
Graduate Theses, Dissertations, and Problem Reports

2006

A methodology for software performance modeling and its A methodology for software performance modeling and its

application to a border inspection system application to a border inspection system

Paola Bracchi
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Bracchi, Paola, "A methodology for software performance modeling and its application to a border
inspection system" (2006). Graduate Theses, Dissertations, and Problem Reports. 2478.
https://researchrepository.wvu.edu/etd/2478

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/2478?utm_source=researchrepository.wvu.edu%2Fetd%2F2478&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

A Methodology for Software Performance Modeling and its
Application to a Border Inspection System

Paola Bracchi

Thesis submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science in Computer Science

Bojan Cukic, Ph.D., Chair
Elaine Eschen, Ph.D.

Katerina Goseva-Popstojanova, Ph.D.

Lane Department of
Computer Science and Electrical Engineering

Morgantown, West Virginia
2006

Keywords: software engineering, software performance, UML, Layered Queuing

Networks

© Paola Bracchi, 2006

ABSTRACT

A Methodology for Software Performance Modeling and its Application
to a Border Inspection System

Paola Bracchi

It is essential that software systems meet their performance objectives. Many factors
affect software performance and it is fundamental to identify those factors and the
magnitude of their effects early in the software lifecycle to avoid costly and extensive
changes to software design, implementation, or requirements. In the last decade the
development of techniques and methodologies to carry out performance analysis in
the early stages of the software lifecycle has gained a lot of attention within the
research community. Different approaches to evaluate software performance have
been developed. Each of them is characterized by a certain software specification and
performance modeling notation.

In this thesis we present a methodology for predictive performance modeling and
analysis of software systems. We use the Unified Modeling Language (UML) as a
software modeling notation and Layered Queuing Networks (LQN) as a performance
modeling notation. Our focus is on the definition of a UML to LQN transformation
We extend existing approaches by applying the transformation to a different set of
UML diagrams, and propose a few extensions to the current “UML Profile for
Schedulability, Performance, and Time”, which we use to annotate UML diagrams
with performance-related information. We test the applicability of our methodology to
the performance evaluation of a complex software system used at border entry ports
to grant or deny access to incoming travelers.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Bojan Cukic, for giving me
the opportunity to work with him, and for his continuous support and supervision in
the development of this research and the related publications. I would also like to
thank my other committee members, Dr. Elaine Eschen and Dr. Katerina Goseva-
Popstojanova for their prompt availability and directions.

I am very grateful to my former advisor, Dr. Vittorio Cortellessa, for introducing me
to Dr. Cukic and to West Virginia University. During my studies here, I appreciated
his constant encouragement and wise suggestions.

Finally, special thanks to my family for their enduring love and assistance. Many
thanks also to my friends and lab mates. They have made my stay in Morgantown an
unforgettable experience.

Morgantown, November 1 2006 Paola Bracchi

iii

Table of Contents

List of Figures...vii

List of Tables ..x

List of Abbreviations ..xi

Chapter 1: Introduction ..1

1.1 Software Performance ..2

1.2 Software Performance Evaluation ..3

1.2.1 Performance Modeling...4

1.2.2 Performance Data Collection...5

1.2.3 Performance Analysis ..6

1.3 Thesis Contribution ..8

1.4 Thesis Outline...8

Chapter 2: Literature Review...10

2.1 Software Specification Models...10

2.2 Performance Models...12

2.2.1 Queuing Networks ...13

2.2.2 Stochastic Timed Petri Nets...14

2.2.3 Stochastic Process Algebras ..16

2.2.4 Simulation Models ...17

2.3 Evaluation of Performance Models ..17

2.3.1 Queuing Networks ...17

iv

2.3.2 Stochastic Timed Petri Nets...18

2.3.3 Stochastic Process Algebras ..19

2.3.4 Simulation Models ...20

Chapter 3: A Methodology for Early Software Performance Analysis21

3.1 Software Specification Model ..21

3.1.1 UML...22

3.1.2 UML Diagrams ..22

3.1.3 UML Performance Profile ...27

3.2 Performance Model ..30

3.2.1 LQN ...31

3.2.2 LQN Tools ...33

3.3 UML to LQN Transformation ..34

3.3.1 Previous Work ...34

3.3.2 Our Approach...35

Chapter 4: Case Study...59

4.1 System Description...59

4.1.1 Context...60

4.1.2 Structure...61

4.1.3 Functions..63

4.1.4 Technical and Policy Options ..72

4.2 Performance Modeling ...74

4.2.1 Assumptions...74

4.2.2 Model Structure ...75

4.2.3 Model Dynamics..78

4.2.4 Model Parameters ..92

4.3 Performance Experiments...92

v

4.3.1 Technical Options ..93

4.3.2 Authentication Policies ..94

4.3.3 Manual Inspection Times...95

4.3.4 Biometric Sampling Times ..96

4.4 Results and Analysis...96

4.4.1 Technical Options ..97

4.4.2 Authentication Policies ..103

4.4.3 Manual Inspection Times...104

4.4.4 Biometric Sampling Times ..106

4.5 Validation ...108

Chapter 5: Conclusions ...110

Appendix A: Parameterization of LQN Model for Options 1 and 2..............113

A.1 Assumed Execution Environment ..113

A.2 Expected Size of Data...115

A.3 Performance Annotations ...115

A.4 Model Parameters ...122

Appendix B: Option 3...125

B.1 Description..125

B.2 Performance Modeling ...127

B.2.1 Model Structure ..128

B.2.2 Model Dynamics...128

B.2.3 Model Parameters ...131

References...135

vi

List of Figures

Figure 1: Example of QN model..13

Figure 2: Example of PN model ..15

Figure 3: Example of Use Case Diagram ..24

Figure 4: Example of Sequence Diagram ..26

Figure 5: Example of Deployment Diagram..27

Figure 6: Performance analysis domain model..28

Figure 7: Example of LQN model ...33

Figure 8: High-level algorithm for UML to LQN transformation...............................37

Figure 9: Annotated Use Case Diagram ..39

Figure 10: Annotated Sequence Diagram..42

Figure 11: Annotated Deployment Diagram..44

Figure 12: Mapping from Deployment Diagram elements to LQN devices45

Figure 13: Mapping from Deployment Diagram elements to LQN tasks46

Figure 14: Mapping between LQN tasks and corresponding devices47

Figure 15: Example of opt fragment..50

Figure 16: Translation of opt fragment in LQN notation ..50

Figure 17: Example of alt fragment...51

Figure 18: Translation of alt fragment in LQN notation ...52

Figure 19: Example of par fragment ...53

vii

Figure 20: Translation of par fragment in LQN notation ..53

Figure 21: Example of loop fragment..54

Figure 22: Translation of loop fragment in LQN notation ..54

Figure 23: Sample LQN model at the end of Step 2..56

Figure 24: Sample LQN model at the end of Step 3..58

Figure 25: Possible Deployment Diagram for the airport inspection system61

Figure 26: Use Case Diagram for the airport inspection system64

Figure 27: Sequence Diagram for the Traveler Inspection use case............................65

Figure 28: Sequence Diagram for the Traveler Authentication interaction.................66

Figure 29: Sequence Diagram for the MRTD Authentication interaction...................68

Figure 30: Sequence Diagram for the TNS Name Check interaction..........................69

Figure 31: Sequence Diagram for the Secondary Inspection interaction70

Figure 32: Sequence Diagram for the Name-based Lookup use case71

Figure 33: Sequence Diagram for the Biometric Verification use case.......................72

Figure 34: Sequence Diagram for the Biometric Identification use case72

Figure 35: LQN devices for the airport inspection system..76

Figure 36: LQN tasks for the airport inspection system..77

Figure 37: LQN tasks, devices, and their mappings for the airport inspection system78

Figure 38: High-level framework of the LQN for the airport inspection system82

Figure 39: Traveler Inspection LQN after Traveler Inspection scenario.....................83

Figure 40: Traveler Inspection LQN after Traveler Authentication84

Figure 41: Traveler Inspection LQN after MRTD Authentication85

Figure 42: Traveler Inspection LQN after TNS Name Check86

Figure 43: Primary Inspection LQN after Secondary Inspection87

Figure 44: High-level layout of the Traveler Inspection LQN89

Figure 45: Name-based Lookup LQN ..90

Figure 46: High-level layout of the LQN for the airport inspection system................91

viii

Figure 47: Primary inspection time for different technical options.............................98

Figure 48: Primary inspection throughput for different technical options98

Figure 49: Primary total waiting time for different technical options100

Figure 50: Primary total waiting time vs. airports served by a remote PKD.............101

Figure 51: Primary total waiting time for different authentication scenarios............104

Figure 52: Primary inspection time for different authentication scenarios................104

Figure 53: Primary total waiting time for different manual inspection times............106

Figure 54: Primary inspection time for different manual inspection times106

Figure 55: Primary total waiting time for different biometric sampling times..........107

Figure 56: Primary inspection time for different biometric sampling times108

Figure 57: Validation of travelers' total waiting time ..109

Figure 58: Deployment Diagram for Option 3 ..126

Figure 59: Use Case Diagram for Option 3 ...127

Figure 60: Sequence Diagram for the PK Certificate Retrieval use case127

Figure 61: LQN request flow after MRTD Authentication129

Figure 62: High-level layout of the LQN model for the airport inspection system

(Option 3)...130

ix

List of Tables

Table 1: Types of Sequence Diagram messages..26

Table 2: Response time and resource utilization for PKD Shared Option103

Table 3: Execution environment (Options 1 and 2)...114

Table 4: Expected size of data (Options 1 and 2) ..115

Table 5: Resource demand of scenario steps (Options 1 and 2)116

Table 6: LQN parameters for system workloads (Options 1 and 2)122

Table 7: LQN parameters for resource demands (Options 1 and 2)123

Table 8: Execution environment (Option 3) ..131

Table 9: Resource demand of scenario steps (Option 3) ...132

Table 10: LQN parameters for system workloads (Option 3)133

Table 11: LQN parameters for resource demands (Option 3)133

x

List of Abbreviations

DD Deployment Diagram

DS Digital Signature

ICAO International Civil Aviation Organization

GSPN Generalized Stochastic Petri Net

LQN Layered Queuing Network

MC Markov Chain

MRTD Machine Readable Travel Document

MRZ Machine Readable Zone

MSC Message Sequence Chart

OMG Object Management Group

PA Process Algebra

PKD Public Key Directory

PKI Public Key Infrastructure

PN Petri Net

POE Port Of Entry

QN Queuing Network

SA Software Architecture

SD Sequence Diagram

SPA Stochastic Process Algebra

xi

SPE Software Performance Engineering

STPN Stochastic Timed Petri Net

UC Use Case

UCD Use Case Diagram

UCM Use Case Map

UML Unified Modeling Language

xii

Chapter 1: Introduction

Traditional software development process is focused on meeting software functional

requirements. Performance issues are usually ignored or considered only towards the

end of the software lifecycle. This may cause possible performance problems to

require extensive and costly changes at the implementation, design, or, even worse,

requirement level.

 Over the last decade the research community has been very active in the

development of techniques and procedures to avoid these scenarios, proposing

different approaches to integrate performance analysis early in the software lifecycle.

Although some of them have been successfully applied to case studies both in

academic and in industrial environments, a widespread integration of performance

assessment in the software development process is not established yet.

 This chapter provides an introduction to software performance evaluation. It

reviews what software performance is, how it is evaluated, and the benefits of

evaluating it. Additionally, it explains how the work and research presented here

contributes to the field of software performance engineering. The chapter concludes

with a brief outline of the remainder of the thesis.

- 1 -

1.1 Software Performance

Performance is generally indicative of “[…] how well a system, assumed to perform

correctly, works” [16]. Performance represents a fundamental quality attribute of

every software system. In particular, according to typical use of this term, it refers to

the quality of service provided by the system. Classical performance measures include

system-oriented measures such as throughput, resource utilization, and scalability, or

user-oriented measures such as waiting time, service time, and queue length.

Additional metrics are specific to particular types of software systems, such as power

consumption for mobile applications, or bandwidth utilization for networked

applications.

 It is fundamental to evaluate software performance since the early stages of the

software lifecycle to reduce the risk of performance failures. In fact, experience shows

that “performance problems are most often due to inappropriate architectural choices,

rather than inefficient coding” [52]. The discovery of performance issues in the

development, testing, or, even worse, operational phase, requires costly fixes,

schedule delays, lost productivity, lost income, damaged organization’s image, etc. In

extreme cases problems may be so severe to require considerable redesign and

reimplementation, or even project failure [50].

 Software performance evaluation is the process of predicting (early in the software

development process) or assessing (towards the end of the development process)

whether a software system is able to meet established performance objectives [5]. In

this thesis we focus on early model-based performance evaluation, which relies on

two basic steps: the definition of a performance model, according to a suitable

description of the software system, and the solution of the performance model to

obtain performance results.

- 2 -

1.2 Software Performance Evaluation

Software performance evaluation requires a systematic, comprehensive process to

characterize the dynamic behavior of a software system in quantitative terms. In this

section we outline the main steps of a generic process, based on the Software

Performance Engineering (SPE) approach [49] described in [50].

 The first step towards software performance analysis should be the assessment of

performance risk, so as to understand the level of effort to put into performance

evaluation activities. This can be minimal if the system under consideration is not

critical to the mission of the organization, or if similar projects have previously been

successfully deployed, etc. Otherwise a more significative commitment to

performance evaluation is required.

 The next step is to understand system functions and design based on appropriate

abstractions of the software system. Possible abstractions include software

requirements, architectures, specifications, and design documents. In particular,

“since performance is a runtime attribute of a software system, performance analysis

requires suitable descriptions of the software runtime behavior” [5]. Examples of such

descriptions are UML Interaction Diagrams (e.g., Sequence Diagrams, Activity

Diagrams), Message Sequence Charts, finite state automata, etc.

 Next performance objectives have to be established. They should be expressed in

quantitative terms using well defined metrics, usually response time, throughput, and

resource utilization. Response time is usually intended as the time taken by the system

to respond to a request from a user, or from an external system or event. Throughput

corresponds to the number of requests processed per unit of time. Resource utilization

is defined as the fraction of a hardware or software resources used by the system to

respond to incoming requests.

 Performance models are then built and parametrized. More details about these

steps are given in the next subsections. Different notations and tools can be used,

- 3 -

depending on the adopted performance evaluation methodology. The next chapter

reviews the most relevant options available at this purpose. Analysis of results from

the evaluation of performance models indicates if the system is able to meet the

established performance goals. If not, system design or performance objectives have

to be revised.

 Verification and validation of performance models are carried out in parallel with

the definition and solution of performance models. Model verification answers the

question “Are we building the model right?”. It intends to determine if performance

results accurately reflect the actual system performance. On the other hand, model

validation answers the question “Are we building the right model?” [9]. It aims at

identifying whether the built performance models are accurate descriptions of the

structural and behavioral characteristics of the system in exam.

1.2.1 Performance Modeling

A performance model of a software system can be defined using appropriate

abstractions of the system structure and functions. The earliest description providing

this information is Software Architecture (SA), defined as “the structure or structures

of the system, which comprises software components, the externally visible properties

of those components, and the relationships among them” [7].

The model should be able to represent factors affecting performance such as:

- system workload;

- hardware service rates;

- software components internal dynamics;

- interactions between software components;

- replicating or multi-threading of software components;

- allocation of software components to hardware platforms;

- software contention, i.e., the time spent to access software resources;

- hardware contention, i.e., the time spent to access a hardware resource;

- 4 -

- demand of software components on hardware devices such as processors, disks,

networks, etc.

 The level of detail of a performance model should match the degree of abstraction

emerging from available system descriptions. The performance model should also be

simple with respect to its expression in the adopted modeling notation and to its

solution. However, taking into account all the previously listed factors affecting

performance could lead to complex models, even for small-sized systems. Therefore,

the choice of the most appropriate performance modeling methodology should be

driven by an attentive evaluation of the tradeoffs between strengths and weaknesses of

candidate modeling notations (e.g., Markov chains, Petri nets, Queuing Networks,

Process Algebras, etc.) and the factors affecting performance which are important

and/or possible to include in the model.

1.2.2 Performance Data Collection

The hardest part of the performance evaluation process, especially early in the

software lifecycle, is the collection of data required to parameterize performance

models. Missing data refer to the system execution environment and to software

resource requirements. Information about the execution environment includes the

system hardware configuration, service rates of computing devices and

communication links, number of replicas of processors, disks, etc. Information about

software resource requirements consists of the demand of software components on

devices in the hardware configuration.

 Several options to gather performance data are available. The viability of each

option depends on the phase of the development process the software system is in.

Early in the system lifecycle precise information is not available. At this stage, the

best way to obtain early performance data is through performance walkthroughs,

which consist of questioning system experts about system functions and design, the

execution environment, expected workload intensity, etc. [50]. If performance

- 5 -

walkthroughs are not possible, approximations, guesses, and estimates of upper and

lower bound requirements can be used [50].

 Once a system prototype or an implementation are available, parameters for

performance models can be obtained through measurements. Tools are available to

provide system-level measurements, such as the percentage of time the CPU is busy

or code-level measurements, such as the number of times a program executes a

particular method [50]. These tools are well defined and widespread; however it is

usually difficult to obtain the required information using them. For this reason the best

alternative to collect performance data is internal instrumentation through “code

(probes) inserted at key points to measure pertinent execution characteristics” [50].

Instrumentation provides a convenient way to obtain data at the desired level of

granularity. Another advantage of instrumentation is that it is possible to enable it

when it is needed and to disable it otherwise.

 Verification of performance data is very important. In fact, the accuracy of

performance results depends on the precision of the parameters used to evaluate

performance models. Early in the software lifecycle accuracy cannot be high because

knowledge of system details is vague and system resource requirements are difficult

to estimate [50]. At this stage it is not possible to identify or estimate errors. However,

it is possible to evaluate their effect on the performance results conducting a

sensitivity analysis [43]. Later, as the development process progresses and more

accurate data become available through (partial) software implementations and

prototypes, the current estimates can be updated.

1.2.3 Performance Analysis

Performance analysis is the evaluation of the quantitative results obtained from the

solution of a performance model. Early performance analysis poses problems due to

incompleteness of the software specification, the lack of knowledge about resource

requirements, and other issues such as ignorance of the actual workload intensity.

- 6 -

However, sources of deficiencies in the analysis can be identified, and their effects on

performance results can be estimated so that high-level performance questions can be

addressed at a level of abstraction comparable with that of the software specification

[43].

 Performance results can report different types of performance indices such as

response time, throughput, and resource utilization. The relative importance of each

measure depends on the system specifics. For instance, in an interactive web

application we may pay more attention to response time, i.e., the total time for a user

to complete an interaction with the system. On the other hand, a web service

providing commercial services to other applications may give more relevance to

throughput, to maximize the number of processed requests, hence profit.

 Performance analysis evaluates performance results against the established

performance objectives. If these are satisfied nothing needs to be done. Otherwise

utilization measures should be explored to identify possible bottlenecks, i.e.,

overloading of one or more resources. If any bottleneck is found the classic solution

to the problem consists of cloning the involved resource, using for instance multi-

threading of software processes, multiple processors, or multiple buffers. Repeatedly

adjusting the number of instances for different resources in the performance model,

and evaluating the performance results, the utilization of the software or hardware

components in exam should set to a lower, acceptable level [57].

 If performance objectives are not met even after executing the previous step, no

standard solution is available. Performance problems have to be addressed using a

project-specific strategy. Typical causes for not meeting performance requirements

are “execution demand, long scenario paths, or lack of concurrency in the system”

[57]. Typical solutions include “changing the scenario design, shortening long

scenarios, decomposing large components, using more efficient scheduling strategies,

and modifying the deployment” [57].

- 7 -

 These solutions can be applied iteratively until performance requirements are

finally met (assuming they are reasonable). Afterwards the changes applied to the

performance model can be translated into software design model and system

configuration description. The obtained information should be reviewed by system

designers in the software architecture and software specification phase [57].

1.3 Thesis Contribution

In this thesis we present a methodology to address the problem of early performance

analysis of software systems. The methodology uses UML as software modeling

notation and LQN as performance modeling notation. We propose a transformation to

automatically derive a LQN model from a set of UML diagrams annotated with

performance-related information using extensions defined in the “UML Profile for

Schedulability, Performance, and Time” [36]. The transformation is largely inspired

by previous work presented in [20, 21, 39, 40, 41, 46]; however, our contribution is

the adaptation of existing techniques to a different set of UML diagrams, that are

more suitable to be used in early stages of the software development lifecycle,

compared to those used by existing transformations. Another contribution is the

suggestion of extensions to the UML Performance Profile, to allow a more convenient

specification of the performance characteristics of the system. Extensions are also

proposed to address gaps in the current Profile, which does not cover UML 2.0

diagrams.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 provides a review of

model-based techniques that have been investigated to address the problem of

evaluating software performance. Chapter 3 explains the methodology we adopted to

develop performance models based on a set of annotated UML diagrams. Chapter 4

- 8 -

describes our case study, reports and analyzes the results we obtained from

performance evaluation. Finally, Chapter 5 states our conclusions and directions for

further research.

- 9 -

Chapter 2: Literature Review

Many approaches to analyze software performance based on early software

descriptions have been proposed in the last ten years. Each approach is characterized

by a certain software specification language (e.g., UML, Message Sequence Charts,

Petri Nets, etc.) and a certain performance modeling notation (e.g., Queuing Networks

and their extensions, Stochastic Process Algebras, simulation models, etc.).

 This chapter briefly reviews the most used software and performance modeling

notations. For each notation, its strengths and weaknesses are identified, and its

suitability to be adopted to conduct a software performance evaluation is discussed.

Finally, notations are compared based on factors such as easiness in specifying

models starting from early software abstractions, easiness in modifying models as

feedback from performance evaluation suggests changes in model structure or

parameters, easiness in solving models using analytic or simulation methods, and

suitability for use within an automated performance evaluation process.

2.1 Software Specification Models

Software specification models describe static and dynamic aspects of software

systems. A static description represents software modules or components and their

interconnections. A dynamic description represents software behavior at runtime.

- 10 -

Many options are available to describe software specifications. Possible notations

include Petri Nets, Process Algebra, Automata, Message Sequence Charts, Use Case

Maps, and the Unified Modeling Language (UML).

 Petri Nets [44], Process Algebra [35, 37, 26], and Automata [27] are formal

specification languages. They have the advantage of an exact semantics but, on the

negative side, they are complex to integrate within common software engineering

practice. This limit is overcome by less formal notations such as Message Sequence

Charts, Use Case Maps, and the Unified Modeling Language, which are described

below.

 Message Sequence Charts (MSC) [47] represent a language to describe

communication between independent instances of a software system (i.e., modules,

components, processes, etc.), or between those instances and the system environment.

MSC also allow the expression of restrictions on communicated data values and on

the timing of events. MSC are provided with a graphical representation that looks

similar to UML Sequence Diagrams.

 Use Case Maps (UCM) [11] represent a visual notation to combine the description

of system structure and behavior in a single model. The aim of UCM is to help

software designers to grasp large grained software behavior patterns. UCM can be

used during early stages of the software lifecycle, i.e., at requirement and high-level

design level. However, they are not expressive enough to be used in later phases for

they are not suited to completely specify software structure and dynamics.

 The Unified Modeling Language (UML) [10] is a notation specified by the Object

Management Group (OMG), an industry group dedicated to promoting Object-

Oriented (OO) technology and its standardization. UML allows to visually represent

different views of software systems at different levels of abstraction. At present UML

diagrams are widely accepted and adopted within both industry and academic

environments because they are flexible and easy to use and maintain. A variety of

- 11 -

diagrams is available to model static and dynamic aspects of software systems (e.g.,

Use Case Diagrams, Sequence Diagrams, and Deployment Diagrams). To enable

users to integrate performance evaluation into early software specifications, OMG

defined and adopted the “UML Profile for Schedulability, Performance, and Time”

(SPT Profile) [36]. The SPT Profile introduces stereotypes, tagged values, and

constraints to formally specify performance annotations (workload information,

resource requirements, etc.).

2.2 Performance Models

Different modeling notations can be used to carry out a performance analysis of

software systems during early phases of the software life cycle. Three main classes of

performance models are available: Queuing Network [32, 34, 51], Stochastic Process

Algebra [8, 23, 24], and Stochastic Timed Petri Net [1, 2, 3]. Queuing Networks were

initially proposed to represent performance typical features of hardware or

manufacturing systems; notations like Petri Nets and Process Algebras were first

introduced in the software specification field and then exported to the performance

domain.

 Performance models based on the above notations can be solved by simulation or

by analytical methods. “Simulation is a widely used general technique whose

drawback is the potential high development and computational cost to obtain accurate

results” [14]. On the other hand, analytical methods can often be applied to simple

models only, which cannot adequately capture real systems behavior. Analytical

solution of performance models is based on a stochastic process that is usually a

continuous-time discrete-space homogeneous Markov Chains (MC) [31].

- 12 -

2.2.1 Queuing Networks

A Queuing Network (QN) [32, 34, 51, 30] model can be described as “a collection of

service centers, which represent system resources, and customers, which represent

users or transactions” [34]. It consists of a direct graph whose nodes are service

centers. Nodes are connected by edges expressing the flow of customers’ service

requests. The model has a graphical representation shown in Figure 1.

p

1 - p

s2s1

service center

customer flow

Figure 1: Example of QN model

QN models have been extensively applied to build performance models of hardware

and software systems. The popularity of QN models for performance evaluation is

due to their scalability and to their ability to express many of the important factors

affecting performance mentioned in Chapter 1. Moreover efficient and accurate

techniques for QN analysis are available, in particular for a class of QN referred to as

product-form, which has been widely used to carry out performance analysis.

 The definition of a “QN model of a particular system is made relatively

straightforward by the close correspondence between the attributes of queuing

network models and the attributes of computer systems” [34]. For instance service

centers in QN models naturally map to hardware devices in computer systems, while

- 13 -

customers map to system users. It is also possible with QN to describe multiple

customer classes, each with its own workload intensity and service demands.

 Parameterization associates service rates to service centers, and workload

information and service requests to customer classes. At this regard, “a major strength

of queuing network models is the relative ease with which parameters can be

modified to obtain answers to ‘what-if’ questions” [34]. Solution of a parameterized

QN model returns a set of performance indices such as response time, system

throughput, resource utilization, etc. These indices can refer to a given resource only

or extend to the whole system.

 Several extensions of classical QN are available for performance modeling.

Among them, Extended Queuing Networks (EQN) [30, 34] introduce features that

allow to represent several interesting characteristics of real systems, such as finite

capacity queues, simultaneous resource possession, synchronization, concurrency

constraints, and memory constraints,. EQN models can be solved by approximate

solution techniques.

 Layered Queuing Networks (LQN) [45, 54, 17] represent another extension of QN

that is particularly suited to model concurrent and/or distributed software systems.

The main different between QN and LQN is that LQN can model both logical and

physical resources of a system. Additionally they allow representing nested services,

where a server may become client of other servers while waiting for its own clients

requests to be served. A recent extension of LQN allows for a software entity to be

further decomposed into activities which can be connected in sequence, loop, parallel,

and alternative configurations forming a directed graph. LQN models can be solved

both by analytic methods and simulation methods.

2.2.2 Stochastic Timed Petri Nets

Stochastic Timed Petri Net (STPN) [1, 2, 3] are extensions of Petri Nets (PN), a

modeling notation that is mainly used to verify functional properties of software

- 14 -

systems. In particular, “Petri Nets can be used to formally verify the correct

synchronization between various activities of concurrent systems” [14]. A PN model

consists of places, transitions, and direct arcs connecting places with transitions.

Places may contain any number of tokens. A distribution of tokens over the places of

a net is called a marking. Transitions act on input tokens by a process known as firing.

Each transition is instantaneous, i.e. once a transition is enabled, it fires in zero time.

A PN has a graphical representation shown in Figure 2. Places are represented by

circles, transitions by bars, and marking by the set of tokens depicted inside places.

p2

p1

p3

p4

t1

t2

t3

place

transition

token

Figure 2: Example of PN model

STPN extend PN by associating a firing time, i.e., finite time duration, with

transitions. The firing time is usually expressed by a random variable. Such variable

may have an arbitrary distribution; however, in practice the use of non memoryless

distributions can make the analysis unfeasible, unless other restrictions are imposed

(e.g. only one transition is enabled at a time) to simplify the analysis. The quantitative

evaluation of an STPN requires the identification and solution of the corresponding

MC derived based on the net reachability graph. For this reason, the exact solution of

- 15 -

a STPN model may become infeasible due to the state space explosion problem.

However, non-polynomial algorithm solution exists for a special class of STPN,

known as product-form. Many approximated general solution techniques have also

been defined.

 Generalized Stochastic Petri Nets (GSPN) [2] represent another extension of

classical PN, which allow both exponentially timed and immediate transitions.

Immediate transitions fire immediately after they become enabled and have priority

over timed transitions. They are associated with normalized weights, so that, in case

multiple immediate transitions are concurrently enabled, the choice of the firing one is

taken probabilistically. GSPN admit specific solution techniques reviewed in [3].

2.2.3 Stochastic Process Algebras

Stochastic Process Algebras (SPA) [8, 23, 24, 37] are extensions of Process Algebras

(PA), which allow to integrate qualitative (functional) and quantitative (temporal)

aspects of software systems into a single modeling notation. A pure PA model

describes a system in terms of its active components, and the interaction or

communications between them. Components are called agents or processes and

execute actions, which are assumed to be instantaneous.

 SPA extend PA by incorporating temporal information into models. A duration is

associated to actions using continuous random variables, often. Such addition makes

it possible to evaluate system functional properties (e.g. liveness, deadlock),

performance indices (e.g. throughput, waiting times), or combinations of them (e.g.

probability of timeout, duration of action sequences).

 A quantitative analysis of the modeled system can be performed by obtaining the

stochastic process underlying the process algebra model, which is a MC when action

durations are given as exponential random variables. Research has been made in order

to avoid the problem of state space explosion associated to Markov modeling, which

soon makes performance analysis unfeasible. Various methods to tackle the issue

- 16 -

have been proposed. A few authors suggested syntactic characterizations of PA terms

whose underlying MC admits efficient product-form solution [22, 25].

2.2.4 Simulation Models

Besides being a solution technique for performance models, simulation [6] is a

modeling technique by itself, which allows reproducing the behavior of arbitrarily

complex systems using different possible languages, libraries, and tools.

 A simulation model is a conceptual representation of a system, which relies on a

set of assumptions on the system operation, and on the workload driving it. The

simulation model is translated into a simulation program. During the experimental

phase the program is run in order to generate results. The number of runs and the

length of simulation runs depend on the desired degree of accuracy for the results. If

high confidence is required a high execution cost may be necessary. At the end of the

simulation experiment performance results are evaluated, using appropriate analysis

techniques.

2.3 Evaluation of Performance Models

The goal of this section is to evaluate the suitability of the notations described in the

previous section to define performance models of software systems in early phases of

the software lifecycle. For each notation we consider:

1. the easiness to define models, to solve them, and to modify them based on possible

feedback from the performance evaluation;

2. the adequacy to embed relevant factors affecting performance (e.g., system

workload, system architecture, resource requirements, etc.).

2.3.1 Queuing Networks

QN models are relatively easy to build, solve, and modify. QN are particularly well-

suited for software modeling at the architectural level. In fact, the elements of a QN

- 17 -

model closely correspond to the elements of a software system (e.g., QN service

centers map to system components, connections among QN service centers can be

mapped to connections among system components). On the negative side, QN are not

appropriate to represent the internal dynamics of software components. Therefore, in

later stages of the development process, when more details about software behavior

become available, QN may not be powerful enough to support performance

evaluation. In this case LQN represent a good alternative, thanks to the availability of

activities to specify software internal dynamics. Another limitation of classical QN is

their ability to represent only asynchronous communications among service centers.

This reduces the expressiveness of the notation in modeling modern distributed

systems using different communication interactions (e.g., synchronous, asynchronous,

deferred synchronous). To overcome this limit, extensions of QN can be used, such as

LQN.

 In general, QN and their extensions are able to embed many relevant factors

affecting performance. In particular, in contrast to other notations we considered, they

naturally model resource contention, which is a very important driver of system

performance.

2.3.2 Stochastic Timed Petri Nets

SPN are not particularly appropriate to model software at the architectural level, since

a direct correspondence between software components and PN facilities (places,

transitions, and tokens) cannot be established. In fact, SPN model the system from a

functional point of view, thus making it difficult to represent system structure. As a

modeling strategy, software components could be mapped to Petri subnets; the same

could be done for hardware components. However, this approach is not

straightforward and complicates model modifications in case any change has to be

made to the software or hardware configuration of the system. In the unlikely case

where SPN or their extensions are used for software specification, PN-based notations

- 18 -

can be used to represent software performance models in a straightforward way.

Otherwise, performance models can be defined based on the close mapping between

software behavioral models and SPN model structure; even though this increases the

model complexity as the software description becomes more complex and detailed.

SPN allow to model synchronous communications in a natural way. However,

representing other types of interactions between software components (e.g.,

asynchronous) may require additional SPN structures or submodels. Models changes

can require substantial effort. For instance in case a particular hardware component

needs to be replicated, the whole subnet corresponding to that component needs to be

identified, replicated, and then suitably reconnected to the rest of the model. Finally,

analytical solution of PN-based performance model can be impractical for systems

with a large number of concurrent states. In these cases models can be solved through

simulation, at the expense of often high execution costs.

 PN-based models are less suitable than QN to represent relevant factors affecting

performance. In fact, aspects such as hardware component replicas, software

component multithreading, or software and hardware contention are not directly

representable.

2.3.3 Stochastic Process Algebras

SPA represent a better candidate than SPN to model software performance in the

early phases of the software lifecycle. In fact, SPA allow a natural mapping between

processes and software components. SPA also allow to model software internal

dynamics. As a drawback, hardware components and deployment of software

components are not directly representable; particular modeling strategies have to be

adopted to overcome this limit. Synchronous communication can be easily specified.

However, other types of interactions between software components (e.g.,

asynchronous) may require additional actions, increasing model complexity and

decreasing the correspondence between software model behavior and SPA model.

- 19 -

Model changes may require some effort because in SPA, as in SPN, since many types

of performance information are not managed explicitly (e.g., hardware service rates,

deployment of software, etc.). Finally, model solution can use analytical methods if

the corresponding Markov model has a manageable number of states. Otherwise

simulation has to be used.

 The adequacy of SPA to embed relevant performance factors is medium. In fact,

SPA can directly represent user requests, internal dynamics and (synchronous)

interactions, replicas and threading of software components, software contention, etc.

However, other factors such as allocation of software to hardware platforms, or

hardware contention cannot be expressed.

2.3.4 Simulation Models

Simulation represents the most general and powerful modeling technique. It can be

used to represent early abstractions of a software system, provided that enough details

about system behavior are known. Simulation models can be very expressive and

embed all the relevant factors affecting performance. However, their usage also

implies disadvantages. In fact, simulation models may require a high development

cost, especially for complex systems. Model solution can also be time consuming.

The output of simulation programs consists of streams of random variables and

usually requires special skills to be analyzed, for instance using appropriate statistical

techniques. It is also not possible to obtain performance results as a function of one or

more model parameters (e.g., number of system users). Instead, a separate simulation

model has to be performed for each different parameter value.

- 20 -

Chapter 3: A Methodology for Early
Software Performance Analysis

In this chapter we present our methodology to address the problem of early

performance analysis of software systems. The methodology uses UML as the

software modeling notation and LQN as the performance modeling notation. We

devise a transformation to automatically derive a LQN model from a set of UML

diagrams. The transformation is largely inspired by previous work presented in [20,

21, 39, 40, 41, 46]; however, our contribution is the adaptation of the existing

techniques to a different set of UML diagrams, which are more suitable to be used in

early stages of the software development lifecycle. We suggest extensions to the

current UML Performance Profile to allow a more convenient specification of the

performance characteristics of the system under examination. Extensions are also

proposed to cover gaps in the current Profile, which does not cover UML 2.0

diagrams.

3.1 Software Specification Model

The Unified Modeling Language (UML) [10] provides the basis of our performance

analysis methodology. The main reasons for its selection are the widespread diffusion

and acceptance of UML as a de facto standard for software specification, and the need

to integrate performance modeling and evaluation with standard practice development

- 21 -

environments [5]. An additional reason is that since the adoption by OMG of the

“UML Profile for Schedulability, Performance and Time” [36], UML enables

quantitative performance annotations that can be used to establish requirements for

the generation of performance models.

 This section provides a brief overview of the UML notation focusing on the

features we use in our performance evaluation methodology.

3.1.1 UML

UML [10] is a semi-formal language developed by the OMG to specify, visualize, and

document software artifacts. The UML notation is quite rich, including a set of

diagrams that can be used to model systems from different points of view and at

different levels of detail. However, UML deliberately lacks a formal semantics. While

on one hand this is an advantage, since it allows to use and combine UML models

with few restrictions, on the other hand it is also a drawback because it makes any

formal reasoning based on UML specifications very difficult.

 Quantitative performance analysis of software systems based on annotated UML

diagrams requires that system specification models are translated into performance

models. To bridge the gap between software design and performance analysis this

process should be automatic, possibly integrated within common software

development tools and environments. Since the introduction of SPE a significant

research effort has been devoted toward this direction and many techniques for

manual or automatic derivation of performance models directly from UML software

specifications have been proposed [4].

3.1.2 UML Diagrams

UML includes two fundamental types of diagrams: structural diagrams and behavioral

diagrams. UML 2.0 [78] provides better capabilities than its previous version to

- 22 -

model behavioral diagrams; for this reason hereinafter we will implicitly refer to the

new release.

 Structural diagrams model the logical or physical structure of system components

and include Class Diagram, Component Diagram, Composite Structure Diagram,

Deployment Diagram, Package Diagram, and Object Diagram.

 Behavioral diagrams model system dynamics and include Use Case Diagram,

State Machine Diagram, Activity Diagram, Sequence Diagram, Communication

Diagram, Interaction Overview Diagram, and Timing Diagram.

 We are not interested in considering all the diagrams above as possible software

specification models. Rather, our focus is on a minimal subset of diagrams that allows

capturing early performance-relevant information of software systems. In particular,

we adopt Use Case Diagrams to identify performance-relevant system functions and

workloads, Sequence Diagrams to model performance scenarios, and Deployment

Diagrams to represent possible platform configurations for the system. For simplicity

we assume that only one Use Case Diagram and one Deployment Diagram are

associated with the system under study. However, this does not represent a serious

limitation to the applicability of our methodology. In fact, in case multiple Use Case

Diagrams or Deployment Diagrams were available, it would be sufficient to

separately process each of them.

Use Case Diagram

Use Case Diagrams capture high-level interactions between a system and users that

invoke its functionalities. A use case is “a set of sequences of actions, including

variants, that a system performs that yields an observable result of value to an actor”

[10]. An actor identifies a significant system stakeholder i.e., a physical or logical

entity requiring services.

A Use Case Diagram is graphically displayed as a rectangle, representing system

boundary, filled with ellipses, representing use cases. Actors, shown as stick figures

- 23 -

or stereotyped icons, are connected to the use cases they generate or take part to. Both

use cases and actors are associated with descriptive names. Figure 3 represents a

simple example of Use Case Diagram for a simplified ATM system, which allows

users to check their balance and to deposit or withdraw money.

Figure 3: Example of Use Case Diagram

From a performance perspective Use Case Diagrams allow to identify performance-

relevant functions of the system, i.e. interactions that “are critical to the operations of

the system, influence user’s perception of responsiveness, or represent a risk that

performance goal might not be met” [50]. They also help to identify significant user

workloads.

Sequence Diagram

Sequence Diagrams specify the dynamics of use cases in terms of interactions

between system components. They represent the components involved in the

interactions, and the set of partially ordered messages exchanged between them. A

- 24 -

message can express either an event or an invocation of an object’s method. Both

synchronous and asynchronous communication can be represented.

 Since UML 2.0, Sequence Diagrams have better capabilities to model complex

system dynamics than the previous UML version. In fact, so-called fragments have

been introduced, which allow to clearly specify alternation, looping, concurrency, etc.

“A combined fragment includes a portion of a Sequence Diagram surrounded by a

frame, and contains one or more operand regions tiled vertically and separated by

horizontal dashed lines. An operator shown in the upper-left corner of the frame

prescribes how the operand regions of the combined fragment are handled. For

instance, the operators opt and alt are used for branch selection, par for parallel

execution, and loop for repetition. Another new feature allows for hierarchical

decomposition of a scenario step into a more detailed subscenario. This is done by

using an interaction occurrence, a fragment labeled with the operator ref, which

refers to another interaction shown in a separate Sequence Diagram” [56].

 An example of Sequence Diagram for the “Check Balance” function of the ATM

system in Figure 3 is shown in Figure 4. We can observe that system components are

laid out near the top of the diagram, from left to right. The lifeline of a component is

rendered as a dashed line extending downward from the objects and representing the

advancing of time. Along the lifeline are narrow rectangles representing the execution

of component operations. Messages go from the sending component lifeline to the

receiving component lifeline. They are displayed as arrows whose head shape

indicates the type of the message. Table 1 shows the arrowheads available in UML

2.0.

 Taking a performance perspective, we use Sequence Diagrams to model the

dynamics of “the scenarios within each use case that have the greatest impact on

performance” [50], i.e., the performance scenarios. Identification of performance

scenarios using Use Case Diagram and specification of their dynamics using

- 25 -

Sequence Diagrams are essential steps toward our definition of a system performance

model.

Table 1: Types of Sequence Diagram messages

 Synchronous message

 Asynchronous message

 Response to synchronous message

Figure 4: Example of Sequence Diagram

Deployment Diagram

Deployment Diagrams model the platform configuration of the system and the

allocation of its software components to the hardware devices in the configuration,

- 26 -

called nodes. Communication between different nodes is represented using

communication paths.

 Graphically, a Deployment Diagram consists of a graph of nodes connected by

communication associations. Nodes may contain component instances; this indicates

that the components execute on the node. Components may be connected to other

components using dashed-arrow dependencies, implying that one component uses

services of another component. Figure 5 shows a simple Deployment Diagram for the

ATM system modeled by the Use Case Diagram in Figure 3 and the Sequence

Diagram in Figure 4.

Figure 5: Example of Deployment Diagram

The use of Deployment Diagrams for performance modeling is motivated by the need

to identify the hardware devices running a software system and the allocation of the

software components of the system to those devices. This allows to estimate the

resource demands of interactions represented within performance scenarios. Each

interaction is potentially resource consuming, and only knowing the device executing

the operation and its service rate we can associate a time requirement to the step,

which is an essential datum to build a performance model of the system.

3.1.3 UML Performance Profile

The “UML Profile for Schedulability, Performance, and Time” [36] extends UML

using standard mechanisms, i.e., stereotypes, tagged values, and constraints. Its goal is

- 27 -

to enable quantitative annotations that can be used to capture performance

requirements for the system at the design level, and to associate performance-related

characteristics with selected elements of a UML model [36].

Figure 6: Performance analysis domain model

The Performance Profile defines a domain model, represented in Figure 6, which

identifies basic abstractions that can be used to support the central concepts of

performance analysis. Examples of these concepts are scenarios, workloads, and

resources. Scenarios define system responses to user requests, and can have QoS

requirements such as response time or throughput. Scenarios are executed by a job

class or user class with certain load intensity, called workload. Workloads can be

either open or closed. Open workloads are characterized by a certain arrival rate and

distribution (e.g., Poisson); closed workloads have a fixed number of potential users

cyclically requesting system functions, with a delay period – called Think Time –

between the end of a system response and the issuing of the next user request. Each

scenario is composed by scenario steps that can be joined in sequence, loops,

branches, forks, and joins. A scenario step may be an elementary step, or a complex

- 28 -

sub-scenario, composed of many elementary steps. Each step has a mean number of

executions, a host execution demand, demands to other resources (such as file I/O),

and optionally its own QoS properties. Resources are another basic concept defined

by the Profile. They can be active or passive, each resource type with its own

attributes. Active resources have processing capabilities (e.g. CPU), while passive

resources have not (e.g. I/O devices); they need to be acquired to execute an

operation, and they usually have limited capacity.

 The main stereotypes defined by the Profile include «PAclosedLoad»,

«PAopenLoad», «PAhost», «PAresource», and «PAstep».:

- «PAclosedLoad» models a closed workload. Its main tags are: PApopulation and

PAextDelay. The former defines the number of system users; the latter specifies

the Think Time between successive user requests.

- «PAopenLoad» models an open workload. Its main tag is PAoccurrence, which

defines the arrival pattern of workload users. This usually corresponds to a

random variable of given distribution.

- «PAhost» models a processing resource. Its tags include PArate, PAschdPolicy,

and PActxSwT. The first one indicates the processing rate of the resource. The

second one is the scheduling policy for the resource (e.g., FIFO, LIFO). The last

one is the time needed to perform a context switch.

- «PAresource» models a passive resource. Its tags include PAcapacity and

PAaxTime. PAcapacity defines the initial and maximum number of available

instances of the resource. PAaxTime specifies the access time of the resource.

Releasing a resource is assumed to require no time.

- «PAstep» models a step in a performance scenario. Its tags include: PAdemand,

PAextOp, PAprob, and PArep. PAdemand indicates the total execution demand of

the step on its host resource. PAextOp specifies operations on resources that are

needed to execute the step, but which are not explicitly represented in the UML

- 29 -

model. PAprob is the probability that the step will be executed. Finally, PArep is

the number of times the step will be repeated.

3.2 Performance Model

Nowadays Queuing Networks (QN) are the preferred choice for performance

modeling because of their abstraction level - which makes them suitable to express

high-level software architecture models -, and because of the availability of efficient

solution algorithms and tools to evaluate the models [5]. However, classical QN are

constrained in the representation of behavioral details emerging from more detailed

software design models [13]. This limitation is overcome by Layered Queuing

Networks (LQN), which provide proper abstractions to express potentially complex

operations performed by software components. Moreover, unlike classical QN, LQN

can explicitly represent software components and their common characteristics (e.g.,

resource requirements, multithreading, allocation to hardware devices, etc.).

Accordingly, it is also possible to obtain performance figures explicitly related to

them, such as utilization, response time, and throughput. This allows to identify

software bottlenecks, i.e., the overloading of one or more software components, while

the underlying CPUs are lowly used. Another feature of LQN that is missing in QN

models is the possibility to represent nested services, i.e., situations where servers

issue requests to other servers, present in many distributed systems (e.g. three-tier

software systems).

 Because of all the advantages and properties mentioned above, LQN is the

performance modeling notation we adopt within our performance evaluation

methodology. The next subsections briefly review the notation and describe the

software tools supporting the specification and solution of LQN models.

- 30 -

3.2.1 LQN

The LQN notation was developed as a combination of Stochastic Rendezvous

Networks and the Method of Layers presented in [17, 45, 53, 54]. LQNs describe a

system as a set of software and hardware resources. Software resources are processes,

threads, semaphores, and other logical entities. Hardware resources are devices such

as CPUs, disks, computing devices, etc. Resources can be modeled within LQNs

using tasks and host processors.

 A task models a logical resource that requires mutual exclusion. An entry models

an operation that processes a distinct class of messages received by the task. For

example, if a task models an object, entries can represent its methods. An entry is

specified by its resource demands, which include the total average amount of host

processing, and the average number of calls required for service operation to

complete. A task is associated with a host processor, which represents the physical

entity that carries out the operations. Tasks and processors include a queue, a

discipline, and a multiplicity.

 Interactions between software tasks are expressed as service requests, named as

calls in LQN models. Tasks may send and receive service requests and play the

client/server role. If tasks do not receive any request they are pure clients, called

reference tasks, and they represent load generators or users of the system. Service

requests between tasks can be made using three types of interactions: synchronous,

asynchronous, and forwarding. LQN synchronous and asynchronous interactions are

interpreted in the usual way. Forwarding interactions require that the sending task

makes a synchronous call and blocks waiting for a response. However, the receiving

task does not reply; in fact, after partially processing the call, it forwards the request

to a third task, which either replies to the blocked client task or forwards the request

further.

- 31 -

 A recent extension to LQNs [18] introduces a new model primitive called activity.

Activities allow detailing the sequence of operations executed when a task accepts a

request at an entry. Activities can be connected in sequence, loop, parallel

(AndFork/AndJoin) and alternative (OrFork/OrJoin) configurations. Just like entries,

they have execution time demands and can issue service requests to other tasks.

 A LQN model is graphically represented by an acyclic graph, whose nodes

correspond to tasks and host processors. Tasks are depicted as parallelograms, and

processors as circles. Arcs between tasks and processors indicate the allocation of

software components to hardware devices. Arcs toward task entries denote service

requests. They are labeled by the mean number of issued requests; in the absence of a

label, a default value of one is assumed. The shape of the arc arrowhead expresses the

type of the message (i.e., synchronous, asynchronous, forwarding).

 Figure 7 shows an example of LQN model. Users is a non-reference task, i.e., a

workload generator. n users are assumed to issue requests to the system with a Think

Time of 10s. p1 and p2 are host processors. A and B are tasks with entries s1 and s2,

whose associated service demands are 0.5s and 0.001s, respectively. Entry s1 is

detailed by activities A1 and A2, which do not have associated service demands. The

number of calls to entries is not indicated; this implies a default value of 1.

- 32 -

s1
s=0.5 A

A1

s2
s=0.001 B

r
z=10s

Users
{n}

A2[r]

p2

p1

host processor

task

activity

entry

service
request

multiplicity

service
demand

think
time

Figure 7: Example of LQN model

3.2.2 LQN Tools

LQN models can be created using the LQN modeling language [38], the XML

grammar described in [19], or the visual software jlqndef [55]. Both analytical and

simulation tools are available to solve LQN models [19]. They all have been

developed within the Department of Systems and Computer Engineering at Carleton

University in Ottawa, Canada, and are freely available upon registration.

 lqns is an analytical solver using mean-value queuing approximations. lqsim is a

simulation solver using discrete-event simulation. multisrvn is an experiment

controller that executes parameterized experiments over given ranges. All these

software tools are textual; they can be only be executed at the command line.

- 33 -

3.3 UML to LQN Transformation

Several approaches to derive LQN performance models from UML software

specifications have been presented in the research literature [20, 21, 39, 40, 41, 46]. In

the next subsection we provide a brief overview of the assumptions, input

information, and transformation methodologies they use; we also point out at their

benefits and limits. Afterwards, we describe our approach for UML to LQN

transformation.

3.3.1 Previous Work

In [39, 40] a graph grammar-based transformation from UML to LQN is described.

The transformation assumes the availability of UML Collaboration Diagrams,

Deployment Diagrams, and Activity Diagrams. The UML diagrams have to be

annotated using standard extensions defined by the UML Performance Profile.

 The structure of the LQN model is generated using Collaboration Diagrams and

Deployment Diagrams. The former represent the high-level software architecture of

the system and the interaction patterns between software components (such as

client/server, master-slave, pipeline and filters, etc.). The latter specify the allocation

of software components to hardware devices. The dynamics of the performance model

is generated from detailed descriptions of key performance scenarios based on

Activity Diagrams. Parameters for the LQN model are given by the performance

annotations on the Activity Diagrams.

 The actual transformation from UML to LQN has been implemented in different

ways. In [40] an existing graph-rewriting tool called PROGRES [46] is adopted and a

set of production rules to convert UML diagrams into LQN models is defined. The

disadvantage with the approach is that it introduces an additional step in the software

development process, i.e., the conversion of each UML Activity Diagram into a

PROGRES graph to be used as the input for the transformation.

- 34 -

 Another technique [41] implements an ad-hoc graph transformation in Java. The

input graph is an XML representation of a UML model that is transformed into a set

of Java objects. This approach is preferable to the previous one because it eliminates

the step of creating a PROGRES input graph from the UML model. Instead, it is only

necessary to convert the UML model into its XML format, which is easily obtainable

using any UML software tool. The transformation is more efficient because it is

tailored to the problem at hand. Another advantage is that it is possible to integrate the

performance model builder with a UML tool.

 The third methodology is presented in [21]. An XML representation of a UML

model is again the input to the transformation, which is based on XML tree-

manipulation techniques using XMLgebra. The advantage of the proposed

transformation is its flexibility, since it can easily be applied to create performance

models based on notations different than LQN.

 The forth and last solution, proposed in [20], is conceptually similar to the second

one, in that the starting point of the transformation is again a XML representation of a

UML model. However, the LQN model is generated from the XML file using XSLT.

 From the point of view of a potential user the last three techniques are not different

from each other. However, from the perspective of a solution developer the XSLT

program is shorter and easier to create than implementing the Java program or

defining the XML tree-manipulation rules.

3.3.2 Our Approach

In this section we propose a UML to LQN transformation to derive a performance

model of a software system modeled with UML diagrams. Our transformation is

conceptually and methodologically similar to the ones reviewed in the previous

section. However, we do not use Collaboration Diagrams to model architectural

patterns of communication between software components, since we only focus on

distributed systems using client/server interactions. We also adopt UML 2.0 Sequence

- 35 -

Diagrams instead of Activity Diagrams to model performance scenarios. The reason

for our choice is that “performance is largely a function of the frequency and nature of

intercomponent communication […]” [12], and Sequence Diagrams are the most

appropriate UML model to express cooperation between system components. Unlike

Activity Diagrams, Sequence Diagrams are very good at showing which components

are responsible for different actions, and the partial order of execution of scenario

steps. Additionally, since UML 2.0, Sequence Diagrams can represent complex

software dynamics, including non-sequential flows of control, very well. In fact, the

introduction of the “combined fragment” feature, described in Section 3.1.2, allows to

represent branches, loops, parallel execution, etc.

 We annotate UML diagrams with performance-related information partly using the

UML Performance Profile, partly using newly introduced stereotypes and tagged

values, which we will explain later. The motivation for these extensions is the

convenience of associating expected system workloads with different classes of

system users, instead of with each performance scenario, as prescribed by the current

Performance Profile. Given the user workloads and the set of probabilities of

executing use cases and scenarios, it is then possible to “automatically” estimate the

workload associated with each of them. This procedure involves adding performance

annotation to Use Case Diagrams, and slightly modifying the annotations currently

associated with Sequence Diagrams. Consistently with naming conventions used by

the standard UML Performance Profile, we prefix the newly introduced performance-

related UML extensions with the “PA” string.

- 36 -

A high-level description of our algorithm for UML to LQN transformation is shown

in Figure 8. Next, we present details about its assumptions and methodological steps.

INPUT: Use Case Diagram, Sequence Diagram, Deployment Diagram.

 Performance annotations

TRANSFORMATION:

1. Generate the LQN model structure

a. Determine LQN devices from DD

b. Determine LQN tasks from UCD, DD, and SD

c. Determine the allocation of tasks to devices from DD

2. Generate details for LQN entries and activities

 - For each performance scenario process the corresponding SD

a. Determine entries of reference tasks

b. Determine entries for offered services

c. Determine entries for external services

d. Determine activities

e. Determine request flow among entries and activities

3. Generate LQN parameters from UML performance annotations

OUTPUT: LQN model

Figure 8: High-level algorithm for UML to LQN transformation

Input

The definition of a complete LQN model of a software system requires the following

information:

- high-level software architecture to determine the performance model structure, i.e.,

the configuration of the system software and hardware resources;

- detailed performance scenarios to determine the flow of service requests among

software and hardware resources in the performance model;

- 37 -

- performance annotations to determine the workload and resource requirements

associated with the performance model.

 We adopt Deployment Diagrams to meet the first requirement. Sequence Diagrams

are used to model performance scenarios. Finally, annotations on Use Case Diagram

and Sequence Diagrams are used to parameterize the LQN model. In the next

subsections we describe our assumptions about each type of UML diagram; we also

explain which performance annotations defined in the UML Performance Profile we

use, and which we introduce to address potential Profile incompleteness.

Use Case Diagram

We adopt Use Case Diagrams to help performance analysts to identify performance-

significant system actors and use cases, corresponding to the user groups and

functions that are critical to the perceived performance of the system. We annotate

performance-significant users in Use Case Diagrams with expected user workloads

using the «PAclosedLoad» and «PAopenLoad» stereotypes introduced in Section

3.1.3. Associations between performance-significant actors and performance-

significant use cases are annotated with the <<PAuse>> stereotype, whose tagged

value, PAprob expresses the probability that a user invokes the linked use case. This

allows to automatically compute user workloads on different performance scenarios

based on the probabilities associated with the scenarios and with the related use cases.

Figure 9 represents a simple Use Case Diagram annotated for performance

assessment purposes. The diagram indicates that the system has 10 potential or active

users of type User1, using the system with an assumed Think Time of 30 seconds

between successive requests. The system has an unlimited number of users of type

User2 (open workload), invoking system functions according to a Poisson distribution

with average 0.5s.

- 38 -

Figure 9: Annotated Use Case Diagram

Let m be the number of different performance-relevant users, and n the number of

performance-relevant use cases within a Use Case Diagram. Let pi (j) (i=1,…,m,

j=1,…,n) be the probability that the ith user makes use of the software system by

executing the Use Case j (∑). Then the workload generated by the ith

user on UC j can be determined based on the user workload type. In fact, if the user

generates a closed workload with population x and Think time t, the workload on UC j

includes a population x with Think Time t

=
≤

n

i i jp
1

1)(

i (j) = t / pi (j). On the other hand, if the user

generates an open workload with arrival distribution function f, the workload

generated by user i on UC j is characterized by an arrival distribution function fi (j) = f

· pi (j).

 Referring to Figure 9 the workload generated by User1 on UseCase1 includes a

population of 10 users, with think time 150s = 30 / 0.2. On the other hand, the

workload generated by User2 on UseCase1 is characterized by a Poisson arrival

distribution with mean 0.25s = 0.5s · 0.5.

Sequence Diagram

We use Sequence Diagrams to model the dynamics of performance scenarios,

identified by the stereotype <<PAcontext>> of the UML Performance Profile. As

explained in the previous section, we adopt Use Case Diagrams to identify

performance-significant use cases. However, for each significant use case, not all

- 39 -

scenarios are performance scenarios, i.e., are relevant from a performance standpoint.

For this reason, we associate with the <<PAcontext>> stereotype the tagged value

PAprob, expressing the probability of executing the scenario in exam, with respect to

other ones referring to the same use case.

 We also introduce performance annotations for combined fragment regions and

their operands. This is not possible using the standard UML Performance Profile,

since it was defined for UML 1.4 and has not been upgraded for UML 2.0. In

particular, we annotate the single operand of the opt fragment with the tagged value

PAprob, expressing the probability that the set of scenario steps represented in the

fragment is executed. Similarly, we annotate with PAprob each operand of the alt

fragment, with the constraint that the sum of the given probabilities is equal to 1.

Finally, we annotate with PArep the operand of the rep fragment, to specify the

number of times the set of steps represented in the fragment is repeated.

 Figure 10 shows a possible Sequence Diagram with performance annotations. We

assume that the scenario refers to the use case UseCase1 depicted in Figure 9. The

diagram is labeled by <<PAcontext>>, hence it represents a performance scenario.

The probability of execution of the scenario is expressed by the variable p associated

with the tag PAprob. In the diagram the stereotype <<PAresource>> identifies

system components. These are usually software components; however, other resource

types are possible, such as passive resources or even human resources required to

carry out system operations. The tag PAcapacity is optionally attached to the

<<PAresource>> stereotype to indicate the number of replicas or the level of multi-

threading of the corresponding resource. If the tag is omitted a default value of 1 is

assumed.

 Scenario steps are labeled by the stereotype <<PAstep>>, and annotated with the

corresponding resource demand using the tag PAdemand and PAextOpt. PAdemand

expresses the processing time required to execute the step. As with any performance

- 40 -

value the demand can be a required, assumed, estimated or measured value. In Figure

10 all values are assumed. They represent mean values and are expressed in

milliseconds. Scenario steps are optionally associated with the PAextOp tag, which

defines the time requirement of external operations, i.e., operations on resources that

are needed to execute the step, but which are not explicitly represented in the UML

model.

 The workloads associated with performance scenarios can be computed using the

user workloads calculated in the previous section and the execution probabilities of

scenarios. In particular, if pi (j, k) is the probability of user i executing scenario k of

Use Case j (i=1,…,m, j=1,…,n, k=1,…,h), the workload generated by user i on that

scenario can be determined based on the user workload type. In particular, if the user

generates a closed workload on UC j with population x and Think Time ti (j), the

workload on scenario k has population x and Think Time ti (j, k) = ti (j) / pi (j, k). On

the other hand, if the workload is open and the arrival rate is fi(j), the arrival rate for

scenario k can be computed as fi (j, k) = fi (j) · pi (j, k).

- 41 -

Figure 10: Annotated Sequence Diagram

Deployment Diagram

We adopt Deployment Diagrams to represent the platform configuration where the

application in exam is targeted to run. Deployment Diagrams allow to identify

software and hardware resources within the system and the allocation of software

components to hardware nodes. We use standard features of Deployment Diagrams.

We also use standard extensions defined by the UML Performance Profile, with the

- 42 -

exception of the association of the tag PAcapacity not only with the

<<PAresource>> stereotype, but also with <<PAhost>>, to represent the number of

CPUs of a processing device. If the tag is absent, a default value of one instance is

assumed. A special situation is represented by the specification of a ∞ symbol for

PAcapacity, which means that the associated device imposes no resource constraint,

and no queues are formed to use its services (e.g., WAN).

 Figure 11 shows an example of annotated Deployment Diagram. In the diagram the

nodes labeled by the <<PAhost>> stereotype, i.e., ClientCPU, ServerCPU, DBCPU,

represent processing devices. Nodes labeled by <<PAresource>>, i.e., WAN and Disk,

correspond to non-processing devices; they cannot initiate events but only respond to

them. If <<PAresource>> is associated with a software component instead of a

hardware node, it indicates a software unit running under its own thread of control,

e.g., A, B and C. The tag PAcapacity can optionally be associated with resources

labeled by the <<PAhost>> and the <<PAresource>> stereotypes to indicate the

number of CPU, or the number of replicas or threads of the corresponding software or

hardware resource. In Figure 11 ServerCPU has x CPU, while software component C

has y threads of control.

- 43 -

Figure 11: Annotated Deployment Diagram

STEP 1:

The first step of the algorithm for UML to LQN transformation generates the LQN

model structure (i.e., LQN tasks, devices, and connecting arcs between them). The

step is rather straightforward. In fact, there is a close correspondence between

elements of the Deployment Diagram used as input by the transformation algorithm,

and LQN model entities. The correspondence is made even more explicit by the

performance annotations attached to the Deployment Diagram, which allow to

quickly identify tasks, devices, and their mappings.

STEP 1.a:

This step generates LQN devices of the performance model. It explores the

annotations on the Deployment Diagram for the system, and creates LQN devices for

each UML node. The optional tag PAcapacity is used to associate a number of

- 44 -

replicas to the identified devices. Figure 12 shows a graphical representation of the

transformation step.

X

{ s }

Y
{ t }

Figure 12: Mapping from Deployment Diagram elements to LQN devices

STEP 1.b:

This step, represented graphically in Figure 13, generates LQN tasks for the

performance model.

 Reference tasks are defined to represent significant user workloads in the Use Case

Diagram for the system. If a closed user workload is assumed, the reference task is

given multiplicity equal to the user population size; the Think Time of its entries will

be specified in Step 3. If an open workload is considered, the multiplicity of the

reference task is set to one; the arrival rate of its entries will be specified in Step 3.

Referring to the Use Case Diagram in Figure 9, the reference tasks we identify for the

system are User1 and User2.

 Non-reference LQN tasks are created by examining the Sequence Diagrams for the

system and defining a new task for each component labeled by the <<PAresource>>

stereotype. Tasks are also created for hardware nodes labeled by the same stereotype

in the Deployment Diagram. In this case, the task takes the role of a software

- 45 -

controller implementing the access mechanism to the resource. The value of the

optional tag PAcapacity is used to associate a level of multi-threading different from

one to the task. A special situation is represented by the specification of a ∞ symbol

for the tag, which indicates that the corresponding resource is a delay server. Delay

servers serve incoming user requests immediately; no wait time is required to access

the resource.

User

Workload

Dummy
Device

{ ∞ }

YTask

{ t }

YDevice

{ t }

Z

{ u }

Figure 13: Mapping from Deployment Diagram elements to LQN tasks

STEP 1.c:

This step generates connecting arcs between LQN tasks and devices, based on the

deployment relationships between software and hardware components represented in

the annotated Deployment Diagram. Not all LQN tasks defined in Step 1.b correspond

- 46 -

to deployable resources; for instance, reference tasks are not associated with any

system device, the same happens with <<PAresource>> components represented in

Sequence Diagrams but not in the Deployment Diagram. However, in the LQN

notation each task needs to be associated to a host processor. To meet this

requirement we map the mentioned tasks to dummy LQN devices with infinite

capacity. Figure 14 shows the result of the execution of this step on the Deployment

Diagram in Figure 11.

A

ClientCPU

WANTask
{ ∞ }

WANDevice
{∞ }

C
{ y }

DBCPU

B

ServerCPU
{ x }

DiskTask

DiskDevice

User2
Dummy
Device2

{∞ }

User1
{ z } Dummy

Device1
{∞ }

Figure 14: Mapping between LQN tasks and corresponding devices

STEP 2:

The second step of the algorithm for UML to LQN transformation creates LQN

entries, activities, and the request flow among them using the set of Sequence

Diagrams (labeled by <<PAcontext>>) given in input to the transformation. The

- 47 -

step processes each Sequence Diagram, following its message flow and generating

LQN model entities accordingly, as described in the following paragraphs.

STEP 2.a:

For each reference task defined in Step 1, a LQN entry is created for every

performance-significant scenario the corresponding user initiates. Each entry

corresponds to a workload generator for the scenario. Referring to the Use Case

Diagram in Figure 9, and assuming that the performance scenario in Figure 10 is the

only one for UseCase1, this step creates for the reference task User1 the entry

UseCase1.

STEP 2.b:

For every scenario a LQN task entry is generated for each type of service offered by a

software component. We identify such services by looking at the operations invoked

by the clients of the component, or, equivalently, by looking at the messages received

by the software component in the considered scenario. The application of this

procedure to the Sequence Diagram in Figure 10 leads to the identification of three

LQN Entries: startUseCase1 belonging to task A, m1 belonging to task B, and m2

belonging to task C.

STEP 2.c:

LQN task entries are generated within the task corresponding to a software controller

for a passive resource, for each interaction represented in a Sequence Diagram that

involves usage of that resource. In particular, LQN task entries are generated for

scenario steps – labeled by the <<PAextOp>> stereotype – which require the use of a

hardware device other than the host processor. Each entry models the demand on the

external resource for a similar interaction. This means, for instance, that message m1()

in Figure 10 requires the creation of a new entry. In fact, the message is exchanged

between components connected by a WAN, labeled in Figure 11 as a passive resource

- 48 -

by the <PAresource>> stereotype. The entry models the request of the WAN

resource for that interaction.

STEP 2.d:

LQN task activities are generated to represent internal computations of a software

component, identified by self-addressed messages of the component corresponding to

the task. Non-sequential flow of control, represented in UML 2.0 by the combined

fragment feature of Sequence Diagram, also generates activities. In Section 3.1.2 we

briefly reviewed the main types of combined fragments available to model complex

software dynamics, i.e., opt, alt, par, and loop. Here we restrict ourselves to that

subset. The next paragraphs describe how to process each fragment toward the

generation of a LQN model.

 The opt fragment corresponds to the optional execution of the set of scenario steps

contained within the corresponding frame. Its translation within the LQN model

generates an LQN “OrFork” within the task generating the first optional message. The

“OrFork” connects two activities. One of them is used to model the set of optional

steps; the other just connects to the activity merging the conditional branching. Figure

15 shows a very simple example of opt fragment, where software component A

invokes service m() on component B depending on a guard with probability p. Figure

16 shows the LQN translation of the fragment, generated according to the above

description. The translation is not connected to the rest of the model, since we do not

know its full context.

- 49 -

Figure 15: Example of opt fragment

... A

A1

A2 A3

+

+

A4

m B

p 1 - p

Figure 16: Translation of opt fragment in LQN notation

The alt fragment is very similar to the opt fragment. In fact, it is used to represent

conditional branching. However, differently from the opt fragment, the alt fragment

can represent multiple branches, each associated with a guard and a probability. The

translation of an alt fragment in the LQN notation generates an “OrFork” within the

task generating the first optional message. The “OrFork” connects a number of

- 50 -

activities equal to the number of conditional states represented in the fragment. Each

activity is used to model the set of steps within a state. The probability of an activity

corresponds to the probability of the corresponding state. Figure 17 shows an example

of alt fragment, where software component A invokes service m1() on software

component B depending on a guard with probability p1; A invokes service m2() on B

depending on another guard with probability p2; if the previous guard conditions are

not satisfied A executes operation m3. Figure 18 shows the LQN translation of the alt

fragment, generated according to the description above. The translation is not

connected to the rest of the model, since we do not know its full context.

Figure 17: Example of alt fragment

- 51 -

... A

A1

A2 A3

+

+

A4

m1 B

p1 1 – (p1 + p2)

m3
p2

m2

Figure 18: Translation of alt fragment in LQN notation

The par fragment is used to model the parallel execution of multiple sets of scenario

steps contained within the corresponding fragment, each separated by a dashed line.

Its translation within the LQN model generates an LQN “AndFork” within the task

generating the first parallel message. The “AndFork” connects a number of activities

equal to the number of parallel threads represented in the fragment. Each activity is

used to model the concurrent thread of execution represented by the set of steps

within a thread. Figure 19 shows an example of par fragment, where, in parallel,

component A invokes service m1() on software component B, and executes operation

m2. Figure 20 shows the LQN translation of the par fragment, generated according to

the description above. The translation is not connected to the rest of the model, since

we do not know its full context.

- 52 -

Figure 19: Example of par fragment

... A

A1

A2 m2

&

&

A4

m1 B

Figure 20: Trans LQN notation lation of par fragment in

- 53 -

The last type of fragment we consider is loop, which models the repeated execution of

the set of scenario steps contained within the corresponding fragment. Its translation

within the LQN model generates a LQN activity within the task executing the first

operation of the sequence. The activity repeatedly invokes that operation for a number

of time equal to number of loop repetition specified in the fragment the tagged value

PArep. Figure 21 shows an example of loop fragment, where component A invokes

service m() on component B for a number of time n. Figure 22 shows the LQN

translation of the loop fragment, generated according to the description above. The

translation is not connected to the rest of the model, since we do not know its full

context.

Figure 21: Example of loop fragment

... A

A1

m B

n

Figure 22: Translation of loop fragment in LQN notation

- 54 -

STEP 2.e:

The request flow among LQN entries and activities is clearly established from the

sequence of messages represented in the Sequence Diagram.

 A request arc is generated when a communication is detected between an entry or

activity of a task playing the role of client, and the entry of another task, playing the

role of server [20]. If a scenario step is associated with a PAextOp tagged value,

denoting the usage of a hardware device other than the host processor executing the

step, a request arc has to be generated to connect the entry requesting the use of the

device with the entry created in the corresponding controller task for the interaction in

exam; another ark has to be created to connect the receiving entry of the controller

task to the destination entry of the server task.

 A request can have different types. In fact, as reviewed in section 3.2.1, LQN

service requests may be synchronous, asynchronous, or forwarding. Synchronous and

forwarding interactions determine potential software blocking which may have

significant performance implications; therefore it is important to determine them.

With Sequence Diagrams synchronous and asynchronous messages are immediately

identifiable based on the shape of the arrowhead corresponding to the interaction.

Forwarding messages can instead be identified using the Call and Reply Stack (CRS)

algorithm presented in [42], which follows the sequence of interactions between

components and resolve their roles by examining the history of preceding messages.

 Request arcs between activities are generated to connect them in sequence, loop,

parallel, and alternative configurations, as seen with the translation of the combined

fragments explained previously in this section. This leads to the creation of

precedence graphs, which express for each task the internal and interaction dynamics

of the corresponding software component in the system.

- 55 -

Figure 23 represents the outcome of the execution of Step 2 on the performance

scenario represented in Figure 10.

User1
{ 10 } Dummy

Device1
{ ∞ }

UC1

User2
Dummy
Device2

{ ∞ }

UC1

m1 B

A1

A2 m4

&

&

A4[r]

m2
C

{ y }

startUseCase1 A

readDisk DiskTask

send-m1 WANTask
{ ∞ }

ClientCPU

WANDevice
{ ∞ }

ServerCPU
{ x }

DBCPU

DiskDevice

Figure 23: Sample LQN model at the end of Step 2

- 56 -

STEP 3:

The LQN model obtained at this point needs to be parameterized with appropriate

performance data, i.e., workload generated by reference tasks and service demands of

entries and activities. These values are obtained using the adjusted workload

information computed for performance scenarios, and the performance annotations on

the UML Sequence Diagrams.

 Reference tasks are parameterized depending on the associated user workload type.

If a closed workload is considered, the think time for each entry in the task, is

specified according with the think time calculated for the performance scenario

corresponding to the entry. If an open workload is considered, the arrival rate for each

entry in the task is specified according with the arrival rate calculated for the

performance scenario corresponding to the entry.

 Regarding service demands for entries and activities, they are defined using the

PAdemand tag associated with the «PAstep» stereotype. We assume that the tag

expresses the processing time required to prepare and send the message on the host

processor. Performance requirements for non-processing resources are expressed by

the PAextOp tag, which specifies the time demand of the software controller entry

corresponding to the labeled interaction.

- 57 -

Figure 24 represents the outcome of the execution of Step 3 on the performance

scenario represented in Figure 10.

User1
{ 10 } Dummy

Device1
{ ∞ }

UC1
Z = 150s

User2
Dummy
Device2

{ ∞ }

UC1
f = 0.25/s

m1
s=v5 B

m2
s=v3

C
{ y }

startUseCase1
s=v1 A

readDisk
s=v3d DiskTask

send-m1
s=v1w

WANTask
{ ∞ }

ClientCPU

WANDevice
{ ∞ }

ServerCPU
{ x }

DBCPU

DiskDevice

A1

A2
s=v2

&

&

A4[r]

m4
s=v4

Figure 24: Sample LQN model at the end of Step 3

- 58 -

Chapter 4: Case Study

In this chapter we present our experience with the application of the performance

modeling methodology described in the previous chapter to the analysis of an airport

inspection system that uses biometrically enabled, digitally signed travel documents.

While the specific modeling parameters are hypothetical, system architecture

resembles the systems being deployed at various US airports as part of the US-Visit

program [48].

 We first describe the system in terms of its structure and functionalities using high-

level UML models based on typical requirements for similar applications. Hence, we

build and parameterize performance models for the system. Finally, we report and

analyze the obtained performance results.

4.1 System Description

An border inspection system is a complex combination of human processes and

software systems used for traveler authentication at official Ports of Entry (POE)

within a country. Hereinafter, we focus on airports since different POEs (i.e., land,

sea) typically require different authentication protocols.

 This section introduces context, structure, and functionalities of modern airport

inspection systems. Our description is based on requirements for similar systems

59

emerging from technical reports and other documents released by U.S. government

organizations [48] and the International Civil Aviation Organization (ICAO) [28, 29].

4.1.1 Context

Increased security risk in international travel is resulting in new programs to

determine the admissibility of foreign travelers at POEs within a country. Primary

program goals are improving border security and, at the same time, facilitating the

flow of legitimate travelers. Major program requirements include the adoption of

Machine Readable Travel Documents (MRTDs) such as passports, visas, etc., the use

of biometric identifiers, and the interoperability among multiple information systems

for travelers’ identity verification and background checks. In line with these emerging

demands many countries have passed legislations that advance the incorporation of

biometric and document authentication identifiers on MRTDs used at POEs for

travelers’ authentication (e.g., USA, New Zealand, Sweden, Pakistan, etc.).

 MRTDs are international travel documents that contain both human-readable and

machine-readable data. They contain world-wide standard data set by the ICAO.

Simple forms of MRTDs are passports characterized by a machine readable strip at

the bottom of the personal data page. The next level of MRTD, currently adopted by

many countries, entails the incorporation a Secure Contactless Integrated Circuit

(SCIC) [28, 29] that securely holds biometric data of the passport bearer.

 Biometrics is a means of identifying a person by physiological or behavioral

characteristics unique to an individual, using advanced computerized recognition

techniques. It provides strong means of self-contained validation of the rightful

MRTD bearer. Implementation of Digital Signatures (DSs) on MRTDs warrants

integrity of the recorded data and avoids or minimizes fraud and counterfeit. Use of

DSs requires the implementation of a Public Key Infrastructure (PKI) scheme, i.e., a

framework to manage and enable the effective use of Public Key Encryption

technology.

60

4.1.2 Structure

We assume that an airport inspection system consists of a series of identical traveler

inspection facilities, to allow the inspection of multiple travelers at the same time. We

call each inspection facility an airport inspection point. Our configuration for an

inspection point, represented by the annotated Deployment Diagram in Figure 25,

includes the following components:

Figure 25: Possible Deployment Diagram for the airport inspection system

61

- The Public Key Directory (PKD) provides Public Key Certificates required to

verify the authenticity of MRTDs handed by travelers at airport inspection points.

The PKD is managed by a central authority (ICAO). Synchronized replicas are

possible to reduce its workload and, accordingly, travelers’ authentication time.

Different options for the placements of the PKD can be considered: each airport

inspection point, each POE, a regional, state, or national reference point, or

combinations of them. Figure 25 represents a possible deployment of the PKD

Performance analysis, management concerns, and other issues and/or constraints

emerging from system requirements and design will determine the convenience

and efficiency of various architectural alternatives.

- The Travelers’ Names Server (TNS) is a centralized server that provides access to a

multiagency (law enforcement and other agencies) database of name-based

lookout information. The database alerts officers of conditions that may make

travelers inadmissible to the country. The database is also used by inspectors at

POE to collect and modify traveler information.

- The Travelers’ Biometrics Server (TBS) is a centralized server that stores and

processes travelers’ biometric data. During the authentication process the TBS can

be used in verification or identification mode. In verification mode the system

checks the validity of a claimed identity. In identification mode the system

compares the individual’s biometric with all stored biometric records. This

provides an additional check to name-based checks and may help to detect

travelers who have successfully established multiple identities.

- The POE Workstation is a computing device supporting the inspection officer in

the collection and analysis of information coming from other components of the

airport inspection point. Each POE Workstation accesses the PKD through a

connection, whose exact type and capabilities depend on the location of the PKD

itself. Communications with the TNS and with the TBS rely on a WAN.

62

Communication between the workstation and the MRTD Reader, and between the

workstation and the biometric devices happens through a USB link.

- The MRTD is a document containing a chip with storage memory, which contains

a digital photo plus optional fingerprints of the document bearer. A DS ensures the

authenticity of data stored in the chip against unauthorized alteration or access.

We assume that the Public Key Certificate of the MRTD issuing site, required to

verify the authenticity of the signature on the MRTD, is stored on the MRTD

itself, or in the PKD.

- The MRTD Reader is a computing device responsible for reading data from the

MRTD and transferring it to the POE Workstation.

- The Fingerprint Reader is a biometric device responsible for capturing travelers’

fingerprint data and transferring it to the POE Workstation.

- The Digital Camera is a device responsible for capturing travelers’ face image data

and transferring it to the POE Workstation.

 In the Deployment Diagram for the inspection point we associate an infinite

capacity with dedicated resources, i.e., resources that are exclusive of each inspection

point, and used by one user at a time (the currently inspected traveler). Example of

such resources are the POE Workstation, the MRTD Reader, and the Fingerprint

Scanner. On the other hand, we associate a finite capacity to resources that are shared

with other inspection points or inspection systems and serve multiple users at a time.

Examples of these resources are the TNS, the TBS, and the CCD Server.

4.1.3 Functions

Figure 26 shows a Use Case Diagram for the airport inspection system. The diagram

represents two types of users: travelers, who require inspections, and other border

inspection systems, which use system resources to perform name-based lookups, and

biometric verification and identification. All user types and system functions are

63

considered to be relevant from a performance perspective, hence they are annotated

with quantitative performance information.

Figure 26: Use Case Diagram for the airport inspection system

The main function performed by the airport inspection system is travelers’ inspection,

whose dynamics is represented by the Sequence Diagrams in Figures 27 through 31.

The diagrams are annotated with performance data. However, to make them more

readable, and to list all the performance parameters for the system in a single location,

we report resource demands for scenario steps in Table 5 of Section A.3.

When a traveler arrives at an airport inspection point, an inspection officer starts an

authentication process by performing a primary inspection. The outcome of the

authentication is access authorization for the vast majority of travelers. However,

based on the results of watch list queries, behavioral observations, document reviews,

etc., an officer may refer a visitor to a secondary inspection, consisting of multiple

system queries, in-depth interviews, and thorough review of documentation and

personal belongings (Figure 31).

64

Figure 27: Sequence Diagram for the Traveler Inspection use case

65

Travelers’ inspection, represented in Figure 27, consists of the parallel execution of an

automated authentication process (e.g., MRTD check, name lookup, biometric

verification) and a brief interview and manual revision of the traveler’s documents by

an inspection officer. The automated authentication process, shown in Figure 28,

starts with the scanning of the traveler’s MRTD through the MRTD Reader. The data

on the card is read and its DS is verified using the Public Key Certificate recorded on

the card itself or in the PKD. The authenticity of the retrieved Public Key Certificate

is also checked. Hence DS of single MRTD data elements (MRZ and face image data)

are verified (Figure 29).

Figure 28: Sequence Diagram for the Traveler Authentication interaction

66

The TNS name check, represented in Figure 30, is performed next and returns any

existing information about the traveler, including biographic lookout hits and a

picture. Afterwards, the officer requests the traveler to scan his/her fingerprints (left

and right index fingers), and captures his/her face image using a digital camera. The

collected data is forwarded to the TBS, where it is checked against existing traveler’s

biometric samples (we assume that all travelers are pre-enrolled in the

TBS, for instance at MRTD or visa request time). The system performs a 1:1 match to

confirm that the person submitting his/her photo is the person on file. Results from the

match, together with those from the previously described checks are finally reviewed

by the inspection officer. Based on gathered information and observations, the officer

decides whether sending the traveler to secondary inspection for further screening or

processing, or granting him/her access to the country.

67

Figure 29: Sequence Diagram for the MRTD Authentication interaction

68

Figure 30: Sequence Diagram for the TNS Name Check interaction

69

The dynamics of the Secondary Inspection interaction occurrence is represented by

the Sequence Diagram in Figure 31. Resource demands for scenario steps are reported

in Table 5 of Section A.3.

Figure 31: Sequence Diagram for the Secondary Inspection interaction

70

Figures 32-34 represent the dynamics of the Name-based Lookup, the Biometric

Verification, and the Biometric Identification use cases, respectively. Resource

demands for scenario steps are reported in Table 5 of Section A.3.

Figure 32: Sequence Diagram for the Name-based Lookup use case

71

Figure 33: Sequence Diagram for the Biometric Verification use case

4.1.4

rent technical configurations

Figure 34: Sequence Diagram for the Biometric Identification use case

Technical and Policy Options

We intend to evaluate the performance impact of diffe

and policy options that can be adopted to implement primary and secondary

inspection processes within an airport inspection system. Results of the performance

evaluation can be used to understand what the primary drivers affecting system

performance are, and to enable policymakers to plan accordingly, in terms of

infrastructure, scheduling system implementation, or policy changes.

72

The technical configurations we consider represent different alternatives for the

architecture of the airport inspection system. Each configuration corresponds to a

different possibility for the location of the PKD, which stores Public Key Certificates

of MRTD issuing sites and of country Certificate Authorities (CAs). The latter are

used to verify the authenticity of MRTD issuers’ certificates. The configurations

under exam are described below:

- MRTD: MRTDs store Public Key Certificates of the corresponding issuing sites;

Public Key Certificates of country CAs are stored in the PKD, which is replicated

at each POE workstation.

- PKD Local: Public Key Certificates of MRTD issuing sites and of country CAs are

collectively stored in the PKD, which is replicated at each POE workstation.

- PKD Remote: Public Key Certificates of MRTD issuing sites and of country CAs

are collectively stored in the PKD. The PKD may be available at a single location

within the host country or it may be replicated at each POE, or region of POEs.

 Options 1 and 2 share the same structure, represented by the Deployment Diagram

in Figure 25. The difference between these options lies in the content of the MRTD,

and the size of the PKD stored at the POE Workstation. To keep this chapter clear and

readable we separately describe Option 3 in Appendix A.

 The policy options we consider are intended to explore how variations in the

authentication procedure, due for instance to the nature of the verified traveler’s data,

or to the traveler’s nationality, affect authentication time and throughput. We

considered three possible inspection scenarios:

- Scenario 1: A traveler is granted access based only on the validity of his/her

MRTD, which is determined by verifying the MRTD digital signature, through

access to the PKD.

- Scenario 2: The traveler authentication process includes the MRTD verification

described in scenario 1. It also includes a name based check, to exclude that the

73

traveler is on a watchlist of inadmissible individuals, and a biometric based check,

to verify that the biometric data collected from the traveler matches the biometric

data stored in the TBS.

- Scenario 3: The traveler authentication process varies based on travelers’

nationality. In fact, national travelers only require MRTD authentication and a

name-based watchlist check. On the other hand, foreign travelers must follow the

inspection process described in Scenario 2.

4.2 Performance Modeling

In this section we apply our performance evaluation methodology to the analysis of

the airport inspection system described in the previous section. As we stated in

Section 4.1.4, the given description actually represents two technical configurations

for system: Options 1 and 2. These options share the same structure and functions;

however, their MRTD-related operations have different resource demands. As a

result, application of steps 1 and 2 of our UML to LQN transformation to those cases

results in the same outcome. On the other hand, parameterization of the obtained LQN

model, performed in step 3 of the transformation, is different; for this reason we will

describe this operation for the two options separately.

4.2.1 Assumptions

To simplify our modeling task we have made several assumptions:

- all travelers bear MRTD with digitally signed data and picture stored in it;

- all travelers are aggregated into a single class, i.e., they are authenticated following

the same process, through the same facilities;

- all travelers are pre-enrolled in the biometric system, i.e., at least one biometric

sample is stored in the TBS for each traveler;

74

- only a 1-to-1 verification check against the biometric sample stored in the TBS is

performed at primary inspection. A 1-to-n check against the biometric watchlist is

conducted at enrollment time and repeated at secondary inspection;

- in our airport inspection system the number of inspection points for traveler

authentication is constant. We assume one traveler queue for primary inspection,

and a separate traveler queue for secondary inspection.

4.2.2 Model Structure

The structure of the LQN model (i.e., tasks, devices, and their mappings) for the

airport inspection system is generated by Step 1 of our UML to LQN transformation.

The next subsections describe the execution of this step based on the outcome of its

substeps.

STEP 1.a:

This step creates LQN devices for each hardware node – whether stereotyped as

<<PAhost>> or as <<PAresource>> – in the annotated Deployment Diagram for the

system. The application of the step to the inspection system generates the LQN

devices represented in Figure 35.

75

POE
Workstation

{ ∞ }

TNS
{ 3 }

WAN
{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

TNS Disk
{ 2 }

TBS Disk
{ 3 }

MRTD
Reader

{ ∞ }

MRTD
{ ∞ }

Digital
Camera

{ ∞ }

POE
Workstation

Disk
{ ∞ }

CCD
Server

{ 3 }

CCD
Server
Disk
{ 2 }

Figure 35: LQN devices for the airport inspection system

76

STEP 1.b:

This step creates LQN reference tasks to represent different user workloads. It also

creates LQN non-reference tasks for each each system component labeled by the

<<PAresource>> stereotype in the Deployment Diagram or the in Sequence Diagrams

for the system. Figure 36 shows the outcome of the application of this step to the

airport inspection system.

POE App.
{ ∞ }

TN DB
{ 4 }

TNS Disk
Task
{ 2 }

TBS Disk
Task
{ 3 }

Traveler
{ n1 }

WAN Task
{ ∞ }

TB DB
{ 4 }

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

Fingerprint
Scanner Task

{ ∞ }

Digital
Camera Task

{ ∞ }

PKD
{ ∞ }

TNS App.
{ 6 }

CCD
{ 3 }

CCD Server
Disk Task

{ 2 }

POE Workstation
Disk Task

{ ∞ }

POE Prim. Officer
{ 20 }

POE Sec. Officer
{ 1 }

Border Inspection
System
{ n2 }

Reference Tasks

Non-reference Tasks

Figure 36: LQN tasks for the airport inspection system

STEP 1.c:

This step creates connecting arcs between the LQN tasks and devices generated in the

previous steps. Figure 37 represents the result of the application of the step to the

airport inspection system.

77

78

TNS
{ 3 }

WAN
{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

TNS Disk
{ 2 }

TBS Disk
{ 3 }

MRTD
Reader

{ ∞ }

Digital
Camera

{ ∞ }

POE
Workstation

Disk
{ ∞ }

CCD
Server

{ 3 }

CCD
Server
Disk
{ 2 }

POE App.
{ ∞ }

TN DB
{ 4 }

TNS Disk
Task
{ 2 }

TBS Disk
Task
{ 3 }

WAN Task
{ ∞ }

TB DB
{ 4 }

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

Fingerprint
Scanner Task

{ ∞ }

Digital
Camera Task

{ ∞ }

PKD
{ ∞ }

TNS App.
{ 6 }

CCD
{ 3 }

CCD Server
Disk Task

{ 2 }

POE Workstation
Disk Task

{ ∞ }

POE Prim. Officer
{ 20 }

POE Sec. Officer
{ 1 }

Border Inspection
System
{ n2 }

Traveler
{ n1 }

Dummy
Device1

{ ∞ }

Dummy
Device2

{ ∞ }

Dummy
Device3

{ ∞ }

Dummy
Device4

{ ∞ }

POE
Workstation

{ ∞ }

MRTD
{ ∞ }

Figure 37: LQN tasks, devices, and their mappings for the airport inspection system

4.2.3 Model Dynamics

The dynamics of the LQN model (i.e., entries, activities, and request flow among

them) is generated by Step 2 of our UML to LQN transformation. The next

subsections describe the execution of this step based on the outcome of its substeps.

STEP 2.a:

This step creates entries for the LQN reference tasks defined in Step 1.b. Each entry

matches a performance scenario invoked by the user corresponding to the reference

task. In the case of the inspection system the value 1 associated with the PAprob tag in

each Sequence Diagram implies a single performance scenario per use case. This

leads to the following entries:

- travelerInspection for the Traveler reference task;

- name-basedLookup, biometricVerifcation, and biometricIdentification for the

Border Inspection System reference task.

STEP 2.b:

This step creates entries for each LQN task corresponding to a system component

receiving service requests from other components. In the case of the inspection

system the following entries are identified:

- startPrimInspection for the POE Prim. Officer task;

- startSecInspection for the POE Sec. Officer task;

- automatedChecks, verifyMRTDAuthenticity, and identifyTraveler for the POE App.

task;

- scanMRTD for MRTD Reader Task;

- getPKCertificate for the PKD task;

- captureFingerprint for Fingerprint Scanner Task;

- captureFaceImage for Digital Camera Task;

- getTravelerInfo for the TNS App. task;

- lookupName for the TN DB task;

- getPicture for the CCD task;

- store&matchBiometrics and identifyBiometrics for the TB DB task;

STEP 2.c:

This step generates entries of LQN tasks corresponding to passive resources whose

usage is required to perform certain operations. Examples of such resources for the

inspection system are the WAN and storage disks. Their use is explicitly represented

by performance scenarios through the PAextOp tag optionally associated with scenario

steps*.

Execution of step 2.c on the inspection system leads to:

* Annotations for scenario steps of the airport inspection system are reported in Appendix A, Table 4.

79

- the creation of entries send-getTravInfo, send-store&matchBiom, and send-

identifyBiom for WAN Task. These entries correspond to the network operations

required to invoke the services provided by the TNS and by the TBS. In fact these

servers are connected to the POE Workstation through a WAN link.

- the creation of entry readMRTDData for MRTD Task. The entry is required by the

PAextOp tag associated with the scanMRTD() interaction in the MRTD

Authentication fragment. The tag indicates that the interaction requires a reading

operation on the MRTD chip.

- the creation of entry readPKCertData for POE Workstation Disk Task. The entry

is required by the PAextOp tag associated with the getPKCertificate() interaction

in the MRTD Authentication fragment. The tag indicates that the interaction

requires a reading operation on the disk of the POE Workstation.

- the creation of entry readLookupData for TNS Disk Task. The entry is required by

the PAextOp stereotype associated with the lookupName() interaction in the TNS

Name Check fragment. The tag indicates that the interaction requires a reading

operation on the disk of the TNS.

- the creation of entry readPictureData for CCD Server Disk Task. The entry is

required by the PAextOp tag associated with the getPicture() interaction in the

TNS Name Check fragment. The tag indicates that the interaction requires a

reading operation on the disk of the CCD Server.

- the creation of entry readWriteBiomData and readWatchlistData for TBS Disk

Task. The former is required by the PAextOp stereotype associated with the

store&matchBiometrics() interaction in the Traveler Authentication fragment. The

tag indicates that the interaction requires a reading and a writing operation on the

disk of the TBS. The latter is required by the PAextOp tag associated with the

identifyBiometrics() interaction in the Secondary Inspection scenario. The tag

80

indicates that the interaction requires the reading of a set of biometrics samples

(i.e., a watchlist) on the disk of the TBS.

STEP 2.d:

This step generates activities of LQN tasks, to represent internal computations of the

system components corresponding to those tasks. Such computations are represented

in Sequence Diagrams by self-addressed messages sent out by components.

The activities we identify for the inspection system are:

- reviewDocs and processInspectionData for the POE Prim. Officer task;

- reviewDocs and processInspectionData for the POE Sec. Officer task;

- processData and verify for the POE App. task.

 We also identify other LQN activities to specify non-sequential flow of control,

expressed in Sequence Diagrams by combined fragments. The fragments found in the

Sequence Diagrams for the inspection system lead to the creation of different sets of

activities to represent:

- the par fragment in the Primary Inspection scenario;

- the two opt fragments in the Traveler Authentication interaction occurrence;

- the par fragment in the TNS Name Check interaction occurrence;

- the par fragment in the Secondary Inspection scenario;

- the par fragment in the Name-based Lookup scenario.

 The LQN translation of the above structures follows the mapping rules explained

in Chapter 3. The names of the activities created in the translation are not relevant; we

display the interconnections of those activities with the rest of the LQN model in the

next subsection.

81

STEP 2.e:

This step generates the request flow among LQN entries and activities identified in

the previous steps. The generation process follows the sequence of messages

represented in each performance scenarios for the inspection system. In this section

we gradually determine and display the process outcome.

 Figure 38 shows a high-level framework of the LQN model for the airport

inspection system. The framework represents the requests of the workload generators,

i.e., the reference tasks Traveler and Border Inspection System, toward LQN

submodels representing functions invoked by them. In general the LQN submodels

are not disjoint. Rather, they usually overlap since different use cases may use the

same system resources and invoke the same system services.

Traveler
{ n1 }

Dummy
Device1

{ ∞ }

Border Inspection
System
{ n2 }

biometricIdentificationbiometricVerificationname-basedLookup

Dummy
Device2

{ ∞ }

Traveler
Inspection

LQN

Name-based
Lookup

LQN

Biometric
Verification

LQN

Biometric
Identification

LQN

Airport Inspection System LQN

travelerInspection

Figure 38: High-level framework of the LQN for the airport inspection system

In the next paragraphs we explain how to complete the framework for the LQN

model. We generate (possibly overlapping) LQN submodels, which we later merge

into a single LQN model for the whole system. To make the models more readable

82

and understandable we only represent tasks, entries, and activities of interest within

the context under study.

 The activities we introduce to represent control flow are given generic names, i.e.,

Ai, i ≥ 1. We assume the values of i to be unique within a single task, but not across

different tasks. Values of i for a set of activities do not represent the order of

executions of the activities. Rather, they express their order of creation, based on the

order of processing of the interactions represented in Sequence Diagrams.

 We now focus on how to define the Traveler Inspection LQN, represented in

Figure 38. With this purpose, we process the set of Sequence Diagrams modeling the

corresponding scenario. We start with the most general one (Figure 27), obtaining the

submodel displayed in Figure 39, which represents the first draft of the Traveler

Inspection LQN. The submodel contains a placeholder for the Traveler Authentication

interaction occurrence. The submodel is refined by examining the Sequence

Diagram(s) specifying that occurrence.

POE Prim. Officer

{ 20 }

Dummy
Device3

{ ∞ }

startPrimInspection

reviewDocs

processInspectionData[r]

A1

&

Traveler Authentication

&

A2

Figure 3 nario 9: Traveler Inspection LQN after Traveler Inspection sce

rocessing the Traveler Authentication interaction occurrence augments the current

Traveler Inspection LQN with tasks, entries, activities, and service requests modeling

P

83

the interactions represented in that occurrence. The outcome of the process is

represented in Figure 40.

POE Prim. Officer

{ 20 }startPrimInspection

Figure 40: Traveler Inspection LQN after Traveler Authentication

Processin current

raveler Inspection LQN as represented in Figure 41. For the sake of clarity we omit

at the abstract

g the MRTD Authentication interaction occurrence augments the

T

to reproduce again the activities invoked by the automatedChecks entry of the POE

App. Task, as well as the tasks and entries invoked by those activities.

Processing the TNS Name Check interaction occurrence augments the current

Traveler Inspection LQN as represented in Figure 42. We can notice th

TNS Name Check activity, represented in Figure 41, is refined to generate a service

request towards the TNS. The TNS generates service requests to the CCD Server and

to the TN Database.

Dummy
Device3

{ ∞ }A1

&

reviewDocs

processInspectionData[r]

MRTD Authentication

&

A2

A3

+

A5A4

+

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }TNS Name Check

A6

+

A5A2

+

A4

A1
Fingerprint

Scanner Task
{ ∞ }

A6

A7

A3

processData[r]

Digital
Camera Task

{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

TBS Disk
{ 3 }

Digital
Camera

{ ∞ }

captureFingerprint
pta11-pta1

pta21-pta2

captureFaceImage

TBS Disk
Task
{ 3 }

TB DB
{ 4 }store&matchBiometrics

readWriteBiomData

WAN Task
{ ∞ } WAN

{ ∞ }

send-store&matchBiom

+

A7Secondary Inspection

+

0.001 0.999

A8

84

POE Prim. Officer

{ 20 }
Dummy
Device3

{ ∞ }

startPrimInspection

A1

&

A9 reviewDocs

Figure 41: Traveler Inspection LQN after MRTD Authentication

processInspectionData[r]

&

A2

A3

+

A5A4

+

A6

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

MRTD
Reader

{ ∞ }

MRTD
{ ∞ }

scanMRTD

readMRTDData

verifyMRTDAuthenticity

A8

A10

verify[r]

PKD
{ ∞ }getPKCertificate

POE Workstation
Disk Task

{ ∞ }
readPKCertData

POE
Workstation

Disk
{ ∞ }

TNS Name Check

...

pta11-pta1

+

A7Secondary Inspection

+

A8

0.001 0.999

85

POE Prim. Officer
{ 20 }startPrimInspection

Figure 42: Traveler Inspection LQN after TNS Name Check

Dummy
Device3

{ ∞ }A1

&

A9 reviewDocs

processInspectionData[r]

&

A2

A3

+

A5A4

+

A6

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

MRTD
Reader

{ ∞ }

MRTD
{ ∞ }

scanMRTD

readMRTDData

verifyMRTDAuthenticity

A8

A10

verify[r]

pta11-pta1

PKD
{ ∞ }getPKCertificate

POE Workstation
Disk Task

{ ∞ }
readPKCertData

POE
Workstation

Disk
{ ∞ }

...

TN DB
{ 4 }lookupName

TNS Disk Task
{ 2 }

TNS
Disk
{ 2 }

readLookupData

CCD
{ 3 } CCD

Server
{ 3 }

getPicture

CCD Server
Disk Task

{ 2 }
CCD

Server
Disk
{ 2 }

readPictureData

TNS
{ 3 }

TNS App.
{ 6 }getTravelerInfo

&

A3A2

&

A4[r]

A9

A1

A1

+

WAN Task
{ ∞ } WAN

{ ∞ }

send-getTravInfo

A7Secondary Inspection

+

0.001 0.999

A8

86

Finally, processing the Secondary Inspection interaction occurrence augments the

current Traveler Inspection LQN as represented in Figure 44.

Figure 43: Primary Inspection LQN after Secondary Inspection

POE Prim. Officer
{ 20 }startPrimInspection

Dummy
Device3

{ ∞ }A1

&

A9 reviewDocs

processInspectionData[r]

&

A2

A3

+

A5A4

+

A10

A6

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

verifyMRTDAuthenticity

...

pta11-pta1

POE Sec. Officer
{ 1 }startSecInspection

reviewDocs

processInspectionData[r]

A1

&

A2

&

A3

identifyTraveler

A10[r]

TBS
{ 3 }

TBS Disk
{ 3 }

TBS Disk
Task
{ 3 }

TB DB
{ 4 }identifyBiometrics

readWatchlistData

WAN Task
{ ∞ } WAN

{ ∞ }

send-identifyBiom

...

+

A7

+

0.001 0.999

A11

A8

87

Figure 44 shows the final high-level layout of the Traveler Inspection LQN. For the

sake of clarity we only represent LQN tasks, entries and devices. LQN activities

ithin tasks are assumed to be the same as those represented in Figures 39 through w

42. We represent a service request from an activity connected to a certain entry

toward another entry, as a service request from the entry itself toward the destination

entry. For instance, the service request from activity A7 of the startPrimInspection

entry of the task POE Prim. Officer toward the scanMRTD entry of the MRTD Reader

Task is displayed as a service request from the startPrimInspection entry toward the

scanMRTD entry.

88

POE Prim. Officer

{ 20 } Dummy
Device3

{ ∞ }

startPrimInspection

Figure 44: High-level layout of the Traveler Inspection LQN

Fingerprint
Scanner Task

{ ∞ }

Digital
Camera Task

{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

TBS Disk
{ 3 }

Digital
Camera

{ ∞ }

captureFingerprint

captureFaceImage

TBS Disk
Task
{ 3 }

TB DB
{ 4 }store&matchBiometrics

readWriteBiomData

WAN Task
{ ∞ }

WAN
{ ∞ }

send-store&matchBiom

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

MRTD

{ ∞ }
Reader

MRTD
{ ∞ }

scanMRTD

readMRTDData

TN DB
{ 4 }lookupName

TNS Disk Task
{ ∞ }

TNS
Disk
{ 2 }

readLookupData

CCD
{ 3 } CCD

Server
{ 3 }

getPicture

CCD Server
Disk Task

{ 2 }
CCD

Server
Disk
{ 2 }

readPictureData

TNS
{ 3 }

TNS App.
{ 6 }getTravelerInfo

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

verifyMRTDAuthenticity

PKD
{ ∞ }getPKCertificate

POE Workstation
Disk Task

{ ∞ }
readPKCertData

POE
Workstation

Disk
{ ∞ }

send-getTravInfo

identifyTraveler

POE Sec. Officer
{ 1 }

Dummy
Device4

{∞ }

startSecInspection

send-identifyBiom

identifyBiometrics

readWatchlistData

89

Processing the Sequence Diagram for the Name-based Lookup use case generates the

Name-based Lookup LQN, depicted in Figure 45. As we can notice, no new LQN

entities were added to those generated by the processing of the Primary Inspection use

case.

Figure 45: Name-based Lookup LQN

Processing the Sequence Diagram for the Biometric Verification use case only

generates a service request toward the identifyBiometrics entry of the TB DB task.

Similarly, processing the Biometric Identification use case generates a request toward

the store&m

he final LQN model for the airport inspection system is represented in Figure 46 and

 obtained by merging the LQN submodels obtained by processing each performance

scenario into a single LQN model. This is performed by starting with the high-level

atchBiometrics entry of the same task.

T

is

TN DB
{ 4 }lookupName

TNS Disk Task
{ 2 }

TNS
Disk
{ 2 }

readLookupData

CCD
{ 3 } CCD

Server
{ 3 }

getPicture

CCD Server
Disk Task

{ 2 }
CCD

Server
Disk
{ 2 }

TNS App.
{ 6 }getTravelerInfo

TNS
{ 3 }

readPictureData

&

A1

A3A2

&

A4[r]

90

model framework (Figure 38) and processing the LQN submodels obtained for the

LQN black-box in the framework, one at a time. Each LQN submodel augments the

current LQN model with devices, tasks, entries, activities, and request flow. However

only LQN entities that are not already in the current model are added to it.

Figure 46: High-level layout of the LQN for the airport inspection system

POE Prim. Officer
{ 20 }

Dummy
Device3

{ ∞ }

startPrimInspection

Fingerprint
Scanner Task

{ ∞ }

Digital
Camera Task

{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

{ 3 }
TBS Disk

Digital
Camera

{ ∞ }

captureFingerprint

captureFaceImage

TBS Disk
Task
{ 3 }

TB DB
{ 4 }store&matchBiometrics

readWriteBiomData

WAN Task
{ ∞ }

WAN
{ ∞ }

send-store&matchBiom

MRTD Reader
Task
{ ∞ }

MRTD
Task
{ ∞ }

MRTD
Reader

{ ∞ }

MRTD
{ ∞ }

scanMRTD

readMRTDData

TN DB
{ 4 }lookupName

TNS Disk Task
{ 2 }

TNS
Disk
{ 2 }

readLookupData

CCD
{ 3 } CCD

Server
{ 3 }

getPicture

CCD Server
Disk Task

{ 2 }
CCD

Server
Disk
{ 2 }

readPictureData

TNS
{ 3 }

TNS App.
{ 6 }getTravelerInfo

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

verifyMRTDAuthenticity

PKD
{ ∞ }getPKCertificate

POE Workstation
Disk Task

{ ∞ }
readPKCertData

POE
Workstation

Disk
{ ∞ }

Traveler
{ n1 }travelerInspection

Dummy
Device1

{ ∞ }

Border Inspection
System
{ n2 }

biometricVerificationbiometricIdentificationname-basedLookup

Dummy
Device2

{ ∞ }

POE Sec. Officer
{ 1 }startSecInspection

Dummy
Device4

{∞ }

identifyBiometrics

readWatchlistData

identifyTraveler

send-getTravInfo send-identifyBiom

91

4.2.4 Model Parameters

We derive parameter information for our LQN model partly from available technical

reports for similar systems (e.g., [28, 29, 48]), partly from our estimates or

assumptions.

 We estimate the service time of human components (e.g., inspection officers) of

e inspection system by guessing the amount of time they take to perform operations

or more model parameters as independent variables of the analysis and establishes a

set of possible values for each of them. Execution of the experiment returns a set of

th

such as reviewing travelers’ documents, processing data gathered from the TNS and

the TBS, etc. The service time required by processing devices is very difficult to

estimate since at this stage we only have very coarse-grained information about

system operations and their complexities. For this reason, we usually assume the

processing time needed by processing devices to carry out different tasks. Finally, we

estimate the time taken by I/O devices based on the type of device. For instance, we

estimate file I/O time as the ratio between the size of the data to be transferred and the

throughput of the device storing the data. On the other hand, we estimate network I/O

as the ratio between the size of the exchanged data and the throughput of the network

link used for data communication.

 Appendix A reports details on how we annotated performance scenarios for the

inspection system with resource demands of scenario steps. It also explains how these

values are used to derive parameters for the LQN model of the system.

4.3 Performance Experiments

We defined several performance experiments on the LQN models for the airport

inspection system configurations described in this chapter and in Appendix B. The

goal of the experiments is to evaluate the performance effects of the technical and

policy options for the system described in Section 4.1.4. Each experiment selects one

92

performance results by solving the non-parameterized LQN models obtained varying

en nges.

 All our experiments assume a constant population size representing the load on the

e is a very important

 LQN model parameters, defined in Appendix A:

- verifyMRTDAuthenticity: 0.0082s

the indep dent variables through their ra

airport inspection system at a given time. We vary the population size from 100 to

2000 to evaluate system performance for different workload intensities, such as peak

hour, average hour, off hour, and so on. Response tim

performance measure for our system; therefore for each experiment we plot response

time against traveler population.

4.3.1 Technical Options

The goal of this experiment is to evaluate the technical design options for the system

described in Section 4.1.4. The alternatives in exam consider several possible

locations for the Public Key Certificates of authorities issuing MRTDs, i.e., each

MRTD, a database for each POE Workstation, or a database shared by multiple POE

Workstations. We want to select the option that provides the best performance. Below

we report parameter values for each option:

MRTD:

This option results in the following

- readMRTDData: 1.0831s

- scanMRTD: 0.2708s

- verifyMRTDAuthenticity: 0.0093s

- readPKCertData: 0.0065s

- verify: 0.0044s

PKD Local:

This option results in the following LQN model parameters, defined in Appendix A:

- readMRTDData: 0.9472s

- scanMRTD: 0.2368s

93

- readPKCertData: 0.0065s

- verify: 0.0044s

PKD Remote:

This option results in the following LQN model parameters, defined in Appendix B:

is different sub-options, to express the intensity

of the r quest load on the PKD, in the case where the PKD is not locally stored at

on Policies

ate the policy options for the system described in

require different authentication procedures,

veler’s nationality. We want to assess how each

y affects the performance provided by the airport inspection point.

ort parameter values for each option. pta1 and pta2 appear in the

 biometric-based checks during Primary Inspection. The

- readMRTDData: 0.9472s

- scanMRTD: 0.2368s

- verifyMRTDAuthenticity: 0.0082s

- send-getPKCert: 0.0017s

- readPKCertData: 0.0065s

- verify: 0.0044s

Within th technical option we consider

e

each airport inspection point. We devise four different values for the size of the PKI

System population. Each size corresponds to a certain number of airports, each with

20 airport inspection points, issuing MRTD request authentications to the PKD:

1) 20 (1 airport);

2) 800 (40 airport);

3) 1600 (80 airport);

4) 3200 (160 airport).

4.3.2 Authenticati

This experiment intends to evalu

Section 4.1.4. Different policies

optionally based on the tra

authentication polic

Below we rep

Traveler Authentication interaction occurrence. The former expresses the probability

of executing name-based and

94

latter corresponds to the probability of collecting traveler biometric samples and

y three values for the probability pta2 of executing

ecks during travelers’ inspection:

4.3.3 Manual Inspection Times

This experim for the manual inspection time required by

the prim fficer. The values we consider are:

-

-

- 60s.

tion of LQN entries:

verifying them.

Scenario 1:

- pta1= 0;

- pta2= 0;

Scenario 2:

- pta1= 1;

- pta2= 1;

Scenario 3:

- pta1= 1;

Within Scenario 3 we identif

biometric-based ch

1) 0.5;

2) 0.7;

3) 0.9.

ent considers different values

ary inspection o

0s

30s

These correspond to the following parameteriza

Scenario 1:

- reviewDocs: 0s

Scenario 2:

- reviewDocs: 30s

95

Scenario 3:

- reviewDocs: 60s

4.3.4 Biometric Sampling Times

ent considers different values for the time required to capture fingerprint

age of the traveler. The values we consider are:

ollowing parameterization of LQN entries:

 5s

 10s

5s

- captureFingerprint: 15s

4.4 Results and Analysis

al solutions for our LQN models were obtained using the LQNS and

applications [17, 19]. Our results give insights into the performance of the

ng both the point of view of a traveler

 the process.

e average total waiting time for a traveler to complete

 the moment he/she arrives to the inspection queue, to

This experim

scans and a face im

- 10s

- 15s

- 20s.

These correspond to the f

Scenario 1:

- captureFingerprint:

- captureFaceImage: 5s

Scenario 2:

- captureFingerprint:

- captureFaceImage:

Scenario 3:

- captureFaceImage: 5s

Analytic

MultiSRVN

technical and policy options in exam, taki

experiencing the authentication process and that of an officer executing

For each option we evaluate th

the authentication process, from

96

the moment he/she is granted or denied entry into the country. We also evaluate the

verage inspection time, which is the time required for the manual (performed by the

nd automated authentication processes to determine the admissibility of

e obtain system throughput during a 12 hours period, which

on system is able to match the

expected volume of incoming travelers. We also analyze the utilization of software

re system response in conditions of light to heavy traffic.

Technical Options

urations for the

tem described in Section 4.3.1.

oject sponsors did not know if the system would exhibit an

d if it would experience bottlenecks. Therefore, we built

for a baseline configuration that uses a single copy of the PKD server.

e diagram in Figure 47, the inspection time for Options 1,

a ports refer to the same PKD, is about the same and in every

40s. This time is due mostly to the manual inspection process performed

d to last for 30 seconds (exponentially distributed with

e rocess happens in parallel with the automated inspection

ss than 20s. When the number of airports

ticing an increase in the inspection time,

a

POE officer) a

a traveler. Finally w

makes it possible to estimate whether the inspecti

and hardware resources to identify possible software or hardware bottlenecks. In all

cases we solve our models for a traveler population size varying from 100 to 2000.

This allows us to explo

4.4.1

Figures 47 through 50 show results related the technical config

inspection sys

 At the very beginning pr

acceptable performance an

LQN models

As it can be noticed from th

2 nd 3, where up to 40 air

case is about

by the POE officer, assume

m an 30s). The manual p

process, which in all cases completes in le

referring to the same PKD is 80 we start no

due to a slower response from the PKD server that becomes overloaded. The

performance issue becomes even more evident when the PKD server supports 160

airports. In this case the total inspection time almost doubles and most of it is spent in

the automated inspection process.

97

Figure 47: Primary inspection time for different technical options

Figure 4 shows the throughput provid8 ed by different system options during a 12

hours period.

Figure 48: Primary inspection throughput for different technical options

0 5000 10000 15000 20000 25000

MRTD

Dedicated PKD

Shared PKD (1 airport)

Shared PKD (40 airports)

Shared PKD (80 airports)

Shared PKD (160 airports)

A
rc

h
ec

tu
r

l O
pt

on
s

Throughput (Primary Inspections/12h)

it
a

i

0 20 40 60 80 100

MRTD

Dedicated PKD

Shared PKD (1 airport)

Shared PKD (40 airports)

Shared PKD (80 airports)

Shared PKD (160 airports)
rc

hi
te

ct
ur

l O
p

io
ns

A
a

t

Inspection Time (s)

Automated Inspection Complete Inspection

98

Figure 49 shows the average total waiting time experienced by travelers at inspection

facilities. For each technical option, the request load on the PKD is bounded. In fact,

regardless of what the traveler population at the airports referring to the same PKD is,

ited

e

system bottleneck as the traveler population increases. For Option 3, with 80 and 160

airports issuing requests to the same PKD, the total waiting time becomes sensibly

rger. As we observed from Figure 47, this is due to request overloading on the PKD

the maximum number of travelers that can be inspected in a certain moment is lim

by the number of inspection facilities at those airports. This makes the averag

inspection time constant, i.e., not affected by the traveler population at POEs.

Therefore, the total waiting time increases linearly with the traveler population. We

notice that for Options 1, 2 and 3 (with up to 40 airports referring to the same PKD),

the travelers’ waiting time is about the same (the lines in Figure 49 overlap). In all

cases the total waiting time is largely dominated by the travelers’ queuing time due to

the limited availability of POE border inspection points. We assume only 20

inspection facilities per airport, which quickly become over-saturated and lead to a

la

server, which causes a slower system response.

99

MRTD Dedicated PKD
Shared PKD (1 airport) Shared PKD (40 airports)
Shared PKD (80 airports) Shared PKD (160 airports)

0

40

60

80

100

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
0

20

120

140

160

0

in
m

e
(m

)

19
00

Travelers (n)

To
ta

l W
ai

t
g

Ti

Figure 49: Primary total waiting time for different technical options

Figure 50 shows the average total waiting time for Option 3 as the load on the PKD

server increases from 1 to 160 airports. We considered four possible traveler

populations. From the diagram we can observe that, as the request load on the PKD

increases, the system response increases non-linearly. The increase rate is higher as

the traveler population increases.

100

500 Travelers 1000 Travelers 1500 Travelers 2000 Travelers

0

20

40

60

80

100

120

140

160

1 40 80 160

Number of Airports Referring to Shared PKD

To
ta

l W
ai

tin
g

Ti
m

e
(m

)

Figure 50: Primary total waiting time vs. airports served by a remote PKD

 shows detailed system response time and utilization for situations where 80

two sections, the first one reports results

airports. Analyzing the first section, we

e that when only one PKD exists the PKD server utilization reaches

erver becomes saturated leading to increased inspection and

d, the PKD processor utilization is quite low

case of data intensive applications. As we introduce a

PKD replica, utilization of the PKD server drops to 91.92%, PKD processor

utilization drops to 39.96%, and PKD disk utilization is down to 51.95%. The system

inspection time and waiting time reach their lower bound in with three PKD replicas.

Table 2

and 160 airports issue authentication requests to the PKD server. As we observed in

Figures 47 through 50 in those cases system performance seems to be a problem.

Therefore, we want to evaluate how introducing PKD replicas alleviates response

time problem. In particular we are interested in identifying the optimal number of

replicas to be introduced. Table 2 includes

for 80 airports, the second one refers to 160

can observ

99.95%, i.e., the PKD s

waiting times. On the other han

(43.45%), as it happens in the

101

In fact, introducing additional replicas only minimally decreases those parameters due

to inherent inspection time delays. We can conclude that in the case of 80 airports

referring to the same PKD, three is an optimal number for PKD replication. From t

second section of the table we can observe that when only one PKD is present for 160

airports, the PKD server utilization is very high, 99.99%. When two or three replicas

are present, utilization does not decrease sensibly. Introducing a fourth replica

decreases the PKD server utilization to 91.91%. Five replicas lead to a PKD server

utilization of 73.71%, while the PKD processor utilization becomes 32.05% and the

PKD disk utilization is 41.66%. In this case, five is an optimal number of PKD

replicas. In fact we observe that introducing additional replicas, while being mo

expensive, does not change system response in terms of inspection time and waiting

he

re

time.

Based on the results discussed above we can conclude that the best configuration

cannot be identified from a pure performance standpoint. Other factors have to be

considered such as management issues for public key certificates and PKD replicas,

choices or constraints emerging from system requirements and design, etc. Based on

pure performance analysis alone none of the options give a performance that is

appreciably better than the others. However, for the cases where 80 or 160 airports

refer to the same PKD, the PKD has to be replicated, as described in Table 2. The

reason is the bottleneck due to the limited availability of airport inspection points,

assumed to be 20 per airport. System devices within a airport inspection point are

dedicated and/or under-utilized and therefore highly responsive. Different technical

options imply minimal variations in the system inspection time. These variations turn

out to be an irrelevant component of the total average waiting time.

102

Table 2: Response time and resource utilization for PKD Shared Option
80 Airports

PKD Insp. Time(s) Wait. Time(m) PKD Ut. PKD Serv. Ut. PKD Serv. Disk Ut.

1 54.8836 45.73733 0.999572 0.434597 0.564976
2 40.4675 33.7235 0.9192 0.399652 0.51955
3 40.4085 33.67433 0.616257 0.267938 0.34832
4 40.4061 33.67233 0.4623 0.201 0.2613
5 40.4057 33.67217 0.369852 0.160805 0.209046

160 Airports
PKD Insp. Time(s) Wait. Time(m) PKD Ut. PKD Serv. Ut. PKD Serv. Disk Ut.

1 90.1481 4507.5 0.999919 0.565172 0.565172
2 54.7181 2735.96 0.99999 0.434782 0.565215
3 43.4452 2172.3 0.99997 0.43477 0.5652
4 40.4353 2021.8 0.919175 0.399643 0.519535
5 40.409 2020.49 0.737196 0.32052 0.416676
6 40.4064 2020.36 0.614483 0.347317 0.347317
7 40.4059 2020.33 0.526727 0.229011 0.297716
8 40.4057 2020.33 0.460893 0.200388 0.260505

4.4.2 Authentication Policies

igures 51 and 52 show how traveler waiting time and inspection time change as we F

differentiate the authentication procedure for country’s citizens and visiting aliens.

We assume that all travelers undergo the inspection process from the baseline

scenario, but country’s citizens are exempt from biometric data collection and

verification.

 We considered different values for the percentage of citizens and non citizens

arriving at inspection points. In the baseline scenario all travelers undergo the same

authentication procedure. Other values we considered are 50%, 70%, and 90%,

corresponding to increasing rates of country’s citizen population. We can observe

from the diagrams that modifying the authentication policy can reduce the average

traveler waiting time, especially when a large traveler population is waiting to be

authenticated.

103

0% 50% 70% 90%

0

10

20

To
ta

30

40

50

60

7

80

00 1500 2000

Tra

l W
ai

tin
g

Ti
m

e
(m

) 0

500 10

velers (n)

F re 51 tota time nt au n scenar

Figures 53 and 54 display results for different requirements of the POE Officer

inspection time. For the baseline authentication scenario we assumed a manual

inspection time of 30s. Now we perform a sensitivity analysis on that parameter,

giving it the values 0s, 30s, and 60s. These values may correspond to different

authentication policies and requirements. A 0s inspection time corresponds to a totally

igu : Primary l waiting for differe thenticatio ios

Figure 52: Primary inspection time for different authentication scenarios

4.4.3 Manual Inspection Times

0 5 10 15 20 25 30 35 40 45

0%

50%

70%

Pe
rc

e
ta

ge
f C

o
nt

ry
iti

ze

90%

n
 o

u
 C

ns

Inspection Time (s)

104

automated inspection process. A 30s and 60s inspection times correspond to

increasing requirements for manual inspection time, which can be caused by the

necessity to review less/more documents, to ask the traveler some questions. Figures

53 and 54 show that the passengers’ waiting time and inspection time are more

sensitive to changes in the officer inspection time, as opposed to changes in th

biometric acquisition time, which we explore below. In fact, the difference between

different options is significant.

e

105

0

20

40

60

80

100

140
To

ta
l W

ai
tin

g
Ti

m
e

(m
) 120

500 1000 1500 2000

Travelers (n)

0s 30s 60s

Figure 53: Primary total waiting time for different manual inspection times

Figure 54: Primary inspection time for different manual inspection times

4.4.4 Biometric Sampling Times

Figures 55 and 56 represent system performance as we vary the time to capture

travelers’ biometric samples. Fifteen seconds is the biometric acquisition time

assumed for the baseline scenario and given by the sum of the time to acquire

fingerprint and face image data. We evaluate how system waiting time and throughput

change as we consider a shorter acquisition time of 10s and a longer acquisition time

0 10 20 30 40 50 60 70 80 90

0s

30s

60s

M
an

ua
l I

ns
pe

ct
io

n
Ti

m
e

Inspection Time (s)

106

107

c

of 20s. These different times may correspond to requests for a lower/higher sample

quality, to the adoption of sampling devices with increased/decreased performance, or

to a requirement of an increased/decreased number of samples. The diagram in Figure

55 shows the difference in average travelers’ waiting time for the given biometri

capture time options. The difference increases as the traveler population increases.

However, in all cases for adjacent options, as long as the population is less than 2000,

it is less than 5 minutes. Figure 56 displays the average inspection time for different

biometric sampling times. As it is natural, the inspection time increases as the

biometric collection time increases.

10s 15s 20s

0

10

20

30

40

50

60

70

80

500 1000 1500 2000

Travelers (n)

To
ta

l W
ai

tin
g

Ti
m

e
(m

)

Figure 55: Primary total waiting time for different biometric sampling times

0 10 20 30 40 50

10s

15s

20s
B

i
et

ri
 S

am
pl

in
g

im
e

Inspection Time (s)

om
c

 T

Figure 56: Primary inspection time for different biometric sampling times

ternational Airport [15]. The simulation analysis is based on a discrete-event

simu 33].

he model is quite complex and detailed, including approximately 400 modules from

e Extend libraries. To obtain performance measures the simulation model needs to

e run for 24 hours. To estimate the mean and variance of performance measures 10

mulation runs are required.

Based on the performance results produced by the simulation model, the average

ait time for travelers going through primary inspection is 43.2+/-5.4, and the

4.5 Validation

Validation of performance results aims at checking whether the performance figures

obtained by solving a performance model are close to those obtainable by observing

the system in action. This task, in the absence of a system prototype or

implementation, is a difficult matter. However, we were able to indirectly validate our

performance results for an airport inspection system without having access to a real

system. In fact, we validated our performance results against validated results coming

from a simulation analysis of the inspections of international travelers at Los Angeles

In

lation model implemented using a commercial software package, Extend [

T

th

b

si

w

108

average queue length is 1374+/-108. Incorporating this information on the diagram in

Figure 49, which represents total wait time against the number of travelers waiting for

primary inspection, we observe that our results are compatible with those obtained

from the simulation study. In fact, in the cases where the PKD is not overloaded, i.e.,

all technical options except for Shared PKD with 80 and 160 airports referring to the

same PKD, the waiting time returned by our LQN models is within the range returned

by the simulation model.

Figure 57: Validation of travelers' total waiting time

0

20

40

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

Travelers (n)

T
ta

l W

MRTD Dedicated PKD
Shared PKD (1 airport) Shared PKD (40 airports)
Shared PKD (80 airports) Shared PKD (160 airports)

60

80

120

160

o
ai

tin
 (m

)

140

100

g
Ti

m
e

109

Chapter 5: Conclusions

 this thesis we presented a methodology for modeling and evaluating the

We selected UML 2.0 as our notation for software specification. In particular, we

dopted Use Case Diagrams, Deployment Diagrams, and Sequence Diagrams to

odel system users and functions, system hardware and software resources, and

stem dynamics, respectively. We annotated UML diagrams with quantitative

erformance-oriented information using standard extensions defined in the “UML

rofile for Schedulability, Performance, and Time” [36]. We also introduced

dditional extensions to allow a more convenient specification of the system

erformance characteristics. Other extensions were proposed to address gaps in the

urrent Performance Profile, which does not cover UML 2.0 diagrams.

The notation we selected for performance modeling is LQN. This choice was

otivated by several factors. One of them is the suitability of LQN to express high-

level software architecture abstractions, which makes it easier to define performance

models and to trace back performance results into the original UML software

ecifications. Another factor is the ability of LQN to explicitly model software

omponents and to express potentially complex operations performed by them.

dditionally, LQN models are highly scalable, and efficient solution algorithms and

ols are available for their evaluation.

In

performance of software systems in the early stages of the software lifecycle.

a

m

sy

p

P

a

p

c

m

sp

c

A

to

110

 We proposed a transformation methodology to automatically derive LQN models

om annotated UML models. The transformation is largely inspired by earlier work

presented in [20, 21, 39, 40, 41, 44]. However, our contribution is the adaptation of

existing performance modeling techniques to a different set of UML diagrams. In

particular, we adopted Sequence Diagrams instead of Activity Diagrams to express

the dynamics of performance scenarios. We believe that Sequence Diagrams provide

a better way to define a performance model for several reasons:

- with UML 2.0, they can represent very well complex system dynamics, including

non-sequential flow of control,

- they naturally specify which system components are responsible for different

operations,

- they are very good at expressing intercomponent communication.

 We tested the applicability of the proposed transformation to the performance

modeling and evaluation of a complex software system used at international ariports

ports within a country to grant or deny access to incoming travelers. The case study

showed that our methodology is expressive and easy to apply. It is also modular; in

fact, once we defined the high-level layout of the LQN model for the system, it was

possible to separately process different performance scenarios, and then merge the

corresponding LQN submodels to obtain the LQN model for the system. The LQN

models obtained for different technical and policy options for the inspection system

were easily solved by an analytical solver with a very limited resource usage on the

host machine.

 On the list of future work is the extension of our transformation to cover other

architectural patterns besides the client/server one, and to address more features from

UML 2.0 Sequence Diagrams. Another objective is the formalization of the additions

and modifications suggested in the UML Performance Profile. We also find it

desirable to develop an automated tool to implement our methodology, possibly

fr

111

integrable with common practice development environments. This would allow to fill

the gap between software development and performance analysis, and to integrate the

validation of performance requirements in the software lifecycle. Finally, while our

lidation of the methodology on experience with the case study is positive, a va

additional and more complex systems is desirable.

112

Appendix A: Parameterization of LQN
Model for Options 1 and 2

This appendix explains how we parameterized the LQN model obtained in Chapter 4

rizes the basic characteristics of the platform configuration we assume

r

for two different design alternatives that can be adopted to build an airport inspection

system. We introduced the alternatives in exam in Section 4.1.4, and we called them

as Options 1 and 2, respectively.

 The next sections specify the service rates we assume for the execution

environment of the inspection system and for the expected size of the data exchanged

during key system operations. This information is used to motivate the resource

demands attached to steps of performance scenarios. Resource demands are used to

derive parameters for the LQN model of the system.

A.1 Assumed Execution Environment

Table 3 summa

fo the airport inspection system, including service rates of hardware devices and

links between them. Parameters we do not explicitly use to estimate resource demands

for system operations are left unspecified. Example of such parameters are the CPU

rate and RAM of processing devices other than POE Workstation, or the throughput

of the fingerprint scanner and of digital camera.

113

Table 3: Execution environment (Options 1 and 2)

CPU: Pentium 2.40 GHz

RAM: 512 MB

Command Overhead: 1 ms

Access Time: 3.5 ms

Latency: 2 ms

POE Workstation

Disk:

Transfer Time: 75 MB/s

MRTD Reader Reading Rate: 424 kilobits/s

MRTD Card Data Transfer Rate: 106 kilobits/s

Fingerprint Scanner Not specified

Digital Camera Not specified

LAN Bandwidth: 100 Mbits/s

WAN Bandwidth: 16.6 Mbits/s (avg)

CPU: Not specified

RAM: Not specified

Disk: Command Overhead: 1 ms

 Access Time: 2.93 ms

 Latency: 2 ms

TNS

 Transfer Time: 85 MB/s

CPU: Not specified

RAM: Not specified

Command Overhead: 1 ms

Access Time: 2.93 ms

Latency: 2 ms

TBS

Disk:

Transfer Time: 85 MB/s

CPU: Not specified

RAM: Not specified

Disk: Command Overhead: 1 ms

 Access Time: 2.93 ms

 Latency: 2 ms

CCD Server

 Transfer Time: 85 MB/s

114

A.2 Expected Size of Data

Table 4 lists the expected size of the data exchanged within the airport inspection

]).

Table 4: Expected size of data (Options 1 and 2)

MRZ: 88 bytes

system during key system operations, such as MRTD authentication, collection of

name-based lookup information, etc. This information was mostly gathered from

technical reports available for similar systems (e.g., [28, 29

Picture: 12704 bytes

DS: 20 bytes

Public Key Certificate: 1.8 KB

(without Public Key Certificate): 12852 bytes

MRTD Data

(with Public Key Certificate): 14695.2 bytes

Total Size

Fingerprint scans 10 KB TBS Data

Face Image 20 KB

Watchlist Size 1000 Face images

TNS Data 5 KB

CCD Data 20 KB

A.3 Performance Annotations

Table 5 specifies the performance annotations we assume to be attached to the

 (i.e., Option 1 or 2).

scenario steps represented in the set of Sequence Diagrams for the system. For each

step we report the parameter associated with the Pademand tag, and optionally with

the PextOp tag. We state the type of the parameter (i.e., required, assumed, estimated,

measured), its numeric value, and most of the times a rationale for it. A par value

indicates that the exact resource demand for the corresponding scenario step is

dependent on which design alternative is assumed for the system

115

We assume all se ith mean values

fied component always

performs the same opera e service demand.

 As explained in Section 4.2.4, we esti e required by system

operations as the ratio between transferred and the throughput of the

involved I/O device. On the o e of more information, we

process stem operations is 0.005s. The

 to this a e taken by cryptographic

rkstation to verify the validity of a MRTD. In

mance of these functions arked on a machine with the

configuration as nssl, an application available

the OpenSSL lib option of the openssl binary returns

performance results for ptographic algorithms, including SHA-1

and RSA. For the SH g ber of bytes that can be

processed per second. For the RS es needed by

sign/verify cycles for d fferen e used this information to

ate the processing A as a function of the amount of data to

be processed. The pro d by RSA was instead estimated as a

function of the length of e

Table 5: Resource d Options 1 and 2)

rvice demands to have exponential distributions, w

equal to the speci values. We also assume that a system

tion with the sam

mate the I/O tim

 the data to be

ther hand, in the absenc

assume that the ing time needed to perform sy

only exception ssumption is represented by the tim

operations performed on the POE Wo

fact, the perfor was benchm

same the POE Workstation using ope

with raries. The speed

 a wide range of cry

A-1 al orithm, it returns the num

A algorithm it returns the tim

i t values of key length. W

estim time required by SH

cessing time require

 the us d key.

emand of scenario steps (

Scenario Step Tag Source Value (s) Rationale

Scenario: Primary Inspection
startPrimInspection (1) PAdemand asmd 0.0

reviewDocs 20.0 (2) PAdemand asmd

processInspectionData PAde 5.0 (3) mand asmd

return inspectionResult PAde asmd 5.0 (4) mand

automatedChecks PAde mand asmd 0.005

captureFingerprint PAdemand 0.005 asmd

return fingerprintData PAdemand pred 10.0 (5)

116

capture faceImage PAdemand asmd 0.005
return faceImageData PAdemand asmd 5.0 (6)

PAdemand asmd 0.005
PAextOp
(send-store&matchBiom) pred 0.0142 (7)

store&matchBiometrics

PAextOp
(readWriteBiomData) pred 0.0064 (8)

return biometricMatchResult PAdemand asmd 0.005
processData PAdemand asmd 0.005
return checksResult PAdemand asmd 0.005
scanMRTD PAdemand asmd 1.0 (9)

PAdemand pred par (10) return MRTDData
PAextOp

pred par (11)
(readMRTDData)

verifyMRTDAuthenticit (12) y PAdemand pred par

getPKCertificate PAdemand asmd 0.005
PAdemand asmd 0.005 return PKCertificate

rtData) pred par (13)
PAextOp
(readPKCe

verify(MRTD_DS) pred par (14) PAdemand

verify(CAPKCertificate) d 0.0015 (15) PAdemand pre

verify(MRZ_DS) n 6) PAdema d pred 0.0009 (1
pred 0.0006 (17) verify(faceImage_DS) PAdemand

return MRTDAuthenticity PAdeman d asmd 0.005

PAdemand asmd 0.005 getTravelerInfo

ravInfo) pred 0.0118 (18) PAextOp

(send-getT
lookupName 0.005 PAdemand asmd

PAdemand asmd 0.005 return lookupName

dLookupData) pred 0.006 (19) PAextOp
rea

getPicture PAdemand asmd 0.005
PAdemand asmd 0.005 return picture

d 0.0062 (20)
PAextOp
(readPictureData) pre

return lo pName, picture PAdemand asmd 0.005 oku

startSecInspection PAdemand asmd 0.0 (21)
PAdemand asmd 5.0 (22) identifyTraveler
PAextOp
(send-identifyBiom) pred 0.0094 (23)
PAdemand (24) asmd 0.5 return identificationResult
PAextOp
(readWatchlistData) pred 0.2357 (25)

identifyBiometrics PAdemand asmd 0.005
retu ationResult PAdemand asmd 0.005 rn identific

reviewDocs PAdemand asmd 300.0 (26)
processInspectionData PAdemand asmd 10.0 (27)
return inspectionResult asmd 3.0 PAdemand (28)

Scenario: Name-based Lookup
getTravelerInfo PAdemand asmd 0.0 (29)

117

PAdemand asmd 0.005 lookupName
PAextOp
(readLookupData) pred 0.006 (30)

return lookupName PAdemand asmd 0.005
PAdemand asmd 0.005 getPicture
PAextOp
(readPictureData) pred 0.0062 (31)

return picture PAdemand asmd 0.005
return lookupName, picture PAdemand asmd 0.005

Scenario: Biometric Verification
store&matchBiometrics PAdemand asmd 0.0 (32)
return biometricMatchResult PAdemand asmd 0.005

Scenario: Biometric Identification
identifyBiometrics PAdemand asmd 0.0 (33)
return

biometricIdentificationResult
PAdemand asmd 0.005

Rationale for resource demand values:

(1) It is the time required by the traveler to generate a request for primary inspection. We

to review his/her documents. We assume this time to be 20s.

(3) It is the time required by the primary inspection officer to decide if authorizing the

traveler to enter the country based on the outcome of manual and automated checks.

We assume this time to be 5s.

(4) It is the time required by the pri

assume this time to be null.

(2) It is the time required by the primary inspection officer to interview the traveler and

mary inspection officer to communicate to the

traveler the outcome of the inspection process. We assume this time to be 5s.

(5) It is the time required to capture fingerprint scans of the traveler. We assume this

time

time require ke a picture of the us al cam

s time to be

 the time required to send the biometr from the tra r

ans plu

mpute the average data transfer time as:

.6 Megabits s

to be 10s.

 (6) It is the d to ta traveler ing a digit era. We

assume thi 5s.

(7) It is ic data collected vele

(fingerprint sc s face image) to the TBS, through the WAN connecting the

POE Workstation to that server. We co

30KB / 16 /s = 0.0142

118

(8) It is the time required to write the biometri ta collected from the trav ler

ans plu e) to the TBS and t a previously stored

face image file (20 KB We compute the average data transfer time as:

1 ms + 2.93 ms + 2 m s

ed ary inspection officer to swipe the MRTD through

RTD Reader. W his time to be 1

 the time required RTD Reader to read the data stored in the MRTD.

l duration of ion depends on the size of the MRTD data, which in

turn depends on the te ration ass for th tem. This leads

s for O d 2:

: 15695.2 byt lobits/s = 0.270

Option 2: 12852 bytes 68s

me required RTD to transf data t MRTD Reade

 of the epends on the size of the MRTD data, which in turn

 on the techn uration assum r the This leads to the

:

1: 15695.2 byt lobits/s = 1.08

Option 2: 12852 bytes 72

he time required the MRTD dat the Reader to the POE

hrough a 12 Mbits/s USB link. The actual transfer time depends on he

size of the MRTD turn dep on th nical configu

ed for the syste ds to the follow lues tions 1 and 2:

Option 1: 15695.2 byt /s = 0.0093s

ytes 082s

me require ublic Key Ce tes fr the Disk of the POE

ctual r me depends on the num f certificates

read (one or two), which in turn depends on the technical configuration assumed for

the system. This leads to the following values for Options 1 and 2:

1 ms + 3.5 m KB / 75M = 0.0

 3.5 m (3.6 KB / 75M = 0.0

c da e

(fingerprint sc s face imag disk, o read

) from it.

s + (50 KB / 85MB/s) = 0.0064

(9) It is the time requir by the prim

the M e assume t s.

(10) It is by the M

The actua the operat

chnical configu umed e sys to the

following value ptions 1 an

Option 1 es / 424 ki 8s

 / 424 kilobits/s = 0.23

(11) It is the ti by the M er its o the r. The

actual duration operation d

depends ical config ed fo system.

following values for Options 1 and 2

Option es / 106 ki 31s

 / 106 kilobits/s = 0.94 s

(12) It is t to transfer a from MRTD

Workstation t t

data, which in ends e tech ration

assum m. This lea ing va for Op

es / 12 MB

Option 2: 12852 b / 12 MB/s = 0.0

(13) It is the ti d to read P rtifica om

Workstation. The a eading ti ber o to be

Option 1: s + 2 ms + (1.8 B/s) 065s

Option 2: 1 ms + s + 2 ms + B/s) 065s

119

(14) It is the time required to verify the authenticit the DS on the MRTD. This

requires to compute a hash function (SHA-1) MRT , and eventua

 the authenticity applying the RSA algorithm using the Public

Key of the MRTD signer (2048 bits) [28, 29]. The time to perform the operation

ds on the amount of data stored in the MRTD, which in turn depends on

atio for the system leads to the following values

for Options 1 and 2:

A_1(14 s)] +

 t[RSA(2048

t[SHA_1(12 +

 t[RSA(2048 y(20bytes)] = 0 s

(15) It is the time required to verify the authenticity of the DS on the Public Key

Certificate of the MRTD issuer. This requires to compute a hash function (SHA-1)

tually to verify the authenticity of its DS by

applying RSA using the Public Key of the Country CA (3072 bits) [28, 29]. The time

t[RSA(3072 bits)-verify(20bytes)] = 0.0015s

(16) portion of the MRTD.

This requires to compute a hash function (SHA-1) of the MRZ data, and eventually

quires to compute a hash function (SHA-1) of the image data, and

document signer (2048 bits) [28, 29]. The time to perform

the operation can be estimated as:

y of

of the D data lly to

verify of the DS by

depen the

technical configur n assumed . This

Option 1: t[SH 695.2 byte

 bits)-verify(20bytes)] = 0.0091s

Option 2: 852bytes)]

 bits)-verif .0091

of the certificate data itself, and even

to perform the operation can be estimated as:

t[SHA_1(1.8 KB)] +

It is the time required to verify the authenticity of the MRZ

verify the authenticity of the DS on the MRZ by applying RSA with the Public Key

of the document signer (2048 bits) [28, 29]. The time to perform the operation can be

estimated as:

t[SHA_1(88 bytes)] +

t[RSA(2048 bits)-verify(20bytes)] = 0.0009s

(17) It is the time required to verify the authenticity of the face image portion of the

MRTD. This re

eventually to verify the authenticity of the DS on the face image by applying RSA

with the Public Key of the

t[SHA_1(12704 bytes)] +

t[RSA(2048 bits)-verify(20bytes)] = 0.001s

120

(18)

leads

(19) okup data for the traveler from the

(20)

 as:

2s

(21) Officer to generate a request for

(22)

(23) raveler to the TBS. We compute

20KB / 16.6 Megabits/s = 0.0094s

(24)

(25) lates

equired to perform the computation

pute the average data transfer time as:

(26)

(27) g the

traveler to enter the country based on the outcome of manual and automated checks.

We assume this time to be 10s.

(28) It is the time required by the secondary inspection officer to communicate to the

traveler the outcome of the inspection process. We assume this time to be 3s.

It is the time required to exchange the TNS traveler’s biographic and lookup

information and a picture of him/her. We assume an average size of 5 KB for the

biographic and lookup data, and an average size of 20 KB for the picture. This

to an average data transfer time of:

25KB / 16.6 Megabits/s = 0.0118s

It is the time required to retrieve biographic and lo

TNS disk. We compute the average data transfer time as:

1 ms + 2.93 ms + 2 ms + (5 KB / 85MB/s) = 0.006s

It is the time required to retrieve a traveler’s picture from the CCD server disk. We

compute the average data transfer time

1 ms + 2.93 ms + 2 ms + (20 KB / 85MB/s) = 0.006

It is the time required by the POE Primary

secondary inspection. We assume this time to be null.

It is the time required by the secondary inspection officer to start an identification

process. We assume this time to be 5s.

It is the time required to send a face image of the t

the average data transfer time as:

It is the time required by the TBS to match the traveler’s face image with the set of

1000 face images in the biometric watchlist. We assume this time to be 0.5s

It is the time required by the TBS disk to read the set of 1000 face image temp

in the biometric watchlist. The actual time r

depends on the size of the watchlist. We com

1 ms + 2.93 ms + 2 ms + (1000 × 20 KB / 85MB/s) = 0.2357s

It is the time required by a secondary inspection officer to thoroughly review the

traveler’s documents and belongings and to question him/her. We assume this

operation to last 5 minutes.

It is the time required by the secondary inspection officer to decide if authorizin

121

(29) It is the time required by the border inspection system to generate a request for

name-based lookup. We assume this time to be null.

As in (19)

As in (20)

It is the time required by the border inspection system to generate a request for

biometric verification

(30)

(31)

(32)

. We assume this time to be null.

(33) to generate a request for

A.4 Model Parameters

Tables

inspec

the system in Figure 26.

We le we defined a value for it in the

i

It is the time required by the border inspection system

biometric identification. We assume this time to be null.

 6 and 7 define the parameterization of the LQN model for the airport

tion system obtained in Chapter 4. Table 6 parameterizes the reference tasks for

 based on the information attached to the Use Case Diagram

ave the traveler population parametric;

exper ment section of Chapter 4.

Table 6: LQN parameters for system workloads (Options 1 and 2)

Reference Task Multiplicity Entry Think Time (s)
Travele travelerInspection 4/1 = 4 s r n1

name-basedLookup 20/0.4995 = 40.04 s

biometricVerification 20/0.4995 = 40.04 s Border Inspection System 3200

biometricIdentification 20/0.001 = 20,000 s

7 defines resource demands for entries and activities of non-reference tasksTable

using the perform in Table 5. We list our parameters in a

tabula hical representation of the

parameterized LQN, for the sake of readability. We assume that underlined elements

in the table denote task activities.

ance annotations specified

r format, instead of displaying them with the grap

122

Table 7: LQN parameters for resource demands (Options 1 and 2)

Task Entry/Activity Service Time (s)
startPrimInspection 5.0

reviewDocs 20.

processInspectionData 5.0

A5 0.005
POE Pr

A9 1.0

im. Officer

A10 see rationale (12)

startSecInspection 3.0

reviewDocs 300.0

processInspectionData 10.0
POE Sec. Officer

A2 5.0

verifyMRTDAuthenticity 0.005

automatedChecks 0.005

identifyTraveler 0.005

processData 0.005

Verify see rationale (14) through (17)

A5 0.005

A6

POE A

0.005

A7 0.005

A8 0.005

A9 0.005

pp.

A10 0.005

MRTD Reader Task scanMRTD see rationale (10)

MRTD Task readMRTDData see rationale (11)

PKD getPKCertificate 0.005

Fingerprint Scanner Task captureFingerprint 10.0

Digital Camera Task captureFaceImage 5.0

getTravelerInfo 0.005

A2 0.005 TNS App.

A3 0.005

TN DB lookupName 0.005

CCD getPicture 0.005

store&matchBiometrics 0.005
TB DB

yBiometrics 0.005 identif

send-getTravInfo 0.011765813

send-store&matchBiom 0.01418976 WAN Task

send-identifyBiom 0.009412651

POE W ertData see rationale (13) orkstation Disk Task readPKC

readWriteBiomData 0.006416791
TBS Disk Task

readWatchlistData 0.235709412

TNS Disk Task readLookupData 0.005987445

123

CCD Server Disk Task readPictureData 0.006159779

o ilities attached to performance scenarios through PAprob tagged

s and pta2. They appear in the Traveler Authentication interaction

r

biome e latter corresponds to the

b

both p in the experiment section

The nly probab

value are pta1

occur ence. The former expresses the probability of executing name-based and

tric-based checks during Primary Inspection. Th

proba ility of collecting traveler biometric samples and verifying them. We leave

robabilities parametric; we defined a value for them

of Chapter 4.

124

Appendix B: ption 3

This appendix describes a e that can opted for the airport

inspection system. We introduced the alternative in exa

called it as Option 3. The next sections derive its LQN ly

reusing the outcome of the application of our UML to LQN transformation to the

design Options 1 and 2, which we described in Chapter 4.

B.1 Description

eployment Diagram in Figure 58 represents the co ation of Option 3. We

s almo e represe in Figure 25 of Chapter

4. The only difference lies in , and not stored

E Workstation. Th KD is connected to the inspection system through a

 link whose exact type and capability are dependent on the exact location of

ay be a POE, a regional, state, or national reference point, or

.

O

design alternativ be ad

m in Section 4.1.4, and we

 performance model large

The D nfigur

can observe that this i st identical to the on nted

 the location of the PKD, which is remote

at the PO e P

network

the PKD. This m

combinations of them

125

Figure 58: Deployment Diagram for Option 3

Figure 59 shows a Use Case Diagram for Option 3. The diagram displays the same

users and functions represented in Figure 26 of Chapter 4, with the exception of the

PKI System user. This corresponds to a system outside the scope of the inspection

system, which issues requests for Public Key Certificates to the PKD. The population

size for the workload generated by PKI System is left parametric. Its actual value

determines a different load on the PKD and corresponds to a different location of it.

126

Figure 59: Use Case Diagram for Option 3

Figure 60 shows a Sequence Diagram for the PK Certificate Retrieval use case.

ce Modeling

 this section we describe the outcome of the application of our UML to LQN

ansformation to the configuration for the inspection system described in the previous

ction. Since the overall structure, dynamics, and parameterization of the resulting

LQN are almost identical to the ones obtained Chapter 4, we omit to report the

Figure 60: Sequence Diagram for the PK Certificate Retrieval use case

B.2 Performan

In

tr

se

127

complete output of every step of the transformation. Instead, we only describe the

differences between the two models.

B.2.1 Model Structure

The application of Step 1.a to the Deployment Diagram in Figure 58 generates the

same LQN devices obtained in Chapter 4 for the other configurations of airport

inspection system. However, compared to that set, the POE Workstation Disk device

has been removed, since the deployment in exam does not use the Workstation to

store any data, but just to access external information and then process it. The Link

device has instead been added, together with the PKD Server and PKD Server Disk

devices.

 The application of Step 1.b also creates a set of LQN tasks very similar to the ones

oval of POE

Workstation PKI System, for

which a dummy device (Link Task and PKD

Server Disk Task.

 Finally, co ppings between LQN tasks and

POE

tion Disk Task and POE Workstation Disk. It instead contains the associations

r

. Step 2.c creates the entry send-getPKCert of Link Task, and the entry

adPKCertData of PKD Server Disk Task. Finally, the outcome of Step 2.e is the

obtained in Chapter 4. The only differences consist in the rem

 Disk Task, and the introduction of the reference task

Dummy Device5) is created, and of

mpared to Chapter 4, the set of ma

devices obtained with Step 1.c, does not include the association between

Worksta

between PKI System and Dummy Device5, Link Task and Link, PKD and PKD Server,

and PKD Server Disk Task and PKD Server Disk.

B.2.2 Model Dynamics

The application of Step 2.a generates the same outcome produced by the that step in

Chapter 4, except for the introduction of the entry PKCertificateRetrieval for the

reference task PKI System. Step 2.b is identical to the same step performed in Chapte

4

re

128

same as described in Chapter 4, with the exception of the result of processing the

MRTD Authentication interaction occurrence, displayed in Figure 61. Step 2.e also

generates a service request from PKI System toward the getPKCertificate entry of the

PKD task, displayed in Figure 62.

POE Prim. Officer
{ 20 }startPrimInspection

Figure 61: LQN request flow after MRTD Authentication

Dummy
Device3

{ ∞ }A1

&

A9 reviewDocs

processInspectionData[r]

&

A2

A3

+

A5A4

+

A6

POE App.
{ ∞ }automatedChecks

POE
Workstation

{ ∞ }

MRTD Reader
Task
{ ∞ }

MRTD
Task

Reader
{ ∞ }

{ ∞ }

MRTD

MRTD
{ ∞ }

scanMRTD

readMRTDData

verifyMRTDAuthenticity

A8

A10

verify[r]

PKD
{ y }getPKCertificate

PKD Server
Disk Task

{ w }
readPKCertData

PKD
Server
Disk
{ w }

TNS Name Check

...

Link Task
{ x }send-getPKCert

Link
{ x }

PKD
Server

{ z }

+

A7Secondary Inspection

+

A8

0.001 0.999

129

The final LQN model for Option 3, obtained as described in Chapter 4, is shown in

Figure 62.

Figure 62: High-level layout of the LQN model for the airport inspection system

(Option 3)

POE Prim. Officer
{ 20 }

Dummy
Device3

{ ∞ }

startPrimInspection

Fingerprint
Scanner Task

{ ∞ }

Digital
Camera Task

{ ∞ }

TBS
{ 3 }

Fingerprint
Scanner

{ ∞ }

TBS Disk
{ 3 }

Digital
Camera

{ ∞ }

captureFingerprint

captureFaceImage

TBS Disk
Task
{ 3 }

TB DB
{ 4 }store&matchBiometrics

readWriteBiomData

WAN Task
{ ∞ }

{ ∞ }
WAN

MRTD Reader

{ ∞ }
Task

MRTD
Task
{ ∞ }

MRTD
Reader

{ ∞ }

MRTD
{ ∞ }

scanMRTD

readMRTDData

TN DB
{ 4 }lookupName

TNS Disk Task
{ 2 }

TNS
Disk
{ 2 }

readLookupData

CCD
CCD

Server
{ 3 }

{ 3 }getPicture

CCD Server
Disk Task

{ 2 }
CCD

Server
Disk
{ 2 }

readPictureData

TNS
{ 3 }

TNS App.
{ 6 }getTravelerInfo

automatedChecks
POE

Workstation
{ ∞ }

verifyMRTDAuthenticity

PKD
{ y }getPKCertificate

PKD Server
Disk Task

{ w }
readPKCertData

PKD
Server
Disk
{ w }

Traveler
{ n1 }travelerInspection

Dummy
Device1

{ ∞ }

Border Inspection
System
{ n2 }

biometricVerificationbiometricIdentificationname-basedLookup

Dummy

{ ∞ }
Device2

Dummy
Device4

{∞ }

startSecInspection

identifyBiometrics

readWatchlistData

identifyTraveler

send-getTravInfo send-identifyBiom

Link Task
{ x }

Link

PKD
Server

{ z }

{ x }

PKI System
{ n3 }

Dummy
Device5

{ ∞ }

PKCertificateRetrieval

POE Sec. Officer
{ 1 }

send-PKCert

POE App.
{ ∞ }

send-store&matchBiom

130

B.2.3 Model Parameters

The parameterization of the LQN model for Option 3 is almost identical to the

parameterization of the LQN model for Options 1 and 2. For this reason in this section

we only cover the differences between them.

 Table 8 summarizes the basic characteristics of the hardware nodes in the platform

onfiguration for Option 3 that are not included in Options 1 and 2, i.e., the PKD c

Server and the Link (we assume it to be a WAN) between the POE Workstation and

the PKD server. We do not specify the CPU rate and RAM of the PKD Server since

we do not explicitly use that information to estimate resource demands for system

operations.

Table 8: Execution environment (Option 3)

CPU: Not specified

RAM: Not specified

Command Overhead: 1 ms

Access Time: 3.5 ms

Latency: 2 ms

PKD Server

Disk:

Transfer Time: 75 MB/s

Link (WAN) Bandwidth: 16.6 Mbits/s (avg)

The expected size of the data exchanged within the system is the same as reported in

Appendix A for Options 1 and 2. The MRTD does not contain the Public Key

Certificate of the document issuer therefore its size is 12852 bytes.

 Table 9 lists the performance annotations attached to the steps of the MRTD

Authentication interaction occurrence, the only one containing MRTD and PKD-

related operations. The table also reports the annotations attached to the PK

Certificate Retrieval use case, not provided by Options 1 and 2 of the inspection

system.

131

Table 9: Resource demand of scenario steps (Option 3)

Scenario Step Tag Source Value (s) Rationale

Scenario: Primary Inspection
PAdemand asmd 1.0 (1) scanMRTD

PAdemand pred 0.2368 (2) return MRTDData
PAextOp
(readMRTDData) pred 0.9472 (3)

verifyMRTDAuthenticity PAdemand pred 0.0082 (4)
getPKCertificate PAdemand asmd 0.005

 PAextOp
(send-getPKCert) pred 0.0017 (5)

PAdemand asmd 0.005 return PKCertificate
PAextOp
(readPKCertData) pred 0.0065 (6)

verify(MRTD_DS) PAdemand pred 0.0091 (7)
verify(CAPKCertificate) PAdemand pred 0.0015 (8)
verify(MRZ_DS) PAdemand pred 0.0009 (9)
verify(faceImage_DS) PAdemand pred 0.001 (10)
return MRTDAuthenticity PAdemand asmd 0.005

Scenario: PK Certificate Retrieval
getPKCertificate PAdemand asmd 0.0 (11)

PAdemand asmd 0.005 return PKCertificate
PAextOp
(readPKCertData) pred 0.0065 (12)

Rationales for resource demand values

(1) See rationale (9) in Appendix A, Option 2

(2) See rationale (10) in Appendix A, Option 2

(3) See rationale (11) in Appendix A, Option 2

(4) See rationale (12) in Appendix A, Option 2

(5) It is the time required to receive from the PKD the Public Key Certificate of the

MRTD issuer and of the Country CA for the MRTD issuer through the WAN

connecting the POE Workstation with the PKD. We compute the average data

transfer time as:

(2 × 1.8KB) / 16.6 Megabits/s = 0.00169427711s

(6) See rationale (13) in Appendix A, Option 2

(7) See rationale (14) in Appendix A, Option 2

132

(8) See rationale (15) in Appendix A, Option 2

(9) See rationale (16) in Appendix A, Option 2

(10) See rationale (17) in Appendix A, Option 2

(11) It is the time required by the PKI system to generate a request for retrieval of Public

Key Certificate. We assume this time to be null.

(12) See rationale (13) in Appendix A, Option 2

Table 10 and 11 completely specify the parameterization of the LQN model for

Option 3. The size of the Traveler population and of the PKI System population was

defined in the Performance Experiments Section of Chapter 4.

Table 10: ystem workloads (Option 3)

LQN parameters for s

Reference Task Multiplicity Entry Think Time (s)
Traveler 4s / 1 = 4s n1 travelerInspection

name-basedLookup 20s / 0.4995 = 40.04s

biometricVerification 20s / 0.4995 = 40.04s Border Inspection System 3200

20s / 0.001 = 20,000s biometricIdentification

PKI Sysetm n3 PKCertificateRetrieval 20s / 1 = 20s

Table 11: LQN parameters for resource demands (Option 3)

Task Entry/Activity Service Time (s)
startPrimInspection 5.0

reviewDocs 20.

processInspectionData 5.0

A5 0.005

A9 1.0

POE Prim. Officer

A10 0.0082

startSecInspection 3.0

reviewDocs 300.0

processInspectionData 10.0
POE Sec. Officer

A2 5.0

verifyMRTDAuthenticity 0.005 POE App.

automatedChecks 0.005

133

identifyTraveler 0.005

processData 0.005

verify 0.0124

A5 0.005

A6 0.005

A7 0.005

A8 0.005

A9 0.005

A10 0.005

MRTD Reader Task D 0.236scanMRT 8

MRTD Task ta 0.9readMRTDDa 472

PKD getPKCertificate 0.005

PKD Server Disk Task ta 0.0readPKCertDa 065

Fingerprint Scanner Task ngerprint 10.captureFi 0

Digital Camera Task captureFaceImage 5.0

getTravelerInfo 0.005

A2 0.005 TNS App.

A3 0.005

TN DB 05 lookupName 0.0

CCD getPicture 0.005

store&matchBiometrics 0.005
TB DB

ics 0.005 identifyBiometr

send-getTravInfo 0.0118

send-store&matchBiom 0.0142

send-identifyBiom 0.0094
WAN Task

t 0.0017 send-getPKCer

readWriteBiomData 0.0064
TBS Disk Task

0.2357 readWatchlistData

TNS Disk Task readLookupData 0.006

CCD Se 0.0062 rver Disk Task readPictureData

134

Ref

stems. ACM

Transactions on Computer Systems 2 (1984), 93–122.

[2] AJMONE, M., BALBO, G., and CONTE, G. Performance Models of

CCELLI, G CHERIE, R., CAMP LA,

G. Annotated bibliography on stochastic Petri nets. In Performance Evaluation

a d ethods (A .

Tract, Ed., no 5, pp.1–24

[4] BALSAMO, S., and SIMEONI, M. On transforming UML models into

ed Modeling

Language, April

[5] BALSAMO, S., DI MARCO, A., INVERARDI, P., and SIMEONI, M. Model-

based performa ftware d pment: A survey. IEEE

Transactions of Software Engineering 30, 5 (200 0.

[6] BANKS, J., II, ., NELSON, B., and NIC Discrete-event System

Simulation. Pren

SS, L., CLE ATZMA oftware Architecture in

Practice. Addison Wesley, 1998.

erences

[1] AJMONE, M., BALBO, G., and CONTE, G. A class of generalized stochastic

Petri nets for the performance evaluation of multiprocessor sy

Multiprocessor Performance. The MIT Press, 1986.

[3] BA F., BALBO, ., BOU OS, J., and CHIO

of Parallel nd Distribute Systems-Solution M msterdam, 1994), C

. 10 .

performance models. Workshop on Transformations in the Unifi

 2001.

nce prediction in so evelo

4), 295–31

J. C OL, D.

tice-Hall, 1999.

[7] BA MENTS, P., and K N. S

135

[8] BERNARDO, M., and BRAVETTI, M. Perfor measurement sensitive

congruencies for ovian process algebras. ical Computer Science

290 (2003), 117– .

[9] BOEHM, B. W. Verifying and Validating Software Requirements and Design

Specifications. IEEE Software, vol. 1, no. 1, pp. 1984.

[10] BOOCH G., RUMBAUGH J., and JACOBSON I. eference Guide,

Addison Wesley

and CASSELMAN, R. Use Cas bject-Oriented

rentice

[12] CLEMENTS, P. cture. Technical

Report No. CM EI-96-TR-008, Software Engineering Institute, Carnagie

Mellon Universi , PA, 1996.

3] CORTELLESSA DI MARCO, A d INVERARDI, P.

Three performa work: a so designer perspective,

2nd International Workshop on F ons of Coordination Languages and

Software Archite 2003.

[14] DI MARCO, Performan lysis of Software

Architectures, Ph ità degli Stud quila, June 2005.

NDS, T YAO, Y., GANSEMER J., CANTWELL,

E., PROSNITZ D., ROSENBERG, P., and NORTON, G. Simulation

Analysis of Inspections of International Travelers at Los Angeles

International Airport for US-VISIT. Technical Report, Lawrence

Livermore National Laboratory, CA, 2004.

[16] FERRARI, D. Computer Systems Performance Evaluation. Prentice Hall,

1978.

mance

 mark Theoret

160

75-88,

The UML R

, 1999.

[11] BUHR, R., e Maps for O

Systems. P -Hall, 1996.

 C. Coming Attractions in Sof Architetware

U/S

ty, Pittsburgh

[1 , V., ., an

nce models at ftware

oundati

ctures, September

A. Model-based ce Ana

D Thesis, Univers i di L’A

[15] EDMU ., SHOLL, P.,

136

[17] FRANKS, G., HUBBARD, A., MAJUMDAR, S., PETRIU, D., ROLIA, J., and

WOODSIDE, C. A toolset for performance engineering and software design of

client-server systems. Performance Evaluation 24, 1-2 (1995), 117–135.

. Performance Analysis of Distributed Server Systems. PhD

ton University, Canada, 2000.

[19] FRANKS, G., MALY, P., WOODSIDE, M., PETRIU, D., and HUBBARD, A.

Layered Queuing Network Solver and Simulator User Manual. Carleton

University, Ottawa, Canada, 2005.

[

[

ftware and Performance

[22]

[23] , U., and KATOEN, J. P. Process algebra for

[24] rformance enhanced process algebra. Tech. Rep., Dept.

[25]

[

[

y, 1979.

[18] FRANKS, G

Thesis, Carle

20] GU, G., and PETRIU D. XSLT Transformation from UML Models to LQN

Performance Models. Proc. of 3rd Int. Workshop on Software and Performance

WOSP'2002, pp.227-234, July 2002.

21] GU, G., and PETRIU D. From UML to LQN by XML algebra-based model

transformation. Proc. of 5th ACM Workshop on So

WOSP'2005, pp.99-110, July, 2005.

HARRISON, P., and HILLSTON, J. Exploiting quasi-reversible structures in

markovian process algebra models. Computer Journal 38, 7 (1995), 510–520.

HERMANNS, H., HERZOG

performance evaluation. Theoretical Computer Science 274, 1–2, pp. 43–87,

Mar. 2002.

HILLSTON, J. Pepa-pe

of Computer Science, University of Edinburgh, 1993.

HILLSTON, J., and THOMAS, N. Product-form solution for a class of pepa

models. Performance Evaluation 35, 3 (1999), 171–192.

26] HOARE, C. Communicating Sequential Processes. Prentice-Hall International,

London, 1985.

27] HOPCROFT, J., and ULLMAN, J. Introduction to automata theory, languages

and computations. Addison-Wesle

137

[

[

cess. Technical

[30] n to Computer System Performance Evaluation.

[31] . Finite Markov Chains. Springer, New York,

[32]

[33] ulation environment, WSC '01:

[34]

uter System Analysis Using Queuing

[35] onal,

[36]

[37]

5.

n University, Ottawa, Canada, 1998.

28] INTERNATIONAL CIVIL AVIATION ORGANIZATION. PKI Digital

Signatures for Machine Readable Travel Documents. Technical Report,

Version 4, 2003.

29] INTERNATIONAL CIVIL AVIATION ORGANIZATION. PKI for Machine

Readable Travel Documents Offering ICC Read-Only Ac

Report, Version 1, 2004.

KANT, K. Introductio

McGraw-Hill, 1992.

KEMENY, J., and SNELL, J

1976.

KLEINROCK, L. Queuing Systems Vol. 1:Theory. Wiley, 1975.

KRAHL, D. Extend: the extend sim

Proceedings of the 33nd conference on Winter simulation, 217-225,

USA, 2001.

LAZOWSKA, E., KAHORJAN, J., GRAHAM, G. S., and SEVCIK, K. C.

Quantitative System Performance: Comp

Network Models. Prentice-Hall, Inc., Englewood Cliffs, 1984.

MILNER, R. Communication and Concurrency. Prentice-Hall Internati

International Series on Computer Science, 1989.

OMG. UML Profile for Schedulability, Performance, and Time. OMG

document ptc/2002-03-02, http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.

OMG. UML 2.0 Infrastructure Specification. OMG document formal/05-07-05,

http://www.omg.org/cgi-bin/doc?formal/05-07-0

[38] PETRIU, D., FRANKS, G., and HUBBARD, A. SRVN input file format.

Carleto

138

[39] PETRIU, D. C., and WANG, X. Deriving Software Performance Models from

Architectural Patterns by Graph Transformations. Lecture Notes in Computer

Science Vol. 1764, pp. 475-488, Springer, 2000.

[40] PETRIU, D.C., and WANG, X. From UML description of high-level software

architecture to LQN performance models. Lecture Notes in Computer Science

[41]

 models from UML specifications. Lecture

[42]

s. Proc. of 12th Int. Conf. on Modeling

[43] M. Analysing Software Requirements

[45] and SEVCIK, K. The method of layers. IEEE Transaction on

[46] graph grammar based

99.

rt RL32234, February 2004.

Vol. 1779, pp. 47-62, Springer, 2000.

PETRIU, D., and SHEN, H. Applying the UML Performance Profile: Graph

Grammar based derivation of LQN

Notes in Computer Science 2324, pp.159-177, Springer Verlag, 2002.

PETRIU, D., and WOODSIDE, M. Software Performance Models from

System Scenarios in Use Case Map

Tools and Techniques for Computer and Communication System Performance

Evaluation TOOLS 2002, pp. 141-158, April 2002.

PETRIU, D., and WOODSIDE,

Specifications for Performance. Proc. Third Int. Workshop on Software and

Performance, July 2002.

[44] REISIG, W. Petri nets: an introduction. EATCS Monographs on Theoretical

Computer Science, Vol.4, 1985.

ROLIA, J.,

Software Engineering 21/8 (1995), 622–688.

SCHÜRR, A. Introduction to PROGRES, an attribute

specification language. Graph-Theoretic Concepts in Computer Science, M.

Nagl (ed.), LNCS 411, pp. 151-165, Springer, 1990.

[47] SECTOR, I. T. S. Message Sequence Charts, ITU-T Recommendation

Z.120(11/99). 19

[48] SEGHETTI, M., and VIÑA, S. U.S. Visitor and Immigrant Status Indicator

Technology Program (US-VISIT), CRS Repo

139

[49] SMITH, C. U. Performance Engineering of Software Systems. Addison-

Wesley, 1990.

SMITH, C. U., a[50] nd WILLIAMS L. G. Performance Solutions: A Practical

[51]

tions. John Wiley and Sons, 2001.

are Architectures, Proc. of 3th ACM Workshop on

[53] SIDE, C. M. Throughput Calculation for Basic Stochastic Rendezvous

tributed software. IEEE Transaction on Computer 44 (1995), 20–

[55]

ttawa, Canada,

[56] ., SHEN, H., ISRAR, T., and

2,

[57] rformance Analysis of a

odeling Techniques and Tools

for Computer Performance Evaluation, September 2003.

Guide to Creating Responsive, Scalable Software, Addison-Wesley, 2002.

TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing and

Computer Science Applica

[52] WILLIAMS, L. G., and SMITH C. U. PASASM: a Method for the Performance

Assessment of Softw

Software and Performance WOSP'2002, pp. 307-320, July 2002.

WOOD

Networks. Performance Evaluation, Vol. 9, No. 2, April, 1989.

[54] WOODSIDE, C., NEILSON, J., PETRIU, S., and MJUMDAR, S. The

stochastic rendezvous network model for performance of synchronous client-

server-like dis

34.

WOODSIDE, M., and FRANKS, G. Tutorial Introduction to Layered

Modeling of Software Performance. Carleton University, O

2005.

WOODSIDE, M., PETRIU, D. C., PETRIU, D. B

MERSEGUER, J. Performance by Unified Model Analysis (PUMA). Proc. of

the 5th ACM Workshop on Software and Performance WOSP'2005, pp. 1-1

July 2005.

XU, J., WOODSIDE, M., and PETRIU, D. Pe

Software Design using the UML Profile for Schedulability, Performance

and Time. Proc. of 13th Int. Conf. on M

140

	A methodology for software performance modeling and its application to a border inspection system
	Recommended Citation

	 List of Figures
	 List of Tables
	 List of Abbreviations
	1.1 Software Performance
	1.2 Software Performance Evaluation
	1.2.1 Performance Modeling
	1.2.2 Performance Data Collection
	1.2.3 Performance Analysis

	1.3 Thesis Contribution
	1.4 Thesis Outline
	2.1 Software Specification Models
	2.2 Performance Models
	2.2.1 Queuing Networks
	2.2.2 Stochastic Timed Petri Nets
	2.2.3 Stochastic Process Algebras
	2.2.4 Simulation Models

	2.3 Evaluation of Performance Models
	2.3.1 Queuing Networks
	2.3.2 Stochastic Timed Petri Nets
	2.3.3 Stochastic Process Algebras
	2.3.4 Simulation Models

	3.1 Software Specification Model
	3.1.1 UML
	3.1.2 UML Diagrams
	Use Case Diagram
	Sequence Diagram
	Deployment Diagram

	3.1.3 UML Performance Profile

	3.2 Performance Model
	3.2.1 LQN
	3.2.2 LQN Tools

	3.3 UML to LQN Transformation
	3.3.1 Previous Work
	3.3.2 Our Approach
	Input
	STEP 1:
	STEP 1.a:
	STEP 1.b:
	STEP 1.c:

	STEP 2:
	STEP 2.a:
	STEP 2.b:
	STEP 2.c:
	STEP 2.d:
	STEP 2.e:

	STEP 3:

	4.1 System Description
	4.1.1 Context
	4.1.2 Structure
	4.1.3 Functions
	4.1.4 Technical and Policy Options

	4.2 Performance Modeling
	4.2.1 Assumptions
	4.2.2 Model Structure
	STEP 1.a:
	 STEP 1.b:
	STEP 1.c:

	4.2.3 Model Dynamics
	STEP 2.a:
	STEP 2.b:
	STEP 2.c:
	STEP 2.d:
	STEP 2.e:

	4.2.4 Model Parameters

	4.3 Performance Experiments
	4.3.1 Technical Options
	4.3.2 Authentication Policies
	4.3.3 Manual Inspection Times
	4.3.4 Biometric Sampling Times

	4.4 Results and Analysis
	4.4.1 Technical Options
	4.4.2 Authentication Policies
	4.4.3 Manual Inspection Times
	4.4.4 Biometric Sampling Times

	4.5 Validation

	References

		2006-12-13T09:29:06-0500
	John H. Hagen
	I am approving this document

