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ABSTRACT 

 

A Methodology for Software Performance Modeling and its Application 
to a Border Inspection System 

 

Paola Bracchi 

 
It is essential that software systems meet their performance objectives. Many factors 
affect software performance and it is fundamental to identify those factors and the 
magnitude of their effects early in the software lifecycle to avoid costly and extensive 
changes to software design, implementation, or requirements. In the last decade the 
development of techniques and methodologies to carry out performance analysis in 
the early stages of the software lifecycle has gained a lot of attention within the 
research community. Different approaches to evaluate software performance have 
been developed. Each of them is characterized by a certain software specification and 
performance modeling notation.  
 
In this thesis we present a methodology for predictive performance modeling and 
analysis of software systems. We use the Unified Modeling Language (UML) as a 
software modeling notation and Layered Queuing Networks (LQN) as a performance 
modeling notation. Our focus is on the definition of a UML to LQN transformation 
We extend existing approaches by applying the transformation to a different set of 
UML diagrams, and propose a few extensions to the current “UML Profile for 
Schedulability, Performance, and Time”, which we use to annotate UML diagrams 
with performance-related information. We test the applicability of our methodology to 
the performance evaluation of a complex software system used at border entry ports 
to grant or deny access to incoming travelers. 
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Chapter 1: Introduction 
 

 

 

 

Traditional software development process is focused on meeting software functional 

requirements. Performance issues are usually ignored or considered only towards the 

end of the software lifecycle. This may cause possible performance problems to 

require extensive and costly changes at the implementation, design, or, even worse, 

requirement level.  

 Over the last decade the research community has been very active in the 

development of techniques and procedures to avoid these scenarios, proposing 

different approaches to integrate performance analysis early in the software lifecycle. 

Although some of them have been successfully applied to case studies both in 

academic and in industrial environments, a widespread integration of performance 

assessment in the software development process is not established yet.  

 This chapter provides an introduction to software performance evaluation. It 

reviews what software performance is, how it is evaluated, and the benefits of 

evaluating it.  Additionally, it explains how the work and research presented here 

contributes to the field of software performance engineering. The chapter concludes 

with a brief outline of the remainder of the thesis. 
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1.1 Software Performance 

Performance is generally indicative of “[…] how well a system, assumed to perform 

correctly, works” [16]. Performance represents a fundamental quality attribute of 

every software system. In particular, according to typical use of this term, it refers to 

the quality of service provided by the system. Classical performance measures include 

system-oriented measures such as throughput, resource utilization, and scalability, or 

user-oriented measures such as waiting time, service time, and queue length. 

Additional metrics are specific to particular types of software systems, such as power 

consumption for mobile applications, or bandwidth utilization for networked 

applications. 

 It is fundamental to evaluate software performance since the early stages of the 

software lifecycle to reduce the risk of performance failures. In fact, experience shows 

that “performance problems are most often due to inappropriate architectural choices, 

rather than inefficient coding” [52]. The discovery of performance issues in the 

development, testing, or, even worse, operational phase, requires costly fixes, 

schedule delays, lost productivity, lost income, damaged organization’s image, etc. In 

extreme cases problems may be so severe to require considerable redesign and 

reimplementation, or even project failure [50].  

 Software performance evaluation is the process of predicting (early in the software 

development process) or assessing (towards the end of the development process) 

whether a software system is able to meet established performance objectives [5]. In 

this thesis we focus on early model-based performance evaluation, which relies on 

two basic steps: the definition of a performance model, according to a suitable 

description of the software system, and the solution of the performance model to 

obtain performance results.  
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1.2 Software Performance Evaluation  

Software performance evaluation requires a systematic, comprehensive process to 

characterize the dynamic behavior of a software system in quantitative terms. In this 

section we outline the main steps of a generic process, based on the Software 

Performance Engineering (SPE) approach [49] described in [50].  

 The first step towards software performance analysis should be the assessment of 

performance risk, so as to understand the level of effort to put into performance 

evaluation activities. This can be minimal if the system under consideration is not 

critical to the mission of the organization, or if similar projects have previously been 

successfully deployed, etc. Otherwise a more significative commitment to 

performance evaluation is required. 

 The next step is to understand system functions and design based on appropriate 

abstractions of the software system. Possible abstractions include software 

requirements, architectures, specifications, and design documents. In particular, 

“since performance is a runtime attribute of a software system, performance analysis 

requires suitable descriptions of the software runtime behavior” [5]. Examples of such 

descriptions are UML Interaction Diagrams (e.g., Sequence Diagrams, Activity 

Diagrams), Message Sequence Charts, finite state automata, etc.  

 Next performance objectives have to be established. They should be expressed in 

quantitative terms using well defined metrics, usually response time, throughput, and 

resource utilization. Response time is usually intended as the time taken by the system 

to respond to a request from a user, or from an external system or event. Throughput 

corresponds to the number of requests processed per unit of time. Resource utilization 

is defined as the fraction of a hardware or software resources used by the system to 

respond to incoming requests.  

 Performance models are then built and parametrized. More details about these 

steps are given in the next subsections. Different notations and tools can be used, 
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depending on the adopted performance evaluation methodology. The next chapter 

reviews the most relevant options available at this purpose. Analysis of results from 

the evaluation of performance models indicates if the system is able to meet the 

established performance goals. If not, system design or performance objectives have 

to be revised.  

 Verification and validation of performance models are carried out in parallel with 

the definition and solution of performance models. Model verification answers the 

question “Are we building the model right?”. It intends to determine if performance 

results accurately reflect the actual system performance. On the other hand, model 

validation answers the question “Are we building the right model?” [9]. It aims at 

identifying whether the built performance models are accurate descriptions of the 

structural and behavioral characteristics of the system in exam. 

1.2.1 Performance Modeling 

A performance model of a software system can be defined using appropriate 

abstractions of the system structure and functions. The earliest description providing 

this information is Software Architecture (SA), defined as “the structure or structures 

of the system, which comprises software components, the externally visible properties 

of those components, and the relationships among them” [7].  

The model should be able to represent factors affecting performance such as: 

- system workload; 

- hardware service rates; 

- software components internal dynamics; 

- interactions between software components; 

- replicating or multi-threading of software components; 

- allocation of software components to hardware platforms; 

- software contention, i.e., the time spent to access software resources; 

- hardware contention, i.e., the time spent to access a hardware resource; 
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- demand of software components on hardware devices such as processors, disks, 

networks, etc. 

 The level of detail of a performance model should match the degree of abstraction 

emerging from available system descriptions. The performance model should also be 

simple with respect to its expression in the adopted modeling notation and to its 

solution. However, taking into account all the previously listed factors affecting 

performance could lead to complex models, even for small-sized systems. Therefore, 

the choice of the most appropriate performance modeling methodology should be 

driven by an attentive evaluation of the tradeoffs between strengths and weaknesses of 

candidate modeling notations (e.g., Markov chains, Petri nets, Queuing Networks, 

Process Algebras, etc.) and the factors affecting performance which are important 

and/or possible to include in the model. 

1.2.2 Performance Data Collection  

The hardest part of the performance evaluation process, especially early in the 

software lifecycle, is the collection of data required to parameterize performance 

models. Missing data refer to the system execution environment and to software 

resource requirements. Information about the execution environment includes the 

system hardware configuration, service rates of computing devices and 

communication links, number of replicas of processors, disks, etc. Information about 

software resource requirements consists of the demand of software components on 

devices in the hardware configuration.  

 Several options to gather performance data are available. The viability of each 

option depends on the phase of the development process the software system is in. 

Early in the system lifecycle precise information is not available. At this stage, the 

best way to obtain early performance data is through performance walkthroughs, 

which consist of questioning system experts about system functions and design, the 

execution environment, expected workload intensity, etc. [50]. If performance 
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walkthroughs are not possible, approximations, guesses, and estimates of upper and 

lower bound requirements can be used [50].  

 Once a system prototype or an implementation are available, parameters for 

performance models can be obtained through measurements. Tools are available to 

provide system-level measurements, such as the percentage of time the CPU is busy 

or code-level measurements, such as the number of times a program executes a 

particular method [50]. These tools are well defined and widespread; however it is 

usually difficult to obtain the required information using them. For this reason the best 

alternative to collect performance data is internal instrumentation through “code 

(probes) inserted at key points to measure pertinent execution characteristics” [50].  

Instrumentation provides a convenient way to obtain data at the desired level of 

granularity. Another advantage of instrumentation is that it is possible to enable it 

when it is needed and to disable it otherwise. 

 Verification of performance data is very important. In fact, the accuracy of 

performance results depends on the precision of the parameters used to evaluate 

performance models. Early in the software lifecycle accuracy cannot be high because 

knowledge of system details is vague and system resource requirements are difficult 

to estimate [50]. At this stage it is not possible to identify or estimate errors. However, 

it is possible to evaluate their effect on the performance results conducting a 

sensitivity analysis [43]. Later, as the development process progresses and more 

accurate data become available through (partial) software implementations and 

prototypes, the current estimates can be updated. 

1.2.3 Performance Analysis 

Performance analysis is the evaluation of the quantitative results obtained from the 

solution of a performance model. Early performance analysis poses problems due to 

incompleteness of the software specification, the lack of knowledge about resource 

requirements, and other issues such as ignorance of the actual workload intensity. 
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However, sources of deficiencies in the analysis can be identified, and their effects on 

performance results can be estimated so that high-level performance questions can be 

addressed at a level of abstraction comparable with that of the software specification 

[43]. 

 Performance results can report different types of performance indices such as 

response time, throughput, and resource utilization. The relative importance of each 

measure depends on the system specifics. For instance, in an interactive web 

application we may pay more attention to response time, i.e., the total time for a user 

to complete an interaction with the system. On the other hand, a web service 

providing commercial services to other applications may give more relevance to 

throughput, to maximize the number of processed requests, hence profit.  

 Performance analysis evaluates performance results against the established 

performance objectives. If these are satisfied nothing needs to be done. Otherwise 

utilization measures should be explored to identify possible bottlenecks, i.e., 

overloading of one or more resources. If any bottleneck is found the classic solution 

to the problem consists of cloning the involved resource, using for instance multi-

threading of software processes, multiple processors, or multiple buffers. Repeatedly 

adjusting the number of instances for different resources in the performance model, 

and evaluating the performance results, the utilization of the software or hardware 

components in exam should set to a lower, acceptable level [57].  

 If performance objectives are not met even after executing the previous step, no 

standard solution is available. Performance problems have to be addressed using a 

project-specific strategy. Typical causes for not meeting performance requirements 

are “execution demand, long scenario paths, or lack of concurrency in the system” 

[57]. Typical solutions include “changing the scenario design, shortening long 

scenarios, decomposing large components, using more efficient scheduling strategies, 

and modifying the deployment” [57]. 
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 These solutions can be applied iteratively until performance requirements are 

finally met (assuming they are reasonable). Afterwards the changes applied to the 

performance model can be translated into software design model and system 

configuration description. The obtained information should be reviewed by system 

designers in the software architecture and software specification phase [57]. 

1.3 Thesis Contribution  

In this thesis we present a methodology to address the problem of early performance 

analysis of software systems. The methodology uses UML as software modeling 

notation and LQN as performance modeling notation. We propose a transformation to 

automatically derive a LQN model from a set of UML diagrams annotated with 

performance-related information using extensions defined in the “UML Profile for 

Schedulability, Performance, and Time” [36]. The transformation is largely inspired 

by previous work presented in [20, 21, 39, 40, 41, 46]; however, our contribution is 

the adaptation of existing techniques to a different set of UML diagrams, that are 

more suitable to be used in early stages of the software development lifecycle, 

compared to those used by existing transformations. Another contribution is the 

suggestion of extensions to the UML Performance Profile, to allow a more convenient 

specification of the performance characteristics of the system. Extensions are also 

proposed to address gaps in the current Profile, which does not cover UML 2.0 

diagrams. 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows: Chapter 2 provides a review of 

model-based techniques that have been investigated to address the problem of 

evaluating software performance. Chapter 3 explains the methodology we adopted to 

develop performance models based on a set of annotated UML diagrams. Chapter 4 
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describes our case study, reports and analyzes the results we obtained from 

performance evaluation. Finally, Chapter 5 states our conclusions and directions for 

further research.  
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Chapter 2: Literature Review 
 

 

 

 

Many approaches to analyze software performance based on early software 

descriptions have been proposed in the last ten years. Each approach is characterized 

by a certain software specification language (e.g., UML, Message Sequence Charts, 

Petri Nets, etc.) and a certain performance modeling notation (e.g., Queuing Networks 

and their extensions, Stochastic Process Algebras, simulation models, etc.).  

 This chapter briefly reviews the most used software and performance modeling 

notations. For each notation, its strengths and weaknesses are identified, and its 

suitability to be adopted to conduct a software performance evaluation is discussed. 

Finally, notations are compared based on factors such as easiness in specifying 

models starting from early software abstractions, easiness in modifying models as 

feedback from performance evaluation suggests changes in model structure or 

parameters, easiness in solving models using analytic or simulation methods, and 

suitability for use within an automated performance evaluation process. 

2.1 Software Specification Models 

Software specification models describe static and dynamic aspects of software 

systems. A static description represents software modules or components and their 

interconnections. A dynamic description represents software behavior at runtime. 

- 10 - 



 

Many options are available to describe software specifications. Possible notations 

include Petri Nets, Process Algebra, Automata, Message Sequence Charts, Use Case 

Maps, and the Unified Modeling Language (UML).  

 Petri Nets [44], Process Algebra [35, 37, 26], and Automata [27] are formal 

specification languages. They have the advantage of an exact semantics but, on the 

negative side, they are complex to integrate within common software engineering 

practice. This limit is overcome by less formal notations such as Message Sequence 

Charts, Use Case Maps, and the Unified Modeling Language, which are described 

below. 

 Message Sequence Charts (MSC) [47] represent a language to describe 

communication between independent instances of a software system (i.e., modules, 

components, processes, etc.), or between those instances and the system environment. 

MSC also allow the expression of restrictions on communicated data values and on 

the timing of events. MSC are provided with a graphical representation that looks 

similar to UML Sequence Diagrams. 

 Use Case Maps (UCM) [11] represent a visual notation to combine the description 

of system structure and behavior in a single model. The aim of UCM is to help 

software designers to grasp large grained software behavior patterns. UCM can be 

used during early stages of the software lifecycle, i.e., at requirement and high-level 

design level. However, they are not expressive enough to be used in later phases for 

they are not suited to completely specify software structure and dynamics. 

 The Unified Modeling Language (UML) [10] is a notation specified by the Object 

Management Group (OMG), an industry group dedicated to promoting Object-

Oriented (OO) technology and its standardization. UML allows to visually represent 

different views of software systems at different levels of abstraction. At present UML 

diagrams are widely accepted and adopted within both industry and academic 

environments because they are flexible and easy to use and maintain. A variety of 
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diagrams is available to model static and dynamic aspects of software systems (e.g., 

Use Case Diagrams, Sequence Diagrams, and Deployment Diagrams). To enable 

users to integrate performance evaluation into early software specifications, OMG 

defined and adopted the “UML Profile for Schedulability, Performance, and Time” 

(SPT Profile) [36]. The SPT Profile introduces stereotypes, tagged values, and 

constraints to formally specify performance annotations (workload information, 

resource requirements, etc.). 

2.2 Performance Models 

Different modeling notations can be used to carry out a performance analysis of 

software systems during early phases of the software life cycle. Three main classes of 

performance models are available: Queuing Network [32, 34, 51], Stochastic Process 

Algebra [8, 23, 24], and Stochastic Timed Petri Net [1, 2, 3]. Queuing Networks were 

initially proposed to represent performance typical features of hardware or 

manufacturing systems; notations like Petri Nets and Process Algebras were first 

introduced in the software specification field and then exported to the performance 

domain. 

 Performance models based on the above notations can be solved by simulation or 

by analytical methods. “Simulation is a widely used general technique whose 

drawback is the potential high development and computational cost to obtain accurate 

results” [14]. On the other hand, analytical methods can often be applied to simple 

models only, which cannot adequately capture real systems behavior. Analytical 

solution of performance models is based on a stochastic process that is usually a 

continuous-time discrete-space homogeneous Markov Chains (MC) [31]. 
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2.2.1 Queuing Networks  

A Queuing Network (QN) [32, 34, 51, 30] model can be described as “a collection of 

service centers, which represent system resources, and customers, which represent 

users or transactions” [34]. It consists of a direct graph whose nodes are service 

centers. Nodes are connected by edges expressing the flow of customers’ service 

requests. The model has a graphical representation shown in Figure 1. 

p

1 - p

s2s1

service center

customer flow

Figure 1: Example of QN model 

 

QN models have been extensively applied to build performance models of hardware 

and software systems. The popularity of QN models for performance evaluation is 

due to their scalability and to their ability to express many of the important factors 

affecting performance mentioned in Chapter 1. Moreover efficient and accurate 

techniques for QN analysis are available, in particular for a class of QN referred to as 

product-form, which has been widely used to carry out performance analysis. 

 The definition of a “QN model of a particular system is made relatively 

straightforward by the close correspondence between the attributes of queuing 

network models and the attributes of computer systems” [34]. For instance service 

centers in QN models naturally map to hardware devices in computer systems, while 
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customers map to system users. It is also possible with QN to describe multiple 

customer classes, each with its own workload intensity and service demands.  

 Parameterization associates service rates to service centers, and workload 

information and service requests to customer classes. At this regard, “a major strength 

of queuing network models is the relative ease with which parameters can be 

modified to obtain answers to ‘what-if’ questions” [34]. Solution of a parameterized 

QN model returns a set of performance indices such as response time, system 

throughput, resource utilization, etc. These indices can refer to a given resource only 

or extend to the whole system. 

 Several extensions of classical QN are available for performance modeling. 

Among them, Extended Queuing Networks (EQN) [30, 34] introduce features that 

allow to represent several interesting characteristics of real systems, such as finite 

capacity queues, simultaneous resource possession, synchronization, concurrency 

constraints, and memory constraints,. EQN models can be solved by approximate 

solution techniques. 

 Layered Queuing Networks (LQN) [45, 54, 17] represent another extension of QN 

that is particularly suited to model concurrent and/or distributed software systems. 

The main different between QN and LQN is that LQN can model both logical and 

physical resources of a system. Additionally they allow representing nested services, 

where a server may become client of other servers while waiting for its own clients 

requests to be served. A recent extension of LQN allows for a software entity to be 

further decomposed into activities which can be connected in sequence, loop, parallel, 

and alternative configurations forming a directed graph. LQN models can be solved 

both by analytic methods and simulation methods.  

2.2.2 Stochastic Timed Petri Nets  

Stochastic Timed Petri Net (STPN) [1, 2, 3] are extensions of Petri Nets (PN), a 

modeling notation that is mainly used to verify functional properties of software 
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systems. In particular, “Petri Nets can be used to formally verify the correct 

synchronization between various activities of concurrent systems” [14]. A PN model 

consists of places, transitions, and direct arcs connecting places with transitions. 

Places may contain any number of tokens. A distribution of tokens over the places of 

a net is called a marking. Transitions act on input tokens by a process known as firing. 

Each transition is instantaneous, i.e. once a transition is enabled, it fires in zero time. 

A PN has a graphical representation shown in Figure 2. Places are represented by 

circles, transitions by bars, and marking by the set of tokens depicted inside places.  

 

p2

p1

p3

p4

t1

t2

t3

place

transition

token 

 

 

 

 

 

 

Figure 2: Example of PN model 

 

STPN extend PN by associating a firing time, i.e., finite time duration, with 

transitions. The firing time is usually expressed by a random variable. Such variable 

may have an arbitrary distribution; however, in practice the use of non memoryless 

distributions can make the analysis unfeasible, unless other restrictions are imposed 

(e.g. only one transition is enabled at a time) to simplify the analysis. The quantitative 

evaluation of an STPN requires the identification and solution of the corresponding 

MC derived based on the net reachability graph. For this reason, the exact solution of 
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a STPN model may become infeasible due to the state space explosion problem. 

However, non-polynomial algorithm solution exists for a special class of STPN, 

known as product-form. Many approximated general solution techniques have also 

been defined. 

 Generalized Stochastic Petri Nets (GSPN) [2] represent another extension of 

classical PN, which allow both exponentially timed and immediate transitions. 

Immediate transitions fire immediately after they become enabled and have priority 

over timed transitions. They are associated with normalized weights, so that, in case 

multiple immediate transitions are concurrently enabled, the choice of the firing one is 

taken probabilistically. GSPN admit specific solution techniques reviewed in [3].  

2.2.3 Stochastic Process Algebras  

Stochastic Process Algebras (SPA) [8, 23, 24, 37] are extensions of Process Algebras 

(PA), which allow to integrate qualitative (functional) and quantitative (temporal) 

aspects of software systems into a single modeling notation. A pure PA model 

describes a system in terms of its active components, and the interaction or 

communications between them. Components are called agents or processes and 

execute actions, which are assumed to be instantaneous.  

 SPA extend PA by incorporating temporal information into models. A duration is 

associated to actions using continuous random variables, often. Such addition makes 

it possible to evaluate system functional properties (e.g. liveness, deadlock), 

performance indices (e.g. throughput, waiting times), or combinations of them (e.g. 

probability of timeout, duration of action sequences). 

 A quantitative analysis of the modeled system can be performed by obtaining the 

stochastic process underlying the process algebra model, which is a MC when action 

durations are given as exponential random variables. Research has been made in order 

to avoid the problem of state space explosion associated to Markov modeling, which 

soon makes performance analysis unfeasible. Various methods to tackle the issue 
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have been proposed. A few authors suggested syntactic characterizations of PA terms 

whose underlying MC admits efficient product-form solution [22, 25].  

2.2.4 Simulation Models  

Besides being a solution technique for performance models, simulation [6] is a 

modeling technique by itself, which allows reproducing the behavior of arbitrarily 

complex systems using different possible languages, libraries, and tools. 

 A simulation model is a conceptual representation of a system, which relies on a 

set of assumptions on the system operation, and on the workload driving it. The 

simulation model is translated into a simulation program. During the experimental 

phase the program is run in order to generate results. The number of runs and the 

length of simulation runs depend on the desired degree of accuracy for the results. If 

high confidence is required a high execution cost may be necessary. At the end of the 

simulation experiment performance results are evaluated, using appropriate analysis 

techniques.  

2.3 Evaluation of Performance Models  

The goal of this section is to evaluate the suitability of the notations described in the 

previous section to define performance models of software systems in early phases of 

the software lifecycle. For each notation we consider: 

1. the easiness to define models, to solve them, and to modify them based on possible 

feedback from the performance evaluation; 

2. the adequacy to embed relevant factors affecting performance (e.g., system 

workload, system architecture, resource requirements, etc.). 

2.3.1 Queuing Networks  

QN models are relatively easy to build, solve, and modify. QN are particularly well-

suited for software modeling at the architectural level. In fact, the elements of a QN 
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model closely correspond to the elements of a software system (e.g., QN service 

centers map to system components, connections among QN service centers can be 

mapped to connections among system components). On the negative side, QN are not 

appropriate to represent the internal dynamics of software components. Therefore, in 

later stages of the development process, when more details about software behavior 

become available, QN may not be powerful enough to support performance 

evaluation. In this case LQN represent a good alternative, thanks to the availability of 

activities to specify software internal dynamics. Another limitation of classical QN is 

their ability to represent only asynchronous communications among service centers. 

This reduces the expressiveness of the notation in modeling modern distributed 

systems using different communication interactions (e.g., synchronous, asynchronous, 

deferred synchronous). To overcome this limit, extensions of QN can be used, such as 

LQN.  

 In general, QN and their extensions are able to embed many relevant factors 

affecting performance. In particular, in contrast to other notations we considered, they 

naturally model resource contention, which is a very important driver of system 

performance.  

2.3.2 Stochastic Timed Petri Nets  

SPN are not particularly appropriate to model software at the architectural level, since 

a direct correspondence between software components and PN facilities (places, 

transitions, and tokens) cannot be established. In fact, SPN model the system from a 

functional point of view, thus making it difficult to represent system structure. As a 

modeling strategy, software components could be mapped to Petri subnets; the same 

could be done for hardware components. However, this approach is not 

straightforward and complicates model modifications in case any change has to be 

made to the software or hardware configuration of the system. In the unlikely case 

where SPN or their extensions are used for software specification, PN-based notations 
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can be used to represent software performance models in a straightforward way. 

Otherwise, performance models can be defined based on the close mapping between 

software behavioral models and SPN model structure; even though this increases the 

model complexity as the software description becomes more complex and detailed. 

SPN allow to model synchronous communications in a natural way. However, 

representing other types of interactions between software components (e.g., 

asynchronous) may require additional SPN structures or submodels. Models changes 

can require substantial effort. For instance in case a particular hardware component 

needs to be replicated, the whole subnet corresponding to that component needs to be 

identified, replicated, and then suitably reconnected to the rest of the model. Finally, 

analytical solution of PN-based performance model can be impractical for systems 

with a large number of concurrent states. In these cases models can be solved through 

simulation, at the expense of often high execution costs. 

 PN-based models are less suitable than QN to represent relevant factors affecting 

performance. In fact, aspects such as hardware component replicas, software 

component multithreading, or software and hardware contention are not directly 

representable.  

2.3.3 Stochastic Process Algebras  

SPA represent a better candidate than SPN to model software performance in the 

early phases of the software lifecycle. In fact, SPA allow a natural mapping between 

processes and software components. SPA also allow to model software internal 

dynamics. As a drawback, hardware components and deployment of software 

components are not directly representable; particular modeling strategies have to be 

adopted to overcome this limit. Synchronous communication can be easily specified. 

However, other types of interactions between software components (e.g., 

asynchronous) may require additional actions, increasing model complexity and 

decreasing the correspondence between software model behavior and SPA model. 
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Model changes may require some effort because in SPA, as in SPN, since many types 

of performance information are not managed explicitly (e.g., hardware service rates, 

deployment of software, etc.). Finally, model solution can use analytical methods if 

the corresponding Markov model has a manageable number of states. Otherwise 

simulation has to be used. 

 The adequacy of SPA to embed relevant performance factors is medium. In fact, 

SPA can directly represent user requests, internal dynamics and (synchronous) 

interactions, replicas and threading of software components, software contention, etc. 

However, other factors such as allocation of software to hardware platforms, or 

hardware contention cannot be expressed.  

2.3.4 Simulation Models  

Simulation represents the most general and powerful modeling technique. It can be 

used to represent early abstractions of a software system, provided that enough details 

about system behavior are known. Simulation models can be very expressive and 

embed all the relevant factors affecting performance. However, their usage also 

implies disadvantages. In fact, simulation models may require a high development 

cost, especially for complex systems. Model solution can also be time consuming. 

The output of simulation programs consists of streams of random variables and 

usually requires special skills to be analyzed, for instance using appropriate statistical 

techniques. It is also not possible to obtain performance results as a function of one or 

more model parameters (e.g., number of system users). Instead, a separate simulation 

model has to be performed for each different parameter value. 
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Chapter 3: A Methodology for Early 
Software Performance Analysis  
 

 

 

In this chapter we present our methodology to address the problem of early 

performance analysis of software systems. The methodology uses UML as the 

software modeling notation and LQN as the performance modeling notation. We 

devise a transformation to automatically derive a LQN model from a set of UML 

diagrams. The transformation is largely inspired by previous work presented in [20, 

21, 39, 40, 41, 46]; however, our contribution is the adaptation of the existing 

techniques to a different set of UML diagrams, which are more suitable to be used in 

early stages of the software development lifecycle. We suggest extensions to the 

current UML Performance Profile to allow a more convenient specification of the 

performance characteristics of the system under examination. Extensions are also 

proposed to cover gaps in the current Profile, which does not cover UML 2.0 

diagrams. 

3.1 Software Specification Model 

The Unified Modeling Language (UML) [10] provides the basis of our performance 

analysis methodology. The main reasons for its selection are the widespread diffusion 

and acceptance of UML as a de facto standard for software specification, and the need 

to integrate performance modeling and evaluation with standard practice development 
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environments [5]. An additional reason is that since the adoption by OMG of the 

“UML Profile for Schedulability, Performance and Time” [36], UML enables 

quantitative performance annotations that can be used to establish requirements for 

the generation of performance models.  

 This section provides a brief overview of the UML notation focusing on the 

features we use in our performance evaluation methodology.  

3.1.1 UML 

UML [10] is a semi-formal language developed by the OMG to specify, visualize, and 

document software artifacts. The UML notation is quite rich, including a set of 

diagrams that can be used to model systems from different points of view and at 

different levels of detail. However, UML deliberately lacks a formal semantics. While 

on one hand this is an advantage, since it allows to use and combine UML models 

with few restrictions, on the other hand it is also a drawback because it makes any 

formal reasoning based on UML specifications very difficult. 

 Quantitative performance analysis of software systems based on annotated UML 

diagrams requires that system specification models are translated into performance 

models. To bridge the gap between software design and performance analysis this 

process should be automatic, possibly integrated within common software 

development tools and environments. Since the introduction of SPE a significant 

research effort has been devoted toward this direction and many techniques for 

manual or automatic derivation of performance models directly from UML software 

specifications have been proposed [4]. 

3.1.2 UML Diagrams 

UML includes two fundamental types of diagrams: structural diagrams and behavioral 

diagrams. UML 2.0 [78] provides better capabilities than its previous version to 
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model behavioral diagrams; for this reason hereinafter we will implicitly refer to the 

new release. 

 Structural diagrams model the logical or physical structure of system components 

and include Class Diagram, Component Diagram, Composite Structure Diagram, 

Deployment Diagram, Package Diagram, and Object Diagram. 

 Behavioral diagrams model system dynamics and include Use Case Diagram, 

State Machine Diagram, Activity Diagram, Sequence Diagram, Communication 

Diagram, Interaction Overview Diagram, and Timing Diagram. 

 We are not interested in considering all the diagrams above as possible software 

specification models. Rather, our focus is on a minimal subset of diagrams that allows 

capturing early performance-relevant information of software systems. In particular, 

we adopt Use Case Diagrams to identify performance-relevant system functions and 

workloads, Sequence Diagrams to model performance scenarios, and Deployment 

Diagrams to represent possible platform configurations for the system. For simplicity 

we assume that only one Use Case Diagram and one Deployment Diagram are 

associated with the system under study. However, this does not represent a serious 

limitation to the applicability of our methodology. In fact, in case multiple Use Case 

Diagrams or Deployment Diagrams were available, it would be sufficient to 

separately process each of them. 

Use Case Diagram 

Use Case Diagrams capture high-level interactions between a system and users that 

invoke its functionalities. A use case is “a set of sequences of actions, including 

variants, that a system performs that yields an observable result of value to an actor” 

[10]. An actor identifies a significant system stakeholder i.e., a physical or logical 

entity requiring services.  

A Use Case Diagram is graphically displayed as a rectangle, representing system 

boundary, filled with ellipses, representing use cases. Actors, shown as stick figures 
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or stereotyped icons, are connected to the use cases they generate or take part to. Both 

use cases and actors are associated with descriptive names. Figure 3 represents a 

simple example of Use Case Diagram for a simplified ATM system, which allows 

users to check their balance and to deposit or withdraw money.  

 

Figure 3: Example of Use Case Diagram 

 

From a performance perspective Use Case Diagrams allow to identify performance-

relevant functions of the system, i.e. interactions that “are critical to the operations of 

the system, influence user’s perception of responsiveness, or represent a risk that 

performance goal might not be met” [50]. They also help to identify significant user 

workloads. 

Sequence Diagram 

Sequence Diagrams specify the dynamics of use cases in terms of interactions 

between system components. They represent the components involved in the 

interactions, and the set of partially ordered messages exchanged between them. A 
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message can express either an event or an invocation of an object’s method. Both 

synchronous and asynchronous communication can be represented. 

 Since UML 2.0, Sequence Diagrams have better capabilities to model complex 

system dynamics than the previous UML version. In fact, so-called fragments have 

been introduced, which allow to clearly specify alternation, looping, concurrency, etc. 

“A combined fragment includes a portion of a Sequence Diagram surrounded by a 

frame, and contains one or more operand regions tiled vertically and separated by 

horizontal dashed lines. An operator shown in the upper-left corner of the frame 

prescribes how the operand regions of the combined fragment are handled. For 

instance, the operators opt and alt are used for branch selection, par for parallel 

execution, and loop for repetition. Another new feature allows for hierarchical 

decomposition of a scenario step into a more detailed subscenario. This is done by 

using an interaction occurrence, a fragment labeled with the operator ref, which 

refers to another interaction shown in a separate Sequence Diagram” [56]. 

 An example of Sequence Diagram for the “Check Balance” function of the ATM 

system in Figure 3 is shown in Figure 4. We can observe that system components are 

laid out near the top of the diagram, from left to right. The lifeline of a component is 

rendered as a dashed line extending downward from the objects and representing the 

advancing of time. Along the lifeline are narrow rectangles representing the execution 

of component operations. Messages go from the sending component lifeline to the 

receiving component lifeline. They are displayed as arrows whose head shape 

indicates the type of the message. Table 1 shows the arrowheads available in UML 

2.0.  

 Taking a performance perspective, we use Sequence Diagrams to model the 

dynamics of “the scenarios within each use case that have the greatest impact on 

performance” [50], i.e., the performance scenarios. Identification of performance 

scenarios using Use Case Diagram and specification of their dynamics using 
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Sequence Diagrams are essential steps toward our definition of a system performance 

model. 

Table 1: Types of Sequence Diagram messages 

 Synchronous message  

 Asynchronous message 

 Response to synchronous message  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example of Sequence Diagram 

Deployment Diagram 

Deployment Diagrams model the platform configuration of the system and the 

allocation of its software components to the hardware devices in the configuration, 
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called nodes. Communication between different nodes is represented using 

communication paths. 

 Graphically, a Deployment Diagram consists of a graph of nodes connected by 

communication associations. Nodes may contain component instances; this indicates 

that the components execute on the node. Components may be connected to other 

components using dashed-arrow dependencies, implying that one component uses 

services of another component. Figure 5 shows a simple Deployment Diagram for the 

ATM system modeled by the Use Case Diagram in Figure 3 and the Sequence 

Diagram in Figure 4. 

 

 

 

 

Figure 5: Example of Deployment Diagram 

 

The use of Deployment Diagrams for performance modeling is motivated by the need 

to identify the hardware devices running a software system and the allocation of the 

software components of the system to those devices. This allows to estimate the 

resource demands of interactions represented within performance scenarios. Each 

interaction is potentially resource consuming, and only knowing the device executing 

the operation and its service rate we can associate a time requirement to the step, 

which is an essential datum to build a performance model of the system. 

3.1.3 UML Performance Profile 

The “UML Profile for Schedulability, Performance, and Time” [36] extends UML 

using standard mechanisms, i.e., stereotypes, tagged values, and constraints. Its goal is 
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to enable quantitative annotations that can be used to capture performance 

requirements for the system at the design level, and to associate performance-related 

characteristics with selected elements of a UML model [36]. 

 

Figure 6: Performance analysis domain model 

 

The Performance Profile defines a domain model, represented in Figure 6, which 

identifies basic abstractions that can be used to support the central concepts of 

performance analysis. Examples of these concepts are scenarios, workloads, and 

resources. Scenarios define system responses to user requests, and can have QoS 

requirements such as response time or throughput. Scenarios are executed by a job 

class or user class with certain load intensity, called workload. Workloads can be 

either open or closed. Open workloads are characterized by a certain arrival rate and 

distribution (e.g., Poisson); closed workloads have a fixed number of potential users 

cyclically requesting system functions, with a delay period – called Think Time – 

between the end of a system response and the issuing of the next user request. Each 

scenario is composed by scenario steps that can be joined in sequence, loops, 

branches, forks, and joins. A scenario step may be an elementary step, or a complex 
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sub-scenario, composed of many elementary steps. Each step has a mean number of 

executions, a host execution demand, demands to other resources (such as file I/O), 

and optionally its own QoS properties. Resources are another basic concept defined 

by the Profile. They can be active or passive, each resource type with its own 

attributes. Active resources have processing capabilities (e.g. CPU), while passive 

resources have not (e.g. I/O devices); they need to be acquired to execute an 

operation, and they usually have limited capacity.  

 The main stereotypes defined by the Profile include «PAclosedLoad», 

«PAopenLoad», «PAhost», «PAresource», and «PAstep».: 

- «PAclosedLoad» models a closed workload. Its main tags are: PApopulation and 

PAextDelay. The former defines the number of system users; the latter specifies 

the Think Time between successive user requests. 

- «PAopenLoad» models an open workload. Its main tag is PAoccurrence, which 

defines the arrival pattern of workload users. This usually corresponds to a 

random variable of given distribution. 

- «PAhost» models a processing resource. Its tags include PArate, PAschdPolicy, 

and PActxSwT. The first one indicates the processing rate of the resource. The 

second one is the scheduling policy for the resource (e.g., FIFO, LIFO). The last 

one is the time needed to perform a context switch. 

- «PAresource» models a passive resource. Its tags include PAcapacity and 

PAaxTime. PAcapacity defines the initial and maximum number of available 

instances of the resource. PAaxTime specifies the access time of the resource. 

Releasing a resource is assumed to require no time. 

- «PAstep» models a step in a performance scenario. Its tags include: PAdemand, 

PAextOp, PAprob, and PArep. PAdemand indicates the total execution demand of 

the step on its host resource. PAextOp specifies operations on resources that are 

needed to execute the step, but which are not explicitly represented in the UML 
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model. PAprob is the probability that the step will be executed. Finally, PArep is 

the number of times the step will be repeated. 
 

3.2 Performance Model 

Nowadays Queuing Networks (QN) are the preferred choice for performance 

modeling because of their abstraction level - which makes them suitable to express 

high-level software architecture models -, and because of the availability of efficient 

solution algorithms and tools to evaluate the models [5]. However, classical QN are 

constrained in the representation of behavioral details emerging from more detailed 

software design models [13]. This limitation is overcome by Layered Queuing 

Networks (LQN), which provide proper abstractions to express potentially complex 

operations performed by software components. Moreover, unlike classical QN, LQN 

can explicitly represent software components and their common characteristics (e.g., 

resource requirements, multithreading, allocation to hardware devices, etc.). 

Accordingly, it is also possible to obtain performance figures explicitly related to 

them, such as utilization, response time, and throughput. This allows to identify 

software bottlenecks, i.e., the overloading of one or more software components, while 

the underlying CPUs are lowly used. Another feature of LQN that is missing in QN 

models is the possibility to represent nested services, i.e., situations where servers 

issue requests to other servers, present in many distributed systems (e.g. three-tier 

software systems).  

 Because of all the advantages and properties mentioned above, LQN is the 

performance modeling notation we adopt within our performance evaluation 

methodology. The next subsections briefly review the notation and describe the 

software tools supporting the specification and solution of LQN models. 
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3.2.1 LQN 

The LQN notation was developed as a combination of Stochastic Rendezvous 

Networks and the Method of Layers presented in [17, 45, 53, 54]. LQNs describe a 

system as a set of software and hardware resources. Software resources are processes, 

threads, semaphores, and other logical entities. Hardware resources are devices such 

as CPUs, disks, computing devices, etc. Resources can be modeled within LQNs 

using tasks and host processors.  

 A task models a logical resource that requires mutual exclusion. An entry models 

an operation that processes a distinct class of messages received by the task. For 

example, if a task models an object, entries can represent its methods. An entry is 

specified by its resource demands, which include the total average amount of host 

processing, and the average number of calls required for service operation to 

complete. A task is associated with a host processor, which represents the physical 

entity that carries out the operations. Tasks and processors include a queue, a 

discipline, and a multiplicity.  

 Interactions between software tasks are expressed as service requests, named as 

calls in LQN models. Tasks may send and receive service requests and play the 

client/server role. If tasks do not receive any request they are pure clients, called 

reference tasks, and they represent load generators or users of the system. Service 

requests between tasks can be made using three types of interactions: synchronous, 

asynchronous, and forwarding. LQN synchronous and asynchronous interactions are 

interpreted in the usual way. Forwarding interactions require that the sending task 

makes a synchronous call and blocks waiting for a response. However, the receiving 

task does not reply; in fact, after partially processing the call, it forwards the request 

to a third task, which either replies to the blocked client task or forwards the request 

further.  
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 A recent extension to LQNs [18] introduces a new model primitive called activity. 

Activities allow detailing the sequence of operations executed when a task accepts a 

request at an entry. Activities can be connected in sequence, loop, parallel 

(AndFork/AndJoin) and alternative (OrFork/OrJoin) configurations. Just like entries, 

they have execution time demands and can issue service requests to other tasks. 

 A LQN model is graphically represented by an acyclic graph, whose nodes 

correspond to tasks and host processors. Tasks are depicted as parallelograms, and 

processors as circles. Arcs between tasks and processors indicate the allocation of 

software components to hardware devices. Arcs toward task entries denote service 

requests. They are labeled by the mean number of issued requests; in the absence of a 

label, a default value of one is assumed. The shape of the arc arrowhead expresses the 

type of the message (i.e., synchronous, asynchronous, forwarding).  

 Figure 7 shows an example of LQN model. Users is a non-reference task, i.e., a 

workload generator. n users are assumed to issue requests to the system with a Think 

Time of 10s. p1 and p2 are host processors. A and B are tasks with entries s1 and s2, 

whose associated service demands are 0.5s and 0.001s, respectively. Entry s1 is 

detailed by activities A1 and A2, which do not have associated service demands. The 

number of calls to entries is not indicated; this implies a default value of 1. 
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Figure 7: Example of LQN model 

3.2.2 LQN Tools 

LQN models can be created using the LQN modeling language [38], the XML 

grammar described in [19], or the visual software jlqndef [55]. Both analytical and 

simulation tools are available to solve LQN models [19]. They all have been 

developed within the Department of Systems and Computer Engineering at Carleton 

University in Ottawa, Canada, and are freely available upon registration.  

 lqns is an analytical solver using mean-value queuing approximations. lqsim is a 

simulation solver using discrete-event simulation. multisrvn is an experiment 

controller that executes parameterized experiments over given ranges. All these 

software tools are textual; they can be only be executed at the command line.  
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3.3 UML to LQN Transformation 

Several approaches to derive LQN performance models from UML software 

specifications have been presented in the research literature [20, 21, 39, 40, 41, 46]. In 

the next subsection we provide a brief overview of the assumptions, input 

information, and transformation methodologies they use; we also point out at their 

benefits and limits. Afterwards, we describe our approach for UML to LQN 

transformation. 

3.3.1 Previous Work 

In [39, 40] a graph grammar-based transformation from UML to LQN is described. 

The transformation assumes the availability of UML Collaboration Diagrams, 

Deployment Diagrams, and Activity Diagrams. The UML diagrams have to be 

annotated using standard extensions defined by the UML Performance Profile.  

 The structure of the LQN model is generated using Collaboration Diagrams and 

Deployment Diagrams. The former represent the high-level software architecture of 

the system and the interaction patterns between software components (such as 

client/server, master-slave, pipeline and filters, etc.). The latter specify the allocation 

of software components to hardware devices. The dynamics of the performance model 

is generated from detailed descriptions of key performance scenarios based on 

Activity Diagrams. Parameters for the LQN model are given by the performance 

annotations on the Activity Diagrams.  

 The actual transformation from UML to LQN has been implemented in different 

ways. In [40] an existing graph-rewriting tool called PROGRES [46] is adopted and a 

set of production rules to convert UML diagrams into LQN models is defined. The 

disadvantage with the approach is that it introduces an additional step in the software 

development process, i.e., the conversion of each UML Activity Diagram into a 

PROGRES graph to be used as the input for the transformation.  
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 Another technique [41] implements an ad-hoc graph transformation in Java. The 

input graph is an XML representation of a UML model that is transformed into a set 

of Java objects. This approach is preferable to the previous one because it eliminates 

the step of creating a PROGRES input graph from the UML model. Instead, it is only 

necessary to convert the UML model into its XML format, which is easily obtainable 

using any UML software tool. The transformation is more efficient because it is 

tailored to the problem at hand. Another advantage is that it is possible to integrate the 

performance model builder with a UML tool.  

 The third methodology is presented in [21]. An XML representation of a UML 

model is again the input to the transformation, which is based on XML tree-

manipulation techniques using XMLgebra. The advantage of the proposed 

transformation is its flexibility, since it can easily be applied to create performance 

models based on notations different than LQN.  

 The forth and last solution, proposed in [20], is conceptually similar to the second 

one, in that the starting point of the transformation is again a XML representation of a 

UML model. However, the LQN model is generated from the XML file using XSLT.  

 From the point of view of a potential user the last three techniques are not different 

from each other. However, from the perspective of a solution developer the XSLT 

program is shorter and easier to create than implementing the Java program or 

defining the XML tree-manipulation rules. 

3.3.2 Our Approach 

In this section we propose a UML to LQN transformation to derive a performance 

model of a software system modeled with UML diagrams. Our transformation is 

conceptually and methodologically similar to the ones reviewed in the previous 

section. However, we do not use Collaboration Diagrams to model architectural 

patterns of communication between software components, since we only focus on 

distributed systems using client/server interactions. We also adopt UML 2.0 Sequence 
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Diagrams instead of Activity Diagrams to model performance scenarios. The reason 

for our choice is that “performance is largely a function of the frequency and nature of 

intercomponent communication […]” [12], and Sequence Diagrams are the most 

appropriate UML model to express cooperation between system components. Unlike 

Activity Diagrams, Sequence Diagrams are very good at showing which components 

are responsible for different actions, and the partial order of execution of scenario 

steps. Additionally, since UML 2.0, Sequence Diagrams can represent complex 

software dynamics, including non-sequential flows of control, very well. In fact, the 

introduction of the “combined fragment” feature, described in Section 3.1.2, allows to 

represent branches, loops, parallel execution, etc.  

 We annotate UML diagrams with performance-related information partly using the 

UML Performance Profile, partly using newly introduced stereotypes and tagged 

values, which we will explain later. The motivation for these extensions is the 

convenience of associating expected system workloads with different classes of 

system users, instead of with each performance scenario, as prescribed by the current 

Performance Profile. Given the user workloads and the set of probabilities of 

executing use cases and scenarios, it is then possible to “automatically” estimate the 

workload associated with each of them. This procedure involves adding performance 

annotation to Use Case Diagrams, and slightly modifying the annotations currently 

associated with Sequence Diagrams. Consistently with naming conventions used by 

the standard UML Performance Profile, we prefix the newly introduced performance-

related UML extensions with the “PA” string. 
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A high-level description of our algorithm for UML to LQN transformation is shown 

in Figure 8. Next, we present details about its assumptions and methodological steps. 

 

INPUT: Use Case Diagram, Sequence Diagram, Deployment Diagram. 

       Performance annotations    

TRANSFORMATION: 

1. Generate the LQN model structure 

a. Determine LQN devices from DD 

b. Determine LQN tasks from UCD, DD, and SD 

c. Determine the allocation of tasks to devices from DD 

2. Generate details for LQN entries and activities 

   - For each performance scenario process the corresponding SD 

a. Determine entries of reference tasks 

b. Determine entries for offered services 

c. Determine entries for external services 

d. Determine activities 

e. Determine request flow among entries and activities  

3. Generate LQN parameters from UML performance annotations 

OUTPUT: LQN model  

Figure 8: High-level algorithm for UML to LQN transformation 

Input 

The definition of a complete LQN model of a software system requires the following 

information: 

- high-level software architecture to determine the performance model structure, i.e., 

the configuration of the system software and hardware resources; 

- detailed performance scenarios to determine the flow of service requests among 

software and hardware resources in the performance model; 
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- performance annotations to determine the workload and resource requirements 

associated with the performance model. 

 We adopt Deployment Diagrams to meet the first requirement. Sequence Diagrams 

are used to model performance scenarios. Finally, annotations on Use Case Diagram 

and Sequence Diagrams are used to parameterize the LQN model. In the next 

subsections we describe our assumptions about each type of UML diagram; we also 

explain which performance annotations defined in the UML Performance Profile we 

use, and which we introduce to address potential Profile incompleteness. 
 

Use Case Diagram 

We adopt Use Case Diagrams to help performance analysts to identify performance-

significant system actors and use cases, corresponding to the user groups and 

functions that are critical to the perceived performance of the system. We annotate 

performance-significant users in Use Case Diagrams with expected user workloads 

using the «PAclosedLoad» and «PAopenLoad» stereotypes introduced in Section 

3.1.3. Associations between performance-significant actors and performance-

significant use cases are annotated with the <<PAuse>> stereotype, whose tagged 

value, PAprob expresses the probability that a user invokes the linked use case. This 

allows to automatically compute user workloads on different performance scenarios 

based on the probabilities associated with the scenarios and with the related use cases.  

Figure 9 represents a simple Use Case Diagram annotated for performance 

assessment purposes. The diagram indicates that the system has 10 potential or active 

users of type User1, using the system with an assumed Think Time of 30 seconds 

between successive requests. The system has an unlimited number of users of type 

User2 (open workload), invoking system functions according to a Poisson distribution 

with average 0.5s.  
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Figure 9: Annotated Use Case Diagram 

 

Let m be the number of different performance-relevant users, and n the number of 

performance-relevant use cases within a Use Case Diagram. Let pi (j) (i=1,…,m, 

j=1,…,n) be the probability that the ith user makes use of the software system by 

executing the Use Case j (∑ ). Then the workload generated by the ith 

user on UC j can be determined based on the user workload type. In fact, if the user 

generates a closed workload with population x and Think time t, the workload on UC j 

includes a population x with Think Time t

=
≤

n

i i jp
1

1)(

i (j) = t / pi (j). On the other hand, if the user 

generates an open workload with arrival distribution function f, the workload 

generated by user i on UC j is characterized by an arrival distribution function fi (j) = f 

· pi (j). 

 Referring to Figure 9 the workload generated by User1 on UseCase1 includes a 

population of 10 users, with think time 150s = 30 / 0.2. On the other hand, the 

workload generated by User2 on UseCase1 is characterized by a Poisson arrival 

distribution with mean 0.25s = 0.5s · 0.5. 

Sequence Diagram 

We use Sequence Diagrams to model the dynamics of performance scenarios, 

identified by the stereotype <<PAcontext>> of the UML Performance Profile. As 

explained in the previous section, we adopt Use Case Diagrams to identify 

performance-significant use cases. However, for each significant use case, not all 
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scenarios are performance scenarios, i.e., are relevant from a performance standpoint. 

For this reason, we associate with the <<PAcontext>> stereotype the tagged value 

PAprob, expressing the probability of executing the scenario in exam, with respect to 

other ones referring to the same use case.  

 We also introduce performance annotations for combined fragment regions and 

their operands. This is not possible using the standard UML Performance Profile, 

since it was defined for UML 1.4 and has not been upgraded for UML 2.0. In 

particular, we annotate the single operand of the opt fragment with the tagged value 

PAprob, expressing the probability that the set of scenario steps represented in the 

fragment is executed. Similarly, we annotate with PAprob each operand of the alt 

fragment, with the constraint that the sum of the given probabilities is equal to 1. 

Finally, we annotate with PArep the operand of the rep fragment, to specify the 

number of times the set of steps represented in the fragment is repeated. 

 Figure 10 shows a possible Sequence Diagram with performance annotations.  We 

assume that the scenario refers to the use case UseCase1 depicted in Figure 9. The 

diagram is labeled by <<PAcontext>>, hence it represents a performance scenario. 

The probability of execution of the scenario is expressed by the variable p associated 

with the tag PAprob. In the diagram the stereotype <<PAresource>> identifies 

system components. These are usually software components; however, other resource 

types are possible, such as passive resources or even human resources required to 

carry out system operations. The tag PAcapacity is optionally attached to the 

<<PAresource>> stereotype to indicate the number of replicas or the level of multi-

threading of the corresponding resource. If the tag is omitted a default value of 1 is 

assumed. 

 Scenario steps are labeled by the stereotype <<PAstep>>, and annotated with the 

corresponding resource demand using the tag PAdemand and PAextOpt. PAdemand 

expresses the processing time required to execute the step. As with any performance 
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value the demand can be a required, assumed, estimated or measured value. In Figure 

10 all values are assumed. They represent mean values and are expressed in 

milliseconds. Scenario steps are optionally associated with the PAextOp tag, which 

defines the time requirement of external operations, i.e., operations on resources that 

are needed to execute the step, but which are not explicitly represented in the UML 

model. 

 The workloads associated with performance scenarios can be computed using the 

user workloads calculated in the previous section and the execution probabilities of 

scenarios. In particular, if pi (j, k) is the probability of user i executing scenario k of 

Use Case j (i=1,…,m, j=1,…,n, k=1,…,h), the workload generated by user i on that 

scenario can be determined based on the user workload type. In particular, if the user 

generates a closed workload on UC j with population x and Think Time ti (j), the 

workload on scenario k has population x and Think Time ti (j, k) = ti (j) / pi (j, k). On 

the other hand, if the workload is open and the arrival rate is fi(j), the arrival rate for 

scenario k can be computed as fi ( j, k ) = fi (j) · pi ( j, k ). 
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Figure 10: Annotated Sequence Diagram 

 

Deployment Diagram 

We adopt Deployment Diagrams to represent the platform configuration where the 

application in exam is targeted to run. Deployment Diagrams allow to identify 

software and hardware resources within the system and the allocation of software 

components to hardware nodes. We use standard features of Deployment Diagrams. 

We also use standard extensions defined by the UML Performance Profile, with the 
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exception of the association of the tag PAcapacity not only with the 

<<PAresource>> stereotype, but also with <<PAhost>>, to represent the number of 

CPUs of a processing device. If the tag is absent, a default value of one instance is 

assumed. A special situation is represented by the specification of a ∞ symbol for 

PAcapacity, which means that the associated device imposes no resource constraint, 

and no queues are formed to use its services (e.g., WAN). 

 Figure 11 shows an example of annotated Deployment Diagram. In the diagram the 

nodes labeled by the <<PAhost>> stereotype, i.e., ClientCPU, ServerCPU, DBCPU, 

represent processing devices. Nodes labeled by <<PAresource>>, i.e., WAN and Disk, 

correspond to non-processing devices; they cannot initiate events but only respond to 

them. If <<PAresource>> is associated with a software component instead of a 

hardware node, it indicates a software unit running under its own thread of control, 

e.g., A, B and C. The tag PAcapacity can optionally be associated with resources 

labeled by the <<PAhost>> and the <<PAresource>> stereotypes to indicate the 

number of CPU, or the number of replicas or threads of the corresponding software or 

hardware resource. In Figure 11 ServerCPU has x CPU, while software component C 

has y threads of control. 
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Figure 11: Annotated Deployment Diagram 

STEP 1: 

The first step of the algorithm for UML to LQN transformation generates the LQN 

model structure (i.e., LQN tasks, devices, and connecting arcs between them). The 

step is rather straightforward. In fact, there is a close correspondence between 

elements of the Deployment Diagram used as input by the transformation algorithm, 

and LQN model entities. The correspondence is made even more explicit by the 

performance annotations attached to the Deployment Diagram, which allow to 

quickly identify tasks, devices, and their mappings. 

STEP 1.a:  

This step generates LQN devices of the performance model. It explores the 

annotations on the Deployment Diagram for the system, and creates LQN devices for 

each UML node. The optional tag PAcapacity is used to associate a number of 
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replicas to the identified devices. Figure 12 shows a graphical representation of the 

transformation step. 

 

 

 
X 

{ s } 

Y 
{ t } 

 

 

 

 

 

 

Figure 12: Mapping from Deployment Diagram elements to LQN devices 

STEP 1.b: 

This step, represented graphically in Figure 13, generates LQN tasks for the 

performance model.  

 Reference tasks are defined to represent significant user workloads in the Use Case 

Diagram for the system. If a closed user workload is assumed, the reference task is 

given multiplicity equal to the user population size; the Think Time of its entries will 

be specified in Step 3. If an open workload is considered, the multiplicity of the 

reference task is set to one; the arrival rate of its entries will be specified in Step 3. 

Referring to the Use Case Diagram in Figure 9, the reference tasks we identify for the 

system are User1 and User2. 

 Non-reference LQN tasks are created by examining the Sequence Diagrams for the 

system and defining a new task for each component labeled by the <<PAresource>> 

stereotype. Tasks are also created for hardware nodes labeled by the same stereotype 

in the Deployment Diagram. In this case, the task takes the role of a software 
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controller implementing the access mechanism to the resource. The value of the 

optional tag PAcapacity is used to associate a level of multi-threading different from 

one to the task. A special situation is represented by the specification of a ∞ symbol 

for the tag, which indicates that the corresponding resource is a delay server. Delay 

servers serve incoming user requests immediately; no wait time is required to access 

the resource.  

 
User 

Workload  

 

Dummy 
Device 

{ ∞ } 

 

 

 

 
YTask 

{ t }  

 

 
YDevice 

{ t }   

 

 
Z 

{ u }  

Figure 13: Mapping from Deployment Diagram elements to LQN tasks 

STEP 1.c: 

This step generates connecting arcs between LQN tasks and devices, based on the 

deployment relationships between software and hardware components represented in 

the annotated Deployment Diagram. Not all LQN tasks defined in Step 1.b correspond 
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to deployable resources; for instance, reference tasks are not associated with any 

system device, the same happens with <<PAresource>> components represented in 

Sequence Diagrams but not in the Deployment Diagram. However, in the LQN 

notation each task needs to be associated to a host processor. To meet this 

requirement we map the mentioned tasks to dummy LQN devices with infinite 

capacity. Figure 14 shows the result of the execution of this step on the Deployment 

Diagram in Figure 11. 

 

A

ClientCPU

WANTask
{ ∞ }

WANDevice
{∞ }

C
{ y }

DBCPU

B

ServerCPU
{ x }

DiskTask

DiskDevice

User2
Dummy
Device2

{∞ }

User1
{ z } Dummy

Device1
{∞ }

 

Figure 14: Mapping between LQN tasks and corresponding devices 

STEP 2: 

The second step of the algorithm for UML to LQN transformation creates LQN 

entries, activities, and the request flow among them using the set of Sequence 

Diagrams (labeled by <<PAcontext>>) given in input to the transformation. The 
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step processes each Sequence Diagram, following its message flow and generating 

LQN model entities accordingly, as described in the following  paragraphs.  

STEP 2.a: 

For each reference task defined in Step 1, a LQN entry is created for every 

performance-significant scenario the corresponding user initiates. Each entry 

corresponds to a workload generator for the scenario. Referring to the Use Case 

Diagram in Figure 9, and assuming that the performance scenario in Figure 10 is the 

only one for UseCase1, this step creates for the reference task User1 the entry 

UseCase1. 

STEP 2.b: 

For every scenario a LQN task entry is generated for each type of service offered by a 

software component. We identify such services by looking at the operations invoked 

by the clients of the component, or, equivalently, by looking at the messages received 

by the software component in the considered scenario. The application of this 

procedure to the Sequence Diagram in Figure 10 leads to the identification of three 

LQN Entries: startUseCase1 belonging to task A, m1 belonging to task B, and m2 

belonging to task C.  

STEP 2.c:  

LQN task entries are generated within the task corresponding to a software controller 

for a passive resource, for each interaction represented in a Sequence Diagram that 

involves usage of that resource. In particular, LQN task entries are generated for 

scenario steps – labeled by the <<PAextOp>> stereotype – which require the use of a 

hardware device other than the host processor. Each entry models the demand on the 

external resource for a similar interaction. This means, for instance, that message m1() 

in Figure 10 requires the creation of a new entry. In fact, the message is exchanged 

between components connected by a WAN, labeled in Figure 11 as a passive resource 
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by the <PAresource>> stereotype. The entry models the request of the WAN 

resource for that interaction.  

STEP 2.d: 

LQN task activities are generated to represent internal computations of a software 

component, identified by self-addressed messages of the component corresponding to 

the task. Non-sequential flow of control, represented in UML 2.0 by the combined 

fragment feature of Sequence Diagram, also generates activities. In Section 3.1.2 we 

briefly reviewed the main types of combined fragments available to model complex 

software dynamics, i.e., opt, alt, par, and loop. Here we restrict ourselves to that 

subset. The next paragraphs describe how to process each fragment toward the 

generation of a LQN model. 

 The opt fragment corresponds to the optional execution of the set of scenario steps 

contained within the corresponding frame. Its translation within the LQN model 

generates an LQN “OrFork” within the task generating the first optional message. The 

“OrFork” connects two activities. One of them is used to model the set of optional 

steps; the other just connects to the activity merging the conditional branching. Figure 

15 shows a very simple example of opt fragment, where software component A 

invokes service m() on component B depending on a guard with probability p. Figure 

16 shows the LQN translation of the fragment, generated according to the above 

description. The translation is not connected to the rest of the model, since we do not 

know its full context. 
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Figure 15: Example of opt fragment 
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Figure 16: Translation of opt fragment in LQN notation 

 

The alt fragment is very similar to the opt fragment. In fact, it is used to represent 

conditional branching. However, differently from the opt fragment, the alt fragment 

can represent multiple branches, each associated with a guard and a probability. The 

translation of an alt fragment in the LQN notation generates an “OrFork” within the 

task generating the first optional message. The “OrFork” connects a number of 
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activities equal to the number of conditional states represented in the fragment. Each 

activity is used to model the set of steps within a state. The probability of an activity 

corresponds to the probability of the corresponding state. Figure 17 shows an example 

of alt fragment, where software component A invokes service m1() on software 

component B depending on a guard with probability p1; A invokes service m2() on B 

depending on another guard with probability p2; if the previous guard conditions are 

not satisfied A executes operation m3. Figure 18 shows the LQN translation of the alt 

fragment, generated according to the description above. The translation is not 

connected to the rest of the model, since we do not know its full context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Example of alt fragment 
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Figure 18: Translation of alt fragment in LQN notation 

 

The par fragment is used to model the parallel execution of multiple sets of scenario 

steps contained within the corresponding fragment, each separated by a dashed line. 

Its translation within the LQN model generates an LQN “AndFork” within the task 

generating the first parallel message. The “AndFork” connects a number of activities 

equal to the number of parallel threads represented in the fragment. Each activity is 

used to model the concurrent thread of execution represented by the set of steps 

within a thread. Figure 19 shows an example of par fragment, where, in parallel, 

component A invokes service m1() on software component B, and executes operation 

m2. Figure 20 shows the LQN translation of the par fragment, generated according to 

the description above. The translation is not connected to the rest of the model, since 

we do not know its full context. 
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Figure 19: Example of par fragment 
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Figure 20: Trans LQN notation lation of par fragment in 
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The last type of fragment we consider is loop, which models the repeated execution of 

the set of scenario steps contained within the corresponding fragment. Its translation 

within the LQN model generates a LQN activity within the task executing the first 

operation of the sequence. The activity repeatedly invokes that operation for a number 

of time equal to number of loop repetition specified in the fragment the tagged value 

PArep. Figure 21 shows an example of loop fragment, where component A invokes 

service m() on component B for a number of time n. Figure 22 shows the LQN 

translation of the loop fragment, generated according to the description above. The 

translation is not connected to the rest of the model, since we do not know its full 

context. 

 

 

 

 

 

 

 

Figure 21: Example of loop fragment 
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Figure 22: Translation of loop fragment in LQN notation 
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STEP 2.e: 

The request flow among LQN entries and activities is clearly established from the 

sequence of messages represented in the Sequence Diagram.  

 A request arc is generated when a communication is detected between an entry or 

activity of a task playing the role of client, and the entry of another task, playing the 

role of server [20]. If a scenario step is associated with a PAextOp tagged value, 

denoting the usage of a hardware device other than the host processor executing the 

step, a request arc has to be generated to connect the entry requesting the use of the 

device with the entry created in the corresponding controller task for the interaction in 

exam; another ark has to be created to connect the receiving entry of the controller 

task to the destination entry of the server task.  

 A request can have different types. In fact, as reviewed in section 3.2.1, LQN 

service requests may be synchronous, asynchronous, or forwarding. Synchronous and 

forwarding interactions determine potential software blocking which may have 

significant performance implications; therefore it is important to determine them. 

With Sequence Diagrams synchronous and asynchronous messages are immediately 

identifiable based on the shape of the arrowhead corresponding to the interaction. 

Forwarding messages can instead be identified using the Call and Reply Stack (CRS) 

algorithm presented in [42], which follows the sequence of interactions between 

components and resolve their roles by examining the history of preceding messages. 

 Request arcs between activities are generated to connect them in sequence, loop, 

parallel, and alternative configurations, as seen with the translation of the combined 

fragments explained previously in this section. This leads to the creation of 

precedence graphs, which express for each task the internal and interaction dynamics 

of the corresponding software component in the system. 
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Figure 23 represents the outcome of the execution of Step 2 on the performance 

scenario represented in Figure 10.  
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Figure 23: Sample LQN model at the end of Step 2 
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STEP 3: 

The LQN model obtained at this point needs to be parameterized with appropriate 

performance data, i.e., workload generated by reference tasks and service demands of 

entries and activities. These values are obtained using the adjusted workload 

information computed for performance scenarios, and the performance annotations on 

the UML Sequence Diagrams.  

 Reference tasks are parameterized depending on the associated user workload type. 

If a closed workload is considered, the think time for each entry in the task, is 

specified according with the think time calculated for the performance scenario 

corresponding to the entry. If an open workload is considered, the arrival rate for each 

entry in the task is specified according with the arrival rate calculated for the 

performance scenario corresponding to the entry. 

 Regarding service demands for entries and activities, they are defined using the 

PAdemand tag associated with the «PAstep» stereotype. We assume that the tag 

expresses the processing time required to prepare and send the message on the host 

processor. Performance requirements for non-processing resources are expressed by 

the PAextOp tag, which specifies the time demand of the software controller entry 

corresponding to the labeled interaction. 
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Figure 24 represents the outcome of the execution of Step 3 on the performance 

scenario represented in Figure 10. 
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Figure 24: Sample LQN model at the end of Step 3
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Chapter 4: Case Study 
 

 

 

 

In this chapter we present our experience with the application of the performance 

modeling methodology described in the previous chapter to the analysis of an airport 

inspection system that uses biometrically enabled, digitally signed travel documents. 

While the specific modeling parameters are hypothetical, system architecture 

resembles the systems being deployed at various US airports as part of the US-Visit 

program [48]. 

 We first describe the system in terms of its structure and functionalities using high-

level UML models based on typical requirements for similar applications. Hence, we 

build and parameterize performance models for the system. Finally, we report and 

analyze the obtained performance results.  

4.1 System Description 

An border inspection system is a complex combination of human processes and 

software systems used for traveler authentication at official Ports of Entry (POE) 

within a country. Hereinafter, we focus on airports since different POEs (i.e., land, 

sea) typically require different authentication protocols.  

 This section introduces context, structure, and functionalities of modern airport 

inspection systems. Our description is based on requirements for similar systems 
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emerging from technical reports and other documents released by U.S. government 

organizations [48] and the International Civil Aviation Organization (ICAO) [28, 29]. 

4.1.1 Context 

Increased security risk in international travel is resulting in new programs to 

determine the admissibility of foreign travelers at POEs within a country. Primary 

program goals are improving border security and, at the same time, facilitating the 

flow of legitimate travelers. Major program requirements include the adoption of 

Machine Readable Travel Documents (MRTDs) such as passports, visas, etc., the use 

of biometric identifiers, and the interoperability among multiple information systems 

for travelers’ identity verification and background checks. In line with these emerging 

demands many countries have passed legislations that advance the incorporation of 

biometric and document authentication identifiers on MRTDs used at POEs for 

travelers’ authentication (e.g., USA, New Zealand, Sweden, Pakistan, etc.). 

 MRTDs are international travel documents that contain both human-readable and 

machine-readable data. They contain world-wide standard data set by the ICAO. 

Simple forms of MRTDs are passports characterized by a machine readable strip at 

the bottom of the personal data page. The next level of MRTD, currently adopted by 

many countries, entails the incorporation a Secure Contactless Integrated Circuit 

(SCIC) [28, 29] that securely holds biometric data of the passport bearer.  

 Biometrics is a means of identifying a person by physiological or behavioral 

characteristics unique to an individual, using advanced computerized recognition 

techniques. It provides strong means of self-contained validation of the rightful 

MRTD bearer. Implementation of Digital Signatures (DSs) on MRTDs warrants 

integrity of the recorded data and avoids or minimizes fraud and counterfeit. Use of 

DSs requires the implementation of a Public Key Infrastructure (PKI) scheme, i.e., a 

framework to manage and enable the effective use of Public Key Encryption 

technology. 
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4.1.2 Structure 

We assume that an airport inspection system consists of a series of identical traveler 

inspection facilities, to allow the inspection of multiple travelers at the same time. We 

call each inspection facility an airport inspection point. Our configuration for an 

inspection point, represented by the annotated Deployment Diagram in Figure 25, 

includes the following components: 

 

Figure 25: Possible Deployment Diagram for the airport inspection system 
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- The Public Key Directory (PKD) provides Public Key Certificates required to 

verify the authenticity of MRTDs handed by travelers at airport inspection points. 

The PKD is managed by a central authority (ICAO). Synchronized replicas are 

possible to reduce its workload and, accordingly, travelers’ authentication time. 

Different options for the placements of the PKD can be considered: each airport 

inspection point, each POE, a regional, state, or national reference point, or 

combinations of them. Figure 25 represents a possible deployment of the PKD 

Performance analysis, management concerns, and other issues and/or constraints 

emerging from system requirements and design will determine the convenience 

and efficiency of various architectural alternatives.  

- The Travelers’ Names Server (TNS) is a centralized server that provides access to a 

multiagency (law enforcement and other agencies) database of name-based 

lookout information. The database alerts officers of conditions that may make 

travelers inadmissible to the country. The database is also used by inspectors at 

POE to collect and modify traveler information. 

- The Travelers’ Biometrics Server (TBS) is a centralized server that stores and 

processes travelers’ biometric data. During the authentication process the TBS can 

be used in verification or identification mode. In verification mode the system 

checks the validity of a claimed identity. In identification mode the system 

compares the individual’s biometric with all stored biometric records. This 

provides an additional check to name-based checks and may help to detect 

travelers who have successfully established multiple identities. 

- The POE Workstation is a computing device supporting the inspection officer in 

the collection and analysis of information coming from other components of the 

airport inspection point. Each POE Workstation accesses the PKD through a 

connection, whose exact type and capabilities depend on the location of the PKD 

itself. Communications with the TNS and with the TBS rely on a WAN. 
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Communication between the workstation and the MRTD Reader, and between the 

workstation and the biometric devices happens through a USB link. 

- The MRTD is a document containing a chip with storage memory, which contains 

a digital photo plus optional fingerprints of the document bearer. A DS ensures the 

authenticity of data stored in the chip against unauthorized alteration or access. 

We assume that the Public Key Certificate of the MRTD issuing site, required to 

verify the authenticity of the signature on the MRTD, is stored on the MRTD 

itself, or in the PKD. 

- The MRTD Reader is a computing device responsible for reading data from the 

MRTD and transferring it to the POE Workstation. 

- The Fingerprint Reader is a biometric device responsible for capturing travelers’ 

fingerprint data and transferring it to the POE Workstation. 

- The Digital Camera is a device responsible for capturing travelers’ face image data 

and transferring it to the POE Workstation. 

 In the Deployment Diagram for the inspection point we associate an infinite 

capacity with dedicated resources, i.e., resources that are exclusive of each inspection 

point, and used by one user at a time (the currently inspected traveler). Example of 

such resources are the POE Workstation, the MRTD Reader, and the Fingerprint 

Scanner. On the other hand, we associate a finite capacity to resources that are shared 

with other inspection points or inspection systems and serve multiple users at a time. 

Examples of these resources are the TNS, the TBS, and the CCD Server. 

4.1.3 Functions 

Figure 26 shows a Use Case Diagram for the airport inspection system. The diagram 

represents two types of users: travelers, who require inspections, and other border 

inspection systems, which use system resources to perform name-based lookups, and 

biometric verification and identification. All user types and system functions are 
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considered to be relevant from a performance  perspective, hence they are annotated 

with quantitative performance information.  

 

Figure 26: Use Case Diagram for the airport inspection system 

 

The main function performed by the airport inspection system is travelers’ inspection, 

whose dynamics is represented by the Sequence Diagrams in Figures 27 through 31. 

The diagrams are annotated with performance data. However, to make them more 

readable, and to list all the performance parameters for the system in a single location, 

we report resource demands for scenario steps in Table 5 of Section A.3. 

 

When a traveler arrives at an airport inspection point, an inspection officer starts an 

authentication process by performing a primary inspection. The outcome of the 

authentication is access authorization for the vast majority of travelers. However, 

based on the results of watch list queries, behavioral observations, document reviews, 

etc., an officer may refer a visitor to a secondary inspection, consisting of multiple 

system queries, in-depth interviews, and thorough review of documentation and 

personal belongings (Figure 31).  
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Figure 27: Sequence Diagram for the Traveler Inspection use case 

 

65 



 

Travelers’ inspection, represented in Figure 27, consists of the parallel execution of an 

automated authentication process (e.g., MRTD check, name lookup, biometric 

verification) and a brief interview and manual revision of the traveler’s documents by 

an inspection officer. The automated authentication process, shown in Figure 28, 

starts with the scanning of the traveler’s MRTD through the MRTD Reader. The data 

on the card is read and its DS is verified using the Public Key Certificate recorded on 

the card itself or in the PKD. The authenticity of the retrieved Public Key Certificate 

is also checked. Hence DS of single MRTD data elements (MRZ and face image data) 

are verified (Figure 29). 

 

Figure 28: Sequence Diagram for the Traveler Authentication interaction 
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The TNS name check, represented in Figure 30, is performed next and returns any 

existing information about the traveler, including biographic lookout hits and a 

picture. Afterwards, the officer requests the traveler to scan his/her fingerprints (left 

and right index fingers), and captures his/her face image using a digital camera. The 

collected data is forwarded to the TBS, where it is checked against existing traveler’s 

biometric samples (we assume that all travelers are pre-enrolled in the 

TBS, for instance at MRTD or visa request time). The system performs a 1:1 match to 

confirm that the person submitting his/her photo is the person on file. Results from the 

match, together with those from the previously described checks are finally reviewed 

by the inspection officer. Based on gathered information and observations, the officer  

decides whether sending the traveler to secondary inspection for further screening or 

processing, or granting him/her access to the country. 
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Figure 29: Sequence Diagram for the MRTD Authentication interaction 
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Figure 30: Sequence Diagram for the TNS Name Check interaction 
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The dynamics of the Secondary Inspection interaction occurrence is represented by 

the Sequence Diagram in Figure 31. Resource demands for scenario steps are reported 

in Table 5 of Section A.3. 

 

 

Figure 31: Sequence Diagram for the Secondary Inspection interaction 
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Figures 32-34 represent the dynamics of the Name-based Lookup, the Biometric 

Verification, and the Biometric Identification use cases, respectively. Resource 

demands for scenario steps are reported in Table 5 of Section A.3. 

Figure 32: Sequence Diagram for the Name-based Lookup use case 
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Figure 33: Sequence Diagram for the Biometric Verification use case 

 

4.1.4 

rent technical configurations 

 

 

 

 

 

Figure 34: Sequence Diagram for the Biometric Identification use case 

Technical and Policy Options 

We intend to evaluate the performance impact of diffe

and policy options that can be adopted to implement primary and secondary 

inspection processes within an airport inspection system. Results of the performance 

evaluation can be used to understand what the primary drivers affecting system 

performance are, and to enable policymakers to plan accordingly, in terms of 

infrastructure, scheduling system implementation, or policy changes.  
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The technical configurations we consider represent different alternatives for the 

architecture of the airport inspection system. Each configuration corresponds to a 

different possibility for the location of the PKD, which stores Public Key Certificates 

of MRTD issuing sites and of country Certificate Authorities (CAs). The latter are 

used to verify the authenticity of MRTD issuers’ certificates. The configurations 

under exam are described below: 

- MRTD: MRTDs store Public Key Certificates of the corresponding issuing sites; 

Public Key Certificates of country CAs are stored in the PKD, which is replicated  

at each POE workstation. 

- PKD Local: Public Key Certificates of MRTD issuing sites and of country CAs are 

collectively stored in the PKD, which is replicated at each POE workstation. 

- PKD Remote: Public Key Certificates of MRTD issuing sites and of country CAs 

are collectively stored in the PKD. The PKD may be available at a single location 

within the host country or it may be replicated at each POE, or region of POEs.  

 Options 1 and 2 share the same structure, represented by the Deployment Diagram 

in Figure 25. The difference between these options lies in the content of the MRTD, 

and the size of the PKD stored at the POE Workstation. To keep this chapter clear and 

readable we separately describe Option 3 in Appendix A.  

 The policy options we consider are intended to explore how variations in the 

authentication procedure, due for instance to the nature of the verified traveler’s data, 

or to the traveler’s nationality, affect authentication time and throughput. We 

considered three possible inspection scenarios: 

- Scenario 1: A traveler is granted access based only on the validity of his/her 

MRTD, which is determined by verifying the MRTD digital signature, through 

access to the PKD. 

- Scenario 2: The traveler authentication process includes the MRTD verification 

described in scenario 1. It also includes a name based check, to exclude that the 
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traveler is on a watchlist of inadmissible individuals, and a biometric based check, 

to verify that the biometric data collected from the traveler matches the biometric 

data stored in the TBS. 

- Scenario 3: The traveler authentication process varies based on travelers’ 

nationality. In fact, national travelers only require MRTD authentication and a 

name-based watchlist check. On the other hand, foreign travelers must follow the 

inspection process described in Scenario 2. 

4.2 Performance Modeling 

In this section we apply our performance evaluation methodology to the analysis of 

the airport inspection system described in the previous section. As we stated in 

Section 4.1.4, the given description actually represents two technical configurations 

for system: Options 1 and 2. These options share the same structure and functions; 

however, their MRTD-related operations have different resource demands. As a 

result, application of steps 1 and 2 of our UML to LQN transformation to those cases 

results in the same outcome. On the other hand, parameterization of the obtained LQN 

model, performed in step 3 of the transformation, is different; for this reason we will 

describe this operation for the two options separately. 

4.2.1 Assumptions 

To simplify our modeling task we have made several assumptions: 

- all travelers bear MRTD with digitally signed data and picture stored in it; 

- all travelers are aggregated into a single class, i.e., they are authenticated following 

the same process, through the same facilities; 

- all travelers are pre-enrolled in the biometric system, i.e., at least one biometric 

sample is stored in the TBS for each traveler; 
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- only a 1-to-1 verification check against the biometric sample stored in the TBS is 

performed at primary inspection. A 1-to-n check against the biometric watchlist is 

conducted at enrollment time and repeated at secondary inspection; 

- in our airport inspection system the number of inspection points for traveler 

authentication is constant. We assume one traveler queue for primary inspection, 

and a separate traveler queue for secondary inspection. 

4.2.2 Model Structure 

The structure of the LQN model (i.e., tasks, devices, and their mappings) for the 

airport inspection system is generated by Step 1 of our UML to LQN transformation. 

The next subsections describe the execution of this step based on the outcome of its 

substeps. 

STEP 1.a:  

This step creates LQN devices for each hardware node – whether stereotyped as 

<<PAhost>> or as <<PAresource>> – in the annotated Deployment Diagram for the 

system. The application of the step to the inspection system generates the LQN 

devices represented in Figure 35. 
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Figure 35: LQN devices for the airport inspection system 
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STEP 1.b: 

This step creates LQN reference tasks to represent different user workloads. It also 

creates LQN non-reference tasks for each each system component labeled by the 

<<PAresource>> stereotype in the Deployment Diagram or the in Sequence Diagrams 

for the system. Figure 36 shows the outcome of the application of this step to the 

airport inspection system. 
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System
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Figure 36: LQN tasks for the airport inspection system 

STEP 1.c: 

This step creates connecting arcs between the LQN tasks and devices generated in the 

previous steps. Figure 37 represents the result of the application of the step to the 

airport inspection system. 
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Figure 37: LQN tasks, devices, and their mappings for the airport inspection system 

4.2.3 Model Dynamics 

The dynamics of the LQN model (i.e., entries, activities, and request flow among 

them) is generated by Step 2 of our UML to LQN transformation. The next 

subsections describe the execution of this step based on the outcome of its substeps. 

STEP 2.a:  

This step creates entries for the LQN reference tasks defined in Step 1.b. Each entry 

matches a performance scenario invoked by the user corresponding to the reference 

task. In the case of the inspection system the value 1 associated with the PAprob tag in 

each Sequence Diagram implies a single performance scenario per use case. This 

leads to the following entries: 

- travelerInspection for the Traveler reference task; 



 

- name-basedLookup, biometricVerifcation, and biometricIdentification for the 

Border Inspection System reference task. 

STEP 2.b:  

This step creates entries for each LQN task corresponding to a system component 

receiving service requests from other components. In the case of the inspection 

system the following entries are identified: 

- startPrimInspection for the POE Prim. Officer task; 

- startSecInspection for the POE Sec. Officer task; 

- automatedChecks, verifyMRTDAuthenticity, and identifyTraveler for the POE App. 

task; 

- scanMRTD for MRTD Reader Task; 

- getPKCertificate for the PKD task; 

- captureFingerprint for Fingerprint Scanner Task; 

- captureFaceImage for Digital Camera Task; 

- getTravelerInfo for the TNS App. task; 

- lookupName for the TN DB task; 

- getPicture for the CCD task; 

- store&matchBiometrics and identifyBiometrics for the TB DB task; 

STEP 2.c:  

This step generates entries of LQN tasks corresponding to passive resources whose 

usage is required to perform certain operations. Examples of such resources for the 

inspection system are the WAN and storage disks. Their use is explicitly represented 

by performance scenarios through the PAextOp tag optionally associated with scenario 

steps*.  

Execution of step 2.c on the inspection system leads to: 

                                                 
* Annotations for scenario steps of the airport inspection system are reported in Appendix A, Table 4. 
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- the creation of entries send-getTravInfo, send-store&matchBiom, and send-

identifyBiom for WAN Task. These entries correspond to the network operations 

required to invoke the services provided by the TNS and by the TBS. In fact these 

servers are connected to the POE Workstation through a WAN link. 

- the creation of entry readMRTDData for MRTD Task. The entry is required by the 

PAextOp tag associated with the scanMRTD() interaction in the MRTD 

Authentication fragment.  The tag indicates that the interaction requires a reading 

operation on the MRTD chip. 

- the creation of entry readPKCertData for POE Workstation Disk Task. The entry 

is required by the PAextOp tag associated with the getPKCertificate() interaction 

in the MRTD Authentication fragment. The tag indicates that the interaction 

requires a reading operation on the disk of the POE Workstation. 

- the creation of entry readLookupData for TNS Disk Task. The entry is required by 

the PAextOp stereotype associated with the lookupName() interaction in the TNS 

Name Check fragment. The tag indicates that the interaction requires a reading 

operation on the disk of the TNS. 

- the creation of entry readPictureData for CCD Server Disk Task. The entry is 

required by the PAextOp tag associated with the getPicture() interaction in the 

TNS Name Check fragment.  The tag indicates that the interaction requires a 

reading operation on the disk of the CCD Server. 

- the creation of entry readWriteBiomData and readWatchlistData for TBS Disk 

Task. The former is required by the PAextOp stereotype associated with the 

store&matchBiometrics() interaction in the Traveler Authentication fragment. The 

tag indicates that the interaction requires a reading and a writing operation on the 

disk of the TBS. The latter is required by the PAextOp tag associated with the 

identifyBiometrics() interaction in the Secondary Inspection scenario. The tag 

80 



 

indicates that the interaction requires the reading of a set of biometrics samples 

(i.e., a watchlist) on the disk of the TBS. 

STEP 2.d:  

This step generates activities of LQN tasks, to represent internal computations of the 

system components corresponding to those tasks. Such computations are represented 

in Sequence Diagrams by self-addressed messages sent out by components.  

The activities we identify for the inspection system are: 

- reviewDocs and processInspectionData for the POE Prim. Officer task; 

- reviewDocs and processInspectionData for the POE Sec. Officer task; 

- processData and verify  for the POE App. task. 

 We also identify other LQN activities to specify non-sequential flow of control, 

expressed in Sequence Diagrams by combined fragments. The fragments found in the 

Sequence Diagrams for the inspection system lead to the creation of different sets of 

activities to represent: 

- the par fragment in the Primary Inspection scenario; 

- the two opt fragments in the Traveler Authentication interaction occurrence; 

-  the par fragment in the TNS Name Check interaction occurrence; 

- the par fragment in the Secondary Inspection scenario; 

- the par fragment in the Name-based Lookup scenario. 

 The LQN translation of the above structures follows the mapping rules explained 

in Chapter 3. The names of the activities created in the translation are not relevant; we 

display the interconnections of those activities with the rest of the LQN model in the 

next subsection. 
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STEP 2.e:  

This step generates the request flow among LQN entries and activities identified in 

the previous steps. The generation process follows the sequence of messages 

represented in each performance scenarios for the inspection system. In this section 

we gradually determine and display the process outcome. 

 Figure 38 shows a high-level framework of the LQN model for the airport 

inspection system. The framework represents the requests of the workload generators, 

i.e., the reference tasks Traveler and Border Inspection System, toward LQN 

submodels representing functions invoked by them. In general the LQN submodels 

are not disjoint. Rather, they usually overlap since different use cases may use the 

same system resources and invoke the same system services. 
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Figure 38: High-level framework of the LQN for the airport inspection system 

 

In the next paragraphs we explain how to complete the framework for the LQN 

model. We generate (possibly overlapping) LQN submodels, which we later merge 

into a single LQN model for the whole system. To make the models more readable 
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and understandable we only represent tasks, entries, and activities of interest within 

the context under study.  

 The activities we introduce to represent control flow are given generic names, i.e., 

Ai, i ≥ 1. We assume the values of i to be unique within a single task, but not across 

different tasks. Values of i for a set of activities do not represent the order of 

executions of the activities. Rather, they express their order of creation, based on the 

order of processing of the interactions represented in Sequence Diagrams. 

 We now focus on how to define the Traveler Inspection LQN, represented in 

Figure 38. With this purpose, we process the set of Sequence Diagrams modeling the 

corresponding scenario. We start with the most general one (Figure 27), obtaining the 

submodel displayed in Figure 39, which represents the first draft of the Traveler  

Inspection LQN. The submodel contains a placeholder for the Traveler Authentication 

interaction occurrence. The submodel is refined by examining the Sequence 

Diagram(s) specifying that occurrence. 
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Figure 3 nario 9: Traveler Inspection LQN after Traveler Inspection sce

 

rocessing the Traveler Authentication interaction occurrence augments the current 

Traveler Inspection LQN with tasks, entries, activities, and service requests modeling 

P
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the interactions represented in that occurrence. The outcome of the process is 

represented in Figure 40. 
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Figure 41: Traveler Inspection LQN after MRTD Authentication 
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Figure 42: Traveler Inspection LQN after TNS Name Check 
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Finally, processing the Secondary Inspection interaction occurrence augments the 

current Traveler Inspection LQN as represented in Figure 44. 

 

Figure 43: Primary Inspection LQN after Secondary Inspection 
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Figure 44 shows the final high-level layout of the Traveler Inspection LQN. For the 

sake of clarity we only represent LQN tasks, entries and devices. LQN activities 

ithin tasks are assumed to be the same as those represented in Figures 39 through w

42. We represent a service request from an activity connected to a certain entry 

toward another entry, as a service request from the entry itself toward the destination 

entry. For instance, the service request from activity A7 of the startPrimInspection 

entry of the task POE Prim. Officer toward the scanMRTD entry of the MRTD Reader 

Task is displayed as a service request from the startPrimInspection entry toward the 

scanMRTD entry. 
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Processing the Sequence Diagram for the Name-based Lookup use case generates the 

Name-based Lookup LQN, depicted in Figure 45. As we can notice, no new LQN 

entities were added to those generated by the processing of the Primary Inspection use 

case. 

 

Figure 45: Name-based Lookup LQN 
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model framework (Figure 38) and processing the LQN submodels obtained for the 

LQN black-box in the framework, one at a time. Each LQN submodel augments the 

current LQN model with devices, tasks, entries, activities, and request flow. However 

only LQN entities that are not already in the current model are added to it.  

 

Figure 46: High-level layout of the LQN for the airport inspection system 
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4.2.4 Model Parameters 

We derive parameter information for our LQN model partly from available technical 

reports for similar systems (e.g., [28, 29, 48]), partly from our estimates or 

assumptions.  

 We estimate the service time of human components (e.g., inspection officers) of 

e inspection system  by guessing the amount of time they take to perform operations 

or more model parameters as independent variables of the analysis and establishes a 

set of possible values for each of them. Execution of the experiment returns a set of 

th

such as reviewing travelers’ documents, processing data gathered from the TNS and 

the TBS, etc. The service time required by processing devices is very difficult to 

estimate since at this stage we only have very coarse-grained information about 

system operations and their complexities. For this reason, we usually assume the 

processing time needed by processing devices to carry out different tasks. Finally, we 

estimate the time taken by I/O devices based on the type of device. For instance, we 

estimate file I/O time as the ratio between the size of the data to be transferred and the 

throughput of the device storing the data. On the other hand, we estimate network I/O 

as the ratio between the size of the exchanged data and the throughput of the network 

link used for data communication. 

 Appendix A reports details on how we annotated performance scenarios for the 

inspection system with resource demands of scenario steps. It also explains how these 

values are used to derive parameters for the LQN model of the system. 

4.3 Performance Experiments 

We defined several performance experiments on the LQN models for the airport 

inspection system configurations described in this chapter and in Appendix B. The 

goal of the experiments is to evaluate the performance effects of the technical and 

policy options for the system described in Section 4.1.4. Each experiment selects one 
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performance results by solving the non-parameterized LQN models obtained varying 

en nges. 

 All our experiments assume a constant population size representing the load on the 

e is a very important 

 LQN model parameters, defined in Appendix A: 

- verifyMRTDAuthenticity: 0.0082s 

the indep dent variables through their ra

airport inspection system at a given time. We vary the population size from 100 to 

2000 to evaluate system performance for different workload intensities, such as peak 

hour, average hour, off hour, and so on. Response tim

performance measure for our system; therefore for each experiment we plot response 

time against traveler population. 

4.3.1 Technical Options 

The goal of this experiment is to evaluate the technical design options for the system 

described in Section 4.1.4. The alternatives in exam consider several possible 

locations for the Public Key Certificates of authorities issuing MRTDs, i.e., each 

MRTD, a database for each POE Workstation, or a database shared by multiple POE 

Workstations. We want to select the option that provides the best performance. Below 

we report parameter values for each option: 

MRTD:  

This option results in the following

- readMRTDData: 1.0831s 

- scanMRTD: 0.2708s 

- verifyMRTDAuthenticity: 0.0093s 

- readPKCertData: 0.0065s 

- verify: 0.0044s 

PKD Local:  

This option results in the following LQN model parameters, defined in Appendix A: 

- readMRTDData: 0.9472s 

- scanMRTD: 0.2368s 
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- readPKCertData: 0.0065s 

- verify: 0.0044s 

PKD Remote:  

This option results in the following LQN model parameters, defined in Appendix B: 

is  different sub-options, to express the intensity 

of the r quest load on the PKD, in the case where the PKD is not locally stored at 

on Policies 

ate the policy options for the system described in 

require different authentication procedures, 

veler’s nationality. We want to assess how each 

y affects the performance provided by the airport inspection point. 

ort parameter values for each option. pta1 and pta2 appear in the 

 

 biometric-based checks during Primary Inspection. The 

- readMRTDData: 0.9472s 

- scanMRTD: 0.2368s 

- verifyMRTDAuthenticity: 0.0082s 

- send-getPKCert: 0.0017s 

- readPKCertData: 0.0065s 

- verify: 0.0044s 

Within th  technical option we consider

e

each airport inspection point. We devise four different values for the size of the PKI 

System population. Each size corresponds to a certain number of airports, each with 

20 airport inspection points, issuing MRTD request authentications to the PKD: 

1)  20  (1 airport); 

2)  800 (40 airport); 

3)  1600 (80 airport); 

4)  3200 (160 airport). 

4.3.2 Authenticati

This experiment intends to evalu

Section 4.1.4. Different policies 

optionally based on the tra

authentication polic

Below we rep

Traveler Authentication interaction occurrence. The former expresses the probability

of executing name-based and
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latter corresponds to the probability of collecting traveler biometric samples and 

y three values for the probability pta2 of executing 

ecks during travelers’ inspection: 

4.3.3 Manual Inspection Times 

This experim  for the manual inspection time required by 

the prim fficer. The values we consider are: 

- 

- 

- 60s. 

tion of LQN entries: 

verifying them. 

Scenario 1: 

- pta1= 0; 

- pta2= 0; 

Scenario 2: 

- pta1= 1; 

- pta2= 1; 

Scenario 3: 

- pta1= 1; 

Within Scenario 3 we identif

biometric-based ch

1) 0.5; 

2) 0.7; 

3) 0.9. 

ent considers different values

ary inspection o

0s 

30s 

These correspond to the following parameteriza

Scenario 1:  

- reviewDocs: 0s 

Scenario 2:  

- reviewDocs: 30s 
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Scenario 3:  

- reviewDocs: 60s 

4.3.4 Biometric Sampling Times 

ent considers different values for the time required to capture fingerprint 

age of the traveler. The values we consider are:  

ollowing parameterization of LQN entries: 

 5s 

 10s 

5s 

  

- captureFingerprint: 15s 

4.4 Results and Analysis 

al solutions for our LQN models were obtained using the LQNS and 

applications [17, 19]. Our results give insights into the performance of the 

ng both the point of view of a traveler 

 the process. 

e average total waiting time for a traveler to complete 

 the moment he/she arrives to the inspection queue, to 

This experim

scans and a face im

- 10s 

- 15s 

- 20s. 

These correspond to the f

Scenario 1:  

- captureFingerprint:

- captureFaceImage: 5s 

Scenario 2:  

- captureFingerprint:

- captureFaceImage: 

Scenario 3:

- captureFaceImage: 5s 

Analytic

MultiSRVN 

technical and policy options in exam, taki

experiencing the authentication process and that of an officer executing

For each option we evaluate th

the authentication process, from
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the moment he/she is granted or denied entry into the country. We also evaluate the 

verage inspection time, which is the time required for the manual (performed by the 

nd automated authentication processes to determine the admissibility of 

e obtain system throughput during a 12 hours period, which 

on system is able to match the 

expected volume of incoming travelers. We also analyze the utilization of software 

re system response in conditions of light to heavy traffic. 

Technical Options 

urations for the 

tem described in Section 4.3.1.  

oject sponsors did not know if the system would exhibit an 

d if it would experience bottlenecks. Therefore, we built 

for a baseline configuration that uses a single copy of the PKD server. 

e diagram in Figure 47, the inspection time for Options 1, 

a ports refer to the same PKD, is about the same and in every 

40s. This time is due mostly to the manual inspection process performed 

d to last for 30 seconds (exponentially distributed with 

e rocess happens in parallel with the automated inspection 

ss than 20s. When the number of airports 

ticing an increase in the inspection time, 

 

a

POE officer) a

a traveler. Finally w

makes it possible to estimate whether the inspecti

and hardware resources to identify possible software or hardware bottlenecks. In all 

cases we solve our models for a traveler population size varying from 100 to 2000. 

This allows us to explo

4.4.1 

Figures 47 through 50 show results related the technical config

inspection sys

 At the very beginning pr

acceptable performance an

LQN models 

As it can be noticed from th

2 nd 3, where up to 40 air

case is about 

by the POE officer, assume

m an 30s). The manual p

process, which in all cases completes in le

referring to the same PKD is 80 we start no

due to a slower response from the PKD server that becomes overloaded. The 

performance issue becomes even more evident when the PKD server supports 160 

airports. In this case the total inspection time almost doubles and most of it is spent in 

the automated inspection process. 
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Figure 47: Primary inspection time for different technical options 

 

Figure 4 shows the throughput provid8 ed by different system options during a 12 

 

hours period. 

 

Figure 48: Primary inspection throughput for different technical options 
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Figure 49 shows the average total waiting time experienced by travelers at inspection 

facilities. For each technical option, the request load on the PKD is bounded. In fact, 

regardless of what the traveler population at the airports referring to the same PKD is, 

ited 

e 

 

system bottleneck as the traveler population increases. For Option 3, with 80 and 160 

airports issuing requests to the same PKD, the total waiting time becomes sensibly 

rger. As we observed from Figure 47, this is due to request overloading on the PKD 

 

 

 

 

 

 

 

the maximum number of travelers that can be inspected in a certain moment is lim

by the number of inspection facilities at those airports. This makes the averag

inspection time constant, i.e., not affected by the traveler population at POEs. 

Therefore, the total waiting time increases linearly with the traveler population. We

notice that for Options 1, 2 and 3 (with up to 40 airports referring to the same PKD), 

the travelers’ waiting time is about the same (the lines in Figure 49 overlap). In all 

cases the total waiting time is largely dominated by the travelers’ queuing time due to 

the limited availability of POE border inspection points. We assume only 20 

inspection facilities per airport, which quickly become over-saturated and lead to a 

la

server, which causes a slower system response. 
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Figure 49: Primary total waiting time for different technical options 

 

Figure 50 shows the average total waiting time for Option 3 as the load on the PKD 

server increases from 1 to 160 airports. We considered four possible traveler 

populations. From the diagram we can observe that, as the request load on the PKD 

increases, the system response increases non-linearly. The increase rate is higher as 

the traveler population increases. 
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Figure 50: Primary total waiting time vs. airports served by a remote PKD 

 

 shows detailed system response time and utilization for situations where 80 

two sections, the first one reports results 

airports. Analyzing the first section, we 

e that when only one PKD exists the PKD server utilization reaches 

erver becomes saturated leading to increased inspection and 

d, the PKD processor utilization is quite low 

case of data intensive applications. As we introduce a 

PKD replica, utilization of the PKD server drops to 91.92%, PKD processor 

utilization drops to 39.96%, and PKD disk utilization is down to 51.95%. The system 

inspection time and waiting time reach their lower bound in with three PKD replicas. 

Table 2

and 160 airports issue authentication requests to the PKD server. As we observed in 

Figures 47 through 50 in those cases system performance seems to be a problem. 

Therefore, we want to evaluate how introducing PKD replicas alleviates response 

time problem. In particular we are interested in identifying the optimal number of 

replicas to be introduced. Table 2 includes 

for 80 airports, the second one refers to 160 

can observ

99.95%, i.e., the PKD s

waiting times. On the other han

(43.45%), as it happens in the 
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In fact, introducing additional replicas only minimally decreases those parameters due

to inherent inspection time delays. We can conclude that in the case of 80 airports 

referring to the same PKD, three is an optimal number for PKD replication. From t

second section of the table we can observe that when only one PKD is present for 160 

airports, the PKD server utilization is very high, 99.99%. When two or three replicas 

are present, utilization does not decrease sensibly. Introducing a fourth replica 

decreases the PKD server utilization to 91.91%. Five replicas lead to a PKD server 

utilization of 73.71%, while the PKD processor utilization becomes 32.05% and the

PKD disk utilization is 41.66%. In this case, five is an optimal number of PKD 

replicas. In fact we observe that introducing additional replicas, while being mo

expensive, does not change system response in terms of inspection time and waiting 

 

he 

 

re 

time.  

 

Based on the results discussed above we can conclude that the best configuration 

cannot be identified from a pure performance standpoint. Other factors have to be 

considered such as management issues for public key certificates and PKD replicas, 

choices or constraints emerging from system requirements and design, etc. Based on 

pure performance analysis alone none of the options give a performance that is 

appreciably better than the others. However, for the cases where 80 or 160 airports 

refer to the same PKD, the PKD has to be replicated, as described in Table 2. The 

reason is the bottleneck due to the limited availability of airport inspection points, 

assumed to be 20 per airport. System devices within a airport inspection point are 

dedicated and/or under-utilized and therefore highly responsive. Different technical 

options imply minimal variations in the system inspection time.  These variations turn 

out to be an irrelevant component of the total average waiting time. 
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Table 2: Response time and resource utilization for PKD Shared Option 
80 Airports 

# PKD Insp. Time(s) Wait. Time(m) PKD Ut. PKD Serv. Ut. PKD Serv. Disk Ut. 

1 54.8836 45.73733 0.999572 0.434597 0.564976
2 40.4675 33.7235 0.9192 0.399652 0.51955
3 40.4085 33.67433 0.616257 0.267938 0.34832
4 40.4061 33.67233 0.4623 0.201 0.2613
5 40.4057 33.67217 0.369852 0.160805 0.209046

160 Airports 
# PKD Insp. Time(s) Wait. Time(m) PKD Ut. PKD Serv. Ut. PKD Serv. Disk Ut. 

1 90.1481 4507.5 0.999919 0.565172 0.565172
2 54.7181 2735.96 0.99999 0.434782 0.565215
3 43.4452 2172.3 0.99997 0.43477 0.5652
4 40.4353 2021.8 0.919175 0.399643 0.519535
5 40.409 2020.49 0.737196 0.32052 0.416676
6 40.4064 2020.36 0.614483 0.347317 0.347317
7 40.4059 2020.33 0.526727 0.229011 0.297716
8 40.4057 2020.33 0.460893 0.200388 0.260505

4.4.2 Authentication Policies 

igures 51 and 52 show how traveler waiting time and inspection time change as we F

differentiate the authentication procedure for country’s citizens and visiting aliens. 

We assume that all travelers undergo the inspection process from the baseline 

scenario, but country’s citizens are exempt from biometric data collection and 

verification. 

 We considered different values for the percentage of citizens and non citizens 

arriving at inspection points. In the baseline scenario all travelers undergo the same 

authentication procedure. Other values we considered are 50%, 70%, and 90%, 

corresponding to increasing rates of country’s citizen population. We can observe 

from the diagrams that modifying the authentication policy can reduce the average 

traveler waiting time, especially when a large traveler population is waiting to be 

authenticated.  
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Figures 53 and 54 display results for different requirements of the POE Officer 

inspection time. For the baseline authentication scenario we assumed a manual 

inspection time of 30s. Now we perform a sensitivity analysis on that parameter, 

giving it the values 0s, 30s, and 60s. These values may correspond to different 

authentication policies and requirements. A 0s inspection time corresponds to a totally 

igu : Primary l waiting for differe thenticatio ios 

Figure 52: Primary inspection time for different authentication scenarios 
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automated inspection process. A 30s and 60s inspection times correspond to 

increasing requirements for manual inspection time, which can be caused by the 

necessity to review less/more documents, to ask the traveler some questions. Figures 

53 and 54 show that the passengers’ waiting time and inspection time are more 

sensitive to changes in the officer inspection time, as opposed to changes in th

biometric acquisition time, which we explore below. In fact, the difference between 

different options is significant. 

 

 

e 

105 



 

0

20

40

60

80

100

140
To

ta
l W

ai
tin

g 
Ti

m
e 

(m
) 120

500 1000 1500 2000

Travelers (n)

0s 30s 60s

Figure 53: Primary total waiting time for different manual inspection times 

 

Figure 54: Primary inspection time for different manual inspection times 

4.4.4 Biometric Sampling Times 

Figures 55 and 56 represent system performance as we vary the time to capture 

travelers’ biometric samples. Fifteen seconds is the biometric acquisition time 

assumed for the baseline scenario and given by the sum of the time to acquire 

fingerprint and face image data. We evaluate how system waiting time and throughput 

change as we consider a shorter acquisition time of 10s and a longer acquisition time 
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of 20s. These different times may correspond to requests for a lower/higher sample 

quality, to the adoption of sampling devices with increased/decreased performance, or 

to a requirement of an increased/decreased number of samples. The diagram in Figure 

55 shows the difference in average travelers’ waiting time for the given biometri

capture time options. The difference increases as the traveler population increases. 

However, in all cases for adjacent options, as long as the population is less than 2000, 

it is less than 5 minutes. Figure 56 displays the average inspection time for different 

biometric sampling times. As it is natural, the inspection time increases as the 

biometric collection time increases. 

10s   15s 20s

0

10

20

30

40

50

60

70

80

500 1000 1500 2000

Travelers (n)

To
ta

l W
ai

tin
g 

Ti
m

e 
(m

)

Figure 55: Primary total waiting time for different biometric sampling times 
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ternational Airport [15]. The simulation analysis is based on a discrete-event 

simu 33]. 

he model is quite complex and detailed, including approximately 400 modules from 

e Extend libraries. To obtain performance measures the simulation model needs to 

e run for 24 hours. To estimate the mean and variance of performance measures 10 

mulation runs are required. 

Based on the performance results produced by the simulation model, the average 

ait time for travelers going through primary inspection is 43.2+/-5.4, and the 

4.5 Validation 

Validation of performance results aims at checking whether the performance figures 

obtained by solving a performance model are close to those obtainable by observing 

the system in action. This task, in the absence of a system prototype or 

implementation, is a difficult matter. However, we were able to indirectly validate our 

performance results for an airport inspection system without having access to a real 

system. In fact, we validated our performance results against validated results coming 

from a simulation analysis of the inspections of international travelers at Los Angeles

In

lation model implemented using a commercial software package, Extend [

T

th

b

si

 

w
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average queue length is 1374+/-108. Incorporating this information on the diagram in 

 

 

 

 

Figure 49, which represents total wait time against the number of travelers waiting for

primary inspection, we observe that our results are compatible with those obtained 

from the simulation study. In fact, in the cases where the PKD is not overloaded, i.e., 

all technical options except for Shared PKD with 80 and 160 airports referring to the

same PKD, the waiting time returned by our LQN models is within the range returned 

by the simulation model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 57: Validation of travelers' total waiting time 
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Chapter 5: Conclusions 

 this thesis we presented a methodology for modeling and evaluating the 

We selected UML 2.0 as our notation for software specification. In particular, we 

dopted Use Case Diagrams, Deployment Diagrams, and Sequence Diagrams to 

odel system users and functions, system hardware and software resources, and 

stem dynamics, respectively. We annotated UML diagrams with quantitative 

erformance-oriented information using standard extensions defined in the “UML 

rofile for Schedulability, Performance, and Time” [36]. We also introduced 

dditional extensions to allow a more convenient specification of the system 

erformance characteristics. Other extensions were proposed to address gaps in the 

urrent Performance Profile, which does not cover UML 2.0 diagrams. 

The notation we selected for performance modeling is LQN. This choice was 

otivated by several factors. One of them is the suitability of LQN to express high-

level software architecture abstractions, which makes it easier to define performance 

models and to trace back performance results into the original UML software 

ecifications. Another factor is the ability of LQN to explicitly model software 

omponents and to express potentially complex operations performed by them. 

dditionally, LQN models are highly scalable, and efficient solution algorithms and 

ols are available for their evaluation. 
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performance of software systems in the early stages of the software lifecycle.  
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 We proposed a transformation methodology to automatically derive LQN models 

om annotated UML models. The transformation is largely inspired by earlier work 

presented in [20, 21, 39, 40, 41, 44]. However, our contribution is the adaptation of 

existing performance modeling techniques to a different set of UML diagrams. In 

particular, we adopted Sequence Diagrams instead of Activity Diagrams to express 

the dynamics of performance scenarios. We believe that Sequence Diagrams provide 

a better way to define a performance model for several reasons:  

- with UML 2.0, they can represent very well complex system dynamics, including 

non-sequential flow of control, 

- they naturally specify which system components are responsible for different 

operations,  

- they are very good at expressing intercomponent communication. 

 We tested the applicability of the proposed transformation to the performance 

modeling and evaluation of a complex software system used at international ariports 

ports within a country to grant or deny access to incoming travelers. The case study 

showed that our methodology is expressive and easy to apply. It is also modular; in 

fact, once we defined the high-level layout of the LQN model for the system, it was 

possible to separately process different performance scenarios, and then merge the 

corresponding LQN submodels to obtain the LQN model for the system. The LQN 

models obtained for different technical and policy options for the inspection system 

were easily solved by an analytical solver with a very limited resource usage on the 

host machine.  

 On the list of future work is the extension of our transformation to cover other 

architectural patterns besides the client/server one, and to address more features from 

UML 2.0 Sequence Diagrams. Another objective is the formalization of the additions 

and modifications suggested in the UML Performance Profile. We also find it 

desirable to develop an automated tool to implement our methodology, possibly 

fr
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integrable with common practice development environments. This would allow to fill 

the gap between software development and performance analysis, and to integrate the 

validation of performance requirements in the software lifecycle. Finally, while our 

lidation of the methodology on experience with the case study is positive, a va

additional and more complex systems is desirable. 
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Appendix A: Parameterization of LQN 
Model for Options 1 and 2 
 

 

 

This appendix explains how we parameterized the LQN model obtained in Chapter 4 

rizes the basic characteristics of the platform configuration we assume 

r

 

for two different design alternatives that can be adopted to build an airport inspection 

system. We introduced the alternatives in exam in Section 4.1.4, and we called them 

as Options 1 and 2, respectively. 

 The next sections specify the service rates we assume for the execution 

environment of the inspection system and for the expected size of the data exchanged 

during key system operations. This information is used to motivate the resource 

demands attached to steps of performance scenarios. Resource demands are used to 

derive parameters for the LQN model of the system. 

A.1 Assumed Execution Environment 

Table 3 summa

fo  the airport inspection system, including service rates of hardware devices and 

links between them. Parameters we do not explicitly use to estimate resource demands  

for system operations are left unspecified. Example of such parameters are the CPU 

rate and RAM of processing devices other than POE Workstation, or the throughput 

of the fingerprint scanner and of digital camera. 
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Table 3: Execution environment (Options 1 and 2) 

CPU: Pentium 2.40 GHz 

RAM: 512 MB 

Command Overhead: 1 ms 

Access Time: 3.5 ms 

Latency: 2 ms 

POE Workstation 

Disk:  

Transfer Time: 75 MB/s 

MRTD Reader Reading Rate: 424 kilobits/s  

MRTD Card Data Transfer Rate: 106 kilobits/s  

Fingerprint  Scanner Not specified 

Digital Camera Not specified 

LAN Bandwidth: 100 Mbits/s  

WAN Bandwidth: 16.6 Mbits/s (avg) 

CPU: Not specified 

RAM: Not specified 

Disk: Command Overhead: 1 ms 

 Access Time: 2.93 ms 

 Latency: 2 ms 

TNS 

 Transfer Time: 85 MB/s 

CPU: Not specified 

RAM: Not specified 

Command Overhead: 1 ms 

Access Time: 2.93 ms 

Latency: 2 ms 

TBS 

Disk: 

Transfer Time: 85 MB/s 

CPU: Not specified 

RAM: Not specified 

Disk: Command Overhead: 1 ms 

 Access Time: 2.93 ms 

 Latency: 2 ms 

CCD Server 

 Transfer Time: 85 MB/s 
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A.2 Expected Size of Data 

Table 4 lists the expected size of the data exchanged within the airport inspection 

]). 

Table 4: Expected size of data (Options 1 and 2) 

MRZ: 88 bytes 

system during key system operations, such as MRTD authentication, collection of 

name-based lookup information, etc. This information was mostly gathered from 

technical reports available for similar systems (e.g., [28, 29

 

Picture: 12704 bytes 

DS: 20 bytes 

Public Key Certificate: 1.8 KB 

(without Public Key Certificate): 12852 bytes 

MRTD Data 

(with Public Key Certificate): 14695.2 bytes 

Total Size  

Fingerprint scans 10 KB TBS Data 

Face Image 20 KB 

Watchlist Size 1000 Face images 

TNS Data 5 KB 

CCD Data 20 KB 

A.3 Performance Annotations 

Table 5 specifies the performance annotations we assume to be attached to the 

 (i.e., Option 1 or 2).  

scenario steps represented in the set of Sequence Diagrams for the system. For each 

step we report the parameter associated with the Pademand tag, and optionally with 

the PextOp tag. We state the type of the parameter (i.e., required, assumed, estimated, 

measured), its numeric value, and most of the times a rationale for it. A par value 

indicates that the exact resource demand for the corresponding scenario step is 

dependent on which design alternative is assumed for the system
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We assume all se ith mean values 

fied  component always 

performs the same opera e service demand.  

 As explained in Section 4.2.4, we esti e required by system 

operations as the ratio between  transferred and the throughput of the 

involved I/O device. On the o e of more information, we 

process stem operations is 0.005s. The 

 to this a e taken by cryptographic 

rkstation to verify the validity of a MRTD. In 

mance of these functions arked on a machine with the 

configuration as nssl, an application available 

the OpenSSL lib option of the openssl binary returns 

performance results for ptographic algorithms, including SHA-1 

and RSA. For the SH g ber of bytes that can be 

processed per second. For the RS es needed by 

sign/verify cycles for d fferen e used this information to 

ate the processing A as a function of the amount of data to 

be processed. The pro d by RSA was instead estimated as a 

function of the length of e

 

Table 5: Resource d Options 1 and 2) 

rvice demands to have exponential distributions, w

equal to the speci values. We also assume that a system

tion with the sam

mate the I/O tim

 the data to be

ther hand, in the absenc

assume that the ing time needed to perform sy

only exception ssumption is represented by the tim

operations performed on the POE Wo

fact, the perfor was benchm

same the POE Workstation using ope

with raries. The speed 

 a wide range of cry

A-1 al orithm, it returns the num

A algorithm it returns the tim

i t values of key length. W

estim  time required by SH

cessing time require

 the us d key. 

emand of scenario steps (

Scenario Step Tag Source Value (s) Rationale 

Scenario: Primary Inspection 
startPrimInspection (1) PAdemand asmd 0.0 

reviewDocs 20.0 (2) PAdemand asmd 

processInspectionData PAde  5.0 (3) mand asmd

return inspectionResult PAde asmd 5.0 (4) mand 

automatedChecks PAde  mand asmd 0.005 

captureFingerprint PAdemand 0.005  asmd 

return fingerprintData PAdemand pred 10.0 (5) 
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capture faceImage PAdemand asmd 0.005  
return faceImageData PAdemand asmd 5.0 (6) 

PAdemand asmd 0.005  
PAextOp 
(send-store&matchBiom) pred 0.0142 (7) 

store&matchBiometrics 

PAextOp 
(readWriteBiomData) pred 0.0064 (8) 

return biometricMatchResult PAdemand asmd 0.005  
processData PAdemand asmd 0.005  
return checksResult PAdemand asmd 0.005  
scanMRTD PAdemand asmd 1.0 (9) 

PAdemand pred par (10) return MRTDData 
PAextOp  

pred par (11) 
(readMRTDData) 

verifyMRTDAuthenticit (12) y PAdemand pred par 

getPKCertificate PAdemand asmd 0.005  
PAdemand asmd 0.005  return PKCertificate  

rtData) pred par (13) 
PAextOp  
(readPKCe

verify(MRTD_DS)  pred par (14) PAdemand

verify(CAPKCertificate) d 0.0015 (15) PAdemand pre

verify(MRZ_DS) n 6) PAdema d pred 0.0009 (1
pred 0.0006 (17) verify(faceImage_DS) PAdemand 

return MRTDAuthenticity PAdeman  d asmd 0.005 

PAdemand asmd 0.005  getTravelerInfo 
  
ravInfo) pred 0.0118 (18) PAextOp

(send-getT
lookupName 0.005  PAdemand asmd 

PAdemand asmd 0.005  return lookupName  

dLookupData) pred 0.006 (19) PAextOp  
rea

getPicture PAdemand asmd 0.005  
PAdemand asmd 0.005  return picture  

d 0.0062 (20) 
PAextOp  
(readPictureData) pre

return lo pName, picture PAdemand asmd 0.005 oku  

startSecInspection PAdemand asmd 0.0 (21) 
PAdemand asmd 5.0 (22) identifyTraveler 
PAextOp 
(send-identifyBiom) pred 0.0094 (23) 
PAdemand (24) asmd 0.5 return identificationResult 
PAextOp 
(readWatchlistData) pred 0.2357 (25) 

identifyBiometrics  PAdemand asmd 0.005  
retu ationResult PAdemand asmd 0.005  rn identific

reviewDocs PAdemand asmd 300.0 (26) 
processInspectionData PAdemand asmd 10.0 (27) 
return inspectionResult asmd 3.0 PAdemand (28) 

Scenario: Name-based Lookup 
getTravelerInfo PAdemand asmd 0.0 (29) 
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PAdemand asmd 0.005  lookupName 
PAextOp 
(readLookupData) pred 0.006 (30) 

return lookupName PAdemand asmd 0.005  
PAdemand asmd 0.005  getPicture 
PAextOp 
(readPictureData) pred 0.0062 (31) 

return picture PAdemand asmd 0.005  
return lookupName, picture PAdemand asmd 0.005  

Scenario: Biometric Verification 
store&matchBiometrics PAdemand asmd 0.0 (32) 
return biometricMatchResult PAdemand asmd 0.005  

Scenario: Biometric Identification 
identifyBiometrics PAdemand asmd 0.0 (33) 
return 

biometricIdentificationResult 
PAdemand asmd 0.005  

 

Rationale for resource demand values: 

 
(1) It is the time required by the traveler to generate a request for primary inspection. We 

to review his/her documents. We assume this time to be 20s. 

(3) It is the time required by the primary inspection officer to decide if authorizing the 

traveler to enter the country based on the outcome of manual and automated checks. 

We assume this time to be 5s. 

(4) It is the time required by the pri

assume this time to be null. 

(2) It is the time required by the primary inspection officer to interview the traveler and 

mary inspection officer to communicate to the 

traveler the outcome of the inspection process. We assume this time to be 5s. 

(5) It is the time required to capture fingerprint scans of the traveler. We assume this 

time 

time require ke a picture of the  us al cam

s time to be

 the time required to send the biometr from the tra r 

ans plu

mpute the average data transfer time as: 

.6 Megabits s 

to be 10s. 

 (6) It is the d to ta  traveler ing a digit era. We 

assume thi  5s. 

(7) It is ic data collected vele

(fingerprint sc s face image) to the TBS, through the WAN connecting the 

POE Workstation to that server. We co

30KB / 16 /s = 0.0142
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(8) It is the time required to write the biometri ta collected from the trav ler 

ans plu e) to the TBS and t a previously stored 

face image file (20 KB  We compute the average data transfer time as: 

1 ms + 2.93 ms + 2 m s 

ed ary inspection officer to swipe the MRTD through 

RTD Reader. W his time to be 1

 the time required RTD Reader to read the data stored in the MRTD. 

l duration of ion depends on the size of the MRTD data, which in 

turn depends on the te ration ass for th tem. This leads  

s for O d 2: 

: 15695.2 byt lobits/s = 0.270

Option 2: 12852 bytes 68s 

me required RTD to transf data t  MRTD Reade  

 of the epends on the size of the MRTD data, which in turn 

 on the techn uration assum r the This leads to the 

: 

1: 15695.2 byt lobits/s = 1.08

Option 2: 12852 bytes 72

he time required the MRTD dat  the  Reader to the POE 

hrough a 12 Mbits/s USB link. The actual transfer time depends on he 

size of the MRTD  turn dep on th nical configu  

ed for the syste ds to the follow lues tions 1 and 2: 

Option 1: 15695.2 byt /s = 0.0093s 

ytes 082s 

me require ublic Key Ce tes fr the Disk of the POE 

ctual r me depends on the num f certificates  

read (one or two), which in turn depends on the technical configuration assumed for 

the system. This leads to the following values for Options 1 and 2: 

1 ms + 3.5 m  KB / 75M = 0.0

 3.5 m  (3.6 KB / 75M = 0.0

c da e

(fingerprint sc s face imag  disk, o read 

) from it.

s + (50 KB / 85MB/s) = 0.0064

(9) It is the time requir  by the prim

the M e assume t s. 

(10) It is  by the M

The actua  the operat

chnical configu umed e sys to the

following value ptions 1 an

Option 1 es  / 424 ki 8s 

 / 424 kilobits/s = 0.23

(11) It is the ti  by the M er its o the r. The

actual duration operation d

depends ical config ed fo system. 

following values for Options 1 and 2

Option es  / 106 ki 31s 

 / 106 kilobits/s = 0.94 s 

(12) It is t  to transfer a from MRTD

Workstation t  t

data, which in ends e tech ration

assum m. This lea ing va for Op

es  / 12 MB

Option 2: 12852 b  / 12 MB/s = 0.0

(13) It is the ti d to read P rtifica om 

Workstation. The a eading ti ber o to be

Option 1: s + 2 ms + (1.8 B/s) 065s 

Option 2: 1 ms + s + 2 ms + B/s) 065s 
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(14) It is the time required to verify the authenticit  the DS on the MRTD. This 

requires to compute a hash function (SHA-1)  MRT , and eventua  

 the authenticity  applying the RSA algorithm using the Public 

Key of the MRTD signer (2048 bits) [28, 29]. The time to perform the operation 

ds on the amount of data stored in the MRTD, which in turn depends on

atio  for the system  leads to the following values 

for Options 1 and 2: 

A_1(14 s)] +  

                t[RSA(2048

t[SHA_1(12  +  

                t[RSA(2048 y(20bytes)] = 0 s 

(15) It is the time required to verify the authenticity of the DS on the Public Key 

Certificate of the MRTD issuer. This requires to compute a hash function (SHA-1) 

tually to verify the authenticity of its DS by 

applying RSA using the Public Key of the Country CA (3072 bits) [28, 29]. The time 

t[RSA(3072 bits)-verify(20bytes)] = 0.0015s 

(16)  portion of the MRTD. 

This requires to compute a hash function (SHA-1) of the MRZ data, and eventually 

 

quires to compute a hash function (SHA-1) of the image data, and 

document signer (2048 bits) [28, 29]. The time to perform 

the operation can be estimated as: 

y of

of the D data lly to

verify  of the DS by

depen  the 

technical configur n assumed . This

Option 1: t[SH 695.2 byte

 bits)-verify(20bytes)] = 0.0091s 

Option 2: 852bytes)]

 bits)-verif .0091

of the certificate data itself, and even

to perform the operation can be estimated as: 

t[SHA_1(1.8 KB)] +  

It is the time required to verify the authenticity of the MRZ

verify the authenticity of the DS on the MRZ by applying RSA with the Public Key 

of the document signer (2048 bits) [28, 29]. The time to perform the operation can be 

estimated as: 

t[SHA_1(88 bytes)] +  

t[RSA(2048 bits)-verify(20bytes)] = 0.0009s 

(17) It is the time required to verify the authenticity of the face image portion of the 

MRTD. This re

eventually to verify the authenticity of the DS on the face image by applying RSA 

with the Public Key of the 

t[SHA_1(12704 bytes)] +  

t[RSA(2048 bits)-verify(20bytes)] = 0.001s 
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(18) 

leads 

(19) okup data for the traveler from the 

(20) 

 as:  

2s 

(21) Officer to generate a request for 

(22) 

(23) raveler to the TBS. We compute 

20KB / 16.6 Megabits/s = 0.0094s 

(24) 

(25) lates 

equired to perform the computation 

pute the average data transfer time as:  

(26) 

(27) g the 

traveler to enter the country based on the outcome of manual and automated checks. 

We assume this time to be 10s. 

(28) It is the time required by the secondary inspection officer to communicate to the 

traveler the outcome of the inspection process. We assume this time to be 3s. 

It is the time required to exchange the TNS traveler’s biographic and lookup 

information and a picture of him/her. We assume an average size of 5 KB for the 

biographic and lookup data, and an average size of 20 KB for the picture. This 

to an average data transfer time of: 

25KB / 16.6 Megabits/s = 0.0118s 

It is the time required to retrieve biographic and lo

TNS disk. We compute the average data transfer time as: 

1 ms + 2.93 ms + 2 ms + (5 KB / 85MB/s) = 0.006s 

It is the time required to retrieve a traveler’s picture from the CCD server disk. We 

compute the average data transfer time

1 ms + 2.93 ms + 2 ms + (20 KB / 85MB/s) = 0.006

It is the time required by the POE Primary 

secondary inspection. We assume this time to be null. 

It is the time required by the secondary inspection officer to start an identification 

process. We assume this time to be 5s. 

It is the time required to send a face image of the t

the average data transfer time as: 

It is the time required by the TBS to match the traveler’s face image with the set of 

1000 face images in the biometric watchlist. We assume this time to be 0.5s 

It is the time required by the TBS disk to read the set of 1000 face image temp

in the biometric watchlist. The actual time r

depends on the size of the watchlist. We com

1 ms + 2.93 ms + 2 ms + (1000 × 20 KB / 85MB/s) = 0.2357s 

It is the time required by a secondary inspection officer to thoroughly review the 

traveler’s documents and belongings and to question him/her. We assume this 

operation to last 5 minutes. 

It is the time required by the secondary inspection officer to decide if authorizin
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(29) It is the time required by the border inspection system to generate a request for 

name-based lookup. We assume this time to be null. 

As in (19) 

As in (20) 

It is the time required by the border inspection system to generate a request for 

biometric verification

(30) 

(31) 

(32) 

. We assume this time to be null. 

(33)  to generate a request for 

A.4 Model Parameters 

Tables  

inspec  

the system  in Figure 26. 

We le we defined a value for it in the 

i

 

It is the time required by the border inspection system

biometric identification. We assume this time to be null. 

 6 and 7 define the parameterization of the LQN model for the airport

tion system obtained in Chapter 4. Table 6 parameterizes the reference tasks for

 based on the information attached to the Use Case Diagram

ave the traveler population parametric; 

exper ment section of Chapter 4. 

Table 6: LQN parameters for system workloads (Options 1 and 2) 

Reference Task Multiplicity Entry Think Time (s) 
Travele travelerInspection 4/1 = 4 s r n1 

name-basedLookup 20/0.4995 = 40.04 s 

biometricVerification 20/0.4995 = 40.04 s Border Inspection System 3200 

biometricIdentification 20/0.001 = 20,000 s 

 

7 defines resource demands for entries and activities of non-reference tasksTable  

using the perform in Table 5. We list our parameters in a 

tabula hical representation of the 

parameterized LQN, for the sake of readability. We assume that underlined elements 

in the table denote task activities. 

ance annotations specified 

r format, instead of displaying them with the grap
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Table 7: LQN parameters for resource demands (Options 1 and 2) 

Task Entry/Activity Service Time (s) 
startPrimInspection 5.0 

reviewDocs 20. 

processInspectionData 5.0  

A5 0.005 
POE Pr

A9 1.0 

im. Officer 

A10 see rationale (12) 

startSecInspection 3.0 

reviewDocs 300.0 

processInspectionData 10.0 
POE Sec. Officer 

A2 5.0 

verifyMRTDAuthenticity 0.005  

automatedChecks  0.005  

identifyTraveler 0.005 

processData 0.005  

Verify see rationale (14) through (17) 

A5 0.005 

A6

POE A

0.005 

A7 0.005 

A8 0.005 

A9 0.005 

pp.  

A10 0.005 

MRTD Reader Task scanMRTD see rationale (10) 

MRTD Task readMRTDData see rationale (11) 

PKD  getPKCertificate 0.005 

Fingerprint Scanner Task captureFingerprint 10.0 

Digital Camera Task captureFaceImage 5.0 

getTravelerInfo  0.005 

A2 0.005 TNS App. 

A3 0.005 

TN DB  lookupName 0.005 

CCD getPicture 0.005 

store&matchBiometrics 0.005 
TB DB 

yBiometrics 0.005 identif

send-getTravInfo 0.011765813 

send-store&matchBiom 0.01418976 WAN Task 

send-identifyBiom 0.009412651 

POE W ertData see rationale (13) orkstation Disk Task readPKC

readWriteBiomData 0.006416791 
TBS Disk Task 

readWatchlistData 0.235709412 

TNS Disk Task readLookupData 0.005987445 
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CCD Server Disk Task readPictureData 0.006159779 

 

o ilities attached to performance scenarios through PAprob tagged 

s and pta2. They appear in the Traveler Authentication interaction 

r  

biome e latter corresponds to the 

b  

both p  in the experiment section 

The nly probab

value  are pta1 

occur ence. The former expresses the probability of executing name-based and

tric-based checks during Primary Inspection. Th

proba ility of collecting traveler biometric samples and verifying them. We leave

robabilities parametric; we defined a value for them

of Chapter 4. 
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Appendix B: ption 3 
 

 

 

This appendix describes a e that can opted for the airport 

inspection system. We introduced the alternative in exa

called it as Option 3. The next sections derive its LQN ly 

reusing the outcome of the application of our UML to LQN transformation to the 

design Options 1 and 2, which we described in Chapter 4. 

B.1 Description 

eployment Diagram in Figure 58 represents the co ation of Option 3. We 

s almo e represe in Figure 25 of Chapter 

4. The only difference lies in , and not stored 

E Workstation. Th KD is connected to the inspection system through a 

 link whose exact type and capability are dependent on the exact location of 

ay be a POE, a regional, state, or national reference point, or 

.  

 

 

 

O

 

design alternativ be ad

m in Section 4.1.4, and we 

 performance model large

The D nfigur

can observe that this i st identical to the on nted 

 the location of the PKD, which is remote

at the PO e P

network

the PKD. This m

combinations of them
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Figure 58: Deployment Diagram for Option 3 

 

Figure 59 shows a Use Case Diagram for Option 3. The diagram displays the same 

users and functions represented in Figure 26 of Chapter 4, with the exception of the 

PKI System user. This corresponds to a system outside the scope of the inspection 

system, which issues requests for Public Key Certificates to the PKD. The population 

size for the workload generated by PKI System is left parametric. Its actual value 

determines a different load on the PKD and corresponds to a different location of it. 
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Figure 59: Use Case Diagram for Option 3 

 

Figure 60 shows a Sequence Diagram for the PK Certificate Retrieval use case. 

 

 

 

 

ce Modeling 

 this section we describe the outcome of the application of our UML to LQN 

ansformation to the configuration for the inspection system described in the previous 

ction. Since the overall structure, dynamics, and parameterization of the resulting 

LQN are almost identical to the ones obtained Chapter 4, we omit to report the 

 

 

 

 

 

Figure 60: Sequence Diagram for the PK Certificate Retrieval use case 

B.2 Performan

In

tr

se
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complete output of every step of the transformation. Instead, we only describe the 

differences between the two models.  

B.2.1 Model Structure 

The application of Step 1.a to the Deployment Diagram in Figure 58 generates the 

same LQN devices obtained in Chapter 4 for the other configurations of airport 

inspection system. However, compared to that set, the POE Workstation Disk device 

has been removed, since the deployment in exam does not use the Workstation to 

store any data, but just to access external information and then process it. The Link 

device has instead been added, together with the PKD Server and PKD Server Disk 

devices.  

 The application of Step 1.b also creates a set of LQN tasks very similar to the ones 

oval of POE 

Workstation PKI System, for 

which a dummy device ( Link Task and PKD 

Server Disk Task.

 Finally, co ppings between LQN tasks and 

POE 

tion Disk Task and POE Workstation Disk. It instead contains the associations 

r 

. Step 2.c creates the entry send-getPKCert of Link Task, and the entry 

adPKCertData of PKD Server Disk Task. Finally, the outcome of Step 2.e is the 

obtained in Chapter 4. The only differences consist in the rem

 Disk Task, and the introduction of the reference task 

Dummy Device5) is created, and of 

  

mpared to Chapter 4, the set of ma

devices obtained with Step 1.c, does not include the association between 

Worksta

between PKI System and Dummy Device5, Link Task and Link, PKD and PKD Server, 

and PKD Server Disk Task and PKD Server Disk. 

B.2.2 Model Dynamics 

The application of Step 2.a generates the same outcome produced by the that step in 

Chapter 4, except for the introduction of the entry PKCertificateRetrieval for the 

reference task PKI System. Step 2.b is identical to the same step performed in Chapte

4

re
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same as described in Chapter 4, with the exception of the result of processing the

MRTD Authentication interaction occurrence, displayed in Figure 61. Step 2.e also 

generates a service request from PKI System toward the getPKCertificate entry of the 

PKD task, displayed in Figure 62. 

 

 

POE Prim. Officer
{ 20 }startPrimInspection

Figure 61: LQN request flow after MRTD Authentication 
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The final LQN model for Option 3, obtained as described in Chapter 4, is shown in 

Figure 62.  

 

Figure 62: High-level layout of the LQN model for the airport inspection system 

(Option 3) 
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B.2.3 Model Parameters 

The parameterization of the LQN model for Option 3 is almost identical to the 

parameterization of the LQN model for Options 1 and 2. For this reason in this section 

we only cover the differences between them.  

 Table 8 summarizes the basic characteristics of the hardware nodes in the platform 

onfiguration for Option 3 that are not included in Options 1 and 2, i.e., the PKD c

Server and the Link (we assume it to be a WAN) between the POE Workstation and 

the PKD server. We do not specify the CPU rate and RAM of the PKD Server since 

we do not explicitly use that information to estimate resource demands for system 

operations. 

Table 8: Execution environment (Option 3) 

CPU: Not specified 

RAM: Not specified 

Command Overhead: 1 ms 

Access Time: 3.5 ms 

Latency: 2 ms 

PKD Server 

Disk:  

Transfer Time: 75 MB/s 

Link (WAN) Bandwidth: 16.6 Mbits/s (avg) 

 

The expected size of the data exchanged within the system is the same as reported in 

Appendix A for Options 1 and 2. The MRTD does not contain the Public Key 

Certificate of the document issuer therefore its size is 12852 bytes. 

 Table 9 lists the performance annotations attached to the steps of the MRTD 

Authentication interaction occurrence, the only one containing MRTD and PKD-

related operations. The table also reports the annotations attached to the PK 

Certificate Retrieval use case, not provided by Options 1 and 2 of the inspection 

system. 
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Table 9: Resource demand of scenario steps (Option 3) 

Scenario Step Tag Source Value (s) Rationale 

Scenario: Primary Inspection 
PAdemand asmd 1.0 (1) scanMRTD 

PAdemand pred 0.2368 (2) return MRTDData 
PAextOp  
(readMRTDData) pred 0.9472 (3) 

verifyMRTDAuthenticity PAdemand pred 0.0082 (4) 
getPKCertificate PAdemand asmd 0.005  

 PAextOp  
(send-getPKCert) pred 0.0017 (5) 

PAdemand asmd 0.005  return PKCertificate  
PAextOp  
(readPKCertData) pred 0.0065 (6) 

verify(MRTD_DS) PAdemand pred 0.0091 (7) 
verify(CAPKCertificate) PAdemand pred 0.0015 (8) 
verify(MRZ_DS) PAdemand pred 0.0009 (9) 
verify(faceImage_DS) PAdemand pred 0.001 (10) 
return MRTDAuthenticity PAdemand asmd 0.005  

Scenario: PK Certificate Retrieval 
getPKCertificate PAdemand asmd 0.0 (11) 

PAdemand asmd 0.005  return PKCertificate 
PAextOp  
(readPKCertData) pred 0.0065 (12) 

 

Rationales for resource demand values 

 

(1) See rationale (9) in Appendix A, Option 2 

(2) See rationale (10) in Appendix A, Option 2 

(3) See rationale (11) in Appendix A, Option 2 

(4) See rationale (12) in Appendix A, Option 2 

(5) It is the time required to receive from the PKD the Public Key Certificate of the 

MRTD issuer and of the Country CA for the MRTD issuer through the WAN 

connecting the POE Workstation with the PKD. We compute the average data 

transfer time as: 

(2 × 1.8KB) / 16.6 Megabits/s = 0.00169427711s 

(6) See rationale (13) in Appendix A, Option 2 

(7) See rationale (14) in Appendix A, Option 2 
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(8) See rationale (15) in Appendix A, Option 2 

(9) See rationale (16) in Appendix A, Option 2 

(10) See rationale (17) in Appendix A, Option 2 

(11) It is the time required by the PKI system to generate a request for retrieval of Public 

Key Certificate. We assume this time to be null. 

(12) See rationale (13) in Appendix A, Option 2 

 

Table 10 and 11 completely specify the parameterization of the LQN model for 

Option 3. The size of the Traveler population and of the PKI System population was 

defined in the Performance Experiments Section of Chapter 4. 

Table 10: ystem workloads (Option 3) 

 

LQN parameters for s

Reference Task Multiplicity Entry Think Time (s) 
Traveler 4s / 1 = 4s n1 travelerInspection 

name-basedLookup 20s / 0.4995 = 40.04s 

biometricVerification 20s / 0.4995 = 40.04s Border Inspection System 3200 

20s / 0.001 = 20,000s biometricIdentification 

PKI Sysetm n3 PKCertificateRetrieval 20s / 1 = 20s 

 

Table 11: LQN parameters for resource demands (Option 3) 

Task Entry/Activity Service Time (s) 
startPrimInspection 5.0 

reviewDocs 20. 

processInspectionData 5.0  

A5 0.005 

A9 1.0 

POE Prim. Officer 

A10 0.0082 

startSecInspection 3.0 

reviewDocs 300.0 

processInspectionData 10.0 
POE Sec. Officer 

A2 5.0 

verifyMRTDAuthenticity 0.005  POE App.  

automatedChecks  0.005  
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identifyTraveler 0.005 

processData 0.005  

verify 0.0124 

A5 0.005 

A6 0.005 

A7 0.005 

A8 0.005 

A9 0.005 

A10 0.005 

MRTD Reader Task D 0.236scanMRT 8 

MRTD Task ta 0.9readMRTDDa 472 

PKD  getPKCertificate 0.005 

PKD Server Disk Task ta 0.0readPKCertDa 065 

Fingerprint Scanner Task ngerprint 10.captureFi 0 

Digital Camera Task captureFaceImage 5.0 

getTravelerInfo  0.005 

A2 0.005 TNS App. 

A3 0.005 

TN DB  05 lookupName 0.0

CCD getPicture 0.005 

store&matchBiometrics 0.005 
TB DB 

ics 0.005 identifyBiometr

send-getTravInfo 0.0118 

send-store&matchBiom 0.0142 

send-identifyBiom 0.0094 
WAN Task 

t 0.0017 send-getPKCer

readWriteBiomData 0.0064 
TBS Disk Task 

0.2357 readWatchlistData 

TNS Disk Task readLookupData 0.006 

CCD Se 0.0062 rver Disk Task readPictureData 
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