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ABSTRACT 
 

Mechanisms of Iron Reduction and Phosphorus Solubilization  
in an Intermittently Wet Pasture Soil 

 
Jared L. Wilmoth 

 
 
 

Microbial Fe-reduction in pasture soils may be of agronomic importance, because it has 
been shown to influence P cycling.  The present study investigated the behavior of Fe and P in an 
intermittently wet, Appalachian pasture soil during a 42 day anaerobic incubation.  Native humic 
acid (HA) extracted from the sampling location and anthraquinone-2,6-disulfonic acid (AQDS) 
were used in the experiment to determine their electron-mediating effects on Fe(III) reduction 
and P solubilization over time.  Extracted HA and the International Humic Substance Society 
(IHSS) Elliott Soil HA standard were compared using 13C-NMR, FT-IR, SEM, and CHNS 
analysis.  Soil samples treated with 1.24 g native HA/kg dry soil and 0.2 g AQDS/kg dry soil 
displayed the highest, most similar, solubilized P rates during the anaerobic incubation.  
However, the soil alone, without an added electron mediator, was able to release biologically 
significant concentrations of P to solution at Eh values between 0 and -200 mV.  Total soluble P 
increases were strongly related to soluble Fe(II) increases over time.  Field Eh measurements, 
relative to naturally occurring seasonal changes, are also reported.  The purpose of this research 
was to further define the mechanisms of Fe and P cycling in temperate, pasture soils.   
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CHAPTER 1: BIOGEOCHEMISTRY OF IRON AND PHOSPHORUS IN PASTURE  

SOILS 

 

Overview 

Iron and phosphorus are dynamic, critical elements in agricultural systems.  Each 

contributes uniquely to the physiological development of plants and the biogeochemical 

evolution of soil.  Biologically, iron is involved in multiple enzymatic pathways for electron 

transport.  It is also a terminal electron acceptor for many soil bacteria in the absence of O2.  In 

circumneutral pasture soils, adsorption of phosphorus onto iron-oxides is of importance due to a 

generally low concentration of plant-available phosphorus in solution.  Several natural systems 

(e.g. wetlands and lake sediments) exhibit microbial dissimilation of iron-oxides under reducing 

conditions, which can lead to an increase in available phosphorus.  The chemistry of such 

mineral-microbe interactions is complex and inadequately defined.  Historically, aquatic 

sediments and flooded agricultural lands have served as the primary models for reducing systems 

in the environment.  This tradition has changed significantly in the last decade with new studies 

conducted on oxic tropical soils and on humic substances that can act as catalysts for microbial 

iron reduction.  Studying temperate pasture soils with the same scrutiny is a natural and 

prospective extension of soil fertility and soil microbiology.  Such research would broaden our 

understanding of iron/phosphorus interactions in pasture soils.  
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Literature Review  

Pasture Soils 

In 2002, livestock grazing was the major use of approximately 238 million hectares 

permanent (utilized five or more years) pasture lands in the United States. This accounted for 26 

% of all land in the U.S. and about 50 % of all agricultural land in the U.S. (Lubowski et al., 

2002). According to the 2000 U.S. Census Bureau, West Virginia contains 6,238,764 hectares of 

land. Approximately 0.71 million hectares of this land area is permanent pasture (Baker, 1996). 

Soils in WV pastures are often found on steep slopes, and are in general topographically variable 

(Baligar et al., 1985). They are typically acidic, shallow, low in native fertility, and often have 

physical and chemical limitations in the root zone. Phosphorus is a limiting nutrient in most of 

these pastures (Wright et al., 1984). Macronutrients, especially phosphorus (P), are essential for 

the growth and development of pasture grasses and legumes (Kleinman et al., 2003). These 

chemical, physical, and topographic factors limit the input and economic return of WV pastures. 

A pasture may be thought of as a network, through which nutrients flow, are transformed, 

and exported (Pearson and Ison, 1997). Nutrients flow into the pasture system by soil 

weathering, atmospheric deposition, and fertilizer and soil amendments. Phosphorus in pasture 

soils is transformed through absorption by organic residues (Salas et al., 2003) and 

microorganisms (Turner and Haygarth, 2003), and adsorption to soil particles (Zhang et al., 

2003). Most important is the transformation of phosphorus from biologically unavailable forms 

to biologically available forms (Pearson and Ison, 1997). Nutrients in pastures are exported by 

leaching, run-off and erosion, and by removal of animal products such as meat, milk, and wool 

(Pearson and Ison, 1997). Because P fertilizers are expensive, especially in the low input/low 
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return systems of WV, a better understanding of the internal soil-P cycle is needed to improve 

pasture productivity.  

Phosphorus in Soils 

Phosphorus is important for many biological and chemical processes (Schachtman et al., 

1998).  It exclusively fulfills many biochemical and physicochemical roles due to its ability to 

form more open and weaker bonds than elements in the Second Period, such as oxygen (O) and 

nitrogen (N); the possession of 3d orbitals, which allows valences beyond four; and the ability to 

form multiple bonds (Wald, 1962). Like nitrogen and sulfur, P forms complex anions with 

oxygen. Available soil P is the most critical element in the development of plants in the field, 

with the only likely exception being that of N. Even so, N uptake in soils is regulated by 

available P in some cases. A primary example of this is the high demand for P by legumes for 

growth and development, which then directly influences the amount of N that may be fixed 

(Brady, 1974). Phosphorus is required by living cells primarily for the synthesis of nucleic acids, 

phospholipids, and ATP (Westheimer, 1992; Madigan et al., 2003). Properties and functions of P 

in plants also include cell division, fat and albumin formation, flowering and fruiting, seed 

formation, crop maturation, root development, strength of straw in cereal crops, crop quality, and 

resistance to certain diseases (Brady, 1974). Excess soil phosphorus has been identified as an 

important source of surface water pollution, including eutrophication (Moore and Reddy, 1994; 

Kuo et al., 2008; Smith et al., 2007). 

Total P in soil ranges from about 0 to 0.4%, with an average between 0.05 and 0.1% 

(1000-2000 kg/ha, in the furrow slice). Even among soils of the same order, P varies 

considerably in concentration (Troeh and Thompson, 2005).  Total P in most agricultural 

systems is found in the inorganic form (50-70% total P), with much of the remaining P in organic 
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complexes.  Only a small concentration of available P (<0.01 to 1 ppm) exists in the soil solution 

for biological uptake (Pierzynski et al., 2000).   

Phosphates in the soil can be divided into three groups: (1) phosphates present in the soil 

solution; (2) phosphates present in soil organic matter; and (3) inorganic phosphates including 

both definite phosphate compounds and surface films of phosphate held on inorganic particles 

(Russell, 1973). In the soil solution, phosphorus occurs primarily as one of the ions of 

orthophosphoric acid (Hassett and Banwart, 1992). Plants preferentially take up phosphate ions 

in the form of H2PO4
- and HPO4

2-. However, plant uptake of HPO4
2- is much slower (Tisdale et 

al., 1993). 

Some low molecular weight, soluble organic P compounds exist in the soil solution and 

may be absorbed by plants, but are usually of minor importance (Tisdale et al., 1993).  Soil 

organic P is derived from plant residues, and from soil flora and fauna tissues and residues, that 

can resist hydrolysis. Many organic P forms have not been adequately characterized (Kuo, 1996). 

The P in organic matter is held firmly in place and unavailable to plants until decomposition of 

the organic material takes place (Troeh and Thompson, 2005).  

All soil inorganic P comes from the apatite minerals.  Phosphorus can be exposed to the 

soil solution by mineral-weathering in place, and then dissolve if the surrounding solution has a 

lower P concentration and favorable pH for dissolution.  Inorganic P is also produced in factories 

that process fertilizers, which can enter the soil through fertilizer amendments.  In solution, 

inorganic P is formed by the mineralization of organic P (Troeh and Thompson, 2005).   

Phosphorus may have relatively high, total concentrations in soils, but it is often 

immobilized and unavailable for plant uptake. It may become unavailable from the biological 

pool of nutrients through processes involving (1) conversion to organic substances; (2) 
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precipitation with Fe in acidic to circumneutral soils (or calcium (Ca) in alkaline soils); or (3) 

adsorption to soil minerals, especially Fe-oxides. Even if P is supplied to the soil in the form of 

fertilizer, due to these mechanisms, as much as 80% can be lost from the plant available pool 

(Holford, 1997; Schachtman et al., 1998). 

Iron in Soils 

Iron comprises approximately 5% of the earth’s crust and is the fourth most abundant 

element in the lithosphere. Soil solution Fe exists as Fe2+ (ferrous) and Fe3+ (ferric), either free or 

as organic and inorganic complexes.  Biologically, Fe is a critical component of cytochromes and 

iron-sulfur proteins involved in electron transport of soil organisms, which makes Fe important 

in cellular respiration (Madigan, et al., 2003).  

Total iron in soils is highly variable because Fe can be concentrated or depleted during 

soil development. Estimates range from 0.7 to 55% (Tisdale et al., 1993). Fe exists in soils 

primarily as Fe oxides such as hematite, goethite, lepidocrocite, magnetite, maghemite, and 

ferrihydrite (Loeppert and Inskeep, 1996; Schwertmann, 1988; Schwertmann and Taylor, 1989). 

Each of these Fe oxides is an Fe(III)-mineral existing predominantly in the clay-size fraction of 

soils. The exception is magnetite, which contains both Fe2+ and Fe3+, and can occur in the silt- 

and sand-size fraction (Loeppert and Inskeep, 1996). The octahedron is the basic structural unit 

for all Fe oxides. Each Fe atom is surrounded by six oxygens or both O2- and hydroxide (OH-) 

ions (Sparks, 2003). 

The solubility of Fe oxide minerals increases in the following order (Schwertmann, 1991; 

Loeppert and Inskeep, 1996): 

hematite = goethite << lepidocrocite = magnetite < ferrihydrite. 
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Reactivity of Fe oxide in the soil is a consequence of its mineral phase solubility, which is in part 

determined by particle size and surface reactivity (Loeppert and Inskeep, 1996; Glasauer et al., 2001; 

Sparks, 2003). Ferrihydrite is the least stable of these minerals. Ferrihydrite is an amorphous mineral 

(Reyes and Torrent, 1997), being more hydrated with short range crystalline order and typical particle 

sizes of 10 nm or less (Loeppert and Inskeep, 1996). It is likely to exist in most soils, usually in small 

quantities, but is a frequent component of soils that exhibit fluctuating redox potentials (Loeppert and 

Inskeep, 1996). Ferrihydrite and related amorphous Fe minerals are important in rendering Fe more 

bioavailable in soils, which impacts plants (Loeppert and Inskeep, 1996; Schmidt, 1999), microorganisms 

(Lovley and Phillips, 1987; Zachara et al., 1998; Lovley and Blunt-Harris 1999), and soil chemical 

properties (Willett and Higgins, 1978; Golterman, 1995; Finneran et al., 2001; Sparks, 2003). 

Phosphorus Adsorption in Soils  

In addition to forming precipitates with Fe3+ and Al3+ in acid soils, and with Ca2+ in 

alkaline soils, P is strongly adsorbed by Fe3+, Al3+, and Ca2+ minerals (Figure 1. 1). It has been 

experimentally determined that there is an active hydroxyl site every 22 to 24 Å2 of an iron 

oxide-hydroxide mineral’s surface (Hassett and Banwart, 1992). The PO4
3- tetrahedron has a 

base of approximately 21.6 Å2, leading to the notion that every hydroxyl site is able to absorb 

PO4
3- without steric hindrance (Hassett and Banwart, 1992). 

Redox Chemistry of Soils 

Chemical species in a given soil vary in their tendency to become oxidized or reduced. 

This is measured as a reduction potential (Eh), expressed in millivolts by the Nernst equation: 

59.1
59.1    

where Eh is the electrode potential; Eo is the standard half cell potential; 59 is equal to the gas 

constant (R) multiplied by standard temperature (298 K) devided by the Faraday constant (F); (n) 

[eq. 1] 
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is the number of electrons exchanged in the half-cell reaction; (m) is the number of protons 

exchanged; and the activities of the reduced and oxidized species are shown in parentheses 

(Patrick et al., 1996). 

Given thermodynamic constants for solubility and reduction potential, an Eh-pH diagram 

of the Fe redox system can be constructed to indicate the most stable oxidation state and mineral 

form (Figure 1. 2).  Although not a thermodynamic property, the negative log of electron activity 

(pe), analogous to the negative log of proton activity (pH), can be calculated as, 

59.1
 

Soils have the ability to buffer against changes in pH. Likewise, they also have the ability 

to buffer changes in Eh. This buffering capacity of soils for changes in Eh is called poising. The 

poising of a substance is the ability of that substance to retard the change in Eh when small 

amounts of oxidants or reductants are added to the system (Liu, 1997). All soils differ in their 

degree of poising (Patrick et al., 1996). An example of this would be the continuous donation of 

electrons from organic residues (buffering against oxidation) and the continuous acceptance of 

electrons from oxygen (buffering against reduction). Such a process becomes complicated since 

there are often many redox couples participating in the poise of a given soil. Although measuring 

Eh is complex, it provides an excellent tool for detecting relative redox changes in the 

environment as a function of varying conditions (Evangelou, 1998). 

Conditions that induce and influence redox fluctuation are always present and always 

changing in the soil environment. Temperature effects redox reactions by hastening the 

degradation of organic residues that release electrons to the soil solution (Evangelou, 1998). 

Biological processes double in reaction rate with every 10°C increase (Madigan et al., 2003). 

[eq. 2] 
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Thus, temperature may affect the rate at which redox reactions occur in the soil (Yao and 

Conrad, 2000).  Soil microorganisms such as fungi and bacteria effect redox reactions, indirectly 

and directly, through electron transport, localized changes in pH, and assimilation and liberation 

of redox sensitive species (Zachara et al., 1998; Essington et al., 2005; Deacon, 2006). 

Many studies have dealt with the effects of water, either in submerged terrestrial soil 

systems (e.g., rice paddies and wetlands) (Ponnamperuma, 1972; Patrick and Khalid, 1974; 

Zhang et al., 2003) or lake sediments (Moore and Reddy, 1994). In all cases, one of the most 

obvious and influential consequences of water saturation in soils is the disappearance of oxygen 

(Ponnamperuma, 1972). When a soil becomes saturated, pores that were once occupied by 

oxygen become filled with water (Ponnamperuma, 1972). In many soils, this process can occur 

in cycles, manifesting itself in redoximorphic features such as red and bluish-green-grey colors 

from Fe, and dark or black concretions of Mn (Buol et al., 2002). When oxygen has been 

sufficiently depleted from a soil, bacteria must use the next most efficient chemical species to 

complete a circuit of electrical energy between electron donor, bacterial membrane, and electron 

acceptor to maintain their life cycle (Zachara et al., 1998; Lovley and Blunt-Harris, 1999; 

Finneran et al., 2001).  

Microbial Reduction of Iron and Its Effects on P Solubility 

Bacteria play an important role in the redox chemistry of Fe and P in soils (Lovley and 

Phillips, 1986; Zachara et al., 1998; Roh et al., 2003; Essington et al., 2005; Peretyazhko and 

Sposito, 2005; Chacon et al., 2006a and b). Indeed, much research and development in soil 

science has either been the direct or indirect result of studying the processes of microbial 

metabolism, which influence many chemical and biological transformations in the environment 

(Lovley and Phillips, 1987). Two mechanisms for the conservation of energy in microbial 
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metabolism are known – fermentation and respiration (Madigan et al., 2003). Simply stated, the 

oxidation in fermentation is coupled to the reduction of a compound generated from the initial 

substrate (Madigan et al., 2003). In respiration, redox reactions proceed in the presence of a 

terminal electron acceptor (e.g., Fe3+), after electrons have been transferred from a donor (e.g., 

organic matter or H2) (Zachara et al., 1998). There is now evidence that many bacteria can 

channel electrons toward the reduction of Fe3+ under sufficient anaerobic conditions (e.g., 

Shewanella putrefaciens, and members of Geobacter, Geospirillum, and Geovibrio) (Madigan et 

al., 2003), including some fermenting bacteria (Benz et al., 1998).  

Oxygen is not the only electron acceptor and a preferential series of electron acceptors 

follow when O2 becomes deficient (Finneran et al., 2001). This includes, but is not limited to, 

NO3
-, Mn4+, Fe3+, SO4

2-, and CO2 (Madigan et al., 2003). Ferric iron (especially in amorphous 

minerals, but also in crystalline minerals) is extremely important in anaerobic respiration due to 

its abundance in the environment (Zachara et al., 1998) and the slightly electropositive reduction 

potential of the Fe3+/Fe2+ redox couple (Madigan et al., 2003).  This allows the reduction of Fe3+ 

to be coupled to the oxidation of many organic and inorganic electron donors (Madigan et al., 

2003). 

Energy from the transfer of electrons (e.g., from organic substance to ferric 

oxyhydroxide) is conserved in the bacterial cell via the proton motive force. The cell membranes 

of iron reducing bacteria (and many other microorganisms) contain membrane-bound proteins 

and chemical complexes (electron carriers) that have access to both the outside environment and 

the inside of the cell. Each carrier follows in a series within the membrane to form a transport 

system for electrons (Madigan et al., 2003). In order for a flow of electrons to proceed through 

the membrane, each electron carrier must be slightly more electropositive than the former carrier 
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in the direction of transport. While electrons are flowing through the membrane, electron carriers 

are positioned in such a way that they release protons to the outside of the cell. Reactions with 

water inside the cell produce protons which are used in further reactions and hydroxides that 

remain inside the cell. The charge of hydroxide ions and protons impedes their migration across 

the membrane. Electron transport through the cell membrane results in a slightly acidic, slightly 

positive environment outside the cell and a slightly alkaline, slightly negative environment inside 

the cell (Madigan et al., 2003). 

The establishment of a pH gradient and electrical potential across the membrane of a 

bacterium energizes the cell analogous to an energized battery. This energy can be used directly 

for maintenance of cellular components or indirectly for the production of ATP. At a critical 

point in the transport, protons flow into the cell through a wall-bound enzyme (ATPase). As the 

protons move into the cell through ATPase, they cause part of the membrane-bound portion of 

the enzyme to rotate. The second main portion of ATPase, located inside the cell and attached to 

the membrane-bound portion, undergoes conformational changes because it is fixed in position 

relative to the turning motion. Ultimately, the flow of protons into the cell due to the pH gradient 

and electrical potential across the membrane create torque in ATPase, which is conserved as 

chemical energy in the enzyme and can be used to couple ADP and inorganic P to establish a 

high-energy phosphate bond in ATP (Madigan et al., 2003). 

Iron-reducing bacteria gain energy to live by generating electrical energy from the 

transfer of electrons from a sufficient electron donor to Fe3+, or Fe3+ containing minerals such as 

ferric oxyhydroxides (Lovley and Phillips, 1987; Zachara et al., 1998; Finneran et al., 2001). 

Amorphous ferric oxyhydroxides, such as ferrihydrite, are more favorable to iron-reducing 
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bacteria as terminal electron acceptors since the surface of poorly-crystalline minerals are more 

reactive and unstable, compared to highly-crystalline ferric minerals (Lovley and Phillips, 1987). 

Until recently (within the last few decades), it had been generally thought that iron-

reducing bacteria must physically come into contact with Fe minerals for reduction to occur 

(Finneran et al., 2001). However, research now shows that bacteria can use organic mediators in 

electron transfer between the microbial cell and the ferric mineral. These organic electron 

mediators (e.g. humic acid) are known as electron shuttles. It has also been shown that quinone 

moieties are largely responsible for the electron carrying capacity of humic substances (Lovley et 

al., 1996; Lovley and Blunt-Harris, 1999; Finneran et al., 2001). Following this research, 

investigations into electron shuttling processes involved in Fe3+ reduction have included the use 

of synthetic humic substances, such as anthraquinone-2,6-disulfonic acid (AQDS) (Figure 1.3) 

(Pereyazhko and Sposito, 2005; Chacon et al., 2006a). 

Experiments using humic-like substances to probe the mechanisms of electron shuttling 

in soils and sediments have shown that the addition of AQDS (and related compounds) 

stimulates the reduction of Fe3+, dissolution of ferric minerals, and solubilization of P sorbed to 

those ferric minerals (Pereyazhko and Sposito, 2005; Chacon et al., 2006a). The importance of 

electron shuttling compounds is that they can catalyze dissolution of otherwise inaccessible ferric 

minerals, making microbial iron reduction more efficient (Finneran et al., 2001). However, there 

seem to be few examples of research that have investigated iron reduction in soils with native 

microbial populations coupled to local electron shuttling substances, such as native humic acids 

(Pereyazhko and Sposito, 2005).  

Numerous studies have shown that P is released under anaerobic conditions into the soil 

solution (Mortimer, 1941; Ponnamperuma, 1972; Patrick and Khalid, 1974; Gale et al., 1992; 
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Moore and Reddy, 1994; Sigua et al., 2006). It can be deduced from these studies that many soils 

and sediments exhibit a buffering capacity which controls fluxes of P and Fe (Burkitt et al., 

2006), largely due to formation of secondary complexes and the redox potential of the system 

(Ponnamperuma, 1972). The reductive transformation of Fe oxides can lead to an increase in 

available P (Mortimer, 1941; Ponnamperuma, 1972; Patrick and Khalid, 1974; Gale et al., 1992; 

Moore and Reddy, 1994; Sigua et al., 2006), or lead to a decline in available P through 

complexation with reduced amorphous Fe during dissolution. (Patrick and Khalid, 1974; Moore 

and Reddy, 1994). 

Recent studies have looked at the relationship between Fe reduction and subsequent P 

mobilization in tropical forest soils that undergo periods of high rainfall and cycles of flooding 

(de Mello et al., 1998; Peretyazhko and Sposito, 2005; Chacon et al., 2006a and b). The novelty 

of these studies was that they examined the effects of anoxic soil conditions on Fe and P cycling 

in highly weathered tropical systems that have traditionally been assumed to be oxic 

(Peretyazhko and Sposito, 2005). Results from these recent experiments indicate that the 

reduction of Fe oxides can solubilize P in tropical soils that undergo periods of high rainfall. The 

prospect of finding similar results for other assumed oxic systems that contain reducible Fe and 

accompanying sorption phenomena of P seems plausible. 

Hypothesis 

Microbial reduction of Fe oxides and the presence of natural electron mediating 

compounds will increase the availability of P in a temperate, seasonally wet pasture soil. 
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Conditions Set by Hypothesis 

The following conditions were established to support the stated hypothesis: (1) 

Phosphorus is bound to Fe oxides in the soil and can be solubilized by microbial reduction of the 

associated oxide. (2) Iron oxide-bound P that can be solubilized through non-reductive and/or 

abiotic-reductive dissolution yields significantly lower solution concentrations over time than P 

solubilized through microbial reduction. (3) Natural humic substances of the soil can catalyze 

microbial reduction of Fe oxides by acting as electron mediators. (4) The soil demonstrates 

sufficiently low redox conditions to reduce Fe oxides. 

  



14 
 

References 

Albers, C.N., Banta, G.T., Jacobsen, O.S., Hansen, P.E., 2008. Characterization and structural 

modeling of humic substances in field soil displaying significant differences from 

previously proposed structures. European Journal of Soil Science 59, 693-705. 

Baker, B. 1996. Permanent Pasture Management. West Virginia University Extension Service; 

http://www.caf.wvu.edu/~forage/5728.htm 

Baligar, V.C., R.J. Wright, O.L. Bennett, J.L. Hern, H.D. Perry, and M.D. Smedley. 1985. Lime 

effect on forage legume growth and mineral composition in an acid subsoil. 

Communications in Plant Science and Soil Analysis 16:1079-1093. 

Benz, M., B. Schink, and A. Brune. 1998. Humic acid reduction by Propionibacterium 

freudenreichii and other fermenting bacteria. Applied and Environmental Microbiology 

64:4507-4512. 

Brady, N.C. 1974. The Nature and Properties of Soils 8th. MacMillan Publishing Co., NY. 

Buol, S.W., R.J. Southard, R.C. Graham, and P.A. McDaniel. 2002. Soil Genesis and 

Classification. Iowa State Press. 

Burkitt, L.L., C.J.P. Gourley, M.C. Hannah, and P.W.G. Sale. 2006. Assessing alternative 

approaches to predicting soil phosphorus sorption. Soil Use and Management, 22:325-

333. 

Chacon, N., S. Flores, and A. Gonzalez. 2006a. Implications of iron solubilization on soil 

phosphorus release in seasonally flooded forests of the lower Orinoco River, Venezuela. 

Soil Biology and Biochemistry. 38:1494-1499. 



15 
 

Chacon, N., W. L. Silver, E. A. Dubinsky, and D. F. Cusack. 2006b. Iron reduction and soil 

phosphorus solubilization in humid tropical forests soils: The roles of labile carbon pools 

and an electron shuttle compound. Biogeochemistry. 78:67-84. 

Deacon, J. 2006. Fungal Biology 4th. Blackwell Publishing.  

de Mello, J.W.V., V. Barron, and J. Torrent. 1998. Phosphorus and iron mobilization in flooded 

soils from Brazil. Soil Science 163:122-132. 

Essington, M.E., J.B. Nelson, and W.L. Holden. 2005. Gibbsite and goethite solubility: The 

influence of 2-ketogluconate and citrate. Soil Science Society of America Journal 69:996-

1008. 

Evangelou, V.P. 1998. Environmental Soil and Water Chemistry: Principles and Applications. 

John Wiley & Sons. 

Finneran, K., D. Lovley, and E. Moyer. 2001. Anaerobic strategies for enhanced MTBE and 

TBA bioremediation. AEHS Magazine: Soil, Sediment, & Water Spring 2001 Special 

Oxygenated Fuels Issue.  

Gale, P.M., K.R. Reddy,and D.A. Graetz. 1992. Mineralization of sediment organic matter under 

anoxic conditions. Journal of Environmental Quality 77:789-792. 

Glasauer, S., S. Langley, and T.J. Beveridge. 2001. Sorption of Fe (hydr)oxides to the surface of 

Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed de 

novo. Applied and Environmental Microbiology 67:5544-5550. 

Golterman, H.L. 1995. Theoretical aspects of the adsorption of ortho-phosphate onto iron-

hydroxide. Hydrobiologia 315:59-68. 

Hassett, J.J., and W.L. Banwart. 1992. Soils & Their Environments. Prentice Hall NJ.  



16 
 

Holford I.C.R. 1997. Soil phosphorus: Its measurement, and its uptake by plants. Australian 

Journal of Soil Research 35:227-239. 

Kleinman, P.J.A., B.A. Needelman, A.N. Sharpley, and R.W. McDowell. 2003. Using soil 

phosphrous profile data to assess phosphorus leaching potential in manured soils. Soil 

Science Society of America Journal 67:215-224. 

Kuo, S. 1996. Phosphorus. p. 869-919. In D.L. Sparks et al. (ed.) Methods of Soil Analysis. Part 

3. Chemical Methods. SSSA, Madison, WI. 

Kuo, J.-T., P.-H. Hsieh, and W.-S. Jou. 2008. Lake eutrophication management modeling using 

dynamic programming. Journal of Environmental Management 88:677-687.  

Liu, Z.G., C.P. Ding, Y.X. Wu, S.Z. Pan, and R.K. Xu. 1997. Oxidation-Reduction Reactions. p. 

442-472. In T.R. Yu (ed.) Chemistry of Variable Charge Soils. Oxford University Press, 

NY. 

Loeppert, R.L., and W.P. Inskeep. 1996. Iron. p. 639-664. In D.L. Sparks et al. (ed.) Methods of 

Soil Analysis. Part 3. Chemical Methods. SSSA, Madison, WI. 

Lovley, D.R., and E.L. Blunt-Harris. 1999. Role of humic-bound iron as an electron transfer 

agent in dissimilatory Fe(III) reduction. Applied and Environmental Microbiology 

65:4252-4254. 

Lovley, D.R., and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric 

iron in anaerobic sediments. Applied and Environmental Microbiology 51:683-689. 

Lovley, D.R., and E.J.P. Phillips. 1987. Rapid assay for microbially reducible ferric iron in 

aquatic sediments. Applied and Environmental Microbiology 53:1536-1540. 

Lovley, D.R., J.D. Coates, E.L. Blunt-Harris, E.J.P. Phillips, and J.C. Woodward. 1996. Humic 

substances as electron acceptors for microbial respiration. Nature 382:445-448. 



17 
 

Lubowski, R.N., M. Vesterby, S. Bucholtz, A. Baez, and M.J. Roberts. 2002. Major Uses of 

Land in the United States. EIB-14. Economic Research Service/USDA. 

Madigan, M.T., J.M. Martinko, and J. Parker. 2003. Brock Biology of Microorganisms 10th. 

Prentice Hall NJ. 

Moore, P.A., and K.R. Reddy. 1994. Role of Eh and pH on phosphorus geochemistry in 

sediments of Lake Okeechobee, Florida. Journal of Environmental Quality 23:955-964. 

Mortimer, C.H. 1941. The exchange of dissolved substances between mud and water in lakes. 

Journal of Ecology. 29:280-329. 

Patrick, W.H., R.P. Gambrell, and S.P. Faulkner. 1996. p. 1255-1273. In D.L. Sparks et al. (ed.) 

Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, Madison, WI. 

Patrick, W.H., and R.A. Khalid. 1974. Phosphate release and sorption by soils and sediments: 

Effect of aerobic and anaerobic conditions. Science 186:53-55. 

Pearson, C.J., and R.L. Ison. 1997. Agronomy of Grassland Systems 2nd. Cambridge University 

Press NY. 

Peretyazhko, T. and G. Sposito. 2005. Iron(III) reduction and phosphorous solubilization in 

humid tropical forest soils. Geochimica et Cosmochimica Acta 69:3643-3652. 

Pierzynski, G.M., J.T. Sims, and G.F. Vance. 2000. Soils and Environmental Quality 2nd. CRC 

Press LLC Florida. 

Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29-

96. 

Reyes, I., and J. Torrent. 1997. Citrate-ascorbate as a highly selective extractant for poorly 

crystalline iron oxides. Soil Science Society of America Journal 61:1647-1654. 



18 
 

Roh, Y., C.-L. Zhang, H. Vali, R.J. Lauf, J. Zhou, and T.J. Phelps. 2003. Biogeochemical and 

environmental factors in Fe biomineralization: Magnetite and siderite formation. Clays 

Clay Minerals 51:83-95. 

Russell, E.W. 1973. Soil Conditions and Plant Growth 10th. Longman, London. 

Salas, A.M., E.T. Elliott, D.G. Westfall, C.V. Cole, and J. Six. 2003. The role of particulate 

organic matter in phosphorus cycling. Soil Science Society of America Journal 67:181-

189. 

Sigua, G.C., W.J. Kang, and S.W. Coleman. 2006. Soil profile distribution of phosphorus and 

other nutrients following wetland conversion to beef cattle pasture. Journal of 

Environmental Quality. 35:2374-2382. 

Sparks, D.L. 2003. Environmental Soil Chemistry 2nd. Academic Press. 

Schachtman, D.P., R.J. Reid, and S.M. Ayling. 1998. Phosphorus uptake by plants: From soil to 

cell. Plant Physiology 116:447-453. 

Schmidt, W. 1999. Mechanisms and regulation of reduction-based iron uptake in plants. New 

Phytologist 141:1-26. 

Schwertmann, U. 1988. Some properties of soil and synthetic iron oxides. p. 203-251. In J.W. 

Stucki et al. (ed.) Iron in Soils and Clay minerals. Reidel, Dordrecht, the Netherlands. 

Schwertmann, U. 1991. Solubility and dissolution of iron oxides. p. 3-27. In Y. Chen and Y. 

Hadar (eds.) Iron Nutrition and Interactions in Plants. Kluwer, Dordrecht, the 

Netherlands. 

Schwertmann, U., and R.M. Taylor. 1989. Iron oxides. P. 379-438. In J.B. Dixon and S.B Weed 

(ed.) Minerals in Soil Environments. SSSA, Madison, WI. 



19 
 

Smith, D.R., P.R. Owens, A.B. Leytem, E.A. Warnemuende. 2007. Nutrient losses from manure 

and fertilizer applications as impacted by time to first runoff event. Environmental 

Pollution 147:131-137. 

Tisdale, S. L., W.L. Nelson, J.D. Beaton, and J.L. Havlin. 1993. Soil Fertility and Fertilizers 5th. 

Macmillan Publishing Co. 

Troeh, F.R., and L.M. Thompson. 2005. Soils and Soil Fertility 6th. Blackwell Publishing. 

Turner, B.L., and P.M. Haygarth. 2003. Changes in bicarbonate-extractable inorganic and 

organic phosphorus by drying pasture soils. Soil Science Society of America Journal 

67:344-350. 

U.S. Census Bureau. 2000. <http://www.census.gov/> 

Wald, G. 1962. Life in the second and third periods; or why phosphorus and sulfur for high-

energy bonds? In Kasha, M. and Pullman, B. (eds.) Horizons In Biochemistry. Academic 

Press, NY, 127-141. 

Westheimer, F.H. 1992. The role of phosphorus in chemistry and biochemistry. p. 1-17. In 

Walsh et al. (ed.) Phosphorus chemistry. Developments in American Science. American 

Chemical Society, 202nd meeting, NY.  

Willett, I.R., and M.L. Higgins. 1978. Phosphate sorption by reduced and reoxidized rice soils. 

Australian Journal of Soil Research 16:319-326. 

Wright, R.J., M.C. Carter, T.B. Kinraide, and O.L. Bennett. 1984. Phosphorus requirements for 

the early growth of red clover, trefoil, and flatpea. Communications in Soil Science and 

Plant Analysis 15:49-63. 



20 
 

Yao, H., and R. Conrad. 2000. Effect of temperature on reduction of iron and production of 

carbon dioxide and methane in anoxic wetland rice soils. Biology and Fertility of Soils, 

32:135-141. 

Zachara, J.M., J.K. Fredrickson, S.M. Li, D.W. Kennedy, S.C. Smith, and P.L. Gassman. 1998. 

Bacterial reduction of crystalline Fe3+ oxides in single suspensions and subsurface 

materials. American Mineralogist 83:1426-1443. 

Zhang, Y., X. Lin, and W. Werner. 2003. The effect of soil flooding on the transformation of Fe 

oxides and the adsorption/desorption behavior of phosphate. Journal of Plant Nutrition 

and Soil Science 166:68-75. 

  



21 
 

Figures  

 

 

  

Figure 1. 1 Schematic representation of a monodentate 
phosphate surface complex on an iron oxyhydroxide (Hassett 
and Banwart, 1992). 
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Figure 1. 2 Eh-pH diagram for the iron redox system (Evangelou, 
1998). 
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Figure 1. 3 (a) A proposed structure of humic acid extracted from soil 
(quinone moieties are not shown) (Albers et al., 2008). (b) Molecular structure 
of benzoquinone. (c) Molecular structure of anthraquinone-2,6-disulfonic 
acid. 
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CHAPTER 2: MECHANISMS OF IRON REDUCTION AND PHOSPHORUS 

SOLUBILIZATION IN AN INTERMITTENTLY WET PASTURE SOIL 

 

Abstract 

There is no general agreement in the literature on the biogeochemical processes that exist 

between Fe(III)-reducing bacteria and Fe-mineral surfaces in solution.  Microbial Fe-reduction in 

pasture soils may be of agronomic importance, because it has been shown to influence P cycling.  

The present study investigated the behavior of Fe and P in an intermittently wet, Appalachian 

pasture soil during a 42 day anaerobic incubation.  Native humic acid (HA) extracted from the 

sampling location and anthraquinone-2,6-disulfonic acid (AQDS) were used in the experiment to 

determine their electron-mediating effects on Fe(III) reduction and P solubilization over time.  

Extracted HA and the International Humic Substance Society (IHSS) Elliott Soil HA standard 

were compared using 13C-NMR, FT-IR, SEM, and CHNS analysis.  Soil samples treated with 

1.24 g native HA/kg dry soil and 0.2 g AQDS/kg dry soil displayed the highest, most similar, 

solubilized P rates during the anaerobic incubation.  However, the soil alone, without an added 

electron mediator, was able to release biologically significant concentrations of P to solution at 

Eh values between 0 and -200 mV.  Total soluble P increases were strongly related to soluble 

Fe(II) increases over time.  Field Eh measurements, relative to naturally occurring seasonal 

changes, are also reported.  The purpose of this research was to further define the mechanisms of 

Fe and P cycling in temperate, pasture soils.   
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Introduction 

Soils of Appalachian pastures generally lack adequate concentrations of phosphorus to 

sustain crops and grazing livestock in agricultural systems (Elrashidi et al., 2008).  Economically 

viable organic and inorganic P fertilizers are applied to pastures of low fertility in order to 

elevate yield and forage quality (Alloush et al., 2003).  These methods are usually sufficient to 

meet nutritional demands, and often exceed plant requirements (Green et al., 2007).  

Environmental hazards are inherent in such practices (Smith et al., 2007).  Consequently, 

research in Appalachian pastures frequently addresses P availability and P transformation in the 

context of leaching and runoff (Alloush et al., 2003; Brauer et al., 2007; Elrashidi et al., 2008).  

Data from these reports may give insight into processes leading to loss of native and applied P, 

but presents limited quantitative information to explain fundamental, mechanistic relationships 

that influence P biogeochemistry at the mineral/solution interface in pasture soils.   

Kinetic studies have been used to examine P interactions between mineral surfaces and 

plants in the soil solution (Sharpley et al., 1981; Raven and Hossner, 1994).  These interactions 

are important, primarily because native P and P added to soils as fertilizer becomes adsorbed to 

minerals like iron (Fe) oxides (Hassett and Banwart, 1992).  Plant growth and development have 

been related to the rate of P sorption and desorption from mineral surfaces (Raven and Hossner, 

1994).  Interactions between soil and water (e.g. precipitation) have been shown to initiate 

significant P desorption depending on the intensity, duration, soil type, and initial concentration 

of available and sorbed P (Sharpley et al, 1981). 

Plant nutritional studies have traditionally focused on available P, rather than the process 

of P release from mineral surfaces (Raven and Hossner, 1994).  More recently, P desorption has 

become important in evaluating nutrient translocation and loading of aquatic systems from 
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common agricultural landscapes (Zhang et al., 2005).  Yet, the majority of information and 

theory derived from relevant soil-P studies has been framed within the context of oxic soil 

conditions (Shober and Sims, 2009).  Much less research has examined the effects of redox 

fluctuation on P desorption in natural, non-flooded soil systems, such as temperate pastures.   

Iron minerals largely control the soil solution P composition in neutral to acidic soils 

(Essington et al., 2005).  Reductive dissolution of Fe(III) oxyhydroxides can release P adsorbed 

to the surface of Fe minerals in the soil (Ponnamperuma, 1972; Patrick and Khalid, 1974; de 

Mello et al., 1998; Peretyazhko and Sposito, 2005; Chacon et al., 2006a).  In the past, this 

chemical relationship between Fe and P has been evaluated using wetlands (Ponnamperuma, 

1972), lake sediments (Moore and Reddy, 1994), and flooded agricultural lands (Patrick and 

Khalid, 1974; Zhang et al., 2003) as model reducing environments.  Consequently, Fe/P redox- 

relationships reflect the conditions of these unique systems, but prevent their complete 

application to more common landscapes of agronomic importance. 

Peretyazhko and Sposito (2005) examined the relationship between Fe(III) mineral 

reduction, organic matter accumulation, and P desorption in an Ultisol of a humid tropical forest 

in Puerto Rico.  The results showed that soil from a toposequence displayed significant Fe 

reduction and P desorption when incubated in the laboratory under anaerobic conditions.  

Phosphorus released during the incubation accumulated primarily in organic form.  Chacon et al. 

(2006a) studied the role of labile carbon (C) sources in Fe reduction and P desorption in the same 

type of soil.  These results showed that pulsed additions of glucose and acetate, used to mimic 

naturally pulsed C inputs in the environment, significantly increased Fe(III) mineral reduction 

and P solubilization.   
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Lovley and Phillips (1988) showed that organic substances, when oxidized to carbon 

dioxide by a consortium of Fe(III)-reducing bacteria, can serve as primary electron donors to 

Fe(III) under anaerobic conditions.  They described a model whereby complex OM is 

metabolized to fermentation products, which then serve as organic electron donors for the 

reduction of Fe(III).  Subsequent research by Lovley et al. (1996) showed that humic acid (HA), 

and the synthetic HA analog anthraquinone-2,6-disulfonic acid (AQDS), could both mediate the 

transfer of electrons from organic substrates to Fe(III).  They proposed that HA can act as a 

catalyst for Fe(III) reduction via a two-step mechanism.  In the first step, Fe(III) reducers transfer 

electrons to HA, with quinone moieties possibly serving as the main electron-carrying functional 

groups.  In the second step, HA abioticaly reduces Fe(III), thus becoming oxidized for further 

cycles of electron acceptance and donation.       

Peretyazhko and Sposito (2005) and Chacon et al. (2006a) used AQDS in laboratory 

incubations of oxic tropical soils to determine its effect on Fe(III) reduction and P solubilization.  

The results showed that low concentrations of AQDS where able to catalyze Fe(III) reduction, 

releasing significant amounts of P in solution.  Peretyazhko and Sposito (2005) pointed out, 

however, that a similar role for HA in soil is unclear and deserves further study.  Additionally, it 

must be noted that AQDS, with its lower molecular weight and smaller diversity of electron 

carrying moieties, is not necessarily a good model for high-molecular-weight, highly substituted 

HA associated with the mineral fraction of soil (Benz et al., 1998).  

Although the results of Alloush et al. (2003) and Elrashidi et al. (2008) showed 

significant correlations between organic and inorganic fertilizer input, OM, P concentration, 

topography, and precipitation in Appalachian pasture soils; no redox mechanisms corresponding 

to these factors were examined.  Theoretically, wetting from precipitation and/or groundwater 
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could stimulate reducing conditions at various points on a rugged Appalachian toposequence, 

due to decreased flow rate and increased infiltration of water.  Phosphorus desorption from 

minerals such as Fe(III) oxyhydroxides could occur as the redox potential falls, continuing 

efficiently if labile C sources for electron donation are present (Chacon et al., 2006a).  This P 

could then be taken up by plants (Schachtman et al., 1998) and microorganisms (Whitton et al., 

1991), lost from the system through leaching and runoff  (Kleinman et al., 2003), re-adsorbed to 

mineral surfaces (Willett and Higgins, 1978; Chacon et al., 2006b), or become incorporated into 

accumulating OM as particle translocation progresses downslope (Peretyazhko and Sposito, 

2005).  

The hypothesis of the present research was that microbial reduction of Fe oxides and the 

presence of natural electron mediating compounds would increase the availability of P in a 

temperate, seasonally wet pasture soil.  The following conditions were established to test this 

hypothesis: (1) Phosphorus must be adsorbed to Fe oxides in the soil and can be solubilized by 

microbial reduction of the associated oxide. (2) Iron oxide-bound P that can be solubilized 

through non-reductive and/or abiotic-reductive dissolution yields significantly lower solution 

concentrations over time than P solubilized through microbial reduction. (3) Natural humic 

substances of the soil can catalyze microbial reduction of Fe oxides by acting as electron 

mediators. (4) The soil can demonstrate sufficiently low redox conditions to reduce Fe oxides. 

Materials and Methods 

Field Site and Sampling Location 

Soil samples were collected from a slightly concave position on a NW-facing sideslope 

(12-15% slope) located at the West Virginia University Agronomy Farm in Morgantown, WV 
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(39°39'16.70"N, 79°54'7.16"W).  The site does not receive frequent (i.e. annual) applications of 

lime or fertilizer, and does not presently contain grazing livestock.  It is topographically variable, 

including steep slopes and natural drainages, with grass (harvested for livestock forage) serving 

as the main source of productivity.  The vegetation was examined in the field to identify 

potential indicator species for wet and/or poorly drained soil.  A species of the Cyperaceae 

family was observed (similar to field sedges), but exact identification was not possible due to 

lack of maturity.  

Soils formed primarily from parent material of the Allegheny Formation and Pottsville 

Group, mainly from interbedded shale, siltstone, sandstone, and some limestone. Dekalb (loamy-

skeletal, mixed, mesic Typic Dystrochrepts) and Gilpin (Fine-loamy, mixed, mesic Typic 

Hapludults) are the dominant residual soils in the area and are generally more acid than the 

surrounding soils. Some of the local soils have a seasonal high water table (Wright et al., 1982).  

A 46 m (down slope) x 23 m (across slope) plot was identified, from which 30 soil 

samples were collected from an average depth of 20 cm, and then composited.  After roots had 

been separated, the sample was air-dried, then ground and passed through a 2 mm sieve.  It was 

stored at 23-25°C under standard laboratory conditions, and subsequently used to determine soil 

chemical and physical characteristics relevant to this study.   

A duplicate composite of 30 soil samples from the same area and soil depth was also 

collected.  After roots were separated, the field-moist soil (approximately 30% moisture by 

weight) was carefully mixed and used directly in a 42 day anaerobic incubation.  In order to 

prevent microbial cell lysis, as well as other chemical changes in the soil, such as the oxidation 

of ferrous Fe (Fe(II)) to Fe(III), the soil was not air-dried prior to the incubation experiment.      
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Soil Chemical and Physical Characterizations 

pH, Particle Size, Bulk Density, and Porosity  

The following soil chemical and physical characterizations were conducted on the air-

dried composite sample (unless noted otherwise) prior to the anaerobic incubation.  Soil pH was 

measured in a 1:1 soil to water ratio (Chacon et al., 2006a) using a combination pH electrode 

(Mettler-Toledo, Inc., Columbus, OH, USA).  Soil particle-size distribution was determined by 

pipette analysis after dispersion with sodium hexametaphosphate (Tan, 1996).  Bulk density and 

porosity at the field site were determined based upon six core samples taken to a depth of 20 cm 

after the sod had been removed (Hassett and Banwart, 1992). 

Organic Matter and Organic Carbon 

Total OM% (TOM) was determined by loss on ignition (Nelson and Sommers, 1996).  

Soil samples (1.25 g) were placed in ceramic crucibles and dried at 105°C for 24 hours.  The 

samples were then ignited at 400°C for 16 hours.  The mass lost during ignition was used to 

calculate TOM.  Total residual OM% (TROM) was determined by recording the dry mass 

(105°C for 24 hours) of separate 1.25 g soil samples, then treating them with a minimum amount 

of 35% H2O2 until gas evolution ceased.  The dry mass of the H2O2 treated soil was then 

recorded.  Finally, the samples were ignited at 400°C for 16 hours.  The mass lost during ignition 

(non-H2O2 reactive OM) was used to calculate TROM (Peretyazhko and Sposito, 2005).  Total 

labile OM% (TLOM (H2O2 reactive OM)) was calculated as the difference between TOM and 

TROM.  Total organic C% (TOC) was determined by dry combustion using a TruSpec CHN 

analyzer (Leco, Corp., St. Joseph, Michigan, USA).  Total residual OC% (TROC) was 

determined by using H2O2 treated soil samples in the same analysis as TOC.  Total labile organic 

C% (TLOC) was calculated as the difference between TOC and TROC. 
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Fe and P Characterizations 

Soil Fe and P forms were characterized following the methods of Peretyazhko and 

Sposito (2005).  Citrate-bicarbonate-dithionite (CBD) extraction (Loeppert and Inskeep, 1996) 

was used to operationally measure total free Fe oxides.  For this method, sodium dithionite 

(Na2S2O4) was used to reduce Fe(III) in crystalline oxides.  The solubilized Fe(II) was 

determined by a colorimetric reaction with 1,10-phenanthroline (Loeppert and Inskeep, 1996) at 

510 nm using a Cary 50 UV Spectrophotometer (Varian, Inc., Palo Alto, CA, USA).  Total P in 

Na2S2O4 extracts was determined using an Optima 2100 DV Inductively Coupled Plasma-Atomic 

Emission Spectrophotometer (ICP-AES) (PerkinElmer, Waltham, Massachusetts, USA).  The 

extracted P is reported here as an estimate of P chemically associated with Na2S2O4-reducible 

Fe(III) oxides in the soil (Peretyazhko and Sposito, 2005). 

Amorphous Fe oxide concentration was operationally determined using a citrate-

ascorbate (CA) extraction developed by Reyes and Torrent (1997).  Soils were shaken (3 

cycles/s) in 50 ml of a 0.2 M sodium citrate-0.05 M sodium ascorbate solution at pH 6 for 16 

hours.  Addition of ascorbic acid results in the reductive dissolution of poorly crystalline Fe(III) 

oxides.  Citrate serves as a chelator, forming aqueous complexes with Fe(II), which maintains 

Fe(II) solubility and stimulates the solubilization of Fe(III).  However, citrate can also extract 

Fe(III) from organic complexes (Reyes and Torrent, 1997).  Following the recommendation of 

Reyes and Torrent (1997), amorphous Fe oxide concentration is reported here as the difference 

between citrate-ascorbate extracted Fe and citrate extracted Fe.  Reduced Fe and total P in 

solution were determined as described above. 

Total Fe and P in the soil were determined by a microwave digest with concentrated 

HNO3.  Approximately 0.5 g of soil was placed in Teflon microwave vessels with 10 mL of trace 
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metal grade HNO3.  The reaction was carried out in a Mars 5 microwave (CEM, Corp., 

Matthews, NC, USA).  Fe and P from digested filtrates were determined by ICP. 

Microbially reducible Fe(III) in field moist soil was estimated according to the procedure 

set forth by Lovley and Phillips (1987).  Approximately 0.2 g-samples of moist soil were 

extracted for 1 hour, under standard conditions, in 5 ml of one of two solution treatments:  The 

first treatment was a solution of 0.5 M HCl; and the second treatment was a solution of 0.25 M 

hydroxylamine hydrochloride in 0.25 M HCl.  After 1 hour, the solutions were passed through a 

25 mm 0.2 µm filter (Millipore Corp., Billerica, MA, USA), and 0.1 ml of each filtrate was 

added to 5 ml of 1 g/L ferrozine (3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-p,p’-disulfonic acid, 

disodium salt hydrate) in 50 mM HEPES (N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid) 

buffer adjusted to pH 7 with 1 M NaOH.  Standards were made using ferrous 

ethylenediammonium sulfate tetrahydrate (Lovley and Phillips, 1986).  Absorbance at 562 nm of 

the resulting solutions was determined as described above.  Detection limits for the ferrozine 

analysis were established according to Eaton et al. (1995) (Appendix 1).  

Lovley and Phillips (1987) stated that Fe reduction, estimated by hydroxylamine 

hydrochloride dissolution, might be preferred over long term anaerobic incubations for an initial 

screening of Fe reduction in natural environments.  Furthermore, the 0.5 M HCl extraction 

allows inherent Fe(II) in samples to be distinguished from chemically reduced Fe(III) (Lovely 

and Phillips, 1987).  Hydroxylamine hydrochloride reducible Fe in the moist soil samples used 

for the present study was detected in the laboratory.  No Fe(II) was detected in 0.5 M HCl 

extracts.  If 0.5 M HCl-extractable Fe(II) was present in the moist samples, it existed in a 

concentration too low to be quantified with ferrozine.  Table 2. 1 summarizes the results of the 

soil chemical and physical characterizations. 
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Humic Acid Extraction  

Humic acid (HA) was extracted from the soil according to the procedures of Swift 

(1996).  The method used was one set forth by the International Humic Substance Society 

(IHSS).  IHSS is a supplier of highly purified HA suitable for anaerobic experiments with Fe(III) 

reducing bacteria (Lovley and Blunt-Harris, 1999).  The soil sample was first acidified with 1 

and 0.1 M HCl, followed by extraction with 1 and 0.1 M NaOH under an atmosphere of N2 gas, 

precipitation of HA with 6 M HCl, re-dissolution with a minimum amount of 0.1 M KOH with 

the addition of solid KCl (0.3 M K+ final concentration) under N2, precipitation of HA with 6 M 

HCl, and removal of inorganic materials by 0.1 M HCl/0.3 M HF treatment followed by dialysis 

against DDI water.  The HA slurry from the dialysis tubing was freeze dried and kept in a sealed, 

dark glass vial under laboratory conditions.  The yield was 7.37 g HA/kg dry soil; 0.74% of the 

dry soil was operationally defined as HA (Table 2. 1).     

Humic Acid Characterization 

Although Benz et al. (1998) treated in-lab extracted HA (fractionated from sediments of 

Lake Constance in Germany) and commercial HA (Aldrich) with 1 M HCl, they were unable to 

completely remove residual Fe.  Consequently, the HA extracted for the present study was 

analyzed for total Fe and P (ICP), as well as hydroxylamine/HCl-reducible Fe(III) and acid-

extractable Fe(II) (following the procedure of Lovley and Phillips, 1987).  FT-IR, 13C-NMR, 

SEM, and CHNS analyses were used to compare other important chemical and physical 

properties between the extracted HA (HA Ex) and the IHSS Elliott Soil HA standard (HA St) 

(University of MN, St. Paul, MN, USA).   

FT-IR:  Fourier transformed infrared spectra were recorded in absorbance mode with a 

Spectrum One spectrophotometer (PerkinElmer, Waltham, Massachusetts, USA).  Samples were 
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prepared as pellets containing 0.5 mg freeze-dried HA and 300 mg potassium bromide (Drosos et 

al., 2009). 

13C-NMR:  Liquid state normal broadband 13C-NMR analysis of HA samples was 

performed on a 600 Inova spectrometer (Varian, Inc., Palo Alto, CA, USA) at 150 MHz (Albers 

et al., 2008).  Samples were prepared by dissolving 150 mg of freeze-dried HA in 1.5 ml of 3 M 

sodium deuteroxide in deuterium oxide (3 M NaOD in D2O), shaken for 24 hours and then 

centrifuged at 11 000 g for 15 minutes (Dou et al., 2008).  The supernatant (700 µl) was 

transferred to 5 mm, high precision (900 MHz) NMR tubes (Wilmad-LabGlass, Buena, NJ, 

USA).  Chemical shifts of the spectra were referred to D2O, and the deuterium signal of the 

solvent was used as an internal lock.  Acquisition of spectra was stopped at 90 000 transients and 

a line broadening function (LB = 50 Hz) was applied before Fourier transformations.  

SEM:  SEM images of gold-coated, freeze-dried HA samples were recorded on an S-4700 

field emission scanning electron microscope (Hitachi, HTA Inc., Pleasanton, CA, USA) using an 

accelerating voltage of 5.0 kV. 

Elemental Analysis:  Percentages of carbon (C %), hydrogen (H %), nitrogen (N %), and 

sulfur (S %) were determined using a Flash 1112 series elemental analyzer (CE Instruments, 

Hindley Green, UK).  Oxygen content (O %) was estimated by mass difference (Drosos et al., 

2009).  

Anaerobic Incubation of Soil 

Approximately 30 g of moist soil was added to autoclaved 125 ml clear glass serum 

bottles (Wheaton, Inc., Millville, NJ, USA).  The inside opening of each bottle was 13 mm in 

diameter (outer diameter was 20 mm).  Soil aggregates equal to or larger than 13 mm in diameter 
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were not forced through bottle openings, and were omitted from the incubation.  The exact 

amount of soil (by mass) in each bottle was recorded after each addition.   

The experimental design of the incubation was arranged such that seven treatments could 

be sampled 12 times at three replicates over a 42 day period (total number of individual samples 

= 252).  Peretyazhko and Sposito (2005) and Chacon et al. (2006a) conducted similar 

experiments in tropical soils over a much shorter duration (14 and 13 days respectively).  The 42 

day incubation reported in the present study was chosen because little information exists on the 

rate and biogeochemical processes that govern Fe reduction in the natural pasture soil selected 

for analysis.  It was hypothesized that a longer incubation time would more accurately 

demonstrate redox fluctuation in the environment, which would allow biological and chemical 

parameters to approach values representative of anaerobic cycles in the field. 

Sodium Azide Treatment 

Soil treated with sodium azide (NaN3) was used as a microbe-inhibiting control 

throughout the incubation.  Sodium azide inhibits cytochrome c oxidase, which is the last 

electron transport-enzyme in the respiratory electron transport chain of bacteria and 

mitochondria.  Among species of bacteria, NaN3 most effectively inhibits gram-negative bacteria 

(i.e. Fe-reducing bacteria) (Cunningham and Williams, 1995).  The treatment was applied to 

soils according to Wolf et al. (1989).  Samples were treated with NaN3 (36 serum bottles) at a 

rate of 0.28 g/kg dry soil (3.08 mmol/kg moist soil).  Samples containing NaN3 and soil were 

partially sealed by blocking the opening of each glass bottle with approximately 3 sheets of 

twisted laboratory paper (Kimwipe).  The treated samples were allowed to vent under a fume 

hood for 72 hours at standard laboratory conditions.  The treatment was finally prepared by 

adding 50 ml of boiled, highly purified 18 MΩ cm-1 water (Milli-Q Synthesis A10, Millipore 
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Corp., Billerica, MA, USA) to each of the 36 serum bottles (1 trt x 3 reps x 12 sampling periods 

= 36 bottles). 

Propylene Oxide Treatment 

Serum bottles (n = 36) with added soil were treated with propylene oxide according to 

Wolf et al. (1989).  Propylene oxide toxicity is related to esterification of carboxyl groups in 

protein (Wolf et al., 1989; Fraenkel-Conrat, 1944).  Thus, the treatment served here as a 

microbe-inhibiting control during the incubation.  Propylene oxide was added to the soil at a rate 

of 593.04 g/kg dry soil (7.15 mol/kg moist soil).  After the addition of propylene oxide, serum 

bottles were sealed with autoclaved 13 mm I.D. x 20 mm O.D. butyl rubber stoppers (Wheaton).  

The sealed serum bottles were left under a fume hood for 48 hours.  After 48 hours, the stoppers 

were removed, and the open serum bottles were allowed to vent for 48 hours under the hood.  

After this venting period, no observable propylene oxide liquid remained.  The treatment was 

finally prepared as above by adding 50 ml of boiled, highly purified water to each of the 36 

serum bottles. 

Soil and Water Treatment 

Water treated soil samples were prepared by adding 50 ml of boiled, highly purified 

water to 36 serum bottles containing soil. 

AQDS Treatment 

As little as 100 µM (Lovley et al., 1996) and 150 µM (Peretyazhko and Sposito, 2005) of 

AQDS have been shown to catalyze the reduction of Fe in anaerobic incubations.  For the AQDS 

treatment in the present study, AQDS was added at a rate of 0.2 g/kg dry soil (200 µM) as a 

solution made with boiled, highly purified water.  This solution (50 ml) was added to 36 serum 
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bottles containing soil samples.  The ultimate purpose for using AQDS treated soil was to test the 

implications of the AQDS-related studies previously mentioned, and to have a comparative 

model for evaluating the effect(s) of HA in separate treatments. 

HA Treatments 

Lovley et al. (1996) reported that 100 µM AQDS and HA (2 g/L) displayed similar 

catalytic Fe reducing activity under anaerobic conditions.  Iron reduction linked to the presence 

of HA has also been shown to be important for many species of bacteria in the environment 

(Benz et al., 1998).  In the present study, three levels of HA (extracted from the field site soil) 

were used in three additional soil treatments during the laboratory incubation.  Each of three 

treatment groups, comprised of 36 serum bottles filled with soil, either received 50 ml of solution 

with added HA at a rate of 1.24 g/kg dry soil (0.5 g/L), 4.96 g/kg dry soil (2 g/L), or 9.92 g/kg 

dry soil (4 g/L).  HA solutions were prepared as above with boiled, highly purified water. 

Gas Evacuation With Argon 

After all the soil treatments had been prepared, each serum bottle was sealed with an 

autoclaved butyl rubber stopper (Geo-Microbial Technologies, Inc., Ochelata, OK, USA) and a 

20 mm crimped aluminum cap (Wheaton, Inc., Millville, NJ, USA).  In order to initiate 

anaerobic conditions, each sample was then gas evacuated under vacuum and filled with argon 

(Ar) (Peretyazhko and Sposito, 2005).  The apparatus used to evacuate and fill was built and 

maintained in the WVU Biology Department, located in the WVU Life Sciences building.  It was 

composed of three essential components:  a vacuum pump, an Ar gas tank, and a manifold of 

copper tubing mounted with a pressure gage.   
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For each of three rounds of gas evacuation and filling, 9 serum bottles containing treated 

soil samples were gently swirled and the septums pierced with a 3.8 cm 18 gauge needle attached 

to a one-way stopcock (Baxter Healthcare Corp., Deerfield, IL, USA).  The bottles with needle-

stopcock assemblies were then attached to the copper manifold via copper lines each fitted with a 

two-way stopcock.  Atmospheric gas was then pumped out of the bottles until bubbles stopped 

forming in solution, after which Ar was injected.   

Measurement of Biogeochemical Parameters During Incubation 

Three replicates from each of the seven treatments were analyzed for various 

biogeochemical parameters on days 0, 2, 5, 7, 12, 16, 19, 23, 30, 35, 40, and 42 (12 sampling-

day groups, each comprised of 21 (3 reps x 7 treatments) individual sample bottles).  Day 0 

measurements of biogeochemical parameters are defined here as the measurements performed 

after all of the incubation bottles had been evacuated and filled with Ar, but before the first 24 

hours of the incubation had passed (i.e. day 0 is the original day of the experiment).  Ultimately, 

data corresponding to a given sampling day represents data collected at the end, or very near the 

end, of that sampling day.  Before analysis, the samples were stored in the dark with intermittent, 

gentle shaking during the incubation.  Laboratory temperature fluctuated between 22 and 24°C, 

but on average was 23°C. 

Incubation CO2 

The first analytical procedure to take place on each sampling date was gas collection 

from the incubated serum bottles.  A 20 ml syringe fitted with a one-way stopcock was filled 

with 10 ml Ar, which was then injected into the headspace of a soil-incubation bottle so that a 

vacuum would not be formed during gas withdraw.  During the addition of 10 ml Ar, the syringe 

was pumped several times to mix the headspace gas.  After the gas had been thoroughly mixed, 
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10 ml of headspace gas was drawn into the syringe, the stopcock was closed, and the sample was 

then injected into another autoclaved 125 ml serum bottle (at atmospheric conditions) fitted with 

an autoclaved stopper and crimped aluminum cap.  An additional 20 ml of Ar was then injected 

into each soil sample bottle so that an equal volume (approximately 20 ml) of solution could be 

withdrawn for Fe and P analysis without creating a vacuum.  The gas sample bottles were stored 

in the dark at 23°C for later analysis by gas chromatography.   

Carbon dioxide in gas sample bottles was analyzed with a Carle AGC Series 100 gas 

chromatograph (Hach Co., Loveland, CO, USA) connected to a BD40 chart recorder (Kipp & 

Zonen, inc., Bohemia, NY, USA).  Standards were made by diluting appropriate volumes of CO2 

with Ar in a 60 ml syringe.  A standard was measured every 21 samples to monitor instrument 

drift over time.  Carbon dioxide  concentrations were calculated based upon peak height 

measurements taken from the chart recorder graphs.  Evolution of CO2 was used as an indicator 

of microbial metabolism. 

Incubation Fe and P Measurements 

For measurement of Fe and P in solution, serum bottles containing incubated soil were 

centrifuged at 680 g for 15 to 20 min.  A centrifuge carriage capable of holding 250 ml 

centrifuge bottles was modified to accommodate the Wheaton 125 ml serum bottles used for the 

incubation.  Centrifugation was used primarily to avoid subsequent filter clogging problems 

(Peretyazhko and Sposito, 2005).  

A syringe was used to withdraw approximately 20 ml of solution from the centrifuged 

serum bottles, which was then passed through a 0.2 µm filter.  For Fe(II) quantification, 0.1 to 4 

ml of sample was added to 5 ml of ferrozine, and the absorbance at 562 nm was determined as 

described above.  New standards were prepared before each Fe(II)-ferrozine analysis.  A separate 
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5 ml sample was added to a 15 ml polystyrene conical centrifuge tube (Fisher Scientific, 

Pittsburgh, PA, USA), diluted to 7 ml with DDI water, and then acidified with 1 M HCl to 

achieve a 0.5 M HCl solution.  Total Fe and P in this acidified sample were determined by ICP.  

Inorganic P was determined by the ammonium molybdate method (Murphy and Riley, 

1962; Kuo, 1996).  Filtered solution (5 ml) was added to a 50 ml polypropylene centrifuge tube 

(Fisher Scientific), then diluted to 20 ml with DDI water.  Ammonium molybdate reagent (8 ml) 

was added to the diluted sample.  After reagent addition and mixing, the solution was diluted to 

50 ml with DDI water.  The solution was allowed to stand for at least 15 min, or longer, for full 

color development.  Absorbance at 880 nm was determined as described above. 

Colorimetric solutions for Fe(II) (ferrozine) and inorganic P (ammonium molybdate) 

were allowed to develop according to preliminary experiments that monitored for potential 

absorbance changes of ferrozine and ammonium molybdate standards over a 24 hour period.  

The results of the experiments showed that negligible absorbance fluctuation, relative to the 

methods outlined in this study, occurred within 24 hours after colorimetric solutions were 

thoroughly mixed.  In accordance with these results, samples and standards were analyzed within 

24 hours after being reacted with colorimetric reagents (Appendix 1). 

Incubation Eh and pH Measurements 

Eh measurements were collected with a platinum electrode and AgCl reference electrode, 

which had both been built in the lab specifically for the incubation.  The platinum electrode 

design was fundamentally similar to that used by Wafer et al. (2004).  The electrode was 

assembled by first drilling a 1.6 mm diameter, 3 mm deep hole into the end of a 3.18 mm 

diameter low-fume-bare bronze brazing rod (LFBB) (Radnor Welding Products, Radnor, PA, 

USA) cut to a length of 23 cm.  A propane torch and 1.5 mm electrical rosin core solder (Lenox, 
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East Longmeadow, MA, USA) were used to attach a 10 mm length x 0.5 mm diameter solid 

platinum wire (Sigma-Aldrich, St Louis, MO, USA) to the drilled opening.  The bronze rod and 

platinum/rod junction were covered with a thin layer of Loctite Marine epoxy (Henkel, Hagen, 

Germany), except for a few cm of the unsoldered end, which was left bare for electrical contact.  

Approximately 7 mm of the platinum wire was left exposed. 

The Ag/AgCl reference electrode was assembled using a method similar to that of 

Sawyer et al. (1995).  A 4 mm diameter Vycor porous-glass frit (#G0100) (Princeton Applied 

Research, Oak Ridge, TN, USA) was attached to the end of a 15 cm length x 4 mm diameter 

Pyrex glass tube (Fisher Scientific) by heat-shrink Teflon tubing (Princeton Applied Research, # 

G0100).  The glass tube was then filled with a saturated KCl solution and an 11 cm length of 0.5 

mm silver wire (Aldrich).  Teflon tubing was used as a cap, with 4 mm of silver wire left 

exposed for electrical contact.  The silver wire was electroplated with AgCl by using a counter 

platinum electrode in circuit with a 9V battery and a 1MΩ resistor (RadioShack, Fort Worth, TX, 

USA).   

After incubated serum bottles had been analyzed for Fe and P, Eh (mV) was determined 

by using an auto-range digital multimeter (RadioShack, Fort Worth, TX, USA) connected to a 

platinum electrode and a AgCl reference electrode.  This was accomplished by removing the 

aluminum seal and stopper from each serum bottle, and then quickly immersing both electrodes 

into the incubated solution to measure the reduction potential.  Probe function was checked with 

two standard solutions made up of a small fraction of quinhydrone mixed in either a pH 4 or pH 

7 buffer (Fisher Scientific) (Patrick et al., 1996).  The pH of incubated samples was measured as 

described previously in an aliquot of solution that had been poured into a plastic container.  
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Qualitative Eh Validation With Tetramethylthionine Chloride (Methylene Blue) 

On day 23 of the incubation, two randomly selected replicates were removed from the 

soil and water treatment group after Fe and P analysis. Three drops of methylene blue 

(tetramethylthionine chloride, 0.23% w/v) alkaline dye was dispensed from an 18 gauge needle 

into a sealed serum bottle (Eh and pH not measured).  The remaining serum bottle was opened, 

and treated with 3 drops of methylene blue dye after Eh and pH values had been recorded.  Both 

of the serum bottles, one sealed and one open, were allowed to sit overnight.  Methylene blue 

dye is dark blue under oxic conditions.  But under anaerobic conditions, it converts to colorless 

leuco methylene blue and HCl, resulting from the addition of 2 electrons and 2 protons (Galagan 

and Su, 2008).  This procedure was carried out to qualitatively verify that reducing conditions 

were present in the serum bottles.  The soil and water replicates were selected because they only 

contained soil, and no additional electron mediating or microbe-inhibiting compound. 

Statistical Analysis 

Statistical analysis of Fe(II), Fe-ICP, P-ICP, and CO2 versus time graphs was performed 

using SAS ver 9.1 (SAS Institute, Inc., Cary, NC, USA).  In all other graphs with trend lines, 

parameter relationships are shown using lines that best fit the data.  When present, error bars 

represent an average plus or minus the standard deviation of 3 sample replicates.     

Results and Discussion 

HA Chemical and Physical Properties 

Fe and P in HA:  The total residual Fe concentration, 0.181 µmol/mg (in units reported 

by Benz et al. (1998)), was extremely close to the total Fe concentrations reported by Benz et al. 

(1998) (0.187 µmol/mg Aldrich HA and 0.210 µmol/mg lake sediment HA).  In the present 
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study, HCl extractable Fe(II) was determined to be 8.79 times lower than total Fe.  

Hydroxylamine hydrochloride reducible Fe(III) and extracted inherent Fe(II) produced a similar 

value, indicating that nearly all of the acid soluble Fe was in the reduced state.  Ultimately, total 

Fe made up approximately 1% of the HA by mass, of which 12% was acid soluble and mainly in 

the ferrous form.  Phosphorus was also detected in the HA, making up approximately 0.6% of 

HA by mass (Table 2. 2).   

FT-IR:  FT-IR spectra of the extracted HA and the IHSS standard HA were very similar 

(Figure 2. 1).  All spectral bands characteristic of humic substances were present for both 

samples:  in the regions of 3410 cm-1 (H-bonded OH groups); 2920 cm-1 (aliphatic C-H 

stretching); 1720 cm-1 (C=O stretching of COOH and ketones); 1620 cm-1 (aromatic C=C, H-

bonded C=O, and/or dissociated COOH groups); 1530 cm-1 (aromatic ring vibrations 

characteristic for lignins); 1400 cm-1 (O-H deformation, CH3 bending, C-O stretching of phenolic 

OH, and COO- antisymmetric stretching of aryl esters); 1250 cm-1 (C-O stretching and OH 

deformation of COOH, C-O stretching of aryl esters); and 1034 cm-1 (possibly due to C-O 

stretching of polysaccharide-like substances or other C-O-H containing groups like alcohols or 

lignin; or mineral stretching of silicon-type (Si) impurities) (Drosos et al., 2009).  The most 

apparent differences between the two spectra occur between the regions of 1226 cm-1 and 1712 

cm-1, with slight differences occurring around 2917 cm-1 and 2846 cm-1. 

13C-NMR:  Solution state 13C-NMR spectra of the extracted HA and the IHSS standard 

HA were very similar, and displayed unique spectral characteristics of humic substances:  0-48 

ppm (aliphatic-C); 48-90 ppm (C-O and carbohydrate-C); 90-108 ppm (acetal-C atoms 

connected with one bond or with two O atoms, carbohydrate-C (e.g. cyclic poly-sugars)); 108-

145 ppm (C or H substituted aromatic-C); 145-167 ppm (aromatic-C bonded to O and/or OH 
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groups (phenolic-C)); 167-185 ppm (carboxylic-C esters, amide-C, and possibly phenolic-C 

close to quinonoid groups); and 185-220 ppm (C=O) (Schnitzer and Preston, 1986; Albers et al., 

2008) (Figure 2. 2).  

SEM:  SEM images of both HA samples revealed some unique topographic features.  At a 

relative scale of 200 µm, the extracted HA (on average) was found to be composed of slightly 

larger, more topographically variable plate-like and blocky structures when compared to the 

IHSS standard HA.  In general, the IHSS standard HA displayed smaller, angular, plate-like 

aggregates with smoother surfaces.  At scales of 10 and 5 µm, irregular fissures were clearly 

observed in the surfaces of extracted HA aggregates.  These surface features were not observed 

in the IHSS standard HA (Figure 2. 3). 

Elemental Analysis:  Elemental analysis showed very similar values for both HA samples 

(Table 2. 3).  Ultimately, and most importantly, chemical characterization of the HA samples 

showed that the extracted HA used in the incubation was indeed HA (relative to a universal HA 

standard, the IHSS Elliott Soil HA standard).  In the following discussion of incubation chemical 

parameters, the results of the propylene oxide (PO) treatment have been omitted because of the 

large amount of variability in chemical parameters measured during the incubation, which could 

not be adequately explained.  The removed data for the PO treatment is in Appendix 2. 

Incubation Chemical Parameters   

Eh and pH 

The redox potential (approximately +300 mV) of the incubation samples decreased 

slowly from day 0 to day 16 of the experiment (Figure 2. 4).  Beginning at day 16, the redox 

potential for all treatments, except the sodium azide (NaN3) treatment, dropped steeply from 
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+150 mV to below -100 mV by day 23, after which it decreased slowly to -200 mV by day 42.  

The redox potential of the NaN3 treatment continued to decrease, approaching just below +100 

mV by day 42. 

Soil and water (SW) treatment bottles that had been mixed with methylene blue on day 

23 were evaluated after setting overnight.  The sample bottle that had been left open had a 

purple-blue tinted solution, while the sealed bottle displayed a slightly hazy, yet relatively clear 

solution– indicative of reduced methylene blue.  On day 16, it was observed that one of the 

AQDS treatment (AQDS 0.2) replicates displayed a yellow-green colored solution.  By day 23, 

all AQDS treated samples displayed an orange-gold colored solution.  Reduced AQDS 

(anthrahydroquinone-2,6-disulfonic acid (AHDS)) absorbs light at 450 nm (Lovley et al., 1996), 

which explains the color change in solution as the redox potential fell during the incubation.  

The pH of all incubation treatments fluctuated between pH 6.4 and 7.4 (Figure 2. 4).  

Peretyazhko and Sposito (2005) observed a similar pH fluctuation of 1 unit during their 

anaerobic incubation of tropical forest soil.  In this study, three of the seven treatments were 

recognized as being distinct from the others.  The 9.92 g HA/kg dry soil treatment (HA 9.92) 

started with the lowest pH (pH of 6.4); and the 4.96 g HA/kg dry soil treatment (HA 4.96) started 

with the second lowest pH (pH of 6.6).  The low pH values for the two highest HA 

concentrations might be explained by the dissociable protons left over from the extraction of HA.  

Both HA treatments stabilized around pH 7 by day 16 of the incubation.  Finally, the AQDS 0.2 

treatment reached the highest pH value by the end of the incubation (pH of 7.2).  This could be 

explained by the conversion of AQDS to AHDS, which would account for the decreased proton 

activity in solution over time, and reflects the observed color change in solution.  
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Soluble Fe(II) 

The rate of Fe(II) release remained unchanged for the NaN3 treatment during the 

incubation.  Overall, the NaN3 treatment displayed the lowest adj r2 and slope values for all 

chemical parameters (Table 2. 4).  Table 2. 4 shows the SAS regression output for the Fe(II), Fe-

ICP, P-ICP, and CO2 parameters over time. The slope for SW treatment Fe(II) was 0.70 mg kg-1 

day, which exceeded the rate of Fe(II) release for the NaN3 treatment.  Soluble Fe(II) for the 

AQDS 0.2 treatment displayed a rate similar to that of the SW treatment (slope = 0.57 mg kg-1 

day).  Although the AQDS 0.2 and SW treatments shared the same general linear trend during 

the incubation, between day 0 and 19, and between day 30 and 42, the rate of Fe(II) release 

displayed a slightly higher value for the AQDS 0.2 treatment (slope = 0.49 mg kg-1 day (day 0-

19) and 1.26 mg kg-1 day (day 30-42) for AQDS 0.2 treatment; 0.35 mg kg-1 day (day 0-19) and 

0.86 mg kg-1 day (day 30-42) for SW treatment).  The reason that the AQDS 0.2 treatment 

displayed higher rates of Fe(II) release than the SW treatment at the beginning and end of the 

incubation, but not in the middle, seems to be attributed to the lag phase observed for the AQDS 

0.2 treatment between day 19 and 30.  The Fe(II) slopes for HA 1.24 g/kg dry soil (HA 1.24), 

HA 4.96, and HA 9.92 treatments were 0.89, 1.36, and 1.80 mg kg-1 day respectively, together 

displaying the highest rates of Fe(II) release during the experiment (Figure 2. 5). 

Total Fe 

The rate of Fe-ICP release did not change for the NaN3 treatment during the incubation, 

although concentrations were slightly elevated above soluble Fe(II) concentrations.  The SW 

treatment slope for Fe-ICP was 0.65 mg kg-1 day, and 0.79 mg kg-1 day for the AQDS 0.2 

treatment.   The difference between the rates of Fe-ICP and Fe(II) for the AQDS 0.2 treatment is 

interesting when compared to all other treatments.  These results suggest that AQDS solubilized 
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Fe(III) over the entire course of the incubation, beyond the first 12 to 16 days.  A similar 

relationship between AQDS and solution Fe(III) was also reported by Peretyazhco and Sposito 

(2005).  However, a key study published by Lovley et al. (1996), linking HA to AQDS as a 

model compound for natural humic substances, reported that no Fe(III) was observed to have 

been solubilized by AQDS during anaerobic incubations.  Ultimately, the Fe(III)-solubilizing 

potential of AQDS is not clearly defined in the literature.   The Fe-ICP slopes for HA 1.24, 4.96, 

and 9.92 treatments were 0.84, 1.23, and 1.61 mg kg-1 day respectively (Figure 2. 6). 

Based upon HCl and hydroxylamine hydrochloride extractions performed on the bulk HA 

sample (extractions also performed by Benz et al. (1998) for their anaerobic incubation of HA), 

only a small amount of Fe (mostly in the reduced state) would have been added to solution by 

HA treatments.  According to the results of HCl and hydroxylamine extractions, Fe(II) and Fe-

ICP measured during the incubation could have included the following values of extractable Fe 

added from HA treatments:  HA 1.24 = 1.54 mg Fe/kg dry soil, HA 4.96 = 6.15 mg Fe/kg dry 

soil, and HA 9.92 = 12.29 mg Fe/kg dry soil.  However, since 93% of extractable Fe in the HA 

was Fe(II), and HA soluble Fe(II) graphs did not show concentrations above 4.0 mg/kg dry soil 

until day 5, the potential Fe additions from HA treatments were not significantly present at the 

beginning of the incubation.  Alternatively, the elevated concentrations of Fe-ICP for HA 2 and 

4, between day 0 and day 16, were possibly the result of Fe(III) solubilization due to  interactions 

between the soil and HA (Xie and Shang, 2005).  However, it is also possible that Fe(II) could 

have been oxidized once released from HA, thereby adding to total Fe.  In either case, the 

inherent Fe concentrations in HA did not contribute significantly to Fe(II) or Fe-ICP after day 5. 
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Total P 

The concentrations of inorganic P throughout the incubation were too low to determine 

using ammonium molybdate.  This is most likely because the soil used in this study was (1) not 

highly weathered and (2) had not received regular fertilizer amendments in the past.  The P-ICP 

slope for the NaN3 treatment was 2.39 µg kg-1 day.  As mentioned previously, NaN3 does not 

function as a complete sterilization treatment of soil.  Rather it acts as a microbial inhibitor, 

including both gram-negative bacteria and fungi (Wolf et al., 1989).  It is important to note that 

the P solubilized over time in the NaN3 treatment is most likely indicative of P released non-

reductively or abiotically from the soil and/or P solubilized via microorganisms other than Fe-

reducing bacteria, such as fungi and other bacterial species.  The P-ICP slope for the SW 

treatment was 7.71 µg kg-1 day.  If the assumption is that NaN3 P-ICP represents P released by 

non-biological or non-Fe-reducing-bacterial processes, then NaN3 P-ICP can be subtracted from 

SW P-ICP to equal SW P-ICP values most likely due to microbial Fe-reduction.  For example, 

when the P-ICP concentrations on day 42 for both treatments is considered, and the difference 

between them calculated in terms of µg/L P (solution P), 27 µg/L P was released by microbial 

reduction of Fe by the end of the experiment for the SW treatment. 

Pierzynski et al. (2000) mentioned that most agricultural soils have solution 

concentrations of P between <0.01 and 1 mg P/L.  At the beginning of the incubation, virtually 

no P-ICP was detected in solution.  The data show that as much as 0.027 mg/L P was added to 

solution over time, due to microbial reduction primarily of Fe(III) oxyhydroxides.  It should also 

be noted that as little as 20 µg/L P can negatively impact natural water bodies (Pierzynski et al., 

2000; Elrashidi et al., 2008).  Even if such a concentration of P (0.027 mg/L) were only 
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periodically released into solution from redox-fluctuating pasture soils, it could significantly add 

to biologically available P, and possibly to runoff. 

The P-ICP slope for the AQDS 0.2 treatment was 8.71 µg kg-1 day, which was greater 

than the SW treatment slope.  The higher rate of P-ICP release for the AQDS 0.2 treatment might 

be partially explained by Fe(III) solubilization, in addition to soluble Fe(II) release over time.  

However, the decrease in Eh coupled with the increase in both Fe(II) and P-ICP by day 30, 

supports a strong relationship between Fe(III) reduction and P solubilization for the AQDS 0.2 

treatment. 

The P-ICP slopes for HA 1.24, 4.96, and 9.92 treatments were 8.65, 7.18, and 0.46        

µg kg-1 day respectively.  The HA 1.24 P-ICP slope was essentially equal to that of AQDS 0.2.  

It is also important to note that the Fe(II) slope for the HA 1.24 treatment (0.89 mg kg-1 day) was 

larger than the Fe(II) slope for the SW treatment (0.70 mg kg-1 day).  Even though both P-ICP 

slopes for the HA 1.24 and SW treatments show overlapping standard deviations between day 19 

and day 40, they are separated between day 5 and day 19, as well as at day 42.  This is important 

because day 5 marked the beginning of Fe(II) increase in solution, and also the separation of HA 

1.24 P-ICP from NaN3 P-ICP, approximately 10 days earlier than SW P-ICP separation from 

NaN3 P-ICP (Figure 2. 7).  

The HA 4.96 and 9.92 treatments were elevated in day 0 P-ICP concentration relative to 

the other treatments.  When day 0 P-ICP for all three HA treatments is plotted as a function of 

HA concentration, a positive linear trend is obtained (data not shown).  This relationship 

indicates that HA 4.96 and 9.92 treatments were elevated in P-ICP at day 0 because of P addition 

from HA.  However, this does not completely rule out interactions between HA and the soil.  

Since day 0 measurements were finished 12-16 hours after serum bottles were flushed with Ar, 
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there may have been time for reactions between soil-P and HA to have occurred by day 0 

measurements. 

The fact that the HA 9.92 P-ICP slope did not change over time relative to the HA 4 

Fe(II) slope needs to be addressed.  Even if elevated HA P-ICP at day 0 could be completely 

explained by added P from HA treatments, HA 9.92 P-ICP should still have increased over time 

similar to HA 4.96, because of continued Fe reduction and P solubilization in the soil.  

Alternatively, the elevated level of HA 9.92 P-ICP may have remained static over time due to a 

P-equilibrium of the system.  Another possible explanation for elevated initial P concentrations is 

direct interactions between HA and the soil.   

HA has been shown to compete with adsorbed P at the Fe-mineral surface (Sibanda and 

Young, 1986).  Xie and Shang (2005) also noted the dominance of natural organic matter (i.e. 

HA) adsorption onto Fe-mineral surfaces over other chemical species in solution.  In the present 

study, HA could have exchanged with adsorbed P at Fe-mineral surfaces in the soil, thereby 

elevating P-ICP by day 0 measurements.  If this reaction between HA 9.92 and the soil was 

sufficient enough, it would explain why P-ICP remained unchanged during the incubation, but 

why Fe(II) increased over time.  In other words, the limited concentration of P initially adsorbed 

to Fe(III) oxyhydroxides in the soil may have been largely solubilized early in the incubation via 

an exchange mechanism with HA, while HA-complexed-Fe(III) and/or free Fe(III) 

oxyhydroxides were reduced over time.   

The HA/soil-P exchange model would also help explain why the rate of P-ICP release for 

the HA 1.24 treatment was greater than that of the SW treatment, but why the rate of P-ICP 

release for the HA 4.96 treatment was less than that of the SW treatment.  Such a result would be 

expected if the HA 4.96 treatment had significantly stimulated the release of exchangeable P 
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adsorbed to Fe(III) at the beginning of the incubation.  HA 1.24 did not show an elevated day 0 

P-ICP concentration.  Consequently for HA 1.24, more adsorbed P would have been available 

for solubilization as the redox potential decreased during the incubation.  Although evidence for 

such HA-soil interactions can be speculated based upon the data, no single mechanism was 

directly investigated during the experiment, and therefore deserves future study. 

Relationship Between Soluble Fe(II) and Total P 

By plotting P-ICP as a function of F(II) released during the incubation, the positive effect 

of Fe reduction on P solubilization can be observed (Figure 2. 8).  The data shows for the NaN3 

treatment, in which Fe-reducing bacteria were theoretically inhibited, that P-ICP did not follow 

an ordered trend.  The reason for this decoupling of Fe reduction and P release is most likely due 

to inhibition of Fe-reducing bacteria.  The SW, AQDS 0.2, HA 1.24, and HA 4.96 treatments 

each displayed a very strong, positive relationship between Fe(II) and P-ICP during the 

incubation.  Such a relationship was not observed for the HA 9.92 treatment because of an 

unchanged P-ICP concentration over time, which is further complicated by the elevated levels of 

initial P-ICP (P vs Fe(II) graph for HA 9.92 is not shown).  Overall, these data give evidence that 

P was adsorbed to Fe(III) oxides in the soil, and that this P could be released through microbial-

reduction of the associated oxide. 

CO2 Evolution 

The CO2 slope for the NaN3 treatment was 0.55 µg g-1 day.  When compared with Fe(II), 

Fe-ICP, and P-ICP, it seems that the NaN3 treatment was in fact an effective microbial inhibitor 

during the incubation.  The CO2 slopes for the SW, AQDS 0.2, HA 1.24, HA 4.96, and HA 9.92 

treatments were 1.29, 1.23, 1.47, 1.85, and 2.28 µg g-1 day respectively (Figure 2. 9). 

Concentrations of CO2 increased over time as P-ICP and Fe increased in solution.  A high degree 
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of similarity between CO2 evolution, soluble Fe(II), and total P in solution over time suggests 

that bacteria able to oxidize OM and donate electrons to Fe(III) oxides functioned as the primary 

Fe-reducing agents during the incubation; and that microbial-dissociation of Fe(III) minerals led 

to an increase in soluble P.  This point is further strengthened by comparing the chemical 

parameters of the NaN3 treatment with the chemical parameters of all other treatments, in which 

the NaN3 treatment always displayed the lowest rates. 

1st Derivative Analysis of the AQDS Treatment   

Between day 19 and day 30, a distinguished lag in the rate of Fe(II) occurred for the 

AQDS 0.2 treatment.  This lag phase was also observed for Fe-ICP and P-ICP, and to a less 

obvious extent for CO2, until it appeared to terminate near day 30.  The increase in concentration 

for all AQDS 0.2 chemical parameters seemed to be related to the steep drop in Eh around day 

19, which began to level around day 30 at almost -200 mV.  The lag phase shared by these 

chemical parameters, and its effects on their rates, can be more clearly demonstrated by first 

fitting each parameter’s data set with a best fit polynomial function, obtaining the first derivative 

of that function, then solving the derivative using incubation time as the variable.  When the 

solutions are plotted against time, the curvature between day 19 and 30 is accentuated, and the 

simultaneous shift toward a more positive slope around day 20 for all chemical parameters is 

revealed (Figure 2. 10). 

The AQDS 0.2 lag phase was important because it reinforced a direct link between Eh, 

Fe(II), Fe-ICP, P-ICP, CO2 and the metabolic activity of Fe-reducing bacteria.  In other words, 

the AQDS 0.2 lag phase made it possible to link Eh, Fe(II), Fe-ICP, P-ICP, and CO2 (microbial 

respiration) together, because all of these AQDS 0.2 parameters shared the same deviation in 

chemical rate at approximately the same time.  Relative to AQDS 0.2, all other treatments were 
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either too linear or too variable to represent such a comparison between treatment-specific 

chemical parameters (i.e. 1st derivative analysis of other treatments did not show simultaneous 

inflection similar to the AQDS 0.2 treatment).  

It should be noted that around day 19 the AQDS in solution had began to be converted to 

AHDS.  The lag phase might possibly be explained by loading of electrons on AQDS.  By day 

19, respiring bacteria under anaerobic conditions (solution Eh approaching -100 mV from +150 

mV) may have preferentially reduced AQDS since it was available and abundant in solution.  A 

lag in Fe reduction could have been due to a slower abiotic-Fe-reduction rate (dependent on day 

30 Eh, -200 mV) of AHDS compared to the initial reduction of AQDS by Fe-reducing bacteria.  

This slow second step involving abiotic Fe-reduction by AHDS could likely be explained by a 

relatively low concentration of Fe(III) oxyhydroxides versus the concentration of AHDS in 

solution, and/or the Eh dependency of AHDS to reduce Fe(III) oxyhydroxides. 

Possible Role of Redox-Active Species other than Fe 

In general, the primary terminal electron acceptors for organic matter decomposition in 

anaerobic sediments are nitrate (NO3
-), manganese (Mn(IV)), Fe(III), sulfate (SO4

2-), and CO2 

(Lovley and Phillips, 1988).  At pH 7, SO4
2- and CO2 have very electronegative reduction 

potentials (equal to -200 mV and below) in the environment compared to the other chemical 

species (Masscheleyn et al., 1990).  Such reduction potentials theoretically would not be 

favorable to facultative metal-reducing bacteria in pasture soils where values reach a lower limit 

of -200 mV, as observed in this study.  Manganese and NO3
- have greater electropositive 

reduction potentials compared to the other chemical species (between +200 and +300 mV).  In 

the context of P availability under anaerobic conditions, NO3
- reduction would not influence 
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available P through adsorption/desorption, which leaves Mn(IV) reduction as a possible 

mechanism for P solubilization observed during the incubation.   

The reduction potential for the Fe(III)/Fe(II) redox couple is approximately +50 mV at 

pH 7 (Masscheleyn et al., 1990) and Fe(III) is generally much more abundant in soils than 

Mn(IV), especially if a given soil has not been regularly fertilized with compounds containing 

Mn (i.e. the pasture soil used in this study).  For the SW treatment, P-ICP did not completely 

diverge from NaN3 P-ICP until day 19, when the Eh was 0 mV.  It could be hypothesized that if 

P solubilization was primarily controlled by Mn(IV), SW P-ICP should have been higher than 

NaN3 P-ICP before day 19, due to a more electropositive potential of the system during that time.  

However, biologically significant SW P-ICP concentrations were not observed until around day 

19, when Fe(III) would have been more favorable as a terminal electron acceptor for Fe-reducing 

bacteria (Eh = 0 mV).  When taking into account that Fe(II) and P-ICP were shown to be 

strongly related, and that first derivative analysis of AQDS 0.2 chemical parameters showed a 

simultaneous increase near day 19 (relative to an Eh of 0 mV), it is most likely that P 

solubilization was primarily the result of Fe(III) reduction during the incubation. 

Conclusion 

Recent discoveries of novel metal-reducing-bacteria have allowed traditional ideas 

concerning anaerobic metabolism to be reevaluated.  A species of bacteria that can directly 

couple organic C oxidation to Fe(III)-reduction, with Fe(III) as the sole terminal electron 

accepter, was not isolated until the late 1980’s (Lovley and Phillips, 1988).  Since then, related 

organisms have been shown to assemble highly organized biofilms that regulate electrical current 

at electrode surfaces (e.g. microbial fuel cells) (Marsili et al., 2008), develop electrically 

conductive pili (Gorby et al., 2006), degrade organic contaminants (Finneran et al., 2001), 
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remove radioactive metals such as uranium (U) (Lovley and Phillips, 1991), and reduce soluble 

electron shuttles that can abiotically reduce Fe(III) (Lovley et al., 1996). 

Current data from Eh fluctuating tropical soils, thought to be predominantly oxidized, has 

shown that significant concentrations of P are released to solution during microbial reduction of 

Fe(III) oxyhydroxides (Peretyazhco and Sposito, 2005).  This data has also shown that soluble 

electron mediators, such as the HA-model-compound AQDS, catalyze Fe(III) reduction and P 

solubilization.  However, such research has not fully examined the effects of soil-specific HA 

during laboratory incubations, leaving the role of native HA in soils unknown and deserving 

future study.    

There is no general agreement in the literature on the mechanistic relationships that exist 

between Fe-reducing bacteria, HA, AQDS, and Fe-mineral surfaces in solution.  The results of 

this study show that 0.2 g AQDS/kg dry pasture soil and 1.24 g native HA/kg dry pasture soil 

treatments displayed more similar and higher solubilized P rates when compared with untreated 

pasture soil during a laboratory anaerobic incubation.  However, the soil alone, without an added 

electron mediator, was able to release biologically significant concentrations of P to solution at 

Eh values between 0 and -200 mV.  Increases in available P were shown to be strongly related to 

soluble Fe(II) increases over time.   

The experiments described here extended modern microbial-Fe-reduction research to a 

temperate pasture soil.  Fe(III) reduction in pastures may be of agronomic importance because it 

influences P cycling.  In general, the data show a strong relationship between Eh, Fe(II), 

solubilized P, and CO2 evolution for the selected pasture soil under anaerobic conditions (Eh = 0 

to -200 mV during the incubation).  To complement the incubation, field Eh, soil moisture, and 

precipitation at the sample location were measured in the summer and autumn of 2007 and 2008.  
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The field data demonstrated a stabilized Eh of approximately -200 mV for a 60 day interval 

during the summer of 2008.  Field Eh was dependent upon soil moisture and frequency of 

precipitation (Ch. 3).   

The observed relationship between Eh, Fe(II), and solubilized P during the incubation, 

combined with field Eh data, presents evidence that P solubilization from microbial reduction of 

Fe(III) oxyhydroxides, coupled to HA electron mediation, occurs in intermittently wet pasture 

soils.  Accordingly, these processes would exist even if the natural system was dominated by 

oxidizing conditions, so long as seasonal Eh fluctuations (approximating -200 mV for a 

sufficient duration) occur.  The results of this study warrant future research that could further 

elucidate the mechanistic relationships between microbial-Fe-reduction and P solubilization in 

temperate, agricultural systems.    
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Figure 2. 1 FT‐IR spectra of HA samples. (HA Ex) humic acid extracted 
from soil. (HA St) IHSS Elliott Soil humic acid standard.  
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Figure 2. 2 13C‐NMR spectra of HA samples. (HA Ex) humic  
acid extracted from soil. (HA St) IHSS Elliott Soil humic acid 
standard.  
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Figure 2. 3 SEM images of HA samples.  (a),(c),(e),(g)  Extracted humic 

acid (HA Ex) and (b),(d),(f),(h) IHSS standard humic acid (HA St) at 

different levels of magnification. White, dashed scale bars at the bottom 

of images indicate relative length (µm).   
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Figure 2. 6 Incubation total Fe. (a) Total soluble Fe during the incubation for NaN3, SW, 
and HA 1.24 treatments. (b) Total soluble Fe during the incubation for AQDS 0.2, HA 
4.96, and HA 9.92 treatments. Data are means ± one standard deviation. Day 7 Fe‐ICP 
concentrations were not determined.    
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Figure 2. 8 Total P vs. soluble Fe(II). (a) NaN3 treatment; (b) SW treatment; (c) 
AQDS 0.2 treatment; (d) HA 1.24 treatment; (e) HA 4.96 treatment. All data have 
been fit with a 2nd order polynomial trendline.   
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Figure 2. 9 Incubation CO2 evolution. (a) CO2 Evolution during the incubation for 
NaN3, SW,  and HA 1.24 treatments. (b) CO2 Evolution during the incubation for 
AQDS 0.2, HA 4.96, and HA 9.92 treatments. Data are means ± one standard 
deviation.    
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Figure 2. 10 First derivative analysis of AQDS parameters. (a) Soluble Fe(II); (b) 
total soluble P; (c) CO2; (d) Eh. Data are 1

st derivatives of a best fit polynomial 
trendline, which represents a corresponding chemical parameter, plotted against 
incubation time. Day 20 marked a simultaneous shift toward a more positive rate 
for Fe(II), P‐ICP, and CO2 (related to day 20 Eh) during the incubation. 
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Parameter    Value            Replicate(s) 

pH    6.67 ± 0.05            3 
Particle Size (%)       

              Sand    23.53 ± 0.69            3 
          Silt    46.11 ± 5.91            3 
            Clay    30.36 ± 5.5            3 

Bulk Density (g/cm3)    0.66 ± 0.03            6 
Porosity (%)    54.66 ± 1.99            6 

TOM (%)    5.37 ± 0.11            10 
TROM (%)    2.56 ± 0.11            10 
TLOM (%)    2.81*   
TOC (%)    1.82 ± 0.05            7 
TROC (%)    0.54 ± 0.03            7 
TLOC (%)    1.28*   
HA (%)    0.74            1 
FeCBD (g/kg)    2.86 ± 0.01            3 
FeCA (g/kg)    2.22 ± 0.01            3 
FeTOT (g/kg)    28.52            3 
FeNH‐HCl (mg/kg)    437.48 ± 5.47            3 
PCBD (mg/kg)    78.39 ± 5.31            3 
PCA (mg/kg)    51.25 ± 2.02            3 
PTOT (mg/kg)    428.67 ± 13.88            3 

       

Soil Chemical and Physical Characterizations. Values equal ± one 
standard deviation. (*)Estimated value; (TOM) total organic matter; 
(TROM) total residual organic matter; (TLOM) total labile organic 
matter; (TOC) total organic carbon; (TROC) total residual organic 
carbon; (TLOC)total labile organic carbon; (HA) extracted humic acid; 
(FeCBD) citrate‐bicarbonate‐dithionite extracted Fe; (FeCA) citrate‐
ascorbate extracted Fe; (FeTOT) total Fe; (FeNH‐HCl) hydroxylamine 
hydrochloride extracted Fe; (PCBD) citrate‐bicarbonate‐dithionite 
extracted P; (PCA) citrate‐ascorbate extracted P; (PTOT) total P. 

Table 2. 1  
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Parameter    Value         Replicate(s) 

FeTOT (mg/g)    10.11 ±0.15         3 
FeNH‐HCl (mg/g)    1.24 ±0.02         5 
Fe(II) (mg/g)    1.15 ±0.09         5 
PTOT (mg/g)    6.47 ±0.1         3 

Sample  % C  % H  % N  % S  % O 

HA Ex  50.42  5.21  4.73  0.43  39.21 
HA St  54.11  4.24  4.04  0.23  37.38 

HA Fe and P Characterizations. Values equal ± one standard deviation. 
(FeTOT) Total Fe; (FeNH‐HCl) hydroxylamine hydrochloride extracted Fe; (Fe(II)) 
0.5 M HCl extracted Fe(II); (PTOT) total P.  

Table 2. 2  

Table 2. 3  

Elemental Analysis of HA Samples. Percentages (%) of C,H,N,S, and O for extracted humic 
acid (HA Ex) and IHSS Elliott Soil standard humic acid (HA St) samples. 



82 
 

 

 

 

Parameter  tmt  Pr>F  Adj R2  β1  SE β1 

Fe(II)  NaN3  <0.0001  0.47  0.006  0.0013 
  SW  <0.0001  0.92  0.7  0.0364 
  AQDS 0.2  <0.0001  0.834  0.571  0.0456 
  HA 1.24   <0.0001  0.955  0.895  0.0343 
  HA 4.96  <0.0001  0.981  1.356  0.0336 
  HA 9.92   <0.0001  0.979  1.798  0.0462 
           
Fe‐ICP  NaN3  0.023  0.142  ‐0.012  0.0052 
  SW  <0.0001  0.895  0.655  0.0396 
  AQDS 0.2  <0.0001  0.91  0.792  0.0447 
  HA 1.24   <0.0001  0.939  0.839  0.0379 
  HA 4.96  <0.0001  0.975  1.227  0.0347 
  HA 9.92   <0.0001  0.973  1.614  0.0471 
           
P‐ICP  NaN3  0.0002  0.382  2.39  0.549 
  SW  <0.0001  0.888  7.707  0.484 
  AQDS 0.2  <0.0001  0.935  8.713  0.412 
  HA 1.24   <0.0001  0.876  8.655  0.5752 
  HA 4.96  <0.0001  0.878  7.18  0.4721 
  HA 9.92   0.5493  ‐0.02  0.464*  0.7669 
           
CO2  NaN3  <0.0001  0.91  0.55  0.0324 
  SW  <0.0001  0.992  1.29  0.021 
  AQDS 0.2  <0.0001  0.974  1.23  0.036 
  HA 1.24   <0.0001  0.989  1.47  0.0271 
  HA 4.96  <0.0001  0.991  1.85  0.0317 
  HA 9.92   <0.0001  0.983  2.28  0.0531 

           
 

 

 

 

 

 

 

Table 2. 4  

SAS regression output for incubation Fe(II), Total Fe, Total P, and CO2. (*) Pr < 0.05. 
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CHAPTER 3: REDOX POTENTIAL FLUCTUATION IN A TEMPERATE 

PASTURE SOIL 

 

Abstract 

The present study measured the redox potential (Eh) fluctuation in an Appalachian 

pasture soil (12-15% slope) during the summer and autumn of 2007 and 2008.  This Eh data 

complements a 42 day anaerobic laboratory incubation of the same field soil in which soluble 

Fe(II), soluble total Fe, soluble total P, CO2 evolution, and Eh were determined.  The purpose for 

collecting field Eh was to satisfy a condition set forth by the incubation experiment– that 

sufficient Eh values exist in the field to facilitate bacterial-reduction of Fe(III)/P surface 

complexes.  Stable redox potentials, as low as -200 mV over a 60 day interval, were measured 

during the field experiment.  Seasonal Eh fluctuation in the soil was shown to be related to soil 

moisture and frequency of precipitation.    
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Introduction 

Redox potential is a governing parameter of all biological and chemical systems in the 

environment (Madigan et al., 2003).  Enzymatic reactions of soil microorganisms and soil 

mineral transformations under reducing conditions have been extensively studied (Lovley and 

Phillips, 1988; Lovley et al., 1996; Benz et al., 1998; Zachara et al., 1998; Zhang et al., 2003; 

Marsili et al., 2008).  In particular, new models have been proposed to explain how tropical soils, 

classically thought to be continuously oxidized or display minor seasonal redox changes, can 

greatly influence Fe and P cycling through microbial reduction of Fe(III) oxyhydroxides 

(Peretyazhco and Sposito, 2005; Chacon et al., 2006). 

The reduction of metals in the field by native bacteria is important from both a 

microbiological and agronomic standpoint.  Specifically, the reduction of Fe oxyhydroxides in 

the soil can release adsorbed P into solution.  In soils of low fertility, even small amounts of P 

solubilized from Fe(III)-reduction could be critical for plant development (Peretyazhco and 

Sposito, 2005).   

Most research with Fe(III) reducing bacteria has been conducted outside of the natural 

system (Kostka and Nealson, 1998).  Consequently, this data cannot be directly applied to the 

field.  However, several parameters have the potential to link laboratory experiments to naturally 

occurring anaerobic-processes in the environment.  Examples include pH, temperature, redox 

potential, native microbial population, and soil-specific electron mediators such as humic acid 

(HA) (Lovley et al., 1996; Peretyazhco and Sposito 2005).   

In this study, Eh was measured in the field to complement a 42 day anaerobic, laboratory 

incubation of the same field soil (Ch. 2).  Soluble Fe(II), soluble total Fe, soluble total P, CO2 
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evolution, and Eh were determined during the laboratory incubation.  Soluble Fe(II) and total P 

were shown to increase with decreasing Eh.  The purpose for collecting field Eh was to verify 

that sufficient Eh values exist in the field to facilitate bacterial-reduction of Fe(III)/P surface 

complexes. 

Materials and Methods 

Redox data were collected from a slightly concave position on a NW-facing sideslope 

(12-15% slope) located at the West Virginia University Agronomy Farm in Morgantown, WV 

(39° 39' 16.70" N, 79° 54' 7.16" W).  Dekalb (loamy-skeletal, mixed, mesic Typic 

Dystrochrepts) and Gilpin (Fine-loamy, mixed, mesic Typic Hapludults) are the dominant 

residual soils in the area and are generally more acid than the surrounding soils (Wright et al., 

1982).  The site does not receive frequent (i.e. annual) applications of lime or fertilizer, and does 

not presently contain grazing livestock.  It is topographically variable, including steep slopes and 

natural drainages, with grass (harvested for livestock forage) serving as the main source of 

productivity.  The vegetation was examined in the field to identify potential indicator species for 

wet and/or poorly drained soil.  A species of the Cyperaceae family was observed (similar to 

field sedges), but exact identification was not possible due to lack of maturity.   

Platinum redox electrodes used to measure field Eh values were constructed using the 

design philosophies of Patrick et al. (1996) and Wafer et al. (2004) with modifications (Figure 3. 

1).  Each of nine electrodes was assembled by first heating the end of a 30 cm length x 10 mm 

diameter glass tube with a propane torch.  When the heated end constricted to just greater than 

1.0 mm in diameter, 4.0 mm of a 15 mm length x 1.0 mm diameter solid platinum wire (Sigma-

Aldrich, St Louis, MO, USA) (that had been cleaned with sandpaper) was inserted into the 

malleable opening.  This end was carefully heated again, with slow rotation along the length of 
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the glass tube, until 4.0 mm of glass had sealed against the platinum wire.  The platinum inside 

the electrode was 4.0 mm long, and the platinum exposed on the outside was 7 mm long. 

Separately, a 1.6 mm diameter x 3 mm deep hole was drilled into the end of a 3.18 mm 

diameter low-fume-bare bronze brazing rod (LFBB) (Radnor Welding Products, Radnor, PA, 

USA) cut to a length of 37.5 cm.  The rod was vertically clamped to a wooden surface, and the 

drilled end was carefully heated with a propane torch and filled with 1.5 mm diameter electrical 

rosin core solder (Lenox, East Longmeadow, MA, USA).  After the solder had filled the hole and 

had cooled, it was indirectly heated again with the torch.  The glass tube/platinum assembly was 

then quickly lowered over the rod, so that the suspended platinum inside the tube seated into the 

molten solder.  Sufficient time was allowed to pass for the solder to cool, and the strength of the 

junction was checked.   

A piece of adhesive-lined polyolefin, 6.35 mm diameter, heat-shrink tubing (McMaster-

Carr Supply Co., Atlanta, GA, USA) was then slipped over the bronze rod, so that it covered the 

length up to the platinum junction, and left 10 mm of bronze exposed at the opposite end.  The 

entire assembly was heated very slowly above the flame of a Bunsen burner until the tubing 

adhered tightly to the rod.  After cooling, shaved red sealing wax (Fisher Scientific, Pittsburgh, 

PA, USA) was emptied into the glass tube, covering the platinum junction, and was then 

carefully melted over a Bunsen burner.  The open end of the electrode was sealed with a small 

amount of silicone rubber, which was then covered and sealed with 12.7 mm diameter heat-

shrink tubing (McMaster-Carr Supply Co., Atlanta, GA, USA).  An overlapping piece of 6.35 

mm diameter heat-shrink tubing was then used to cover the seal formed between the 12.7 mm 

diameter heat-shrink tubing and the insulated bronze rod.     
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A layer of 5.0 cm wide x 3.18 mm thick rubber insulation tape (Thermwell Products Co., 

Inc., Mahwah, NJ, USA) was wrapped around ¼ of the glass probe’s length, starting near the 

platinum end, but not completely covering it.  The probe was inserted into a 31 cm length x 1.27 

cm diameter PVC pipe.  Silicone rubber was applied to the bronze-end of the pipe, and a drilled 

PVC cap was slipped over the bronze rod.  The top of the cap was also sealed with silicone 

rubber.  The glass/platinum junction at the opposite end of the probe was left exposed by 7 mm.  

Loctite Marine epoxy (Henkel, Hagen, Germany) was used to seal the end of the pvc pipe against 

the exposed glass/platinum junction.  The platinum wire did not come in contact with the epoxy.   

Reference electrodes (Ag/AgCl) were assembled using a method similar to that of 

Sawyer et al. (1995).  A 4 mm diameter Vycor porous-glass frit (#G0100) (Princeton Applied 

Research, Oak Ridge, TN, USA) was attached to the end of a 15 cm length x 4 mm diameter 

Pyrex glass tube (Fisher Scientific) by heat-shrink Teflon tubing (Princeton Applied Research, # 

G0100).  The glass tube was then filled with a saturated KCl solution and an 11 cm length of 0.5 

mm diameter silver wire (Aldrich).  Teflon tubing was used as a cap, with 4 mm of silver wire 

left exposed for electrical contact.  The silver wire was electroplated with AgCl by using a 

counter platinum electrode in circuit with a 9V battery and a 1MΩ resistor (RadioShack, Fort 

Worth, TX, USA). 

An auto-range digital multimeter (RadioShack, Fort Worth, TX, USA), connected to a 

platinum electrode and a AgCl reference electrode, was used to measure Eh (mV).  Probe 

function was checked by two standard solutions made up of a small fraction of quinhydrone 

mixed in either a pH 4 or pH 7 buffer (Fisher Scientific) (Patrick et al., 1996; Owens et al., 

2005).  Probes were first installed at the field site on 8/22/07.  Channels were made in the soil 

with PVC pipe of the same diameter as the platinum electrodes.  Probes were then seated into the 
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soil.  The nine electrodes were equally spaced within a 5.0 m2 area, which centered on a 46 m 

(down slope) x 23 m (across slope) parameter subsequently used for incubation-soil sampling.  

Three electrodes were installed at a depth of 10, 15, and 20 cm in a staggered-down slope 

orientation (Figure 3. 2). 

Redox values were recorded, on average, every 3 days from 8/22/07 to 11/28/07.  

Electrodes were left in the ground through the winter months (December 2007 to February 

2008).  The second cycle of redox measurements began on 6/04/08 and ended on 10/12/08.  

Electrodes were removed from the field on 6/05/08 for testing and physical evaluation.  

Potentials were within ±10 mV of standard solutions.  The probes were reinstalled on 6/06/08, 

and data was recorded, on average, every 2 days after measurements resumed on 6/10/08.  

Moisture and temperature data were collected from 7/02/08 to 10/12/08.  Moisture (%) was 

measured with a Hydrosense detector (Campbell Scientific, Inc., Logan, UT, USA) and 

temperature with an HI 9063 microcomputer, k-thermocouple thermometer (Hanna Instruments, 

Inc., Woonsocket, RI, USA).  Continuous precipitation data (daily totals) for the entire 

experiment were obtained from the Morgantown Municipal Airport, located 2 km from the field 

site.  

Results and Discussion 

For the 8/22/07 to 11/28/07 period, Eh values showed oxidizing conditions, which 

approached +400 to +600 mV by Julian day 274 (Figure 3. 3).  It is important to note that a total 

of 62.23 mm of rainfall was observed between Julian days 231and 233, which could explain why 

some of the probes displayed an average Eh of -100 mV on Julian day 234 (the first day of 2007 

data collection).  Beginning on Julian day 294, a series of precipitation events marked a slight, 

average drop in Eh (approximately +600 mV to +400 mV), which continued until Julian day 332.  
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It is important to note that little precipitation was observed between Julian days 234 and 279, 

explaining the oxidizing conditions during this period.   

Redox values stabilized around -200 mV through the entire month of June 2008 (Figure 

3. 4), ending by mid August 2008 (Julian day 244 for field redox 7/02/08 to 10/12/08 data) 

(Figure 3. 5).  During the month of May 2008, steady precipitation was observed for 20 out of 31 

days including 27.18 mm of rainfall on Julian day 152, which could explain why some of the 

deeper probes displayed an average Eh of -200 mV on Julian day 156 (the first day of 2008 data 

collection).  The corresponding precipitation data is reinforced by the soil moisture data.  Both of 

these parameters together explain the Eh fluctuation observed in 2008.  The strong 

correspondence between soil moisture, precipitation, and Eh in 2008 is critical, because it not 

only supports the precipitation/Eh relationship proposed for 8/22/07 to 11/28/07, but also 

demonstrates seasonal redox changes that are dependent upon precipitation in the field.  Finally, 

Eh values as low as -200 mV were measured between the upper 10 and 20 cm of soil during the 

summer of 2008, based upon electrode depth. 

Conclusion 

The data provide evidence that Eh fluctuation is sufficient to display Fe(III) reduction in 

the top 10-20 cm of an Appalachian pasture soil on a 12-15% slope.  The reduction potential of 

the Fe(III)/Fe(II) redox couple is approximately +50 mV at pH 7 in soils (Masscheleyn et al., 

1990).  During this study, stable Eh values as low as -200 mV persisted for approximately 60 

days in the summer of 2008.  Seasonal Eh fluctuation during the field experiment corresponded 

strongly to soil moisture and frequency of precipitation.   

Reduction of Fe(III) minerals in pasture soils is of agronomic importance.  Such mineral 

transformations have been shown to increase the concentration of plant available P in nutrient 
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limited environments.  Also, any P released by the microbial reduction of Fe minerals, during 

high frequencies of precipitation, could theoretically add to P concentrations in runoff.  Such Eh-

dependent processes could be important for both highly fertilized and natural soils.  Knowledge 

of the mechanisms controlling this cycle could allow for more accurate mineral/nutrient 

modeling and more efficient land-management practices in temperate pasture soils. 
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Figures  

 

 

 

 

  

Figure 3. 1 Schematic of platinum electrodes . The figure on the left shows the 
primary glass/platinum electrode with labeled components. The figure on the right 
shows the primary electrode encased in a PVC tube with labeled components.  
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Figure 3. 2 Schematic of platinum electrode orientation in the field. 
Schematic shows each probe labeled by depth and relative position within 
a 5.0 m2 area. 

mid‐slope 

upslope 

downslope 



95 
 

 

 

‐200

‐100

0

100

200

300

400

500

600

700

234 254 274 294 314

Eh
 (
m
V
)

Time (Julian days)

Probes at 10 cm Depth

upslope

mid‐slope

downslope

‐200

‐100

0

100

200

300

400

500

600

700

234 254 274 294 314

Eh
 (
m
V
)

Time (Julian days)

Probes at 15 cm Depth

upslope

mid‐slope

downslope

b 

a 



96 
 

 

 

 

‐200

‐100

0

100

200

300

400

500

600

700

234 254 274 294 314

Eh
 (
m
V
)

Time (Julian days)

Probes at 20 cm Depth

upslope

mid‐slope

downslope

0

5

10

15

20

25

30

234 249 264 279 294 309 324

P
re
ci
p
it
at
io
n
 (
m
m
)

Time (Julian days)

c 

d 

Figure 3. 3 Soil redox potential at (a) 10 cm depth, (b) 15 cm depth, (c) 
20 cm depth, and (d) continuous precipitation for the period 22 Aug. 
2007 to 28 Nov. 2007. 
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Figure 3. 4 Soil redox potential at (a) 10 cm depth, (b) 15 cm depth, (c) 20 
cm depth, and (d) continuous precipitation for the period 4 June 2008 to 
1 July 2008. 
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Figure 3. 5 Soil redox potential at (a) 10 cm depth, (b) 15 cm depth, (c) 20 cm 
depth, (d) continuous precipitation, (e) soil moisture, and (f) soil temperature for 
the period 2 July 2008 to 12 Oct. 2008. In figure (c), the Eh values of the mid‐
slope and downslope probes overlap. 
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CHAPTER 4: CONCLUSIONS 

 

The novelty of the research presented in this thesis most certainly arises from revisiting 

old ideas and, in some instances, by bypassing tradition.  Specifically, the data gives evidence 

that bacteria can use native humic substances in pasture soils to catalyze Fe reduction and 

subsequent P solubilization.  Based upon the literature, which has historically evaluated similar 

mechanisms in flooded environments (predominantly anoxic), it had been assumed that 

topographically variable, agricultural landscapes (those that have not been flooded or otherwise 

disturbed) do not demonstrate significant Fe reduction and associated P solubilization.   

New research has proposed that Fe reduction coupled to P desorption is an important 

process in predominantly oxidized tropical soils.  Little research, if any, has examined this 

process with the same scrutiny in temperate pasture systems.  The data collected in this thesis 

gives evidence that the microbial reduction of Fe in pastures is linked to P cycling, and that the 

cycle includes native humic electron mediators.  Additionally, by using robust platinum 

electrodes in the field to measure redox potential over a 2 year period, it was possible to further 

support the theory that such a mechanism exists in the environment.  Laboratory incubation data 

and field redox data are usually disjoint in the literature.  The data presented here offers multiple 

connections between lab results and the natural system:  Eh, pH, temperature, native HA, and 

native microbial population. 

Future research that seeks to define the mechanisms of Fe reduction and P solubilization 

in temperate pasture soils should consider the many possible angles from which to work.  For 

example, a project might be conducted in which HA is tested for competitive adsorption with P 
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on Fe(III) oxyhydroxide surfaces.  Such research might expand the catalytic role of HA, 

concerning electron shuttling, to include a purely chemical role by which HA exchanges with P 

at the Fe-mineral surface in pasture soils. 

The same experimental procedure carried out in this thesis (i.e. the lab incubation and the 

field-data collection) could be carried out in fertilized soils, especially soils that are sources of P-

pollution for aquatic environments.  Both organic and inorganic materials would increase the 

concentration of soil phosphorus.  Based on the data reported here, it is reasonable to 

hypothesize that much greater concentrations of P could be lost under anaerobic conditions, 

related to seasonal changes (frequency of precipitation), from larger, more active agriculture 

landscapes that apply fertilizers.  

From a microbiological standpoint, the successful isolation of novel Fe-reducing bacteria 

from temperate pasture soils would be extremely relevant to modern microbiology.  Potentially, 

new methods of isolation might have to be developed in order to culture such organisms in the 

lab.  And if a researcher was fortunate enough to obtain a viable isolate, any analytical technique 

ranging from genetic fingerprinting to electrochemical studies could be used to classify it.  

Establishment of biogeochemical parameters of the organism could be strengthened by the 

networking of soil microbiologists and soil chemists– a prospect worth considering in the long 

run. 

From a chemical standpoint, the type of data reported here would be advanced even 

further by using modern electrochemical techniques.  Specifically, potentiostats and 

electrochemical cells could be used to examine the mechanisms of Fe-surface chemistry in 

temperate pasture soils.  Electrochemical analysis is also used for biological experiments in 



104 
 

much the same way as for chemical experiments.  Again, the research could greatly benefit from 

the networking between the fields of soil microbiology and soil chemistry.             

Finally, there is no universal agreement on the chemical structure or biogeochemical 

relevance of humic substances in soils.  Studies could be conducted on the molecular structure of 

novel HA extracted from different locations.  For example, laboratory procedures, such as 

functional group and elemental analysis could supplement FTIR and NMR techniques to develop 

new methods for HA characterization.  Quinonoid, phenolic, and Fe(III) containing functional 

groups could collectively serve as a starting point for characterization, since these groups are 

associated with the electron-mediating capacity of humic substances.  Ultimately, a project could 

attempt to correlate quinone concentration (for example) with a certain region of the 13C-NMR 

spectrum common to humic substances, thereby removing some of the ambiguity that inhibits 

proper peak assignment.  Different methods for size separation and fractionation could also be 

explored in the future.  One such idea might involve using ultrasound at different frequencies and 

time intervals on a HA sample, which could then be characterized with 13C-NMR.  Theoretically, 

ultrasound treatments could break the bonds between certain chemical groups in HA, possibly 

rendering segments of the 13C-NMR spectrum with higher resolution.   
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APPENDICES 

Appendix 1 preliminary ferrozine and ammonium-molybdate experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Detection Limit Definition  mg/L 

Instrument Detection Limit                                                    0.16 

Lowest Limit of Detection                                                    0.27 

Method Limit of Detection                                                    0.74 

Limit of Quantification                                                    1.60 

Practical Quantification Limit                                                    3.70 

  

 

Detection Limit Definition  µg/50 mL 

Instrument Detection Limit                                     0.57 

Lowest Limit of Detection                                     1.14 

Method Limit of Detection                                     1.41 

Limit of Quantification                                      5.70 

Practical Quantification Limit                                      7.05 

  

Ferrozine Detection Limits for Fe(II)

Ammonium‐Molybdate Detection Limits for P
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Ferrozine and ammonium molybdate change with time graphs 
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Appendix 2 Propylene Oxide (PO) Treatment Results and Discussion 

 

Propylene Oxide Treatment:  pH, Eh, Fe, P, and CO2     

The PO treatment displayed the second lowest rates for chemical parameters measured 

during the incubation, excluding P-ICP and pH.  The slopes for Fe(II) and Fe-ICP were 0.16 and 

0.17 mg kg-1 day respectively.  Concentrations of PO P-ICP (PO P-ICP slope = 5.26 µg kg-1 day) 

showed the largest degree of variation compared to other treatments.  This is important to 

address, since the PO treatment seemed to act as a microbial inhibitor, but simultaneously 

showed higher levels of solubilized P-ICP than any other treatment.  When the P-ICP graphs and 

Fe graphs were compared to those for CO2 (PO CO2 slope = 0.87 µg g-1 day), it was observed 

that the PO treatment, unlike all other treatments, deviated strongly only for P-ICP.  In other 

words, CO2 evolution did not support the observed levels of P solubilization observed for the PO 

treatment, which would have supported a metabolic mechanism for P release over time.  This 

observation implies an abiotic-chemical reaction between propylene oxide and soil that 

influences P solubilization.  The reaction might be partially explained by propylene oxide 

interactions with carboxyl groups in organic-phosphate complexes or through surface reactions 

at the mineral surface (Wolf et al., 1989).  Also, the error around data averages was larger for the 

PO treatment than any other treatment.  For these reasons, the PO treatment could not be 

considered analogous to the NaN3 treatment as an effective inhibitor, and was graphically 

separated from all other treatments.  The above information concerning the PO treatment was 

derived from the following figures. 
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The above figures show all PO oxide data that were omitted from 

the main text. 
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Appendix 3 SAS regression analysis 

 

 

 

 

 

 

 

 

 

 

 

tmt  df  MSE  Pr>F  Adj R2  β0  SE β0  β1  SE β1 

NaN3  29  0.01  <0.0001  0.47  0.026  0.0307  0.006  0.0013 
PO  31  35.728  0.0414  0.103  0.351  1.813  0.158  0.074 
SW  32  8.914  <0.0001  0.92  ‐3.744  0.9048  0.7  0.0364 
AQDS 0.2  31  13.521  <0.0001  0.834  ‐2.135  1.1519  0.571  0.0456 
HA 1.24   32  7.935  <0.0001  0.955  ‐3.501  0.8536  0.895  0.0343 
HA 4.96  32  7.61  <0.0001  0.981  ‐2.05  0.836  1.356  0.0336 
HA 9.92  32  14.361  <0.0001  0.979  ‐1.197  1.148  1.798  0.0462 

     

tmt  df  MSE  Pr>F  Adj R2  β0  SE β0  β1  SE β1 

NaN3  29  0.166  0.023  0.142  1.314  0.128  ‐0.012  0.0052 
PO  31  42.154  0.0447  0.099  1.031  1.97  0.169  0.0804 
SW  32  10.575  <0.0001  0.895  ‐1.99  0.9854  0.655  0.0396 
AQDS 0.2  31  12.996  <0.0001  0.91  ‐1.426  1.129  0.792  0.0447 
HA 1.24   32  9.679  <0.0001  0.939  ‐1.701  0.9428  0.839  0.0379 
HA 4.96  32  8.096  <0.0001  0.975  0.831  0.8623  1.227  0.0347 
HA 9.92  32  14.979  <0.0001  0.973  3.43  1.173  1.614  0.0471 

     

Soluble Fe(II) 

Soluble Total Fe 

(*) Pr < 0.05 

(*) Pr < 0.05 
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tmt  df  MSE  Pr>F  Adj R2  β0  SE β0  β1  SE β1 

NaN3  29  1862.23  0.0002  0.382  40.727  13.543  2.39  0.549 
PO  31  22796  0.0085  0.183  365.14  45.805  5.263  1.87 
SW  32  1576.84  <0.0001  0.888  0.592  12.033  7.707  0.484 
AQDS 0.2  31  1100.1  <0.0001  0.935  32.77  10.39  8.713  0.412 
HA 1.24   32  2229.88  <0.0001  0.876  30.254  14.31  8.655  0.5752 
HA 4.96  32  1502.04  <0.0001  0.878  184.776  11.7446  7.18  0.4721 
HA 9.92  32  3963.7  0.5493  ‐0.02  451.282  19.0786  0.464*  0.7669 

     

tmt  df  MSE  Pr>F  Adj R2  β0  SE β0  β1  SE β1 

NaN3  29  6.47E‐12  <0.0001  0.91  2.74  0.798  0.554  0.0324 
PO  31  6.12E‐11  <0.0001  0.717  1.97  2.37  0.865  0.0969 
SW  32  2.98E‐12  <0.0001  0.992  0.439  0.523  1.29  0.021 
AQDS 0.2  31  8.41E‐12  <0.0001  0.974  1.5  0.909  1.23  0.036 
HA 1.24   32  4.95E‐12  <0.0001  0.989  2.34  0.674  1.47  0.0271 
HA 4.96  32  6.75E‐12  <0.0001  0.991  7.46  0.787  1.85  0.0317 
HA 9.92  32  1.9E‐11  <0.0001  0.983  11.9  1.32  2.28  0.0531 

     

Soluble Total P 

CO2 Evolution 

(*) Pr < 0.05 

(*) Pr < 0.05 
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Appendix 4 Additional NMR experiments  

 

 

 

 

Chemical Shift δ (ppm)

a 

b 

1H‐NMR spectra of HA samples. (a) Humic acid extracted from soil. (b) IHSS 

Elliott Soil standard. Samples prepared in 3 M NaOD in D2O.  



115 
 

 

 

 

Chemical Shift δ (ppm)

13C‐NMR of AQDS and benzoquinone. (a) 40 mg AQDS (used in 

the incubation experiment) and (b) 40 mg p‐benzoquinone 

prepared in 1 ml D2O. 

a 

b 
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Heteronuclear Multiple Bond Correlation (HMBC) NMR of AQDS used during the incubation. 

F2 chemical shift is for 1H and F1 chemical shift is for 13C. Arrows around AQDS molecule 

show H‐C J‐couplings. The figure shows, and confirms, which H atoms are nearest to which 

C atoms. The correct molecular structure of AQDS was confirmed by the HMBC NMR 

experiment. AQDS (40 mg) was prepared in 1 ml D2O.   
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