vehicle properties, such as weight and architecture, among others; 

this property gives the metric a general character.  Some metrics may involve parameters like 

accessory loads and regenerative braking, and even though their significance would not be general, 

they will serve as an indicator of the performance comparison among various vehicle technologies in a 

given transit application.   

Several metrics have been defined and employed; among them we have average speed, percentage 

idle, average speed without idle, stops per mile, standard deviation of speed, maximum and average 

acceleration, maximum and average deceleration, aerodynamic speed, characteristic acceleration, and 

kinetic intensity.  The object of this section is to introduce and briefly discuss such cycle metrics.   

 

2.2.1. Speed Related Metrics 

 Idle: Idle is the time (or fraction of the time) in which the vehicle is stationary.  The effect of idle 

is, as observed in Equation 2.16 (page 17), to increase fuel consumption and reduce fuel economy.  

Inner-city and urban driving are characterized by relatively large percent idle times; for example 

the NY Bus cycle has an idle fraction of 65%.  A large idle fraction is directly related to a low 

average velocity and a large kinetic intensity; metrics which are defined below.  Idle percentage 

ranges from as high as 65% for stop-and-go operation (NY Bus Cycle) to nearly zero for highway 

driving (HWFET Cycle). 

 Average Speed, V  or Ū: Average speed is defined as distance travelled divided by cycle time, 
d

V 

D/T.  It links idle with driving periods and has been widely used to characterize driving behaviors.  

Average speed ranges from 2 mph for heavy inner city operation (HHDDT-Creep Schedule) to 50 

mph for highway operation (HWFET). 

 Average Speed without Idle: Average speed without idle is defined as  idle

d

idleno tTDV  .  It 

excludes the segments of the drive cycle in which the vehicle is stationary and represents the 

dynamic behavior of the cycle.  Average speed without idle ranges from 3 mph (HHDDT-Creep) to 

52 mph (US06 Cycle). 
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Average speed without idle can be calculated from average speed and percent idle: 

Equation 2.19  Average Speed Without Idle 

  100/%1

1

Idle
VV idleno


 . 

 Standard Deviation of Speed: Standard deviation of speed represents the transient character of the 

drive cycle.  It can be defined either with or without idle to characterize the overall cycle and its 

mobile section.  Standard deviation of speed ranges from 2 mph (HHDDT-Creep) to 25 mph 

(US06) while standard deviation of speed without idle from 2 mph (HHDDT-Creep) to 22 mph 

(HHDDT and US06). 

Standard deviation of speed is calculated by 

Equation 2.20  Standard Deviation of Speed 

 
2/1

1

2

1

1











 



N

i

i VV
N

s , 

where N is the size of the speed vector V.  The result s
2
 is an unbiased estimator of the variance of 

speed.  A similar equation is used for standard deviation of speed without idle, where V is replaced 

by the Vno idle vector and N by the corresponding vector size. 

 Acceleration: Acceleration is the derivative of speed: a = dV/dt.  High accelerations imply elevated 

power demands and fueling rates; conditions that are believed to produce lower fuel economy.  

Both maximum acceleration and deceleration rates have been reported in the literature, together 

with their average values (averaged over the acceleration or deceleration periods only).  Typical 

ranges of the acceleration metrics are presented in Table 2-2.  

The acceleration rate has been calculated in this dissertation using the 5-point fourth-order 

accuracy (Δt 
4 

) approximation: 

Equation 2.21  Five-point Approximation of Acceleration 

t

VVVV
a iiii

i



 

12

88 2112 . 

This approximation may lead to acceleration values before the vehicle starts moving and after the 

vehicle stops.  The calculations were performed as to avoid this situation. 

Acceleration and deceleration may be classified as light, medium, and heavy (Kern, 2000).  Table 

2-3 shows the acceleration bins proposed by Kern (2000); if |a| is less than 0.44 ft/s
2
 (and V ≠ 0) 

the vehicle is considered to be cruising.  Figure 2-2  shows the acceleration bins observed in the 

section of the OCTA cycle shown in Figure 2-1.  The section contains all the bins except for heavy 

deceleration.  It must be noted that unlike this section most of the cycle exhibits heavy 

decelerations. 
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Average acceleration ā+ and average deceleration ā– are defined as  

Equation 2.22  Average Acceleration and Deceleration 






 
Td

dta
T

a
0

1
 





 
Td

dta
T

a
0

1
 




 
0

1

ia

ii ta
T

a

 




 
0

1

ia

ii ta
T

a

 

where T+ is time with a > 0 (time spent in acceleration) and T– is time with a < 0 (time spent in 

deceleration). 

Table 2-2  Observed Ranges of Acceleration Metrics 

Metric 
Low 

(ft/s
2
) 

High 

(ft/s
2
) 

Max Accel. 1.5 14.2 

Max Decel. 2.2 13.5 

Average Accel. 0.4 3.7 

Average Decel. 0.4 6.2 

 

Table 2-3  Classification Vehicle Operation According to Instantaneous Acceleration (Kern, 2000) 

Classification Range ( mph/s) 

Cruise |a| < 0.3 

Light Accel./Decel. 0.3  |a| < 1 

Medium Accel./Decel. 1  |a| < 2 

Heavy Accel./Decel. |a| ≥ 2 

 
Figure 2-2  Acceleration Bins in a Section of the OCTA Cycle 

 Stops per unit distance: A stop is defined as when the vehicle speed goes below a predefined 

threshold and this condition remains for a minimum period of time.  This metric is related to 
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average speed such that the larger its value, the lower the average speed.  Its values can be as low 

as 0.1 stops/mile for highway operation and as high as 24 stops/mile for heavy inner-city driving. 

 

2.2.2. Characteristic Acceleration, Aerodynamic Speed, and Kinetic Intensity 

O’Keefe et al. (2007) derived characteristic acceleration, aerodynamic speed, and kinetic intensity 

metrics, which are reviewed next.  Characteristic Acceleration, ã, is the integrated positive mechanical 

energy (kinetic and potential energy) supplied per unit mass per unit distance, and has units of m/s
2
.  

The characteristic acceleration of the cycle is therefore 

Equation 2.23  Characteristic Acceleration 
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where N is the number of time steps and h is elevation.  Also, for a time step we have 

Equation 2.24  Characteristic Acceleration for a Time Step 
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ΔDi is distance traveled in the interval and its first order backward approximation is ΔDi = (Vi + Vi-1) / 

(2∙Δti).  We can also write a~ as: 

Equation 2.25  Characteristic Acceleration 







N

i

ii aD
D

a
2

~1~ . 

Characteristic acceleration measures the inertial work to accelerate and/or raise the vehicle per unit 

mass per unit distance over the cycle.  It is the positive part of specific kinetic and potential energy per 

distance associated with moving the vehicle over a duty cycle. 

Aerodynamic Speed is defined as the square root of the ratio of average cubic speed to average 

speed.  The squared aerodynamic speed is defined by  

Equation 2.26  Aerodynamic Speed 

 
TTTTd

aero VdtdtVVdt
T

dtV
T

V
00

3

00

32 11
. 

It is linked to the impact of aerodynamic resistance on vehicle fuel usage.  The squared aerodynamic 

speed can be also expressed as: 
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Equation 2.27  Aerodynamic Speed 


D

aero dxV
D

V
0

22 1
. 

From Equation 2.27, it is clear that 2

aeroV  is a distance averaged squared velocity and therefore 

adding or removing idle segments to a duty cycle does not affect aerodynamic speed. 

Characteristic acceleration and aerodynamic speed appear naturally in the road load equation when 

the specific energy per distance is evaluated for a time step.  They are also found in fuel consumption 

estimations similar to Equation 2.16 (page 17); specifically they are present in the Etrac and EBR terms 

(O’Keefe et al., 2007).   

Simpson (2005) suggested that average speed, aerodynamic speed, and characteristic acceleration 

form an orthogonal and independent coordinate set that quantifies the multiple dimensions of a driving 

cycle. 

Kinetic Intensity (O’Keefe et al., 2007),  

Equation 2.28  Kinetic Intensity 

2

~

aero

d

V

a
ki  ,  

with units of one over distance, is an important factor for hybrid vehicles because a cycle energy use 

analysis shows that high values of kinetic intensity translate into higher fractions of EBR / Etrac and give 

room to fuel economy improvements.   

Kinetic Intensity can be used to compare micro-trips and duty cycles from an energy perspective.  

Observed ranges for aerodynamic speed, characteristic acceleration, and kinetic intensity, along with 

other cycle statistics, are presented in Table 2-6 (page 28). 

Another metric defined by O’Keefe et al. (2007) is β: the ratio of fuel consumed by non propulsion 

efforts (e.g. hotel loads and idle operation) to the cycle integrated positive tractive effort.  This 

parameter differs from the others in that it is technology dependent and must be experimentally 

evaluated for a given test vehicle.  High values of β tend to decrease the hybrid advantage (percent 

reduction in fuel consumption) since more energy used in hotel loads overshadows the gains of the 

hybrid system. 

 

2.3. Vehicle Duty Cycles 

The cycle metrics listed above are defined in a way that requires presenting the driving schedule as 

a time-speed-elevation relationship.  A Drive (or Test) Cycle can be defined as a prescribed speed trace 

that the vehicle must reproduce as a function of time.  This trace normally consists of time-speed 
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points and it may or may not include grade.  A different kind of schedule is a Drive (or Test) Route, 

which is distance-speed based, similar to how a vehicle would be driven in the streets or in a test track.  

The main characteristic of drive routes is that they exercise the vehicle at full power during free 

acceleration sections; also, cycle time is modified depending upon vehicle performance and the total 

distance is maintained (Nine et al., 1999). 

Both, drive cycles and routes, are used to evaluate the vehicle as a whole and are generally run in 

chassis-dynamometer facilities.  They provide data for emissions inventories and the ability to 

determine improvements in fuel economy and emissions from hybrid architectures.  On the other hand, 

engine dynamometer testing is used for engine certification and, even though extensive data exist, it is 

difficult to translate engine dynamometer results to vehicle fuel economy and emissions.  Furthermore, 

engine testing data is not suitable for accurate emissions inventory prediction (Guensler et al., 1991, 

Nine et al., 1999).  Engine test cycles are given as engine speed-torque (%) targets, where 0% is idle 

and 100% is maximum load at the given speed. 

Driving conditions can be classified according to vehicle speed in the following categories: inner-

city or stop-and-go, urban, suburban, and highway.  Table 2-4 shows the ranges of the various 

categories as defined by the author based on Zou et al. (2004).  The speed thresholds for urban, 

suburban, and highway driving match the urban, rural, and motorway sections of the European 

Transient Cycle (ETC).  Several, if not all, of these conditions can be present in any particular drive 

cycle; for example the King County Metro (KCM) cycle (Figure 2-6, page 31) displays segments in all 

the driving categories.  Zou et al. (2004) categorized micro-trips by peak speed; they used 40 mph as 

the threshold for highway driving. 

Table 2-4  Classification of Driving Conditions 

Condition Range (mph) 

Inner-City V < 15 

Urban 15 ≤ V < 30 

Suburban 30 ≤ V < 50 

Highway V ≥ 50 

 

2.3.1. Drive Cycle Development 

Duty cycles representing specific driving patterns are developed from collected in-use data (time-

speed-grade).  The speed trace is divided into micro-trips, defined from start-to-stop, and statistical 

metrics of the database are calculated.  Finally, using the measured micro-trips, drive cycles are 

generated to match the statistical metrics of the database (Dembski et al., 2005).    

West Virginia University has extensive experience in drive cycle construction.  In their approach 

the cycle is developed from micro-trip concatenation to match several metrics (average speed without 
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idle, average acceleration, etc.) with the metric of the database (Nine et al., 1999, McKain et al., 2000, 

Wayne et al., 2002); idle segments are included afterward.  Another approach could be to define a 

micro-trip from start-to-start, thus including idle and the driving event.  Then, based on the micro-trips, 

a large number of candidate cycles are created and their statistics are calculated and compared with the 

database.  For example West Virginia University developed the OCTA Cycle (Wayne et al., 2004a) by 

randomly concatenated micro-trips (from start to stop) into cycles of at around 35 min in duration, 

excluding idle which was added later.  By this means, 20,000 candidate cycles were created.  The 

candidate cycles were compared with the database according to the root-mean-square (RMS) formula 

(Nine et al., 1999, Wayne et al., 2004a): 

Equation 2.29  Root-Mean-Square Formula 
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where Pk represents the various parameters of interest, cd is candidate, db is database, and n is number 

of parameters.  In the specific case of the OCTA cycle, the parameters were: average speed without 

idle, standard deviation of vehicle speed, average weight-specific kinetic energy, and its standard 

deviation.  The candidate cycle with the lowest RMS is therefore the one that best represents the 

activity database.  A candidate cycle would have been excluded if one of the error terms contributed to 

more than half of the total RMS error.  Refer to Wayne et al. (2004a) for other possible reasons for 

excluding a candidate cycle. 

By this means, the number of candidate cycles is reduced to a handful of them.  This final selection 

is analyzed and adjusted to accelerations and deceleration rates that match dynamometer capabilities 

(deceleration rates no greater than 2 mph/s or 2.93 ft/s
2
).  Extreme accelerations (or decelerations) that 

are characteristic of downhill (or uphill) driving are also adjusted.  The latter consideration 

corresponds to development of drive cycles that do not include grade information and would be 

unnecessary when grade is measured and included into the micro-trips.  

The International Association of Public Transport (UITP) developed the SORT method 

(Standardised On–Road Test Cycles) which is intended to promote fuel consumption testing of transit 

vehicles among European manufacturers and transit operators (UITP, 2004).  The SORT methodology 

does not require collection of activity data, it proposes three standard cycles that represent urban, 

suburban, and intermediate transit driving conditions.  The UITP document points out that the selection 

of a drive cycle should consider average route speed, average time spent at stops (idle), average 

distance between stops, and load, among others.  Their methodology is based solely on average speed.  

Also, the document acknowledges that test results may differ from every-day fuel consumption due to 

factors such as driving style, number of passengers (weight), and topographic and climate conditions.  
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Zhu et al. (2004) used a different method for developing a drive cycle, targeting Heavy-Duty 

Hybrid Electric Class 4-6 Vehicles.  Their approach was to create a composite drive cycle based on 

existing drive cycles having the following constraints: must be an achievable speed-time trace for 

target applications, must represent the typical driving pattern of these applications, and is practical for 

testing and state-of-charge correction. These criteria were applied to numerous element and composite 

cycles and, ultimately, a new composite cycle was developed and selected: the Combined International 

Local and Commuter Cycle (CILCC). The CILCC is composed by four repeats of the International 

Local Cycle and one repeat of the Commuter Cycle.  

Duoba et al. (2005) used yet another approach in a study that evaluated the effects of driving speed 

on fuel economy.  They evaluated passenger cars with the UDDS (FTP-72) and HWFET cycles, and 

defined a scaling factor for cycle speed.  The higher the scaling factor, the more aggressive the driving 

is, since much higher accelerations and decelerations are encountered.  Their results show that, overall, 

more aggressive driving yields lower fuel economy for both hybrid and conventional vehicles.   

Dembski et al., 2005, developed driving and duty cycles for refuse vehicles.  They performed 

principal component analysis and k-means classification of micro-trips.  In their analysis, micro-trips 

included idle segments; segment time and distance were used in the set of metrics.  Table 2-5 lists the 

metrics calculated by Dembski et al., 2005, for the database.  Distance traveled and sequence time 

resulted very influential for micro-trip classification, but they dod not necessarily serve to differentiate 

specific driving conditions, like suburban and highway segments. 

Table 2-5  Cycle and Micro-trip Metrics Considered by Dembski et al., 2005 

Metric Units Metric Units 

Maximum Speed mph Average Grade   % 

Average Speed mph Mean Grade Climb % 

Average Speed without Idle mph Mean Grade Descent % 

Peak Acceleration ft/s
2
 Percent Time Accelerating % 

Peak Deceleration ft/s
2
 Percent Distance Accelerating % 

Average Acceleration (*) ft/s
2
 Percent Time Decelerating % 

Average Deceleration (*) ft/s
2 

Percent Distance Decelerating % 

Distance Traveled mi Percent Time Cruise % 

Sequence Time s Percent Distance Cruise % 

Time Vehicle Moving s Percent Time Grade Climb % 

Time Vehicle Stopped s Percent Distance Grade Climb % 

Average Distance Between Stops mi Percent Time Grade Descent % 

Average Time of Stops s Percent Distance Grade Descent % 

Maximum Grade Climb % Percent Time Grade Level % 

Maximum Grade Descent % Percent Distance Grade Level % 

(*) Equation 2.22 (page 20) 
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2.3.2. Actual Driving Patterns 

The UITP collected over 6 million miles of data (10 million kilometers) from Voith DIWA 

transmissions used world-wide in transit vehicles (UITP, 2004).  Characteristic values of average 

speed were 6-9 mph and 10-12 mph in inner city traffic of large and small cities, respectively, and 16-

19 mph in suburban traffic.  Idle time was found to be as high as 45% for urban driving and 20% for 

suburban driving.  The number of stops per distance traveled ranged from 10 stops per mile (6 stops 

per kilometer) in urban traffic to 3 stops per mile (2 stops per kilometer) in suburban traffic.  It was 

found that the time spent in coasting varies between 20% and 45%, but no correlation with average 

speed was observed.   

On the other hand, GM Allison collected over 20 million fleet miles on their 2-Mode compound 

split parallel hybrid architecture installed in 40’ and 60’ transit buses, and in 45’ coaches (Chiang, 

2007).  The GM Allison hybrid validation and field engineering team observed that the following 

factors would impact the hybrid bus fuel economy: 

 Duty cycle profile/service route statistics: average speed, stops per mile, maximum speed, 

driving idle time, and average acceleration, 

 Idle time, 

 Accessory usage, 

 Operator driving style, 

 Seasonal variation, 

 Engine baseline fuel consumption, 

 Engine exhaust after-treatment, and 

 Auxiliary brake/regenerative brake. 

 

The information found in the literature regarding actual driving patterns is rather generic.  As stated 

in Section 1.3, this dissertation addresses the subject by collecting and classifying transit bus data. 

 

2.3.3. Existing Duty Cycles 

This section presents statistics of a wide variety of drive cycles compiled by the author.  Time-

speed traces for selected cycles are also presented.  Table 2-6 shows the most representative metrics of 

the compiled drive cycles, namely: distance, duration, average speed and average speed without idle 

segments, standard deviation of speed with and without idle, percent idle, number of stops per mile, 

average acceleration and deceleration, characteristic acceleration, aerodynamic speed, and kinetic 

intensity.  A brief description of the cycles is also included.  Data in Table 2-6 have been sorted 
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according to average speed.  Therefore, stop-and-go operation is at the top of the list while suburban 

and highway operation is at the bottom. 

The first cycle to be discussed is the Central Business District (CBD), shown in Figure 2-3 (page 

31).  The CBD is a geometric or sawtooth type cycle.  It was the test cycle used by the SAE J1376 

recommended practice (Fuel Economy Measurement Test for Trucks and Buses, 1982).  It consists of 

14 repetitions of a basic cycle which exhibits acceleration, cruise, deceleration, and idle modes. The 

top speed is 20 mph which may favor a particular gear and engine speed during the cruise mode.  Early 

chassis-dynamometer emissions data is found primarily over the CBD cycle.  Average speed is 12.92 

mph, idle is 17.5%, maximum acceleration is 3.23 ft/s
2
, and kinetic intensity is 4.06 mi

-1
. 

The EPA Urban Dynamometer Driving Schedule (UDDS) for use in exhaust emissions tests is 

shown in Figure 2-4 (CFR 40: 86, App. I).  The UDDS was designed to simulate gasoline-fueled 

heady-duty vehicle operation in urban areas.  Percentage idle is 32.5%, average speed is 18.9 mph, 

maximum acceleration is 6.42 ft/s
2
, and kinetic intensity is 0.61 mi

-1
.  The UDDS is also used as a 

preconditioning cycle for evaporative emissions tests. 

The Orange County Transit Authority (OCTA) cycle (Wayne et al., 2004a) represents bus driving 

activity in Orange County, California.  The OCTA cycle was developed by WVU in 2002 and has been 

adopted by SAE for emissions measurement of hybrid and conventional heavy-duty vehicles (SAE 

J2711, SAE International, 2002).  It was shown that the OCTA cycle represents well the current 

average speed of the U.S. national bus fleet (U.S. FTA, 2007).  Average speed is 12.33 mph, idle is 

22.0%, maximum acceleration is 5.95 ft/s
2
, and kinetic intensity is 3.59 mi

-1
. 

Another drive cycle that stands out is the King County Metro (KCM) cycle (Hayes et al., 2006). 

The KCM cycle, Figure 2-6, is the first cycle to include elevation information (in the form of grade).  

Grade was included in its simplest form: constant positive (uphill) and negative (downhill) values 

during three segments of the test.  The cycle exhibits the characteristics of four different routes at King 

County Metro where grade is set to 3.5% (KCM1), 0% (KCM2), 1.5% (KCM3), and 5% (KCM4).  

The KCM cycle includes sharp accelerations which may not be closely followed by all transit buses.  

Average speed is 23.43 mph, idle is 11.6%, maximum acceleration is 14.18 ft/s
2
, and kinetic intensity 

is 0.99 mi
-1

. The composite breakdown of the KCM cycle into the four sections is included in Table 

2-6; average speed for the various sections is: 41.85, 19.61, 16.39, and 15.04 mph. 
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Table 2-6  Properties of Drive Cycles and Routes 

Schedule Description 
Distance 

(mi) 

Duration 

(sec) 

Ū 

(mph) 

Ūno idle 

(mph) 

Stdv. 

U 

(mph) 

Stdv. 

Uno idle 

(mph) 

Idle 

(%) 

Stops 

per 

mile 

ā+ 

(ft/s2) 
ā– 

(ft/s2) 

ã 

(ft/s2) 

Vaero 

(mph) 

ki 

(mi-1) 

Idle Cycle for idle emissions 0.00 V.D. 0.00 - 0.00 - 100.0 - - - - - - 

HHDDT-Creep Heavy Heavy-Duty Diesel Truck 0.12 253 1.77 3.02 2.03 1.81 41.5 24.18 0.62 0.42 0.21 4.58 24.93 

Yard Yard operation of heavy-duty trucks  1.08 1,164 3.34 6.19 4.66 4.75 46.0 12.04 0.91 1.18 0.40 10.70 8.65 

New York Bus 
Very low speed bus operation in New 
York city 

0.61 600 3.69 10.58 6.46 6.86 65.2 17.91 3.71 2.23 1.21 16.61 10.79 

MiamiD Miami Dade Transit bus cycle 2.62 1,431 6.58 13.89 9.32 9.04 52.6 6.50 2.23 2.64 1.13 21.14 6.23 

Paris ADEME-RATP Paris Bus Cycle 3.51 1,910 6.62 9.89 7.28 6.84 33.1 13.10 1.75 1.85 0.83 16.07 7.88 

Manhattan  Low speed bus operation 2.06 1,089 6.83 10.65 7.32 6.54 35.9 9.69 1.78 2.31 0.92 15.76 9.14 

MX1 Mexico City Schedule Mode 1 1.98 1,000 7.12 9.35 6.91 6.47 23.9 7.08 1.31 1.26 0.64 15.56 6.52 

SORT1* (1) European geometric route for urban 

traffic 
0.32 154 7.55 11.99 7.96 6.87 37.0 9.29 2.28 2.41 0.71 16.86 6.10 

WMATA 
Washington Metropolitan Area Transit 
Authority Bus Cycle 

4.26 1,839 8.34 13.56 10.32 10.13 38.5 6.34 1.51 1.80 0.77 23.24 3.50 

WVU City City driving cycle for heavy trucks 3.39 1,430 8.53 12.38 10.21 10.18 31.0 6.19 1.01 1.25 0.51 22.66 2.44 

New York Composite  Heavy-duty vehicles, New York city 2.51 1,029 8.77 12.87 9.44 8.83 31.9 7.58 1.61 1.82 0.77 20.70 4.42 

Nuremberg Nuremberg Bus Route 36 2.67 1,084 8.86 12.40 8.90 8.18 28.5 8.99 1.88 1.79 0.80 19.41 5.20 

CBD Truck  Central Business District 2.18 850 9.24 11.18 7.08 6.24 17.3 6.41 0.96 1.85 0.52 15.44 5.38 

Houston Bus 
Metropolitan Transit Authority of Harris 
County, Houston, TX 

5.54 1,800 11.07 17.80 11.72 10.05 37.8 5.96 1.44 1.60 0.57 24.44 2.33 

MCS Mexico City Bus Schedule 9.26 3,000 11.11 16.12 12.01 11.34 31.1 4.10 1.59 1.69 0.73 26.17 2.62 

SORT2* (1) 
European geometric route for mixed 
traffic 

0.57 184 11.18 16.46 11.30 10.04 32.1 5.25 2.00 2.45 0.62 24.07 2.62 

ECE 15 European urban drive cycle 0.62 195 11.40 16.47 10.58 8.84 30.8 4.86 2.10 2.46 0.48 22.38 2.34 

Liberty WCDOT Bus Cycle 6.30 1,882 12.05 18.10 13.83 13.33 33.4 3.97 1.76 2.16 0.81 30.77 2.10 

International Local 
City-suburban drive cycle, International 

Truck & Engine Corporation 
2.55 755 12.18 14.81 9.74 8.75 17.7 2.35 1.92 1.94 0.28 21.75 1.44 

OCTA 
Orange County Transit Authority Bus 
Cycle 

6.54 1,909 12.33 15.35 10.28 9.23 19.6 4.74 1.49 2.09 0.71 22.10 3.59 

MX2 Mexico City Schedule Mode 2 3.55 1,000 12.78 17.77 12.66 11.58 28.1 2.82 1.32 1.40 0.56 27.31 1.84 

CBD Central Business District Cycle 2.01 560 12.92 15.66 8.19 6.18 17.5 6.97 2.67 5.87 0.57 18.52 4.06 

MX3 Mexico City Schedule Mode 3 3.73 1,000 13.44 22.86 14.17 11.24 41.2 3.75 2.22 2.72 0.94 29.34 2.67 
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Schedule Description 
Distance 

(mi) 

Duration 

(sec) 

Ū 

(mph) 

Ūno idle 

(mph) 

Stdv. 

U 

(mph) 

Stdv. 

Uno idle 

(mph) 

Idle 

(%) 

Stops 

per 

mile 

ā+ 

(ft/s2) 
ā– 

(ft/s2) 

ã 

(ft/s2) 

Vaero 

(mph) 

ki 

(mi-1) 

CILCC 
Composite International Truck Local 

Cycle and Commuter 
12.32 3,192 13.89 16.69 12.41 11.76 16.8 2.03 1.77 2.02 0.28 28.69 0.84 

Route 22 Bus route to BOS Airport, MA 2.05 530 13.91 19.62 12.49 10.39 29.1 2.93 1.66 2.12 0.32 26.18 1.15 

Braunschweig  Braunschweig City Bus Cycle 6.74 1,740 13.95 18.49 11.34 9.30 24.5 4.30 1.83 2.42 0.72 24.19 3.01 

CSHVC City Suburban Heavy Vehicle Cycle 6.68 1,700 14.15 18.44 13.06 11.96 23.3 2.54 1.32 1.60 0.56 27.72 1.79 

CSHVR (1) 
City Suburban Heavy-Duty Vehicle 
Route 

6.68 V.D. V.D. V.D. V.D. V.D. V.D. 2.54 V.D. V.D. V.D. V.D. V.D. 

ETC-Urban European Transient Cycle, Segment 1 2.37 600 14.21 15.87 8.46 7.31 10.5 1.69 1.00 1.18 0.44 20.03 2.69 

BEELINE WCDOT Bus Cycle 6.80 1,701 14.39 19.44 14.75 14.00 26.0 3.68 1.90 2.37 0.88 32.05 2.09 

KCM 4 Section 4 of KCM Cycle, Rte-106 1.16 278 15.04 19.72 10.75 7.68 23.7 3.44 1.78 2.07 1.07 23.46 4.75 

HHDDT-Trans 

(Trans3) 
Heavy Heavy-Duty Diesel Truck 2.85 668 15.37 18.20 13.39 12.68 15.6 1.75 1.02 1.37 0.50 29.57 1.40 

SORT3* (1) 
European geometric route for suburban 

traffic 
0.90 206 15.75 19.19 12.48 11.12 18.0 3.33 1.75 2.50 0.61 27.11 2.04 

FTP-72 Phase 2** Last 864 sec of the FTP-72 3.86 864 16.08 19.46 10.69 8.51 17.4 3.11 1.62 1.91 0.58 23.91 2.51 

KCM 3 Section 3 of KCM Cycle, Rte-120 3.30 725 16.39 20.84 12.81 10.76 21.4 3.64 1.75 2.89 0.89 27.59 2.87 

Route 77 Bus route to BOS Airport, MA 4.01 860 16.77 19.82 13.58 12.56 15.4 3.74 1.71 2.35 0.51 30.06 1.39 

JE05 Japanese 2005 heavy-duty vehicle cycle 8.63 1,829 16.99 22.47 15.94 14.59 24.4 1.62 1.03 1.08 0.40 34.98 0.80 

BAC Business Arterial Commuter 14.04 2,830 17.85 23.27 16.21 14.71 23.3 3.63 2.26 5.92 0.47 36.12 0.89 

UDDS (Test-D) 
EPA Heavy-Duty Urban Dynamometer 

Driving Schedule 
5.55 1,060 18.85 27.91 19.84 18.16 32.5 2.52 1.62 1.89 0.45 42.52 0.61 

FTP-72 (UDDS)** 

EPA emissions certification cycle for 

light-duty vehicles and light-duty trucks. 

Also LA-4  

7.45 1,369 19.59 23.84 14.68 12.68 17.8 2.28 1.66 1.90 0.57 33.12 1.28 

KCM 2 Section 2 of KCM Cycle, Rte-174 2.51 461 19.61 23.48 13.39 11.12 16.5 2.79 1.65 3.05 0.87 30.23 2.33 

WVU 5 Peak 5-Speed Truck Cycle 5.00 900 20.02 24.25 13.44 10.78 17.4 1.00 1.05 1.90 0.19 30.26 0.52 

WVU 5 Mile (1) Route based on WVU 5 Peak cycle 5.00 V.D. V.D. V.D. V.D. V.D. V.D. 1.00 V.D. V.D. V.D. V.D. V.D. 

FTP-75** EPA light-duty cert. cycle 11.04 1,874 21.21 25.88 15.93 13.74 18.0 1.99 1.68 1.89 0.57 35.78 1.09 

SC03** EPA SFTP, air conditioning 3.58 596 21.62 26.35 15.27 12.62 18.0 1.68 1.65 1.98 0.68 34.13 1.43 

KCM King County Metro Bus Cycle 12.78 1,964 23.43 28.45 18.09 15.96 17.6 1.88 1.61 2.31 0.65 40.18 0.99 

KCM-no grade Removing grade 12.78 1,964 23.43 28.45 18.09 15.96 17.6 1.88 1.61 2.31 0.54 40.18 0.83 

FTP-72 Phase 1** First 505 sec of the FTP-72 3.59 505 25.60 31.45 18.21 14.94 18.6 1.39 1.73 1.88 0.56 40.76 0.83 

Arterial Arterial segment of BAC 2.00 270 26.68 29.17 14.54 12.58 8.5 2.00 1.97 6.02 0.65 35.56 1.26 
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Schedule Description 
Distance 

(mi) 

Duration 

(sec) 

Ū 

(mph) 

Ūno idle 

(mph) 

Stdv. 

U 

(mph) 

Stdv. 

Uno idle 

(mph) 

Idle 

(%) 

Stops 

per 

mile 

ā+ 

(ft/s2) 
ā– 

(ft/s2) 

ã 

(ft/s2) 

Vaero 

(mph) 

ki 

(mi-1) 

HHDDT Heavy Heavy-Duty Diesel Truck 26.05 3,004 31.21 35.61 23.60 21.88 12.4 0.50 0.52 0.58 0.18 50.70 0.17 

Freeway Freeway operation of heavy-duty trucks  15.55 1,640 34.13 37.97 21.75 19.50 10.1 0.32 0.67 0.70 0.23 49.64 0.22 

ETC (FIGE) 
European cycle for emission certification 
of heavy-duty diesel vehicles 

18.28 1,800 36.56 37.89 17.81 16.69 3.5 0.27 0.68 0.78 0.22 46.75 0.25 

EUDC Low Power EUDC for low power vehicles 4.11 400 36.96 41.07 16.98 12.30 10.0 0.24 1.39 3.34 0.20 45.88 0.23 

EUDC Extra Urban Driving Cycle 4.32 400 38.89 43.22 19.54 15.40 10.0 0.23 1.24 3.04 0.31 50.77 0.29 

HHDDT-Cruise Heavy Heavy-Duty Diesel Truck 23.07 2,083 39.88 43.28 22.01 19.45 7.9 0.26 0.38 0.41 0.14 52.86 0.12 

KCM 1 Section 1 of KCM Cycle, I-5 5.81 500 41.85 46.40 18.84 13.50 9.8 0.17 0.96 0.83 0.34 51.12 0.32 

ETC-Rural and 

Motorway 

Rural and Motorway sections of the ETC 
Cycle 

15.91 1,329 43.11 47.74 16.09 8.08 9.7 0.06 0.52 0.58 0.19 49.51 0.19 

Commuter Commuter segment of BAC 4.00 310 46.49 49.53 16.57 11.90 6.1 0.25 0.93 6.21 0.15 52.84 0.14 

US06** EPA SFTP, aggressive driving 8.01 600 48.05 51.57 24.50 21.50 6.8 0.62 2.21 2.39 0.69 62.07 0.44 

HWFET** EPA highway fuel economy 10.26 765 48.27 48.52 10.09 9.49 0.5 0.10 0.64 0.72 0.23 50.88 0.22 

 Minimum 0.12 154 1.77 3.02 2.03 1.81 0.5 0.06 0.38 0.41 0.14 4.58 0.12 

 Maximum 26.05 3,192 48.27 51.57 24.50 21.88 65.2 24.18 3.71 6.21 1.21 62.07 24.93 

*  Estimates based on minimum acceleration and deceleration rates.  Actual time based metrics will vary. 

** Drive cycle for passenger vehicles and light-duty trucks. 

V.D. Vehicle and test weight dependent. 

(1) Test Route. 
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Figure 2-3  Central Business District (CBD) Cycle 

 

Figure 2-4  Urban Dynamometer Driving Schedule (UDDS) 

 

Figure 2-5  Orange County Transit Authority (OCTA) Cycle 

 

Figure 2-6  King County Metro (KCM) Cycle 
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Figure 2-7  City Suburban Heavy Vehicle Cycle (CSHVC) 

 

Figure 2-8  Distance-Speed target for the City Suburban Heavy Vehicle Cycle 

and Route. Stars denote free accelerations 

 

Figure 2-9  SORT Routes.  Acceleration curves based on minimum acceleration 

 

Figure 2-10  SORT 3 Route with Infinite and Minimum Acceleration 
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Clark et at. (1999) developed the City Suburban Heavy Vehicle Cycle (CSHVC), WVU City, Yard, 

and Freeway cycles.  The cycles were created by WVU for emissions characterization of class 8 heavy-

duty trucks. The CSHVC is accompanied by the corresponding Test Route (CSHVR).  The Time-

Speed trace for the CSHVC is shown in Figure 2-7.  The CSHVC represents the statistics of tractor-

trailer data collected under yard, city, suburban, and interstate/freeway operation (Nine et al., 1999).  In 

the CSHVR, Figure 2-8, the truck is required to employ maximum acceleration at 13 points during the 

cycle.  Depending on the power-to-weight ratio of the vehicle the time scale is adjusted; with more 

powerful vehicles completing the route in less time than low-powered vehicles.   

UITP (2004) designed the SORT Routes for fuel economy measurement of transit buses.  The 

SORT Routes are composed of geometrical modules (base cycles), which are repeated several times 

both to provide accuracy and to obtain the desired average speed.  Each module is composed of three 

sections spaced by traffic stop segments.  Passenger boarding stops are included in between modules.  

Following the ideas of the Central Business District (CBD) and Business Arterial Commuter (BAC) 

cycles, a section, which has a trapezoidal shape, consists of an acceleration ramp, a constant speed 

cruise, and a deceleration ramp.   

Based upon observed typical driving conditions, SORT defined three types of operation: urban 

(SORT 1), suburban (SORT 3), and mixed (SORT 2).  Distance-Speed targets are presented in Figure 

2-9.  Five trapezoidal micro-trips, characterized by their maximum (cruise) speed, were defined: 20 

km/hr (12.43 mph), 30 km/hr (18.64 mph), 40 km/hr (24.85 mph), 50 km/hr (31.07 mph), and 60 

km/hr (37.28 mph).  Minimum allowed acceleration rates range from 1.03 m/s
2
 (3.38 ft/s

2
) for the low 

speed urban cycle to 0.77 m/s
2
 (2.53 ft/s

2
) for the suburban cycle.  All the deceleration ramps are at 0.8 

m/s
2
 (2.63 ft/s

2
).  The acceleration curves of Figure 2-9 are based on the minimum acceleration rates 

described above, but in reality, these are free accelerations and the discussion for the CSHVR above 

also applies. 

A route, distance-speed based, may be translated to a time basis.  Starting from the basic kinematic 

relationships: dtdsV   and dtdVa  , distance can be expressed as  Vdts .  Integrating over one 

step, j-1 to j, the elapsed time is determined, after some algebra, by 

Equation 2.30  Conversion of Test Route to Time Basis 

21 VV

s
t

j 









,  

where 
1 jj ttt , 

1 jj sss , and 
1 jj VVV .  Idle segments must be added in between 

stops since their information is lost in the distance-speed basis.  The acceleration curves of Figure 2-9 

are linear ramps in the time frame with slope equal to the value set for minimum acceleration. 
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Figure 2-10 shows the difference between an ideal vehicle, with infinite acceleration, and a vehicle 

that follows the route putting up the minimum required acceleration.  All real vehicles will fall within 

the two curves. 

 

2.3.4. Federal Test Procedure for Light-Duty Vehicles and Light-Duty Trucks 

The FTP-72 driving cycle (CFR 40: 86, App. I), also called Urban Dynamometer Driving Schedule 

(UDDS) or LA-4 cycle, reproduces urban driving as encountered in Los Angles, CA, in the late 1960s.  

This schedule serves as the basis for certification of light-duty vehicles and light-duty trucks.  Such 

certification consists of three sections: i) Cold Start: collects data from the first 505 seconds of the 

cycle (FTP-72 Phase 1 in Table 2-6); ii) Stabilized or Transient: collects data from the rest of the cycle 

(FTP-72 Phase 2); and iii) Hot Start: repeats Phase 1 after a 10 min soak.  The three sections described 

comprise the FTP-75 schedule which is the actual certification procedure.  Emissions expressed in 

g/mi from the three sections are weighted; cold start and hot start are weighed 0.43/0.57 respectively.  

This result from Phase 1 is averaged with the result from Phase 2 to obtain the composite FTP-75 

emissions.  

In addition to the FTP-75, light-duty vehicles are tested over the HWFET (highway driving).  Fuel 

economy results from these two tests are combined to determine the vehicle’s fuel economy to be used 

for Corporate Average Fuel Economy (CAFE). The corresponding CAFE combined fuel economy is 

determined by (Sovran and Blaser, 2006) 

Equation 2.31  CAFE Combined Fuel Economy 

HWFETUDDS

combined

mpgmpg

mpg
45.055.0

1



 . 

The Supplemental Federal Test Procedures (SFTP) are the US06 (aggressive, high speed driving) and 

the SC03 (air conditioning) driving schedules.  SFTP emissions are calculated as a weighted average: 

0.35 × FTP-75 + 0.37 × SC03 + 0.28 × US06. 

 

 

2.4. Hybrid Architectures 

It has been demonstrated (Guzzella and Sciarretta, 2007) that hybrid architectures give the most 

benefits when they are able to bring the engine to its maximum efficiency (i.e. high torques and 

speeds) during most of the different driving conditions and events.  Moreover, maximization of the 
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overall energy conversion efficiency, which includes transmission, power-train, and electrical losses, is 

a must.   

The leading architectures for transit buses are the series and the 2-Mode EVT (parallel).  Two 

major manufacturers of series hybrid powertrains are BAE Systems and ISE Corporation.  The 2-Mode 

EVT architecture is manufactured by Allison Transmission.   

Epicyclic or planetary gear trains are the center of the Toyota power split and GM 2-Mode 

electrically variable transmissions (EVT) for hybrid vehicles.  They have been widely used in 

automatic transmissions for many years; specifically, the planetary trains used in automotive automatic 

transmissions are of the compound type.  A compound train is one in which at least one shaft holds 

more than one gear.  In such trains, the gears are always in mesh and the different ratios, as well as 

reverse, are obtained by engaging and disengaging brakes on different members of the train (Norton, 

2004).   

All hybrid architectures can take advantage of electrifying accessories such as power steering, air 

conditioning, power brakes (vacuum), among others.  Next, several hybrid architectures available on 

the market are discussed, namely: Series, Parallel, Power Split, 2-Mode, and 2-Mode with fixed gear 

ratios. 

 

2.4.1. Series Hybrid 

In the series hybrid architecture, the combustion engine is mechanically decoupled from the wheels 

which are driven by an electric motor.  The engine drives an electric generator which can either send 

the current to the battery or directly to the motor. Given that the motor is the element mechanically 

driving the vehicle, it must be sized to provide the maximum power requirements, thus the motor is 

large.  Engine and generator are normally sized to provide the average driving power. 

Two generic control strategies have been utilized: i) Load following, where the generated power is 

mostly sent to the motor and the battery is used to help bring the engine to its optimal operational 

point, and ii) Charging based, where the engine is on when the battery depletes to a specified level and 

goes off when a desired maximum battery state of charge (SOC) is reached. 

 

2.4.2. Parallel Hybrid 

In parallel hybrid architecture, the IC engine is mechanically connected to the wheels and the 

electric motor is linked to the mechanical path pre or post transmission.  There may also be a gearing 

between the motor and the main shaft.  The motor can boost the engine and be used as a generator for 

regenerative braking purposes; it also helps in altering engine load to improve efficiency.  When 
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compared with series hybrids, motors in the parallel hybrid tend to have a smaller size since the vehicle 

could basically be propelled with the engine alone. 

 

2.4.3. 1-Mode EVT or Input Split 

The input split (or power split), which has one planetary gearset, is suitable for small to mid-size 

vehicles because the constant presence of the electrical path requires very powerful motors in larger 

vehicles.  This condition can be somewhat relaxed with the use of an output reduction. Such additional 

gearing can be attached to the motor, reducing its torque requirements. The power split has one 

mechanical point at which the generator’s speed reaches zero and a pure mechanical path is achieved; 

the pitfall is that such mechanical point is located beyond the operational envelope of the powertrain. 

 

2.4.4. The 2-Mode EVT  

When compared with conventional transit buses, the GM Allison Hybrid E
P
40 and E

P
50 Systems

TM
 

(2-Mode EVT) have achieved 20% to 40% improvement on fuel economy (Chiang, 2007).  The 

advantage of these systems is favored at low speed (stop-and-go type operation), when the hybrid 

control system has more choices to efficiently meet the torque demand and has more opportunity to 

gain energy with regenerative braking (Chiang, 2007). 

The transmission has two mechanical points located at 25 mph and 62 mph (AutoSpeed.com, 

2006); at these speeds the transmission produces a direct drive, just like a conventional transmission.  

A 40’ urban bus equipped with an E
P
 System accelerates, at 35,000 lb, from 0 to 30 mph in 10 seconds 

(Allison Transmission E
V
 Drive website). 

Figure 2-11 shows a schematic of the transmission.  The 2-Mode EVT transmission, developed for 

hybrid buses by GM Allison and known as E
v
 Drive

TM
, employs three planetary sets (E1, E2, and E3) 

and two wet-plate clutches (C1 and C2) to shift between input split (EVT 1) and compound split (EVT 

2) modes.  Input split means that only the first planetary, E1, produces split while the others, E2 and 

E3, act as gear reductions. Compound split means that the split is produced by the E1 and E2 

compound gearset while E3 is a gear reduction (Chiang, 2007, Schmidt, 1999).   
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Figure 2-11  Schematic of the 2-Mode ETV Transmission (Grewe et al., 2007) 

This architecture is similar to the input split with output gearing, except that in the 2-Mode EVT 

the output gearing is a planetary gearset (Miller, 2006) with clutches that either connect both sets (EVT 

2 mode) or ground one of E2’s components (EVT 1 mode).  In EVT 1 mode, the engine-side epicyclic 

gearset E1 acts as a differential and the second planetary E2 as a torque multiplier.  In EVT 2 mode, 

both E1 and E2 act as differentials. The third epicyclic gearset, E3, is used to improve the torque 

characteristics of the system.  The input-split mode is utilized at low speeds or for high accelerations 

(Conlon, 2005).  The compound-split mode is used at higher speeds (Zhang et al., 2001). 

The configuration of the transmission is as follows (Grewe et al., 2007): 

 The engine is joined with ring 1. 

 Motor 1 is joined with suns 2 and 3. 

 Motor 2 is connected with sun 1 and ring 2.  In GM/Allison literature motor 2 is referred to as 

motor A, and motor 1 as motor B. 

 Output is joined with carrier 3. 

 Carrier 1 is joined with carrier 2. 

 Clutch C1 is a brake or stationary clutch.  It holds ring 3, activating input split mode and low-

speed torque multiplication. 

 Clutch C2 is a rotating clutch.  It connects the output shaft with carriers 1 and 2, activating the 

compound split mode. 

Neglecting mechanical losses and inertias of the gearset, the equations for input split mode, EVT 1, 

are (Source: PSAT transmission model and Kim et al., 2009): 

Equation 2.32  2-Mode Input Split Equations 
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(c) 

 

 
          

  

    
     (d) 

In Equation 2.32 m1 and m2 are motor 1 and motor 2 respectively, ω is angular speed, τ is torque, and 

J is moment of inertia.  Engine speed is calculated as the integral of         .  Additionally, the 

transmission ratios a through e are defined as: 

Equation 2.33  2-Mode Transmission Ratios 

  
   

    
(a) 

  
       

   
 (b) 

  
   

        
(c) 

  
   

       
 (d) 

  
       

   
 (e) 

In Equation 2.33 N is number of teeth, R is ring gear, S is sun gear, and the numbers correspond to the 

three planetaries: E1, E2, and E3.  These angular velocity equations can be determined using one of 

several methods, e.g. bond graphs (Kim et al., 2009), lever diagrams (Conlon, 2005), or Kane’s 

method (Zhang et al., 2001). 

Similarly, the equations for compound split mode, EVT 2, are: 

Equation 2.34  2-Mode Compound Split Equations 

    
  

 
         

    

 
     

 

(a) 

                      (b) 

                         
  

 
          

 
(c) 

     
    

 
           (d) 

Replacing the gear ratios of Equation 2.33 into Equation 2.32 and Equation 2.34, we obtain the 

input and compound equations in terms of the number of teeth N.  For input split (Source: PSAT 

transmission model): 
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Equation 2.35  2-Mode Input Split Equations in Terms of N 
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      (d) 

And for compound split: 

Equation 2.36  2-Mode Compound Split Equations in Terms of N 
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       (b) 

                          
      

      
       

   

   
     

 
(c) 

        
      

      
         

   

   
      (d) 

 

Next the input split and compound split modes are described based on Grewe et al. (2007). 

 Input Split Mode EVT 1: In EVT 1, clutch C1 is on, grounding ring 3, and C2 is opened.  EVT 1 

includes electric launch and engine starting.  Figure 2-12 shows the corresponding schematic.  The 

speed of motor 1 is governed by the output shaft and the transmission ratio e (Equation 2.32 a).  

Engine speed is controlled by output speed and by velocity and torque of motor 2.  During engine 

powered driving m2 acts as a generator while m1 acts as a motor.  Engine power is split into a 

direct mechanical path and an electrical path (m2 to m1).  During regenerative braking motor 1 acts 

as a generator.   

EVT 1 has a mechanical point (#1), where motor 2 is stationary, producing mechanical 

transference of engine power (no split).  Under these conditions the speed relations of Equation 

2.32 reduce to outmengine abdeabd   1 ; the transmission ratio is fixed at bde/a. 
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Figure 2-12  EVT 1 Input Split Mode in the 2-Mode ETV Transmission 

 Compound Split Mode EVT 2: In EVT 2, clutch C1 is opened while clutch C2 is closed linking the 

output shaft with carriers 1 and 2.  Figure 2-13 shows the corresponding schematic.  EVT 2 

provides two additional mechanical points (#2 and #3); in #2 motor 2 is stationary whereas in #3 

motor 1 is stationary.  From Equation 2.34, the transmission ratios are b/a for point #2 and (bc –1) / 

ac for #3.  Between points #2 and #3, motor 1 operates as a generator while motor 2 is motoring; 

after point # 3 the action is reversed. 

 

Figure 2-13  EVT 2 Compound Split Mode in the 2-Mode ETV Transmission 

 Synchronous Mode Shift: The GM-Allison EVT transmission was designed such that mechanical 

points #1 and #2 occur simultaneously.  From the discussion above one can state that bde/a = b/a 

and therefore de = 1 must be satisfied; this implies that the ring to sun ratios of E2 and E3 must be 

identical (NR2 / NS2 = NR3 / NS3).  At the synchronous speed the transmission can be simultaneously 
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in EVT 1 and EVT 2 modes.  Shift from EVT 1 to EVT 2 can be performed anytime the angular 

speeds of clutch C2 and carriers 1 and 2 are synchronized, i.e. have zero relative speed.  This is 

attained by commanding the speed of motor 2.  Mode 1 is used at low speed and mode 2 at high 

speeds.  Mode shift is usually performed at the low speed mechanical point. Mode shifting is 

performed in a synchronous way at an intermediate vehicle speed, when motor 2 reaches zero 

velocity (mechanical point) and the clutches reverse action.   

 Degrees of Freedom: In each of its modes, the 2-Mode EVT is described by 4 linear equations 

(two for speed and two for torque) with 8 unknowns (speed and torque of engine, motor 1, motor 2, 

and output).  The system has four degrees of freedom. Output speed can be removed since it is 

given by vehicle speed and differential ratio.  By the same token, output torque is given by driver’s 

demand and could be removed.  Effectively, there are two degrees of freedom for controlling the 

system: one speed and one torque.  The governing speed can be either ωm2 or ωengine in input split, 

while in compound split it can be either ωm1, ωm2, or ωengine.  Regardless of mode, the governing 

torque can be any one of τm1, τm2, and τengine.  On the other hand, output torque can be determined 

by setting τm1 and τengine in input split, while in compound split it is determined by setting any two 

of τm1, τm2, and τengine. 

 Engine Operation:  The engine operating point is optimized to maximize fuel efficiency.  Conlon 

(2005) explains that “in general, this means that the engine is operated along a lower speed 

constraint line at low speeds, then along a torque constraint line passing through the best brake-

specific-fuel-consumption points at higher powers.  The reduction in engine losses must be traded 

off against the holding torque and spin losses of the electric machines.  In practice, this generally 

means that the best system efficiency point lies at somewhat lower torques and higher speeds than 

the optimum engine efficiency trajectory.” 

 

2.4.5. The 2-Mode Hybrid with Fixed Gear Ratios 

Developed for SUVs by GM, the 2-Mode Hybrid transmission includes 4 fixed gear ratios attained 

by clutch-locking different parts of the transmission (Grewe et al., 2007).  Compared with the 2-Mode 

EVT with one fixed gear ratio, the 2-Mode Hybrid adds 3 fixed gear ratios and 2 clutches.  The rear 

wheel drive version uses 3 planetary gearsets with the third one acting as a final drive, whereas the 

front wheel drive version uses only two planetaries and the final drive is through conventional gearing.  

Four balancing effects have been identified, namely: i) the additional clutches increase the spin losses 

of the transmission.  ii) The use of fixed gears reduces losses through the electrical path and allows 

more efficient regenerative braking at high speeds.  iii) The use of fixed gears slightly drifts engine 
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operative conditions from best efficiency.  iv) The use of fixed gears increases transmission output 

torque which allows a reduced final drive ratio, reducing spin losses.   

Overall, the 2-Mode Hybrid transmission provides increased acceleration and better fuel economy 

over severe driving conditions (e.g. the US06 driving schedule).  For less severe driving, modeling of 

both the 2-Mode EVT and the 2-mode Hybrid yielded similar fuel economy results (Grewe et al., 

2007).  The 2-Mode Hybrid architecture is intended for use in full-size SUVs that require a demanding 

towing capacity with inherently higher cruising and grade loads; furthermore, it reduces the motor 

continuous power requirements required in equivalent 2-Mode EVTs.  Figure 2-14 shows a cutaway 

and the components of the GM 2-Mode Hybrid transmission installed in the 2008 Saturn VUE (picture 

taken at GM booth during the SAE 2008 World Congress); input shaft is in the front and output shaft is 

in the back.  The 2-Mode Hybrid transmission is governed in its input and compound split modes by 

the equations of the 2-Mode EVT presented above. 

 

Figure 2-14  GM 2-Mode Hybrid System, Front-Wheel Drive (picture taken at GM booth during the SAE 2008 

World Congress) 
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2.5. Emissions Testing Procedures 

Emissions testing laboratories in the U.S. are regulated by the requirements of CFR 40 Parts 86
a
 

and 1065 (Engine Testing Procedures).  West Virginia University has chassis and engine dynamometer 

test facilities designed according to Subparts B
b
 and N

c
 of Part 86, and Part 1065.  WVU recently 

upgraded its test facilities to comply with regulations pertaining to testing of 2007 and newer 

engines/vehicles (CFR 40 Part 1065).   

 

2.5.1. Analytic Instrumentation 

The tail pipe exhaust is conducted to the full scale dilution tunnel where it is mixed with HEPA 

filtered dilution air.  The sampling plane is located at least 10 tunnel diameters downstream from the 

inlet, where heated sampling probes draw the diluted exhaust.  Heated lines conduct the diluted 

exhaust to the analytic instruments for continuous HC, NO, NOx, CO, and CO2 measurement, and 

collection in bags for specialized tests.  All of the analyzers are checked for drift and they are 

calibrated (using a gas divider) before each test.  Background tests are conducted before, during, or 

after testing.  Background emissions are subtracted from the diluted stream to obtain truly tailpipe 

emissions.  During the test, background and diluted exhaust bags are also filled, providing composite 

emissions that can be compared with instantaneous results. 

The analytic equipment is described next. 

 Hydrocarbons, HC: A heated flame ionization detector (HFID) continuously measures HC 

emissions.  The instrument has a burner in which a regulated sample gas flow passes through a 

flame.  The flame is sustained by flows of air and a premixed hydrogen/diluent fuel gas.  The 

hydrocarbons in the sample are combusted producing positive and negative ions.  Ions are collected 

in polarized electrodes, causing current to flow.  Current flow is proportional to hydrocarbon 

concentration in the sample.  Concentrations are reported wither on methane (CH4) or propane 

(C3H8) equivalent emissions.  Zero gas is zero air.  Zero air is purified air with less than 0.1 ppm 

HC. 

 Oxides of Nitrogen, NOx: Two heated wet chemiluminescent analyzers continuously measure 

nitric oxide (NO) and NOx. NO reacts with ozone (O3) producing nitrogen dioxide (NO2) and 

                                                 
a
 Part 86: Control of Emissions from New and In-Use Highway Vehicles and Engines. 

b
 Subpart B: Emissions Regulations for 1977 and Later Year New Light-Duty Vehicles and New Light-Duty Trucks and 

New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures. 
c
 Subpart N: Emissions Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust 

Test Procedures. 



Chapter 2 – Literature Review 

 

44 

oxygen (O2).  Some 10% of the NO2 is electronically-excited and will revert to its non-excited state 

with the emission of photons (chemiluminescent reaction).  The amount of photons thus produced 

is proportional to the NO concentration of the sample.  Ozone is produced from an oxygen cylinder 

and ultraviolet radiation.  NOx is determined by dissociation of the NO2 into NO prior to entering 

the reaction chamber.  NO2 is determined by subtraction.  Zero gas is nitrogen.   

 Carbon Monoxide, CO, and Carbon Dioxide, CO2:  Non-dispersive infrared (NDIR) analyzers 

continuously measure CO and CO2.  The instrument consists of two infrared light sources, a 

chopper, a measuring cell filled with the gas sample, a reference cell filled with reference (non-

absorbing) gas, and a detector.  The infrared light intermittently enters the measuring cell where it 

is partially absorbed by the sample gas.  The detector consists of two sealed chambers connected 

by a flexible metal diaphragm and filled with a gas mixture containing the component of interest.  

In the chamber, the gas absorbs infrared energy, its temperature increases, and its pressure rises.  

The detector senses pressure difference between the chambers.  The difference in energy of the 

beam due to the presence of the component of interest in the sample gas causes the pressure in the 

sample chamber to increase less than the reference chamber pressure.  The differential pressure 

causes the diaphragm to flex changing the capacitance of a two-plate variable capacitor.  

Capacitance change is proportional to CO/CO2 concentration in the sample.  Intermittency of the 

beam being blocked by the chopper equalizes the pressure in both chambers.  Zero gas is nitrogen.  

Two analyzers are used for CO emissions, low range and high range. 

 Other gases: Gases like non-methane hydrocarbons (NMHC), aldehyde, alcohols, and other toxic 

emissions are determined by gas chromatography.  Sample bags are collected and sent to WVU 

where the mean concentration is measured.   

 Particulate Matter (PM): PM is measured gravimetrically.  The PM sample is conducted through 

a secondary dilution tunnel where the double diluted exhaust is kept at a temperature no higher 

than 125 °F (50 °C).  The sample is filtered through primary and secondary 70 mm fluorocarbon 

coated glass fiber filters.  Filtration efficiency of the filters is 98% for particles 0.1 micron and 

larger.  Filters are pre- and post- weighted on a microbalance in a clean room, conditioned to 50% 

RH, 70 °F (25 °C), for at least one hour. 

A Tapered Element Oscillating Microbalance (TEOM) is available for continuous measurement of 

PM emissions.  The TEOM is easily affected by exhaust humidity and several studies have shown 

that its accuracy is limited, especially with the new trap-equipped engines. 

The following instrument verification/audit procedures are standard (Wu et al., 2009): propane 

injections to verify CVS flow rates, H2O interference for CO and CO2 analyzers, CO2 interference for 
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CO analyzers, O2 interference for HC analyzer, CO2 and H2O quench for NO/NOx analyzer, and NO2 

to NO converter efficiency. 

Test results are converted to engineering units and processed according to CFR 40 Part 86 Subpart 

N (86.1342) and Part 1065 Subpart G. 

Table 2-7  Summary of Analytic Instrumentation 

Component Method Zero gas 

NO/NOx Chemiluminescent N2 

HC HFID Zero Air 

CO/CO2 NDIR N2 

 

2.5.2. Chassis-Dynamometer Transportable Facility 

The WVU Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (TransLab) was 

developed under contract with the U.S. DOE.  The TransLab can operate medium to heavy-duty 

vehicles and collects gaseous and particulate emissions.  The following is a brief description of the 

components and operation of the laboratory.  The description of the pre 2007 compliant equipment is 

taken from Nix et al. (2009).  Specifications of the CFR 1065 (2007) laboratory are taken from Wu et 

al. (2009). 

 

 Pre-2007 Laboratory 

The laboratory has four major components:  i) Heavy-duty chassis dynamometer for vehicle 

weights between 20,000 lb to 65,000 lb.  ii) Medium-duty chassis dynamometer for vehicle weights 

between 6,000 lb to 22,000 lb.  iii) Analytical instrumentation trailer housing full scale dilution tunnel, 

gaseous and particulate analysis equipment, control system, and data acquisition system.  iv) Critical 

flow venturi-constant volume sampling (CFV-CVS) blower system. 

In the heavy-duty dynamometer, the test vehicle is supported on free-spinning rollers and hub 

adapters are put in place of the external drive tires.  Drive shafts connect the hub adapters to the 

dynamometer units, one on each side of the vehicle.  Inertia loads are simulated by flywheels set to the 

desired test weight.  Aerodynamic drag and rolling resistance losses are simulated by two 300 hp eddy 

current power absorbers.  Two 20 hp variable speed motors supply restricted motoring to help 

overcome frictional losses in the dynamometer driveline.  Aerodynamic and rolling drag loads are 

applied in closed loop control. 

The medium-duty dynamometer differs from the heavy-duty dynamometer in that it applies load 

through the rollers.  Table 2-8 presents component sizes of the various WVU chassis dynamometers.  

The NOx analyzers are heated (wet) chemiluminescent. 
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Table 2-8  Components of the Various WVU Chassis Dynamometers 

 Pre 2007 

Heavy-Duty 

Pre 2007 

Medium-Duty 

CFR-1065 Compliant  

Laboratory 

Vehicle weight, lb 20,000 to 65,000 6,000 to 22,000 Did not change 

Eddy current power 

absorbers, hp 
2 x 300 1 x 400 Did not change 

Variable speed motors, hp 2 x 20 1 x 25 Did not change 

Blower CFV-CVS SSV-CVS 

Dilution tunnel ø = 18 in, L = 20 ft ø = 18 in, L = 20 ft 

Secondary dilution tunnel ø = 3 in, L = 30 in ø = 7/8 in, L = 84 in 

 

 CFR-1065 Compliant Laboratory 

The dynamometers were not updated and they are shared between the two laboratories. On the 

other hand, a brand new analytical/controls trailer was constructed.  The laboratory has two dilution 

tunnels, one for legacy-high PM diesel vehicles and one for clean-low PM vehicles.  The blower 

system is a subsonic venturi-constant volume sampler (SSV-CVS). 

The NOx analyzers are both heated (wet) and cold (dry) chemiluminescent.  The PM sample is 

directed through a cyclone separator, which removes mechanically generated coarse particles, before it 

enters the filter.  Detailed information on detection limits of the various analyzers, and the laboratory 

in general, can be found in Wu et al. (2009). 

 

 Energy Management 

When the vehicle is accelerating in a level road, Equation 2.11 predicts that the loads are inertia (

dtdVmV ), rolling resistance (  cosmgVcr ), aerodynamic drag ( VVAc rfd

25.0  ); loads that are 

overcome by the vehicle’s power source.  The inertial load is applied by the flywheels, which at the 

same time store kinetic energy that is redeployed at deceleration.  The rolling and aerodynamic loads 

are imposed by the power absorbers.  If, in addition, the vehicle is driving uphill, an extra load 

consisting of grade resistance is present (  sinmgV ) which is imposed by the power absorbers.  Even 

though, when in the road this grade energy is stored in the vehicle as potential energy, in the chassis 

laboratory, unlike the inertial load, the grade load is not stored.   On the other hand, if the vehicle is 

driving downhill, motoring is provided by the decreasing vehicle’s potential energy, which offsets the 

load in the engine.  In the chassis-dynamometer, this motoring is provided by the variable speed 

motors. 

When the vehicle is decelerating in a level road, aerodynamic and rolling losses are still present 

and would be simulated by the power absorbers; the flywheels redeploy the stored kinetic energy, part 
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of this energy is used to overcome aerodynamic and rolling losses.  The remaining kinetic energy is 

absorbed by braking (conventional or regenerative) and engine brake. 

 

2.5.3. Engine-Dynamometer Facility 

The engine dynamometer test cell has also been recently updated to comply with CFR 1065.  The 

following description corresponds to the pre-2007 laboratory. 

As with the transportable laboratory, the full engine exhaust is directed to the dilution tunnel.  The 

blower system is CFV-CVS.  Inlet air to the engine and dilution air are controlled for temperature and 

humidity.  The analytical instrumentation as described in Section 2.5.1. 

 

2.5.4. Mobile Emissions Measurement System (MEMS) 

The WVU Mobile Emissions Measurement System (MEMS) provides a portable and accurate way 

of measuring in-use emissions from heavy-duty vehicles.  The drawback of MEMS is that the size of 

its equipment is enough as to interfere with the normal operation of transit vehicles.  Therefore, its use 

in collecting emissions data from transit buses is restricted by functionality.  MEMS have been used in 

studies of emissions and fuel consumption of tractor trucks where the equipment is carried in the 

trailer.  Emissions results can be reported in time-specific (g/s), distance-specific (g/mi or g/km), or 

brake-specific (g/kW-hr) units.  Engine power can be determined from the electronic control unit 

(ECU) broadcasts of engine speed and torque.  Torque is computed in the ECU from engine speed and 

fueling rate.  Details of the MEMS can be found in Krishnamurthy (2006).   

Thompson et al. (2002) presented a method to infer load and power from diesel engines for on-road 

emissions monitoring.  This method can also be used in chassis-dynamometer testing when engine load 

if of interest, e.g. brake-specific mass emissions.  It would help in obtaining data for engine emission 

maps when such data is not available from engine dynamometer testing but vehicles with the engines 

of interest have been tested.   

Brake-specific emissions require estimation, over a period of time, of the mass emitted and the 

work delivered to the engine output shaft (Thompson et al., 2002).  The ECU does not report engine 

torque in engineering units (N-m or ft-lb); instead, torque is reported as a percentage of the maximum 

torque at a given speed.  Torque is not reported at the engine output shaft; it is reported as indicated 

torque, which is torque in the cylinders and includes the friction load (SAE J1939-71: percent load at 

current speed and actual engine-percent torque).  The actual output torque will be indicated torque 

minus friction losses.  The standard that regulates ECU communication is the SAE J1939-71; it 

provides the following useful definitions of the parameters that the ECU broadcasts related to torque: 
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 Percent Load at Current Speed: “The ratio of actual engine percent torque (indicated) to 

maximum indicated torque available at the current engine speed, clipped to zero torque during 

engine braking.” 

 Actual Engine - Percent Torque: “The calculated output torque of the engine. The data is 

transmitted in indicated torque as a percent of reference engine torque. The engine percent torque 

value will not be less than zero and it includes the torque developed in the cylinders required to 

overcome friction.” 

 Nominal Friction - Percent Torque: “The calculated torque that indicates the amount of torque 

required by the basic engine itself added by the loss torque of accessories. It contains the frictional 

and thermodynamic loss of the engine itself, and the losses of fuel, oil and cooling pumps. The data 

is transmitted in indicated torque as a percent of reference engine torque. 

The realization can be done by a map dependent on engine speed and engine temperature and an 

offset value for additional loss torques.” 

 

The ECU computes torque from fueling rate and engine speed (Thompson et al., 2002).  The 

method proposed by Thompson et al. (2002) requires the engine lug torque curve supplied by the 

manufacturer and a curbside no–load test.  The curbside no-load tests serves to determine the percent 

load required to overcome internal friction.  It was shown that ECU engine speed is very accurate, with 

an average absolute percent difference, when compared with measured laboratory speed, of 0.4% to 

0.7% on the FTP cycle.  The equation for engine output torque is 

Equation 2.37  Engine Output Torque, Thompson et al. (2002) 
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Where Tmax is the lug curve torque, ECU% is the percent load signal, ECUno-load is the no-load signal, 

and ECU%max is the associated lug curve percent load.  All the parameters in Equation 2.37 are function 

of engine speed.  It is assumed that internal friction is a function of speed only and the contribution of 

engine load is neglected.  Thompson et al. (2002) report an error of 5% in FTP cycle work (integrated 

power). 

 

 

2.6. Regression Analysis 

Regression analysis will be used in this dissertation in two main instances.  First, to develop an 

engine emissions and fuel consumption model which will be integrated into the vehicle model.  And 
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second, to compile the outcome of all the obtained results in a form usable in IBIS.  This section 

briefly describes the main techniques which will be considered: Least Squares, Neural Networks, and 

Multivariate Adaptive Regression Splines (MARS).  Some important definitions are also presented.   

Correlation, r, measures the linear association between two or more variables; that is, how closely 

the data points follow a straight line (Moore & McCabe, 2006).  The correlation r between variables x 

and y is 

Equation 2.38  Correlation, r 
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where n is number of data points, s is standard deviation, and over bar is mean value;  
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.  The quantities in parenthesis are standardized 

observations.  The familiar correlation coefficient, r
2
 (usually R

2
,), is the square of r in Equation 2.38.  

Correlation r is always between –1 and 1; r > 0 represents a positive association and r < 0 represents a 

negative association.  r
2
 is always between 0 and 1, where values closer to the upper limit represent a 

stronger linear association.  It must be noted that correlation is severely affected by outliers. 

 

2.6.1. Simple Least–Squares 

A regression line that describes or predicts the relationship between two variables, say x and y, can 

be produced by Least-Squares regression.  The regression has the form xbby 10  , where b0 is the 

intercept and b1 is the slope.  The best line to fit the data is a line that has the minimum separation in 

the vertical direction to all the points.  The least-squares regression line minimizes the sum of the 

squares of the vertical distances between the data and the line. 

The least-squares regression line of y on x is (Moore & McCabe, 2006) 

Equation 2.39  Least-Squares Regression Line 
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The parameters in Equation 2.39 were defined above.  For example, x  is the mean of all the x 

values in the data set and sx their standard deviation.  Note that correlation and slope share the same 

sign. 
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A note of caution goes to extrapolation; predictions outside of the data region are often unreliable.  

Least-squares correlations are severely affected by outliers.  Outliers in the x direction have a strong 

influence in the regression line because they tend to pull the line toward themselves.  A similar effect 

is observed with outliers in y. 

The R
2
 value “is the fraction of the variation in the values of y that is explained by the least-squares 

regression” (Moore & McCabe, 2006).  Therefore, R
2
 percent of the change of y due to changes in x is 

accounted for by the linear regression; the remaining 1 – R
2
 percent corresponds to vertical scatter of 

the observed responses, that is, differences between observed values (y) and predicted values (ŷ).  In 

terms of variances (Var) of y and ŷ, R
2
 can be expressed as R

2
 = Var(ŷ) / Var(y), which indicates that 

the variance in least-squares predicted values is always smaller than the variance of observed values.  

Finally, R
2
∙Var(y) can be understood as the variance that the responses would have if there were no 

scatter in the data. 

Linear regression can be applied to other types of relationships, e.g. logarithmic, if the data are 

transformed, e.g. apply the log function, such that the transformed data represent a linear trend. 

Another measure of dispersion are the residuals, defined as the difference between observed and 

predicted values: residual = ei = yi – ŷi.  Residual plots are of common use in statistics.  A good 

regression would yield no specific (unstructured) pattern in the residual plot.  Further verification 

should be made by normal quantile plots of response variable and residuals, which give a good check 

for normality. 

 

2.6.2. Simple Linear Regression 

The previous section presented the least-squares line for y on x where a dataset of (x, y) points was 

available; say through experiments.  The points in the dataset are truly a sample of the population of all 

possible (x, y) values.  In this sense, the least-squares line is an estimate of the true regression line for 

the population (Moore & McCabe, 2006), where the larger the number of data points, the better the 

estimate and the narrower the confidence interval. 

Population parameters are labeled by Greek letters; so the population regression line is 

Equation 2.40  Population Regression Line 

xy 10   , 

which reminds that the coefficients in the fitted line, Equation 2.39, are estimates of the β‘s. 

In the statistical model for simple linear regression, it is assumed that the response y is normally 

distributed for each value of x (y is a random variable).  In Equation 2.40, µy is the mean of the 

population for each value of x and describes how the mean response changes with x.  It is also assumed 
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that the standard deviation σ is constant with x.  Figure 2-15 (Moore & McCabe, 2006) compiles these 

ideas; the height of the normal curves represents the probabilities of each y value to occur for a given x. 

 

 

Figure 2-15  Statistical model for linear regression 

 

The statistical model for the response yi is described mathematically by a mean value (β0+β1∙xi) 

plus a deviation, noise or residual (εi).  Residuals are likelihood deviations from the mean; they are 

independent and normally distributed, with zero mean and standard deviation σ, N(0, σ).  The statistical 

model for the observed response is 

Equation 2.41  Statistical Model for Simple Linear Regression 

iii xy   10 . 

The regression parameters (β0, β1, and σ) are obtained from Section 2.6.1; b0 and b1 are unbiased 

estimators of β0 and β1.  They are normally (or approximately normally) distributed with means β0 and 

β1.  This means that ŷ  is also an unbiased estimator of µy.  The residuals ei correspond to the model 

residuals εi and σ
2
 is estimated from the average squared residual s

2
: 

Equation 2.42  Average Squared Residual 
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The degrees of freedom (number of independent elements) are n-2 because two were already used for 

b0 and b1. 

Confidence intervals, with a C percentage (say 95%), for β0 and β1 are 

Equation 2.43  Confidence Intervals for Slope and Intercept 

β0: b0 ± t*∙SEb0 and 

β1: b1 ± t*∙SEb1. 
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SE are standard errors given by 
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b ; the critical value 

t* (see Figure 2-16) is solved from the t distribution with n-2 degrees of freedom, t(n–2), where C is 

the area between –t* and t*.  t* can be calculated from a table of t distribution percentage points. 

 

 

Figure 2-16  Graphical interpretation of t* 

 

If a significance test for the null hypothesis H0: β1 = 0 is positive, there is no linear relation and µy 

= β0.  Here, the test statistic is 

Equation 2.44  t Statistic 

1

1

bSE

b
t  . 

On the other hand, if the null hypothesis is rejected, a statistically significant linear relationship is then 

demonstrated.  The statistic t is also used to test for H0: ρ = 0, where ρ is the population correlation is 

estimated from the sample correlation r. The statistic can be calculated alternatively by 
21

2

r

nr
t




 . 

The hypothesis H0: β1 = 0 is tested based on the P-value (Moore & McCabe, 2006): “the 

probability, computed assuming that H0 is true, that the test statistic would take a value as extreme or 

more extreme than that actually observed is called the P-value of the test.  The smaller the P-value, the 

stronger the evidence against H0 provided by the data.”  In other words, the chance of obtaining a 

statistic with value “t” or larger is “P-value”.  The P-value is calculated with the t(n–2) distribution and 

the value of t.  The traditional level for statistical significance is 0.05. 

The C (%) confidence interval for the mean response µy for any x = x* is 

Equation 2.45  Confidence Interval for Mean Response 

 ˆ*ˆ SEty  , 
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where *ˆ
10 xbby   and 
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.  Note that since 

̂SE  is dependent on x*, the 

confidence limits of the regression line are not static but vary with x.  Usually, the interval is narrower 

near the mean x, x , and increases as you move away from x .   

Equation 2.45 gives the confidence interval for the average response at a given x = x*.  Often times 

you would be interested in the confidence interval of a single prediction, that is, where the possible 

response would lie.  The C (%) confidence interval provides this information for any x = x*, 

Equation 2.46  Confidence Interval for Single Prediction 

ySEty ˆ*ˆ  . 

Where 
yy ̂ˆ   is the best guess for the predicted value and the standard error for the individual 

prediction is 
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y
.  The prediction interval is much wider than the confidence 

interval for mean response; for instance the ratio is 
̂ˆ SESEy

.   

The concepts illustrated in this section can be extended to nonlinear models. 

 

2.6.3. Analysis of Variance (ANOVA) 

ANOVA expresses the variation in the response, yyi  , as two contributions, one from the effect 

of varying x ( yyi ˆ ) and one from the scatter of data ( ii yy ˆ ), that is,      iiii yyyyyy ˆˆ  .  

Then, the variation is expressed as a sum of squares (SS) where the left hand side is called total (SST), 

the first term of the RHS is model (SSM) and the last term is error (SSE) or residual.  We have 

Equation 2.47  Sum of Squares 
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It is also observed that the total degrees of freedom (DFT) are the sum of the degrees of freedom of 

the model (DFM) and the degrees of freedom of error (DFE), thus DFEDFMDFT  .  In simple 

regression, DFM = 1 (one independent variable), DFE = n – 2 (two βs), and DFT = n – 1.  The mean 

square (MS) is defined as the ratio of the sum of squares to the degrees of freedom, and as such there 

are MST, MSM, and MSE.  A mean square is an average squared deviation. 
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Then, 
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i  which is the sample variance 2

ys .  Furthermore, MSE turns out 

to be the estimate of the variance of the residuals in the regression model, s
2
 from Equation 2.42, 

Equation 2.48  Mean Square Error 
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The correlation coefficient R
2
 may also be expressed in terms of sum of squares, 

Equation 2.49  Correlation Coefficient, R
2 

SST

SSM
R 2

. 

The ANOVA test statistic for the null hypothesis H0: β1 = 0 is called the F statistic  

Equation 2.50  F Statistic 

MSE

MSM
F  . 

Large values of F (MSM >> MSE) indicate that β1 ≠ 0.  “The P-value is the probability that a random 

variable having the F(1, n – 2) distribution is greater than or equal to the calculated value of the F 

statistic” (Moore & McCabe, 2006).  The one in F(1, n – 2) is for DFM, and the n – 2 for DFE. The F 

statistic is related to the t statistic defined above (Equation 2.44): F = t
2
. 

The ANOVA table gives degrees of freedom, sum of squares, as well as the mean squares for 

model, error, and total variations. 

 

2.6.4. Multiple Regression 

Consider the response variable y and p explanatory variables xj, j = 1, 2, …, p, with n observations 

(sample size n).  Similarly to the model for simple linear regression of Equation 2.41, the statistical 

model for multiple linear regression is (Rawlings et al., 1998) 

Equation 2.51  Statistical Model for Multiple Linear Regression 
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The subscript i represents each individual observation and i = 1, 2, …, n.  There are (p + 1) βj 

parameters in the model, β0 to βp.  It is required that the number of observations be greater than the 

number of parameters, i.e. n > p + 1. 

The model can be represented in matrix notation as follows.  Let Y be a column vector with the n 

observations, β be a column vector with the p + 1 unknown parameters, X be a n × p + 1 matrix of the 

dependent variables where the i
th

 row has the form [1, xi1, xi2,…, xip], and ε be a column vector with the 

residuals.  Subsequently, the model in matrix form is 

Equation 2.52  Statistical Model in Matrix Form 
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As before, it is assumed that the deviations or residuals are normally distributed and have unknown 

standard deviation σ.  The regression parameters (βj) are obtained from the unbiased least squares 

estimators (Rawlings et al., 1998) bj (see Equation 2.39) 

Equation 2.53  Regression Parameters 

   YXXXb ''
1

 , 

where b is a column vector (p + 1 × 1),  b = [b0, b1, …, bp]'.  In the X' X matrix (p + 1 × p + 1), the 

diagonal elements are the sum of squares of each explanatory variable and the off-diagonal elements 

are sums of products between explanatory variables.  The column vector X' Y (p + 1 × 1) contains the 

sums of products for each observation i between the dependent variable and the independent variables, 

X' Y = [Σyi, Σxi1yi, …, Σxipyi]'.  A unique solution exists if X' X has inverse, which is guaranteed if X has 

full column rank; that is, there are no linear dependencies among the explanatory variables, thus there 

are no redundant explanatory variables. 

The least-squares multiple linear regression for the sample is 

Equation 2.54  Least-Squares Multiple Linear Regression 
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Where x = [1, x1, x2, …, xp] is a row vector (1 × p + 1).  Equation 2.39 and Equation 2.41 are special 

cases, with p = 1, of Equation 2.52 to Equation 2.54. 

 

The mean response is 
ppy xxx   22110
 and ŷ is an unbiased estimator of µy.  σ

2
 is 

estimated from the mean squared residual (see Equation 2.42) 
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Equation 2.55  Mean Squared Residual 
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Sometimes, s is referred as root mean square error in statistical software. 

Confidence intervals for βj are, as in Equation 2.43, 
jbjj SEtb  *: ; the number of degrees of 

freedom for error is n – (p + 1).  The standard error of the parameters is  

Equation 2.56  Standard Error of the Regression Parameters 

jjb csSE
j

2 , 

 

where cjj is the (j + 1)th diagonal element of (X' X)
–1

.  This approach is called univariate confidence 

intervals.  For the hypothesis H0: βj = 0, the t statistic (Equation 2.44) 

jb

j

SE

b
t   is used. 

The confidence interval for the mean response for any x* = [1, x1*, x2*, …, xp*] is (Equation 2.45) 

 ˆ*ˆ SEty  .  The mean response is bxy *ˆ   and the standard error of 
ŷ  is  

Equation 2.57  Standard Error of the Mean Response 

  *'*'
12

ˆ xXXxsSE


 . 

The confidence interval for a single prediction is (Equation 2.46) 
ySEty ˆ*ˆ  , with bxy y *ˆˆ   .  

The standard error is 

Equation 2.58  Standard Error of a Single Prediction 

  *'*'1
12

ˆ xXXxsSE


 . 

The ANOVA F statistic tests the hypothesis H0: β1 = β2 = … = βp = 0; the alternative hypothesis is 

Ha: at least one βj is not 0.  Here, DFM = p and DFE = n – p – 1 (DFT = DFM +DFE = n – 1).  The 

squared multiple correlation is also R
2
 = SSM / SST (Equation 2.49) and represents the proportion of 

the variation explained by the multiple linear regression model.  

Factor interactions are not considered in multiple linear regression, only main effects are accounted 

for.  On the other hand, nonlinear and polynomial models can include and evaluate factor interactions.  

Equations equivalent to the ones presented for linear regression exist for polynomial and nonlinear 

models. 

 

Moore & McCabe (2006) recommend the following procedure for performing a multiple regression 

analysis: 
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 Preliminary Analysis: examine carefully each of the explanatory and response variables.  Look at 

means, standard deviations, minimum and maximum values.  Use stemplots or histograms to 

examine the distributions and identify any possible outliers.  Use normal quantile plots to identify 

if there distributions look normal (they are not required to be).  Note and check for accuracy of 

extreme values. 

 Relationships between pairs of variables: get a better understanding of the data by examining 

relationship between all pairs of variables using scatterplots and correlations.  Observe P-values.   

 Regression on subsets of variables: run several regressions on subsets of variables.  Verify that the 

DOF in the output of the statistical program match the actual data; this ensures that the model was 

defined properly.  In the ANOVA tables, check r
2
 values, P-values, estimates of σ (s

2
 = MSE).  For 

the parameter estimates (β or b), check the t statistics (t = b / SEb) and corresponding P-values for 

statistical significance of the regression coefficients.  Variables without statistical significance 

indicate a weak correlation.   

Note that a statistically significant result does not mean that the regression produces good results;  

the correlation coefficient sheds light on this point. 

If two variables showed correlation in the previous step, then maybe only one variable will suffice 

at this stage and the other one could be eliminated.  This will be revealed by the significance tests.   

 Residuals: examine the normal quantile residual plots, one for each explanatory variable, for 

outliers and linearity (thus normality of the residuals).   

 Refine the model: remove variables that contribute the less and run the regressions again.  

Compare R
2
 and t values with the previous ones; observe how the results have changed. 

 Regression using all variables: explore if a regression equation including all the explanatory 

variables gives better correlation coefficient.  Identify the variables with statistical significance. 

 

2.6.5. Artificial Neural Networks 

Artificial neural networks (ANN) use a network of interconnected computing units (neurons) that 

can learn the input/output relationship of a complex system through training with sampled data (Zhou, 

2003).  ANNs exploit the principles of nonlinearity and parallelism as seen in the human brain. 

Neural networks can be classified (Zhou, 2003) in feed-forward networks and recurrent networks 

according to the data flow architecture.  In feed-forward networks data flows forward between layers 

of neurons.  Recurrent networks have feedback loops which make them especially useful in 

optimization problems.  Neural Networks can be single layer or multilayer. Multilayer feed-forward 

networks are also to referred as multilayer perceptrons (MLP).  MLPs consist of input nodes, output 

nodes, intermediate (hidden) layers, and links that connect neurons between layers.   



Chapter 2 – Literature Review 

 

58 

The neurons in the hidden layers perform nonlinear transformations (mapping) between inputs and 

outputs.  The mapping process is tuned by weights associated with the links; weights are adjusted 

through training.  The nonlinear response is obtained by transfer or activation functions in the hidden 

neurons. 

For the problem at hand, the recommended learning/training process is supervised learning. In 

supervised learning a set of input/output training data is used and the ANN’s response is compared to 

the target output by estimation of a performance measure.  Performance measures may be for example 

a mean squared error, or the instantaneous squared error for all the neurons at the output layer.  The 

weights are adjusted according to an error correction rule, reducing the approximation errors.  Back-

propagation is a standard training technique in which the errors in the output layer are feed-backwards 

and the weights are adjusted according to error gradients.   

Once the network is trained, it must be validated with a different dataset to assess how well it 

performs with unseen data.  Two common validation techniques are simple validation and cross-

validation.  Simple validation calculates the average error over all validation points.  Cross-validation 

performs various partitions of the full dataset in training/validation subsets and trains the same number 

of ANNs.  The network with the minimum validation error is selected. 

Another common type of neural networks is the Radial Basis Function neural network.  Radial 

basis networks are a special case of nonlinear feed-forward networks, in which the transfer function is 

symmetric with respect to a center.  Radial basis networks are easier to train than MLPs. 

Training can be improved by methods like adaptive learning rate, momentum models, and 

optimization-based methods (Zhou, 2003).  These methods target issues of training efficiency and local 

minima. 

A critical aspect in the design of ANNs is the number of hidden layers and the number of neurons 

per layer.  If there are too many neurons, the system is overfitted and the response becomes erratic. If, 

on the other hand, there are too few neurons, the system is underfitted and the performance is poor.  

Several approaches have been developed to address these issues (Zhou, 2003), for example network 

pruning and resampling. 

Neural networks have been used in a variety of applications from control and optimization to 

regression and complex system modeling.  Specific examples of ANNs for emissions modeling is 

presented in Section 2.7.4 “ANNs for Engine Emissions‖.  

 

2.6.6. Multivariate Adaptive Regression Splines 

MARS is a statistical regression method for high dimensional data, developed by Friedman (1991).  

MARS is a nonparametric method, meaning that the functional relationship between inputs and outputs 
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is not predefined; the form of the relation is inferred from the data.  The input space is partitioned and 

the model adjusts itself for best performance over the various regions.  In MARS, the basis functions 

are hinge functions such as max{0, x – x*}, where x* is a partition point.  MARS can be seen as a 

piece-wise linear regressor.  The explanatory variables, factor interactions, and the partitions are 

selected automatically during the computations.  An overfitted model is first created and then pruned to 

improve generalization.  Nonlinearities are handled as multiplication of factors, where each factor has 

its own hinge function. 

Krishnamurthy (2006) used MARS for NOx emissions modeling of heavy-duty trucks.  The MARS 

algorithm does not come standard in MATLAB
®

 software, but public domain user defined toolboxes 

(e.g. ENTOOL) exist with its implementation. 

 

 

2.7. Emissions Predictions / Inventories and Previous Work 

An important part of this dissertation is prediction of tailpipe emissions.  This section discusses 

several methods used for emissions prediction and inventory.  A review is presented of various 

methods that have been used in the literature to predict emissions.  The majority of literature on the 

subject was found in journal papers, Master’s Thesis and Ph.D. Dissertations from West Virginia 

University. 

 

2.7.1. MOBILE6 and MOVES 

MOBILE6 is a computer model developed by EPA used to predict emissions from on-road motor 

vehicles (Heirigs et al., 2001) for calendar years 1952 to 2050.  MOBILE6 incorporates all types of on-

highway vehicles, including motorcycles, light-duty cars and trucks, heavy-duty trucks, and buses.  It 

accounts for fuel type, vehicle model year, vehicle operating parameters (speed, off-cycle effects, air 

conditioning, and soak time), and environmental parameters (temperature, humidity, cloud cover or 

fraction of light, and altitude), amidst other considerations.   

MOBILE6 is activity based; the models are based on emission factors or base emission rates 

(g/mi), where these emission rates are function of vehicle mileage.  The pollutant species considered 

are HC, CO, NOx, PM (MOBILE6.1), and greenhouse gases (M6.3/NGM1).  Base emissions data are 

collected from chassis-dynamometer FTP-72 tests.  MOBILE6 applies correction factors to account for 

varying average speed, ambient temperature, and fuel.  It also uses statistical activity data to determine 
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travel fractions from the various vehicle types and vehicle age distributions.  Finally, fleet average 

grams per mile emissions are reported. 

MOBILE 6 divides driving in four groups: Freeway, Arterial/collector, Local roadway, and 

Freeway ramp Driving (EPA, 2004).  Distribution of vehicle miles traveled is thus divided among 

these four categories.  Transit and urban buses are classified under the category labeled HDBT; 

gasoline (HDGB) and diesel (HDDBT) transit buses are considered. 

EPA’s Motor Vehicle Emission Simulator (MOVES) is currently under development, which is 

intended to be a replacement for the MOBILE6 and NONROAD applications (EPA, 2009).  MOVES 

builds upon previous models, provides more flexibility and includes the newest emissions 

measurements from light-duty vehicles.  Its newest release, Draft MOVES2009, includes models for all 

criteria pollutants. 

On the other hand, the California Air Resources Board (CARB) has developed the emissions inventory 

models EMission FACtors (EMFAC) and OFFROAD.  These models estimate CO2 and CH4 emissions.  

EMFAC deals with motor vehicles, like passenger cars and heavy-duty trucks, operating in California; 

OFFROAD deals with off-road equipment, like agricultural, construction, off-road recreation, lawn, and 

garden. 

 

2.7.2. Integrated Bus Information System (IBIS) 

West Virginia University, under a contract with the Federal Transit Administration (FTA), is 

developing the web-based Integrated Bus Information System (IBIS).  The purpose of IBIS it to provide 

assistance to transit agency managers in evaluating the impacts of vehicle, fuel, and emissions reduction 

technologies, both in existing fleets and for fleet planning.  Based on chassis dynamometer testing of transit 

buses at WMATA over 16 driving schedules in 2006, speed correction factors and empirical correlations 

have been developed to relate driving cycle effects to tailpipe emissions.  IBIS estimates the emissions 

inventory of a transit bus fleet by allowing the user to specify fleet composition and service spectrum 

within each bus group in the fleet (Marlowe, 2009).  Inputs are vehicle parameters, duty cycle 

characteristics, and external operating conditions, such as grade or season.  ULSD and CNG fueled buses 

are considered. 

Marlowe (2009) published his Master’s Thesis on the work he developed for IBIS.  Marlowe 

created a multivariate polynomial regression tool (PolyTool) for fuel economy and emissions.  

PolyTool was used to generate backbone regression models of conventional ULSD and CNG buses, 

and diesel-electric hybrid buses.  In order to expand the experimental emissions dataset, a tool was 

developed (Cycle Generator Tool) to extract emissions and fuel consumption data from existing 

emissions tests in the form of micro-trips.  Cycle Generator Tool concatenates micro-trips to create 

new cycles representing different overall driving conditions than those of the cycles used in testing, 
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and thus generates new inputs to the database.  The concatenation tool used genetic algorithms.  Drive 

cycles were characterized by i) average speed, ii) standard deviation of speed, iii) kinetic intensity, iv) 

percentage idle, and v) number of stops per mile.  Average speed, alone or paired with one of the other 

metrics, is used to predict emissions.  Acceptable limits, based on 12 standard drive cycles, were 

explored for the four cycle metrics (ii to v) as a function of average speed.  Multiplicative and additive 

correction factors are applied to backbone models to account for variations in vehicle configurations 

and technologies.  Uncertainty, variability, and confidence intervals were not addressed.  The Cycle 

Generator Tool did not have a way to account for hybrid state of charge within micro-trips. 

Khan’s (2009) Ph.D. Dissertation developed fuel consumption and emissions correlations for 40’ 

transit diesel buses where the predictor is average speed.  He included fuel consumption correction 

factors for passenger weight and road grade. 

 

2.7.3. Engine and Vehicle Emissions Prediction 

Ang and Fwa (1989) used regression techniques to study the fuel economy characteristics of a fleet 

of diesel transit buses in Singapore.  The study was performed under actual operating conditions, 

where fuel consumption was measured on a daily basis.  Statistical methods were used to establish the 

effects of the following: service route, vehicle model, engine overhaul, vehicle speed and load, and 

number of stops, among others.  Average speed and loaded weight were observed to explain two thirds 

of the variations in fuel consumption.  The differences of fuel economy between peak and non-peak 

operations were estimated.  The study involved 188 buses, serving 15 routes; data were collected for 

one week.  Figure 2-17 shows the frequency distribution of the fuel economy measurements; mean = 

5.89 mpg, Standard Deviation = 0.93 mpg, min = 3.11 mpg, max = 11.29 mpg.  Average speed of the 

routes ranged from 8.8 to 15.4 mi/hr.  The numbers of stops (traffic lights and service stops) were 

calculated for each route, the values ranged from 5.3 to 9.3 stops per mile; note that these are not actual 

stops. 

Ergeneman et al. (1999) used emission maps to evaluate fuel consumption and emissions from a 

dual CNG/diesel transit bus.  The maps were based on engine speed and torque while emission rates 

based on brake-specific power. 

Kosto (2001) modeled a gasoline-electric hybrid car comparing its emissions with an equivalent 

conventional powertrain.  Kosto developed a transient model for the gasoline engine, which input was 

fuel-air ratio, as well as a transient (temperature dependent) catalyst model.  The modeling platform 

was the ADVISOR vehicle simulation software.   Emissions of HC, NOx, and CO were predicted.  

Cold- and hot-engine emissions were considered though coolant temperature correction factors. 
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Figure 2-17  Frequency Distribution of Fuel Economy Observations in Transit Buses, Ang and Fwa (1989) 

 

Barth et al. (2005) developed modal emissions and fuel consumption models for heavy-duty diesel 

trucks.  The models were implemented to provide emission inventories for California.  Modal 

emissions models are based on vehicle operating modes: idle, acceleration, deceleration, cruise, and 

transitions; the models predict second-by-second emission rates.  Several models were developed to 

characterize distinctive categories of vehicles and technologies.  The emissions model is composed of 

six modules: i) engine power demand, ii) engine speed iii) fuel rate, iv) engine control module, v) 

engine-out emissions, and vi) after-treatment pass fraction.  Tailpipe emissions (g/s) are modeled as a 

function of fuel rate (g/s), engine-out emission indices (gemissions / gfuel), and emission after-treatment 

pass fraction: 

Equation 2.59  Tailpipe Emissions Model, Barth et al. (2005) 
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After-treatment pass fraction is defined as the ratio of tailpipe to engine-out emissions.  Fuel rate is a 

function of power demand and engine speed.   

Emissions data collected with the University of California Riverside’s Mobile (on-board) 

Emissions Research Laboratory (MEL) were used to calibrate the models.  The effects of grade and 

off-cycle ignition timing were investigated.  Also, the report presents a literature review survey, as well 

as key references, on the following topics: policy and emission standards, heavy-duty truck physical 

attributes, driving activity, drive cycle development, emissions characterization, combustion modeling, 

and heavy-duty diesel emissions modeling. 

Krishnamurthy (2006) predicted NOx emissions for heavy-duty diesel engines using inputs from 

the electronic control unit (ECU) broadcast.  The ECU parameters used were engine speed, engine 
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torque, injection timing, fueling rate, manifold air temperature and pressure, and coolant and oil 

temperatures.  The prediction was accomplished using the Multivariate Adaptive Regression Splines 

(MARS) method (Section 2.6.6).  NOx data were collected with the on-road emissions testing 

capabilities of the MEMS.  The vehicles were tested over urban and highway routes.  The prediction 

uncertainty of the models was at most ± 20% which was considered highly successful.   

Frey et al. (2007) developed a Vehicle Specific Power (VSP) approach for fuel consumption 

modeling of diesel buses and hydrogen fuel cell buses.  Relative errors fewer than 10% were observed 

when the model was compared with experimental observations. VSP is tractive power (Equation 2.11) 

per unit mass of the vehicle and has units of m
2
/s

3
 on the SI system.  The spectrum of VSP values was 

binned on 8 modes; the first mode consists of negative or zero VPS values and the last mode of VSP  

13 m
2
/s

3
.  Cycle fuel consumption (gal) is calculated as 

Equation 2.60  Fuel Consumption Model, Frey et al. (2007) 

      smode, in  speedTimegal/s rate, nconsumptio fuel nConsumptio Fuel
k

kk  . 

Where k is VPS mode.  Fuel consumption rates are obtained from chassis dynamometer or on-board 

emissions tests.  The same method was used to estimate emissions.  Two downsides can be seen on this 

approach, first, it cannot be directly applied to hybrids because in hybrids road load is not directly 

linked to engine load; second, the effects of transients are neglected.   

Section 2.7.6 “Emissions Inventory‖ below includes other vehicle emissions modeling approaches. 

 

2.7.4. ANNs for Engine Emissions 

Thompson et al. (2000) used Artificial Neural Networks (ANNs) for emissions prediction of a 

1993 Navistar V8 7.3 L T444E diesel engine.  Prediction accuracy was to within 5% of measured data.  

Inputs to the ANN models, at a sampling rate of 10 Hz, where engine speed, accelerator petal position,  

intake manifold air temperature and pressure, exhaust temperature, oil and coolant temperature, 

injection pressure, injection pulse width, and start of injection.  The training data were set of custom 

randomly designed transient cycles amounting to a total of 6,270 seconds.  The validation data were 

two runs of the FTP and two custom cycles, for a total of 3,697 seconds.  Emissions data were time 

shifted to account for analyzer response and transport delay; NOx and CO2 where shifted by cross-

correlation with power, while all the others were shifted by visual inspection.  Torque measured by the 

dynamometer was corrected by dynamic effects or inertia to produce instantaneous engine output 

torque. 

Four ANNs where developed: torque, gaseous emissions (NOx, CO2, CO, HC,), PM, and opacity.  

The torque model did not require coolant and oil temperature inputs.  Emissions and PM neural nets 
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had two hidden layers; with 15 and 5 neurons in the first and second layer, respectively.  The torque 

and opacity ANNs had a single hidden layer with 15 neurons.  The model consisted of a preprocessor, 

the ANN, and a post-processor.  The preprocessor filters (with an infinite impulse response, IIR, filter) 

and normalizes input data to improve numerical stability.  The ANN incorporates a tapped delay line in 

the input to maintain a receding history window of 5-10 s; the tapped delay helps in accounting for the 

effect of turbocharger lag.  The post-processor performs anti-normalization and filtering, including 

bound checks and IIR filter. 

Jarrett and Clark (2002) performed emissions modeling of a 1999 Cummins ISM 370 diesel engine 

through ANNs.  The purpose of the study was the determination of the most relevant parameters for 

prediction of emissions with ANNs; the effect of training with data from different cycles was also 

revised.  The models predicted continuous CO2, CO, NOx, and PM emissions.  The dynamometer 

cycles used where the FTP, the European Stationary Cycle (ESC), the European Transient Cycle 

(ETC), and random cycles from Thompson et al. (2000).  For CO2 and NOx emissions, torque and 

speed were found to be the most dominant parameters, while derivatives of these were more significant 

for CO and PM.  In the case of CO2 and NOx, although the weights of torque and speed were higher 

than the ones for the derivatives, the derivative inputs were significant and contributed to improve 

performance of the model.  Training with FTP data produced the highest correlation coefficients for 

NOx prediction, with R
2
 values over 0.8.  Prediction of CO was fairly poor. 

Inputs to the model were torque, speed, and their respective first and second derivatives over 1, 5, 

and 10 s. The derivatives of variable x over a time period Δt are expressed as:  

Equation 2.61  First and Second Derivatives Over a Time Period Δt 
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Even though the original data was logged at 5 Hz, it was averaged to 1 Hz for the analysis.  Delay in 

emissions measurement was corrected by cross-correlation.  An axial dispersion function was applied 

to torque and speed signals.  The ANN was back propagation multi-layer with three hidden layers in 

parallel and twenty neurons per layer.  Activation functions for the three hidden layers were symmetric 

logistic, hyperbolic tangent, and hyperbolic tangent [1.5x].  The choice of activation functions was 

based on the ability of these to model linear response as well as nonlinearities.  The same network 

design was later used by Tóth-Nagy et al. (2006) but with only torque, speed, and first derivatives as 

inputs. 

Tóth-Nagy et al. (2006) discussed artificial neural networks (ANN) for CO2 and NOx emissions 

simulation of conventional and hybrid vehicles.  The ANN models were trained with data from engine 

dynamometer tests of two heavy-duty diesel engines, i) Cummins ISM 370, 1999, 10.8 L, 370 hp, and 
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ii) Navistar T444E, 1994, 7.3 L, 175 hp.  Inputs to the models were engine speed and torque and their 

first derivatives.  The ISM 370 model was scaled to 435 hp; this was done by scaling the input torque 

with the maximum torque ratio of both engines and multiplying the output by the inverse of the ratio.  

This process assumes that emissions scale with power.  Alternatively, the ANN was fed with unscaled 

torque inputs of the 435 hp engine; a matched comparison of the results from both methods produced 

correlation coefficients (R
2
) greater than 0.99 for both CO2 and NOx.  The ANN proved to be 

extremely robust in extrapolating and the unscaled approach was used in final simulations with the 

ADVISOR vehicle simulation software. 

They used back-propagation training, 6 input nodes, 3 hidden layers, and 20 nodes per hidden 

layer.  The inputs were engine speed, engine torque, and their derivatives over 5 and 10 seconds.  Each 

hidden layer had a different activation function: symmetric logistic, hyperbolic tangent, and hyperbolic 

tangent [1.5x].  The input layer had a linear activation function while the output layer had a symmetric 

activation function. 

Once the model was implemented in ADVISOR, the operation of a tractor truck and a series 

hybrid-electric bus was studied.  The bus model was exercised over the Manhattan, NY Bus, and CBD 

cycles.  The results were compared with chassis test results from a similar vehicle.  The model 

underpredicted for the Manhattan (-11.9% CO2, -5.1% NOx) and NY Bus (-35.7% CO2, -29.8% NOx) 

cycles, and over predicted for the CBD cycle (+10.6% CO2, +5.4% NOx).  The researchers concluded 

that the main factor in the error was the hybrid control strategy.  The truck model was exercised under 

various weights.  It was found that accessory loads also have a considerable impact on simulation 

results.   

Perhinschi et al. (2007) developed ANN models to predict emissions from medium-duty vehicles 

based on chassis-dynamometer emissions tests.  Inputs to the models were vehicle speed, acceleration, 

torque at drive axle, and exhaust temperature.  Four different types of networks were developed and 

compared: adaptive linear, single hidden layer with sigmoid activation function, nonlinear polynomial 

(Sigma Pi), and Gaussian radial basis function (RBF).  Accuracy of the results was improved by 

defining the model as the sum a linear regression model and the ANN.  The parameters of the linear 

regression model varied depending on the pollutant in hand; for example, it was based on speed and 

acceleration for NOx and only on speed for CO2.  Overall, the RBF + Linear regression model 

performed better. 

Bedick (2009) developed a single-hidden-layer feed-forward ANN heavy-duty diesel engine model 

that predicted NOx emission rate, exhaust temperature, and volumetric flow.  Inputs to the model were 

engine speed and torque (with derivatives over 1 and 10 sec), oil temperature (with derivative over 10 

sec), and turbocharger boost pressure (with derivative over 1 sec).  The activation function of the 28 

hidden layer neurons was the logistic sigmoid function, logsig in MATLAB
®
:              

      , where n is the neuron’s weighted input.  The three output neurons had a linear activation 
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function:       , where m is the weighted output of the hidden layer.  Input and output parameters 

were normalized between [0, 1] or [−1, 1] depending on the variable.   

Network training (weighting factor optimization) was accomplished by the Levenberg-Marquardt 

method (trainlm command in MATLAB
®

) with a learning rate value of 0.1.  The trained network was 

converted into a Simulink block.  A composite training cycle was used, including sections from the 

FTP cycle, the ACES cycle (Transient, Cruise, and Creep modes), and the steady-state marine 

ICOMIA cycle.   

Bedick employed a NOx sharpening model which took the output of the ANN, corrected it for 

delay and diffusion, and estimated truly engine out emissions.  The procedure was implemented 

because the goal of the project was the optimization of an SCR catalyst and NOx entering the catalyst 

was a main concern.  Nevertheless, NOx sharpening is not relevant to this dissertation. 

 

2.7.5. Hybrid – Conventional Comparison 

Several studies have evaluated fuel economy and emissions performance of hybrid buses compared 

with conventional buses.  The following sources are a sample: 

Bass and Alferman (2003) compared fuel economy advantages of the Allison two-mode hybrid 

buses.  The comparisons were performed on a chassis dynamometer at Environment Canada facilities; 

the cycles evaluated were Manhattan, CBD, and UDDS.  The cycle parameters that were found to have 

a significant effect of fuel economy are average speed, stops per mile, and idle.  The fuel economy 

benefit is higher at lower average speeds and higher stopping frequencies.  The authors recognize that 

reduction of parasitic losses, like idle and accessory loads, is a key for hybrid fuel economy.  Also, 

cycles that allow the energy storage system to be more utilized (mitigating engine load) are good for 

fuel economy (e.g. cycles with high stopping frequencies and low average speeds). 

Ribeiro and D’Agosto (2004) explored potential improvements to Brazilian transit bus emissions 

from using alternative fuels and new hybrid technologies.  Fuel economy of series hybrid-drive buses 

was compared with equivalent conventional diesels in urban service.  Field tests revealed fuel 

economy gains exceeding 20%. 

Holmén et al. (2005) compared PM emissions between diesel-electric Allison hybrid and 

conventional diesel transit buses (model year 2003).  The year-long study, carried out by University of 

Connecticut, used on-board emissions testing and three different fuel/after-treatment configurations.  

The configurations were: i) diesel fuel 1 + DOC, ii) ULSD + DOC, and iii) ULSD + DPF.  The study 

found that the hybrid buses do not offer significant particulate emissions benefits over the conventional 

diesel buses. 
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The U.S. FTA (2005) presented an overview of the status of electric drive technologies (plug-in, 

hybrid-electric, and fuel cell) for transit applications.  The report examined the benefits of electric 

drive buses, the barriers for higher deployment, and potential steps to alleviate these barriers.  The 

report reviewed technical aspects of hybrids, emissions and fuel economy results, capital and operating 

costs, performance and durability issues, and the regulatory status.  It was observed that hybrid-electric 

buses had improved fuel economy, 10% to 50%, depending on system architecture and duty cycle.  

Capital costs of hybrids were estimated to be 60% to 80% higher than comparable diesel buses. 

O’Keefe et al. (2007) defined kinetic intensity and hybrid advantage which in principle give the 

ability to assess a duty cycle’s suitability for hybrid vehicle usage.  Their work also targeted the 

estimation of fuel consumption for a given vehicle over a target duty cycle and the effect of accessory 

loads.  

 

2.7.6. Emissions Inventory 

With the purpose of using continuous emissions data for vehicle emissions inventory models, 

Ramamurthy (1999) correlated emissions data with axle power for trucks and buses tested with 

WVU’s TransLab.  Four transit buses were tested; they were 1994 and 1996 diesels with DDC S50 and 

Cummins M11 engines.  The buses were exercised on the CBD cycle, the WVU 5 peak cycle, and the 

WVU 5 mile route.  Emissions data are time shifted and dispersed when compared with axle power 

because the measurement systems for axle power and emissions differ in that the exhaust has to travel 

through the dilution tunnel, sampling lines, and analyzers.  Gaseous emissions were time-aligned with 

axle power.  A dispersion function was applied to axle power as if the signal traveled with the exhaust 

gases.  Ramamurthy developed linear regression models for gaseous emissions as a function of axle 

power.  NOx and CO2 predictions were reliable, while CO prediction was not as reliable.  The models 

can be combined with vehicle activity to estimate contributions to emissions inventories.   

Kern (2000) studied heavy-duty diesel emissions inventory and prediction.  Using data collected by 

WVU’s TransLab for over 8 years a method was developed to obtain emissions factors in grams per 

mile.  Emissions were categorized (binned) by vehicle instantaneous speed and acceleration.  Given a 

drive cycle, time fractions in each of the speed-acceleration bins were calculated and the fractions were 

coupled with the emissions bins (in grams per second) to estimate total emissions.  Prediction errors 

were as low as 5%.  Kern estimated continuous PM emissions by proportioning continuous CO data 

and gravimetric PM.  Kern did a thorough review of the parameters affecting diesel emissions, namely, 

vehicle class, driving schedule, weight, fuel type, exhaust after-treatment, vehicle age, terrain, and 

injection timing. 
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Recognizing that emissions inventories did not consider the influence of terrain and road grade, 

Andrei (2001) studied the effect of grade on diesel missions.  Simulations were performed for a 1998 

class-8 tractor truck, a 1995 class-6 box truck, and a 1996 transit bus over different grades at a constant 

speed.  NOx, CO2, CO, and PM emissions were predicted as a function of tractive (or axle) power.  

Grade was found to have a significant effect on CO and PM, and a moderate effect on CO2 and NOx.  

The roads considered consisted of flat land, ± 2% grade, ± 5% grade, and sinusoidal terrains with 

maximum grade between 0% and 7%.  Also, speed correction factors were developed for the 3 vehicles 

considered to account for the effect of average speed on emissions. 

Gajendran (2005)  developed an emissions inventory prediction methodology for heavy-duty diesel 

trucks based on emissions factor tables (grams per second).  Emissions factors were defined on the 

basis of instantaneous vehicle speed and acceleration.  The effects of drive cycle, vehicle weight, and 

off-cycle injection strategy were studied in detail.  The main interest was on NOx emissions, but HC 

and CO were also considered.  A drive cycle with high average speed (36.94 mph) was developed to 

extend the database which was short on high speed information; the cycle was named Inventory 

Highway Cycle (IHC).   

Vora (2006) studied the effect of weight and duty cycle on emissions of heavy duty trucks.  Vora 

used two-dimensional linear correlations to predict emissions rates of one cycle from emissions of 

other cycles.  A method for emissions prediction as a function of drive cycle was proposed; the method 

is based on known emissions rates.  Cycle metrics are the predictive parameters: average speed, 

average acceleration, and average inertial power (V∙dV/dt in Equation 2.11, page 14).  The method 

calculates time specific emissions (g/min) on the new cycle as a linear combination of the emissions on 

the known cycles and cycle properties; the new drive cycle is perceived as a linear combination of the 

known cycles.  When two cycle metrics are used, the method requires emissions to be known on three 

cycles (in this study: Idle, HHDDT-Cruise, and HHDDT-Transient).  For analysis of weight, vehicles 

were tested at 30,000 lbs, 56,000 lbs, and 66,000 lbs; it was not possible to establish a correlation 

between NOx emissions and weight over the wide range studied with only 3 levels of weight.   

Strimer (2006) used WVU’s MEMS to study the effect of varying terrain and weight on emissions 

and fuel economy of a 1996 diesel tractor truck.  It was found that distance-specific NOx emissions 

increased about half the percentage increase in test weight and that fuel economy decreased about 0.5 

mi/gal for every 15,000 lbs in added test weight.  Driving in mountainous terrain caused fuel economy 

to decrease by around 1.2 mi/gal when compared with relatively flat terrain.  In order to report brake-

specific emissions, engine power was calculated from ECU broadcasts; alternatively, tractive power 

from the road load equation was used.  The drawbacks of the latter approach are that it relied on 

estimated road grade and it did not account for powertrain losses.   

The U.S. FTA (2007) compiled a report on transit bus life cycle cost and emissions estimation of 

MY 2007 diesel, biodiesel, CNG, and diesel-electric hybrid buses.  The life cycle analysis considered 
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capital and operational cost; costs were presented on lifetime, per mile, per passenger mile basis.  

Greenhouse gas (GHG) emissions were computed as well-to-tank and tank-to-wheels components.  

PM, NOx, and NMHC emissions were considered.  Given the absence of emissions data for MY 2007 

buses, emissions were estimated based on a ratio of certification levels and existing emissions tests 

results.  All parameters were predicted at the national average speed of 12.72 mph (20.47 km/h).  Fuel 

consumption and GHGs were adjusted by 10% to account for idling and hotel loads.  A summary of 

the unadjusted emissions results for the diesel-electric hybrid technology is presented in Table 1-3. 

Khan (2009) studied 23 drive cycles and concluded that the main predictor metric for fuel 

consumption and emissions is average speed; with other metrics like standard deviation of speed, 

percent idle, characteristic acceleration, kinetic intensity, and stops per mile being closely related or 

predicted by average speed.  Khan also studied correlations between average speed and emissions data 

with chassis-dynamometer data collected on 13 buses (6 lean-burn CNGs, 3 diesel-hybrids, 2 

retrofitted diesels, and 2 clean diesels).  In order to fill the gap in the data for cycles with higher 

speeds, sections of the KCM cycle were used to generate cycles with speeds above 25 mph (31.51 

mph, 34.13 mph, and 38.29 mph with less than 10% idle).  Then, the corresponding figures for 

emissions and fuel consumption were computed using continuous data from the chassis tests.  The 

road-load equation and a simple model for drivetrain efficiency and auxiliary loads were used to study 

the effects of passenger weight and road grade on fuel consumption and emissions.  The analysis of 

grade assumed a sinusoidal road profile.  No correlation was found between weight and emissions of 

NOx, CO, HC, and PM. 

 

2.7.7. Road Grade 

Smith (2001) evaluated the effects of grade on the performance and design of heavy-duty hybrids.  

A sine wave grade profile was superimposed into various drive cycles.  It was concluded that the phase 

shift of the sine wave has important repercussions in state of charge, power requirements, and charge 

sustaining operation.  Power requirements for constant speed climb were determined from the road 

load equation. 

Conley (2002) worked on the optimal determination of the components of a hybrid electric SUV.  

The approach was based on real world vehicle activity (speed and grade) and maximization of 

regenerative braking.  Road grade was determined from barometric pressure and GPS speed data using 

the hydrostatic equation (dP/dz = –ρ∙g).  Electric motors and energy storage systems were sized for a 

post transmission parallel configuration.   

Moynahan (2005) developed a framework to verify engine power from ECU data for on-road 

emissions testing of a tractor truck.  The procedure, based on tractive power (road load), also permitted 
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estimation of driveline efficiency.  Moynahan calculated road graded based on atmospheric pressure 

measurements and ECU vehicle speed.  Altitude measurements from GPS system were found to be 

scrambled, such that the initial and final altitudes of a loop were different (as high as 14 m, 46 ft).  This 

fact rendered little value to GPS elevation data.  Altitude from pressure was smoothed with a central 10 

second moving average; if the elevation-change for a given time period was above a threshold (35 ft, 

0.2 s), the reading was neglected. 

Hannon et al. (2007) used distance based elevation profiles on chassis dynamometer testing of 

brake components.  The elevation profiles were obtained by driving the routes of interest with a 

combination of GPS unit and altimeter.  The software on the chassis dynamometer was then 

programmed to receive the elevation-distance profile. 

Khan (2009) used a sine wave grade profile superimposed on existing drive cycles.  He developed 

a fuel consumption correction factor for grade.  The correction factor was a function of average speed 

and maximum grade attained.  The correction factor ranged from about 5% for 2% grade to about 30% 

for 5% grade. 

 

2.7.8. Hybrid Vehicle Simulation 

Smith (2001) performed Microsoft Excel based fuel economy simulations of Class 2B, Class 6, and 

Class 8 hybrid vehicles.  Optimum engine size, motor size, and control strategy parameters were 

determined for series and parallel architectures under a variety of operations (from low to freeway 

speed).  The model was power based and did not account for torque or engine maps.  The effect of 

grade was also considered. 

Ciccarelli and Toossi (2002) performed simulation studies to evaluate potential fuel savings and 

reduced emissions from hybrid buses on Long Beach City, CA, buses.  Conventional diesel, diesel-

electric hybrid (series and parallel), and gas turbine-hybrid architectures were compared.  Fuel 

economy was estimated by simulation, using ADVISOR.  Emissions results were taken from 1997 to 

1999 model year conventional diesel and series diesel-electric hybrid buses tested at the WVU’s 

TransLab under a contract with the Northeast Advanced Vehicle Consortium (NAVC).  Emissions 

were modeled for gas turbine buses but not for diesels.  The selection of the Long Beach Transit bus 

routes used in the study was based on volume of riders and number of stops.  The drive cycles used for 

fuel economy modeling were:  CBD, Colorado 16th St. Mall, and Long Beach Routes 1 and 192.  The 

researchers recognized that hybrid architectures and control strategies can be selected for optimal 

operation under specific driving patterns or road conditions.  Optimized operation was viewed as 

maximum fuel economy, minimal emissions, or a combination of both.   
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In modeling the 40’ New Flyer diesel buses, Ciccarelli and Toossi (2002) used the parameters 

shown in Table 3-2, and the following: gear ratios = 3.49, 1.86, 1.41, 1.00, 0.75, rear axle ratio = 4.04, 

and engine peak power = 275 hp 9 (205 kW), among others.   

O’Keefe and Vertin (2002) presented an analysis of hybrid electric systems for transit buses.  

Simulations predicted that fuel economy can be improved 1.7 times over the baseline vehicle.  The 

researchers concluded that the keys to increasing fuel economy are hybridization, weight reduction, 

and auxiliary load reduction.  A parametric analysis was performed to estimate the effects on fuel 

economy of vehicle weight, mechanical and electrical auxiliary loads, drive cycle, rolling resistance, 

and aerodynamic drag.  The study considered CNG and diesel fueled transit buses with conventional 

and series-hybrid architectures.  An energy audit analysis was presented, in which energy use and 

losses were broken up.  Losses included engine, auxiliary loads, drivetrain, generator, energy storage 

system, motor/controller, friction braking, aerodynamic drag, and rolling resistance.  The regenerative 

braking capture efficiency was estimated to be as high as 49%.  The effects of air conditioning were 

modeled; the models considered solar loading, cabin thermal-fluid, and transient air conditioning.  

When run over a steady-state high speed cycle (Commuter cycle), the series-hybrid transit bus was 

observed to lose its fuel economy advantage over the conventional bus.   

The vehicle modeled by O’Keefe and Vertin (2002) was a 40’ series diesel hybrid transit bus; they 

obtained fuel economy of 3.32 mpg with A/C on and 4.26 mpg with A/C off over the CBD cycle.  The 

model considered:  weight = 15,940 kg; Auxiliary loads = 23 kW mechanical and 9 kW electrical with 

A/C on, and 9 kW mechanical and 9 kW electrical with A/C off; engine = 230 hp 7.3 L Navistar 

T444E/DDC S30, 44% peak efficiency; Transmission = single reduction direct drive, final drive ratio 

of 6.34; electric motor = 187 kW AC, 92% peak efficiency; battery = 46 modules, 85 Amp-hr, 3400 

lbs. 

Rajagopalan et al. (2003) developed a fuzzy logic controller for parallel hybrid vehicles.  The 

controller accounts for emissions while selecting the optimal torque split between the IC engine and 

the electric motor.  The optimum torque point was based on road load, SOC, engine curves, and the 

relative importance of emissions and fuel consumption.  A cost function was defined as a weighted 

sum of normalized emissions (CO, HC, and NOx) and efficiency; the relative importance was given by 

weighting factors.  In the architecture studied, engine speed was set by the fixed transmission ratios 

and the controller did not perform speed or shift control.  Emissions were provided by maps (lookup 

tables) indexed by engine speed and torque.  Additionally, an engine scaling model called the Willan’s 

Line Model was implemented into the NREL’s ADVISOR software.  The scaling model was based on 

torque and used data from similar engines to produce an engine-specific fuel-use map starting from 

basic engine information (e.g. stroke and bore); the model did not scale emissions. 

Sharer et al. (2007) used computational models to study the impacts of duty cycle aggressiveness 

and speed of hybrid and conventional cars (2004 Toyota Prius and Ford Focus).  It was observed that 
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hybrids are more sensitive to drive cycle variations than conventional vehicles.  Simulations were 

performed using PSAT software.  Drive cycle aggressiveness was assessed by a cycle scaling factor 

which scales the speed trace.  The drive cycles of choice were the light-duty UDDS (or FTP-72) and 

the HWFET.  The models were validated against hot-start chassis-dynamometer tests; the hybrid 

model was considered validated if fuel consumption and delta SOC were predicted consistently within 

5% on various cycles.  Torques in engine, motor, and generator were also compared.  Sensitivity of 

fuel consumption to road load was defined as  

Equation 2.62  Sensitivity of Fuel Consumption to Road Load, Sharer et al. (2007) 

 
Load Road-Energy

Fuel-Energy
 fuel

load



 ; 

 where the difference is calculated against the un-scaled cycle. 
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Chapter 3. ENERGY AND HYBRID VEHICLES 

 

The purpose of this chapter is to evaluate the gains than can be achieved in transit vehicles from 

regenerative braking.  The results are presented in terms of energy at the hub or wheels of the vehicle.  

This analysis uses the theory presented in Section 2.1 where one of the main parameters is the 

regeneration efficiency, ηregen.  In this dissertation, regeneration efficiency is defined as capture-

redeployment efficiency or fraction of available braking energy that is redelivered to the wheels 

(Sovran and Blaser, 2003 and 2006).   

Although sometimes regeneration efficiency has been defined in terms of energy recuperated at the 

battery (e.g. Sharer et al., 2007), it is more appropriate to use energy at wheels because per Equation 

2.13 the amount of energy that must be supplied by the primary power source for propulsion, Etrac,net, is 

calculated by subtracting recovered energy (ηregen∙EBR) from tractive energy (Etrac), that is Etrac,net = Etrac 

– ηregen∙EBR.  The net tractive energy term also appears in the equations for fuel consumption, Equation 

2.16 and Equation 2.17. 

NAVC (2000) discussed regenerative braking concluding that not all the kinetic energy can be 

captured by the batteries.  This is because braking is limited by traction of the tires, which makes 

deceleration rates higher than accelerations.  Recovery of kinetic energy is limited by the capacity of 

the hybrid drive system to accept energy.  Since hybrid systems are usually designed for acceleration 

performance, the energy that the system cannot take must be dissipated by the service brakes.  Also, 

for rear wheel drive buses, braking energy available in the front wheels could not be recovered (the 

opposite is true for front wheel drive systems.).  Other sources of losses are the batteries, electric 

motor/generators, power inverter, differential, and transmission.  Yet another limitation for 

regeneration is the energy capacity (kWh rating) of the battery, since in sustained descents the energy 

storage may become full.  O’Keefe and Vertin (2002) reported regenerative capture efficiency of about 

40% for a series hybrid transit bus. 

Hybrid vehicles have the added extra mass of the hybrid components (electric motors, batteries, 

etc.), making them generally heavier than the conventional counterparts (Sovran and Blaser, 2003 and 

2006).  This effect is offset in part by the use of a downsized combustion engine.  The ratio of hybrid 

weights to conventional weight, m/m0, serves as the indicator parameter of how much the mass of the 

vehicle has increased; the subscript 0 refers to the conventional counterpart and no subscript means 
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hybrid.  The increased mass is reflected in higher propulsion energy: the term Etrac / Etrac,0  1 in 

Equation 2.17.  This increase in propulsion energy is accompanied by increased braking energy, since 

more mass needs to be decelerated. 

For light duty vehicles An and Santini (2004) report values of m/m0 ranging from 1.03 to 1.07; 

Sovran and Blaser (2006) used a reference value of 1.05.  On the heavy-duty side, the curb weight of a 

MY 2006 40 ft New Flyer diesel transit bus is 28,500 lbs (12,927.4 kg) and the hybrid counterpart 

weights 29,900 lbs (13,562.4 kg); giving a value of m/m0 equal to 1.05.  It is interesting to note that 

both heavy and light duty modern hybrid applications have nearly the same 5% increase in mass. 

The regeneration efficiency can be estimated from the fuel consumption Equation 2.16 and 

advanced simulations or test data.  Knowing fuel consumption values for equivalent hybrid and 

conventional vehicles, one can write the ratio of hybrid to conventional fuel consumption.  If the 

effects of idle and braking fuel consumption, accessory load, and differences in driveline and engine 

efficiencies are neglected, one would obtain an upper limit for ηregen.  Such limit is 

Equation 3.1  ηregen limit 
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ηregen is lower than the hypothesized value because usually the hybrids have better engine efficiency, 

lower idle fuel consumption, and lower accessory loads, among others. 

The outline of the chapter is as follows: the effects of regeneration efficiency, vehicle weight, and 

road grade on tractive energy are studied in Sections 3.2, 3.3, and 3.4, respectively.  Section 3.1 

presents the simulation parameters that are used in the calculations. 

 

 

3.1. Simulation Parameters 

Before studying the effects mentioned above, it is important to define the values of the parameters 

like rolling resistance and aerodynamic drag coefficients.  The evaluation will consider, for 

comparative purposes, one light-duty passenger vehicle, one 22’ mini-bus, and a 40’ transit bus.  The 

SUV and the mini-bus are expected to have the same shape in the hybrid configuration, and as such the 

frontal areas are the same.  In the case of the bus, the hybrid batteries are mounted on the roof, yielding 

a taller vehicle, with increased frontal area.  The parameters for the conventional bus, the hybrid bus, 

the mini-bus, and the SUV are listed in Table 3-1. 
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For chassis dynamometer testing the test weight is usually “half seated load weight” (½SLW), 

which is curb weight plus half seated load weight plus the driver, with 150 lbs/person (SAE J2711, 

SAE International, 2002; O’Keefe and Vertin, 2002).  The ½SLW will be used in the simulations. 

For the SUV, the baseline vehicle is the MY 2009 Honda CR-V LX 2WD
d
; drag coefficient is 

taken from PSAT (vehicle file “veh_1200_266_044_SUV”) and, as an estimate, it is not intended to 

exactly represent the CR-V.  Test weight is curb weight plus 300 pounds (CFR 40: 86.082-2 and 

86.129-94). 

The baseline vehicle for the mini-bus is a MY 2008 Goshen Coach GCII
e
, 21 passengers.  The load 

is half seated load (11) plus driver.  The aerodynamic drag coefficient was taken from Zia (2009) who 

studied coastdown procedures of USPS delivery trucks.   

For the 40 ft bus, the baseline vehicle is a MY 2006 New Flyer.  The hybrid is a MY 2006 New 

Flyer hybrid with the GM-Allison Hybrid Drive E40.  Load is half seated load (20) plus driver.  

Vehicle information is courtesy of the Washington Metropolitan Area Transit Authority (WMATA), 

Bus Engineering Department. 

Table 3-1  Vehicle Properties of Bus, Mini-Bus, and SUV 

Parameter Units Conventional Bus Hybrid Bus
f
 Mini-Bus SUV 

GVWR kg/lb 18,416 / 40,600 18,416 / 40,600 6,373 / 14,050 - 

mcurb kg/lb 12,927 / 28,500 13,562 / 29,900 4,876 / 10,750 1,536 / 3,386 

mload kg/lb 1,429 / 3,150 ← 816 / 1,800 136 / 300 

mr / mcurb % 3.0 - 3.0 3.0 

mr kg/lb 388 / 855 ← 147 / 323 46 / 102 

m = mcurb + mload kg/lb 14,356 / 31,650 14,991 / 33,050 5,692 / 12,550  1,672 / 3,686 

me = m + mr kg/lb 14,744 / 32,505 15,379 / 33,905 5,839 / 12,873 1,718 / 3,788 

Length m/ft 12.62 / 41.4 12.44 / 40.8 6.71 / 22 4.54 / 14.9 

Width m/in 2.59 / 102 2.59 / 102 2.39 / 94 1.82 / 71.6 

Height m/in 3.11 / 122.5 3.38 / 133 2.92 / 115 1.68 / 66.1 

Ground Clearance m/in 0.36 / 14 0.36 / 14 0.30/ 12 0.17 / 6.7 

cd - 0.78 ← 0.67 0.42 

Af m
2
/ft

2
 7.14 / 76.85 7.83 / 84.29 6.25 / 67.24 2.74 / 29.54 

cd∙Af m
2
/ft

2
 5.57 / 59.94 6.11 / 65.75 4.19 / 45.05 1.13 / 12.16 

cr,0 
A
 - 0.008 ← 0.009 0.009 

cr,1 
A
 s/m 1.2×10

-4
 ← 1.2×10

-4
 1.2×10

-4
 

Weight Front / Rear % - - - 58 / 42 

Tires  6 × B 305/70R22.5 6 × B 305/70R22.5 6 × LT225/75R16 4 × 225/65R17 

Towing Capacity kg/lb - - - 680 / 1,500 

Capacity 
 39 seated + 20 

standing 

39 seated + 20 

standing 
21 seated 5 seated 

A – Equation 3.2 

                                                 
d
 http://automobiles.honda.com/cr-v/specifications.aspx  

e
 http://www.goshencoach.com/GCII.aspx  

f
 Vehicle properties listed in this table are not the ones used in the final models. Please refer to Table 6-2 (page 152) for the 

definitive values. 

http://automobiles.honda.com/cr-v/specifications.aspx
http://www.goshencoach.com/GCII.aspx
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Table 3-2  Comparison of Hybrid Transit Bus Simulation Coefficients with Other Studies 

Parameter This study
g
 O’Keefe and Vertin (2002) Ciccarelli and Toossi (2002) 

mcurb (kg) 13,562 14,170 13,900 

cd∙Af (m
2
) 0.78∙7.83 = 6.11 0.79∙8.05 = 6.36 0.79∙6.4 = 5.06 

cr,0  0.008 0.00938 0.008 

cr,1 (s/m) 1.2×10
-4

 - 0 

Architecture Parallel Series Series 

Frontal areas in Table 3-1 have been calculated as the product of vehicle width and effective height 

(height minus clearance).  For comparative purposes, Table 3-2 presents the simulation coefficients 

used in other transit bus studies; the numbers show good agreement.   

 

3.1.1. Rolling Resistance 

The rolling resistance coefficient cr is affected by many parameters (Genta, 1997) and among them 

we can mention: vehicle speed, tire structure and materials, wear, temperature, inflation pressure and 

load, aspect ratio and radius, road conditions, sideslip angle, and tractive and braking forces. 

The simplest rolling resistance model considers only the effect of speed in a first or second order 

polynomial: 

Equation 3.2  Rolling Resistance Coefficient 

2

2,1,0, VcVccc rrrr  , 

where V is in m/s, cr,1 in s/m and cr,2 in s
2
/m

2
.  Genta (1997) reports cr,0 = 0.013, cr,1 = 0 s/m, cr,2 = 

6.5×10
-6 

s
2
/m

2
 for a 14-inch radial tire.  Values for cr,0 from 0.005 to 0.008 for industrial tires which 

exhibit an almost negligible effect of speed (cr,1 ≈ cr,2 ≈ 0) are also reported. 

An important parameter related to the tires is the effective rolling radius ref, defined as the ratio of 

vehicle speed to wheel angular velocity, ref = V / ω.  Under no load conditions or free rolling ref lies 

between the unloaded radius rw and the loaded radius rl.  Under braking ref grows toward the unloaded 

radius and under traction decreases towards the loaded radius.  For the sake of simplicity, this dynamic 

effect can be ignored and effective and loaded radius will be assumed equal and constant: ref / rw = rl / 

rw = 0.95. The loaded radius rl relates forces and torques; the effective radius ref relates linear and 

angular speed.  Since they are assumed equal, the effective radius will be used in place of the loaded 

radius. 

                                                 
g
 Vehicle properties listed in this table are not the ones used in the final models. Please refer to Table 6-2 (page 152) for the 

definitive values. 



Chapter 3 – Energy and Hybrid Vehicles 

 

77 

3.1.2. Rotational Inertia 

Equation 2.9 introduced the concept of effective inertia mass of the rotating components as 

2

2

2

w

e

w

w
r

r

I

r

I
m


 .  In Equation 2.9, the term rw

2
 is actually ref ∙ rl because one radius comes from 

torque/force and the other one from linear/rotational speed.  With the above assumptions, the rotational 

inertial mass is 

Equation 3.3  Rotational Inertial Mass 
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SAE J2264 (1995) suggests a value for rotational inertial mass in light-duty vehicles of 3% the mass of 

the vehicle. 

The mass moment of inertia of the bus wheels is approximated as follows.  Assuming a cylindrical 

shape, the moment of inertia of a cylinder is Iw = ½ m∙R
2
.  Thus the ratio of moments of inertia of bus 

to car wheels would be  

Equation 3.4  Ratio of Moments of Inertia 

Iw,bus / I w,car = (mw,bus/mw,car) ∙ (rw,bus/rw,car)
2
, 

that is, the wheel weight ratio times the squared radius ratio.  Now consider a thin ring with all the 

mass concentrated in the outside diameter, the mass moment of inertia is Iw = m∙R
2
 (twice that of the 

cylinder).  If both wheels are assumed either a cylinder or a ring, the ratio Iw,bus / I w,car remains 

unchanged, as long as the weight distribution is equivalent.  Therefore, the moment of inertia of bus 

tires can be roughly estimated if the geometry and a reference value for I w,car are known.   

For 205/70R15 car wheel with steel rim, mw,car = 20.76 kg and rw,car = 0.330 m.  A heavy-duty 

305/70/R22.5 wheel with steel rim has mw,bus = 77.5 kg and rw,bus = 0.495 m.  Replacing in Equation 

3.4: Iw,bus / I w,car = (77.5 kg/20.76 kg) ∙ (0.495/0.330)
2
 = 3.73 ∙ (1.5)

2
 = 3.73 ∙ 2.25; Iw,bus / I w,car ≈ 8.4. 

A reference value of I w,car ≈ 1 kg∙m
2
 was obtained from PSAT for light–duty wheels.  Using I w,car 

= 1 kg∙m
2
, the inertia of the bus wheel would be: Iw,bus ≈ 8.4 ∙ 1 kg∙m

2
 = 8.4 kg∙m

2
.  Now, if I w,car was 

1.5 kg∙m
2
, Iw,bus ≈ 8.4 ∙ 1.5 kg∙m

2
 = 12.6 kg∙m

2
.  An intermediate value of Iw,bus = 11 kg∙m

2
 per wheel 

will be used in this dissertation. 
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3.2. Effect of Regeneration Efficiency on Net Tractive Energy 

Net tractive energy was defined in Equation 2.13 as the net energy used for propulsion during a 

duty cycle: 

BRregentracnettrac EEE  ,
. 

Alternatively, the mean net tractive energy (Wh/km), which is Etrac,net per unit distance, was defined: 

D

E
e

nettrac

nettrac

,

,  . 

In Equation 2.13, the first term in the RHS is the total positive propulsion energy, i.e. the tractive 

energy; the second term is the fraction of braking energy recovered.  These terms were defined in 

Equation 2.14 and Equation 2.15: 
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Where 
roadE  is the tractive power of Equation 2.11: 

     
dt

dV
VmmgVmgVccVbVVVAcE errfdAirroad   sincos

2

1 22 . 

 

The inverse of etrac,net is called the Energy at Wheels Efficiency (E.W.E., km/kWh) and, similarly 

to fuel economy, represents the distance traveled per unit of mechanical energy at the wheels (or axle 

to be more precise).  Energy usage results will be presented alternatively as etrac,net or E.W.E.  

Emphasis is placed here in the “at wheels” part so that E.W.E. is differentiated from the overall energy 

efficiency used in hybrid and electric vehicles which has the same units of km/kWh. 

Using the above equations and the parameters from Table 3-1, a comparison of tractive energy 

usage for the SUV, mini-bus, and transit bus was performed.  For each vehicle class, three scenarios 

were considered: i) conventional powertrain, ii) hybrid powertrain with 50% capture-redeployment 

efficiency (ηregen = 0.5), and iii) hybrid powertrain with perfect recuperation (ηregen = 1).  The following 

assumptions apply: i) air-standard conditions, ii) winds are not considered (Vr = V), iii) driveline drag 

is neglected (b = c = 0), iv) the SUV is exercised over the FTP-72 and SC03 schedules, the mini-bus 

over the OCTA (Figure 2-5) and CBD (Figure 2-3), and the transit bus over the KCM (Figure 2-6), 

OCTA, and CBD cycles. 

Figure 3-1 and Table 3-3 show a break-up of the energy usage (Wh/km) to overcome inertia 

(yellow shade), rolling resistance (purple), and aerodynamic drag (cyan).  In Figure 3-1 the mean net 
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tractive energy etrac,net is the total height of each column.  Figure 3-2 presents the corresponding E.W.E. 

(km/kWh).   

The results of Table 3-3 show that the rolling resistance component emech is higher in the CBD 

cycle than in the OCTA cycle.  This is because in the OCTA cycle most of the operation is at low 

speed (below 20 mph); analysis of the drive cycles shows that the CBD has a large portion of cruise 

operation at 20 mph (≈ 60% of the time), and nearly 40% of the driving time is below 20 mph, whereas 

in the OCTA cycle a larger portion of the driving time (60%) is below 20 mph.  The inertial 

component, einertia, is higher in the OCTA cycle than in the CBD due to the more transient character of 

the first; this character is made clear when the characteristic acceleration (supplied kinetic energy per 

unit distance, Section 2.2.2) of both cycles is compared (Table 2-6): 0.71 ft/s
2
 for OCTA and 0.57 ft/s

2
 

for CBD.  The transient character of the drive cycle is also measured in part by the standard deviation 

of speed without idle.  Aerodynamic losses are greater in the KCM because of the higher speeds. 

 

Figure 3-1  Effect of Energy Recuperation on Mean Energy of Transit Bus, Mini-Bus, and SUV 

Table 3-3  Effect of Energy Recuperation on Mean Energy of Transit Bus, Mini-Bus, and SUV 

regen 0 0.5 1 0 0.5 1 0 0.5 1 

 
Transit Bus 

 
OCTA CBD KCM 

eaero (Wh/km) 70.1 76.9 76.9 60.8 66.7 66.7 224.8 247.0 247.0 

emech (Wh/km) 258.7 270.1 270.1 316.2 330.2 330.2 284.5 297.9 297.9 

einertia (Wh/km) 870.5 517.6 127.2 708.5 390.0 40.9 790.8 509.5 195.2 

etrac,net (Wh/km) 1,199.4 864.7 474.3 1,085.6 786.9 437.9 1,300.1 1,054.4 740.1 

 
Mini-Bus    

 
OCTA CBD    

eaero (Wh/km) 53.7 53.7 53.7 45.8 45.8 45.8    

emech (Wh/km) 115.8 120.8 120.8 139.3 145.3 145.3    

einertia (Wh/km) 342.1 207.7 59.0 280.6 155.8 19.2    

etrac,net (Wh/km) 511.6 382.1 233.4 465.7 346.8 210.3    
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SUV    

 
FTP-72 SC03    

eaero (Wh/km) 36.4 36.4 36.4 36.4 36.2 36.2    

emech (Wh/km) 37.3 39.0 39.0 37.0 38.4 38.4    

einertia (Wh/km) 74.7 48.3 18.4 87.8 57.3 22.3    

etrac,net (Wh/km) 148.5 123.7 93.8 161.3 131.9 96.9    

 

Figure 3-2  Effect of Energy Recuperation on Energy at Wheels Economy of Transit Bus, Mini-Bus, and SUV 

 

Regarding the aerodynamic losses, it is observed that the 9.7% increase in frontal area of the hybrid 

bus (7.14 m
2
 to 7.83 m

2
) is reflected in the same percentage increase in aerodynamic load eaero.  As 

expected, no change is observed for the mini-bus.  A slight change in eaero is noted for the SUV in the 

SC03 cycle; this is is due to fact that here eaero is only summed for positive tractive power and the 

change in vehicle mass affects the integrals. 

Regenerative braking has an impressive effect on the mean net tractive energy etrac,net.  In the case 

of the transit bus driving the OCTA cycle, regeneration efficiency of 50% reduces etrac,net by 28% 

(1119.4 to 864.7 Wh/km) and the ideal regeneration efficiency by 60% (1119.4 to 474.3 Wh/km).  

Similar conclusions can be drawn from Figure 3-2, where E.W.E. (km/kWh) could be more than 

doubled in the ideal case (0.83 to 2.11 km/kWh) and increased by nearly 40% with ηregen = 50% (0.83 

to 1.16 km/kWh). 

As can be noted in Figure 3-1, not all the supplied inertia can be recovered, i.e. einertia is not zero 

when ηregen = 1.  This inertial energy is transformed in aerodynamic and rolling losses during the 

braking sections.  Therefore, when ηregen = 1, etrac,net is the energy used to overcome the dissipative 

forces of the tractive power: aerodynamic and rolling resistance (plus transmission losses if they were 

included). 

It is observed that mean net tractive energy etrac,net of passenger vehicles (represented here by the 

SUV) is one order of magnitude lower than that of transit buses.  The opposite is true for E.W.E.  This 
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means that if, for example, a passenger vehicle travels ten miles for a given amount of energy input, a 

transit bus would travel just one mile with the same tractive energy; also that, ignoring other factors, a 

transit bus with more than 10 passengers will pollute less than the same number of people driving their 

cars.  These findings are in line with the order of magnitude difference in vehicle mass (Table 3-1).   

Figure 3-3 combines the data from Figure 3-2 into a continuous graph showing the percentage 

increase in E.W.E (compared to E.W.E. of the conventional baseline powertrain) as the regeneration 

efficiency is varied from 0 to 1.  It is observed that the benefits from energy recuperation are much 

higher in heavy-duty vehicles; which means that improvements on ηregen will be a key factor in future 

development of the hybrid technology.  Note that even though fuel economy figures, in miles per 

gallon, can be inflated in plug-in hybrids, the distance traveled per unit energy (E.W.E.) has an upper 

limit dictated by ηregen = 1.  All remaining improvements have to be made by decreasing fuel 

consumption due to hotel loads, during braking and idle (see Equation 2.18), and through 

improvements in engine efficiency.  

Note that the KCM cycle offers less room for improvement through regeneration; in high speed 

cycles a larger fraction of tractive energy is spent in friction (aerodynamic and rolling losses).  This is 

reflected in the term 1 − ηregen∙(EBR/Etrac) in Equation 2.17 for fuel consumed in powered driving; the 

ratio of braking to tractive energy is around 0.45 in the KCM cycle, while it is 0.60 in the OCTA and 

CBD.   

 
Figure 3-3  Increase in Energy at Wheels Economy (E.W.E.) vs. ηregen 

Using fuel consumption data from Khan (2009) for MY 2005 and 2006 conventional and hybrid 

40’ diesel transit buses and Equation 3.1, the upper regeneration efficiency limit of Equation 3.1 was 

found to be 36% for the OCTA, 41% for the CBD, and 26% for the KCM-no grade cycles.   
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3.3. Effect of Test Weight on Net Tractive Energy 

The previous section explored mean net tractive energy and energy at wheels efficiency for a range 

of vehicle classes and the effect of regeneration efficiency.  This section explores the effect of test 

weight on tractive energy of the 40’ transit bus (Table 3-1). 

Test weight is varied from empty weight to full weight.  Empty weight is assumed to be curb 

weight plus driver’s weight; full weight is GVWR plus driver’s weight.  These values are presented in 

Table 3-4; half weight is the average of empty and full weights. Note how the traditional half seated 

load weight (½ SLW) is roughly halfway between empty and half weight loads.  At 150 lb per person, 

fully loaded weight is nearly 2,000 lbs below GVWR.   

Table 3-4  Test Weights of Conventional and Hybrid Buses 

Test Weight, m 
Conventional 

(kg / lb) 

Hybrid 

(kg / lb) 

Empty Weight 12,995 / 28,650 13,631 / 30,050 

½SLW 14,356 / 31,650 14,991 / 33,050 

Half weight 15,740 / 34,700 16,057 / 35,400 

Fully Loaded 

60 people 
17,010 / 37,500 17,645 / 38,900 

Full Weight 18,484 / 40,750 18,484 / 40,750 

Table 3-5  Effect of Test Weight and ηregen on Mean Tractive Energy 

Test Weight Empty Half Full Empty Half Full 

 
regen = 0 

(Wh/km) OCTA CBD 

etrac,net = etrac 1,094.5 1,306.0 1,517.6 990.3 1,182.6 1,374.9 

eBR  678.8 822.1 965.5 607.5 732.8 858.0 

eaero  70.1 69.9 69.7 60.8 60.8 60.8 

emech  234.2 282.6 331.0 286.3 346.7 407.2 

einertia  790.2 953.5 1,116.9 643.1 775.0 906.9 

 
regen = 0.5 

 
OCTA CBD 

etrac  1,150.3 1,337.3 1,524.3 1,040.7 1,210.8 1,380.8 

eBR  709.8 836.5 963.3 636.1 746.8 857.6 

eaero 77.2 76.8 76.6 66.7 66.7 66.7 

emech 246.6 288.9 331.5 300.3 353.7 407.2 

einertia 471.6 553.3 634.6 355.7 416.9 478.1 

etrac,net 795.4 919.0 1,042.7 722.7 837.3 952.0 

 
regen = 1 

 
OCTA CBD 

eaero 77.2 76.8 76.6 66.7 66.7 66.7 

emech 246.6 288.9 331.5 300.3 353.7 407.2 

einertia 116.7 135.0 153.0 37.6 43.5 49.3 

etrac,net 440.5 500.8 561.0 404.6 463.9 523.2 
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Table 3-5 shows the simulation results.  The table presents distance specific tractive, braking, 

aerodynamic drag, rolling resistance, and inertial energies; etrac,net was calculated per Equation 2.13.  

The simulations were carried out for the OCTA and CBD schedules.  The test weights of the 

conventional bus were used for ηregen = 0; the weights of the hybrid for ηregen > 0.  Tractive and braking 

energies (etrac and eBR) are a function of test weight, vehicle properties, and drive cycle; therefore since 

for the hybrid bus ηregen was assumed independent of vehicle weight, etrac and eBR are the same for all 

values of ηregen. 

Figure 3-4 presents a plot of test weight versus etrac,net for ηregen = 0, 0.5, and 1.  The figure is 

conclusive to show that for a given drive cycle etrac,net is a perfect linear function of test weight.  The 

correlation coefficients were calculated for all the curves, obtaining r
2
 = 1.000.  Here again, the 

predicted energy savings of regenerative braking are pretty significant. 

 

Figure 3-4  Effect of Test Weight and ηregen on Mean Net Tractive Energy 

 

Figure 3-5  Ratio of Net Tractive Energy and Test Weight to Empty Weight Values 
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Figure 3-5 shows etrac,net vs. test weight divided by the corresponding values for empty weights, 

that is etrac,net / etrac,net,EW and m / mEW.  The subscript EW indicates reference to empty weight.  This 

figure shows the increase in net tractive energy due to an increase in test weight; for example, for the 

conventional bus (ηregen = 0) a 14% increase in test weight, above empty weight, is reflected in a 13% 

increase in net tractive energy.  

The ratio of loaded to empty etrac,net can be expressed, after some algebra, as: 

Equation 3.5  etrac,net / etrac,net,EW 

 
EWtracBRregen

tracBRregen

EWtrac

trac

EWnettrac

nettrac

ee

ee

e

e

e

e










1

1

,,,

, . 

From Equation 3.5, it is clear that the key parameters are mean tractive energy, etrac, and the ratio of 

braking to tractive energy, eBR / etrac.  Mean tractive energy (etrac) varies linearly with test weight for a 

given drive cycle; the ratio eBR / etrac is almost insensitive to test weight with an increase of no more 

than 2.5% from empty to full weight. 

Once other factors like engine and transmission efficiency are considered (Equation 2.16), the 

effect of weight on fuel consumption will not look nearly as linear (Clark et al., 2007a).  To contrast 

the influence of these factors, Clark et al. (2007a) report for a 40’ transit bus with a MY 2003 DDC 

S50, 272 hp, diesel engine that increase in test weight above empty weight of 14% and 32% 

represented increase in fuel consumption of 6% and 19% respectively (OCTA cycle).  In regard to the 

above discussion, the 13% increase in tractive energy (14% increase weight) is achieved by a 6% 

increase in fuel consumption.  Also, for the 32% increase in test weight, the increase in mean net 

tractive energy for the OCTA cycle is 29%; this increase in etrac,net was achieved by a 19% increase in 

fuel consumption.  This corroborates that the engine is more efficient at higher loads. 

 

 

3.4. Effect of Grade on Tractive Energy 

Smith (2001) and Khan (2009) proposed evaluating road grade as a sine wave where grade is a 

function of distance.  The grade profile is then superimposed on standard drive cycles.  The general 

sinusoidal grade function is shown Figure 3-7 and can be expressed as: 

Equation 3.6  Sine Wave Grade 








 


0

0 2sin
D

Ds
GGrade

 . 

Where G0 is the maximum (and minimum) road grade (%), s is distance, D0 is the distance traveled for 

one cycle or hill, and D is the phase shift of the wave.  The top of the hill (hmax) is reached at D + 
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D0/2; hmax is determined by integration:             
       

  
, where                   .  

For practical purposes D  [0, D0). 

Alternatively, a square wave function can be used to define grade.  Figure 3-7 shows this function 

and the corresponding elevation profile.  Grade is G0 until D + D0/2 when is jumps to −G0 until D + 

D0, where it completes one cycle.  This concept was used in the KCM cycle where each section has a 

different value of G0. 

 

Figure 3-6  Sine Wave Grade Function and Elevation 

 

Figure 3-7  Square Wave Grade Function and Elevation 

An analysis of variable maximum road grade G0 was performed with values from 0 (flat terrain) to 
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used for the analysis.  The OCTA (   = 12.3 mph), CBD (   = 12.9 mph), and KCM (   = 23.4 mph) 

cycles were selected for simulation.  A summary of the results is presented in Table 3-6 and Figure 3-8 

to Figure 3-10.  Table 3-6 shows values of characteristic acceleration (ã) as a function of G0; recall that 
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ã (Equation 2.23) is a cycle property and is not influenced by vehicle parameters.  In general, ã is 

dictated by the speed trace and the grade profile; in this case, only grade effects are changing. 

 

 

Table 3-6  Effect of Maximum Grade and Grade Function on Characteristic Acceleration for Selected Drive Cycles 

G0 0 1 2 3 4 5 6 7 8 9 10 

 
Characteristic Acceleration ã (ft/s

2
) 

OCTA 
 

Sine Wave 0.715 0.713 0.734 0.769 0.812 0.863 0.921 0.985 1.052 1.123 1.196 

Square Wave 0.715 0.725 0.774 0.845 0.929 1.027 1.136 1.252 1.374 1.500 1.630 

CBD 
 

Sine Wave 0.568 0.636 0.707 0.778 0.849 0.919 0.990 1.061 1.131 1.205 1.283 

Square Wave 0.568 0.679 0.793 0.907 1.021 1.135 1.249 1.362 1.477 1.601 1.737 

KCM 
 

Sine Wave 0.544 0.577 0.621 0.677 0.740 0.808 0.883 0.963 1.047 1.133 1.221 

Square Wave 0.544 0.593 0.665 0.757 0.861 0.975 1.103 1.236 1.374 1.514 1.658 

Figure 3-8 presents the mean tractive power        as a function of G0.  It is observed that for G0  1 

the effect of grade is negligible.  For a given value of G0 the square wave function is much more 

aggressive than the sine wave.  Taking into account that the available tractive power of a conventional 

bus is nearly 150 kW (Khan, 2009, 275 hp engine, 75% transmission efficiency), it is clear that the bus 

will not be able to follow closely the speed trace of the KCM cycle at high grades, especially in the 

case of a square grade profile.  The mean tractive power   trac is  

Equation 3.7  Mean tractive power 

traction

trac
trac

t

E
P  , 

where ttraction is the traction time (time where Proad > 0).  Note how the OCTA and CBD curves diverge 

into two paths, one for each grade function (sine and square).  This behavior suggests that the effect of 

grade is mostly dependent on grade function and cycle average speed (OCTA and CBD average speeds 

are very close). 

Figure 3-9 shows mean tractive energy etrac,net plotted vs. characteristic acceleration.  It is observed 

that the curves are clustered by drive cycle; and presumably by average speed.  The effect of grade on 

tractive energy is considerable. On the other hand, Figure 3-10 presents the ratio of braking to tractive 

energy eBR / etrac; it is noted that the ratio is mostly drive cycle dependent and that, as expected, the low 

speed cycle (OCTA and CBD) have higher values than the high speed cycle (KCM).  As G0 increases, 

the braking energy increases more rapidly than does the tractive energy, making eBR / etrac rise. 

For the sine grade profile with G0 = 5%, characteristic acceleration increased by 21% in the OCTA 

(0.715 to 0.863 ft/s
2
), 62% in the CBD (0.568 to 0.919 ft/s

2
), and 49% in the KCM (0.544 to 0.808 
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ft/s
2
).  At the same time, mean net tractive energy increased by 10% in the OCTA (1,199 to 1,319 

Wh/km), 26% in the CBD (1,086 to 1,371 Wh/km), and 16% in the KCM (1,230 to 1,422 Wh/km); eBR 

/ etrac increased by 5% in the OCTA (0.625 to 0.657), 13% in the CBD (0.617 to 0.696), and 14% in 

the KCM (0.433 to 0.493). 

 

Figure 3-8  Mean Tractive Power vs. Maximum Grade for Sine and Square Grade Profiles 

 

Figure 3-9  Net Mean Tractive Energy vs. Characteristic Acceleration for Sine and Square Grade Profiles 
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Figure 3-10  Braking to Tractive Energy Ratio vs. Characteristic Acceleration for Sine and Square Grade Profiles 

 

 

Figure 3-11  Ratio of Tractive Energy to Value at Zero Grade Shift 

 

Figure 3-12 Ratio of Braking/Tractive Energy to Value at Zero Grade Shift 
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Figure 3-13 Ratio of Characteristic Acceleration to Value at Zero Grade Shift 

Next the effect of the phase shift D of the grade wave was examined.  Building upon the previous 

analysis, the phase shift ratio D / D0 was varied from 0 to 1 while G0 was kept at 5%.  The results are 

presented in Figure 3-11 to Figure 3-13.  For 0 < D / D0 < 0.5 the cycle starts downhill, for 0.5 < D / 

D0 < 1 the cycle starts uphill, for D / D0 = 0 the cycle starts at the bottom of the hill; for D / D0 = 0.5 

it starts at the top of the hill.  Figure 3-11 shows net mean tractive energy, Figure 3-12 shows eBR / etrac, 

and Figure 3-13 presents characteristic acceleration, all with reference to the value at zero phase shift. 

The results for the sine grade function are discussed next.  For the OCTA cycle, tractive energy 

increases by as much as 7% when compared to zero shift; meaning that comparing 5% sine grade with 

flat terrain, the increase in etrac,net of the conventional transit bus can range from 10% (1,319 Wh/km) 

to 18% (1,409 Wh/km).  In the OCTA cycle, standard deviation is 2.8% for ã and etrac,net, and 1.8% for 

eBR / etrac.  The standard deviation is a measure of the variability on the expected effect of phase shift. 

Standard deviation in the CBD is 0.4% for ã and etrac,net, and 0.6% for eBR / etrac.  In the KCM cycle, 

standard deviation is 4.4% for ã, 3.0% for etrac,net, and 3.4% for eBR / etrac.   
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Usually, the retarding load is not an issue because the total load is limited by vehicle maximum 

power and, in the case of WVU’s TransLab, the 2 –300 hp– eddy current power absorbers have been 

designed for that condition.  On the other hand, the eddy current absorbers are incapable of motoring.  

For testing grade, either an AC or DC electric motor/generator dynamometer or variable speed motors 

installed in parallel to the eddy current dyno would be needed.  The TransLab has 2 –20 hp– variable 

speed motors. 

The author was interested in evaluating grade in emissions testing of transit buses with the 

TransLab.  Consider the KCM cycle introduced in Figure 2-6 and Table 2-6; the cycle has four 

sections (KCM1 to KCM4), three with elevation and one on flat terrain. 

Figure 3-14 shows gravity, rolling resistance, and aerodynamic loads over the KCM cycle for the 

conventional transit bus of Table 3-1; this is the net electric dynamometer power.  Positive values are 

retarding loads on the vehicle; negative values are motoring loads.  Excess motoring load (red line, 

negative value) is dissipated by conventional and/or regenerative braking, or it can be used to 

accelerate the vehicle reducing the load on the engine (downhill driving).  In the TransLab, inertia 

loads are simulated by the flywheel set and the remaining loads (aerodynamic, rolling, and grade) are 

simulated by the power absorbers and the variable speed motors.  Note that the gravitational motoring 

load reaches 130 kW in section 1 (40 kW net, -3.5% grade), 35 kW in section 3 (5 kW net, –1.5% 

grade), and 100 kW in section 4 (70 kW net, -5% grade). 

Available motoring power in the TransLab (neglecting transmission efficiencies) from the variable 

speed motors was then analyzed.  It was observed that the powering capabilities of the laboratory are 

limited.  Sections 1 (3.5% grade) and 4 (5% grade) could not be executed while section 3 (1.5% grade) 

would be just within the limits of the laboratory.  Motoring power was calculated from: Pmotoring (kW) 

= V (m/s) / ref (m) * τ (Nm) / 1000, where V is vehicle speed, ref is effective wheel radius (ref ≈ 0.470 

m), and τ is motoring torque, τ = 2 motors * 50 ft-lb/motor * 3.5 (differential ratio) = 350 ft-lb.  The 

theoretical motoring power at 60 mph is 27 kW (36 hp). 

Figure 3-15 shows the net dynamometer electric power that would need to be simulated during the 

KCM cycle both at empty and full weights.  The maximum motoring power at full weight is nearly 100 

kW (134 hp) 

Conventional and hybrid 60-foot articulated diesel transit buses were tested over the KCM cycle in 

NREL’s ReFUEL Laboratory (Hayes et al., 2006).  The laboratory was suited for vehicles up to 80,000 

lb (36,287 kg) and equipped with a DC electric motor with 283 kW (380 hp) absorbing and 268 kW 

(360 hp) motoring ratings.  The hybrid bus had 23% lower fuel consumption compared with the 

conventional bus.  Comparing fuel consumption (gal/mi) for the KCM cycle with and without grade, it 

was observed that fuel consumption was 15% greater with grade for the conventional bus and only 5% 

greater for the hybrid.   
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Figure 3-14  Gravity, Rolling, and Aerodynamic Loads (kW) for a Typical 40’ Transit Bus Driving the KCM Cycle 

 

Figure 3-15  Net Dynamometer Electric Power at Empty and Full Weights (KCM Cycle) 

 

3.4.2. Maximum Speed at Constant Grade 

The maximum speed attainable at a given slope can be determined from the road load equation 

(Equation 2.11) as the root of the following polynomial on speed: 

Equation 3.8  Maximum Speed 

     0sincos5.0 max,max

2

max

3

max  roadrfdAir PVbcmgcVVAc  , 

where Proad,max is maximum engine power discounting transmission efficiency and auxiliary load. 

Figure 3-16 shows maximum speed of the conventional bus (Table 3-1) as a function of grade for 

empty, ½SLW, and fully loaded weights (Table 3-4).  Tractive power Proad,max was estimated with: 

maximum engine power = 202 kW (275 hp), transmission efficiency = 0.75, and auxiliary loads = 13.4 
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hp (10 kW).  It is concluded that maximum speed is almost insensitive to weight for flat terrain.  This 

is because aerodynamic drag is dominant (cubic term in the previous equation).  The effect of grade on 

maximum speed is very significant.  Consider the ½SLW scenario: from 67 mph on flat terrain, 

maximum speed drops to 40 mph at 4% grade, 30 mph at 6% grade, and 20 mph at 10% grade.  Similar 

figures were reported by Smith (2001) for Class 8 trucks. 

 

Figure 3-16  Maximum Vehicle Speed of Conventional Transit Bus vs. Grade 

 

 

3.5. Summary 

The results of this chapter, e.g. Figure 3-4 and Figure 3-9, suggest that it is more appropriate to 

explore correlations of fuel consumption (gal/mi or L/100 km), rather than fuel economy (mi/gal), with 

vehicle and drive cycle parameters, such as test weight, average speed, and characteristic acceleration. 

The simulation parameters for conventional and hybrid 40’ transit buses were introduced.  The 

moment of inertia of the bus wheels was estimated to be around 11 kg∙m
2
. 

The fuel consumption Equation 2.16 was used to estimate an upper limit for regeneration 

efficiency from knowledge of fuel consumption data for hybrid and conventional vehicles.  This limit 

is presented in Equation 3.1; it is dependent on hybrid to conventional fuel consumption ( g~ ) and 

tractive energy (Etrac) ratios, and hybrid braking to tractive energy (EBR/Etrac).  Using fuel economy 

data from Khan (2009), it was concluded that for current hybrid buses the regeneration efficiency is 

between 20% and 40%, with a strong dependency on duty cycle.   

These bounds on ηregen neglect effects of idle and braking fuel consumption, accessory load, and 

differences in driveline and engine efficiencies.  Simulation results of in-use transit routes from 

Chapter 7 below show that these bounds are inaccurate because they neglect the effects just mentioned.  
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The results of Chapter 7 indicate that ηregen might range between 45% and 70% for series hybrid transit 

buses. 

Tractive energy per unit distance was decomposed on aerodynamic, rolling, and inertial efforts.  

These values were estimated for a range of vehicle classes from light duty vehicles to transit buses 

over various drive cycles.  The concept of energy at wheels efficiency (E.W.E.) was introduced; it is 

similar to fuel economy and represents the distance traveled per unit energy spent.  Regeneration 

efficiency was varied from 0 to 1 and the relative impact on E.W.E. was observed. 

The analysis showed the effects of energy recuperation alone.  Hybrids also benefit from engine 

downsizing, which in turn allows it to operate in more efficient regimes.  

The effect of weight on net mean tractive energy etrac,net was studied; weight has a linear effect on 

etrac,net both for conventional and hybrid vehicles. 

The presence of grade significantly changes the operational envelope of the vehicle.  During uphill 

sections the engine works harder whereas it works less in downhill sections.  Overall, more fuel is 

consumed.  Sine and square grade profiles superimposed on existing drive cycles were considered; the 

parameters are maximum grade G0, hill length D0, and phase shift D.  The grade profile thus defined 

directly alters the cycle’s characteristic acceleration, ã, with the square wave having the strongest 

effect. 

For a more in-depth analysis of grade effects, it would be worthwhile exploring the impact of 

changes in the value of the hill distance D0.  In this analysis a value of D0 = 0.5 mi (0.805 km) was 

selected.  In the KCM cycle D0 changes from section to section: 2.67 mi in section 1 (3.5% grade), 

3.30 mi in section 3 (1.5% grade), and 1.16 mi in section 4 (5% grade).  Dimensional analysis shows 

that ã / Ū
2
 has units of one over distance, thus the dimensionless group D0 ∙ ã / Ū

2
 could be used to 

explore such effects.  The group ã / Ū
2
 resembles kinetic intensity (Equation 2.28: ã / 

2

aeroV ) and the 

dimensionless group D0 ∙ ã / 
2

aeroV  might also be appropriate. 

The arbitrary selection of a grade phase shift D introduces variability in the energy requirements.  

This effect was measured in terms of standard deviations of the parameters. 

Finally, the possibility of including grade in emissions testing with the TransLab was explored.  It 

was concluded that the laboratory is not suited for providing the motoring loads encountered in 

sections with negative grade. 
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Chapter 4. CHARACTERIZATION OF TRANSIT DUTY CYCLES 

The first part of this dissertation was aimed to developing a tool to estimate the metrics of bus duty 

cycles from data provided by transit agencies.  Transit bus operation was characterized in cooperation 

with WMATA where GPS and ECU data were logged on a variety of routes.  The logs amount to 

2,900 miles and 230 hours of operation, and were designed to obtain the whole activity range, with 

average speeds ranging from 6.7 mph on their slowest route to 25.9 mph on their fastest route.  

WMATA also provided their estimates of route average speed, calculated from service time and route 

distance.   

Data collection, data reduction, and data analysis are presented in this chapter.  Knowledge of 

average speed can be used to predict other cycle metrics.  Percentage idle and characteristic 

acceleration can be inferred but not with accuracy, as the correlation of these metrics with average 

speed are low. 

 

 

4.1. Transit Bus Activity Data Acquisition 

Bus activity data was collected with the collaboration of WMATA during the spring of 2009.  Data 

logging took place from the Landover and Bladensburg divisions.  At the time, WMATA had a fleet of 

about 1,480 buses; the Landover and Bladensburg divisions housed 167 and 273 buses, respectively.  

The Landover division serves Maryland and some parts of the District of Columbia (DC) whereas 

Bladensburg serves mainly the DC area.  Vehicle speed and road grade were the primary variables of 

concern, but engine operating conditions were also recorded. 

The data acquisition system is shown in Figure 4-1.  The system recorded (i) position and speed 

through a GPS antenna, (ii) ECU data through an ECU J1939 interface, and (iii) barometric pressure 

through a static pressure probe protruding from the top-front of the vehicle.  Data was logged using a 

DL-1 data logger from Race Technology, which includes internal accelerometers that are used in 

conjunction with the GPS readings for an accurate measurement of vehicle speed.  An Omega PX02 

barometric pressure transducer, which provided a 0 to 5 volts DC output to the DL-1 system, was used 

to provide an estimate of elevation changes and road grade.  The vehicle’s 12 volt system was used to 

power the electronic equipment.   
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Figure 4-1  Layout of the GPS and ECU Data Logging Unit 

Two data logging units were built and there was a third data logger available that recorded GPS 

information alone.  The data logging systems did not interfere with normal vehicle operation and 

schedule.  Each system was self sustaining and did not need to be monitored during driving.  The 

systems were started before the buses leaved the depot and data were removed once the buses were 

back. 

Table 4-1 displays the logged ECU variables.  A sample ECU signal from the various buses was 

taken to set the ECU-interface.  It was observed that certain buses did not report some of the desired 

ECU signals, for example the hybrids did not output accelerator pedal position while the CNGs did not 

report fuel rate.   

Table 4-2 lists the eight test buses used for duty cycle logs.  The list includes two articulated buses, 

one diesel-electric hybrid, two diesels, and three CNGs.  The articulated buses were 60 footers and the 

others were 40 footers.  Table 4-3 lists the 19 lines that were monitored. 

Run-to-run variations, day-to-day variations as well as morning-to-afternoon variations were 

considered.  Three lines were studied in consecutive runs to evaluate any possible effects of run-to-run 

variations. Similarly four lines were studied in different days and at the same time of day to evaluate 

possible day-to-day variations. Twelve lines were evaluated in morning and in afternoon-evening 

service to estimate possible differences from time of day. 
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Table 4-1  Logged ECU Variables 

ECU Signal Units 

Suspect  

Parameter 

Number (SPN) 

Parameter  

Group 

Number (PGN) 

Start 

Bit 

Length 

(bits) 
Scaling Offset 

Accelerator Pedal Position % 91 F003 8 8 1/2.5 0 

Actual Engine - Percent Torque % 513 F004 16 8 1 -125 

Actual Gear Ratio - 526 F005 8 16 1/1000 0 

Barometric Pressure kPa 108 FEF5 0 8 1/2 0 

Brake Switch boolean 597 FEF1 28 2 1 0 

Current Gear - 523 F005 24 8 1 -125 

Engine Coolant Temperature ºC 110 FEEE 0 8 1 -40 

Engine Speed (ECU) rpm 190 F004 24 16 1/8 0 

Fuel Rate L/h 183 FEF2 0 16 1/20 1 

Intake Manifold 1 Temperature ºC 105 FEF6 16 8 1 -40 

Percent Load at Current Speed % 92 F003 16 8 1 0 

Wheel-Based Vehicle Speed kph 84 FEF1 8 16 1/256 0 

Table 4-2  Test Buses 

Description Model Year Bus # Fuel 
Curb Weight 

(lbs) 
Engine 

Engine 

Power (hp) 

Ikarus Articulated 1995 5225 Diesel 44,060 Cummins SM-11-E 330 

NABI Articulated 2008 5415 CNG 47,826 Cummins ISL G 320 

New Flyer 2002 2405 CNG 29,500 Cummins C8.3 G 280 

New Flyer 2006 6177 Diesel 28,500 Cummins ISM 280 

New Flyer 2007 2812 CNG 30,150 Cummins LGas-280 280 

New Flyer Hybrid 2006 6002 Diesel 29,900 Cummins ISL 280 

Orion V 1997 4391 Diesel 29,300 DDC Series 50, DDEC-IV 275 

Orion VII 2005 2626 CNG 31,650 John Deere Powertech 6081 250 

Table 4-3  Logged Routes 

Line Route Bus # 

Anacostia-Eckington P6 2626 

Annapolis Road T18 6177 

Benning Road-H Street X2 5225 

Benning Road-Potomac Park X1, X3 2405 

Bowie State University, Pointer Ridge B21, B22, C28 6177 

Bowie-Belair B24, B25 6002 

Capitol Hts-Benning Hts U8 5415 

College Park 82, 83, 86 2405, 2626 

Crofton-New Carrollton B29 4391 

Eastover-Addison Road P12 6177, 6002 

Georgia Avenue Metro Extra 79 2812 

Greenbelt-BWI Airport Express B30 4391 

Hospital Center D8 2626 

Marlow Heights-Temple Hills H11, H12, H13 6177, 6002 

Martin Luther King Jr Highway  A12 6002 

Minnesota Ave-M Street V7, V9 2405, 2626 

North Capitol Street 80 2405 

Prince George's-Silver Spring F4, F6 6002 

Rhode Island Ave-New Carrollton 84, 85 6177 
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4.2. Data Reduction 

Raw log files were pre-processed to correct sections where the GPS lost all the satellites and 

produced rubbish data.  When these sections were short, speed and position (longitude and latitude) 

were filled in assuming a linear variation between the nearest good points.  When the sections were 

long they had to be removed.  Additionally, all engine-off segments were removed. 

The primary outputs of data reduction were vehicle speed and road grade.  The following 

paragraphs describe the data processing considerations. 

Two measures of vehicle speed were obtained: wheel based and GPS based.  Comparison of GPS 

and wheel speeds showed that GPS speed can divert considerably from wheel speed, especially in 

inner-city driving due to obstruction of the satellites.  It was concluded that wheel based speed is more 

reliable and is preferred over GPS speed.  Nevertheless, if wheel speed is unavailable GPS speed 

measurement produces reasonably good results.   

Wheel speed values below 0.2 mph were set to zero; this threshold was 1 mph in the case of GPS 

speed.  In order to remove noise, a low pass filter was applied, with a 2 Hz cut-off for wheel speed and 

0.33 Hz cut-off for GPS speed.  Due to the GPS inaccuracies at idle, micro-trips with speeds below 5 

mph were removed because it was not easy to determine if these were real or fictitious.  This artifact 

was not necessary when wheel speed was used, thus crawling motions were effectively recorded by 

wheel speed.  In order to maintain consistency between data from both types of measurement systems, 

it was decided to remove all micro-trips with Vmax below 5 mph.  These micro-trips represent less than 

1/3
th

 of a percent of the distance traveled. 

The author observed that, when satellite signal was good, the difference between wheel and GPS 

speeds was less than 1%, and even though it could have been possible to apply some sort of averaging 

(Race Technology DL1 reports GPS speed as three-dimensional speed which is compatible with wheel 

speed), it was decided to use wheel speed alone.  Differences of up to 10 mph were noticed when 

satellite signal was poor.  

Grade was determined from altitude (h) and horizontal distance (x): 

Equation 4.1  Grade Calculation 

x

h
Gradej




 100 , 

where the subscript j denotes time step, Δh is elevation change (Δh = hj − hj−1), and Δx is the run or 

horizontal distance travelled, which was determined from GPS longitude and latitude using the 

spherical law of cosines (Veness, 2010).  Care had to be exercised since at low speeds the sensitivity of 

the GPS becomes an issue making Δx → 0  Grade → ∞.  It was observed that the resolution for Δx 

provided by the GPS and the geodesic distance method was of about 0.4 m for raw data, corresponding 
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to a speed of about 4 m/s or 9 mph.  Having into account the resolution and to avoid the division by 

zero, grade was kept constant at speeds below 5 mph and a limit of 10% was imposed on grade values.  

Then, grade was converted to distance basis and a 30 m (33 yd) moving average was applied.  This 

smoothing tended to shift the final value of elevation, thus a distance traveled based linear elevation 

correction was performed such that initial and final elevation values of each micro-trip were matched 

with the reference values. 

Three measures of altitude were obtained: GPS reported altitude, altitude from barometric pressure, 

and altitude from topographic map and GPS location.  It was concluded that the most reliable measure 

was that from the topographic map, thus topographic based grade was used as output.  The topographic 

map was obtained from the National Elevation Dataset (NED, U.S. Geological Survey, 2010) with a 

resolution or grid spacing of 1/3 arc second (about 10 meters).  GPS reported longitude and latitude 

values were used to interpolate elevation from the NED map (Dembski et al., 2005).  As expected, 

some wobbles were observed whenever the road had a bridge crossing a creek or any other depression.  

These wobbles were reduced with a 0.05 Hz cut-off low-pass filter. 

As other studies have reported (Conley, 2002, Moynahan, 2005), GPS altitude showed random 

variations that could not be distinguished from real elevation changes, rendering GPS altitude of little 

use.  Similarly, altitude from barometric pressure (Conley, 2002) presented inexistent elevation 

changes.  The author believes these are due to gusts of wind that affect the static pressure reading by 

dynamic pressure.  Barometer readings were good predictions of elevation changes at highway speeds 

(where the air flow is well oriented with the static pressure probe) but were poor predictors at low 

speeds.  Noise in the pressure signal was removed by first applying a 0.1 Hz cut-off low-pass filter and 

then a 20 second moving average filter.  Barometer output voltage was converted to engineering units 

with the calibration shown in Table 4-4. 

Table 4-4  Barometer Calibration Table 

Data logger  Box 1 Box 2 

Model PX02-D0-16A5T PX02-D0-16A5T 

Serial No. 246918 247011 

Calib. Date 9/12/2008 9/12/2008 

Pressure Reading Reading 

(in Hg) (Vdc) (Vdc) 

16.00 0.004 0.005 

24.00 2.509 2.515 

32.00 5.018 5.018 

24.00 2.510 2.517 

16.00 0.005 0.006 

The final output of the data reduction algorithm consisted of the time (sec), speed (mph), and grade 

(%) vectors, with a resolution of 0.1 seconds (10 Hz). 
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4.3. Analysis 

The first step in analyzing the bus activity was to calculate the cycle metrics corresponding to each 

of the logs.  Following the work of Dembski et al., 2005 (Table 2-5 in page 25), the cycle metrics listed 

in Table 4-5 were calculated.   

Average grade ascent and descent were calculated with Equation 4.1 given the total elevation gain 

(Δh = Δs ∙ sin αj, where Δs =  


j

j
dtV

1
 and αj = atan[gradej/100]) and run (Δx = Δs ∙ cos αj) for ascent 

and descent sections, respectively.  Average grade of the duty cycle was calculated with total elevation 

gain and total run.   

The distribution of stops was characterized by the 5-point summary: [minimum, quartile 1, median, 

quartile 3, maximum].  The average time of stops was determined by total stop time divided by number 

of stop sections.  The number of stop sections is one more than the number of stops (accounting for the 

stop segment before the first micro-trip). 

The distribution of acceleration was characterized using the groups of Table 2-3 (page 20): cruise, 

light, medium, and heavy.  Similarly the distribution of instantaneous speed was characterized using 

the bins of Table 2-4 (page 23): inner-city, urban, suburban, and highway. 

Table 4-5  Cycle Metrics for Route Characterization 

Metric Units Metric Units 

Percentage of Idle % Kinetic Intensity w/o Grade mi
-1

 

Stops per mile mi
-1

 Average Grade   % 

Average Speed (Ū) mph Average Grade Ascent % 

Average Speed w/o idle mph Average Grade Descent % 

Aerodynamic Speed mph Average Time of Stops s 

Standard Deviation of Speed mph Distribution of Stops  

Standard Deviation of Speed w/o Idle mph Percent Time in Acceleration Bins % 

Average Acceleration (ā+) ft/s
2
 Percent Time in Deceleration Bins % 

Average Deceleration (ā-) ft/s
2
 Percent Time of Accel., Cruise, and Decel. % 

Characteristic Acceleration (ã) ft/s
2
 Percent Time in Speed Bins % 

Characteristic Acceleration w/o Grade ft/s
2
 Percent Time in Speed/Acceleration Bins % 

Kinetic Intensity (ki) mi
-1

 Percent Time in Speed/Accel.-Decel. Bins % 

Correlations between pairs of metrics were investigated and Figure 4-2 shows the scatter-plot 

matrix with the corresponding correlation coefficients.  In the figure and the subsequent analysis, 

characteristic acceleration and kinetic intensity correspond to the no-grade case as most emissions 

studies and cycles do not include grade.   

The data showed that average speed is strongly correlated with average speed without idle, 

aerodynamic speed, and standard deviation of speed. Average speed is mildly correlated with stops per 

mile and kinetic intensity.  Low correlations exist between average speed and percentage idle, 

characteristic acceleration, and average Accel./ Decel.  The coefficient of determination was used to 
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decide how strong the correlations where: greater than 80% was taken as a strong correlation, between 

50% and 80% was taken as a mild correlation, and below 50% as a low correlation.   

 

Figure 4-2  Scatter-plot Matrix for the Driving Cycle Database (Logged + Standard) 

More important than these thresholds is the fact that out of the four metrics paired with average 

speed in the current IBIS models to predict emissions (namely: percentage idle, stops per mile, 

standard deviation of speed, and kinetic intensity) only percentage idle is nearly independent of 

average speed.  This indicates that the other three metrics offer little information (or prediction power) 

beyond what average speed provides. 
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On the other hand, characteristic acceleration (or alternatively average acceleration) is fairly 

uncorrelated with average speed, which makes it a good predictor candidate for emissions and fuel 

economy.  Characteristic acceleration (Equation 2.23, page 21) represents the distance averaged 

supplied mechanical energy per unit mass. 

The terrain was not very mountainous and average grade ascent values were below 2.5 %.  Road 

grade produced an increase in characteristic acceleration, ã, ranging from 5 to 15% for the majority of 

the routes. The effect is higher as average speed increases, thus commuter routes presented the greatest 

increase, of around 20%.  The same arguments are valid for kinetic intensity.  These values can be 

used to evaluate the effect of grade on fuel economy and emissions.   

Figure 4-3 shows a simple linear regression between the ratio ã to ã without grade against average 

speed and average grade ascent.  The linear fit for average grade ascent is not statistically significant 

while it is significant for average speed.  On the other hand, in a bilinear model (prediction with the 

two variables) the effect of average grade ascent does turn out to be significant; that is, the effect of 

grade on characteristic acceleration is dependent on average speed.  It must be noted that in all the 

routes the overall average grade was zero since the routes started and ended at the bus depot.  These 

findings can be used in evaluating the effect of grade on emissions and fuel economy. 

 
(a) 

 
(b) 

Figure 4-3  Ratio of Characteristic Acceleration with and without Grade versus (a) Average Speed and (b) Average 

Grade Ascent 

To evaluate the time of stops the average time of a stop and the 5-number summary of the 

distribution (minimum, lower quartile, median, upper quartile, and maximum) were calculated for all 

the routes.  The average stop time ranged from 20 seconds to 3 minutes, while the median time of stop 

ranged from 8 to 40 seconds.  The shortest stops were observed in suburban routes (probably at stop 

signs) while commuter routes had the longest stops.  The distribution of stops is skewed to the right 

with a few very long stops and many short stops.  As an example, Figure 4-4 shows the distribution of 
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stops of an inner-city route (Route D8); the five–number summary of the distribution is [0.6, 10.8, 17, 

37.8, 534.1]. 

 
Figure 4-4  Typical Distribution of Stops of Inner-City Route (Route D8) 

The properties of the logged routes are summarized in Table 4-6 (sorted alphabetically as in Table 

4-3, page 96).  Minimum and maximum values of the metrics are included at the bottom of the table. It 

is worthwhile noting that percentage idle ranges from 28% to 59%.  Regarding AM to PM differences, 

it was observed that, in general, morning service (AM) displayed higher average speeds than afternoon 

and evening (PM) service.  This may be due to the low traffic encountered by the buses very early in 

the morning.  Some routes showed marked differences in average speed while in others the effect of 

service time was not relevant. 

It was uncertain if the values of average speed estimated by the transit agency were close to the 

measured values. For each route a transit authority knows the distance of one round trip and the time 

programmed for a bus to service the route.  These two parameters are an indicator of route average 

speed, but due to dead heading operation the actual average speed is different from the predictor.  The 

effect of dead heading is smaller as the duration of the route increases: it will have less dead heading 

and more revenue service.  Figure 4-5 presents the correlation of actual average speed by estimated 

average speed, performed with JMP
®
 software.  The shaded region is the 95% confidence interval on 

the mean; the regression equation is included in the figure.  It is observed that estimated average speed 

is just below the mean actual average speed (nearly 3% lower in average).  Figure 4-7 is a plot of the 

residuals where no specific pattern is visible.  Point deviations from the estimated value can be as high 

as 5 mph.  It can be concluded that in general the value of average speed estimated by the transit 

agency is a good approximation to the expected value. 
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Table 4-6  Summary of Properties of Logged Routes 

Line Route 
AM / 

PM 

Dist. 

(mi) 

Durat. 

(hr) 

Ū 

(mph) 

Ūno idle 

(mph) 

Vaero 

(mph) 

Stdv. 

U 

(mph) 

Stdv. 

Uno idle 

(mph) 

Idle 

(%) 

Stops 

per 

mile 

ā+ 

(ft/s2) 

ā– 

(ft/s2) 

ãno grade 

(ft/s2) 

ã 

(ft/s2) 

kino 

grade 

(mi-1) 

ki 

(mi-1) 

Avg. 

Time 

of a 

Stop 

(s) 

Med. 

Stop  

(s) 

Avg. 

Grade 

Ascent 

(%) 

Anacostia P6 AM 61.20 8.27 7.4 14.4 22.3 9.8 9.3 48.8 6.60 2.27 2.92 1.20 1.24 5.93 6.11 35.8 18.8 1.5 

Annapolis Rd T18 PM 41.24 3.05 13.5 20.2 27.1 12.8 10.6 33.0 4.07 2.27 2.68 0.96 1.06 3.21 3.53 21.5 9.2 2.5 

Benning Rd-H X2 PM 43.57 6.90 6.3 13.3 19.7 8.7 8.2 52.4 8.42 1.82 2.10 0.81 0.84 5.15 5.30 35.4 24.2 1.0 

Benning Rd-H X2 AM 62.91 8.93 7.0 13.4 19.8 8.9 8.1 47.5 6.25 1.44 1.54 0.60 0.63 3.76 3.94 38.8 21.1 1.0 

Benning-Potom. X1, X3 PM 22.59 3.40 6.6 16.2 27.5 10.8 11.4 59.0 5.18 1.83 1.94 0.78 0.80 2.52 2.60 61.2 21.7 1.0 

Bowie State B21, B22, C28 PM 59.68 2.84 21.0 31.6 44.6 20.8 17.8 33.4 0.90 1.16 1.24 0.38 0.47 0.47 0.58 62.1 12.2 1.6 

Bowie State B21, B22, C28 AM 117.02 4.56 25.6 35.7 50.2 23.4 20.1 28.2 0.86 1.41 1.57 0.46 0.55 0.45 0.53 45.5 11.3 1.6 

Bowie-Belair B24, B25 PM 29.41 2.29 12.8 26.1 35.2 16.2 13.8 50.8 1.94 1.81 2.11 0.75 0.76 1.48 1.51 72.3 9.0 1.8 

Bowie-Belair B24, B25 AM 149.42 9.51 15.7 26.3 35.5 16.7 13.7 40.3 1.86 1.78 2.05 0.71 0.76 1.39 1.48 49.5 10.7 1.8 

Capitol Hts U8 PM 20.04 2.33 8.6 17.8 27.4 11.8 11.2 51.7 4.14 1.62 2.09 0.74 0.77 2.42 2.52 51.7 20.9 1.6 

College Park 82, 83, 86 PM 32.12 2.87 11.2 18.4 25.4 11.9 10.1 39.2 3.83 1.84 2.13 0.78 0.86 2.98 3.27 32.7 16.7 2.1 

College Park 82, 83, 86 PM 119.47 10.23 11.7 19.6 29.2 13.4 12.1 40.5 3.20 1.91 2.45 0.93 0.97 2.68 2.80 38.9 13.7 1.7 

College Park 82, 83, 86 PM 89.94 7.01 12.8 19.9 30.5 13.9 12.6 35.4 3.06 1.78 2.12 0.78 0.86 2.06 2.26 32.4 13.4 2.0 

College Park 82, 83, 86 AM 98.34 5.71 17.2 24.3 38.0 17.3 15.8 29.0 2.09 1.79 2.25 0.79 0.82 1.34 1.39 28.8 14.0 1.6 

Crofton … B29 PM 59.42 2.34 25.4 37.1 48.5 23.0 18.4 31.4 0.84 1.24 1.43 0.44 0.50 0.46 0.52 51.7 18.3 1.4 

Eastover-Addis. P12 PM 106.14 8.25 12.9 21.3 30.3 14.1 12.2 39.7 3.34 2.18 2.79 0.96 1.06 2.58 2.84 33.2 10.2 2.4 

Eastover-Addis. P12 PM 74.51 4.61 16.2 23.2 39.0 17.4 16.4 30.4 2.91 1.88 2.24 0.73 0.82 1.18 1.32 23.1 12.9 2.2 

Georgia Ave 79 PM 64.29 7.05 9.1 15.6 21.6 10.2 8.7 41.7 4.45 1.65 1.80 0.73 0.81 3.84 4.24 36.9 25.8 1.6 

Georgia Ave 79 AM 34.47 3.73 9.2 17.0 22.6 10.7 8.8 45.8 3.51 1.56 1.73 0.68 0.75 3.25 3.62 50.4 26.5 1.7 

Georgia Ave 79 AM 64.62 6.94 9.3 16.4 22.5 10.6 9.0 43.3 4.50 1.69 1.96 0.75 0.82 3.65 3.96 37.0 23.9 1.6 

Greenbelt-BWI B30 AM 147.40 5.83 25.3 42.0 53.3 25.6 19.7 39.8 0.41 1.09 1.25 0.41 0.49 0.35 0.42 134.6 21.2 1.3 

Greenbelt-BWI B30 PM 202.52 7.86 25.8 42.0 52.0 25.0 18.4 38.7 0.31 0.93 1.00 0.33 0.42 0.30 0.38 170.9 28.0 1.4 

Greenbelt-BWI B30 PM 100.89 3.77 26.7 45.5 54.6 26.5 18.5 41.2 0.33 1.03 1.20 0.38 0.47 0.31 0.38 164.7 37.5 1.4 

Hospital Center D8 PM 29.05 3.49 8.3 13.6 21.0 9.6 8.8 38.9 5.54 1.84 2.21 0.92 0.99 5.12 5.50 30.2 17.0 2.0 

Marlow Heights H11, H12, H13 AM 86.93 5.76 15.1 23.0 39.6 17.3 16.5 34.5 2.08 1.73 2.00 0.66 0.73 1.03 1.15 39.4 10.7 1.6 

Marlow Heights H11, H12, H13 PM 74.03 4.67 15.8 24.2 43.0 18.8 18.3 34.6 1.99 1.56 1.71 0.56 0.64 0.74 0.85 39.3 8.3 1.7 

Marlow Heights H11, H12, H13 PM 98.14 6.08 16.1 23.4 39.2 17.1 16.0 30.9 1.56 1.51 1.68 0.56 0.65 0.90 1.04 43.9 8.4 1.6 

Martin Luther A12 AM 65.34 5.22 12.5 19.8 29.8 13.7 12.4 36.8 2.82 1.94 2.06 0.86 0.93 2.36 2.57 37.4 10.9 2.2 
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Line Route 
AM / 

PM 

Dist. 

(mi) 

Durat. 

(hr) 

Ū 

(mph) 

Ūno idle 

(mph) 

Vaero 

(mph) 

Stdv. 

U 

(mph) 

Stdv. 

Uno idle 

(mph) 

Idle 

(%) 

Stops 

per 

mile 

ā+ 

(ft/s2) 

ā– 

(ft/s2) 

ãno grade 

(ft/s2) 

ã 

(ft/s2) 

kino 

grade 

(mi-1) 

ki 

(mi-1) 

Avg. 

Time 

of a 

Stop 

(s) 

Med. 

Stop  

(s) 

Avg. 

Grade 

Ascent 

(%) 

Martin Luther A12 PM 116.26 9.13 12.7 20.2 27.5 13.0 10.8 36.9 2.51 1.86 1.98 0.77 0.85 2.49 2.75 41.4 11.9 2.3 

Minnesota Ave V7, V9 AM 77.30 9.60 8.0 16.7 24.9 11.0 10.3 51.7 5.49 2.13 2.37 0.93 0.96 3.69 3.79 42.1 14.2 1.3 

Minnesota Ave V7, V9 PM 44.71 5.10 8.8 14.9 23.4 10.5 9.8 41.1 5.14 1.67 2.00 0.81 0.85 3.63 3.83 32.7 20.7 1.6 

Minnesota Ave V7, V9 AM 42.46 3.96 10.7 18.1 27.0 12.3 11.1 40.8 3.93 1.80 2.29 0.86 0.88 2.88 2.95 34.6 15.2 1.3 

North Capitol 80 PM 92.81 12.15 7.6 14.2 19.6 9.1 7.8 46.1 6.24 1.77 1.98 0.78 0.83 4.95 5.31 34.8 17.2 1.7 

North Capitol 80 AM 8.47 1.09 7.8 15.9 20.3 9.5 7.4 51.3 3.31 1.30 1.45 0.55 0.65 3.27 3.85 69.4 23.1 2.2 

Prince George's F4, F6 PM 16.11 1.57 10.3 22.3 33.2 14.5 13.8 54.0 2.98 2.07 2.37 0.88 0.95 1.95 2.11 62.2 17.6 2.3 

Prince George's F4, F6 AM 98.24 9.23 10.6 18.0 25.6 11.8 10.2 40.8 3.57 1.75 1.89 0.72 0.85 2.69 3.16 38.5 11.2 2.3 

Prince George's F4, F6 PM 96.90 8.02 12.1 19.7 32.8 14.3 13.5 38.6 4.26 2.19 2.45 0.88 0.98 2.01 2.24 26.9 11.0 2.4 

Rhode Island 84, 85 PM 89.09 9.49 9.4 18.5 25.5 11.8 10.2 49.3 3.82 2.14 2.13 0.88 1.00 3.32 3.78 49.4 10.8 2.1 

Rhode Island 84, 85 AM 71.03 5.18 13.7 23.0 36.6 16.2 15.1 40.4 3.07 2.10 2.64 0.89 0.99 1.64 1.80 34.4 10.2 1.9 

Minimum     6.3 13.3 19.6 8.7 7.4 28.2 0.31 0.93 1.00 0.33 0.42 0.30 0.38 21.5 8.3 1.0 

Maximum     26.7 45.5 54.6 26.5 20.1 59.0 8.42 2.27 2.92 1.20 1.24 5.93 6.11 170.9 37.5 2.5 
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Figure 4-5  Estimated vs. Measured Average Speed 

 

Figure 4-6  Actual Average Speed vs. Idle 

 

Figure 4-7  Residuals: Estimated vs. Measured Average 

Speed 

 

Figure 4-8  Residuals: Actual Average Speed vs. Idle 

Figure 4-6 presents the correlation of actual idle by actual average speed; Figure 4-8 presents the 

residuals.  A second order polynomial has been fit for the range 5-30 mph; there is a mild correlation 

between the two with R
2
 = 0.622.  The shaded area is the 95% confidence interval in the mean; the 

equation for the confidence interval is complex, but it can be simplified to a constant value of ± 2.5% 

without losing a great deal of accuracy.  Using this information, once the transit agency provides an 

estimation of average speed it would be possible to predict percentage idle (a likely value).  This pair 

(average speed and % idle) can be used to predict emissions and fuel consumption with more 

confidence than using average speed alone. 

Figure 4-9 and Figure 4-10 are scatterplots of actual idle (%) by non-revenue time fraction and 

recovery time fraction, respectively.  Recovery time is the time between a completed a trip and the 

start of the next trip; it is reserved for traffic and loading delays.  An analysis of variance shows no 

statistical evidence of correlation between non-revenue time fraction (F = 0.1234, p-value = 0.7277) or 

recovery time fraction (F = 0.4239, p-value = 0.5196) and actual idle.  This suggests that the best 

estimator of percentage idle is average speed.  The author observed that most standard cycles have 

lower values of percentage idle than the ones encountered at WMATA, and this is why the correlation 

of Figure 4-2 is so low.  Most standard cycles exclude dead-heading and idling at the bus depot, thus 
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their percentage of idle is lower than the WMATA logs which included all the engine-on periods 

instead of revenue service only. 

 

Figure 4-9  Non-Revenue Time Fraction vs. Actual Idle 

 

Figure 4-10  Recovery Time Fraction vs. Actual Idle 

From data supplied by WMATA dated June 2008, Figure 4-11 presents the distribution of average 

speed by distance traveled in each average speed bin.  This distribution can be used to estimate vehicle 

miles traveled in each mode, and thus predict fleet fuel consumption and emissions (Wayne et al., 

2009): 

Equation 4.2  Fleet Emissions 

Emissions [tons] = 


n

i 1

 (emissions rate)i [g/mi] ∙ VMTi [mi] / 1000 

Fuel Economy [mpg] = 100 / 


n

i 1

 (% Disti / mpgi) 

The fleet’s overall average speed was 12.0 mph, value that is calculated, as described below, with the 

time fractions in each mode, rather than with the distance traveled fractions of Figure 4-11.  The 

distribution of average speed by fractions of service time is shown in Figure 4-12.  For composite 

service (serving two or more routes, or even the whole fleet) overall average speed (based on average 

speed of the individual routes) is calculated from the time fraction spent in each route.  If n routes were 

served, the overall average speed is: 

Equation 4.3  Estimated Average Speed for Composite Service 





n

i

i

total

i
overall U

t

t
U

1

, 

 where ti is the time spent in route i, Ūi is the average speed of route i, and ttotal is the total service time 

(  


n

i itotal tt
1

).  Note that the factor ti ∙ Ūi is the distance traveled of route i.  In Figure 4-12 each bin’s 
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Ūi would be the center of the bin.  Equation 4.3 is equivalent to dividing total mileage by total service 

time. 

The distribution of average speed can be observed from various angles from which we have looked 

at distance traveled and time spent per bin.  There is yet another approach and it is looking at counts of 

routes in the speed bins (i.e. frequency).  This method is simple and is useful to get a first glimpse of 

the distribution, but for calculations, the distance traveled method is more accurate to estimate overall 

emissions while accounting for the various speed bins; the time spent method is best if the overall 

average speed is desired, giving a single point emissions and fuel economy value. 

 

Figure 4-11  Distribution of Fleet Average Speed by Distance Traveled (%) in WMATA Operation, June 2008 

 

Figure 4-12  Distribution of Fleet Average Speed by Time Fractions in WMATA Operation, June 2008 

IBIS was used to predict NOx emissions and fuel economy for the WMATA distribution (assuming 

a MY 2005 diesel electric-hybrid bus as reference and using the correlation for % idle of Figure 4-6).  

The distance method yielded 4.62 mpg and 8.40 gNOx /mi, while the overall average speed method 

(time spent) yielded 4.57 mpg and 8.51 gNOx /mi.  The second method differs from the first (more 
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accurate) method by about 1%.  This difference is within the margin of error of the IBIS predictions 

and therefore the use of the overall speed method seems to be the most practical for its simplicity. 

 

4.3.1. Classification of Routes by Service Type 

The author proposed classification of the routes into four categories according to service type: 

 Inner-City Service: Routes operating in heavy inner-city traffic with very low average speed.  

Average speed below 10 mph. 

 Urban Service: Mostly urban/city routes with periods of both heavy and low traffic.  Speed 

limit up to 30 mph.  Average speed between 10 and 14 mph.  

 Suburban Service: Mostly suburban routes with relatively high distance between stops.  Speed 

limit up to 50 mph.  Average speed between 14 and 20 mph.  

 Commuter Service: Routes that go on highways/freeways with intercity/town commutes.  

Speed limit above 50 mph.  Average speed above 20 mph.  Commuter routes may originate 

from a suburban park-n-ride, operate on freeway for a long distance, and then become a 

downtown circulator to drop off passengers at employment centers.  

In addition to these four categories the author considered Express and Bus-Rapid-Transit (BRT) 

service.  It was found that routes from these two categories can be placed into the other four groups 

depending on their average speed. 

The idea of grouping the routes into service types is that routes within the same category will have 

similar emissions and fuel economy.  The service type categories will be useful whenever average 

speed data are not available to the IBIS user.   

The speed ranges above were determined by k-means analysis of the duty cycle database.  The 

analysis included the logged routes plus some of the standard cycles (Bee-Line, Braunschweig, 

Houston, KCM no grade, Liberty, Manhattan, Mexico City, MiamiD, New York Composite, 

Nuremberg, OCTA, Paris, and WMATA).  Cycles of the geometric type (e.g. CBD or Arterial) were 

excluded from the analysis since they do not represent real driving conditions. 

The k-means clustering algorithm randomly selects centers for the k clusters (4 in this case) and 

measures the Euclidean distance between each individual route and the centers.  The centers are 

changed and the routes are moved between clusters until the sum of distances is minimized.  The 

metrics were normalized prior to the analysis. 

If all the metrics of Table 4-5 are used in the classification, the classifier differentiates the dynamic 

behavior of the routes (i.e. accelerations, cruise, etc.) but such dynamic behavior does not necessarily 

differentiate their emissions.  For instance, consider a route with high average speed without idle and 

high idle, which would have a low value of average speed (say, in the Inner-City category). This route 
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is dynamically similar to routes with higher average speeds (e.g. Urban routes with less idle) thus 

would be classified to the higher average speed cluster.  On the other hand, since emissions and fuel 

efficiency are reported in grams per mile and gallons per mile (1/mpg), respectively, this route will 

have higher emissions values than the routes of the cluster it was assigned to.  This is because the 

distance travelled (the denominator) is lower than the other routes (with higher average speed); the bus 

is polluting and consuming fuel but it is not moving, thus distance based emissions are higher and the 

emissions characteristics of the route will be more closely matched by routes with similar average 

speed. 

The dynamic clustering just described is appropriate for electric and hybrid vehicles that do not 

pollute while idling.  The issue being that A/C and heat shall be functioning at idle and hybrid buses 

need the engine running at idle to either maintain battery state of charge if the accessories are 

electrically driven or to drive them directly. 

Therefore, average speed must have more weight than the other metrics in the clustering logic for 

the clusters to reasonably represent emissions and fuel economy characteristics.  A sensitivity analysis 

was performed in which the appropriate weight for average speed was determined, and in the end the 

classifier sorted by average speed.  The centroids of the four categories are presented in Table 4-7 and 

the classification criterion (from k-means analysis) is shown in Table 4-8. 

The logged routes were classified and the results are presented in Table 4-9.  The table also shows 

the average speed that WMATA had estimated for each route, the depot, and the number of repetitions.  

The data in the table shows that the Bladensburg depot served mainly Inner-City routes while the 

Landover depot served mostly Urban and Suburban routes. 

Table 4-7  Metrics of Service Type Centroids 

Group 
Ū 

(mph) 

Idle 

(%) 

Stops 

/ mile 

Stdv. U 

(mph) 

ki w/o 

Grade (mi
-1

) 

ã w/o 

Grade (ft/s
2
) 

ā+ 

(ft/s
2
) 

ā- 

(ft/s
2
) 

Ūno idle 

(mph) 

Vaero 

(mph) 

Inner-City 7.93 44.10 5.83 9.64 4.58 0.80 1.72 1.95 14.41 21.39 

Urban 12.23 37.02 3.47 13.21 2.44 0.80 1.83 2.16 19.63 28.71 

Suburban 15.89 30.14 2.45 15.59 1.69 0.73 1.68 2.11 22.87 34.56 

Commuter 25.06 34.23 0.69 23.80 0.42 0.41 1.16 1.31 38.58 50.11 

Table 4-8  Route Classification Criterion 

Service Type Average Speed (mph) 

Inner-City Ū ≤ 10  

Urban 10 < Ū ≤ 14 

Suburban 14 < Ū ≤ 20 

Commuter Ū > 20 
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Table 4-9  Classification of WMATA Routes by Service Type 

Line Route Service Type 

Average 

Speed 

(mph) 

WMATA 

Estimated 

(mph) 

Depot Rep. 

Anacostia-Eckington P6 Inner-City 7.4 8.9 Bladensburg  1 

Annapolis Road T18 Urban 13.5 11.5 Landover 1 

Benning Road-H Street X2 Inner-City 6.3 - 7.0 7.2 Bladensburg  2 

Benning Road-Potomac Park X1, X3 Inner-City 6.6 9.9 Bladensburg  1 

Bowie State University, Pointer Ridge B21, B22, C28 Commuter 21.0 - 25.6 25.0 Landover 2 

Bowie-Belair B24, B25 Urban / Suburban 12.8 - 15.7 17.2 Landover 2 

Capitol Hts-Benning Hts U8 Inner-City 8.6 9.6 Bladensburg  1 

College Park 82, 83, 86 Urban / Suburban 11.2 - 17.2 13.5 Bladensburg  4 

Crofton-New Carrollton B29 Commuter 25.4 24.8 Landover 1 

Eastover-Addison Road P12 Urban / Suburban 12.9 - 16.2 12.4 Landover 2 

Georgia Avenue Metro Extra 79 Inner-City 9.1 - 9.3 9.3 Bladensburg  3 

Greenbelt-BWI Airport Express B30 Commuter 25.3 - 26.7 25.8 Landover 3 

Hospital Center D8 Inner-City 8.3 8.1 Bladensburg  1 

Marlow Heights-Temple Hills H11, H12, H13 Suburban 15.1 - 16.1 16.0 Landover 3 

Martin Luther King Jr Highway  A12 Urban 12.5 - 12.7 13.0 Landover 2 

Minnesota Ave-M Street V7, V9 Inner-City / Urban 8.0 - 10.7 10.4 Bladensburg  3 

North Capitol Street 80 Inner-City 7.6 - 7.8 7.6 Bladensburg  2 

Prince George's-Silver Spring F4, F6 Urban 10.3 - 12.1 12.1 Landover 3 

Rhode Island Ave-New Carrollton 84, 85 Inner-City / Urban 9.4 - 13.7 12.1 Landover 2 

Regarding WMATA’s overall service (Figure 4-12), the transit agency equally serves Inner-City 

and Urban routes with 40.1% and 37.5% of service time, respectively.  Suburban service amounts to 

16.6% and Commuter service to 5.8% of service time. 

The following figures show the various metrics plotted versus average speed and marked according 

to the assigned cluster.  Figure 4-13 shows characteristic acceleration without grade, Figure 4-14 

shows percentage idle, Figure 4-15 stops per mile, Figure 4-16 standard deviation of speed, Figure 

4-17 average acceleration, Figure 4-18 average deceleration, Figure 4-19 aerodynamic speed, and 

Figure 4-20 kinetic intensity without grade. 

 

Figure 4-13  ã without Grade vs. Average Speed 

 

Figure 4-14  Percentage Idle vs. Average Speed 
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Figure 4-15  Stops per mile vs. Average Speed 

 
Figure 4-16  Standard Deviation of Speed vs. Average 

Speed 

 
Figure 4-17  Average Acceleration vs. Average Speed 

 
Figure 4-18  Average Deceleration vs. Average Speed 

 
Figure 4-19  Aerodynamic Speed vs. Average Speed 

 
Figure 4-20  Kinetic Intensity without Grade vs. 

Average Speed 
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As in Figure 4-2, there are correlations between average speed and many of the other metrics.  

Regression curves were developed for the four predictor metrics used in the IBIS models: the 

regessions for percentage idle, stops per mile, standard deviation of speed, and kinetic intensity are 

shown Figure 4-14, Figure 4-15, Figure 4-16, and Figure 4-20, respectively.  The percentage idle 

regression curve has a low coefficient of determination but the author believes that the fit is a good 

representation of the values of percentage idle observed in the field.  Given a value of average speed, 

these regression equations can be used to obtain estimates of the predictor metrics, which in turn allow 

estimation of fuel economy and emissions in IBIS.   

Fuel economy (Figure 4-21) and NOx emissions (Figure 4-22) were evaluated using IBIS.  The 

inputs were all five predictor metrics: average speed, percentage idle, stops per mile, standard 

deviation of speed, and kinetic intensity.  The simulation assumed a MY 2005 diesel-electric hybrid 

bus.  The figures show that emissions of the centroids are in good agreement with the emissions of 

their cluster.  Moreover, emissions predicted with the metric regression equations from above are in 

good agreement with the overall trend and the individual routes. 

 

Figure 4-21  Fuel Economy vs. Average Speed 

 

Figure 4-22  NOx Emissions vs. Average Speed 
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13 mph.  Long Beach Transit had an overall average speed of 12.5 mph, ranging from 9 to 16 mph.  

The operation at WMATA had an overall average speed of 12 mph, ranging from 7 to 28 mph.  NYCT 

reported that their Inner-City service ran at 5-6 mph, Urban service at 7-8 mph, Suburban at 10-12 

mph, Commuter service at 12-15 mph, and BRT service at 7-8 mph. Average speed from New York 

City is significantly lower than the speed from the other surveyed agencies.  In general, the clusters of 

Table 4-7 and Table 4-8 have good agreement with the values reported by the transit agencies. 

The centers of the clusters also agree with data provided by Dallas Area Rapid Transit (DART) in 

that the routes they classify as urban have a mean average speed of 12 mph and a median of 11.4 mph.  

The system’s average speed was 12.5 mph.  DART identified a group of routes called cross-town, that 

do not travel through the Central Business District (CBD); these routes correspond for the most part to 

the Urban category (mean 12.4 mph, median 12.2 mph).  Similarly, DART’s Rail Feeder routes also 

correspond to Urban service (mean 11.9 mph, median 11.5 mph).  The last category of service 

identified by DART is from routes that link suburban park-and-ride stations with the CBD traveling on 

the freeway.  These routes correspond mostly to the Suburban category but include some Commuter 

and some Urban (mean Ū is 18.6 mph, median 17.9 mph).  

The distribution of transit bus operation from DART is shown in Figure 4-23.  DART’s operation 

is heavily concentrated in Urban service (72.1 %), followed by Suburban (13.4%), Inner-City (8.8%) 

and Commuter (with only 2.7%).  It must be noted that neither of the surveyed agencies had operation 

below 5 mph or above 30 mph. 

 
Figure 4-23  Distribution of Route Average Speed at DART 
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4.3.3. Distribution of Speed and Acceleration by Service Type 

The distributions of acceleration and speed were calculated for all the routes.  It was observed that 

routes within the same group had similar distributions.  The acceleration and speed distributions of the 

centroids of the four categories are shown next. 

Figure 4-24 presents the distribution of speed for the centroids of the four service types.  Inner-City 

corresponds to speeds below 15 mph, Urban between 15 and 30 mph, Suburban between 30 and 50 

mph, and Highway above 50 mph (Table 2-4, page 23).  Inner-City service spends most of the time 

(54%) at low speeds, followed by urban speed taking nearly 40% of the time.  As the average speed of 

the route increases, the distribution shifts towards higher speeds and the fractions of suburban and 

highway speeds increase.  Suburban routes spent most of the time at urban and inner-city speeds but 

their fraction of suburban and highway speeds are higher compared to Urban routes.  Figure 4-12 (page 

107) and Figure 4-23 (page 113) presented the distribution of average route speed from two transit 

agencies and they showed that nearly 75 % of transit bus service corresponds to Inner-City and Urban 

service (average speeds between 5 and 14 mph).  These two types of service are represented by the 

distributions of Figure 4-24 (a) and (b), as well as (a) and (b) in the subsequent figures (Figure 4-26 to 

Figure 4-28). 
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(a) Inner-City Service 

 
(b) Urban Service 

 
(c) Suburban Service 

 
(d) Commuter Service 

 Figure 4-24  Speed Distribution of Service Type Centroids 

Figure 4-25 shows the box plots of the driving modes for the four service types.  The variability of 

the data is apparent in the figure.  The red mark in the middle is the median, the blue box encloses the 

quartiles (middle half of the data), the whiskers extend to extreme data points, and the red “+” marks 

are data points away from the closest quartile by more than 1.5 times the interquartile distance (these 

would be outliers if the distribution were normal, which is not the case).  The circled crosses (×) 

represent the centroids of the clusters.  It is observed that the fraction of urban driving is very similar 

for all but Commuter service.   
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(a) Inner-City Driving 

 
(b) Urban Driving 

 
(c) Suburban Driving 

 
(d) Highway Driving 

Figure 4-25  Box Plots of Driving Mode Fractions by Service Type 

Figure 4-26 has broken the speed groups into accelerations to further explore the characteristics of 

each driving mode. Acceleration at inner-city speeds exhibits dominance of heavy and medium 

accelerations, urban speeds are dominated by medium and light accelerations, suburban speeds are 

dominated by light accelerations, and highway speeds have mostly cruise accelerations.  That is, at low 

speeds accelerations are high and they decrease in intensity as speed increases. 

Figure 4-27 and Figure 4-28 show the distribution of accelerations and decelerations, respectively, 

for the various service types.  For Inner-City, Urban, and Suburban service most accelerations are 

medium and light, whereas Commuter service is composed primarily of light and cruise accelerations.  

Decelerations show some degree of uniformity for all but Commuter service, which as in its 

accelerations, exhibits primarily light and cruise decelerations. 
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(a) Inner-City Service 

 
(b) Urban Service 

 
(c) Suburban Service 

 
(d) Commuter Service 

Figure 4-26  Distribution of Speed-Acceleration of Service Type Centroids 
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(a) Inner-City Service 

 
(b) Urban Service 

 
(c) Suburban Service 

 
(d) Commuter Service 

Figure 4-27  Distribution of Acceleration of Service Type Centroids 
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(a) Inner-City Service 

 
(b) Urban Service 

 
(c) Suburban Service 

 
(d) Commuter Service 

Figure 4-28  Distribution of Deceleration of Service Type Centroids 
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The ranges observed for the cycle metrics were presented at the bottom of Table 4-6.  The metric-
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in Table 4-7 (page 109).  Regression curves were developed for various cycle metrics as a function of 

average speed: percentage idle (Figure 4-14), stops per mile (Figure 4-15), standard deviation of speed 

(Figure 4-16), and kinetic intensity (Figure 4-20).  These regressions were used to predict fuel 

economy and NOx emissions in IBIS (assuming a MY 2005 diesel-electric hybrid bus), and it was 

Heavy a- Medium a- Light a- Cruise a-
0

5

10

15

20

25

30

35

40

45

24.8
26.6

30.9

17.7

%
 T

im
e

Heavy a- Medium a- Light a- Cruise a-
0

5

10

15

20

25

30

35

40

45

30.5

  22

28.6

18.9%
 T

im
e

Heavy a- Medium a- Light a- Cruise a-
0

5

10

15

20

25

30

35

40

45

  30

21.6

29.2

19.2%
 T

im
e

Heavy a- Medium a- Light a- Cruise a-
0

5

10

15

20

25

30

35

40

45

15.4 15.3

28.2

41.1

%
 T

im
e



Chapter 4 – Characterization of Transit Duty Cycles 

 

120 

determined that the predicted values were good representations of the overall duty cycle database. Fuel 

economy and NOx emissions predictions of the logged routes and the regression fit were presented in 

Figure 4-21 and Figure 4-22, respectively. 

A handful of transit agencies were surveyed and their operation agreed with the proposed service 

type classification.  It was determined that there is not a significant difference between predicting 

emissions for the overall bus fleet (using fleet average speed), and predicting for individual routes and 

then determining the composite fleet emissions.  This result is important in that it provides confidence 

in the simplified approach (overall average speed). 

Correlations between pairs of metrics were explored.  It was determined that average speed is well 

correlated with most of the other metrics, except for characteristic acceleration and percentage idle.  

The author concluded that the three nearly independent metrics (average speed, characteristic 

acceleration, and percentage idle) should be explored as predictor metrics for emissions and fuel 

consumption. 

It was determined that the estimations of route average speed provided by the transit agency were 

in good agreement with the actual average speed values, and that the effects of day-to-day and run-to-

run variations were mild.  It is recommended that when evaluating fleet emissions, agency estimated 

average speed values are used directly as inputs to the IBIS models.  In the case that no average speed 

values are known by the agency, the values for the service type centroids are recommended, once the 

agency has determined its dominant service type.   
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Chapter 5. DIESEL ENGINE FUEL CONSUMPTION AND EMISSIONS 

MODEL 

The author chose to use Artificial Neural Networks (ANNs) and 2D lookup tables to develop the 

fueling and NOx emissions engine models.  A general description of ANNs was presented in Section 

2.6.5 and specific examples of ANNs for emissions modeling can be found in Section 2.7.4. 

The engine to be modeled was a MY 2007-2009 Cummins ISB 260H (1.2-1.5 g/bhp∙hr NOx).  No 

data was available to the author from engine dynamometer tests of such engine, but the WVU 

TransLab had tested a transit bus with an engine of the same class but MY 2006 (2.5 g/bhp∙hr NOx).  

The chassis dynamometer tests had recorded engine ECU broadcast (engine speed and percent torque) 

and this provided a suitable source of data.   

The engine broadcast was matched with the results from the emissions bench, obtaining a dataset 

of [time, speed, torque, fueling rate, and NOx emissions] that was used to develop the ANN models. 

The following sections summarize the chassis dynamometer tests, engine lug curve, development 

of the fueling and NOx emissions maps (2D lookup tables), and development and validation of the 

ANNs. 

 

5.1. Chassis Dynamometer Test Data from MY 2006 Orion – BAE Hybrid Bus 

WVU TransLab tested a MY 2006 40’ Orion hybrid bus (Transit Resource Center, 2007).  The bus 

belonged to Liberty Lines Transit / Westchester County Department of Transportation.  The hybrid 

configuration was a series architecture powered with the BAE Systems HybriDrive® propulsion 

system.  The bus was tested over 6 different drive cycles: Beeline, Manhattan, New York Bus, OCTA, 

UDDS, and WMATA.  Table 5-1 summarizes the fuel economy and emissions results.   

Curb weight was 33,440 lb (15,170 kg), GVWR was 42,540 lb (19,295 kg), test weight was 38,540 

lb (17,480 kg), the test fuel was ULSD#1, and all the reported tests were warm-start tests.  The vehicle 

was equipped with oxidation catalyst (DOC) and particulate trap (DPF).  The diesel engine was a 2006 

Cummins ISB 260H.   

The advantage of using these data to develop the engine models is that the test data correspond to 

in-use engine operation and not to an engine certification test.  Thus the data truly represents the 
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engine operational envelope that is expected during service in the series-hybrid transit bus application.  

The disadvantage is that one must rely upon engine torque and speed broadcasted by the ECU.  

Conversion of ECU torque to engineering units was much simpler than in previous research programs 

(e.g. Thompson et al., 2002) because the engine torque channel (SPN 513 of SAE J1939: Actual 

Engine - Percent Torque) is a percentage and can be directly converted to engineering units with the 

engine lug torque.   

Table 5-1  Summary of Emissions Tests – Orion-BAE Series Hybrid Bus. (Transit Resource Center, 2007) 

Cycle Repeat 

Ūno idle 

(mph) 

Ū 

(mph) 

Time 

(s) 

Fuel  

Economy 

(mpg) 

Fuel 

Cons. 

(g/mi) 

NOx 

(g/mi) 

CO2 

(g/mi) 

PM 

(g/mi) 

Dist. 

(mi) 

Beeline 

1 21.8 15.2 1,722 4.62 668 9.85 2,092 0.006 7.26 

2 21.8 15.1 1,722 4.73 651 9.51 2,039 0.011 7.22 

3 22.2 15.2 1,722 4.81 642 9.23 2,008 0.007 7.26 

4 21.9 15.1 1,722 4.87 633 9.32 1,982 0.004 7.22 

5 21.9 15.0 1,722 4.80 643 9.45 2,012 0.007 7.20 

6 21.9 15.1 1,722 4.83 639 9.34 2,000 0.005 7.23 

Manhattan 

1 11.8 7.3 1,097 4.05 760 13.46 2,384 0.007 2.24 

2 11.9 7.3 1,097 3.90 792 13.35 2,476 - 2.23 

3 11.9 7.3 1,097 3.94 782 12.76 2,452 - 2.24 

New York  

Bus 

1 11.4 3.8 598 2.19 1,417 23.28 4,403 0.021 0.64 

2 11.2 3.8 598 2.30 1,342 22.43 4,199 0.035 0.64 

3 11.3 3.7 598 2.24 1,377 23.42 4,304 0.014 0.62 

OCTA 

1 17.8 13.0 1,948 5.15 599 9.98 1,875 0.004 7.05 

2 17.7 13.0 1,948 5.23 590 9.79 1,847 0.004 7.05 

3 17.8 13.0 1,948 5.29 583 9.73 1,826 0.003 7.05 

UDDS 

1 30.5 20.1 1,059 5.77 534 7.59 1,672 0.012 5.91 

2 30.7 20.3 1,059 5.95 518 7.43 1,623 0.011 5.97 

3 30.8 20.3 1,059 5.75 536 7.36 1,679 0.008 5.97 

WMATA 

1 15.9 9.0 1,837 4.26 724 11.91 2,268 0.002 4.62 

2 15.8 9.0 1,837 4.52 683 10.91 2,138 0.003 4.60 

3 15.5 9.0 1,837 4.62 667 11.16 2,091 0.001 4.60 

 

 

5.2. Engine Performance Curve 

Engine ECU parameters of interest were logged: engine speed (rpm), current torque to maximum 

available torque ratio (%), fuel rate (L/s), and vehicle velocity (km/h).  The torque ratio is a ratio 

between the engine torque output and the maximum torque at the current speed.  Therefore, the engine 

performance curve had to be obtained from the engine manufacturer.  Figure 5-1 was built from this 

information showing the maximum torque and the maximum power curves in Nm and kW 

respectively. 
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Figure 5-1  Cummins ISB 260H Engine Performance Curve 

Engine peak torque is 815 Nm (600 ft-lb) at 1,800 rpm, peak power is 194 kW (260 hp) at 2,300 

rpm, and governed speed is 2,500 rpm.  Table 5-2 is a list of relevant engine parameters. 

Table 5-2  Cummins ISB 260H Engine Parameters 

Parameter Input 

Peak Power 260 HP (194 KW) @ 2300 rpm 

Peak Torque 600 ft-lb (815 N-m) @ 1800 rpm 

Fuel System Bosch Electronic 

Cylinders 6 

Bore 4.02 in (102 mm) 

Stroke 4.72 in (120 mm) 

Emission Certification 

U.S. EPA 2004 

HC+ NOx:  2.5 g/bhp∙hr 

CO:  0.6 g/bhp∙hr 

PM:  0.04 g/bhp∙hr 

Aspiration Turbocharged and Charge Air Cooled 

Displacement 359 in3 (5.9 L) 

 

 

5.3. Emissions and ECU Data Reduction 

The primary objective of the engine models was to predict tailpipe-out CO2 and NOx emissions and 

instantaneous fuel consumption, all in grams per second, based on engine speed and torque.  The 

emissions measurements from the analytical bench do not exactly correspond to tailpipe-out values due 

to diffusion and dispersion effects (Madireddy and Clark, 2006).  Diffusion and dispersion effects are 

due to mixing of the charge in the tunnel and due to analyzer time response; these effects were not 

considered since there was not enough information to reconstruct instantaneous tailpipe-out emissions.   

There is a time delay in the concentration measurements as the exhaust travels the dilution tunnel 

and sampling system; similarly there is a delay in the tunnel flow rate measurement.  The delays were 
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corrected through cross-correlation with hub power.  ECU data were time-aligned as well by cross-

correlation between engine power and hub power. 

Continuous emissions concentration measurements and tunnel flow were extracted from the 

TransLab Server at 1 Hz using the ContData software, and were converted to 10 Hz using cubic 

splines.  Engine-out emissions were calculated by correcting species concentrations for background 

concentrations per CFR 40 Part 86 Subpart N Sections 86.1319–90 and 86.1342–90. The equations for 

emissions mass flow rate calculation are: 

Equation 5.1  Emissions Data Reduction Equations 
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The variables in Equation 5.1 are defined as follows.  The first four equations define mass flow 

rates in grams per second of HC, CO, CO2, and NOx, respectively; subscript i denotes values at a given 

time step.  HCe, COe_raw, CO2_e, and NOx_e are measured concentrations in ppm;  HCb, COb, CO2_b, and 

NOx_b are background concentrations in ppm.  HC concentration is in carbon equivalent ppm.  COe is 

the CO concentration (COe_raw, ppm) corrected for water vapor and CO2 extraction.  DF is dilution 

factor and Vmix is dilute exhaust volumetric flow rate (at standard conditions of 20°C and 101.3 kPa).  

Kv is the venturi calibration coefficient, Pv is venturi absolute inlet pressure, and Tv is venturi absolute 

inlet temperature.   

Densities at standard conditions are 0.57665 kg/m
3
 for HC, 1.164 kg/m

3
 for CO, 1.830 kg/m

3
 for 

CO2, and 1.913 kg/m
3
 for NO2.  Kw is dry-to-wet correction factor and KH is humidity correction factor.  

α is the atomic hydrogen to carbon ratio of the fuel.  H is average absolute humidity of the intake air in 

grains of water per pound of dry air, and R is the relative humidity (%). FuelCarbon, FuelHydrogen, and 

FuelOxygen are the fuel mass fractions of carbon, hydrogen, and oxygen, respectively.  With the fuel 

properties listed below, DFConstant turns out to be 13.45. 

A fuel analysis was not performed in the Westchester County test program.  Thus, fuel properties 

were assumed from Wayne et al. (2004b) and are listed in Table 5-3. 

Table 5-3  Fuel Properties 

Parameter Input 

Density (ρFuel) 0.830 kg/L 

Carbon Mass Fraction (FuelCarbon) 0.8619 

Hydrogen Mass Fraction (FuelHydrogen) 0.1346 

Oxygen Mass Fraction (FuelOxygen) 1 - 0.8619 - 0.1346 = 0.0035 

Atomic Hydrogen to Carbon Ratio (α) (0.1346/1.008)/( 0.8619/12.011) = 1.8608 

Lower Heating Value (LHVFuel) 
18,447.4 BTU/lb 

42.9 MJ/kg 

 

Percent torque (Torque%,i) broadcast by the ECU was converted to engineering units (Torquei in 

Nm) following Equation 5.2 (a) and (b), where Speedi is engine speed (rpm) and the maximum torque 

at current speed (Torquemax,i in Nm) is obtained from the performance curve of Figure 5-1.  Volumetric 

fuel rate ( iFuelV ,
 ) broadcast by the ECU was converted to mass flow rate ( iFuelm ,

 ) using the fuel density 

value of Table 5-3.  Engine power (Pengine) was calculated from Equation 5.2 (d) with the appropriate 

conversion factors.  Engine efficiency (ηengine) in % was calculated from Equation 5.2 (e), again 

applying the appropriate conversion factors.  In the engine efficiency calculation, Fuelm  could be from 

either carbon balance or ECU. 

Equation 5.3 recalls the equations used to calculate cycle fuel economy and fuel volume; mFuel is 

the integral of fuel rate, ρFuel is fuel density, and D is cycle distance. 
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Equation 5.2  ECU Data Reduction Equations 
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Equation 5.3  Fuel Economy Calculation 
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5.4. Analysis of Continuous Fuel Rate and Emissions 

The following sections present a discussion of the reduced dataset and the implications of assumed 

fuel properties, and carbon balance versus ECU fueling, among others. 

All runs were inspected visually for anomalies.  It was observed that some of the test runs 

presented drops in the engine speed-torque signals.  These sections were removed so they did not 

introduce flawed entries to the models. 

 

5.4.1. Area of the Torque-Speed Map Covered by the Test Data 

The region of the torque-speed domain covered by the test data is shown in Figure 5-2.  The figure 

shows the number of data points in cells of size 10 rpm × 5 Nm with cells having 10 or more points 

being at the top of the scale; the top line corresponds to the engine lug curve.  The total number of 

valid data points was 289 thousand or about 8 hours of testing.  The portion of the data that represented 

idle conditions was 23% (engine speed below 900 rpm). 

The covered region represents the operation of the Cummins ISB 260 H engine in the BAE hybrid 

bus and serves as a good baseline for the development of the engine fueling and NOx models. 
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Figure 5-2  Torque - Speed Region Covered by the Test Data 

 

5.4.2. Effect of Fuel Properties 

The assumed fuel properties produced a difference when the integrated results were compared with 

the records in the TransLab database (shown in Table 5-1).  The greater difference occurred in fuel 

economy which showed values 3% to 4% higher; this was due to a higher value for fuel density (2% 

greater) used here and to the carbon mass fraction being 1% higher.  The higher carbon content reduces 

the calculated fuel mass (Equation 5.1 e), then the higher fuel density further reduces the calculated 

fuel volume, with the combined effect being a higher fuel economy. 

The difference in the hydrogen to carbon ratio (α) also accounted for nearly 1% lower CO2 

emissions, while the effect on NOx emissions was negligible.  These variations due to the 

unavailability of accurate fuel properties should bring to the attention of the reader the importance of 

collecting and analyzing the test fuel, especially if slight differences in vehicle performance are to be 

detected.  There is clearly an uncertainty in fuel economy due to uncertain fuel properties of almost 

5%. 

Table 5-4 shows the integrated emissions and fuel economy values calculated with the data 

reduction procedure and fuel properties used in this dissertation.  The performance of the engine 

models developed in the following sections will be benchmarked against these values. 
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Table 5-4  Corrections to Table 5-1 for Fuel Properties and Data Reduction Calculations 

Cycle Repeat 

Fuel  

Economy 

(mpg) 

Fuel 

Cons. 

(g/mi) 

NOx 

(g/mi) 

CO2 

(g/mi) 

Beeline 

1 4.79 656 9.87 2,071 

2 4.91 640 9.58 2,019 

3 4.99 630 9.37 1,989 

4 5.07 620 9.39 1,958 

5 4.99 631 9.48 1,990 

6 5.01 627 9.40 1,980 

Manhattan 

1 4.19 749 13.55 2,369 

2 4.03 781 13.49 2,461 

3 4.08 771 12.85 2,434 

New York Bus 

1 2.24 1,398 23.75 4,429 

2 2.34 1,349 22.85 4,236 

3 2.28 1,389 23.90 4,358 

OCTA 

1 5.34 589 10.00 1,859 

2 5.41 580 9.82 1,832 

3 5.47 574 9.77 1,813 

UDDS 

1 5.99 524 7.62 1,657 

2 6.17 510 7.46 1,609 

3 5.96 527 7.39 1,663 

WMATA 

1 4.39 717 11.99 2,261 

2 4.66 674 10.98 2,127 

3 4.77 659 11.22 2,079 

 

 

5.4.3. Comparison between Carbon Balance and ECU Fueling Rates 

The dispersion of emissions that occurs in the dilution tunnel makes that, even after time 

alignment, measured values do not correspond to instantaneous tailpipe emissions; integrated values, 

on the other hand, are not affected.  For instance, a sudden power demand is measured with a lower 

peak on fueling (carbon balance, Equation 5.1 e) than the actual value, and once the power demand is 

finished, the engine cuts fueling but the measured fuel rate will drop slowly.  Figure 5-3 shows an 

example of this situation for a section of the OCTA cycle; carbon balance fueling clearly exhibits the 

dispersion effects and can differ by more than 50% versus the ECU value. 

If the integrated fueling rate reported by the ECU, which is thought to conserve the true transient 

nature of the events, compares well with carbon balance results, one could use ECU fueling to develop 

the prediction models. 

The difference between integrated ECU and Carbon Balance fuel rates is shown in Figure 5-4 for 

each of the tests, where the reference is Carbon Balance.  A good agreement is observed and most of 

the runs show less than 2% difference; the overall average difference (sum of all tests) is 1.7%.  This 

difference is lower than the results shown in the previous section for the effect of fuel properties.  It is 
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concluded that ECU fuel rate can be used with confidence, and it will be used as the basis for the 

engine fueling models. 

 

Figure 5-3  Fuel Rate from Carbon Balance and ECU for a Section of the OCTA Cycle 

 

Figure 5-4  Difference between Integrated ECU and Carbon Balance Fuel Rates 

A similar dispersion effect is observed in the measured NOx rate but no corrections will be 

performed.  The dispersion and diffusion effects on NOx may not be as significant as those for fuel rate 

(primarily coming from CO2); this is likely since tailpipe CO2 is considerably mixed with the CO2 in 

the dilution air while the amount of NOx in the dilution air is low. 
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5.5. 2D Maps or Lookup Table Approach 

Before developing any ANN models let’s explore first the lookup table approach.  This approach is 

the default of PSAT and is widely known to work well for fuel rates but not so well for emissions. 

The 2D maps are based on engine speed and torque as the inputs, and any torque-speed pair within 

the domain can be interpolated from the surface to predict fueling rate or NOx rate (or in general any 

species for which the maps are developed).   

The maps were developed in the MATLAB
®

 environment using the gridfit function from 

MATLAB
®
 Central.  The surface smoothness was adjusted with the smoothness parameter.  

Decreasing the smoothness parameter produced higher R
2
 values for the training data but predictions 

for other inputs were worsened.  It was also observed that a finer grid produced better results than a 

coarser grid. 

Regarding the issue of carbon balance versus ECU fueling, the maps with ECU fueling produced 

better results.  Since the NOx data were not corrected for dispersion, it was decided to remove the 

decreasing torque sections (those following a power event) in an attempt to reduce the effect of 

dispersion.  The NOx maps thus generated produced slightly better results than without (1% higher R
2
). 

Figure 5-5 presents the fuel rate map.  The map was generated with a smoothness parameter of 2 

and a grid size of 50 rpm × 10 Nm; the R
2
 value was 0.982.  From the fueling map, the efficiency and 

brake-specific fuel consumption (BSFC) maps were calculated and are shown in Figure 5-6 and Figure 

5-7, respectively. 

Originally, the efficiency curves showed that for a constant speed the peak efficiency occurred at 

maximum torque.  This was because the lack of data at torques near the lug curve (see Figure 5-2 in 

page 127) made the curve fitting algorithm underestimate fueling rates in this region.  This situation 

was corrected by manually increasing the fueling rates in the region up to 20%. 

After this correction and provided the source of the data, the shape of the curves seemed reasonable 

and their values appropriate.  The estimates for best engine efficiency and brake-specific fuel 

consumption are 43% and 200 g/kWh (150 g/bhp∙hr), respectively.   

The NOx rate map is shown in Figure 5-8.  The map was generated with a smoothness parameter of 

0.5 and a grid size of 10 rpm × 5 Nm; the R
2
 value was 0.902.  The brake-specific NOx map is 

presented in Figure 5-9.  The brake specific fuel and NOx maps can be converted to units of 

horsepower multiplying by the fraction (1kW / 1.341 hp). 
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Figure 5-5  Engine Fueling Map 

 

Figure 5-6  Engine Efficiency Map 

 

Figure 5-7  Engine Brake-Specific Fuel Consumption 

Map 

 

Figure 5-8  Engine NOx Rate Map 

 

Figure 5-9  Engine Brake-Specific NOx Emissions Map 
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Performance of the 2D maps was evaluated and the results are shown in Figure 5-10: (a) is percent 

error in cycle fuel, (b) is % error in cycle NOx, and (c) is % error in cycle CO2.  These results are 

equivalent to the integrated PSAT output when the engine is exercised over the duty cycles prescribed 

by the chassis tests.  CO2 emissions were calculated following Equation 5.2 e and neglecting the HC 

and CO contributions: 

Equation 5.4  CO2 Emissions from Fueling Rate 

12

44
,,2  Carboniflowmassiflowmass FuelFuelCO

 
Errors of fuel consumption predicted by the 2D fuel map were very low: cycle fuel consumption 

had a maximum error of 2.3% and a minimum of -1.0%, average of the errors was 0.4% and the 

overall error (all the runs added together) was 0.1%.  Performance of the NOx map and the calculation 

for CO2 were not as good as for the fueling map.  Cycle NOx had a maximum error of 7.4%, a 

minimum of -2.2%, average of 1.9% and overall 1.1%.  Cycle CO2 was consistently overpredicted with 

a maximum error of 6.5%, a minimum of 0.1%, an average of 2.5%, and overall 2.0%.  Given that the 

fueling map was based on ECU fueling, the difference between carbon balance and ECU fueling rates 

of Figure 5-4 carries up to the CO2 error shown in Figure 5-10 (c). 

The results of this section show that there is still room for improvement, especially in the case of 

NOx and CO2 prediction.  The case of CO2 will not be addressed because for consistency CO2 

emissions should be calculated from the carbon in the fuel as shown in Equation 5.4. 

 

 

5.6. Artificial Neural Network Models Development and Validation 

The ANN architecture chosen for modeling of fuel consumption and NOx was a multiple layer 

feed-forward network and was modeled in the MATLAB
®
 environment.  Training was performed 

using the Levenberg-Marquardt back-propagation algorithm (trainlm).  Single hidden layer networks 

were also explored but they did not produce sufficient accuracy over the wide operative range of the 

engine. 

ANN training used random division (dividerand in MATLAB
®
) of the training data as follows: 

60% for training, 20% for validation, and 20% for testing.  The validation data are used to stop training 

if performance does not improve for a specified number of epochs.  The testing set is used to check 

proper generalization.  Neither validation nor testing sets are used to adjust the synaptic weights.  

Given the random division of the training data and the dependency of initial conditions (initial synaptic 

weights), slightly different results were obtained every time that the training algorithm was run.   
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(a) Percent Error in Cycle Fuel 

 
(b) Percent Error in Cycle NOx 

 
(c) Percent Error in Cycle CO2 

Figure 5-10  Performance of 2D Maps 

Inputs and outputs to the neural network were normalized as shown in Table 5-5.  Torque inputs do 

not have negative values as the Cummins engine only reports positive torques.  ANN outputs were 

then de-normalized into engineering units. 

Bedik (2006) used a normalized standard error to compare performance of the ANN during training 

and validation under various groups of inputs.  In this dissertation, the mean square error of Equation 

2.48 (page 54) was used to measure performance during ANN training: 
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where y corresponds to target output and ŷ to predicted output.  The summation is carried out for all the 

n points in the dataset.  This method was used by Thompson et al. (2000).  Alternatively, the 

correlation coefficient of Equation 2.49 (page 54), R
2
 = SSM / SST, provides an estimate of 

performance.  The drawback of R
2
 is that even if a perfect correlation exists the ANN may be under- or 

over-predicting.  Also, percent error in integrated cycle emissions was considered to assess accuracy. 

Table 5-5  ANN Input / Output Normalization 

Parameter Units Range Normalized Range 

Speed Rpm 700 – 2,350 0 – 1 

Torque Nm 0 – 815 0 – 1 

Fuel Rate g/s 0 – 10 0 – 1 

NOx g/s 0 – 0.14 0 – 1 

The transfer functions studied were radial basis (radbas), logarithmic sigmoid (logsig), and 

hyperbolic tangent sigmoid (tansig).  Equation 5.5 presents the functional form of the three functions 

and Figure 5-11 shows a plot in the range of -1 to 1.  Note that the transfer functions are bounded 

between -1 and 1, providing stability to the neural net.  Given the normalization of Table 5-5, the 

working input range is the interval [0, 1].  The logsig function’s limited range for inputs between 0 and 

1 resulted in poor results when compared to the other two functions. 

Equation 5.5  ANN Transfer Functions 

  2^nenadbasr   

 
ne

nlogsig



1

1
 

  1
1

2
2





 ne

ntansig  

The following considerations were explored in determining the best ANN configuration: number of 

neurons per hidden layer, order of the transfer functions within the ANN, time span of the history 

inputs, and number of inputs to the ANN.  In order to evaluate the variability of the results, three 

experiments or simulations were performed for each configuration.   

The configurations studied had 3 hidden layers, the first two layers had radbas or tansig transfer 

functions whereas the third layer (output layer) had a linear operator.  Inputs were normalized torque, 

normalized speed, and their delayed values (history terms) over ΔT1, ΔT2, and ΔT3 seconds for a total 

of 8 inputs.  Negative outputs were avoided by applying a zero threshold to the output. 
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Figure 5-11  Transfer Functions 

Figure 5-12 shows a general overview of the ANNs; having two hidden layers and the output layer.  

Each neuron in the first hidden layer is connected to the inputs; similarly each neuron in the following 

layers is connected to the outputs of all the neurons in the previous layer.  The inputs to any given 

neuron are weighted and have a bias term (w and b in Figure 5-12); parameters that are adjusted during 

the training process.  Since two different ANNs were developed (fuel and NOx), each ANN produced 

one output and the output layer was composed of one neuron.   

 

Figure 5-12  General Overview of the ANNs 

For ANN training, values for learning rate and momentum coefficient were 0.1 and 0.3, 

respectively.  The momentum coefficient adjusts the weights with considerations of previous values of 

these, which improves convergence and accuracy by avoiding local minima.  The maximum number of 

iterations allowed was 200. 

The training datasets were selected as follows: (i) input data were scaled (Table 5-5) and matched 

with the corresponding history terms in torque and speed (ΔT1, ΔT2, and ΔT3), (ii) the speed-torque 

domain was parceled in cells of 10 rpm × 5 Nm and the data points (from step i) on each cell were 

identified, and (iii) 5 points from each cell were randomly selected to make up the training set.  If the 

number of points in a cell was less than 5, all the points were selected.   

The training datasets thus created consisted of a total of 46,000 points (1.3 hours of test data) 

representing 16% of the overall dataset.  The training set generation procedure assured that the 

networks were supplied with an even representation of all the regions in the map, and would avoid 

overfitting specific regions of the map.   
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5.6.1. Time Span of the History Inputs 

The history terms of 1, 5, and 10 seconds suggested by Jarrett and Clark (2002) were used as a 

starting point.  Then, history terms of 0.1, 1, and 5 seconds were used to train the ANNs and 

performance was compared.   

Figure 5-13 shows the effect of using two different sets of history terms, in the first one ΔT1 = 1 s, 

ΔT2 = 5 s, and ΔT3 = 10 s, and in the second one the values of [0.1, 1, 5] were used.   Figures (a) and 

(b) are for the fuel model, figures (c) and (d) are for the NOx model; figures (a) and (c) present the 

normalized mean squared error (NMSE), i.e. MSE calculated with normalized outputs; figures (b) and 

(d) show the R
2
 value.  Error bars are the 95% confidence intervals of three simulations.  Each pair of 

columns corresponds to a combination of the transfer functions, where R stands for radbas and T for 

tansig, e.g. R-T corresponds to a radbas layer followed by a tansig layer.  These experiments were 

carried out with 20 neurons in the first hidden layer and 15 in the second one. 

 

 

(a) Normalized Mean Squared Error for Fuel 

 

(b) Coefficient of Determination for Fuel 

 

(c) Normalized Mean Squared Error for NOx 

 

(d) Coefficient of Determination for NOx 

Figure 5-13  Effect of Time-Span of the History Terms on ANN Performance 
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For the case of fuel, the change of time-span did not show improvement with statistical 

significance for either of the combinations of R and T.  For the case of NOx, improvement was seen 

with statistical significance, e.g. for the radbas-tansig setting R
2
 increased from 0.948 ± 0.004 to 0.957 

± 0.002. 

The results showed that, when compared with the baseline values, the history terms at 0.1, 1, and 5 

seconds yield better performance for NOx but not necessarily for fuel.  These values were retained as 

the history terms of choice for both ANNs models. 

 

5.6.2. Number of Neurons 

Experiments were performed to evaluate the effect that the number of neurons had on performance 

of the ANNs.  Figure 5-14 shows the results starting with 5 neurons per layer [5, 5] up to 25 neurons 

per layer [25, 25].   

 

(a) Normalized Mean Squared Error for Fuel 

 

(b) Coefficient of Determination for Fuel 

 

(c) Normalized Mean Squared Error for NOx 

 

(d) Coefficient of Determination for NOx 

Figure 5-14  Effect of Number of Neurons on ANN Performance 
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The limited number of experiments (3) made that slight variations from repetition to repetition 

were converted into large error bars, thus the statistical significance of comparisons was low.  A 

tendency was observed where performance improved and then leveled up.  The pairs [15, 10] and [20, 

15] were compared and the first one was selected for the fuel ANN while the second one was selected 

for the NOx ANN.  The [20, 15] pair showed lower errors in individual cycles than the smaller network 

and better tracking of the target NOx signal. 

The effect of adding an extra layer was also evaluated but it was observed that the added layer 

worsened the generalization capabilities of the models. 

 

5.6.3. Order of the Transfer Functions 

The effect of the ordering of the radbas and tansig transfer functions within the network can be 

observed in Figure 5-13.  The figure shows that performance of the four combinations of R and T is 

equivalent.  It cannot be concluded (with statistical significance) that there is an effect on performance 

due to the order of the transfer functions. 

 

5.6.4. Number of Inputs (History Terms) 

The effect of the number of inputs was evaluated for the R-T setting with [15, 10] neurons for fuel 

and [20, 15] neurons for NOx.  The baseline inputs were as before, torque and speed at current time, 

with history terms at 0.1, 1, and 5 seconds; these are referred as [t, t0.1, t1, t5] where t is current 

time in seconds.  The following combinations were explored: (i) the baseline combination, (ii) [t, t0.1, 

t1], (iii) [t, t1, t5], (iv) [t, t0.1], (v) [t, t1], and (vi) [t].   

Figure 5-15 summarizes the results.  It was concluded that reducing the number of history terms 

did have an effect on performance.  For fuel, the effect was not too strong if one history term was 

removed but it was significant when two terms were removed.  NOx prediction was much more 

sensitive than fuel prediction to the number of history terms:  R
2
 of NOx was reduced from 0.957 ± 

0.002 for the baseline set to 0.922 ± 0.001 when only current values [t] of speed and torque were used; 

while for fuel the reduction was only from 0.992 ± 0.000 to 0.988 ± 0.002. 

 

5.6.5. Final Results and Validation 

Following the previous analysis, the architectures for the fuel and NOx ANNs were selected and are 

summarized in Table 5-6.  The total number of parameters in the neural networks shown in Table 5-6 
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was obtained as follows: (i) first layer: (number of inputs + 1)×(number of neurons in layer), and (ii) 

second and following layers: (number of neurons in previous layer + 1)×(number of neurons in layer).  

For example, in the case of NOx we have (8+1)×20 + (20+1)×15 + (15+1)×1 = 511. 

 

(a) Normalized Mean Squared Error for Fuel 

 

(b) Coefficient of Determination for Fuel 

 

(c) Normalized Mean Squared Error for NOx 

 

(d) Coefficient of Determination for NOx 

Figure 5-15  Effect of Number of History Terms on ANN Performance 

Table 5-6  Selected ANN Architectures 

Parameter Fuel NOx 

Hidden Layers 2 2 

No. of Neurons [15, 10] [20, 15] 

Transfer Functions [radbas, tansig] [radbas, tansig] 

Inputs Speed and Torque Speed and Torque 

History Terms (s) [0.1, 1, 5] [0.1, 1, 5] 

No. of Inputs 8 8 

No. of Outputs 1 1 

No. of Parameters 306 511 

 

The coefficients of determination (R
2
 values) for the overall dataset were 99.2% for fuel and 95.7% 

NOx, which are considerably accurate; these were improved compared with the 2D map approach 
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which had 98.2% and 90.3%, the highest improvement being in the NOx results.  Standard errors were 

also improved from 0.33 g/s (fuel) and 0.009 g/s (NOx) with the 2D maps to 0.21 g/s (fuel) and 0.006 

g/s (NOx) with the ANNs. 

Figure 5-16 compares measured and predicted values of fuel rate, CO2, and NOx for a section of 

the OCTA cycle.  The figure shows that the ANNs give a better tracking of the target signals. 

 

Figure 5-16  Example of ANN and 2D-Map Output. Section of OCTA Cycle 

The two neural nets were contrasted against all the available test runs and the output from the 2D-

Maps.  The results are summarized in Figure 5-17 for percentage error and in Figure 5-18 for standard 

error (root mean square error).  The cycle error of Figure 5-17 shows that the fuel ANN performs 

better than the NOx ANN with overall smaller errors, which was also true for the 2D-Maps.  Also, 

when compared with the 2D-Map results, the ANNs considerably reduced cycle error. 

 Analysis of Figure 5-17 (b) for NOx % error reveals that 85% of the results are within 3% 

accuracy range and 95% of them within a 5.5% accuracy range.  Similar analysis of Figure 5-18 (b) 

reveals that 90% of the results have a standard error below 7 mg/s of NOx. The distribution of % error 

of fuel reveals that 85% of the results are within the 0.5% accuracy range and 95% within 0.8% 

accuracy.  
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(a) Cycle Percent Error of Fuel 

 

(b) Cycle Percent Error of NOx 

Figure 5-17  Percent Error  in Integrated Emissions for all Test Runs: (a) Fuel, (b) NOx 

 

 (a) Standard Error of Fuel, g/s 

 
(b) Standard Error of NOx, g/s 

Figure 5-18  Standard Errors for all Test Runs: (a) Fuel, (b) NOx 
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Further validation of the ANN models will be performed later with the engine model integrated 

into the hybrid bus model to predict fuel economy and grams per mile of NOx and CO2. 

 

 

5.7. Correction for Emissions Certification 

Depending on the engine manufacturer’s emissions credit trading, for a given year some engines 

are certified lower and others at higher emissions limits.  The target EPA certification level of the 

engine model for this dissertation was 2007 but the only data available to the author to develop the 

models was from the ISB 260H discussed above with an EPA NOx certification level of 2.5 g/bhp∙hr.  

A correction to the models is needed in order to account for the difference in certification levels. 

Table 5-7 shows a summary of chassis dynamometer tests performed by the WVU TransLab on 

transit buses comparing 2004-2006 and 2007-2009 diesel-electric hybrid buses (CAFEE, 2011).  The 

table shows vehicle weight, engine EPA certification level and test results on the OCTA and WMATA 

cycles.  At the far right of the table are fuel consumption and NOx emissions normalized by test 

weight.  Assuming that the differences on the normalized values are solely due to the engine (i.e. 

neglecting other factors like transmission efficiency, hybrid drive performance, etc.), it can be 

concluded that, for these buses, NOx reduction with the new engine is of the order of 15% to 23%.  

NOx reduction was not of the order of the certification levels but much lower; this could be explained 

because the operational envelope of the engine in the transit buses is substantially different than 

operation over the Federal Test Procedure (FTP) used for certification.  Regarding fuel consumption, 

and again assuming other things equal, the normalized values show a very small difference (+2% in 

OCTA, -1% in WMATA).  One would expect an increase in fuel consumption due to the NOx-fuel 

efficiency trade-off, but the data shows no evidence of this with statistical confidence. 

Table 5-7  Emissions and F.E. New Flyer 40’ Diesel-Hybrid Transit Buses, 2005/2008 (CAFEE, 2011) 

Engine 

MY 

Curb 

Weight 

(lb) 

GVWR 

(lb) 

Test 

Weight 

(lb) 

NOx 

Cert. 

(g/bhp∙hr) 

Cycle 
F.E. 

(mpg) 

Fuel 

(g/mi) 

NOx 

(g/mi) 

Fuel 

(g/1000 

lb-mi) 

NOx 

(g/1000 

lb-mi) 

2005 30,960 40,600 34,110 2.5 
OCTA 4.81 653 9.7 19.1 0.286 

WMATA 4.15 758 10.9 22.2 0.320 

2008 33,660 42,540 36,810 1.0 
OCTA 4.37 719 8.9 19.5 0.242 

WMATA 3.88 811 9.1 22.0 0.247 

Difference +8% -60% 
OCTA -9% +10% -8% +2% -15% 

WMATA -6% +7% -17% -1% -23% 

 

Table 5-8 shows results from a study that compared conventional transit buses (CAFEE, 2010).  

The results shown in the table are the average of four buses on each model year tested twice under each 
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cycle.  The newer buses showed better fuel economy but the differences were not statistically 

significant (to 95% confidence).  The fuel economy improvement can be attributed to the 5% weight 

reduction.  On the other hand, the reductions in NOx (g/mi) of 41% in the OCTA cycle and 45% in the 

UDDS cycle had statistical significance.  The weight-normalized results show a slight increase in fuel 

consumption and a significant reduction in NOx emissions: 38% in the OCTA cycle and 42% in the 

UDDS cycle. 

Table 5-8  Emissions and F.E. Gillig 40’ Conventional Diesel Transit Buses, 2004-5/2007 

Engine 

MY 

Curb 

Weight 

(lb) 

GVWR 

(lb) 

Test 

Weight 

(lb) 

NOx 

Cert. 

(g/bhp∙hr) 

Cycle 
F.E. 

(mpg) 

Fuel 

(g/mi) 

NOx 

(g/mi) 

Fuel 

(g/1000 

lb-mi) 

NOx 

(g/1000 

lb-mi) 

2004-2005 29,230 39,500 33,123 2.8 
OCTA 4.00 796 13.6 24.0 0.409 

UDDS 5.26 605 9.8 18.3 0.297 

2007 27,860 39,600 31,363 1.25 
OCTA 4.14 770 8.0 24.5 0.254 

UDDS 5.49 580 5.4 18.8 0.173 

Difference -5% -55% 
OCTA +3% -3% -41% +2% -38% 

UDDS +4% -4% -45% +1% -42% 

 

As a result, and based on the data presented above, the effect of emission certification levels was 

treated as a factor to multiply the output of the models developed.  This approach is simple but, based 

on the difficulty of assessing the effects on various regions of the engine map, it will produce results 

that are both reasonable and in-line with the findings of emissions studies of 2007-2009 engines.   

No correction was made for fueling because the data did not show a significant effect.  A 

conservative correction factor of 0.85 (15% reduction) was selected for NOx.  This value was chosen 

based on Table 5-7 because the engine in the series hybrid had emissions at the levels of the 2005 MY 

engine shown in the table and it is reasonable to expect the same order of emissions reduction with the 

2007 MY engine.  The 2004-2005 MY engines of Table 5-8 had higher NOx levels than the engines in 

the hybrid buses and that accounts for the higher reductions of Table 5-8. 

   

 

5.8. Summary 

The models for fuel consumption and NOx emissions of the diesel engine were developed in this 

chapter.  Source data for the models were introduced along with the data reduction procedures.  The 

fuel models were based on ECU data while the NOx models incorporated analyzer measurements.  

Two different sets of models were developed, namely 2D maps and ANNs.  The 2D maps performed 

satisfactorily for fuel consumption and the ANNs, which incorporate history terms, showed 

considerable improvements in NOx predictions.  An analysis of data from various transit bus emissions 
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studies revealed that an appropriate reduction in NOx emissions between engine model years 2003-

2006 and 2007-2009 was of the order of 15%.  The models were used in the following chapter as part 

of the vehicle dynamic model. 
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Chapter 6. VEHICLE DYNAMIC MODEL 

This Chapter describes the vehicle dynamic model and its components.  The vehicle model, 

developed in PSAT simulation software, was based on a 40 ft Orion series-hybrid bus powered with a 

BAE Systems HybriDrive® propulsion system.  It must be noted that the vehicle model developed in 

this Dissertation cannot be said to represent the performance of the BAE HybriDrive®, and that BAE’s 

system was used as a baseline for the models of the various components. 

For this dissertation a model that resembles the New Flyer 40’ hybrid transit buses, with BAE 

HybriDrive®, was be developed in PSAT from data available publicly in the literature and component 

parameters supplied by BAE (BAE Systems, 2010).  This chapter presents results of model validation 

against chassis-dynamometer data from the TransLab.  It must be noted that there was limited 

information regarding performance of the electric system which did not allow the electric components 

to be individually validated.  Instead, validations were carried out for overall vehicle performance: fuel 

economy, and NOx and CO2 emissions. Also, it was not practical to try to mimic the performance of 

the BAE HybriDrive® controller and a modified version of PSAT’s load following controller was 

used. 

First, the base vehicle is introduced; then the model is described, and, finally, the model is 

validated against chassis-dynamometers tests. 

 

 

6.1. Overview of the Base Vehicle: 40 ft Orion hybrid bus with BAE Systems 

HybriDrive® 

The base vehicle (see Section 5.1, page 121) was a MY 2006 40 ft Orion transit bus.  The bus had a 

series architecture where the engine is connected to a generator which provides electrical power for the 

drive motor and batteries.  A brief description of the main components is presented next.  The 

information below was obtained from BAE Systems (BAE Systems, 2010) for their MY 2007 system. 
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 Traction Motor:  the traction motor is a 320 hp (238 kW) peak AC induction motor with 2,700 ft-

lb (3,660 Nm) of torque at zero speed.  Maximum speed is 3,200 rpm. Weight is 450 lb (210 kg).  

The motor has a single-gear direct-drive to the differential and is oil cooled. 

 Traction Generator: the traction generator is a 260 hp (194 kW) continuous brushless permanent 

magnet motor.  Maximum speed is 3,000 rpm and weight is 260 lb (120 kg).  The generator is 

directly mounted into the engine’s output shaft and is air cooled. 

 Engine: The diesel engine is a Cummins ISB 260H, 6-cylinder, 5.9 litre, ULSD fuel with DPF 

(Table 5-2, page 123). 

 Battery System:  The hybrid batteries are lead acid technology with a nominal voltage of 600 V.  

Peak power: 268 hp (200 kW). 

 Propulsion Control: the propulsion integral control handles engine speed, DPF monitoring and 

protection, battery management, etc.  Peak power: 320hp (238kW).  The controller weights 180 lb 

(80 kg) and is oil cooled. 

The bus curb weight was 33,440 lb (15,170 kg), GVWR was 42,540 lb (19,295 kg), and test weight 

was 38,540 lb (17,480 kg).  The tested weight corresponded to half passenger load and not to half 

seated load.  Frontal area was 80 ft
2
 (7.4 m

2
), tire diameter was 38.5 in (0.98 m).  Simulated rolling 

resistance and drag coefficients were 0.0086 and 0.79, respectively. 

 

6.2. Vehicle Dynamic Model in PSAT 

PSAT is a forward-looking simulator based on Simulink models (blocks) for vehicle components 

and control strategies.  Forward-looking means that the model is resolved just like actual vehicles 

work: it starts with a driver’s command.  Backward-looking models start from the wheels up the 

powertrain (Rousseau and Pasquier, 2001).   

In PSAT, the driver model reads the difference between target and actual speed sending a torque 

demand, based on the road load equation, to the vehicle controller.  Then, the vehicle controller 

decides how to provide the desired torque demand and sends commands to the various component 

controllers which in turn translate the demands into component specific inputs, e.g. throttle position or 

motor current.  The components supply torque and the vehicle moves producing a speed output.  In the 

next simulation step, the driver again compares the output speed with the trace speed and sends out a 

new acceleration or deceleration (torque) request. 

A generic PSAT component is shown in Figure 6-1.  The ports in the top carry input commands 

(e.g. gear number, torque request) and output sensor signals (e.g. rotational speed).  The second ports 
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are efforts such as output torques and voltages; the last ports are flows such as output speeds and 

currents.  Inputs to the model are on the left side and outputs are on right side.  The model can be as 

simple as a lookup table or as complex as a neural network or a physical model.  The model is 

accompanied by signal conditioning block, constraints block, and files for initialization, calculations, 

and scaling.  The constraints block defines the performance limits of the model: the signal conditioning 

block reads the bus and retransforms the signals into model specific commands (e.g. torque command 

to throttle position). 

Figure 6-1  Generic Format of a Component in PSAT (ANL, 2008) 

Figure 6-2 shows the global drivetrain configuration of a hybrid vehicle with a series configuration.  

The figure corresponds to the “ser_eng_2wd_p3” configuration in PSAT.  Figure 6-3 presents the 

vehicle model in Simulink: three main groups are observed, namely vehicle or powertrain controller, 

component controller, and powertrain model.  The relevant components are (ANL, 2008): 

 Vehicle: the vehicle model calculates vehicle speed based on torque inputs and vehicle properties.  

There are two families of models, one that estimates aerodynamic and rolling losses as a second 

order polynomial called f0f1f2 and one that uses the parameters of the road load equation (e.g. 

frontal area, drag and rolling resistance coefficients, etc.) called equation.  Speed is solved as the 

integral of acceleration, where acceleration is solved from Newton’s law: a = net force / effective 

mass.   

 Wheel:  Parameters for the wheel axle model are: maximum brake torque of the vehicle, number of 

wheels, wheel effective radius, inertia, and mass.  The wheel model includes the brake calculations 

and transforms drivetrain inertia into an effective mass (see Equation 2.9, page 13). The equation 

model incorporates rolling resistance while the f0f1f2 model does not (it is included in the vehicle 

model).   

 Differential:  The parameters of the differential block are gear ratio, inertia, mass, and an 

efficiency map based on torque and speed.  If no other information is available, a constant 

efficiency map is usually satisfactory; efficiency values ranging from 95% to 98% are common. 

 Gearbox: The gearbox of the series-hybrid bus (not shown in the figure) used consists of a single 

gear reduction.  The PSAT gearbox model accounts for efficiency, inertia, and torque 

multiplication.  For simplicity, differential and transmission ratios were combined into a single 

overall ratio and efficiency in the differential model.  Therefore, the gearbox model was not 

necessary. 

MODEL 

Command from Controller 

Effort 

Flow 

Info to Controller (Sensors) 

Effort: Torque, Voltage, etc. 

Flow:   Speed, Current, etc. 
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Figure 6-2  PSAT Series Hybrid Drivetrain Configuration  

 

Figure 6-3  Outline of the PSAT Series Hybrid Vehicle Model in Simulink 
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 Torque Coupling: The torque coupling model was not necessary because the generator is directly 

mounted into the engine output shaft.  Therefore, for modeling purposes, 100% efficiency, 1:1 ratio 

and zero inertia were input in this block. 

 Engine:  The PSAT engine model is based on lookup tables for torque, fuel consumption and, 

when available, emissions.  Fuel rate is a function of speed and brake torque.  Controller torque 

demand is normalized to maximum torque at current speed and is then referred to as Tcmd; torque is 

calculated by Tout = (1 − Tcmd) ∙ Tmin + Tcmd ∙ Tmax, where Tmin and Tmax are motoring and maximum 

brake torque, respectively.   

The model is divided into four blocks: torque, thermal, fuel rate, and emissions.  All of the blocks 

are based on lookup tables.  The thermal block calculates energy lost to the exhaust and 

surroundings; engine and exhaust flow temperatures are set constant.  Emissions lookup tables 

neglect the transient nature of emissions.  The default model does not have flow rate calculations 

but there is a gas flow rate output used by the aftertreatment model.  Parameters are: maximum and 

motoring torque maps, fueling rate (or efficiency) map, emissions rate maps, fuel properties 

(heating value, density, carbon weight fraction, etc.), and inertia.  The engine model may be 

linearly scaled by power and efficiency. 

 Exhaust aftertreatment: the diesel engine uses an oxidation catalyst model; gasoline engines use a 

three-way catalyst.  The model calculates HC and CO efficiencies based on catalyst temperature 

and efficiency maps.  Tailpipe emissions are then estimated from engine out emissions and 

efficiency.  PM is also accounted for by a constant efficiency.  The catalyst model calculates 

instantaneous CO2 emissions based on a carbon balance of HC, CO, fuel carbon.  For this 

dissertation the engine model will output tailpipe emissions, hence catalyst efficiencies were set to 

zero. 

 Mechanical accessory:  mechanical accessories are modeled as a constant power loss.  The load is 

only applied when engine speed is above idle.  This restriction is due to the oversimplified control 

algorithm default of PSAT.  For this dissertation, the models were modified to include mechanical 

accessory loads not only in motored driving but also during braking and stops. 

 Electrical accessory: electrical accessories are also modeled as a constant power loss which is 

applied as long as the key is on.   

 Electric motor/generators: Torque is calculated according to the percent torque demand and the 

maximum torque at the current speed.  Current is calculated as I = Power (electrical) / Voltage.  

Parameters for the model are: continuous and peak torque maps, efficiency maps (function of speed 

and torque), inertia, time response, and maximum current.   

 Power converter (electric motors and electrical accessories): There are a handful of models varying 

in the inputs and outputs, all having a constant efficiency.  Consider for example the voltage 

input/output (V2V model); current to the battery is calculated from voltage, efficiency, and input 
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current.  Parameters are the efficiency and a constant voltage output.  When additional information 

is available, a variable efficiency model can be used, where efficiency is expressed as a function 

(lookup table) of voltage and power.  The series configuration used in this dissertation did not 

include a power converter and power converter losses were assumed to take place in the battery 

model. 

 Battery (Energy Storage): The battery model is a generic map that accommodates lithium-ion (Li-

ion), nickel-cadmium (NiCd), nickel-metal hydride (NiMH), nickel-zinc (NiZn), and lead-acid (Pb) 

batteries.  The battery is composed of cells which are arranged in series to form modules, modules 

are arranged in series to form strings, and strings are arranged in parallel to form the battery.  The 

model is divided into three blocks for SOC, voltage, and temperature calculations.  The battery is 

modeled as a charge reservoir whose parameters are functions of SOC; all calculations are made at 

the cell level and then translated at the battery level.  Open circuit voltage and internal resistance 

are functions of SOC and temperature.  A simple thermal model simulates heat losses and air 

cooling; losses are estimated from internal resistance, current, voltage, and a coulombic efficiency 

table.   

Parameters are: number of cells per module, number of modules per string, and number of strings 

in parallel; open circuit voltage, charging resistance, and discharging resistance are defined for a 

cell as functions of temperature and SOC.  Thermal properties are defined for a module.     

Since little data was available for the BAE HybriDrive ® battery, the battery model was taken from 

the Allison buses which have a 600 V nominal, 19 amp-hr, NiMH battery pack (Chiang, 2007).  

Two sub-packs in series form a 600 V string (module) and three strings in parallel provide the 

required storage capacity.  Each sub-pack has a variable speed cooled fan for thermal control.  A 

sub-pack contains 40 cells (SAE-UK, 2007); the nominal voltage of a cell, with 80 cells per 

module, is 600 V / (2∙40) = 7.5 V.   

 Driver:  models the accelerator and brake pedals through a PI controller which compares desired 

vehicle speed with current speed and outputs a torque request.  Since the driver block calculates 

torque requirements, it must match the parameters on the Vehicle model.  There are provisions for 

both types of vehicle models.  The proportional gain targets the transient speed trace while the 

integral gain targets the steady state offset.  The total output torque request is the sum of the PI 

torque (due to error) and the torque required to overcome road load. 

For this dissertation, a modified version PSAT’s normal driver was used.  The modification 

consisted of amplifying the gains by a factor of 10 for speeds below 5 mph.  The modified driver 

model produced satisfactory results for both low and high speeds. 

 Control strategy:  The controller receives demands and, based on operational parameters and 

constraints, makes decisions generating commands to the various components.  The control 

strategy is divided into propelling, braking and shifting, or it can be defined as a global strategy 
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that performs all three functions.  Two different data buses are used: one for powertrain parameters 

and one for controller parameters.  There may be a block to handle transients such as gear shifts in 

a manual transmission. 

The default controllers available for the series architecture were load following and thermostat.  

The load following controller operates the engine under the optimum efficiency curve.  The 

batteries aid acceleration events whenever SOC is above the SOC target and are recharged when 

SOC is below the SOC target.  The thermostat controller operates the engine at the maximum 

efficiency point if power demands are moderate; under high power demands, the engine operates at 

maximum power.  A separate controller supervises braking and regeneration. 

The load following controller was used in this dissertation.  The braking controller was modified to 

sustain mechanical accessory loads during braking and stops. 

Differential, motor, and generator models were developed by Bell (2011). 

 

 

6.3. Summary of Model Assumptions and Parameters 

The vehicle properties listed in Table 3-1 (page 75) were modified to match those of the base 

vehicle described in Section 6.1.  A summary of the modeling parameters of the diesel-electric series 

hybrid bus is presented in Table 6-2. The following is a list of the assumptions and a description of the 

various vehicle components: 

 Grade effects are neglected. 

 Vehicle linear dynamics are considered: inertia, rolling resistance and aerodynamic drag forces 

(Equation 2.11, page 14). 

 Motor: The traction motor model was built to match the parameters listed in Section 6.1.  Figure 

6-4 shows the efficiency maps (torque and power) and the maximum torque/power curves.  

Rotational inertia of motor and generator was estimated through scaling to be approximately 1 

kg∙m
2
. 

 Generator: Generator efficiency was assumed constant at 93%. The generator model was 

modified, from that described in Section 6.1, to receive continuously the engine’s peak power of 

260 hp (194 kW).  This allowed the vehicle to sustain a top speed of 65 mph (BAE Systems, 2010).   

 Battery:  The battery model used was for a NiMH battery, which is more representative of state of 

the art transit bus battery systems than the lead-acid battery described in Section 6.1.  As 

mentioned in the previous section, the NiMH battery model was based on the battery of transit 
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buses with the Allison Hybrid E
P
 System.  Peak charging power (regenerative braking) was 120 

kW (160 hp) and peak discharging power (power assist) was 170 kW (230 hp).   

 

 

(a) Torque 

 

(b) Power 

Figure 6-4  Traction Motor Efficiency Map (Bell, 2011) 

 Differential: A combined final-drive and single-speed transmission ratio of 4.9 and an efficiency 

of 98% were selected (Bell, 2011).  At maximum traction motor torque the selected ratio provides a 

maximum acceleration of 6.6 ft/s
2
 (4.5 mph/s or 2 m/s

2
), and at maximum traction motor speed the 

ratio provides a top vehicle speed of 72 mph (Bell, 2011).   

 Engine: The engine model was the ISB 260H model developed in Chapter 5, with 2D-Map for fuel 

rate and ANN for NOx emissions.  Rotational inertia of the engine was estimated through scaling to 

be approximately 0.8 kg∙m
2
.  Maximum efficiency was 43%. 

 Driver:  A modified version of PSAT’s normal driver was used.  The proportional and integral 

gains were 1,000 and 0.5, respectively.  To provide better response at low speeds, the gains were 

increased 10 fold at speeds below 5 mph. 

 Wheel:  The 6 wheels were B 305 / 70 R22.5 with a diameter of 39 in (0.99 m). Rolling resistance 

coefficient was 0.0086; Inertia was 11 kg∙m
2
 per wheel (see Section 3.1.2, page 77).  A correction 

factor for tire loading of 0.95 was applied to wheel diameter.  Maximum vehicle braking torque 

was 15,000 Nm (11,000 ft-lb). 

 Vehicle:  The parameters for vehicle model were those described in Section 6.1. 

 Controller: The vehicle controller was a modified version of PSAT’s load following controller. 

Electric only and engine stop options were disabled.  The proportional and integral gains for engine 

speed control were 4 and 1×10
4

, respectively.   
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The controller was modified to maintain the mechanical accessory loads during vehicle idle and 

braking; in the original controller, mechanical accessory loads and engine power were set to zero 

under those conditions.   

The controller was also modified to maintain battery state of charge and regulate motor power 

output at highway speeds.  The original controller allowed full battery depletion when, for a 

sustained period, vehicle output request was beyond the engine capabilities. 

 Mechanical and Electrical Accessory Loads:  O’Keefe and Vertin (2002), see Table 3-2 in page 

76, modeled a 40’ Orion VI transit bus with the following: engine = 275 hp, 8.5 L DDC S50, 44% 

peak efficiency; 5 speed transmission, and auxiliary loads of 17 kW with A/C off and 31 kW with 

A/C on.  Fuel economy over the CBD cycle was 3.2 mpg with A/C on and 4.0 mpg with A/C off.  

Auxiliary load break down is shown in Table 6-1. 

Evaluation of test data for engine power under idle and braking conditions showed a considerable 

cycle-to-cycle variation, ranging from 8 kW to 20 kW.  The lack of hybrid system performance 

records did not allow discerning if the battery was being charged during these periods nor if the full 

engine load was due to accessories.  The average and median of all the runs were both 13 kW. 

Table 6-1  Breakdown of Auxiliary (Accessory) Loads (O’Keefe and Vertin, 2002) 

Component 

Conventional Series Hybrid 

Mechanical  

Load (kW) 

Electrical 

Load (kW) 

Mechanical  

Load (kW) 

Air Compressor 1 - 0.75 

Alternator 1 - - 

Engine Fan 14 - 7.5 

HVAC load 14 - 14 

Hydraulic Pump 1 - 0.75 

Coolant Pump - 9 - 

In order to establish an adequate value for auxiliary loads, the author performed a sensitivity 

analysis where the effects of auxiliary loads on fuel economy and NOx emissions were evaluated.  

It was concluded that an appropriate value for the combined mechanical and accessory loads was 

12 kW (16 hp).  This value is ⅓ lower than the 18 kW (24 hp) reported by O’Keefe and Vertin 

(2002), but, provided the set of data available to this author, it was the most adequate one.  

 

 

6.4. Vehicle Level Validation 

The series-hybrid bus model was exercised over the Beeline, Manhattan, New York Bus, OCTA, 

UDDS, and WMATA cycles and the results were compared with the test results of Table 5-4 (page 

128).  The simulation results were compared with the average of each cycle.  Given the differences 
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between cycle target and actual vehicle speed during chassis-dynamometer testing, the average test 

speed trace of each cycle was used for simulation.  Battery SOC correction was considered in the 

simulations by running each cycle back to back and using the results from the last run where ΔSOC 

was below 1%.   

Table 6-2  Series Hybrid Bus Modeling Parameters 

Component Details 

Vehicle 

GVWR: 42,540 lb (19,295 kg) 

Curb weight: 33,440 lb (15,170 kg) 

Half seated load weight (½ SLW): 36,440 lb (16,530 kg) 

Test weight
h
: 38,540 lb (17,480 kg) 

Length, Width, Height: 40.8 ft, 102 in, 133 in (approximately) 

Ground clearance: 14 in 

Drag coefficient: 0.79 

Frontal area: 80 ft
2
 (7.43 m

2
) 

Capacity: 39 seated + 20 standing 

Wheel 

Rolling resistance coefficients: cr = cr,0 + cr,1∙V 

cr,0 = 0.0086, cr,1 = 0 s/m 

Tires: 6 × B 305/70R22.5 

Effective radius: 19.5 in (0.495 m) 

Inertia: 11 kg∙m
2
 per wheel 

Weight: 77.5 kg per wheel 

Differential /  

Transmission 

Ratio: 4.9 

Efficiency: 98% 

Engine 

Model: Cummins ISB 260H 

Power: 260 hp (194 kW) @ 2,300 rpm 

Torque: 600 ft-lb (815 Nm) @ 1,800 rpm 

Cylinders: 6 

Idle speed: 800 rpm 

Governed speed: 2,500 rpm 

Turbocharged and charge air cooled 

Cooled EGR, variable-geometry-turbocharger, high pressure common rail fuel system, and DPF 

Loads 
Mechanical: 8 hp (6 kW) 

Electrical: 8 hp (6 kW) 

Motor 

Power: 320 hp (238 kW) 

Peak Efficiency: 96% 

Torque: 2700 ft-lb. (3660 N-m) @ zero speed 

Speed: 0 – 3200 rpm 

Generator 
Power: 260 hp (194 kW) 

Efficiency: 93% 

                                                 
h
 The test weight of 38,540 lb was used during chassis-dynamometer testing of the base vehicle and was used here to adjust 

the model.  It corresponds to half of the total passenger load and not the half seated load weight (½ SLW) recommended by 

SAE J2711 (SAE International, 2002).  In the following chapters the ½ SLW of 36,440 lb will be used as vehicle test 

weight. 
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Component Details 

Battery 

Type: NiMH 

Nominal voltage: 600 

Peak charging power: 160 hp (120 kW) 

Peak discharging power: 230 hp (170 kW) 

Cells in sub-pack: 40 

Sub-packs in series (form a string): 2 

Strings in parallel: 3 

Variable speed cooling fan for thermal control 

Nominal cell voltage: 7.5 

As mentioned earlier, the different control strategies did not allow comparison of instantaneous 

fuel and NOx rates because engine operation was very different in the simulations when compared with 

the tests.  Therefore, only cycle integrated values were compared, as shown in Figure 6-5.  Figure 6-5 

compares simulation and test results for fuel economy, NOx, and CO2. The fuel economy results were 

within the 95%-confidence error bars except for the Beeline and New York Bus cycles, which had 

lower and higher values, -7% and +11%  respectively.  NOx errors were all within 5% of the test 

values.  CO2 emissions were in line with the fuel economy results where only the Beeline and New 

York Bus cycles were outside the 95% confidence limits. 

Ultimately, engine fuel rate was modeled using the 2D-Map and not the ANN model.  Simulations 

using the fuel ANN resulted in lower fuel consumption and higher efficiency than expected, such that 

fuel economy values were consistently higher and the cycle errors were not improved.  It was then 

decided to use the simpler 2D-Map model for fuel over the more complex ANN model.  On the other 

hand, and as expected due to the transient nature of NOx, the NOx 2D-Map performed poorly versus 

the ANN model with an average cycle error of 13% while the ANN average cycle error was 3%.  The 

ANN model was used for NOx emissions. 

Average engine efficiency ranged from 37% to 40% in the simulations; values that were in line 

with the tests.  Engine cycle work values also showed good correlation. 

A comparison between the OCTA cycle simulation results and selected chassis-dynamometer test 

of 40 ft hybrid buses is shown in Table 6-3 and Figure 6-6.  Input F corresponds to the base vehicle 

that served to develop the model.  Inputs A, B, and C correspond to tests of three buses of the same 

model year and technology (CAFEE, 2007).  Inputs D and E are from tests of New Flyer/ Allison 

hybrids tested by WVU (CAFEE, 2011).  Inputs G, F, and I are simulation results: G is a simulation 

representing the base vehicle, H is a simulation with half seated load weight (Table 6-2), and I is a 

simulation including the correction for model year of Section 5.7.   
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(a) Fuel Economy 

 

(b) NOx Emissions 

 

(c) CO2 Emissions 

Figure 6-5  Vehicle Level Validation Results 

Figure 6-6 (a) shows distance-weight specific diesel fuel consumption and it is observed that the 

model (G and H) compare very well with the base vehicle (F) while the New Flyer /Allison buses 

(parallel architecture) exhibit higher fuel consumption.   

Figure 6-6 (b) shows the distance-weight specific NOx emissions, where it is observed that the 

model compares well with the base vehicle.  In contrast with the fuel consumption figure, it is 

observed that in general the parallel architecture exhibits slightly lower NOx emissions than the series 

architecture.  The predicted value for the series bus with an engine of model year 2007 to 2009 is 

shown at the far right of the figure (input I). 
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Table 6-3  OCTA Cycle Emissions from Selected 40 ft Hybrid Transit Buses 

Legend Data Source Make / Model Engine 

Test  

Weight  

(lb) 

F.E. 

(mpg) 

Fuel 

(g/mi) 

NOx 

(g/mi) 

CO2 

(g/mi) 

A 

CAFEE, 2007 

2005 New Flyer/Allison Cummins ISL 280 35,860 5.30 581 8.0 1,821 

B 2005 New Flyer/Allison Cummins ISL 280 36,160 5.12 602 8.8 1,886 

C 2005 New Flyer/Allison Cummins ISL 280 36,280 4.90 629 8.8 1,972 

D 
CAFEE, 2011 

2005 New Flyer/Allison Cummins ISL 280 34,110 4.91 661 9.7 2,102 

E 2008 New Flyer/Allison Cummins ISL 280 36,810 4.46 729 8.9 2,318 

F 

Transit 

Resource 

Center, 2007 

2006 Orion VII/BAE Cummins ISB-260H 38,540 5.22 591 9.8 1,849 

G This model 2004-2006 Series-Hybrid Cummins ISB 260H 38,540 5.32 590 9.4 1,866 

H This model* 2004-2006 Series-Hybrid Cummins ISB 260H 36,440 5.56 565 9.3 1,787 

I This model 2007 Series-Hybrid Cummins ISB 260H 38,540 5.32 590 8.0 1,866 

 * Simulation at ½ SLW (Table 6-2) 

 

 
(a) Distance-Weight Specific Fuel Consumption 

 
(b) Distance-Weight Specific NOx Emissions 

Figure 6-6  Comparison of Simulation Fuel Consumption with Chassis Tests 

 

Wayne et al. (2009) and U.S. FTA (2007) predicted OCTA cycle emissions and fuel economy for 

MY 2007 hybrids.  They predicted fuel economy between 4.9 and 6.5 mpg, 4.5 g/mi of NOx, and 1,600 

to 2,000 g/mi of CO2.  While those fuel economy and CO2 values are in good agreement with the 

results from the model, their NOx prediction was lower than the 8.0 g/mi estimated here. 
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6.5. Other Considerations 

6.5.1. State of Charge Corrections 

The improved control strategy was able to maintain battery SOC around the 60% SOC target.  

However, in order to avoid the necessity of SOC corrections, in compliance with SAE J2711 (SAE 

International, 2002), the ratio of net change in battery energy to total cycle energy must be less than 

1%.  A group of simulations was run to explore whether this condition was satisfied and it was found 

that, indeed, it was. 

The simulation software had the option of performing continuous repeats of the test cycle to allow 

the vehicle to settle into a stable SOC value.  Data from the last cycle is then used for analysis.  When 

no repetitions were done, the percentage was between 0.5% and 0.8%, and with one repetition the 

percentage dropped to less than 0.1%.  The net effect of the repetition on fuel consumption and NOx 

emissions was around 1%.  On the other hand, for short cycles one repetition was performed in order to 

produce consistent results; this was not necessary for cycles longer than one hour. 

 

6.5.2. Driving History or Micro-Trip Order  

Marlowe (2009) used micro-trip concatenation to expand the amount of data for the emissions 

regression models.  In Marlowe’s work, it was not certain if this approach was appropriate such that 

the cycles thus created represented emissions and fuel economy when the hybrid vehicle were tested 

on that time-speed trace.   

This author explored the possible impact of driving history in cycle emissions and fuel economy 

using the OCTA cycle.  The order of the micro-trips on the original cycle was inverted, i.e. the last trip 

went first and the first trip went last, and simulation results of both original and inverted cycles were 

compared.  One repetition of the cycle was performed to assure zero SOC. 

It was found that there was no change in fuel consumption (< 0.1%) and that the change in NOx 

emissions was less than 1%.  It was so concluded that, as long as zero SOC is satisfied and the length 

of the new cycle is reasonably long (at least 30 minutes), micro-trips from test or simulation can be 

used, as suggested by Marolowe (2009), with confidence to reproduce emissions of new cycles with 

different overall properties than the original test sequences. 
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6.6. Summary 

Results from the development of a dynamic model and hybrid controller for the hybrid bus were 

presented in this chapter.  Model assumptions and a description of the various elements of the model 

were also presented.   

From Chapter 5, error in the engine model on fuel consumption and NOx emissions was estimated 

to be 1% and 6%, respectively; analysis of the vehicle level validation results (all the components of 

the vehicle model working together) show that the overall model uncertainties are 7% for fuel 

consumption and 5% for NOx emissions.  

In conclusion, predictions from the vehicle dynamic model are very good.  The model can be used 

with confidence as substitute for chassis-dynamometer tests of a 2007-2009 40 ft Diesel-Electric Series 

Hybrid transit bus.  The effect of varying driving conditions on fuel economy and emissions is 

explored next.   
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Chapter 7. INFLUENCE OF TRANSIT BUS DUTY CYCLE ON FUEL 

ECONOMY AND EMISSIONS 

One of the objectives of this dissertation was the development of a regression-based emissions 

model to allow transit agencies to place hybrid buses on routes that take the most advantage of the 

hybrid-electric capabilities.  Ignoring elevation changes, this chapter used the routes of Chapter 4 and 

the dynamic model of Chapter 6 to explore the effects of duty cycles on fuel economy and emissions 

(NOx and CO2) of MY 2007-2009 40-ft diesel-electric series hybrid buses. 

In order to produce more accurate predictions than previous studies (Marlowe, 2009), the 

contributions of idle segments and driving segments were studied independently.  Idle fuel 

consumption (F.C.) and emissions were found to be nearly independent of cycle properties.  Driving 

F.C. and emissions, on the other hand, were correlated with cycle properties and were expressed as a 

polynomial function of average speed without idle (Ūno idle) and characteristic acceleration (ãno grade).  

Considering the idle fraction, idle emissions and F.C. were then coupled with the driving contributions 

to obtain the overall cycle values. 

This approach was also applied to develop a prediction model for a conventional bus.  The benefit 

of the hybrid bus was presented in terms of volumetric fuel savings rate (gallons per hour) and hybrid 

advantage (H.A.).  H.A. is the percent reduction in distance specific fuel consumption compared to a 

conventional vehicle serving the same route (O’Keefe et al., 2007). 

The chapter concludes with a brief presentation of two tools developed for IBIS.  The first tool 

makes the post processing of GPS logs of transit routes. The second tool is an implementation of the 

developed fuel economy, NOx and CO2 emissions, and fuel savings predictive methods. 

 

7.1. Transit Routes – Simulations and Results 

In order to characterize fuel economy and emissions of the hybrid transit bus under a wide range of 

operation or duty cycles, the vehicle dynamic model was simulated with a vehicle activity database 

consisting of 95 routes.  The database includes the in-use routes summarized in Table 4-6, a selection 

of the standard cycles of Table 2-6, bus route logs collected by WVU at METRO Transit (Texas), CT 

Transit (Connecticut), Lynx (Florida), and the WVU Coliseum.  The set of cycles selected from Table 

2-6 was considered by the author to be representative of real transit bus operation; in contrast to other 
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cycles like the CBD of Figure 2-3 which do not.  A commuter route (WMATA Commuter) 

representing WMATA’s high speed operation (Sandoval and Wayne, 2010) was simulated as well. 

Table 7-1 presents a partial summary of the results: the first column is cycle name, the second set 

of columns contains cycle metrics, and the last set of columns presents cycle fuel economy, CO2 and 

NOx emissions, and fuel consumption.  Fuel consumption and NOx emissions were decomposed into 

the driving and idle contributions; idle contributions are presented in a time basis. Cycle average 

engine efficiency ranged from 36% to 41%.  The hybrid powertrain regenerative braking capture-

redeployment efficiency (ηregen) ranged from 45% to 70% with an average of 60%. 

The vehicle was simulated with its half seated load weight (½SLW, Table 6-2) of 36,440 lb.  The 

effect of grade was not included in the analysis as it is unlikely that transit agencies would have grade 

metrics (Table 4-5) for their routes. 

Table 7-1  Fuel Consumption and Emissions Simulation Results for the Hybrid Bus Under Varying Driving 

Conditions 

Line/Cycle Namei 
Dist. 

(mi) 

Ū 

(mph) 

Ūno idle 

(mph) 

Idle 

(%) 

ãno grade 

(ft/s2) 

F.E. 

(mpg) 

CO2 

(g/mi) 

NOx 

(g/mi) 

Fuel 

(g/mi) 

Fuel 

Driving 

(g/mi) 

NOx 

Driving 

(g/mi) 

Fuel 

Idle 

(g/s) 

NOx 

Idle 

(g/s) 

WMATA Logs 

Anacostia 60.9 7.4 14.6 49.7 1.13 3.81 2,604 12.07 824 625 8.35 0.82 0.015 

Annapolis Rd 41.1 13.5 20.4 34.1 0.95 4.96 2,001 8.30 633 559 6.89 0.81 0.015 

Benning Rd-H 43.6 6.3 13.7 54.0 0.81 4.11 2,417 12.70 765 516 7.99 0.81 0.015 

Benning Rd-H 62.9 7.0 13.7 48.7 0.60 4.65 2,134 11.08 675 473 7.28 0.81 0.015 

Benning-Potom. 22.5 6.6 16.6 60.0 0.77 4.03 2,465 11.94 780 514 6.98 0.82 0.015 

Bowie State 59.5 21.0 31.7 33.8 0.38 6.56 1,515 5.94 479 432 5.06 0.82 0.015 

Bowie State 116.5 25.5 35.8 28.7 0.45 5.89 1,685 5.83 533 500 5.21 0.82 0.015 

Bowie-Belair 29.3 12.8 26.3 51.3 0.74 5.11 1,943 8.01 615 496 5.82 0.82 0.015 

Bowie-Belair 149.0 15.7 26.5 40.8 0.71 5.57 1,783 7.12 564 487 5.69 0.82 0.015 

Capitol Hts 20.0 8.6 18.0 52.4 0.70 4.68 2,120 10.11 671 490 6.76 0.82 0.015 

College Park 32.0 11.2 18.7 40.4 0.78 5.26 1,888 8.62 597 492 6.63 0.81 0.015 

College Park 89.5 12.8 20.0 36.2 0.70 5.59 1,777 7.91 562 479 6.34 0.82 0.015 

College Park 97.7 17.1 24.4 29.7 0.70 5.53 1,795 6.90 568 517 5.94 0.82 0.015 

College Park 118.7 11.6 19.8 41.3 0.85 4.90 2,028 8.71 642 537 6.76 0.82 0.015 

Crofton … 59.2 25.4 37.3 31.9 0.43 6.05 1,641 5.51 519 482 4.82 0.82 0.015 

Eastover-Addis. 74.2 16.1 23.4 31.3 0.73 5.35 1,856 7.32 587 530 6.24 0.81 0.015 

Eastover-Addis. 105.8 12.8 21.5 40.5 0.96 4.73 2,101 8.52 665 572 6.78 0.82 0.015 

Georgia Ave 34.3 9.2 17.2 46.4 0.63 5.35 1,855 9.40 587 438 6.63 0.82 0.015 

Georgia Ave 64.0 9.1 15.8 42.6 0.69 5.27 1,883 9.57 596 458 6.99 0.82 0.015 

Georgia Ave 64.4 9.3 16.6 44.2 0.71 5.18 1,915 9.57 606 466 6.95 0.82 0.015 

Greenbelt-BWI 100.3 26.6 45.5 41.5 0.36 5.55 1,788 5.54 566 520 4.69 0.82 0.015 

Greenbelt-BWI 146.5 25.1 41.9 40.1 0.39 5.59 1,776 5.60 562 515 4.73 0.82 0.015 

Greenbelt-BWI 194.6 25.4 42.2 39.8 0.32 6.12 1,624 5.39 514 467 4.54 0.82 0.015 

                                                 
i
 See Table 2-6 (page 28) and Table 4-6 (page 103) as references for the cycles and routes 
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Line/Cycle Namei 
Dist. 

(mi) 

Ū 

(mph) 

Ūno idle 

(mph) 

Idle 

(%) 

ãno grade 

(ft/s2) 

F.E. 

(mpg) 

CO2 

(g/mi) 

NOx 

(g/mi) 

Fuel 

(g/mi) 

Fuel 

Driving 

(g/mi) 

NOx 

Driving 

(g/mi) 

Fuel 

Idle 

(g/s) 

NOx 

Idle 

(g/s) 

Hospital Center 28.9 8.3 13.8 40.1 0.86 4.67 2,127 10.53 673 531 7.87 0.81 0.015 

Marlow Heights 73.7 15.8 24.4 35.2 0.55 5.57 1,783 7.02 564 498 5.79 0.82 0.015 

Marlow Heights 86.5 15.0 23.2 35.2 0.65 5.43 1,829 7.48 579 509 6.19 0.82 0.015 

Marlow Heights 97.8 16.1 23.4 31.4 0.55 6.00 1,654 6.96 524 466 5.89 0.82 0.015 

Martin Luther 65.1 12.5 20.0 37.6 0.85 5.27 1,884 8.12 596 507 6.46 0.82 0.015 

Martin Luther 115.8 12.7 20.3 37.5 0.76 5.65 1,757 7.89 556 469 6.26 0.82 0.015 

Minnesota Ave 42.2 10.7 18.3 41.7 0.80 5.06 1,961 8.96 620 505 6.81 0.82 0.015 

Minnesota Ave 44.5 8.7 15.0 42.0 0.74 4.84 2,053 9.98 649 508 7.32 0.82 0.015 

Minnesota Ave 77.1 8.0 17.1 53.0 0.93 4.31 2,304 10.79 729 536 7.17 0.81 0.015 

North Capitol 8.4 7.7 16.2 52.1 0.55 5.00 1,984 10.22 628 430 6.54 0.82 0.015 

North Capitol 92.7 7.6 14.5 47.5 0.77 4.59 2,164 10.86 685 504 7.43 0.81 0.015 

Prince Georges 16.1 10.2 22.6 54.7 0.87 4.56 2,179 9.23 689 531 6.31 0.82 0.015 

Prince Georges 96.7 12.1 20.0 39.6 0.87 4.84 2,053 8.61 650 553 6.79 0.82 0.015 

Prince Georges 97.9 10.6 18.2 41.6 0.71 5.38 1,845 8.75 584 468 6.59 0.82 0.015 

Rhode Island 70.6 13.6 23.2 41.3 0.88 4.59 2,163 8.42 685 580 6.54 0.95 0.017 

Rhode Island 88.8 9.4 18.7 50.0 0.88 4.76 2,085 9.62 660 502 6.68 0.82 0.015 

Other Logs and Cycles 

BEELINE 6.7 14.2 19.9 28.5 0.86 5.14 1,931 7.85 611 556 6.76 0.76 0.015 

Braunschweig 6.7 13.9 18.9 26.2 0.71 5.93 1,673 7.72 530 476 6.66 0.79 0.016 

Houston Bus 5.5 11.0 18.3 39.8 0.56 5.85 1,696 8.19 537 433 6.20 0.80 0.015 

Houston Logs 1 44.8 12.3 19.7 37.5 0.65 5.33 1,862 8.02 589 500 6.34 0.81 0.015 

Houston Logs 2 117.0 13.0 19.3 32.5 0.61 5.99 1,659 7.55 525 452 6.17 0.81 0.015 

Houston Logs 3 133.7 11.9 18.4 35.5 0.73 5.35 1,855 8.23 587 500 6.57 0.81 0.015 

KCM 12.7 23.3 28.6 18.4 0.52 6.41 1,548 6.30 490 467 5.86 0.81 0.016 

KCM 2 2.5 19.5 23.6 17.4 0.84 5.59 1,777 7.26 562 536 6.75 0.81 0.016 

KCM 3 3.3 16.2 21.0 22.6 0.81 5.48 1,811 7.85 573 533 7.07 0.81 0.016 

KCM 4 1.2 15.0 19.8 24.5 0.70 6.12 1,623 7.17 514 466 6.26 0.82 0.016 

Liberty 6.2 11.9 18.6 35.7 0.80 5.14 1,933 8.48 612 529 6.87 0.77 0.015 

Manhattan 2.1 6.8 11.0 37.8 0.91 4.19 2,368 11.79 749 591 8.69 0.79 0.016 

MCS 9.2 11.1 16.4 32.5 0.72 5.14 1,934 8.57 612 526 6.95 0.81 0.015 

MiamiD 2.6 6.6 14.2 53.9 1.13 3.68 2,695 12.42 853 611 7.91 0.82 0.015 

MX1 2.0 7.1 9.5 25.4 0.64 4.60 2,159 11.12 683 578 9.11 0.81 0.016 

MX2 3.5 12.7 18.0 29.1 0.54 6.04 1,643 7.65 520 452 6.39 0.82 0.015 

MX3 3.7 13.4 23.4 42.9 0.93 4.75 2,092 8.11 662 568 6.35 0.81 0.015 

New York Bus 0.6 3.7 10.9 66.3 1.18 2.50 3,964 19.19 1,254 722 9.20 0.81 0.015 

New York Comp. 2.5 8.7 13.2 34.5 0.70 4.82 2,059 10.32 651 533 8.10 0.82 0.016 

Nuremberg 2.7 8.8 12.9 31.2 0.79 4.92 2,017 10.16 638 536 8.19 0.80 0.016 

OCTA 6.5 12.3 16.3 24.5 0.71 5.81 1,709 7.96 541 488 6.86 0.74 0.015 

Paris 3.5 6.6 10.3 35.9 0.81 4.17 2,382 12.70 754 600 9.68 0.79 0.015 

UDDS 5.5 18.7 28.5 34.4 0.43 6.04 1,644 6.38 520 467 5.37 0.80 0.015 

WMATA 4.2 8.3 14.1 41.1 0.77 4.66 2,132 10.35 675 535 7.64 0.79 0.015 

WMATA 

Commuter 
10.1 26.0 41.0 36.5 0.37 5.96 1,665 5.57 527 485 4.81 0.82 0.015 
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The following figures provide a graphical representation of the results.  Figure 7-1, Figure 7-3, and 

Figure 7-4 present fuel economy, CO2 emissions, and NOx emissions, respectively, plotted against 

average speed.  The values from chassis-dynamometer tests of the series hybrid bus are also shown 

(Table 5-4).  Recall that the test entries were used to develop and correlate the vehicle dynamic model; 

test data served as an independent check against validity of the results from both simulation and 

regression analysis. 

Figure 7-2 compares fuel economy from the series hybrid (simulation and test) against chassis tests 

of a MY 2006 2-mode hybrid bus (CAFEE, 2007).  It is observed that the simulations are attune with 

tests of the 2-mode bus and a closer look reveals that, for the same cycles, the series bus out performs 

the 2-mode by up to 10%. 

 

Figure 7-1  Fuel Economy vs. Average Speed 

 

Figure 7-2  Fuel Economy from Test and Simulation 

 

Figure 7-3  CO2 Emissions vs. Average Speed 

 

Figure 7-4  NOx Emissions vs. Average Speed 
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Figure 7-5  Driving Fuel Consumption 

 

Figure 7-6  Driving NOx Emissions 

 

Figure 7-7  Idle Fuel Consumption Rate 

 

Figure 7-8  Idle NOx Emissions Rate 

 

Figure 7-9  Idle Fuel Fraction 

 

Figure 7-10  Idle NOx Fraction 
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The contributions of the driving segments to fuel consumption and NOx emissions are shown in 

Figure 7-5 and Figure 7-6, respectively.  The figures show Ūno idle in the abscissa, but, as will be shown 

below, ãno grade is also an explanatory factor.   

Figure 7-7 and Figure 7-8 present idle fuel and idle NOx rates, respectively.  It is observed that 

there is no correlation between these rates and average speed.  The fixedness of these rates is an artifact 

of the computer model with constant accessory loads, whilst the test data show a higher variation.  For 

comparison with simulation, test NOx emissions have been scaled to 85% to account for the 

certification limit correction (Section 5.7). 

Another interesting result, presented in Figure 7-9, is the fraction of fuel consumed during idle 

segments.  It can be as high as 50% in the New York Cycle and for most routes is between 20 and 

30%.  Similarly, the fraction of NOx produced during idle is presented in Figure 7-10.  As the fuel idle 

fraction, the NOx fraction can make up a significant amount of the total NOx emissions. 

 

 

7.2. Prediction Models for Fuel Consumption and Emissions  

A method was developed for the emissions predictive models in which emissions and fuel 

consumption were decomposed in their driving and idle components.  Idle and driving components 

were predicted and then aggregated to present the overall emissions, fuel consumption, and fuel 

economy.  The idea of decomposing the various components of fuel consumption was borrowed from 

Sovran and Blaser (2003), who represented fuel consumption as three contributions: driving, braking, 

and idle (Equation 2.16). 

 

7.2.1. Fundamentals 

Consider one of the duty cycles presented in Table 7-1.  By decomposition of the continuous data, 

the total amount of fuel consumed (mfuel) can be broken up into the driving and idle components, 

mDriving and mIdle (in grams).  An appropriate vehicle speed threshold can be selected to contrast idle 

from driving. 

Cycle fuel consumption (F.C.) is usually presented as mass or volume of fuel consumed per unit 

distance travelled, it can be calculated in a mass basis as: 

Equation 7.1  Cycle Fuel Consumption 

D

mm
CF

IdleDriving 
.. ; (a) 
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where cycle distance (D) is the integral of vehicle speed.  Equation 7.1 (a) can be manipulated to 

express it in terms of driving fuel consumption, F.C.Driving, and idle fuel consumption rate, Idlefm , in 

Figure 7-5 and Figure 7-7.  Defining the driving and idle components of cycle fuel consumption as 

F.C.Driving = mDriving / D and F.C.Idle = mIdle / D, Equation 7.1 (a) is written as: 

Equation 7.1 

IdleDriving CFCFCF ......  . (b) 

The idle component of fuel consumption can be rearranged in terms of percentage idle (Idle), 

average speed (Ū), and the rate of idle fuel consumption Idlefm  as follows: 

D

T

T

t

t

m
CF Idle

Idle

Idle
Idle .. .

 

The first term on the RHS is Idlefm , the second term is the idle fraction (Idle / 100) and the last one is 

the inverse of Ū.  Substituting we obtain: 

Equation 7.2  Idle Component of Fuel Consumption 

U

100/
..

Idle
mCF IdlefIdle   .

 

F.C.Idle has units of g/mi if Idlefm  is in g/hr and Ū in mph. 

Equivalent expressions can be developed for cycle NOx emissions (g/mi) by replacing mass of fuel 

consumed by mass of NOx emissions: 

Equation 7.3  Cycle NOx Emissions 

IdlexDrivingxx NONONO 
 

U

100/Idle
mNO IdleNOIdlex x

 
 

Fuel economy (mpg) is calculated from F.C. and fuel density.  CO2 emissions (g/mi) are calculated 

by carbon fuel balance (neglecting the HC and CO contributions).  We have:  

Equation 7.4  Fuel Economy and CO2 Emissions 

.... CFEF fuel
 

(a) 

1244..2  CarbonFuelCFCO  (b) 

Fuel density (in g/gal) and carbon content are taken from Table 5-3.  Estimation of CO2 emissions 

from F.C. takes out the need for a CO2 regression. 

Figure 7-11 depicts the flowchart of the emissions and fuel economy calculation.  First the three 

cycle metrics (Ū, Idle, and ãno grade) are entered and validated against the model’s range.  Then, Ūno idle 
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is calculated and the regressions for F.C.Driving and NOx Driving are applied.  Simultaneously, F.C.Idle and 

NOx Idle are calculated.  Subsequently, the driving and idle components are aggregated to compute F.C. 

and NOx.  Finally, F.E. and CO2 are calculated and the results displayed.  

 

Figure 7-11  Flowchart for Cycle Fuel Economy and Emissions Calculation 

 

7.2.2. Regressions 

Nonlinear least squares multiple regressions for driving fuel consumption and NOx were computed 

with JMP
®
 and MATLAB

®
.  In order to assure a low generalization error, a k-fold cross-validation 

study was performed to determine an adequate ratio for the training/validation datasets (Duda et al., 

2000).  k is the number of random partitions to the input data; e.g. k = 4 makes four partitions each 

containing 25% of the data.  One partition is used for validation and the remaining k−1 partitions are 

used for training.  The model is trained k times until all k partitions are used for validation.  

Cycle Fuel Economy and Emissions 

Calculation

User enters cycle metrics: 

Ū (mph), ãno grade (ft/s
2), 

Idle (%)

Average Speed w/o Idle:

ŪNI (mph) = Ū / (1-Idle/100)

Eqn. 2.19

Are inputs 

within model 

ranges?

Yes

AbortNo

Regression for Driving 

F.C. and Emissions:

F.C.Driving (g/mi) = ffuel (ŪNI, ãno grade )

NOx Driving (g/mi) = fNOx (ŪNI, ãno grade )

Idle F.C. and Emissions:

F.C.Idle (g/mi) = ṁfuel Idle  · (Idle / 100) / Ū

NOx Idle (g/mi) = ṁNOx Idle · (Idle / 100) / Ū

Composite F.C. and Emissions:

F.C. = F.C.Driving + F.C.Idle

NOx  = NOx Driving + NOx Idle

Fuel Economy:

F.E. (mpg) = ρFuel / F.C.

CO2 Emissions:

CO2  (g/mi) = F.C. · FuelCarbon ·44 / 12

Model Output:

F.E., CO2, and NOx
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Performance is evaluated under the validation sets and the mean of the k errors is reported.  The 

selected performance measure was the root mean squared error (RMSE), an estimate of the average 

residual.   

Figure 7-12 presents the results (for 100 repetitions) where 50% (k = 4) to 95%  (k = 20) of the data 

were used for training.  The fact that the error does not decrease indefinitely but is rather bounded in 

the lower limit tells us that there is not a substantial amount of over fitting.  This is due to the model 

having only 6 parameters to be adjusted.  It can also be concluded that the models possess good 

generalization capabilities.  The standard value of k = 10 (Duda et al., 2000) was used to develop the 

final models.  

The regression equations were a fourth order polynomial on ŪNI (mph) with a linear term on 

ãno_grade (ft/s
2
).  Table 7-2 and Table 7-3 present the JMP

®
 regression summaries for F.C.Driving and 

NOx_Driving including ANOVA and parameter estimates (see Section 2.6).   

Target versus predicted plots for F.C.Driving and NOx Driving are shown in Figure 7-13 and Figure 

7-14, respectively.  The coefficients of determination were 0.88 for fuel consumption and 0.97 for 

NOx.  The figures show predicted values under three datasets: training, validation, and chassis-

dynamometer tests.  In these parity plots (predicted versus target), the continuous line represents the 

ideal model where predicted = target: points above the line are over predicted and points below the 

line are under predicted.  The dashed curves represent the 95% confidence bounds on the mean 

response. 

Three-dimensional contour plots for fuel and NOx regressions are presented in Figure 7-15 and 

Figure 7-16, respectively, including the training points.  The distributions of idle fuel consumption 

(Figure 7-7) and idle NOx emissions (Figure 7-8) were evaluated, obtaining the means, standard errors, 

and confidence intervals on the means; parameters shown in Table 7-4.  From the table, Idlefm  = 2,926 

g/hr and IdleNOx
m  = 55.1 g/hr. 

As mentioned above, the test points serve as an additional validation check of the results as they 

were used in developing the vehicle dynamic model but had no other direct influence on the 

construction of the regression models.  As could be expected, predictions for the test points were not as 

good as for the simulation points.  It must be noted that the deviations were not excessively significant 

and were for the most part of the same order of magnitude than for the simulation points. 
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(a) Fuel Economy 

 

(b) NOx 

Figure 7-12  Cross-Validation RMSE for F.E. and NOx Predictions 

Table 7-2  Regression Summary for Driving Fuel Consumption (g/mi) 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 5 2.24E+05 4.47E+04 112 

Error 79 3.16E+04 399 Prob > F 

C. Total 84 2.55E+05   <.0001 

Parameter Estimates 

Term Estimate Std Error t Statistic P-value 

Intercept 211 23 9.0 <.0001 

ŪNI 2.79 0.89 3.1 0.0024 

(ŪNI-20.3)
2
 0.649 0.065 10.0 <.0001 

(ŪNI-20.3)
3
 -4.63E-02 8.67E-03 -5.3 <.0001 

(ŪNI-20.3)
4
 1.00E-03 3.23E-04 3.1 0.0026 

ãno grade 304 15 20.6 <.0001 

Table 7-3  Regression Summary for Driving NOx Emissions (g/mi) 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio 

Model 5 76.9 15.3768 602 

Error 79 2.0 0.0255 Prob > F 

C. Total 84 78.9   <.0001 

Parameter Estimates 

Term Estimate Std Error t Statistic P-value 

Intercept 6.86 0.19 36.8 <.0001 

ŪNI -0.0960 0.0071 -13.5 <.0001 

(ŪNI-20.72)
2
 8.85E-03 5.19E-04 17.0 <.0001 

(ŪNI-20.72)
3
 -4.39E-04 6.93E-05 -6.3 <.0001 

(ŪNI-20.72)
4
 6.86E-06 2.58E-06 2.7 0.0095 

ãno grade 2.01 0.12 17.0 <.0001 
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Figure 7-13  F.E.Driving Predicted versus Target Plot 

 

Figure 7-14  NOx Driving Predicted versus Target Plot 

 

Figure 7-15  F.E.Driving Three-Dimensional Contour Plot 

 

Figure 7-16  NOx Driving Three-Dimensional Contour Plot 

 

Table 7-4  Distribution Summary for Idle Fuel Consumption and Idle NOx Emissions (g/hr) 

Parameter Fuel NOx 

Mean 2,926 55.1 

Std Dev 73.8 0.84 

Std Error Mean 8.0 0.09 

t* (95%) 1.989 

N 85 

Lower 95% Mean 2,910 55.0 

Upper 95% Mean 2,942 55.3 
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7.2.3. Results 

The methods described above were implemented to predict fuel economy, CO2 and NOx.  Model 

inputs were Ū, Idle, and ãno grade (Figure 7-11).  The following figures show the predictions compared 

to the simulation values and serve to assess the goodness of the model.  Predictions are also compared 

with the chassis-dynamometer test data. 

Figure 7-17 shows predicted and simulation fuel economy as a function of average speed; it is 

observed that the predictions are reasonably close to the simulation values.  The relationship between 

simulation and predicted fuel economy is shown in Figure 7-18.  In this parity plot, as well in the 

following ones, the predictions are shown for the training set, the validation set, and the test data; the 

dashed curves represent the 95% confidence bounds on the mean response (Equation 2.45).  A high 

F.E. coefficient of determination (0.96) was obtained, as well as a slope (linear fit) close to unity 

(0.94).   

When compared to the test data, fuel economy predictions are high for low speed operation (lower 

left corner of the figure which corresponds to the New York Cycle), having as much as 15% error.  For 

all other duty cycles, the predictions agree with the test data.  Overall, it can be concluded that the F.E. 

prediction approach produces adequate predictions.  Other thing to note is the extent of the model 

regarding vehicle operation: ŪNI ranging from 8 mph to 50 mph, and ãno grade ranging from 0.3 ft/s
2
 and 

1.2 ft/s
2
. The model is able to cope with any amount of idle as long as ŪNI and ãno grade are within range 

(see Section 7.2.5 for more information). 

CO2 predictions are presented is Figure 7-19 and Figure 7-20.  The model shows a good match 

with the simulation values: R
2
 is 0.99 and the paired slope is 0.97.  Predicted NOx emissions are shown 

in Figure 7-21 and Figure 7-22.  The narrow spread of NOx for a given Ū suggests that fuel economy is 

more sensitive to cycle properties (idle and characteristic acceleration) than NOx.  The coefficient of 

determination was again high (0.998) and the slope close to unity (1.01). 

Figure 7-23 shows a comparison of the predicted fuel economy with the current IBIS model for a 

MY 2005 two-mode diesel-electric hybrid bus.  The inputs used in IBIS were average speed, 

percentage idle, standard deviation of speed, stops per mile, and kinetic intensity.  As the figure 

illustrates, IBIS predictions are located over a smooth surface with a narrow band.  IBIS predictions 

may be improved if the methodology proposed here were implemented into the various models.  This 

statement is validated in Section 7.4 below where a model is developed for a conventional diesel 

transit bus using the same dataset that was used to produce the equivalent IBIS model. 
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Figure 7-17  Predicted Fuel Economy 

 
Figure 7-18  Fuel Economy Predicted versus Simulation 

 
Figure 7-19  Predicted CO2 Emissions 

 
Figure 7-20  CO2 Emissions Predicted versus Simulation 

 
Figure 7-21  Predicted NOx Emissions 

 
Figure 7-22  NOx Emissions Predicted versus Simulation 
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Figure 7-23  Comparison of Predictions with IBIS Model 

 

 

7.2.4. Considerations for Limited User Inputs 

It was considered that in some cases the users of the model would not have knowledge of all three 

required inputs.  Average speed is a required input, but regressions can be developed to estimate Idle 

and ãno grade.  Figure 7-24 presents the regression curve for Idle as a function of Ū and Figure 7-25 

presents the regression curve for ãno grade as a function of ŪNI.  The correlations are not strong but they 

provide the best guess for the unknown parameters.   

Figure 7-26 presents a flowchart describing the process where the fit is used when the parameter is 

unknown.  Once the three inputs are obtained they are used as described in the emissions calculation 

flowchart of Figure 7-11. 

 

Figure 7-24  Approximation of Idle 

 

Figure 7-25  Approximation of ãno grade 
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Figure 7-26  Flowchart for Limited Inputs 

The three cases of limited inputs were studied: Ū and ãno grade are entered, Ū and Idle are entered, 

and Ū alone is entered.  Predicted F.E. and NOx emissions for the three cases are presented in Figure 

7-27  and Figure 7-29.  Figure 7-28 and Figure 7-30 show the effect of the model inputs in the root 

mean square error (RMSE or mean squared residual, Equation 2.48) and changes in the coefficient of 

determination (R
2
) from reducing model inputs. 

It is observed that fuel economy predictions are still fairly satisfactory if Ū and ãno grade are known 

(Figure 7-27 a and Figure 7-28).  On the other hand, if ãno grade is unknown, the knowledge of Idle does 

not provide significant predictive power over predictions with Ū alone.  In the (Ū, ãno grade) case F.E. 

RMSE increases by about 60% over the baseline case (all parameters known); in the other two cases 

the F.E. RMSE doubles with respect to the baseline.  Regarding the coefficient of determination 

(Figure 7-28 b), the results also show a marked sensitivity: it drops from 0.96 to 0.89 and then to 0.80 

and 0.77. 

Since the variability in NOx emissions is lower compared with that of fuel economy, NOx is not 

greatly affected by model inputs.  NOx predictions are not affected when Idle is unknown, (Ū, ãno grade) 

case.  This is corroborated by the RMSE and R
2
 values (Figure 7-30).  NOx predictions for the final 

two cases are still very close to the simulation values with R
2
 above 0.98.   
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(a) Ū and ãno grade 

 

(b) Ū and Idle 

 

(c) Ū 

 

Figure 7-27  Fuel Economy Predictions with Limited Inputs 
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Figure 7-28  Effect of Model Inputs on Fuel Economy RMSE and R
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(a) Ū and ãno grade 

 

(b) Ū and Idle 

 

(c) Ū 

 

Figure 7-29  NOx Predictions with Limited Inputs 
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Figure 7-30  Effect of Model Inputs on NOx RMSE and R
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Now consider the information needed from the user to determine the model inputs.  As studied in 

Chapter 4 (Figure 4-5), route average speed is readily determined from transit agency records and is a 

very good predictor of actual speed since run-to-run variations are not very significant.  Even if a 

single run of a particular route has an average speed considerably different from the rest of the runs, 

when all the runs of the route are considered together, the effect of the outlier run will be small in the 

route’s average speed. 

On the other hand, determination of both percentage idle (Section 2.2.1) and characteristic 

acceleration (Equation 2.23) requires knowledge of the time-speed record (and grade if applicable).  

Even with today’s state of the art transit information systems which constantly report GPS location, it 

is unlikely that continuous time-speed records are available and/or reliable.  Therefore, vehicle 

instrumentation with GPS and/or ECU monitors, such as the system described in Section 4.1, is needed 

to adequately compute Idle and ãno grade.  A drawback of this approach is that post processing (data 

cleansing) of the acquired velocities can be quite intensive and time consuming. 

Having into account that the main concern for a transit agency when using the prediction model is 

an accurate estimation of fuel economy, and as revealed by comparison of Figure 7-17 and Figure 7-27 

c, it is highly desirable to use the full regression model rather than the model with Ū alone. 

 

7.2.5. Limits to the Input Parameters 

If Idle is unknown, the limits of Ū are 2.5 to 30 mph.  This is because the estimation of Idle (Figure 

7-24) had data within this range and estimation beyond such limits is not sensible.  For a given average 

speed input, percentage idle is limited by the regressions in ŪNI (Figure 7-15 and Figure 7-16) with a 

range from 8 to 50 mph.  Recalling that the three parameters are linked by Equation 2.19: ŪNI = Ū / (1 

– Idle/100), the limits of Idle can be expressed as follows: 

Equation 7.5  Limits on Percentage Idle 

  min,min 1100,0max NIUUIdle 
 

(a) 

 max,max 1100 NIUUIdle   (b) 

Where Ū > 0 and Ū ≤ ŪNI, max.  In the present models: ŪNI,_min = 8 mph and ŪNI,_max = 50 mph.  Figure 

7-31 provides a graphical representation of the relationships in Equation 7.5. 
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Figure 7-31  Graphical Representation of the Limits on Percentage Idle 

Similarly, ãno grade is limited by the regressions with a range of ãno grade, min = 0.2 ft/s
2
 to ãno grade, max 

= 1.2 ft/s
2
.  There is a natural trend depicted in Figure 7-25 where high speed service exhibits lower ã 

than low speed service.  For example for ŪNI around 45 mph there were no observations of ãno grade in 

the higher end (~ 1.2 ft/s
2
), nor were observations with ŪNI of 10 mph and ãno grade of 0.2 ft/s

2
.  With 

this in mind, one could further impose a band in characteristic acceleration as a function of ŪNI.  Such 

band was not be considered here.   

Since characteristic acceleration is independent of idle fraction, it is best to let the model use the 

estimate of Figure 7-25 whenever ãno_grade is unknown.  The drawback, as shown below, is that 

uncertainties are doubled and conclusions regarding best average speed for optimized fuel savings 

cannot be drawn. 
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each with absolute uncertainty ∆x1, ∆x2, …, ∆xn, where R is expressed mathematically as R = R(x1, x2, 

…, xn).  The absolute uncertainty on R is determined by: 

Equation 7.6  Propagation of Uncertainty 
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Applying Equation 7.6 to cycle fuel consumption (Equation 7.1 b and Equation 7.2) and cycle NOx 

emissions (Equation 7.3) we obtain: 

Equation 7.7  Uncertainty in Cycle Fuel Consumption and Cycle NOx Emissions 
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The equations above neglect uncertainties in Ū, Idle, ρfuel and FuelCarbon. 

Lets first resolve the uncertainties in mean idle fuel consumption ( Idlefm ) and mean idle NOx 

emissions ( IdleNOx
m ).  These uncertainties are the margins of error on the means and are readily 

determined from the standard statistical analysis presented in Table 7-4; they are Idlefm  = 15.9 g/hr 

and IdleNOx
m  = 0.18 g/h. 

Equation 2.45 illustrates the confidence interval for the mean response of a linear regression; this 

uncertainty is not constant as it is a function of the independent variable.  Nearly 1/3
rd

 of the 

observations are bounded by this 95% confidence error band on the mean response.   The exact 

uncertainties on the polynomial regressions for F.C. Driving and NOx Driving, on the other hand, are 

involved functions of ŪNI and ãno grade and are not practical to explore for the purposes of this 

dissertation.   

A simplified approach was used in which a constant percentage error on F.C._Driving and NOx_Driving 

was determined such that a prescribed percentage (33%) of the F.E. and NOx residuals were bounded 
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by the estimated uncertainties.  That is, a constant absolute error in the F.C. Driving and NOx Driving 

predictions that yields 33% of the observations within the estimated confidence intervals F.E. ± ∆F.E. 

and NOx ± ∆NOx.  These uncertainties are equivalent to a 95% confidence interval in the mean 

response. 

The constant absolute errors were determined and are presented in Table 7-5.  The uncertainty bars 

for fuel economy are depicted in the target-by-predicted plots of Figure 7-32.  Uncertainties under each 

group of inputs were calculated using the equations above and the absolute error on the predicted 

values of driving fuel consumption (∆F.C._Driving) from Table 7-5.  The uncertainty was dominated by 

the driving contributions while the effect of idle rate uncertainties was marginal. 

Table 7-5  Constant Absolute Uncertainties for Predictions of F.C._Driving and NOx_Driving (g/mi) 

Case Fuel NOx 

(Ū, Idle, ãno grade) 11.0 0.060 

(Ū, ãno grade) 14.0 0.059 

(Ū, Idle) 18.7 0.118 

(Ū) 22.9 0.137 
 

 

(a) Ū, Idle, and ãno grade 

 

(b) Ū and ãno grade 

 

(c) Ū and Idle 

 

(d) Ū 

Figure 7-32  Uncertainty Bars for Cycle Fuel Economy Under the Various Input Groups 
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7.4. Predictions for Conventional Diesel Vehicle 

A prediction model for a conventional diesel counterpart to the hybrid bus was required because 

the fuel economy results were to be presented as reductions in fuel consumption.  The author 

considered several options to produce data for the conventional vehicle model: (i) to collect chassis-

dynamometer data for a MY 2007-2009 bus, (ii) to develop and validate a computational model for a 

MY 2007-2009 bus and use it as was used the hybrid bus model to procure the data, and (iii) to obtain 

chassis-dynamometer data for a MY 2003-2006 bus and to scale NOx emissions to account for the 

engine certification level, neglecting variations in fuel consumption. 

While it was acknowledged that the first two options would produce more accurate results, the 

third option was the one that adjusted to the time constraints of the project.  Chassis-dynamometer test 

data were available for a MY 2006 40 ft New Flyer bus (CAFEE, 2007) under a total of 16 duty cycles.  

These emissions data were time aligned and processed to extract the cycle metrics and the driving and 

idle contributions to fuel consumption and NOx emissions shown in Table 7-6.  NOx emissions were 

corrected for certification level by considering a 15% reduction.   

The 20 data points available for development of the regressions were a small amount to produce 

adequate results.  Tu (2011) applied the tool developed by Marlowe (2009), which breaks the datasets 

intro micro-trips and concatenates them randomly to produce new cycles, to the dataset of Table 7-6 in 

order to expand the number of data points by virtual cycles and populate the search domain.  IBIS’ 

prediction model for MY 2003-2006 conventional diesel buses is based on the virtual cycle dataset. 

Those virtual cycles were used in conjunction with the data of Table 7-6 to generate the regression 

model for the conventional vehicle applying the methods described above: regressions for F.C._Driving 

and NOx_Driving, and the average idle contributions Idlefm  and IdleNOx
m .  The constant absolute errors for 

F.C._Driving and NOx_Driving were of the same order of magnitude as the ones from the hybrid model. 

A k-fold cross validation study was also performed and the results were similar to those of the 

hybrid’s model.  The regressions were developed reserving 10% of the data for validation.  Figure 7-33 

presents the predicted fuel economy and a comparison with IBIS predictions.  Although there is a 

higher variation than for the hybrid model, the results are very satisfactory with coefficients of 

determination of 0.97 for fuel economy and 0.96 for NOx.  Performance for the test entries is 

remarkable.   

Additional scatter is presented in the parity plot of Figure 7-33 b for the IBIS predicted values 

versus a lower scatter for the proposed regression model.  This confirms that separation of idle and 

driving contributions may provide more accurate predictions that the current IBIS models which treat 

idle and driving as a bulk.  
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Table 7-6  Fuel Consumption and Emissions Chassis Test Results for Conventional Diesel Bus (CAFEE, 2007) 

Line/Cycle Name 
Dist. 

(mi) 

Ū 

(mph) 

Ūno idle 

(mph) 

Idle 

(%) 

ãno grade 

(ft/s2) 

F.E. 

(mpg) 

CO2 

(g/mi) 

NOx 

(g/mi) 

Fuel 

(g/mi) 

Fuel 

Driving 

(g/mi) 

NOx 

Driving 

(g/mi) 

Fuel 

Idle 

(g/s) 

NOx 

Idle 

(g/s) 

Arterial 2.0 24.8 28.8 13.8 0.68 5.01 1,978 5.59 627 606 5.45 1.06 0.007 

Arterial 2.0 24.5 28.5 13.8 0.67 5.02 1,973 5.79 626 602 5.63 1.16 0.008 

BEELINE 6.7 13.9 19.4 28.3 0.85 3.85 2,570 7.07 815 722 6.65 1.27 0.006 

Braunschweig 6.6 13.6 17.8 23.7 0.72 4.27 2,318 7.33 735 659 6.88 1.22 0.007 

CBD 2.0 12.8 15.0 14.8 0.65 4.11 2,407 7.81 765 719 7.34 1.09 0.011 

CSHVC 6.5 13.9 18.3 24.4 0.55 5.20 1,904 5.38 604 526 5.11 1.23 0.004 

Commuter 3.9 43.1 48.3 10.7 0.22 5.72 1,732 4.49 549 538 4.43 1.28 0.007 

Commuter 4.0 43.5 48.2 9.8 0.22 5.95 1,665 4.23 528 520 4.19 1.06 0.006 

ETC Urban 2.3 14.0 16.1 13.0 0.46 5.52 1,791 6.13 569 526 5.89 1.28 0.007 

KCM 12.6 23.1 27.6 16.3 0.51 5.26 1,883 5.42 597 565 5.24 1.26 0.007 

Manhattan 2.1 6.8 10.5 35.5 0.86 2.79 3,547 10.31 1,128 894 9.25 1.24 0.006 

New York Bus 0.6 3.6 9.6 62.5 1.14 1.50 6,601 17.85 2,099 1,266 13.50 1.34 0.007 

New York Comp. 2.4 8.5 12.9 33.7 0.47 4.05 2,439 6.73 776 594 6.03 1.28 0.005 

OCTA 6.5 12.0 15.7 23.7 0.70 4.13 2,400 7.16 762 678 6.77 1.17 0.006 

OCTA 6.5 11.9 15.6 23.8 0.70 4.09 2,423 7.52 769 683 7.03 1.20 0.007 

Paris 3.5 6.5 9.9 34.1 0.76 2.94 3,367 9.33 1,070 838 8.43 1.23 0.005 

HHDDT-Trans 2.8 15.1 17.9 15.3 0.50 5.26 1,879 5.67 597 550 5.43 1.29 0.007 

UDDS 5.4 18.4 27.7 33.5 0.40 5.04 1,962 5.46 623 536 5.05 1.32 0.006 

WMATA 4.1 8.1 13.6 40.4 0.76 3.26 3,030 8.10 963 744 7.22 1.22 0.005 

WMATA 4.2 8.2 13.6 39.7 0.76 3.26 3,033 7.71 964 745 6.85 1.26 0.005 

 

 

(a) F.E. versus Ū 

 

(b) Predicted versus Target Plot 

Figure 7-33  Predicted Fuel Economy for Conventional Diesel Bus 
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7.5. Hybrid Advantage and Fuel Savings 

The benefit of the hybrid buses over their conventional counterparts can be expressed in terms of 

hybrid advantage (H.A.).  The term hybrid advantage was coined by O’Keefe et al. (2007) to designate 

the percentage reduction in fuel consumption (gallons per mile or grams per mile), which is swiftly 

converted to fuel savings with the total vehicle miles traveled (VMT).   

It is also possible to present the hybrid benefit as fuel savings per unit time (gallons per hour) and 

this option may be more relevant when comparing routes.  As routes with different speeds travel 

different distances, and, although the H.A. may be higher for low speed routes, the potential savings 

could be better for faster routes as their travel is higher and consume more fuel. 

 

7.5.1. Hybrid Advantage 

Hybrid advantage can be stated in terms of F.C. or F.E.: 

Equation 7.8  Hybrid Advantage 
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Since it is fuel economy what is reported by the model, Equation 7.8 b is preferred.  Applying the 

error propagation of Equation 7.6 to H.A., the uncertainty in hybrid advantage is: 

Equation 7.9  Uncertainty in Hybrid Advantage 
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Figure 7-34 contrasts the predictions of conventional and hybrid buses under the test cycle 

database.  Figure 7-34 a shows fuel economy versus average speed where a hybrid benefit is clearly 

noted.  Figure 7-34 b presents the fuel economy parity plot with the correlation expressed as a second 

order polynomial.  Carbon dioxide emissions are presented in Figure 7-34 c as a function of average 

speed and in Figure 7-34 d in a parity plot.  CO2 reductions are roughly between 10% and 30%.  

Finally, Figure 7-34 e shows the predictions for oxides of nitrogen.   
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(a) Fuel Economy versus Average Speed 

 

(b) F.E. Conventional versus Hybrid  

 

(c) CO2 Emissions versus Average Speed 

 

(d) CO2 Emissions Conventional versus Hybrid 

 

(e) NOx Emissions versus Average Speed 

 

Figure 7-34  Hybrid versus Conventional Contrasts 
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The NOx data do not reveal a net benefit from hybridization but that hybrid buses have higher NOx 

emissions when compared to their conventional counterparts.  On average hybrid NOx emissions 

predictions are 17% higher than for the conventional diesel.  This result agrees with chassis-

dynamometer emissions tests of transit buses collected by WVU’s TransLab (CAFEE, 2010, and 

CAFEE, 2011); data summarized in Table 5-7 and Table 5-8.  This fact can be explained by the lower 

loads experienced by the engine on the hybrid bus, as lower loads are associated with higher brake-

specific NOx (see the brake-specific NOx map of Figure 5-9).  Considering that starting in 2010 EPA’s 

NOx certification level dropped to 0.2 g/bhp∙hr, the observed effect in NOx emissions should raise no 

concerns. 

Hybrid advantage is presented in Figure 7-35.  Figure 7-35 a shows the change in H.A. with 

average speed; it can be observed how the low speed cycles exhibit the highest advantages.  Figure 

7-35 b presents H.A. versus kinetic intensity, ki.  For the routes used in this evaluation, H.A. ranged 

from 13% to 32% with a median of 26%.  The highest percentage gains are obtained for routes with 

low fuel economy (the slowest routes).  With respect to ki (Equation 2.28), and as suggested 

theoretically by O’Keefe et al. (2007), H.A. increases as ki increases.  It is also observed that H.A. does 

not increase indefinitely but rather reaches a plateau (30% to 35% in this application).  If the regression 

line of Figure 7-35 a were to be extrapolated to the limit Ū → 0 a maximum value of 34% would be 

reached. 

 

(a) Hybrid Advantage versus Average Speed 

 

(b) Hybrid Advantage versus Kinetic Intensity 

Figure 7-35  Hybrid Advantage 
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7.5.2. Fuel Savings 

The fact that the slowest routes exhibit the highest values of H.A. does not necessarily imply that 

these routes would yield the highest fuel savings.  If we take into account that H.A. is a reduction in 

distance specific fuel consumption we conclude that the distance traveled has to be considered to 

estimate fuel savings in a time basis, say per hour of operation.   

It is therefore valuable to present fuel consumption results and savings in terms of fuel usage per 

unit time.  The volumetric fuel consumption rate, 


..CF , and its uncertainty are expressed in terms of 

fuel economy and average speed: 

Equation 7.10  Volumetric Fuel Consumption Rate 
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(b) 

The fuel saving rate is the difference between the conventional and hybrid volumetric fuel 

consumption rates: 

Equation 7.11  Volumetric Fuel Saving Rate 

HybConvSavings CFCFCF
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(b) 

Fuel consumption rates and fuel saving rates are presented in Figure 7-36.  Figure 7-36 a compares 

conventional and hybrid fuel consumption rates where it is observed that, for the same service time, 

high speed cycles consume three to four times more fuel than inner-city cycles.  Figure 7-36 b and c 

show fuel saving rates against average speed in the first figure and against kinetic intensity in the 

second.   

Contrasting Figure 7-35 a with Figure 7-36 b it is concluded that although hybrid advantage is 

highest at low speeds the highest saving rates are observed at middle to high speeds.  That is, even 

when at low speed the relative benefit of hybridization is highest it does not translate in the largest  

savings; this is because routes at higher speeds which have a smaller relative advantage (H.A.) 

consume more fuel and their absolute advantage is higher.  This only considers savings from fuel and 
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further conclusions require an assessment of the total bus operational costs, including maintenance and 

capital costs, among others. 

It is also noted that for a given speed there is substantial variability in the savings rate which cannot 

be explained by Ū alone.  This variability can be explained jointly by Ū and ãno grade as shown in the 

regression surface of Figure 7-36 d.  Being Ū constant, the highest fuel savings correspond to routes 

with the highest values of characteristic acceleration. 

 

 

(a) Hybrid and Conventional 

 

(b) Savings versus Average Speed 

 
(c) Savings versus Kinetic Intensity 

 

(d) Savings = f (Ū, ãno grade ) 

Figure 7-36  Fuel Consumption Rates and Fuel Saving Rates 

Now, considering the reductions in distance specific CO2 emissions, it is concluded from Equation 

7.8 a and Equation 7.4 b that the CO2 reduction is equal to the hybrid advantage.  Also, from Equation 

7.10 b, the CO2 saving rate is directly proportional to the volumetric fuel saving rate: 
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Equation 7.12  CO2 Savings Rate 

       gkgFuelgalghrgalCFhrkgCO CarbonfuelSavingsSavings 1000/112/44//../2 



 

1000/12/44..2 


CarbonfuelSavingsSavings FuelCFCO 
 

 

7.5.3. Uncertainty Figures 

The equations above defined the various results and their corresponding uncertainties.  Recall that 

these uncertainties represent the statistical 95% confidence on the mean response and are not meant to 

represent the error on individual observations.  Figure 7-37 presents the confidence intervals for 

selected results.  Figure 7-37 a illustrates the confidence intervals for hybrid and conventional fuel 

economy predictions; there uncertainties are nearly equivalent to a 2% error in F.E.  The uncertainties 

are adequate considering the wide range of operating conditions covered by the model.  For the hybrid 

model, individual fuel economy relative uncertainties have the following 5 number summary 

(minimum, 1
st
 quartile, medial, 3

rd
 quartile, maximum): -7.8%, -2.5%, -0.5%, 2.2%, 9.1%. 

Figure 7-37 b shows the confidence intervals in hybrid advantage; the uncertainties can be as high 

as 20% with an average uncertainty of 7%.  Even though uncertainties in fuel economy were of the 

order of 2%, error propagation works to increase the uncertainties and even more when the values are 

subtracted as in the case of H.A., fuel savings and CO2 savings.   

Figure 7-37 c presents the uncertainty in fuel savings.  The 5-number summary for the distribution 

of fuel savings relative uncertainty was: 3.6%, 6.2%, 7.3%, 9.0%, 19.1%.  The data show that in every 

case the null hypothesis (there are not fuel savings) can be rejected.   

Figure 7-37 d shows the predicted fuel savings (and their uncertainties) when the model input is 

average speed alone; fuel savings with the full model are also shown.  If one was to draw conclusions 

from the predicted values alone, it would look as if the highest savings were achieved at high speeds; 

but the uncertainty bars tell us that such conclusion is not accurate as the same levels of savings can be 

achieved at intermediate speeds as well.  This emphasizes the importance of including margins of error 

in the predictions.  It also signals that the three input parameters (Ū, Idle, ãno grade) are necessary in 

order to predict fuel savings accurately.   
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(a) Pred. Fuel Economy 

 

(b) Pred. Hybrid Advantage 

 

(c) Pred. Fuel Savings 

 

(d) Pred. Fuel Savings Input Ū 

Figure 7-37  Uncertainty Bars in Selected Results 

 

7.5.4. Transit Service Groups 

Four major categories of transit bus service were identified in Chapter 4, namely: Inner-City, 

Urban, Suburban, and Commuter.  The duty cycle metrics that characterize an average route in these 

categories were presented in Table 4-7.  Fuel economy and savings were predicted for the service type 

centroids and the results are shown in Figure 7-38.  Part a of the figure shows the conventional versus 

hybrid fuel economy parity plot while part b shows fuel savings.   

Prediction uncertainties are shown in the form of error bars.  Unfortunately, overlapping of the 

error bars does not allow pointing to a single service category as the one best suited for hybrid buses.  
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Contrary to the general belief that Inner-City service presents the highest room for fuel savings, Inner-

City service shows the lowest savings potential among the four categories. 

 

 

(a) Fuel Economy 

 

(b) Fuel Savings 

Figure 7-38  Fuel Economy and Savings for the Four Bus Service Categories 

 

What can be concluded is that not all routes in a particular service category, e.g. urban service, will 

get the same benefit from hybridization.  The prediction tools developed in this dissertation give transit 

agencies the ability of exploring where their hybrids can be best exploited.  The agencies will need to 

collect more information than average speed alone in order to obtain reliable results; for a given 

service category some routes showed savings as much as 60% higher than others. 

 

7.5.5. Effect of Automatic Engine Idle-Stop 

The proposed fuel economy and emissions predictive approach allows for a straightforward 

evaluation of the impacts of engine idle-stop strategies.  Suppose that the vehicle had the ability to 

shut-off the engine whenever it came to a stop; for practical purposes, this is equivalent to setting  

Idlefm  and IdleNOx
m  to zero in Equation 7.2 and Equation 7.3, respectively.   

Figure 7-39 shows the resulting F.E., H.A., fuel savings, and NOx emissions figures.  As expected, 

low speed routes are the ones that benefit the most because they have the highest idle fractions.  On the 

other hand, the benefit for commuter routes is marginal (Figure 7-39 b and Figure 7-37 b).  Fuel 

savings are increased from between 0.5 and 1.0 gal/hr (Figure 7-37 c) to between nearly 1.0 and 1.4 

gal/hr, i.e. an average 50% gain and as much as 140% over the baseline savings.   

0

2

4

6

8

0 2 4 6 8

F
u

e
l E

c
o

n
o

m
y
 H

y
b

ri
d

 (
m

p
g

)

Fuel Economy Conventional (mpg)

Fuel Economy

Service Types

One-to-One

Gain

Inner-City

Urban

Suburban

Commuter

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35

F
u

e
l S

a
v
in

g
s
 (
g

a
l/
h

r)

Ū (mph)

Fuel Savings

Service Types

Inner-City

Urban Suburban
Commuter



Chapter 7 – Influence of Transit Bus Duty Cycle on Fuel Economy and Emissions 

 

191 

 

(a) Fuel Economy Hybrid Bus 

 

(b) Hybrid Advantage 

 

(c) Fuel Savings 

 

(d) Fuel Savings for Bus Service Categories 

 

(e) NOx Parity Plot 

 

Figure 7-39  Effect of Engine Idle-Stop 
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Fuel savings of the four service categories are more similar with engine idle-stop (1.1 to 1.2 gal/hr, 

Figure 7-39 d) than in the baseline scenario (Figure 7-38 b), as the error bars of the four categories 

overlap each other.  Under this scenario there is a net reduction in NOx emissions (Figure 7-39 e).   

These calculations neglect the presence of auxiliary loads such as lighting and hydraulic and 

pneumatic systems, which need to be sustained.  As such, they represent a best case scenario for the 

impact of engine idle-stop on fuel consumption and NOx emissions. 

 

 

7.6. IBIS Tools 

Two tools were developed for IBIS.  First, the GPS Data Cleaning Tool receives time-speed GPS 

logs of vehicle operation and performs data cleaning and filtering.  A sample output from the GPS 

Data Cleaning Tool is presented in Figure 7-40 where noise in the GPS signal has been removed as 

well as the zero speed noise.   

Second, the Hybrid Savings Calculator Tool is an implementation of the predictive models 

described in this chapter and allows transit agencies to evaluate their routes for hybridization fuel 

savings.  

 

Figure 7-40  Sample Output from GPS Data Cleaning Tool 
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correspond to the limited input cases are taken into account automatically.  The user may enter as 

many cycles as desired. 

A warning is issued when the inputs do not satisfy the requirements indicated in Section 7.2.5. 

After the user has finished entering data, the software proceeds to calculate hybrid and conventional 

fuel economy, hybrid advantage, fuel savings, and CO2 savings.  Figure 7-42 shows a sample output.  

First, user inputs are plotted with the cycle database metrics to warn against inputs that are outside of 

the observed domain. Then, a summary is presented for each route and printed to screen (numeric 

results), and, finally, the results are given graphically plotted versus average speed. 

 

 

7.7. Summary 

This chapter analyzed the effect of duty cycle on performance of the hybrid bus with the purpose of 

predicting savings on fuel, CO2 emissions, and NOx emissions.  The emissions and fuel economy 

prediction method was presented along with its corresponding uncertainties.  The effect of limited 

inputs into the regression models was studied and the limits (ranges) of the acceptable input parameters 

were shown. 

Chassis-dynamometer test data and the virtual cycles developed by Tu (2011) were used to build 

the regression models for fuel economy, CO2, and NOx of the conventional diesel transit bus.  

Comibint the predictions for conventional and hybrid, the benefits of hybridization were presented in 

terms of volumetric fuel savings rate and hybrid advantage.  The potential effects of automatic engine 

idle-stop were evaluated. 

The chapter closed with a brief discussion of the two tools developed for IBIS: the GPS Data 

Cleaning Tool and the Hybrid Savings Calculator Tool. 
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Figure 7-41  Data Input Menus for the Hybrid Savings Calculator Tool 
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Figure 7-42  Outputs of the Hybrid Savings Calculator Tool 

 

Idle vs Ū ŪNI vs ã

Fuel Economy

Hybrid 

Advantage

Fuel Savings

CO2 Savings

Numeric 

Results

Graphic Results

Plot Inputs



196 

 

 

 

Chapter 8. CONCLUSIONS AND RECOMMENDATIONS 

 

8.1. Summary 

During the last decade, many evidences were observed of the climate change effect resulting from 

anthropogenic activities.  Substantial decline in arctic sea ice, rise in sea levels, and increase in average 

earth temperatures are making it harder for skeptics to prove their arguments.  While the debate 

continues, government agencies throughout the world have introduced programs to significantly 

deploy alternative energy sources and reduce our carbon footprint.  On the other hand, the price of 

crude oil has achieved levels of above 100 dollars per barrel, prices unseen since the petroleum crisis 

of the 1970s. 

Of the total U.S. CO2 emissions, the power generation and transportation sectors accounted for 

94% in 2007 (Wayne et al., 2009).  The transportation sector (public and private) was responsible for 

31% of the national CO2 emissions in 2005.  Even tough, the contribution of public transit was only 

1% of the transportation sector’s share, it totaled 14.9 million metric tons of CO2. 

Wayne et al. (2009) evaluated the potentials of alternative fuels and advanced technologies for 

reducing emissions in public transportation.  They concluded that diesel-electric hybrid buses had the 

greatest potential to reduce CO2 emissions and fuel consumption; in the order of millions of diesel 

gallons within the U.S. transit fleet.   

This dissertation studied transit bus routes and the effects of duty cycle on the fuel and emissions 

saving potential of the hybrid bus technology.  The results of this dissertation will allow transit 

agencies to place hybrid buses in routes that take the most advantage of the hybrid-electric capabilities, 

maximizing fuel savings and reduction on CO2 emissions. 

The project started with a preliminary analysis of the potential reductions in net tractive energy.  

Effects due to regeneration efficiency, vehicle weight, and road grade were studied.  The final goal was 

the development of a regression based predictive model for fuel economy, CO2 and NOx emissions, 

and fuel savings for MY 2007-2009 diesel-electric hybrid buses.  The predictive model had to be 

representative of the wide range of transit bus operation. 
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With this goal in mind the following research approach was taken: (i) transit bus routes were 

studied considering routes from slow speed (congested traffic) to high speed (commuter service).  (ii) 

A computational vehicle dynamic model was developed to represent the performance of diesel-hybrid 

buses.  (iii) The vehicle model was simulated over the duty cycles determined in stage i.  These 

simulations provided a database of continuous fuel consumption and emissions that served as the basis 

for the development of the desired predictive models.  (iv) Predictive models were developed for F.E., 

CO2 and NOx emissions.  The model breaks up fuel consumption and emissions into the idle and 

driving contributions, which are predicted based on user inputs, and aggregated to determine cycle F.E. 

and emissions. 

A wide range of transit bus operation was evaluated using GPS and ECU logs of routes collected at 

Washington Metropolitan Area Transit Authority.  These logs provided a good representation of the 

overall transit operation.  Cycle metrics were computed and their relationships studied.  Four service 

categories of transit operation were determined and classified by average speed: Inner-City (Ū ≤ 10), 

Urban (10 < Ū ≤ 14), Suburban (14 < Ū ≤ 20), and Commuter (Ū > 20). 

Correlations between pairs of metrics were explored.  It was determined that average speed is well 

correlated with most of the other metrics, except for characteristic acceleration and percentage idle.  

The author concluded that the three nearly independent metrics (average speed, characteristic 

acceleration, and percentage idle) should be explored as predictor metrics for emissions and fuel 

consumption.  The emissions and F.E. predictive models were developed with this set of metrics and 

the results were remarkable; the coefficients of determinations were 0.963 for F.E, 0.986 for CO2, and 

0.998 for NOx.   

The effects of grade were not analyzed since it is unlikely that transit agencies would have this 

information.  Accurate determination of road grade poses a further obstacle than simply logging route 

speed to characterize the duty cycle. 

Two tools were developed for IBIS.  The first tool receives GPS route logs from the transit 

agencies and proceeds to filter the speed signal.  The tool cautions the user when abnormal 

accelerations are found; these are mostly caused by the GPS losing satellites and presenting sharp 

speed steps.  The second tool is an implementation of the F.E. and emissions predictive models.  It 

receives user inputs from three possible sources: (i) post processed GPS logs (output from the first 

tool), (ii) cycle metric values, and (iii) selection from the four service categories.  If the user does not 

have Idle or ãno grade information, the program can estimate these parameters.  The uncertainty on the 

predictions was evaluated and reported. 
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8.1.1. PSAT Model for Series Diesel-Electric Hybrid Transit Bus 

A PSAT model for a series hybrid transit bus was developed and validated.  Test data was from a 

MY 2006 Orion bus powered by BAE Systems' HybriDrive® tested by WVU's TransLab; the bus was 

tested over six duty cycles.  ECU broadcasts of fueling rate, engine speed and engine torque were 

combined with emissions measurements to develop and validate the engine fuel consumption and NOx 

emissions models. 

The fuel consumption model was a 2D map or look-up table on torque and speed.  The NOx 

emissions model was based on ANNs.  Due to the computational efforts required to run the ANN in 

Simulink, the NOx ANN calculations were performed offline using the "calculate_user_perso" option 

in PSAT.  NOx emissions were corrected from 2006 levels to 2007-2009 levels assuming a 15% 

reduction independent of location in the map. 

BAE Systems provided specifications for their hybrid system which allowed appropriate scaling 

and modification of PSAT default components to match the test vehicle specs.  This process was 

developed in cooperation with Bell (2011).  No validation data was available for individual hybrid 

components.  The overall model was validated at the vehicle level evaluating its performance for fuel 

economy, CO2 and NOx when compared with chassis dynamometer test results.  

It was acknowledged that the HybriDrive® control strategy did not match either of PSAT 

predefined controllers: thermostat and load following.  As the purpose of the project was not to 

validate the HybriDrive® controller in PSAT but to validate the vehicle model as a system, it was 

decided to build upon PSAT controllers to achieve a vehicle model that had similar performance to the 

Orion bus.   

The thermostat control was evaluated against the load following control and it was concluded that 

the latter was more similar to the HybriDrive® control.  The similarity laid in engine operation varying 

as vehicle power demand varied whereas engine operation under thermostat control was fixed to the 

optimal engine efficiency point.  Modified versions of PSAT's load following and braking controllers 

were used.  The controllers were modified as follows: 

 A provision was established to recharge the battery whenever SOC was below a predefined 

threshold to bring SOC back to the SOC target.  It was observed that the default controller did not 

monitor SOC directly and thus it would deplete the battery. 

 A provision was established to reduce traction motor performance if SOC was below a critical 

value and vehicle power demand was beyond the engine capabilities.  Under such an event, the 

engine would recharge the battery to the target SOC value while output power from the traction 

motor would be restricted.  It was observed that with the default controller, if the vehicle sustained 

high power demand (e.g. interstate driving at 70+ mph), the engine maximum power may not be 

enough to continuously maintain such demand while the traction motor would still provide the 
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power request depleting the battery without restriction.  In other words, the original controller 

allowed full battery depletion when, for a sustained period, driver power request was beyond 

engine capabilities. 

 Accessory loads:  It was observed that electrical accessory loads were always engaged while 

mechanical accessory loads were disengaged at stop and engaged at driving.  To produce a more 

realistic model, the braking control, which commands the engine during braking and stops, was 

modified to maintain mechanical accessory loads.  It was also observed that the constant electrical 

loads acted to deplete the battery during idle segments.  With this in mind, the controller was 

modified to maintain SOC constant during vehicle stop by having the generator load the engine and 

supply the required electrical load. 

 Electric only and engine stop options were disabled as these features were not observed in the 

Orion bus. 

As the vehicle model was to be simulated under a variety of in-use transit routes, the model was 

brought offline of PSAT's interface once the development and calibration phases were finished.  This 

allowed running a wide variety of routes in an automated manner.  PSAT’s continuous repeat option 

for SOC correction was implemented for the offline simulations.  Only one repetition was necessary 

for short cycles as the modified hybrid control was able to maintain SOC at a stable level regardless of 

duty cycle.  Longer cycles did not require repetitions. 

A MATLAB® post processing script was developed to analyze offline simulation results.  This 

script implemented SAE J2711 (SAE, 2002) calculations for ∆SOC to assure that no SOC corrections 

were necessary.  Component efficiencies were calculated in the script, including the regenerative 

braking capture-redeployment efficiency.  The script also evaluated fuel economy and distance specific 

-emissions and -fuel consumption. 

 

 

8.2. Conclusions 

The preliminary analysis of energy implications in hybrid vehicles suggested that fuel consumption 

(F.C.) should be predicted directly from cycle metrics and then translated to fuel economy.  The transit 

route characterization study showed that three nearly independent cycle metrics were average speed, 

characteristic acceleration, and percentage idle, and they should be explored as the main predictors for 

cycle F.E. and emissions.  These approaches were followed in developing the F.E. and emissions 

regression prediction models with successful results. 
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When hybrid and conventional buses are compared, the reductions in distance specific fuel 

consumption (hybrid advantage, H.A.) were highest for low speed service.  On the other hand, the 

highest fuel saving rates (gallons per hour) were observed at middle to high speed service.  That is, 

even when at low speed the relative benefit of hybridization is highest that does not translate in the 

largest  savings; this is because routes at higher speeds, which have a smaller relative advantage (H.A.), 

consume more fuel and their absolute advantage is higher.  Unfortunately, overlapping of the error bars 

for fuel savings prediction did not allow pointing to a single service category as the one best suited for 

hybrid buses.   

Contrary to the general idea that Inner-City (stop-and-go) service presents the highest room for fuel 

savings, the results showed that Inner-City service had the lowest fuel (and CO2) saving potentials 

among the four categories.  This discussion only considers savings from fuel usage; further 

conclusions regarding which routes provide the biggest economic saving will require an assessment of 

the total bus operational costs, including maintenance and capital costs, among others. 

It was concluded that for a given average speed, the highest fuel savings correspond to routes with 

the highest values of characteristic acceleration (ã).  This is because the higher the ã, the more room 

there is for the hybrid system to recover regenerative braking energy and to balance engine operation. 

The main concern for a transit agency when using the prediction model would be to obtain an 

accurate estimation of fuel economy and fuel savings.  It is therefore necessary to use the full 

regression model (where Ū, Idle, and ãno grade are the inputs) instead of using the model with Ū alone. 

For a given service category some routes showed savings as much as 60% higher than others.  

Consequently, not all routes in a particular service category, e.g. urban service, get the same benefit 

from hybridization.  The prediction tools developed in this dissertation give transit agencies the ability 

of exploring where their hybrids can be best exploited.  As mentioned above, the agencies will need to 

collect more information than average speed alone in order to obtain reliable results.  This implies 

instrumentation of some buses to collect route vehicle speed profiles with GPS or ECU monitors. 

The benefits from engine idle-stop were briefly explored by setting idle fuel and NOx rates to zero.  

Fuel savings were increased from between 0.5 and 1.0 gal/hr to between nearly 1.0 and 1.4 gal/hr, i.e. 

an average 50% gain and as much as 140% over the baseline savings.  These figures neglect the 

presence of auxiliary loads and are therefore equivalent to upper bound values for the series hybrid 

bus. 

The data did not reveal a net benefit in NOx emissions from hybridization.  On average hybrid NOx 

emissions predictions were 17% higher than for the conventional diesel.  This fact can be explained by 

the lower loads experienced by the engine on the hybrid bus, as lower loads are associated with higher 

brake-specific NOx; this would not be the case if considerable engine downsizing were observed in 

hybrid buses, but his is not the case since engines in conventional 40 ft transit buses have a rating of 

280 hp while the ratings are 260 – 280 hp for the hybrids.  Finally, considering that EPA’s NOx 
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certification level dropped to 0.2 g/bhp∙hr in 2010, the observed effect in NOx emissions should raise 

no concerns. 

 

 

8.3. Recommendations 

The developed fuel consumption ANN failed to produce accurate results when used with the PSAT 

vehicle model.  ANN fuel consumption results were too low and engine efficiencies were unrealistic.  

The author looked back and found that a good part of the training data was corrupted in the sense that 

fuelling rates were too low for the given output power.  This was translated into unrealistic 

efficiencies.  Thus, the problem of the ANN performance could be attributed to issues with the training 

dataset.  A recommendation for development of ANN engine fueling models is that training data 

should be filtered to remove such unrealistic efficiency points. 

When characterizing in-use bus service routes, it was observed that vehicle speed logs from ECU 

were better than GPS values.  It would then be advisable to log ECU vehicle speed when feasible 

rather than GPS speed.  One advantage of GPS speed over ECU data is that it is accompanied by 

longitude and latitude position which may serve to estimate road grade in conjunction with a 

topographic map of the area. 

The best estimations of road grade were determined with GPS location and topographic map 

information.  GPS reported elevation profiles showed to be of little or no value for determining road 

grade and therefore are not recommended.  Barometric inferred elevation presented inexistent elevation 

changes; the author believes these were due to gusts of wind that affected the static pressure reading by 

dynamic pressure.  Barometer readings were good predictions of elevation changes at highway speeds 

(where the air flow is well oriented with the static pressure probe) but were poor predictors at low 

speeds.   

 

8.3.1. Route Data Logging Procedures 

When considering data logging systems for characterization of duty cycles, there are three basic 

options: a GPS logger, an ECU data logger (through an ECU J1939 interface), and the combination of 

the two.  The GPS logger is the simplest to install because it does not require configuration with the 

test vehicles.  GPS gives an advantage over ECU because it collects position (latitude and longitude), 

which can be used to evaluate road grade, as was done in this project, with the help of a topographic 

map. 
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ECU vehicle speed is preferred over GPS speed because it contains much less noise.  On the other 

hand, as GPS data are easier to collect than ECU data, a greater utilization of the tools developed in 

this project can be achieved if GPS data are used.   

The length of the GPS antenna should be at least 20 ft.  Depending on where the data logger is 

installed and the height of the bus you may encounter that there is not enough slack for the antenna to 

reach the roof.  This was the case when the system was installed in articulated buses. 

Raw log files were manually pre-processed to correct sections where the GPS lost all the satellites 

and produced rubbish data.  When these sections were short, speed and position (longitude and 

latitude) were filled in assuming a linear variation between the nearest good points.  When the sections 

were long they had to be removed.  These procedures may serve as guidelines for pre-processing GPS 

data.  The GPS Data Cleaning Tool can be used when pre-processing the data as it has built in 

warnings when accelerations are out of bounds; these peak accelerations are usually a result of the GPS 

losing satellites.  A 1 Hz logging frequency is suggested for route logs.  More details on the data 

reduction procedure can be found in Section 4.2. 

Topographic maps for road grade estimation require a large amount of computational memory.  To 

avoid this problem, it is recommended that the map is as small as possible, i.e. it contains no more than 

the latitudes and longitudes travelled by the test vehicles.  For this study, the map covered 625 square 

miles and had a resolution of 1/3 arc second (about 33 ft).  The grade calculation MALAB® scripts 

developed for the project were not generalized as was the GPS Data Cleaning Tool; they could be 

modified upon request to incorporate topographic maps and provide road grade estimations to 

interested users.  

 

 

8.4. Suggestions for Future Research 

The effect of grade was not explored for the in-use logged routes.  The vehicle dynamic model 

developed in this dissertation can be used with the in-use route logs to evaluate the effects of road 

grade on fuel economy, CO2 and NOx of the hybrid transit bus.  The preliminary analysis of Chapter 3 

showed increases of 5 to 10% in characteristic acceleration when geometric grade profiles were 

superimposed to existing drive cycles.  On the other hand, analysis from the in-use routes of Chapter 4 

revealed an increase in ã of up to 25% when true road grade was considered versus the route assuming 

a flat terrain.  The true effect of grade on F.E. and emissions needs to be studied. 

The tools developed for this dissertation can be expanded to build a tool for IBIS that receives 

route logs from transit agencies and determines road grade with topographic maps.  This procedure 

was used when processing the WMATA route logs. 
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Data reduction of chassis dynamometer test measurements is an involved process.  Evaluation of 

the corresponding bias uncertainties is complex and has not been performed for WVU’s TransLab 

Laboratories.  A sponsored program that explores laboratory uncertainty as well as detection limits 

would be beneficial for assessments and comparisons of transit technologies.   
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