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Abstract 

The role of SIRT1 in skeletal muscle function and repair of older mice 

 

Matthew John Myers 

 

Human skeletal muscle is a highly metabolic tissue necessary for mobility and 

coordination. Responsible for approximately one-fifth of the resting human metabolism, skeletal 

muscle is also an important regulator of metabolites like glucose and contributes to the regulation 

of body temperature. Although there is a gradual decline in muscle mass associated with aging, 

a certain percentage of the population suffer from severe muscle mass and strength deterioration, 

classified as sarcopenia (5-13% for people aged 60-70 years old, 11-50% for those 80 or older). 

Sarcopenia is linked to increased morbidity and mortality rates in the elderly population, while 

annual healthcare costs related to sarcopenia total in the millions of dollars. Because the 

prevalence of sarcopenia is expected to increase as a larger percentage of the population 

transitions into old age, it becomes imperative to understand the mechanisms of aging and 

longevity so that more effective interventions can be taken against age-related muscle 

deterioration. Our laboratory has previously demonstrated that resveratrol, a known activator of 

the protein sirtuin 1 (SIRT1), was effective in enhancing human muscle adaptations to exercise 

in elderly populations. A rich body of literature has long supported the association of SIRT1 with 

longevity, but there are still gaps in our knowledge of how SIRT1 expression affects the 

functionality and performance of muscles in aging skeletal muscle. Furthermore, SIRT1 has been 

shown to be important in the function of muscle satellite cells—which are muscle stem cells that 

are responsible for the majority of muscle regeneration. However, there is little knowledge about 

how SIRT1 expression affects muscle regeneration and performance after injuries. To investigate 

the role of SIRT1 in the performance of aging and injured skeletal muscle, we have employed the 

use of several transgenic mouse models with differential expression of SIRT1. Using these 



 

models, we performed a series of functional muscle tests, before and after cardiotoxin (CTX) 

induced muscle injuries, to identify and compare muscle aptitude and recovery capability. Skeletal 

muscle sections from each model were also taken to identify differences in muscle fiber size and 

type distribution. Additionally, both mitochondria and satellite cells were isolated from these 

models to assess whether SIRT1 expression contributed to differences in metabolic or 

regenerative capacities. We found that there was little functional difference between young wild-

type (YWT, aged 20-30 weeks) and aged (80+ weeks old) wild-type (WT-80), SIRT1 

overexpressor (OE-80), and SIRT1 muscle-knockout (MKO-80) mice in either force production or 

fatigability in the absence of intervention. Mice lacking SIRT1 expression in their satellite cells 

(SKO-80), however, did show a reduction in force production. Interestingly, both the OE-80 and 

MKO-80 mice showed significant (P < 0.05) increases for p53 expression and reduced fatigability 

after recovering from injury, with the SIRT1 overexpressor model showing some signs of muscle 

potentiation. MKO-80 mice showed a significant increase in satellite cell regeneration (P < 0.05) 

in vitro when analyzed with EdU, but no difference in proliferation when compared in vivo with 

BrdU, indicating that SIRT1 expression in adult skeletal muscle may be an early factor in limiting 

the proliferation of satellite cells. The mitochondrial and structural profiles of each model were 

found to have minimal differences. Overall, our data indicate that although SIRT1 expression in 

skeletal muscle does not seem to be necessary for normal muscle function after injury, it does 

exert some influence in muscle repair. Altering SIRT1 expression either positively or negatively in 

skeletal muscle improves muscle fatigability in injury-recovered muscles, indicating a potential 

regulatory role for SIRT1 in skeletal muscle, but not an essential requirement for its deacetylation 

activity. Interestingly, these alterations of SIRT1 expression in aged skeletal muscle also resulted 

in a significant increase of p53 expression, indicating a potential benefit for p53 expression to 

muscle recovery. SIRT1 expression in satellite cells was shown to be necessary to achieve 

normal contractile force, but did not affect fatigability in those muscle. Our work has indicated a 

complex role for SIRT1 in skeletal muscle regeneration. We have shown for the first time that 



 

SIRT1 is required in satellite cells for proper function, but is not essential for muscles to recover 

their functionality after injury. We have also provided evidence for a potentially new target for 

muscle recovery, the protein p53, and new insights into the role of SIRT1 in muscle recovery.  
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Specific Aims 

Muscle function peaks for the average person by 30 years of age; afterwards, most people 

experience an average decline of up to 1% muscle mass per year—a loss that can be exacerbated 

in old age (~65 years old) to up to a 3% loss per year [1]. This age-related loss of muscle mass 

is generally referred to as sarcopenia. A clinical working definition was established in 2010 by the 

European Working Group on Sarcopenia in Older People to characterize sarcopenic individuals 

as those with low muscle mass coupled with low muscle strength, where muscle mass is two or 

more standard deviations below the mean average of healthy young adults (when matched for 

sex) [2]. The focus of researchers on sarcopenic muscle wasting has increased over the last 

decade as evidence has accumulated to establish the growing relevance of sarcopenia to overall 

health. Sarcopenia is viewed most prevalently in the context of personal mobility, with the 

resultant loss of balance, coordination, and stability from muscle wasting acting as both a direct 

(impairing muscle performance) and indirect (increasing the likelihood of fall-related injuries) 

cause of physical disability [3]. Furthermore, prolonged immobility resulting from an injury or 

surgery can compound age-related muscle loss, possibly leading to permanent disability [4]. Loss 

of mobility and independence may often result in the need for assisted care or extended hospital 

stays; therefore, it is not surprising that estimates have suggested healthcare expenditures related 

to sarcopenia had cost the United States $18.5 million in the year 2000 alone [5]. 

Beyond the detriment sarcopenia brings to independence and quality of life, the loss of 

mobility resulting from age-related muscle loss also reduces the likelihood the elderly can benefit 

from physical exercise. The American College of Sports Medicine promotes the paradigm that 

“Exercise is Medicine,” a sentiment that is echoed by research touting the benefits of exercise in 

treating and preventing chronic disease [6,7]. Routine exercise is correlated with a reduced risk 

of developing cancer [8] and is recommended by the American Heart Association to help prevent 

the development of cardiovascular disease [9]. Furthermore, physical exercise is also strongly 
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recommended for the prevention and treatment of type 2 diabetes [10], signifying the importance 

of muscle not only for mobility and exercise, but also as a major metabolic regulator. Skeletal 

muscle mass accounts for roughly 20% of the body’s resting metabolism and acts to regulate 

body heat and multiple metabolites like glucose, amino acids, and fatty acids [11]. Therefore, the 

cumulative effect of muscle loss with aging has far-reaching consequences for overall health, 

necessitating further characterization of the processes that underlie both sarcopenia and aging in 

general.  

Interestingly, sarcopenia selectively causes marked atrophy and weakness in type II 

muscle fibers; whereas type I, oxidative fibers are largely spared from the most negative effects 

of aging [12]. It is largely unknown why type I fibers are selectively preserved in sarcopenia. The 

protein sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase known to promote longevity in 

several model organisms [13] and is well characterized as metabolic regulator highly associated 

with oxidative, type I muscle fibers [14]. The long-term goal of our work was to identify the 

physiological and functional relevance of SIRT1 to skeletal muscle function in aging and muscle 

recovery and to determine whether SIRT1 could function as a suitable target for interventions 

against age-related muscle deterioration. The central hypothesis of this dissertation was that 

the preservation of type I fibers in aging was related to the high expression of SIRT1 in those 

fibers and that a loss of SIRT1 would exacerbate the fatigability and attenuate force output in 

muscle of aged mice. Furthermore, we hypothesized that increasing SIRT1 would improve muscle 

functionality by improving mitochondrial health in skeletal muscle—through increasing the 

abundance of mitochondria and the enzymatic activity of mitochondrial respiratory complexes—

and by increasing muscle satellite cell abundance. We tested our hypothesis by investigating 

the following specific aims: (1) elucidate the role of SIRT1 in regulating muscle function and 

fatigue resistance in regenerating skeletal muscle of aged mice, (2) determine the role of SIRT1 

in regulating mitochondrial biogenesis and function in regenerating/aging skeletal muscle, and (3) 

determine if SIRT1 activation can improve proliferation in satellite cells in aging mice. 
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To address Specific Aim 1, we utilized 5 mouse models: YWT (young wild-type, aged 20-

30 weeks); WT-80 (wild-type mice, aged 80+ weeks); OE-80 (overexpressor mice, aged 80+ 

weeks), MKO-80 (muscle knockouts of SIRT1, aged 80+ weeks); and SKO-80 (satellite cell 

knockouts of SIRT1, aged 80+ weeks), all of which shared a common C57BL/6J background. 

These models were functionally compared via their skeletal muscle force generation and 

fatigability, factors which were induced by electrical stimulation of the hindlimbs. Our working 

hypothesis was that the loss of SIRT1 would exacerbate skeletal muscle fatigability and reduce 

muscle force after injury, while overexpression of SIRT1 would protect against these effects.  

To address Specific Aim 2, we isolated mitochondria from skeletal muscles of our aged, 

transgenic mouse models and compared the number and size of mitochondria, as well as the 

mitochondrial membrane potential and complex activity. Our working hypothesis was that the loss 

of SIRT1 in the skeletal muscle knockout and satellite cell knockouts models of aged mice would 

reduce mitochondrial activity and increase mitochondrial dysfunction in mature skeletal muscle.  

To address Specific Aim 3, we induced muscular injury in our mice through the 

administration of cardiotoxin (CTX) isolated from the Mozambique spitting cobra (Naja 

mossambica). We then administered 5-bromo-2’-deoxyuridine (BrdU) through drinking water with 

ad libitum access and allowed the mice to recover for 3 weeks. After the mice recovered from 

their injuries, we evaluated their muscle performances and the number of BrdU positive nuclei as 

a measurement of proliferation. Additionally, we isolated satellite cells from each model and 

labeled the cells with 5-ethynyl-2’-deoxyuridine (EdU). EdU labeled cells were then allowed to 

proliferate and were subsequently quantified as a measurement of satellite cell proliferation. Our 

working hypothesis was that overexpression of SIRT1 would improve muscle satellite cell-

mediated skeletal muscle regeneration and muscle function after injury by increasing the 

proliferation of satellite cells.  

The data generated from this study was significant because it expanded upon previous 

work, which mainly characterized structural, biochemical, or metabolic differences in skeletal 
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muscle associated with altered SIRT1 expression, and did not investigate the translational effects 

these differences had on actual muscle performance. Furthermore, our findings were novel in that 

they highlighted a potentially important association between the expression of SIRT1 and p53 

during skeletal muscle repair, enhancing our understanding of the repair process of skeletal 

muscle in aging mice. 
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Literature Review 
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1.1 Aging Skeletal Muscle: Sarcopenia 

In a letter dated August 4th, 1836, Charles Darwin wrote to his sister, “…I shall act, as I 

now think—that a man who dares to waste one hour of time has not discovered the value of life.” 

This small sentiment of Darwin unintentionally illustrates the underlying nature of longevity 

research: time is a fundamentally valuable, but limited resource. Scientific study and modern 

medicine have long benefitted human health; the Center of Disease Control (CDC) FastStats, for 

example, detail a progressive increase in life expectancy (at birth) for the United States from 1900 

(47.3 years) to 2015 (78.7 years) [1]. Modern science, however, credits Dr. Nathan W. Shock as 

the “father of gerontology,” due in part to his landmark, longitudinal study detailing the age-related 

changes in physiological function across the heart, kidneys, lungs, nerves, and brain [2]. His study 

was the first to markedly observe differential rates of functional decline between individuals and 

spurred forward new investigations into the process of aging. The intricacies of aging have been 

examined to mechanistic levels across a vast spectrum of models and tissues, including skeletal 

muscle. Currently, the majority of investigations into aging skeletal muscle are framed within the 

context of sarcopenia.  

The term ‘sarcopenia’—derived from the Greek sarx, meaning ‘flesh,’ and penia, meaning 

‘poverty,’—was established by Dr. Irwin H. Rosenberg in an effort to draw serious attention to the 

dramatic decrease in lean muscle mass observed with aging [3]. Although a cursory internet 

search generally defines sarcopenia as the loss of muscle mass with aging, more recent literature 

has attempted to define and refine the differences between general and clinical sarcopenia. The 

first attempt at a clinical definition came from a study investigating elderly Hispanic and non-

Hispanic white subjects living in New Mexico. The investigators defined the cutoff values for 

sarcopenia as two standard deviations (SD) below the mean muscle mass relative to reference 

data for sex-matched subjects 18-40 years old and quantified according to the Appendicular 

Skeletal Muscle Mass (ASM) index to account for height differences among subjects [4]. In this 
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initial study, balance abnormalities, histories of bone fractures, and falling accidents were 

associated with sarcopenia [4]. Furthermore, sarcopenia showed significant correlation with both 

age and obesity, independent of biological sex. This finding would lead to another investigation, 

establishing the existence of sarcopenic obesity (defined in that particular study as sarcopenia 

coupled with body fat greater than the 60th percentile of the study) [5]. Sarcopenic obese patients 

were identified as being significantly more likely to be male and were 2.5 times as likely to report 

functional decline according to the Instrumental Activities of Daily Living (IADL) index. Importantly, 

both obese and non-obese subjects that reported functional IADL drops were reported to have 

over a 20% increase in death rates relative to the elderly who did not show IADL drops. However, 

a growing accrual of conflicting reports initially disputed these claims by providing strong evidence 

that low relative muscle mass alone did not contribute to increased rates of disability or death 

[6,7]. Notably, analyses based on the Health, Aging, and Body Composition (HABC) longitudinal 

study following 3,075 men and women, ages 70-79, indicated that the decline of lean body mass 

alone could not account for an increase in persistent lower extremity limitation, when normalized 

only to height [8]. To the contrary, subjects defined as sarcopenic by the ASM in some cases 

showed no decline in lower extremity performance, despite their relatively low muscle mass, 

whereas including obesity as a factor allowed for better prediction of functionality loss for subjects 

classified as sarcopenic. Furthermore, a later evaluation of the HABC study also showed evidence 

that an age-associated decline of muscle strength, evaluated as the torque generated by the mid-

thigh muscle of elderly subjects, occurred independently from the loss of mass [9]. Loss of muscle 

strength was up to 5 times greater when adjusted to the relative loss of muscle CSA, and could 

occur in subjects that lost weight, in weight-stable subjects, and even in subjects that showed 

small increases in muscle CSA. The growing body of work reporting similarly conflicting results 

began to illustrate the need for a better definition of sarcopenia [10]. 
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In 2011, the European Working Group on Sarcopenia in Older People (EWGSOP) 

convened to create a consensus on the working definition of sarcopenia [6]. EWGSOP 

recommended that beyond the criterion of low muscle mass (defined by 2 SD below mean muscle 

mass of sex-matched, healthy young adults), subjects should present at least one of two criteria: 

low muscle strength (handgrip: < 30 kg men/ 20 kg women) or low physical performance (gait on 

6m course: < 1 m/s men, < 1.175 m/s women).These working definitions set a baseline for 

consensus in scientific research that aimed to reduce the variability seen in the prevalence of 

sarcopenia.  

Despite the lack of a universal adoption of the EWGSOP standard, meta-analysis of 

previously published literature—recontextualized with these standards—has identified a clear link 

with sarcopenia to mortality and functional decline [11]. Although clear epidemiological studies 

are lacking for other commonly reported outcomes of sarcopenia—including falls, fractures, and 

increased frequency and length of hospitalization—evidence does suggest that injuries can 

worsen the sarcopenic state. The most commonly studied injuries related to sarcopenia are hip 

fractures, which are cited as the most frequently occurring fall-related injuries, outside of 

superficial injuries, to persons aged ≥ 75 years old [12]. Such falls may continue to harm elderly 

patients during hospitalization, as extended bouts of muscle disuse and/or immobility have long 

been attributed to reductions in skeletal muscle and bone mass [13–15]. One cross-sectional 

study reported that at least 75% of elderly men and 50% of elderly women (> 70 years) 

hospitalized with hip fractures were attributed with sarcopenia—rates generally over 20% more 

than age-matched patients without hip fractures [16]. Longitudinal studies have also shown that 

hospitalized geriatrics with sarcopenia are significantly more likely to experience mortality in as 

few as 2 years post-hospitalization [17,18]. Sarcopenic geriatrics who do survive are faced with 

the grim aspect of rising healthcare costs. A 2004 study estimated that spending in 2000 for 

sarcopenia in the United States likely amounted to $18.5 billion in healthcare costs, just in 
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consideration of spending related to disability services, including hospitalization, rehabilitation, or 

at-home health services [19].  

1.2 Selective Atrophy of Type II Fibers with Sarcopenia  

Interestingly, sarcopenic muscle wasting does not appear to affect skeletal muscles 

homogenously. Skeletal muscle across mammals consists of heterogenous populations of 

myofibers, most easily differentiated by their contractile and metabolic properties [20]. Contraction 

properties are dependent on the expression of myosin heavy chain isoforms, which have 

differential rates of ATP hydrolysis—determinants of the twitch characteristics (i.e. whether the 

fiber is a fast-twitch or slow-twitch fiber). Type II fibers are pale muscle fibers reliant on glycolysis 

for their metabolism, are capable of undergoing marked hypertrophy, and are characterized by 

fast-twitch contractions. In contrast, type I fibers are a red, due to their rich myoglobin content, 

which is used to sequester oxygen. This oxygen is necessary for respiration, as these fibers are 

reliant on oxidative phosphorylation for their energy needs. Furthermore, type I fibers are 

characterized as slow-twitch fibers and undergo ATP hydrolysis at a slower, but more continuous 

rate.  

Characterization of skeletal muscle fibers from human subjects aged 65-86 years old has 

shown that type II fibers are smaller in their mean individual CSA and cover about 13% less total 

CSA than do type I fibers [21]. The smaller occupied area also correlates with fewer muscle 

satellite cells (MSCs) per fiber, totaling to about 0.9% fewer MSCs overall. In a separate study 

comparing the characteristics of the vastus lateralis muscle in young (24-26 years old) and elderly 

(70-72 years old) men, type II fibers were shown to decrease in in CSA up to 29% in the elderly, 

relative to a mean decline of 20% across all fiber types [22]. Furthermore, the quantity of type II 

fibers decreased by about 10%, without significant change in type I fiber quantity. Overall, these 

reductions were shown to generate a 14% reduction of CSA in aged quadricep muscles relative 
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to the control young men. This selective atrophy of type II fibers is also exacerbated with 

prolonged immobility resulting from hip fractures in elderly female patients [23].  

1.3 Loss of Muscle Satellite Cells with Type II Fibers 

Associated with the loss of type II fibers is a reduction of satellite cells and myonuclei. 

Muscle satellite cells (MSCs) are mononucleated stem cells that derive their name from their 

physiological location around myofibers, situated between the fiber’s plasma membrane and the 

muscle basal lamina [24]. The position of these muscle stem cells is critical to their function in 

vivo: damage to the host skeletal muscle activates MSCs to initiate muscle repair [25,26]. Vital to 

MSCs is the paired box 7 (Pax7) transcription factor. Mice models knocked out for Pax7 

completely lack MSC populations [27] and tamoxifen-induced inhibition of Pax7 in adult satellite 

cells severely reduces muscle repair and leads to marked muscular atrophy [28,29].  

Importantly, satellite cells contribute to muscle repair through a mechanism of asymmetric 

division, a process that maintains two distinct fates for MSCs: proliferation or differentiation [30]. 

Generally, Pax7-expressing MSCs operate in a state of quiescence with little to no activity beyond 

basal metabolism [24]. Upon activation by injury, MSCs will upregulate the expression of 

myogenic differentiation factors, which drive the asymmetric division: co-expression of Pax7 and 

MyoD (myogenic differentiation 1) commit satellite cell populations to proliferation, whereas 

expression of MyoD and downregulation of Pax7 commit these sells to differentiation [31]. 

Importantly, the pool of satellite cells available for muscle repair declines in association with aging 

[32]. Associated with the decline of satellite cell number is a loss of regenerative capacity for 

muscle repair, although this decline occurs without an associated loss of differentiation potential, 

indicating that age-related dysfunction in regeneration is associated with satellite cell abundance 

and/or proliferative capacity [33]. In association with the decline of CSA/mass linked to selective 

type II fiber atrophy, cross-sectional studies in geriatrics (>70 years of age) have also shown that 

MSC populations are specifically lower in type II muscle fibers relative to type I fibers [21]. 
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Furthermore, the decline in overall abundance of MSCs in type II fibers appears to be specific to 

those fiber types [34,35]. These data suggest that a decline in satellite cell population likely 

stemming from reduced proliferation contributes to the loss of muscle mass and function 

characteristic of sarcopenia. 

1.4 Oxidative Stress Accompanies Mitochondrial Aging in Sarcopenia 

In addition to loss of satellite cells and regenerative capacity, sarcopenic muscles have 

also been reported to express hallmarks of mitochondrial dysfunction [36,37]. Aging mitochondria 

have been associated with the dysregulation of mitochondrial fission and fusion proteins in rodent 

models, coinciding with abnormal mitochondrial structures—including extensive fragmentation 

[38]. Notably, aged rodents have been shown to have reduced levels of mitochondrial fusion 

proteins Mfn1/Mfn2 compared to young controls. A similar dysregulation has been noted in rodent 

muscles undergoing 7 days of disuse, wherein the expression of the fission proteins Mfn2 and 

Opa1 were decreased relative to rodents whose dorsiflexor muscles were activated by stimulation 

over a period of 7 days [39]. The accumulation of fragmented mitochondria in aging tissue have 

been attributed to reduced clearance of damaged mitochondria by impaired mitophagy. 

Furthermore, a recent study has linked the CRISPR/Cas9-mediated knockout of the RNA-binding 

protein Pumilio2 (Pum2) to improved mitophagy, to mitochondrial house-keeping through the 

regulation of pathway-specific proteins downstream of MFF (mitochondrial fusion factor), and to 

increased lifespan in C. elegans [40]. Mitochondrial fission proteins and healthy mitophagy have 

been shown to accompany the removal of fragmented mitochondria and are stimulated by mild 

oxidative stress [41]. Although mild oxidative stress produced by mitochondrial metabolism does 

stimulate the expression of protective antioxidants through reactive oxygen species (ROS) 

signaling [42], highly elevated levels of ROS have been associated with mitochondrial dysfunction 

and oxidative damage to cellular structures [43].  
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Sarcopenic skeletal muscles show increased rates of dysfunction relative to muscle tissue 

from non-sarcopenic subjects, including elevated levels of reactive oxygen species (ROS) and 

oxidative damage. Dysregulation of electron transport chain complexes, like cytochrome-c 

oxidase (COX), occurs more prevalently in sarcopenic muscle [44], and is a major contributor of 

ROS production in dysregulated mitochondrial metabolism associated with aging [45]. For 

example, the superoxide reactive species is produced by NADPH oxidases during oxidative 

phosphorylation [42]. Unless quenched by protective enzymes—in this case, the family of 

superoxide dismutase (SOD) proteins—superoxide can react to form more free radicals, which 

can rapidly accumulate and cause widespread oxidative damage to the cellular environment 

through radical chain reactions. As such, tissues heavily reliant on oxidative phosphorylation 

transcribe elevated levels of antioxidants and ROS scavengers—such as the glutathione 

peroxidase family of enzymes responsible for removal of H2O2—to scavenge free radicals and 

reduce the amount of oxidative damage done to cellular proteins, membranes, and DNA [46]. 

Important to the context of sarcopenia, elevated oxidative stress levels have frequently 

been associated with age-related dysfunction in tissues, particularly in skeletal muscle. Previous 

work from our lab has shown that subcutaneously implanted allopurinol inhibits xanthine oxidase 

(XO), a source of ROS production during exhaustive exercise and significantly blunts ROS 

production in the isolated mitochondria of aged mice [47]. Furthermore, this reduction of 

mitochondrial ROS was accompanied by an attenuation of force production during electrically-

stimulated isometric muscle contractions in aged rodents.  

Support for the beneficial effects of reducing oxidative stress in promoting muscle function 

have also been evidenced by the application of the dietary antioxidants (vitamins E & C) [48] and 

green tea extract (GTE), whose active ingredient is the polyphenol epigallocatechin-3-gallate 

(EGCG) [49]. Interestingly, though both models attenuated oxidative damage to the muscles, the 

profiles of protection differed between dietary supplements. Oxidative stress was shown to be 
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attenuated in GTE-treated mice through the reduction of protein carbonyls and prostaglandins—

markers of oxidative stress—and attenuated muscle wasting from disuse. These mice, however, 

did not show changes in SOD levels, which accompanied oxidative stress changes in both the 

previous XO-inhibited mice [47] and vitamin E&C treated mice [48]. Vitamin-fed mice also 

experienced an increase in muscle work after treatment in aged mice. These data suggest that 

oxidative stress negatively effects muscle throughout widespread pathways. 

1.5 SIRT1 Protein Protects against Cell Death under Stress 

 Aside from directly affecting muscle function, oxidative stress can activate pro-apoptotic 

pathways and induce cellular death. One pro-apoptotic protein shown to be activated by oxidative 

stress and elevated ROS abundance is the tumor suppressor p53. The p53 protein is known to 

regulate a wide array of cellular processes, most notably cell cycle arrest and the induction of 

apoptosis. Upregulation of p53 is a multifaceted process dependent on multiple stress-response 

pathways, but can be initiated by ROS through the initiation of the DNA-damage repair pathway 

[50]. Although the elevation of ROS levels alone is not strongly linked to increased cell mortality, 

elevated ROS levels have been linked to increased cell mortality when co-induced with p53 in 

H1299 lung carcinoma cells [51]. Interestingly, elevated p53 abundance is linked to aging through 

the DNA-repair pathway, as the accrual of DNA damage is shown to correlate with age across 

multiple tissue types in human models [52]. In skeletal muscle, p53 abundance is also shown to 

be elevated in the muscles of C57BL/6-background murine models undergoing prolonged 

immobilization, linking p53 abundance to disuse-induced muscle atrophy. Indeed, the transgenic 

knockdown of p53 in these immobilized mouse models significantly attenuates muscle atrophy 

[53]. 

 One protein that is associated with both oxidative fibers and with inhibiting p53-induced 

cellular death is sirtuin 1 (SIRT1) (Fig 1-2). SIRT1 is an NAD+-dependent histone deacetylase. 

Aside from histone deacetylation, SIRT1 has also been shown to directly deacetylate non-histone 
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proteins to promote or inhibit their function; indeed, one of the first non-histone proteins shown to 

be targeted for direct deacetylation by SIRT1 is p53 [54]. Targeted knockdown of SIRT1 in yeast 

has been shown to increase the acetylation of p53 and reduce yeast lifespan, whereas 

overexpression of SIRT1 decreases p53 acetylation and improves lifespan. Conversely to 

protecting cellular integrity under oxidative stress, the transgenic knockdown of SIRT1 in leukemia 

cells has been established as a method to promote p53’s downstream apoptotic pathways in 

order to inhibit chronic myelogenous leukemia tumorigenesis [55].  

 The protective effects of SIRT1 against muscle atrophy have also been shown through its 

inhibition of the forehead box O (FOXO) family of proteins. FOXO proteins are a family of 

transcription factors known to promote apoptosis through the transcription of FasL, the ligand for 

the Fas-dependent cell-death pathway, and through activation of the pro-apoptotic Bim (Bcl2-like 

protein 11), a member of the Bcl-2 (B-cell lymphoma 2) family of proteins [56]. The Bcl-2 family 

of proteins inhibit apoptosis by negative regulation of pro-apoptotic Bax and Bak proteins [57]. 

Subsequent to the loss of Bcl-2 inhibition, Bax or Bak will generate an apoptotic pore in the 

mitochondrial outer membrane [58]. This apoptotic pore facilitates the leak of inner mitochondrial 

substances; one such substance is cytochrome-c, a heme protein important to cytochrome c 

oxidase (complex IV of the mitochondrial electron transport chain). Immediately after release, 

cytochrome-c will bind to the apoptotic protease activating factor 1 (Apaf1) protein, initiating the 

formation of the apoptosome and initiating cellular destruction through the proteolytic caspase 

cascade [59]. Therefore, inhibition of FOXO proteins by SIRT1 promotes cellular survival by 

inhibiting apoptosis. Co-immunoprecipitation of FOXO3 and SIRT1 at endogenous levels in 293T 

HEK (human embryonic kidney) cells has indicated a direct binding of the two proteins, while the 

isolation and purification of acetylated FOXO3 was shown to be deacetylated by recombinant 

SIRT1 in vitro, and only in the presence of NAD+ [60].  
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Of particular interest to the context of sarcopenic muscle wasting, SIRT1 levels in type II 

muscle fibers have been reported to drop significantly after 48 hours of fasting, coinciding with 

the increased abundance of the atrophy-associated ubiquitin ligases, atrogin1 and Murf1, and 

increased muscle atrophy [61]. Electroporation of these fasted muscles to increase SIRT1 

expression rescues and protects these muscle fibers from atrophy, with the CSA of electroporated 

fibers out-sizing non-treated fibers by over 48%.  

1.6 SIRT1 Protein Association with Type I Fibers 

 The cumulative protective effects SIRT1 exhibits in preventing muscle wasting from 

atrophy and apoptosis, especially SIRT1’s attenuation of the significant atrophy in type I fibers 

undergoing long-term caloric deficit, suggest the possibility of a role for SIRT1 in preserving 

muscles fiber with aging, particularly type I fibers. The rationale underlying this possible role come 

from the strong association of SIRT1 with mitochondrial metabolism (as high mitochondrial 

abundance is characteristic of type I fibers). As mentioned previously, NAD+ (nicotinamide 

adenine dinucleotide) is required for the functional activity of the SIRT1 protein [62,63]. NAD can 

exist in either the oxidized (NAD+) or reduced (NADH) form, with the reduced NADH acting as an 

electron carrier to NADH dehydrogenase, complex I of the mitochondrial electron transport chain 

in oxidative metabolism [64]. During low-energy cellular states, such as after prolonged muscle 

contraction or during caloric restriction, the ratio of NAD+/NADH increases, promoting SIRT1 

activity [65,66].  

 Beyond its dependence on a key substrate of mitochondrial respiration for activation, 

SIRT1 is also a known regulator of the peroxisome proliferator-activated receptor γ coactivator-

1α, PGC-1α [67]. Co-immunoprecipitation assays of liver extracts were used to identify direct 

protein-protein interaction between SIRT1 and PGC-1α, while an in vitro deacetylase assay 

provided evidence that SIRT1 deacetylated PGC-1α upon the addition of NAD+ as a substrate. 

Previous to this study, PGC-1α induction had been reported as inducing gluconeogenesis [68] 
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and fatty acid oxidation [69,70] in the liver, a metabolic shift that closely resembled the hepatic 

response to short-term fasting [71]. Indeed, caloric restriction activates SIRT1 activity through 

alterations in the NAD+/NADH ratio [72]; furthermore, overexpression of the SIRT1 protein by a 

transgenic knock-in of SIRT1 through the cre-loxP system, driven by the β-actin promoter, was 

reported to produce a calorically restricted phenotype in the mouse model [73]. This mouse model 

was shown to have significantly less bodyweight, fewer circulating free fatty acids and cholesterol, 

and improved glucose homeostasis, despite taking in more calories than control mice 

standardized to body weight—hallmarks of increased adipose/mitochondrial metabolism. Recent 

evidence has also indicated that loss of SIRT1 abundance and activity in muscle satellite cells is 

a key step during the metabolic shift of MSCs from oxidative to glycolytic metabolism, a process 

necessary for MSC differentiation [74]. 

 In addition to promoting an oxidative-like metabolic profile, SIRT1 abundance may be 

related to fiber type distribution in mouse models. Gain-of-function models of SIRT1 activity, with 

transgenic overexpression induced through the muscle creatine-kinase (MCK) promoter, have 

been reported to induce fiber type switching in mouse models of Duchenne’s muscular dystrophy 

[75]. However, SIRT1-knockout mice in the same study, also driven by the MCK promoter, did 

not show a decrease in type I fibers. In a Sprague Dawley rat models of aging, groups of 3 month 

old and 12 month old rats that underwent swimming training for 40 min/day (5 days/week, 4-12 

weeks) showed increased abundance of SIRT1 in the predominantly-type I soleus muscles in 

exercised rats relative to age-matched sedentary controls, though no difference in SIRT1 

abundance was detected between exercised and sedentary groups in isolated gastrocnemius 

(predominantly type II) muscles [76]. Similar results have also been reported for male Wistar rats 

subject to endurance exercise interventions of low (20 m/min, 90 min/day) and high (30 m/min, 

60 min/day) intensity [77]. Both low and high intensity exercise increased SIRT1 abundance in 

soleus muscle of trained rats relative to untrained controls, but only high intensity increased SIRT1 
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expression in the predominantly type II plantaris muscle relative to untrained control rats. 

Additionally, SIRT1 abundance was shown to be significantly greater in the soleus muscle of 

these rats when compared to the abundance in plantaris muscles for basal and trained muscles.  

 Despite the oxidative/caloric restriction phenotype seemingly promoted by SIRT1, some 

models of SIRT1 overexpression in rodents have been reported to show no benefits to glucose 

or fatty acid metabolism. MCK-driven, SIRT1 muscle overexpressor mice fed either control or 

high-fat diets did not report increases in glucose clearance and fatty acid metabolism, metabolic 

profiles associated with the caloric restriction phenotype [78]. Similar effects were reported in a 

male Wistar rat model of SIRT1 overexpression, with SIRT1 abundance increased in vivo through 

muscle electroporation of an active or inactive copy of SIRT1 into the tibialis cranialis muscle [79]. 

Overexpression of SIRT1 over a one-week span did not improve glucose tolerance, nor did it 

protect against insulin resistance—metabolically protective effects observed in other caloric 

restriction models. One explanation is that the increased abundance of SIRT1 does not always 

equate to an increase in the enzymatic activity of SIRT1. However, several activators of SIRT1 

have been shown to more consistently induce protective effects against aging.  

1.7 SIRT1 Activators Attenuate Effects of Aging 

1.71 Caloric Restriction Improves Lifespan 

Research on caloric restriction (CR) has been ongoing since the initial report in 1935 that reducing 

caloric intake could extend the lifespan of rats relative to controls with ad libitum access to food 

[80]. However, modern research investigating SIRT1’s role in linking longevity to CR began with 

the discovery that overexpression of the yeast protein Sir2 (silent information regulator 2), could 

increase the lifespan of yeast by up to 50% [81]. Two follow-up studies in Saccharomyces 

cerevisiae (S. cerevisiae) and in the Caenorhabditis elegans (C. elegans) further established two 

important facts: (1) caloric restriction activated Sir2 activity in yeast by reducing the availability of 
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NADH, which acts as a competitive inhibitor to NAD+, to induce Sir2’s activity [72], and (2) a family 

of proteins with high homology to Sir2 were active in C. elegans, and that overexpression of the 

protein with the highest homology to Sir2, Sir2.1 (31% identity to yeast Sir2), could also extend 

lifespan of C. elegans by approximately 50% [66]. These proteins with high homology to Sir2 

eventually became known as the Sir2-like, and later sirtuin (sir- “two”-in), family of proteins. These 

investigations laid the groundwork for future studies by establishing solid evidence that CR could 

activate SIRT1, and that organisms with greater complexity could also benefit from improved 

longevity via the overexpression of their respective Sir2 homologues. 

  More complex model organisms have also been shown to benefit from longer lifespan 

through caloric restriction. In most cases, these models limit calories by 25%-50%, though studies 

in mammals tend to restrict calories by around 30%. A Drosophila melanogaster (D. 

melanogaster) model of high (15% yeast, 15% sucrose, 2% agar) and low (5% yeast, 5% sucrose, 

5% agar) calorie sucrose cornmeal food (added in equal volume amounts) in transgenic flies 

expressing normal, elevated, or knocked out levels of Drosophila Sir2 (dSir2) [82]. CR coupled 

with dSir2 overexpression was shown to increase lifespan by 29% in females and approximately 

18% in male flies, though no extension of lifespan was detected for flies endogenous or reduced 

dSir2 abundance, nor in flies that had already lived long lifespans. Importantly, although these 

data indicated that dSir2 was important for mediating the extension of lifespan through caloric 

restriction, they did also reveal that CR alone does not guarantee an extension in lifespan for CR 

models. Despite these findings, CR alone has been able to induce lifespan extension in rodents 

by up to 50% and has improved the lifespan of primate models [83].  

One recent study investigating CR on grey mouse lemur populations reported that a 30% 

CR intervention administered at 3 years of age could extend the lifespan of these small primates 

by close to 50%, from a median of 6.4 years to a median of 9.4 years old, with 7 of the 19 CR-

intervention animals surviving up to 13 years (over double the median lifespan of the control 
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group) [84]. However, the increase in lifespan was also accompanied by the selective atrophy of 

grey matter in the brain temporal regions, hippocampus, and retrosplenial cortex. Although no 

cognitive impairment was detected in the CR lemur group, the changes in brain do illustrate that 

the effects of longevity in longer-lived organisms may not be wholly beneficial, and that the 

increasing complexity of the organism models may present unexpected outcomes. An important 

caveat of the grey mouse lemur study is that the lives of the oldest lemurs were extended by 7 

years past the medium control group, illustrating an important limitation to these studies: the 

commitment of extended periods of time to generate data. The impact of CR on primate longevity 

is still contested due to the resulting lack of a data owed to the longer life-span of these models. 

Rhesus monkeys, for example, can live for several decades, necessitating long commitments of 

time and severely slowing the generation of data. As such, current data on rhesus monkeys show 

conflicting results [85], with research from the University of Maryland and University of Wisconsin 

reporting a positive association of CR to survival, but the National Institute of Aging reporting no 

significant association.  

1.72 NAD Supplementation Improves Mitochondrial Health 

 Although CR activates SIRT1 by modulation of the cellular [NAD+]/[NADH] ratio, direct 

manipulation of [NAD+] can also be used to activate SIRT1. Recent studies have investigated the 

potential benefits of supplementing the NAD+ precursor, nicotinamide (NAM), to in vivo [86–88] 

and in vitro [89,90] models. Supplementation of NAM to primary human fibroblasts was shown to 

reduce mitochondrial mass and improve mitochondrial membrane potential ΔΨm [87]. These 

effects are accompanied by significant increases in the abundance of the autophagy-related 

proteins LC3 and ATG-12. Interestingly, the reduction of mitochondrial volume was also observed 

upon activation of SIRT1 through other activators (resveratrol, SRT1720), but these activators did 

not affect ΔΨm, suggesting the possibility of an alternate mechanism of regulation by NAD+ [88]. 

NAM supplementation was also reported to reduce the ROS content of primary human fibroblasts, 
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as detected by detection of the oxidant-sensing probe, DCFH-DA [86]. These data suggest that 

NAD treatment, through the activation of SIRT1, attenuate mitochondrial markers of aging by 

inducing mitophagy. Interestingly, NAM-treated fibroblasts were able to divide over 1.5-fold as 

many times as untreated fibroblasts, indicating an improvement to longevity. However, in C57BL/6 

mouse models of high and low-fat dietary intake, oral NAM supplementation improved locomotion 

functions, glucose tolerance, and reduced liver steatosis—indicating improved metabolic health—

but did not increase the lifespan of the mice [90]. 

 A similar profile of metabolic protection was observed in vivo in C57BL/6-backgroun mice 

chronically fed an alternate NAD+ precursor, nicotinamide riboside (NR) [91]. Interestingly, 

nicotinamide and nicotinamide riboside are both considered vitamin B3 variants, and both 

increase the concentration of intracellular NAD+. However, a key difference between these 

compounds is that NAM supplementation will begin to inhibit SIRT1 activity beyond a certain 

concentration threshold [86]. Secondly, NR has been shown to activate SIRT3 in addition to 

SIRT1, suggesting that NAD+ supplementation from NR promotes downstream effects in both the 

nuclear and mitochondrial compartments [91]. Evidence supporting beneficial effects in the 

mitochondrial compartment by NR comes from multiple studies of mitochondrial myopathy in 

Deletor [92] and Sco2 knockout [93] mouse models. These mitochondrial myopathies represent 

two separate mutations that lead to electron transport chain dysfunction, and share similar 

characteristics of mitochondrial myopathy (diminished abundance of mitochondrial COX and 

abnormal mitochondrial structure). In both cases, NR was reported to increase mitochondrial 

biogenesis in conjunction with an upregulation of the mitochondrial unfolded protein response 

(UPR). Stimulation of mitochondrial biogenesis was able to provide at least partial rescue for the 

downregulation of mitochondrial respiration, while mitochondrial structural rescue was attributed 

to increased protein integrity resulting from greater activation of the mitochondrial UPR. 

Interestingly, mitochondrial protection is conferred by both NR and NAM with similar downstream 
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effects, but different activating pathways. For example, abnormal mitochondrial structure is 

attenuated with treatment by both NAM and NR, but appears to be achieved more through 

mitophagy in NAM-supplemented models and through the mitochondrial UPR in NR-treated 

models. These differences illustrate the potential of SIRT1 to promote longevity through multiple 

pathways depending on the type of activation used to stimulate its activity. 

1.7.3 Resveratrol Protects Against Oxidative Stress 

 After the initial discovery of SIRT1’s pro-longevity effects, research began looking into in-

depth screenings of small-molecule libraries for potential activators of SIRT1. Of 25 small 

molecules found to enhance SIRT1 from a pool of over 20,000 molecules, a phenol naturally 

produced in plants, was found to be the most potent [94]. Supplementation of resveratrol was 

subsequently shown to increase the lifespan of yeast, mimicking the activation of SIRT1 through 

caloric restriction [95,96]. Based on reports that resveratrol conferred antioxidant properties that 

attenuated oxidative stress [97], our lab previously investigated the effects of dietary resveratrol 

on muscle function and age-related oxidative stress in aged and/or disuse models of rodent 

muscles. Both short (10 days) [98] and long-term (10 months) [99] supplementation of resveratrol 

in young and aged mouse models conferred protection against oxidative stress during isometric 

muscle contractions and in control mice, characterized by decreased muscular H2O2 levels and 

increased expression of antioxidant and ROS scavenger proteins, including glutathione 

peroxidase, catalase, and manganese-dependent superoxide dismutase. Despite protecting 

against oxidative damage, resveratrol did not protect against age-related [99] or disuse atrophy 

[96], though supplementation of resveratrol promoted the recovery of type II fiber CSA during 

recovery from disuse atrophy. Interestingly, in elderly human subjects (aged 65-80 years old), 

resveratrol supplementation coupled with 12 weeks of exercised increased maximum torque 

production during knee extension exercise and did improve mean muscle fiber CSA [100]. Of 

particular interest in this study was the increase in type II muscle fiber CSA and satellite cell 
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population. In conjunction with the improvement of type II fiber CSA after muscle disuse, these 

data suggest resveratrol activation of SIRT1 may improve muscle regenerative ability after 

damage by improving the pool of available satellite cells. 

1.8 SIRT1 as a Regulator of Muscle Satellite Cells 

 Although the role of SIRT1 in satellite cells is currently still emerging, increasing evidence 

suggests SIRT1 activity can influence satellite cell functionality. Short-term (12 weeks) CR has 

been shown to increase the quantity and proliferation in vivo of satellite cells from young (2 month 

old) and aged (18 months) C57BL/6-background mice [101]. Interestingly, this study also showed 

that donor satellite cells engrafted to mice positive for Duchene’s muscular dystrophy (mdx) 

showed a 4-fold greater engraftment of myofibers than satellite cells donated to recipient mdx 

mice fed a control diet. These findings reflect parabiosis studies, wherein the regenerative of 

MSCs from aged mouse donors is increased when transplanted into much younger hosts [102]. 

Taken together, these experiments suggest a high sensitivity for satellite cells to the state of their 

systemic environments. However, they also suggest that increased MSC proliferative capacity 

from CR could be promoted through external signaling, rather than through endogenous SIRT1 

activity.  

 Recent literature has reported that aged mice treated with NR show increased 

regenerative capacity after cardiotoxin (CTX) induced injury, coupled with increased abundance 

of Pax7-stained MSCs, and were more effective than MSCs from untreated mice in rescuing 

muscle repair in mdx mice [103]. This regenerative potential was lost with the knockout of SIRT1 

in satellite cells induced through the loxP system by a Pax7-cre promotor. These data appear to 

agree with a separate study that suggest SIRT1 expression acts to maintain quiescence through 

an oxidative, metabolic switch [74]. This study reports that SIRT1 deacetylase activity and NAD+ 

levels are elevated in quiescent satellite cells, which present an oxidative metabolic phenotype. 

Loss of SIRT1 expression in the muscle satellite cells via the same Pax7-cre driven knockout 
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model results in premature differentiation of satellite cells into muscle dysfunctional myofibers. 

Down regulation of SIRT1 is shown to occur before satellite cells shift to a glycolytic phenotype, 

indicating that oxidative metabolism and expression of SIRT1 are majorly important in maintaining 

quiescent satellite cell populations.  

 Finally, studies looking at autophagy in stem cells have shown consensus that reduced 

autophagy and mitophagy contribute to aging by permitting the accumulation of damaged proteins 

and organelles, leading to senescence [104]. MSCs from murine satellite cell knockout models of 

Atg7 (autophagy-related protein 7) showed reduced regenerative capability and prematurely 

expressed cyclin-dependent kinase inhibitors p16, p21, and p15, indicating early cell cycle arrest 

and stem cell senescence. Mitochondria in MSCs with dysfunctional mitophagy also showed 

altered mitochondria, which displayed reduced ΔΨm, and were accompanied by a marked 

increase in cellular ROS. In support of this data, another study has shown that the knockout out 

of SIRT1 (SIRT1-/-) activity in embryonic stem cells (ESC) reduces autophagic cell death under 

oxidative stress [105]. When stressed by H2O2-mediated ROS damage, SIRT1-/- ESCs showed 

reduced abundance of LC3 and decreased ΔΨm, similar hallmarks to the loss of autophagy in 

the MSC knockout model of Atg-7. The loss of autophagy-associated clearance in both muscle 

and embryonic stem cells with the loss of SIRT1 suggests a vital role for SIRT1 in MSCs.  

1.9 Conclusion 

Several factors support the idea that SIRT1’s longevity-promoting activity may also be 

induced to spare skeletal muscle from age-associated wasting. SIRT1 has been shown to directly 

bind and deacetylate both the pro-apoptotic proteins FOXO3 and p53. Interestingly, SIRT1 seems 

to act like a stopgap in muscle atrophy; SIRT1 is upregulated during mild caloric restriction and 

will inhibit FOXO3 to preserve muscle fibers, but eventually abundance of SIRT1 will diminish 

during prolonged starvation. Some evidence suggests SIRT1 plays a similar role with its inhibition 

of p53. Although p53 is pro-apoptotic, it has also recently been shown to upregulate DNA repair 
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machinery in cells. The pro-DNA repair effects of p53 are thought to be mediated through its ability 

to arrest the cell cycle—thereby granting DNA repair machinery the chance to repair DNA damage 

before promoting apoptosis. One explanation for SIRT1’s pro-longevity effects could be that it 

only partially inhibits p53 expression—stopping it just enough so that p53 can express it’s cell-

cycle arrest properties without inducing apoptosis. 

Interestingly, some studies have shown that SIRT1 leans more toward muscle repair than 

increasing satellite cell activity; specifically, the experiments involving resveratrol. Resveratrol has 

been shown to reduce oxidative damage and improve type II fibers’ CSA after reloading injury 

after muscle disuse and in humans after exercise training. In these studies, SIRT1 activation did 

not appear to protect muscle fibers from sarcopenic wasting. Instead, beneficial effects were seen 

after injury—somewhat supporting the idea that SIRT1 could be interacting with p53 to inhibit 

apoptosis and promote DNA repair. Notably, the studies that seemed to best promote satellite 

cell activity were those experiments that supplemented satellite cells with nicotinamide riboside, 

a strong activator of SIRT1 and a cellular marker of SIRT1. This is especially interesting given the 

data that Ryall et al. show with their satellite cell knockout model of SIRT1; that SIRT1 acts a 

metabolic regulator to maintain satellite cell quiescence and is downregulated prior to MSC 

activation, wherein the MSCs shift toward a glycolytic profile. Combined with the fact that satellites 

cells are highly sensitive to their environment, it is possible that NR supplementation is promoting 

a calorie-restriction like response across all tissues in vivo, thereby promoting SIRT1 and the 

oxidative metabolic profile both endogenously and exogenously in satellite cells and reinforcing 

the proliferative phenotype by keeping SIRT1 active in the MSCs.  

Regardless, the literature has made a strong case for SIRT1 to be a potential preserver of 

muscle with age: (1) it protects muscle fibers by inhibiting pro-apoptotic proteins, (2) it promotes 

mitochondrial biogenesis and mitophagy, processes that help attenuate mitochondrial aging, and 

(3) it has been shown to promote muscle repair after injury. 
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1.11 Figure Legends 

1.11.1 Figure 1 
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1.11.2 Figure 1. The biochemical function and cellular roles of SIRT1. (A) SIRT1 requires the 

substrate NAD+ to initiate deacetylation of lysine residues on target proteins. Upon binding of the 

target acetylated lysine group to the active site, SIRT1 catalyzes the hydrolytic cleavage of 

nicotinamide from the ADP-ribose base. During this process, the acetyl group is transferred to the 

ribose, forming 2’-O-acetyl-ADP-ribose. (B). The regulatory roles of SIRT1 in various cell types. 

Proteins in green are positively regulated by SIRT1 deacetylase activity, while proteins in red are 

negatively regulated.  
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2.1 Abstract 

Background. Sirtuin 1 (SIRT1), is a NAD+ sensitive deacetylase, that has been linked to 

longevity and has been suggested to confer beneficial effects that counter aging-associated 

deterioration. Muscle repair is dependent upon satellite cell function, which is reported to be 

reduced with aging; however, it is not known if this is linked to aging-suppression of SIRT1. This 

study tested the hypothesis that Sirtuin 1 (SIRT1) overexpression would increase the extent of 

muscle repair and muscle function in older mice.  

Methods. We examined satellite cell dependent repair in tibialis anterior, gastrocnemius, and 

soleus muscles of 13 young wild type mice (20-30 weeks) and 49 older (80+ weeks) mice that 

were controls (n=13), overexpressed SIRT1 in skeletal muscle (n=14), had a skeletal muscle 

SIRT1 knockout (n=12), or a satellite cell SIRT1 knockout (n=10). Acute muscle injury was 

induced by injection of cardiotoxin (CTX) and phosphate buffered saline was used as a vector 

control. Plantar flexor muscle force and fatigue were evaluated before or 21 days after CTX 

injection. Satellite cell proliferation and mitochondrial function were also evaluated in undamaged 

muscles.  

Results. Maximal muscle force was significantly lower in control muscles of older satellite cell 

knockout SIRT1 mice compared to young adult wild type (YWT) mice (P < 0.001). Mean 

contraction force at 40Hz stimulation was significantly greater after recovery from CTX injury in 

older mice that overexpressed muscle SIRT1 than age-matched SIRT1 knockout mice (P < 0.05). 

SIRT1 muscle knockout models (P < 0.05) had greater levels of p53 (P < 0.05 MKO, P < 0.001 

OE) in CTX-damaged tissues as compared to YWT CTX mice. SIRT1 overexpression with co-

expression of p53 was associated with increased fatigue resistance and increased force 

potentiation during repeated contractions as compared to wild-type or SIRT1 knockout models (P 

< 0.001). Muscle structure and mitochondrial function were not different between the groups, but 

proliferation of satellite cells was significantly greater in older mice with SIRT1 muscle knockout 
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(P < 0.05), but not older SIRT1 satellite cell knockout models, in vitro, although this effect was 

attenuated in vivo after 21 days of recovery. 

Conclusions. The data suggest skeletal muscle structure, function, and recovery after CTX-

induced injury are not significantly influenced by gain or loss of SIRT1 abundance alone in skeletal 

muscle; however, muscle function is impaired by ablation of SIRT1 in satellite cells. SIRT1 

appears to interact with p53 to improve muscle fatigue resistance after repair from muscle injury. 

Key words. Muscle atrophy; Skeletal muscle; Mitochondrial function; Satellite cells; Muscle force; 

Fatigue; Sarcopenia  
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2.2 Introduction 

Sarcopenia is the age-associated wasting of skeletal muscle which results in a loss of 

function [1]. Sarcopenia is accompanied by an increased risk for physical disabilities, fall-induced 

injuries, hospitalization/ institutionalization, and mortality [2], and it is exacerbated by obesity and 

metabolic disorders [3]. Mitochondria regulate muscle metabolism and mitochondrial dysfunction 

may play a role in sarcopenia [4]. Indeed, altered size and granularity have been observed in 

aging mitochondria [5,6], as well as in the mitochondria of subjects diagnosed with type 2 diabetes 

mellitus [7]. Concordantly, loss of mitochondrial function also occurs with aging and metabolic 

disorders [8], although some research suggests age-associated alterations in mitochondrial 

morphology are independent of lifespan [9]. It is interesting that the highly-oxidative type I muscle 

fiber, which has ~6% mitochondria volume [10] are generally thought to be  more resistant to 

sarcopenia-related muscle wasting than type II fibers [11] which have ~3% mitochondria volume 

density [10] . This might be due in part to a greater sensitivity of mitochondria in type II fibers to 

oxidative stress [12]. Preserving mitochondrial function is therefore a potential strategy for 

reducing sarcopenia in both fiber types. 

Sirtuin 1 (SIRT1) is a class III histone deacetylase [13] which is dependent on NADH to 

deacetylate its targets, making SIRT1 highly sensitive to metabolism. SIRT1 has been identified 

as a link between caloric restriction and longevity, with the overexpression of SIRT1 linked to 

increased lifespans for several organism models [14]. Furthermore, SIRT1 has also been shown 

to inhibit type I fiber atrophy during intermittent fasting, by deacetylating and inhibiting the 

transcription activity of FoxO1 and FoxO3 [15]. In addition, activating SIRT1 in muscle cells 

prevents the reduction in slower fiber type myosin heavy chain gene expression and prevents 

myotube wasting after glucose [16,17]. Importantly, SIRT1 has been identified as a regulator of 

protein peroxisome proliferator activated receptor gamma coactivator 1α (PGC1α) [18], which is 

a well-established regulator of mitochondrial biogenesis and glycolytic-to-oxidative fiber type 
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switching in mammalian skeletal muscle [19]. PGC-1α activation (i.e. deacetylation) occurs via 

AMPK activation of the deacetylase SIRT1 [20]. In fact, SIRT1 deacetylation of PGC-1α increased 

the expression of key glucose and lipid metabolism genes [21]. However, mitochondrial 

biogenesis in response to exercise is not impaired under SIRT1 knock out conditions and 

therefore SIRT1 deacetylation is thought to be via the control of acetyltransferase GCN5 [22]. 

Satellite cell dysfunction is another potential contributor to muscle loss in sarcopenia [23]. 

Satellite cells are mononucleated muscle stem cells that are responsible for the majority of muscle 

regeneration after injury [24,25]. Both the expression of SIRT1 and satellite cell populations have 

been shown to decrease with aging [26], inviting the possibility that increasing SIRT1 expression 

in older muscle models might act as a countermeasure to preserve muscle regenerative capacity 

and therefore improve muscle function after muscle injury in aging. Consistent with this idea, 

resistance exercise coupled with consuming resveratrol, a known activator of SIRT1, increased 

satellite cell proliferation and improved muscle fiber size and function in muscles of older humans 

to a greater extent than resistance exercise alone [27]. Furthermore, resveratrol also prevents 

cell death and increases differentiation of myotubes [28], whereas SIRT1 silencing evokes greater 

cell death and reduced differentiation [28]. In addition, SIRT1 was reported to maintain pools of 

satellite cells in the state of quiescence and SIRT1 loss-of-function was reported to invoke 

premature differentiation of muscle satellite cells [29]. Strengthening this argument, mild 

endurance exercise which increased SIRT1 was shown to rescue an aging-induced reduction in 

satellite cell numbers in rats [26,30]. However, other studies have shown differential patterns of 

SIRT1 expression according to age and tissue type [31], calling into question whether aging has 

universal effects on SIRT1. Thus, there is a need to further study the role of SIRT1 on 

mitochondrial function and satellite cell regulation of muscle repair in the context of muscle 

sarcopenia. 
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The purpose of this study was to investigate the role of SIRT1 in repairing muscle and 

restoring skeletal muscle function after acute muscle damage in older mice. Our hypothesis was 

that muscle overexpression of SIRT1 improves mitochondrial function and satellite cell activation, 

which improves muscle repair and function after acute injury, and in contrast, loss of SIRT1 in 

muscle or satellite cells of older mice reduces muscle repair and function after injury by 

suppressing satellite cell activation and reducing mitochondrial function. Contrary to our 

expectation, we found that muscle performance and the recovery of skeletal muscle after injury 

are largely unaffected by the abundance of SIRT1 in skeletal muscle, but ablation of SIRT1 in 

satellite cells impairs muscle repair and function. Nevertheless, SIRT1 abundance may work 

synergistically with p53 to reduce muscle fatigue after repair following muscle injury. 

2.3 Materials and Methods 

2.3.1 Research design.  

Two separate experiments were conducted on the five groups of mice.  Three to five mice 

were examined in each age group for each experimental comparison. In the first experiment the 

plantarflexor muscles (gastrocnemius and soleus muscles) received an acute cardiotoxin (CXT)-

induced injury. Plantarflexor force and fatigue were measured before and then again after 21 days 

of recovery following CTX injury to assess the degree that manipulation of SIRT1 protein 

abundance had on muscle function and recovery/repair from muscle damage.  In a separate 

study, the plantar flexor muscles and the dorsiflexor (tibialis anterior) muscles from mice in each 

of 5 groups received a CTX injection to induce acute muscle injury.  These muscles were used to 

assess the role of SIRT1 on muscle structure solely. As there was the potential that electrical 

stimulation to induce evoked contractions could affect muscle fiber size or structure acutely, we 

did not assess muscle function in this second study. 
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2.3.2 Animal Models.  

Five mouse models were examined. These included: (i) young wild-type (YWT) mice  that 

were 20-30 weeks of age, (ii) older wild-type mice  that were 80-120 weeks of age (WT-80),  (iii) 

SIRT1 overexpressor older mice that were 80-120 weeks of age (OE-80), (iv) SIRT1 older adult 

skeletal-muscle knockout mice that were 80-120 weeks of age (MKO-80), and  (v) SIRT1 satellite 

cell knockout mice that were 80-120 weeks of age (SKO-80). As ~50% of the animals died before 

they were 120 weeks of age, we chose to include older animals that were 80 weeks of age in our 

oldest group because, this is at a point where muscle signaling changes and muscle atrophy and 

function begins to deteriorate [32,33]. While these animals could not yet be considered to be old, 

this group had mice that ranged in age from 80-120 weeks, and the oldest animals in this group 

would be considered old. Therefore, we have chosen to describe this combined group as “older”. 

All wild-type mice were generated from C57BL/6J background mice purchased from Jackson 

Laboratories, USA. MKO-80 and SKO-80 mice were generated using the cre-lox system by 

crossing B6;129-Sirt1tm1Ygu/J mice containing loxP sites directing the removal of exon 4 of SIRT1 

with MCK-cre expressing B6.FVB (129S4)-Tg(Ckmm-cre)5Khn/J and Pax7-cre expressing 

Pax7tm1(cre)Mrc/J mice, respectively. Mice that overexpressed SIRT1 were generated from B6.Cg-

Tg(SIRT1)ASrn/J mice containing a wild-type mouse SIRT1 gene promoted by an endogenous 

BAC transgene.   

2.3.3 CTX-induced acute muscle injury.  

Acute muscle injury was induced by injecting the gastrocnemius, soleus, and tibialis 

anterior (TA) muscles with 10 μM cardiotoxin (CTX; Naja mossambica; Sigma, St. Louis MO, 

USA) [34] in 150 μL of phosphate-buffered saline (PBS). The contralateral limb was injected with 

150 μL of PBS as a vehicle control. Cage control recovery occurred for 21 days post-injection. 

During recovery, mice were given water containing 0.8mg/mL 5-bromo-2’-deoxyuridine (BrdU)  

(MP Biomedicals)  to identify satellite cells that achieved DNA synthesis over the recovery period 
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as previously used in our lab [24]. Post-recovery, the experimental groups were euthanized by 

myocardial extraction under heavy anesthesia. The muscles were then immediately collected and 

frozen in 2-methylbutane (ThermoFisher Scientific, Pittsburgh PA, USA) chilled by liquid nitrogen. 

Frozen tissue sections were mounted on corkboard with Tissue Tek O.C.T. compound 

(ThermoFisher Scientific, Pittsburgh PA, USA). 

2.3.4 BrdU Immunohistochemistry.  

Frozen tissue sections of control and post-CTX injured muscles were obtained with a Leica 

model CM3050S cryostat and the tissue was mounted on charged glass slides (ThermoFisher 

Scientific, Pittsburgh PA, USA). The frequency of muscle nuclei that were BrdU positive were 

measured as previously described by our lab   . Briefly, the slides were fixed at room temperature 

with 1:1 methanol:acetone (ThermoFisher Scientific, Pittsburgh PA, USA) and then permeabilized 

with phosphate buffered saline in 0.4% Triton X-100. Slides were then washed with PBS and 

allowed to incubate in 2M hydrochloric acid (ThermoFisher Scientific, Pittsburgh PA, USA) for 1 

hour at room temperature, followed by neutralization in 0.1M Borate Buffer (pH 8.5). The tissue 

sections were blocked with 10% normal goat serum (Vector Laboratories, Burlingame, CA, USA) 

and incubated overnight in primary antibodies targeting BrdU (1:100, Developmental Studies 

Hybridoma Bank, Iowa City, IA, USA). Secondary antibodies targeting IgG1 (AlexaFluor-488, 

Invitrogen-ThermoFisher Scientific, Carlsbad CA, USA) were used for fluorescent imaging of 

BrdU+ nuclei. Images were captured with a Nikon E800 microscope. BrdU+ cells were quantified 

using ImageJ software (National Institutes of Health, Bethesda, Maryland). BrdU+ labeled nuclei 

were quantified if they could be clearly associated with either the periphery or interior of a muscle 

fiber. All of the nuclei from six nonoverlapping fields were quantified with light microscopy at an 

objective magnification of 40X. There were two repeats for each biological section and the data 

averaged for each section. The BrdU labeling index was expressed as a percent of the total nuclei 

and determined by: (the number of BrdU-positive nuclei associated with muscle fibers)/(labeled 
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unlabeled nuclei associated with muscle fibers). Data are presented as mean ± standard 

deviation. 

2.3.5 Fiber-Type Immunohistochemistry.  

Muscle fiber types were identified using antibodies to myosin heavy chains (MHC) as 

previously reported by Bloemberg and Quadrilatero [35], with slight modifications as reported by 

our lab [24]. Briefly, isolated muscles were flash frozen in 2-methylbutane chilled by liquid nitrogen 

and mounted on corkboard with Tissue Tek O.C.T. compound (ThermoFisher Scientific, 

Pittsburgh PA, USA). Muscle tissue cross sections were obtained at -20°C with a Leica model 

CM3050S cryostat. Tissue sections were blocked with normal goat serum (Vector Labs, 

Burlingame, CA, USA) and stained with primary antibodies targeting MHC I (BA-F8S), MHC IIa 

(SC-71), and MHC IIb (BF-F3), at a 1:100 dilution overnight at 4°C in a humidified chamber. 

Primary antibodies were obtained from the Developmental Studies Hybridoma Bank, Iowa City, 

IA USA. After washing with PBS, the slides were incubated in secondary antibodies at a 1:500 

dilution for 2 hours at room temperature. Secondary antibodies targeting IgG2b (AlexaFluor-647), 

IgGM (AlexaFluor-546), and IgG1 (AlexaFluor-488), were obtained from Invitrogen-ThermoFisher 

Scientific, Carlsbad CA, USA, and were used for fluorescent imaging. Images were captured with 

a Nikon E800 microscope. Fiber cross sectional areas were determined by planimetry from a 

minimum of 500 fibers taken from 8-12 randomly selected fields from the tissue cross sections. 

All the fibers encompassed in a field were traced. Mean fiber area was calculated using ImageJ 

software (National Institutes of Health, Bethesda, Maryland). The cross-sectional images were 

captured with a Nikon E800 microscope. Whole muscle CSA was determined by tracing the entire 

circumference of the muscle section if the section could be captured as a single image, or 

otherwise as the summation of total muscle area traced from a composite picture. Type I fiber 

CSA was determined by individually tracing all fluorescently labeled fibers within a given section, 

with (n=3) muscle sections per group.  
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2.3.6 Satellite Cell Isolation.  

To evaluate the role of SIRT1 on the potential for repair during aging,  mononuclear muscle 

cells were isolated from the combined muscle mass of control non-CTX injured mouse TA and 

quadriceps muscles from both hindlimbs using the protocol of Pasut, and colleagues [36] with 

some modifications.  Briefly, muscle samples were cut into small sections and incubated in 1500 

U collagenase type II (Worthington Biochemical, USA) in DMEM + 10% horse serum, followed by 

incubation in 300 U collagenase type II with 6U dispase (Gibco, Invitrogen, Gaithersburg, MD, 

USA) in DMEM + 10% horse serum. After trituration, muscle supernatants were collected and 

filtered through 40 μm cell strainers (ThermoFisher Scientific, Pittsburgh PA, USA). Aliquots of 

isolated mononuclear cells were then washed in PBS-azide and blocked in 10% normal goat 

serum (Vector Labs, Burlingame, CA, USA). Satellite cells were separated from the muscle 

mononuclear cells by labeling the cells with fluorophore-conjugated primary antibodies as 

modified from methods described by Liu et al. [37]. Briefly, isolated mononuclear cells were 

labeled with fluorophore-conjugated primary antibodies for the following cell surface markers: 

CD31 (-APC), Sca-1 (-PacBlue), CD45 (-PE-Cy7), and VCAM-1 (-Biotin) (BioLegend, San Diego, 

CA, USA). A second incubation was used to bind Rhodamine-conjugated avidin (Vector Labs, 

Burlingame, CA, USA) to the biotin-conjugated antibody. After washing, the fluorophore-

conjugated cells were resuspended in fetal bovine serum (FBS) and VCAM+/CD31-/CD45-/Sca-1- 

satellite cells were isolated by a FACS Calibur flow cytometer equipped with a 15-MW 488nm 

argon laser and 633 nm red diode laser (Becton and Dickinson). All flow cytometric 

measurements were performed in conjunction with the West Virginia University Flow Cytometry 

Core Facility. 

2.3.7 Protein immunoprecipitation Assays.  

Immunoprecipitation of selected proteins from cell lysates was conducted as previously 

reported [38] Briefly, muscle cells were fractionated by the method described by the Rothaermel 
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et al. [39]. Protein isolates from skeletal muscles were incubated for 1h at 4°C with 25μL Pierce 

Protein A/G magnetic beads (ThermoFisher Scientific, Pittsburgh PA, USA) to reduce non-specific 

binding. Clean antigen solutions were then incubated for 2h at 4°C with an anti-PGC1α primary 

antibody (Santa Cruz Biotech. Sant Cruz, CA, USA). Pre-cleaned Protein A/G beads were next 

added to the antigen/antibody mixture and allowed to incubate overnight at 4°C. After the 

incubation, the protein A/G beads were collected with a magnetic apparatus and the supernatant 

was discarded. After washing, the magnetic beads were again collected, and the precipitated 

proteins were eluted with a 1x NuPAGE LDS sample buffer (ThermoFisher Scientific, Pittsburgh 

PA, USA) for 20min at room temperature. Protein concentrations of samples were determined by 

the Lowry method, and the purity of each fraction was confirmed as reported previously [40]. Forty 

micrograms of protein were loaded into each well of a 4–12% gradient polyacrylamide gel 

(Invitrogen, Carlsbad, CA) and separated by routine sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) for 1 h at 120 V. The proteins were transferred to a nitrocellulose 

membrane for 1.5 h at 25 V. Nonspecific protein binding was blocked by incubating the 

membranes in 5% nonfat milk in Tris-buffered saline containing 0.05% Tween 20 [24,41,42]. 

2.3.8 Mitochondrial Isolation.  

To evaluate the effect of SIRT1 on mitochondria, right and left non-CTX injured hindlimb 

plantar flexor muscles were collected from YWT and older SIRT1 variant-expression models, with 

both hindlimb flexor groups were pooled into a single sample. Collected tissues were washed in 

phosphate-buffered saline (pH 7.4). Subsarcolemmal mitochondria (SSM) and interfibrillar 

mitochondria (IFM) were isolated as previously described [43,44]. Mitochondrial pellets were 

resuspended in KME buffer (100mM KCl, 50mM MOPS, and 0.5mM EDTA; pH 7.4) for analysis 

of mitochondrial enzymatic activity [45,46]. 
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2.3.9 Mitochondrial Size, Internal Complexity, and Membrane Potential.  

The size, internal complexity/granulation, and membrane potential of isolated 

mitochondria were analyzed with a FACSCalibur flow cytometer equipped with a 15-MW 488nm 

argon laser and 633nm red diode laser (Becton and Dickinson, Franklin Lakes, NJ, USA), as 

previously described [43,45]. The ratiometric dye 5,5’,6,6’-tetrachloro-1,1’,3,3’-

tetraethylbenzimidazol carbocyanine iodide (JC-1; Molecular Probes, Carlsbad, CA) was used to 

selectively probe and gate for respiring mitochondria [47] using 488 nm excitation with 530 nm 

and 590 nm bandpass emission filters. A greater concentration of JC-1 aggregates form as a 

result of greater mitochondrial uptake, which increases the orange fluorescent emission signal, 

as opposed to the green fluorescent monomer of JC-1. The resultant ratio of orange fluorescence 

(polarized mitochondrial membrane) to green fluorescence (depolarized mitochondrial 

membrane) was used to characterize membrane potential for isolated mitochondrial 

subpopulations. 

Size and internal complexity/granularity were determined for mitochondrial populations 

with forward-scatter (FSC; absolute particle size) and side-scatter (SSC; refracted light 

proportional to mitochondrial granularity) detectors, respectively. All flow cytometric 

measurements were performed in conjunction with the West Virginia University Flow Cytometry 

Core Facility. 

2.3.10 Mitochondrial electron transport chain complex activities.  

The activities of mitochondrial complex I, III, and IV and ATP synthase were determined 

as previously described [43]. Complex I and ATP synthase activities were determined separately 

by measuring the oxidation of NADH at 340 nm, while complex III and complex IV activities were 

determined separately by measuring the reduction and oxidation of cytochrome c at 550nm, 
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respectively. Protein content was determined with the Bradford method and all complex activities 

were expressed in nanomoles of oxygen consumed per minute per milligram protein.  

2.3.11 Muscle force and fatigue.  

Young wild-type (YWT) and older SIRT1 variant-expression mouse models underwent measures 

to determine plantar flexor force and fatigability to assess the role of SIRT1 on muscle recovery 

post CTX injection. Functional measures were obtained via indirect electric stimulation of the 

plantar flexor muscles through the tibial nerve and measured with a custom-built dynamometer 

(Aurora Scientific, Aurora, Ontario, Canada) as previously described [24,38] with the mice 

anesthetized under 2-3% isoflurane.  

Electrically evoked contractions (200s pulse width) were measured with the mice on a 

heated plate to maintain body temperature under anesthesia. Hindlimb ankles were positioned at 

90° flexion. The functional assessment began with a three electrically evoked muscle twitches, 

followed by a 120s rest. A second stimulation of 75Hz, was then applied to induce tetanus followed 

by a 300s rest. This was repeated three times. Finally, a single series of 180 contractions were 

performed at 40Hz (330ms activation followed by 670 ms of rest) over a span of 180s. All 

stimulations were applied to the common peroneal nerve with subcutaneous platinum electrons 

with 200 μs pulse width, via commercially available stimulator and controlling software provided 

by Aurora Scientific (Aurora, Ontario, Canada). Mice were checked continually for vitality and 

responsiveness. After the functional evaluation, the right hindlimb gastrocnemius and soleus 

muscles were each injected with 100μL of 10μM CTX (Naja mossambica) to induce muscle 

damage [34] as described above. An equal volume of PBS was injected into the contralateral leg 

as a vector control. Muscle recovery/repair occurred for 21 days after CTX injection and then the 

plantar flexors were examined using the same physiological evaluation. Immediately following the 

functional measures, the mice were euthanized by myocardial extraction under heavy anesthesia 

and the hindlimb muscles were collected for analysis.  
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2.3.12 Proliferation Analysis.  

The proliferation potential of isolated populations of satellite cells was quantified from 

CTX-injected and control TA muscles using Click-iT EdU Alexa Fluor 488 (Invitrogen-

ThermoFisher Scientific, Carlsbad CA, USA). Briefly, satellite cells were isolated from TA muscles 

as described above. The isolated cells were then resuspended in growth medium Dulbecco’s 

modified Eagle’s medium (DMEM; high glucose, L-glutamine) with 20% fetal bovine serum (FBS), 

10% horse serum (HS), and 1% antibiotic/antimycotic (Gibco, Invitrogen, Gaithersburg, MD, USA) 

and plated overnight on glass coverslips coated in 0.2% gelatin. Plated satellite cells were then 

incubated for 1 hour in 10μM EdU in DMEM. After incubation, the cells were fixed in 1mL of 3.7% 

formaldehyde in PBS for 15 minutes at room temperature, then washed twice with 1mL of 3% 

bovine serum albumin (BSA) in PBS. The cells were then permeabilized in 1mL of 0.5% Triton X-

100 in PBS for 20min. After a second wash in PBS +3% BSA, cells were treated with 500μL of 

reaction buffer, consisting of copper sulfate, the Alexa Fluor-conjugated azide, and sodium 

ascorbate, then allowed to incubate for 30 min at room temperature, protected from light. The 

cells then underwent a final wash and were transferred to microscope slides for analysis with a 

Nikon E800 microscope. Coefficients of proliferation were calculated as the number of illuminated 

cells counted on 9 separate fields divided by the number of cells plated. Experiments were run in 

triplicate and are presented as the mean ± standard deviation.  

2.3.13 Western Blot Analysis.  

Skeletal muscle lysates were analyzed with Western immunoblots as previously described 

[24,38,41,42], with slight modifications. SDS-PAGE was run on 4-12% gradient NuPAGE Bis-Tris 

gels (ThermoFisher Scientific, Pittsburgh PA, USA) at 120V for 2h in NuPAGE MES SDS buffer 

(ThermoFisher Scientific, Pittsburgh PA, USA). Proteins were transferred to a nitrocellulose 

membrane for 1h at 15V with a Trans-Blot SD semi-dry transfer cell (Bio-Rad). All proteins were 

probed at the same time from the same samples, requiring only GADPH loading control. 
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Membranes were then carefully cut to separate the proteins based on protein molecular weight 

(MW) to allow for the simultaneous probing of multiple different proteins for each treatment group. 

The MW for the proteins were: FoxO3a (80kDA), p53 (53kDA) and GAPDH (35.8kDA). After 

blocking with TBST + 5% nonfat dry milk, membranes were incubated overnight at 4°C in 1:1000 

dilutions of primary antibodies for Sirt1 (Millipore), PGC1α (Santa Cruz), GAPDH (Cell Signaling, 

Danvers, MA, USA), p53 (Cell Signaling, Danvers, MA, USA), Acetyl-Lysine (Cell Signaling, 

Danvers, MA, USA), and FOXO3a (Cell Signaling, Danvers, MA, USA). Membranes were then 

incubated in HRP-linked anti-mouse and anti-rabbit secondary antibodies at 1:5000 dilutions (Cell 

Signaling, Danvers, MA, USA). HRP signals were developed with an enhanced chemiluminescent 

substrate (ThermoFisher Scientific, Pittsburgh PA, USA) with a G:Box Bioimaging System 

(Syngene, Fredrick, MD, USA). Band intensity was normalized to GAPDH.  

2.3.14 Verification of antibody specificity.  

The antibodies which were used in our experiments were validated prior to utilization. We 

obtained antibodies that were supplied from vendors which were able to provide validation, 

maintenance testing and production validation to ensure that lots of the antibodies remained 

constant over the study duration. In addition, validation of the antibodies included testing on 

appropriate positive protein controls or mouse models (deficient in gene/protein) by immunoblot 

and immunostaining. Western blots were conducted to validate band sizes, and 

immunohistochemistry on each antibody to check for non-specific staining in tissue sections. 

Several different antibodies to the same protein were used to confirm staining patterns and/or 

location of the protein band on a western blot. Negative controls were conducted without the 

primary antibody or without the secondary antibody to confirm that there was no inappropriate 

cross-labeling by the antibodies.  
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2.3.15 Statistical Analysis.  

Quantitative analysis was performed on experiments done at least in triplicate. Statistically 

significant differences between groups were determined using GraphPad Prism 6 software (La 

Jolla, CA, USA) performing a Two-way ANOVA (age group x condition) with corrections made for 

multiple comparisons against a baseline control group by the Dunnett’s test. Fatigue analysis was 

performed using Two-way Repeated ANOVA analysis with corrections for multiple comparisons 

against the baseline control. Statistical differences between right and left hindlimb pre-treatment 

groups for each genotype were compared using paired t-tests for muscle force, indicating the 

difference between hindlimbs was not significant from zero. Multiple unpaired t-tests for contractile 

force as a function of the number of muscle contractions was also performed between the left and 

right hindlimb pre-treatment groups for each genotype, also indicating no significant difference 

between hindlimb function within the individual models. As such, data for the left hindlimb pre-

treatment groups were expressed as baseline data for each model. Unpaired t-tests were also 

used, when appropriate, to determine statistical significance between two groups, such as 

treatment and control groups within each genotype, with significant differences noted when 

present. Effect sizes were reported using the Cohen’s d statistic and were calculated as the 

difference in means over the pooled standard deviation. The results were expressed as mean ± 

standard deviation (SD), (P < 0.05). 

2.4 Results 

2.4.1 Animal Model Characteristics.  

Mouse models were categorized into five groups, based on age and SIRT1 expression. 

Young wild-type (YWT) mice were 20-30 weeks old, while older mice were 80-120 weeks of age. 

The older mice included: wild-type mice (WT-80), SIRT1 overexpressor mice (OE-80), SIRT1 

adult skeletal-muscle knockout mice (MKO-80), and SIRT1 satellite cell knockout mice (SKO-80). 
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Each group included both male and female mice. Although the older mouse groups showed no 

significant differences in body weight between males and females, YWT females were 

significantly smaller than corresponding YWT males (P ≤ 0.05) (Table 1).  

2.4.2 SIRT 1 protein abundance in the mouse models.  

To characterize differences in SIRT1 protein abundance between animal groups, the 

hindlimb muscles were collected from young wild-type (YWT, n=3) and older (80+ weeks) wild-

type (WT-80, n=3), SIRT1 overexpressor (OE-80, n=3), SIRT1 skeletal muscle knockout (MKO-

80, n=3), and SIRT1 satellite cell knockout (SKO-80, n=3) mice, 21 days after phosphate buffered 

saline (PBS) or cardiotoxin (CTX) injection. The mice were examined prior to and 2 hours after 

exercise (-ex) because exercise is a known inducer of SIRT1 [48]. As expected, SIRT1 was 

greater in the OE muscles and lowest in the muscles from SKO and MKO mice (Fig. 1B). These 

data indicate that SIRT1 protein levels were as anticipated based on the crosses of the respective 

animal models. SIRT1 was not absent in SKO-80 mice muscles, although the SIRT1 protein 

abundance was significantly lower in PBS-injected, but not CTX-injected hindlimb muscles from 

SKO-80 relative to YWT mice. Interestingly, ANOVA analyses showed significant differences 

between the OE-80 PBS and SKO-80 PBS groups as compared to wild-type controls, but not the 

MKO-80 PBS groups. However, the OE-80, SKO-80, and MKO-80 muscle SIRT1 abundances 

were significantly different from the wild-type controls when compared with individual t-tests (P < 

0.05, data not shown). Only the muscles from SKO-80 mice showed a significant increase in 

SIRT1 abundance in CTX-injected muscles relative to their own PBS group (P < 0.05). 

We next measured FoxO3a and p53 protein abundance because they are downstream 

targets of SIRT1 (Fig. 1C). Protein abundance was not markedly different for FoxO3a among the 

groups. Abundance of p53 followed a similar distribution to the SIRT1 protein expression, 

although a significant difference in p53 protein abundance was not detected between the OE-80 

groups and the YWT PBS control (Fig. 1D). Interestingly, while a significant increase in p53 
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protein abundance was not detected between injury-recovered muscles and muscles treated with 

the saline control for either the OE-80 or MKO-80 groups, the relative abundance of p53 for those 

groups was significantly greater than the p53 abundance detected in muscles from the YWT CTX-

injected mice (comparison denoted by #). Even though the muscle protein abundance of p53 in 

the YWT CTX mice differed significantly from the protein abundance levels in muscles from the 

OE-80 CTX and the MKO-80 CTX groups, p53 protein abundance in muscles from YWT CTX-

injected mice did not differ significantly from the levels found in muscles from the WT-80 CTX and 

the SKO-80 CTX groups (Fig. 2C-H).  

We also evaluated the acetylation status of PGC1α, another downstream target of SIRT1 

to assess SIRT1 activity (Fig. 1E). Although we expected to see decreased acetylation of PGC1α 

in muscles from the SIRT1 overexpressor mouse model and increased acetylation in the muscles 

from SIRT1 knockout mice, qualitative analysis of immunoblots showed no apparent change in 

acetylation state, regardless of apparent PGC1α expression in the various mouse genotypes (Fig. 

1F).  

2.4.3 Skeletal Muscle Function.  

2.4.3.1 Muscle Force.  

We tested whether SIRT1 protein abundance had a role in regulating skeletal muscle 

function in muscles of older mice after acute injury induced by cardiotoxin (CTX). Before 

treatment, average, evoked maximal plantar flexion contractile force at 75 Hz stimulation was 

significantly lower in the older SKO-80 mice as compared to YWT PRE, indicating a lower basal 

contraction force in older mice deficit of SIRT1 in satellite cell (Fig. 2A). Next, contractile force 

was assessed in each group following a 21-day recovery from acute injury by CTX or treatment 

with PBS to determine if SIRT1 abundance in skeletal muscle had an effect on the recovery of 

contractile function. Mean maximal contractile force in YWT mice generated at a stimulation 
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frequency of 75Hz had recovered to control levels by 21 days after CTX-treatment. The maximal 

contractile force was significantly lower in the PBS-injected, vector control hindlimb for WT-80 

compared to the WT-80 PRE baseline, suggesting that the older muscles in the WT-80 animals 

may have been susceptible to injection- injury (Fig. 2A). As expected, aging per se resulted in a 

lower plantar flexion maximal force production in wild-type mice, as seen by the lower force 

production in the muscles of the WT-80 PBS group relative to the WT-80 PRE group.  

We next compared the percent recovery of contractile force in hindlimb muscles 21 days 

post-recovery from CTX injection (Fig. 2B). The maximal post PBS- or CTX-injection plantar 

flexion force was normalized to the respective pre-treatment force output for each animal. The 

aged mice were expected to show decreased force recovery in PBS control hindlimbs relative to 

the young wild-type mice. However, despite the WT-80 having a force recovery under 1-fold, no 

older group showed significantly altered, basal force recovery in control PBS injected hindlimbs 

relative to the YWT PBS group. This suggests that aging did not impair recovery after injury. 

Contrary to our original expectations, only the youngest group of mice (YWT) showed decreased 

recovery in maximal hindlimb force from muscles that had been acutely injured by CTX as 

compared to PBS treated muscles. Although the overall plantar flexion force output for SKO-80 

hindlimb muscles was significantly lower than YWT mice, the SKO-80 mice appeared to recover 

to pre-treatment levels after 21 days of recovery. The relative force produced 21 days after CTX-

induced injury was not diminished in the older SKO-80 animals as compared to young animals 

although the absolute levels of force was also depressed in the SKO-80 animals as compared to 

other groups. 

2.4.3.2 Muscle fatigue.  

Muscle fatigability was examined in hindlimb plantar flexor muscles from young and older 

mice by inducing a series of 180 electrically evoke contractions at 40 Hz over a period of 3 

minutes. While the mean force output over time shows the amount of fatigue occurring in a 
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contracting muscle group, it does not necessarily mimic resistance to fatigue for those muscles. 

Therefore, we examined fatigue resistance by looking at the depletion of muscle contractile force 

as a function of consecutive electrically evoked contractions by normalizing the force of each 40 

Hz contraction to the force of the initial 40Hz contraction (Fig. 2C-H). The baseline fatigability of 

the young, pre-treatment wild-type mice (YWT PRE) mice did not differ significantly from the 

fatigability of the WT-80 PRE, OE-80 PRE, MKO-80 PRE, or SKO-80 PRE-groups (Fig. 2D, H). 

Neither acute muscle injury from CTX, nor injection with the PBS vector control, had significant 

effects on muscle fatigability in YWT, WT-80, or SKO-80 mice post-recovery (Fig. 2D, E, H). 

Surprisingly, muscles that underwent repair after CTX injury had greater fatigue resistance in both 

the aged SIRT1 overexpression and skeletal muscle knockout models of SIRT1 (Fig. 2F, G). The 

OE-80 CTX group showed the greatest magnitude and most consistent attenuation of fatigue 

following recovery from acute muscle injury, and the OE-80 CTX was also the only group to show 

signs of post-activation potentiation, so that muscle contractile force increases with time rather 

than diminishing. Although the effect was smaller for the MKO-80 CTX group compared to the 

OE-80 CTX mice, protection from fatigue was present only in muscles that had recovered from 

acute CTX injury (Fig. 2E-G), which would have required activation of satellite cells to induce 

repair. Interestingly, when compared to the fatigability of YWT CTX mice, the OE-80 CTX and 

MKO-80 CTX groups still showed significant protective fatigue resistance, albeit to a lesser 

degree, and were the only groups to do so. Furthermore, the fatigue resistance seen in the OE-

80 CTX and MKO-80 CTX models coincides with the increased abundance of p53 after repair 

from CTX as seen in Figure 1C.  

2.4.4 Fiber cross sectional area.  

Given the greater susceptibility of type II fibers to aging-induced atrophy [49] and the 

general resistance of type I fibers to sarcopenic changes [50], we decided to investigate the effect 

of SIRT1 expression on these two primary muscle fiber types in the gastrocnemius muscle of 
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older mice. Although the exact fiber type distribution of the mouse gastrocnemius can vary 

between strains, the gastrocnemius muscle typically contains a mixture of type I and type II 

muscle fibers although it is predominantly composed of type II fibers [51]. To determine the effects 

of SIRT1 expression on gastrocnemius muscle structure after acute injury, we used 

immunofluorescence techniques to determine the cross-sectional area (CSA) of whole muscles, 

and type I and type II fibers from PBS- and CTX-injected gastrocnemius muscles of the YWT and 

older groups (Fig. 3F-H). As expected, the CSA for the gastrocnemius muscle was lower in older 

mice 21 days after PBS- or CTX-injection CSA relative to muscles in YWT mice 21 days after 

PBS (Fig. 3F). However, we did not find a significant difference between any older group and the 

YWT control. Given that the Cohen’s d test shows effect sizes greater than 2 standard deviations 

for two groups (WT-80 PBS and WT-80 CTX), it is likely that the absence of significance may 

have been due to a low sample size.  

Similarly, the CSA in the soleus muscle (Fig. 3G), had a significant F statistical main effect 

from One-Way ANOVA with corrections for multiple comparisons, however, no groups had 

significant differences were found between the YWT PBS control group and other groups.  Groups 

of mice showing a large effect size (>1 standard deviation) were YWT CTX, WT-80 PBS, OE-80 

CTX, and SKO-80 CTX groups. Next, we calculated mean type I fiber CSA from each 

gastrocnemius section (Fig. 3A-E), from which we calculated the percent type I CSA standardized 

to the total CSA of the gastrocnemius muscle (Fig. 3H). Despite the apparent difference of the 

percent of type I fibers, this did not reach a statistically significant difference when represented 

as a percentage of the entire gastrocnemius muscle CSA or the specific comparisons of the 

treatment groups to the YWT PBS control.  

2.4.5 Regenerative Capacity 

Loss of function in aging skeletal muscle is characterized by reduced capacity for muscle 

satellite cells to regenerate damaged tissue [52]. Previously, our lab has used 5-bromo-2’-
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deoxyuridine (BrdU) administered in water supplied ad libitum to gauge satellite cell proliferation 

to an experimental intervention [24]. Therefore, to examine satellite cell division in response to 

skeletal muscle regeneration, we injected the tibialis anterior (TA) muscles of older WT, OE, MKO, 

and SKO mice with CTX or PBS as a control and supplied the recovering mice with 0.8mg/mL 

BrdU for 21 days post-injury. After recovery, the mice were sacrificed and BrdU expression was 

identified in the TA or gastrocnemius muscles by immunohistochemically. The number of BrdU+ 

nuclei in CTX-recovery hindlimb muscles were then counted (Fig. 4A-D) and normalized to the 

CSA of their respective muscles. In contrast to the plantar flexor muscle group, the TAs showed 

no significant difference between PBS and CTX-recovery groups for mean muscle CSA or effect 

size (Fig. 4E). No significant difference was seen between the MKO-80 and WT-80 groups, while 

a significantly lower number of BrdU+ nuclei/μm2 was found for the OE-80 and SKO-80 CTX-

recovery groups (Fig. 4F). Nevertheless, all animal groups showed effect sizes larger than 1 

standard deviation (P ≤ 0.05).  

Next, to determine the regenerative capacity of satellite cells from the older SIRT1 

expression variable mouse models, we isolated satellite cells by FACS and used them in 

proliferation analysis. Isolated satellite cells were diluted so that 10,000 cells could be plated in 

triplicate onto a gelatin-coated coverslip in a 24 well plate. Cells were allowed to recover overnight 

before treatment with 5-ethynyl-2’-deoxyuridine (EdU) prior to fixation and permeabilization. 

Similar to BrdU, EdU is incorporated into DNA from proliferating cells. Thereafter, images from 9 

fields from each coverslip were captured and the total number of EdU+ cells were counted (Fig. 

5A-D).  The proliferation factor was calculated and expressed as the number of EdU+ cells in 9 

image fields over the number of cells initially plated. Satellite cells that were isolated from muscles 

of MKO-80 mice showed a significant increase in proliferation relative to WT-80 mice, with an 

effect size greater than 3 standard deviations (Fig. 5E).  
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2.4.6 Mitochondrial Structure and Function.  

There is likely a link between mitochondrial dysfunction and aging [53] including 

sarcopenia [4]. As SIRT1 is a known regulator of PGC1α which in turn regulates mitochondria 

biogenesis, we next decided to investigate the effects that SIRT1 expression levels had on 

mitochondrial activity in the skeletal muscle of older mice. To determine changes in mitochondrial 

size and complexity/granularity, freshly isolated interfibrillar mitochondria (IFM) and 

subsarcolemmal mitochondria (SSM) subpopulations were analyzed in control mice by forward-

scattering (FSC) and side-scattering (SSC) light, respectively [44,54]. Mitochondria were isolated 

from the same mice that were used for satellite cell isolation experiments and therefore it was not 

possible to evaluate mitochondria after CTX experiments in these mice. Older mice had greater 

mitochondrial size for both SSM and IFM relative to YWT control mice for both SIRT-1 

overexpressor and knockout groups (Fig. 6A, D). No significant difference was found for the 

internal complexities of IFM or SSM; however, a significant F ratio was found for the SSM internal 

complexity, despite having no significant differences among the groups relative to the YWT control 

(Fig. 6B, E).  

Changes in mitochondrial membrane potential (ΔΨm) typically occur in tangent with 

diseases like diabetes [45,54] and also in aging [55]. Isolated mitochondria were incubated with 

5,5’,6,6’-etrachloro-1,1’,3,3’-tetraethylbenzimidazol carbocyanine iodide (JC-1). A shift from JC-1 

green to red fluorescence indicated an increase in the ΔΨm. Previous studies have shown 

mitochondria from diabetic animals or humans had a greater orange/green ratio as compared to 

control mitochondria [45,54]. A significantly lower ΔΨm was found in SSM populations for OE-80 

mice relative to YWT control mice as reflected by a lower orange/green fluorescent ratio (Fig. 

6C). A similar decrease in ΔΨm was seen for the IFM mitochondria in OE-80 mice, although 

statistical significance was not achieved (Fig. 6F). While significant differences for ΔΨm were not 

found between groups, a One-way ANOVA with corrections for multiple variances with the 
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Dunnett’s test (p = 0.05), the global analyses revealed a statistical difference between the group 

means. Given the large effect sizes for some of the groups (>1 SD), it is possible that the 

marginally non-significant pairwise contrasts in (Fig. 6F) may have produced a significant 

difference if there the experimental sample size had been larger.  

2.4.7 Mitochondrial Complex Activity and Muscle Repair.  

To further examine the effects of variant SIRT1 expression coupled with aging on 

mitochondria, we next assessed the relative activity of the mitochondrial electron transport chain 

complexes in control muscles. These same mice were used for satellite cell isolation experiments 

and therefore it was not possible to evaluate mitochondria following CTX injury in these mice. 

Significant differences were found for activities of the SSM complexes; specifically, a greater 

complex III activity for WT-80 mice (Fig. 6H), and a reduced ATP-synthase activity for OE-80 

mice (Fig. 6J). No significant change was seen for SSM complex I activity (Fig. 6G) or SSM 

complex IV activity (Fig. 6I), although the One-Way ANOVA global test did suggest there was a 

significance in differences between the means.  No significant group differences were found for 

IFM complex I activity (Fig. 6K), complex III activity (Fig. 6L) or complex IV activity (Fig. 6M), 

however, the global analysis did show that a significant difference existed for the IFM ATP-

synthase activity (Fig. 6N).  

2.5 Discussion 

In skeletal muscle, SIRT1 has been established as a regulator of PGC1α and consequently, 

mitochondria [21,56], which are important for generating ATP during muscle repair. SIRT1 is 

generally high in type I fibers and promoted by endurance exercise [48], and because type I 

oxidative fibers are generally though to resist aging-related atrophy, SIRT1 has become a target 

of interest in studies of sarcopenia with a potential role in preventing muscle wasting. Support for 

this idea came from studies that show overexpression of SIRT1 prevented type I fiber atrophy 
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under conditions of long-term caloric deficit [15]. Furthermore, SIRT1 overexpression also 

improved the pathophysiology of muscle wasting including Duchenne muscular dystrophy [50]. 

The data in the present study show that SIRT1 is important for proper muscle function in older 

mice, with loss-of-function most impactful to muscle satellite cells. This suggests that SIRT1 may 

have a role in satellite cell regulated muscle repair. Unexpectedly, both our SIRT1 overexpressing 

model (OE-80) and skeletal muscle-specific SIRT1 knockout model (MKO-80), demonstrated 

increased resistance to muscle fatigue after recovering from acute CTX-induced muscle damage. 

Although knocking out SIRT1 in satellite cells impairs muscle contraction in aged mice, ablation 

of SIRT1 from skeletal muscle promotes satellite cell proliferation and therefore the muscle’s 

regenerative capacity, suggesting that the most beneficial or detrimental effects of SIRT1 may be 

determined by its site of localization within muscle cells.  

2.5.1 Muscle and satellite cell loss of SIRT1.  

Interestingly, the MKO and SKO models showed differential effects for SIRT1 knockout. 

The MKO mice had a greater resistance to fatigue after repair following CTX injury but a similar 

level of regenerative capacity as compared to the older models. In contrast to the SKO model, 

the cre protein in the MKO model is induced by the MCK promoter, so SIRT1 it is only expressed 

in mature skeletal muscle. In contrast, the SKO model’s cre protein is promoted by PAX7 so that 

SIRT1 is inactive in only satellite cells, but not in skeletal muscle when PAX7 is downregulated.  

2.5.2 Satellite cell but not muscle loss of SIRT1 reduces maximal force production.  

Muscles from older MKO mice did not have a loss of muscle force production when 

compared to age-matched or 20-week-old, wild-type control mice. This suggests that loss or gain 

of SIRT1 does not affect the muscle’s ability to generate maximal muscle force (presumably by 

not affecting the number or general function of the myosin cross bridges). In contrast, SKO mice 

that have a satellite cell specific loss of SIRT1 had lower overall plantarflexion force than young 



57 
 

or older wildtype or SIRT1 overexpressor mice, although gastrocnemius and soleus muscles were 

not markedly smaller in this group. This suggests that loss of SIRT1 in satellite cells did not 

change overall cross bridge number in the muscle’s CSA, but interestingly it did affect muscle 

function. While it is possible that SIRT1 could affect force per cross bridge, we think a more likely 

possibility is that the lower force output in muscles from SKO mice may indicate a neural problem 

which resulted in an incomplete activation of muscle in the old mice. This could potentially occur 

at the level of the neuromuscular junction perhaps as an accelerated aging loss of dystrophin [57]. 

However, this study was not designed to evaluate the role of SIRT1 in neural regulation of force. 

2.5.3 SIRT1 expression may improve but is not necessary for recovery of muscle function 

after injury.  

Muscle repair is dependent upon satellite cell activation and satellite cell function thought 

to be depressed with aging [23,52].  In elderly humans, SIRT1 activation by resveratrol was shown 

to be associated with increased satellite cell activation in response to loading exercise [27].  

Although the MKO-80 and OE-80 aged models in our study vary with respect to their levels of 

SIRT1 expression in skeletal muscle, both groups showed some improvement in fatigue 

resistance in response to repeated contractions of muscles in hindlimbs previously injured by CTX 

as compared to uninjured control muscles. This fatigue resistance was not reproduced in CTX-

injured hindlimbs for the YWT, WT-80, or SKO-80 models after a 21-day recovery period that was 

observed in the other groups. Furthermore, none of the 5 animal groups experienced a loss of 

function during the fatigue testing in hindlimbs injured by CTX or injected with the PBS control, 

indicating that functional recovery of skeletal muscle is not influenced by loss or gain of SIRT1 

abundance in skeletal muscle. The gain of function after injury in both SIRT1 overexpressor and 

SIRT1 knockout models suggests a common repair-induced modification in muscle function may 

exist as long as some SIRT1 is present in satellite cells (even if it does not exist in the muscle 

cells per se).  
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2.5.4 SIRT1 loss in muscle increases acute, but not long-term proliferation of satellite cell. 

 Ryall and colleagues reported that knocking SIRT1 out of satellite cells caused premature 

differentiation of satellite cells [29], and therefore we expected SIRT1 loss or overexpression 

would induce different satellite cell proliferation responses after CTX injury.  

In vitro analysis of cell proliferation within 24 hours of culturing isolated satellite cells 

showed that a muscle knockout of SIRT1 had the greatest potential for satellite cell proliferation 

among the experimental groups. Of the five experimental groups, only the MKO model lacked 

expression of SIRT1 in skeletal muscle (despite PAX7 not being expressed in skeletal muscle, 

Western blots showed reduced or ablated bands for SKO mice, which should only lack SIRT1 in 

satellite cells). However, because the SKO muscles showed a comparatively blunted level of 

proliferation compared to the MKO model, muscle loss of SIRT1 while maintaining satellite cell 

SIRT1 appeared to increase satellite cell proliferation. However, this potential was not realized in 

vivo in response to repair following CTX injury. 

In vivo proliferation was assessed 21 days after acute CTX injury in muscles of older mice 

and was reflected by the frequency of BrdU+ nuclei present in muscle sections post-repair. As 21 

days represents a point where recovery from acute injury should be complete, this experiment 

reflected long-term satellite cell proliferation following an acute injury and not the rate of cell 

proliferation. After 21 days, the MKO model no longer had the greatest proliferation capacity, but 

instead was the only SIRT1-expressor variant that did not differ significantly in the number of 

BrdU+ nuclei quantified in the older, WT-80 group. Both OE-80 and SKO-80 showed significantly 

fewer BrdU+ cells relative to the WT-80 and MKO-80 models. This indicates that factors outside 

of the satellite cells (potentially cross-talk between muscle and satellite cells) in vivo limited 

satellite cell proliferation in muscles of old animals, and one of those could be muscle SIRT1. 
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2.5.5 Mitochondrial function and SIRT1 in muscle. 

As SIRT1 has a role in regulating oxidative metabolism and connecting global metabolism 

to longevity and regeneration, we also examined mitochondrial subpopulations to identify potential 

differences in these subpopulations resulting from variant SIRT1 expression. Mitochondrial 

dysfunction may be a fundamental component that regulates aging responses along several 

pathways [27,58]. Previous work has suggested that interfibrillar mitochondria (IFM) and 

subsarcolemmal mitochondria (SSM) subpopulations are affected differently in cardiac muscle by 

diabetes [54]. Furthermore, SIRT1 is a regulator of PGC1- which moderates mitochondrial 

proliferation [59].  

As a reduced mitochondrial membrane potential has been characterized as an effect of 

aging and correlates with increased ROS production [55,60] we had expected that mitochondrial 

membrane potential (ΔΨm) would be improved when SIRT1 was overexpressed in muscles of 

older mice, but this was not the case. Interestingly, we saw that muscles from older mice 

overexpressing SIRT1 had a significantly lower ΔΨm and ATP-synthase activity in the SSM 

subpopulation. While, we found a significant F ratio for IFM ΔΨm by One-way ANOVA, there was 

no significance difference in the mitochondrial membrane potential as an indicator of 

mitochondrial function between animal groups (denoted in our figures by F*), for IFM-ΔΨm and 

IFM ATP-synthase activity. The IFM results may have been a function of significant differences in 

activity that were masked by the low sample sizes of the experiments. While it is possible that the 

decrease in ΔΨm in muscle mitochondria from SIRT1 overexpressor mice, may extend to the IFM 

subpopulation as well, we cannot verify this in the current study.  

Despite loss of SIRT1 function, there was no significant differences in muscle 

mitochondrial characteristics among MKO-80, SKO-80 and YWT mice aside from significantly 

increased size in the older mice (perhaps as a function of decreased mitochondrial fission or 

increased fusion). Because analysis of these mitochondria was performed on isolated skeletal 
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muscle and not isolated satellite cells, some differences in mitochondrial characteristics may be 

present during the repair process in satellite cells that could contribute to a reduced maximal 

contraction force in muscles of SKO-80 mice, or the increase in proliferation of satellite cells seen 

in MKO-80 mice. However, the similarities between the experimental models for the majority of 

the mitochondrial factors closely reflects the physiological data that showed little change between 

muscle fatigability between pre-treatment and saline-injected control groups. Although the 

reduced ΔΨm and ATP synthase activity in SSM from OE-80 mice, coupled with the significantly 

reduced number of proliferating BrdU+ cells detected after injury, support the idea that 

mitochondria dysfunction may impair the recovery of muscle injury in aging [61]. The force and 

fatigue data collected before and after injury suggest that alterations in mitochondria 

characteristics did not impair muscle function after repair from CTX-induced injury. 

One explanation for the increased satellite cell proliferation seen in MKO-80 mice after 

injury and the blunted satellite cell response seen in the OE-80 model might be related to the 

mitochondrial related reactive oxygen species (ROS) concentration in the relative cellular 

environments. For example, attenuation of muscle regeneration in satellite cells from old mice 

was shown to decrease when aged satellite cells were paired to young circulatory environments 

[23], indicating that repair can be influenced by the local cellular environment. Several studies 

have suggested that excess ROS generated from mitochondrial respiration can damage cellular 

structures and may contribute to cellular aging [62]. It is possible, although speculative, that 

skeletal muscle containing high levels of SIRT1 may release more mitochondrial-associated ROS 

than SIRT1 knockout models during injury and repair, and thereby impair the proliferation capacity 

in satellite cells during muscle repair. Although our study was not designed to measure ROS 

levels, we did see a reduction in SSM- ΔΨm and in ATP synthase activity for the OE-80 model. 

Reduced NAD+ and SIRT1 activity has been observed in aged tissues, concurrent with reduced 

mitochondrial respiratory chain activity and decreased expression of proteins that protect against 
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oxidative damage [63]. Conversely, treatment with nicotinamide (NAM), the precursor to the 

SIRT1 cofactor nicotinamide adenine dinucleotide (NAD+), has been shown to increase 

mitochondrial membrane potential and decrease ROS concentration through pathways utilizing 

[64], and pathways independent of SIRT1 [65]. It is possible that the OE-80 model, which has 

increased expression of SIRT1 and a decreased SSM- ΔΨm, is depleting NAD+ more than wild-

type or knockout models. If this was the case, NAM abundance would be decreased and ROS 

abundance would be increased, which in turn would be expected to reduce satellite cell 

proliferation as a result of greater oxidative damage. 

As resveratrol-mediated SIRT1 activation was shown to be protective against ROS-

induced mitochondrial-mediated apoptotic signaling in muscle [41], and SIRT1 increases 

antioxidant production in muscle [27,32] we had expected that mitochondrial function would be 

improved in muscles that overexpressed SIRT1after repair following CTX injury mice. However, 

muscles from OE-80 animals had the lowest SSM-ΔΨm and SSM ATP-synthase activity. As SSM 

lie close to satellite cells, we would have expected this mitochondrial subpopulation to have the 

greatest impact on proliferating satellite cells if mitochondrial were important for this process. 

Nevertheless, the abundance of BrdU positive satellite cell nuclei were not different in muscles 

among OE-80, MKO-80 or SKO animals after repair from CTX-injury. Thus, the potential for SIRT1 

abundance to alter mitochondria did not appear to affect the potential for satellite cell-proliferation 

during repair after CTX injury. 

2.5.6 p53 protein abundance is increased in SIRT1 variant models that gained improved 

muscle function after recovery from CTX-induced injury.  

Tumor suppressor p53 is a well-characterized downstream target of SIRT1. While SIRT1 

deacetylation usually inhibits p53 activity, p53 can be upregulated through several pathways, 

especially in response to cellular stress or damage 66. Indeed, p53 was only found to be 

significantly increased in the CTX-injured muscle of the OE-80 and MKO-80 models, but only 
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when compared to basal levels of p53 in control muscles that have also recovered from CTX 

injury. Because one of the main functions of p53 is to repair DNA in response to injury, the 

presence of p53 in the CTX-injured muscles provides a plausible explanation as to why our OE-

80 and MKO-80 mouse models that have opposite protein abundances of SIRT1 could 

paradoxically both benefit from CTX-induced injury. Furthermore, p53 has recently begun to 

emerge as an important factor in exercise metabolism, as genetic knockouts of p53 reduce IFM 

and SSM mitochondrial yield, inhibit mitochondrial respiration, and reduce exercise capacity 

during fatiguing exercises in rodent models [67]. Interestingly, although the expression of p53 

coincides with improved fatigue resistance in the SIRT1 muscle knockout, the improvement in 

muscle function after CTX-recovery is markedly greater in the OE-80 model, indicating high 

synergy between the abundances of the SIRT1 and the p53 proteins during muscle recovery.  

2.5.7 Expression of p53 may underlie the attenuation of MKO-induced satellite cell 

proliferation.  

Previous work has established that SIRT1 expression in satellite cells helps to maintain 

the quiescence of satellite cells, and that eliminating SIRT1 in satellite cells causes premature 

proliferation [29]. Normal downregulation of SIRT1 in satellite cells precedes a metabolic shift 

from fatty acid metabolism to glycolysis, which is a necessary step for the transition between 

quiescence and proliferation. Because the metabolic profile of stem cells also acts to regulate 

proliferation and differentiation [68], it is possible that the increased satellite cell proliferation seen 

in the MKO mouse model is due to the absence of SIRT1 in muscle that disrupts the necessary 

metabolic change required to end satellite cell proliferation. This possibility is strengthened by 

evidence showing that there is an increased abundance of p53 in the CTX-injected hindlimb 

muscles of the MKO mouse model and that there is an attenuation of satellite proliferation that 

was identified by BrdU+ 21 days post CTX injury. This is because overload-induced muscle 

growth increases nuclear p53 [69] and ablating p53 activity reduces myoblast differentiation [70]. 
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A likely scenario is that in the absence of SIRT1 in MKO muscle causes satellite cells to undergo 

increased proliferation (a reduced proliferation “off-signal”), while the overexpression of SIRT1 

would inhibit proliferation, which corresponds to a lower number of BrdU+ cells in the OE-80 

model when compared to WT-80. Ironically, CTX-induced muscle damage that should promote 

satellite cell proliferation to stimulate repair also increased p53 expression, which would be 

expected to inhibit proliferation and promote differentiation in satellite cells of the repairing 

muscles in MKO-80 mice and potentially lead to muscle growth/repair. This is consistent with the 

observation that cell proliferation was attenuated in isolated satellite cells from MKO-80 mice in 

vitro after 24 hours by EdU analysis.  

2.5.8 The synergistic effects of SIRT1 and p53 that improve fatigue resistance after injury 

may also protect type I fibers from sarcopenic wasting.  

Although the expression of p53 in the CTX-recovery hindlimbs of the MKO-80 mice 

provide a possible explanation as to why the MKO-80 mice have attenuated satellite cell 

proliferation after CTX injury and why injury may induce a protective effect against fatigue, the 

inhibitory effect that SIRT1 exerts on p53 suggests that co-expression in muscle fibers should 

ablate the protective effects of p53 on fatigability. To the contrary, our data show that the OE-80 

mice gain a strong protective effect against fatigue when p53 is upregulated in hindlimbs following 

CTX injury and even show signs of improving muscle function following injury through post-

activation potentiation [71,72]. One possible explanation is that the inhibition of p53 by SIRT1 only 

inhibits p53 activity detrimental to oxidative fibers, but not mitochondrial function or DNA repair 

activity crucial to preventing metabolic ROS damage. Furthermore, p53 is an established 

upregulator of immobilization-induced skeletal muscle atrophy [73]. Selective inhibition of this 

activity could explain why type I muscle fibers are resistant to sarcopenic wasting while type II 

fibers selectively undergo atrophy. It will be interesting to determine in future studies if co-

expression of SIRT1 and p53 selectively inhibit atrophy-related activity but not the DNA repair 
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functions, thereby ensuring that p53 cannot promote atrophy in oxidative fibers, where SIRT1 is 

highly expressed.  

2.5.9 Study limitations.  

The loss of older mice which died at old ages prior to conducting these studies, and 

removal of mice due to deteriorating health conditions at old ages limited the number of animals 

that were available to complete the experiments and therefore reduced the power of the study. 

The low number of older animals available for this study prevent us from obtaining mitochondrial 

measures in muscles after repair from CTX. The lower than ideal number of animals may also 

have contributed to several experiments which had significant differences in their global One-way 

ANOVA analyses but failed to detect significant between group differences. Due to the large effect 

sizes for some of the values calculated by the respective Cohen’s d statistics, the likelihood that 

some differences were masked by the sample size numbers is high. Increasing the power of these 

experiments and expanding the scope of the mitochondrial aspects of the study to include ROS 

production and mitochondrial respiration could potentially elucidate a secondary, external role of 

SIRT1 in modifying satellite cell viability through oxidative damage and/or mitochondrial 

dysfunction. 

2.5.10 Conclusions.  

The expression of SIRT1 in satellite cells is important for the functional development of 

skeletal muscle both initially and for full muscle regeneration. However, despite its functional 

significance in immature skeletal muscle, SIRT1 shows modest benefit on muscle mass or muscle 

function when it is expressed in the older skeletal muscle of C57BL6/j-background mice after 

acute injury. Our data suggest that there is little benefit for the physiological force or fatigue 

responses by overexpression of SIRT1 in vivo in the repaired older skeletal muscle of mice in the 

absence of any other interventions. However, SIRT1 may synergistically improve the effect of 
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beneficial proteins like p53 after injury, improving muscle adaptability and functionality. Ablation 

of basal SIRT1 expression in satellite cells, however, critically impacts future/mature muscle 

function, resulting in lower force production. The MCK-driven knockout of SIRT1 in the skeletal 

muscle of older mice showed an improved satellite cell dependent muscle regeneration potential, 

but this regeneration is possibly attenuated by the expression of p53 after muscle injury. Future 

work is needed to identify the synergistic effects between SIRT1 and p53 in muscle repair. We 

speculate that the beneficial effects produced by co-expression of SIRT1 and p53 may also 

underlie important mechanisms related to longevity, potentially including the mechanism behind 

type I fiber preservation during sarcopenia. 
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2.9 Figure Legends 

2.9.1 Figure 1
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2.9.2 Figure 1. Protein expression in young wild-type and older variant SIRT1 expressing 

mice. (A). SIRT1 protein expression collected from 12-week-old wild-type (WT), overexpressor 

(OE), satellite cell knockout (SKO) and skeletal muscle knockout (MKO) mice prior to and 2 hours 

after exercise (-ex). (B). Densitometric and immunoblot analysis of SIRT1 protein expression 

measured in young wild-type (YWT, n=3) and older (80+ weeks) wild-type (WT-80, n=3), SIRT1 

overexpressor (OE-80, n=3), SIRT1 skeletal muscle knockout (MKO-80, n=3), and SIRT1 satellite 

cell knockout (SKO-80, n=3) mice hind limbs 21 days after phosphate buffered saline (PBS) or 

cardiotoxin (CTX) injection. Basal SKO-80 SIRT1 expression was significantly reduced relative to 

YWT mice (*P < 0.05), while OE-80 PBS SIRT1 expression was significantly increased (***P < 

0.001) relative to YWT PBS. Only SKO-80 mice showed a significant increase in SIRT1 

abundance for CTX injected muscles relative to their own PBS injected hind limbs (†P < 0.05). 

(C). Representative immunoblots of SIRT1 downstream targets FoxO3a and p53 and loading 

control GAPDH for SIRT1 variant expressers after PBS/CTX injection and recovery. 

Densitometric analysis of the immunoblots revealed no significant differences in protein 

expression. (D). Densitometric analysis of the immunoblots revealed significant differences in the 

abundance of p53 protein for OE-80 CTX (###P < 0.001) and MKO-80 CTX (#P < 0.05) groups 

relative to YWT CTX mice. (E). Representative immunoprecipitation immunoblots for SIRT1 

downstream target PGC1α and its acetylation state. (F). Densitometric analysis of relative PGC1α 

acetylation. No significant difference was discovered between groups versus the YWT control 

when using one-way ANOVA with corrections for multiple comparisons. 
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2.9.3 Figure 2
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2.9.4 Figure 2. The effects of SIRT1 expression on hindlimb skeletal muscle function in 

young wild-type and older mice. Young wild-type (YWT, 20-30 weeks, n=8) and older (80+ 

weeks) wild-type (WT-80, n=8), SIRT1 overexpressor (OE-80, n=9), SIRT1 skeletal muscle 

knockout (MKO-80, n=7), and SIRT1 satellite cell knockout (SKO-80, n=4) mice were 

anesthetized with 2-3% isoflurane and electrically stimulated once at 75Hz (A, B) and 180 times 

at 40Hz (C-P) to produce muscle contractions (pre-treatment, PRE) prior to injection with snake 

cardiotoxin (CTX) and vehicle control (PBS).  21 days post-injection, muscle force was 

reexamined. Data are presented as the mean force at 75Hz ± SD (***P<0.01; †P < 0.05) (* 

denotes a significant difference from the YWT control, † denotes a significant difference between 

a genotype’s control and treatment). B. Force recovery was measured by normalizing PBS/CTX 

data to the same limb pre-treatment. Data presented as fold change ± SD.  C. Comparison of all 

and individual (C-H) fatigue profiles for experimental groups normalized to earliest maximum 

force. Data are presented as fold change (†P < 0.05, ††P<0.01, †††P<0.01, ††††P<0.001). 
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2.9.5 Figure 3 
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2.9.6 Figure 3. The effects of SIRT1 expression on hindlimb skeletal muscle structure in 

young wild-type and older mice (A-E). Gastrocnemius and soleus muscles for YWT (A), WT-80 

(B), OE-80 (C), MKO-80 (D), and SKO-80 (E), were dissected after physiological evaluation and 

flash frozen in methyl-butane chilled by liquid nitrogen. Cross sections were cut at 16μm and 

stained for MHC I (green) or MHC IIa/b and dystrophin (red), then mounted with DAPI hardset 

(blue). Total cross-sectional area of gastrocnemius cross-sections (F), soleus cross sections (G), 

and type I fiber cross sections (H), were calculated by fiber tracing with the ImageJ software 

package on images captured at 4x resolution. Data are presented as mean ± SD compared to 

YWT PBS, (n=3). [F*] denotes that a significant difference was observed for the global One-way 

ANOVA tests, but not for specific comparisons. I. The gastrocnemius type I percentage was 

calculated by dividing the summed type I fiber CSA for each section by the total CSA of the 

respective gastrocnemius (n=3). Scale bar = 100 m. 
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2.9.7 Figure 4 
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2.9.8 Figure 4. The effects of SIRT1 expression on cell replication in older murine skeletal 

muscle after recovery from injury. A-D. Tibialis anterior (TA) cross-sections were taken for WT-

80 (A), OE-80 (B), MKO-80 (C), and SKO-80 (D) mice 21 days after CTX injury at 4x resolution. 

Sections were stained against BrdU (green, indicated by white arrows) and dystrophin (red). E. 

Total CSAs of TA cross-sections were calculated and presented as mean CSA (μm2) ± SD (n=3). 

F. BrdU positive nuclei (A-D) were quantified and normalized to their respective TA CSA. Data 

are presented as mean ± SD (n=3); (*P < 0.05). Scale bar = 100 m 
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2.9.9 Figure 5 
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2.9.10 Figure 5. The effects of SIRT1 expression on satellite cell proliferation in older murine 

skeletal muscle.   (A-D). EdU+ cells were identified from FACS-isolated satellite cell populations 

from TA muscles of WT-80 (A), OE-80 (B), MKO-80 (C), and SKO-80 (D) mice. (E). The 

proliferation factor was determined by the total of EdU+ cells counted from 9 fields, normalized to 

the total number of cells in the plate. Experiments were repeated in triplicate and data are 

presented as mean ± SD (n=3); (*P < 0.05). 
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2.9.11 Figure 6 
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2.9.12 Figure 6. Characteristics of mitochondria in young wild-type and older SIRT1-

expression models of murine skeletal muscle.   Plantar flexor muscle groups (gastrocnemius, 

soleus, and plantaris) were obtained from YWT and older SIRT1-expressor mice prior to isolation 

of IFM and SSM subpopulations.  Significant differences were found in the sizes of older 

mitochondria relative to YWT mitochondria for both SSM (A) and IFM (D). No significant 

differences were found for specific comparisons of internal complexity in SSM (B) or in IFM (E). 

OE-80 showed a significantly lower mitochondrial membrane potential (ΔΨm) than YWT mice 

mitochondria as reflected in the lower ratio of orange/green mitochondria relative to YWT in SSM 

(C) and IFM (D) [F*]. MKO-80 mice and OE-80 mice show the potential for having inversely 

affected ΔΨm (F). The shift from green to orange occurs as the JC-1 dye forms aggregates upon 

membrane polarization causing shifts in emitted light from 530 nm (green) to 590 nm (orange). 

Addition of 200 µM dinitrophenol, which collapses the ΔΨm was used as an assay control. Data 

are expressed as the mean orange fluorescence divided by the mean green fluorescence of 

20,000 mitochondrial events per individual mitochondrial sample.  The activity for mitochondrial 

electron transport chain complexes was calculated for SSM (G-J) and IFM (K-N). OWT-80 

showed increased complex III activity in SSM (H), while OE-80 mice showed decreased ATP 

synthase activity (J). Complex IV activity is depressed in older WT and OE models in SSM, but 

not SIRT1 knockout models (I). Data are presented as mean ± SD (n=5). (*P < 0.05, **P < 0.01, 

***P < 0.001). [F*] denotes that a significant difference was observed for the global one-way 

ANOVA tests, but not for specific comparisons.  
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Table 1: Characteristics of Study Animals 

 

 
YWT OWT OE MKO SKO 

Age (Weeks) 24.8 ± 0.7 83.7 ± 0.5 86.9 ± 1.5 90.1 ± 2.9 84.2 ± 4.2 

Mass (g) - Total 28.4 ± 1.4 35.8 ± 2.1 31.7 ± 0.8 34.9 ± 1.5 31.2 ± 1.7 

Mass (g) - Males 32.1 ± 1.1* 37.3 ± 2.6 32.7 ± 0.7 34.9 ± 2.0 34.5 ± 2.1 

Mass (g) - Female 24.0 ± 0.9* 33.5 ± 3.6 29.6 ± 1.7 34.8 ± 2.5 31.4 ± 2.1 

%Male 53.9% 61.6% 66. 7% 58.3% 30% 

%Female 46.2% 38.5% 33.3% 41. 7% 70% 

n 13 13 14 12 10 

 

Mass of each group was recorded immediately prior to euthanasia. Experimental groups 

consisted of randomly distributed males and females.  Young wild type (YWT) males differed 

significantly in body mass only from YWT females (*P < 0.05). Data are expressed as means ± 

SD. 
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Chapter 3: 

Discussion 
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3.1. Summary 

The primary objectives of this investigation were to (1) elucidate the role of SIRT1 in 

regulating muscle function and fatigue resistance in regenerating skeletal muscle of aged mice, 

(2) determine the role of SIRT1 in regulating mitochondrial biogenesis and function in 

regenerating aging skeletal muscle, and (3) determine if SIRT1 activation can improve 

proliferation in satellite cells in aging. The long-term goal of this study was to determine the 

physiological relevance of SIRT1 expression in the functionality of aging skeletal muscle and 

provide insight as to whether SIRT1 is an effective therapeutic target for interventions designed 

to treat or prevent muscle wasting with age. The central hypothesis of this dissertation was that 

overexpression of the protein SIRT1 would provide protective benefits from functional muscle loss 

accompanying aging and that SIRT1 expression would act to promote longevity in skeletal muscle 

by improving mitochondrial health and increasing the proliferation of muscle satellite cell 

proliferation after injury. Our rationale for the proposed research was that SIRT1 has been 

strongly linked to longevity, that type I skeletal muscle fibers both resist sarcopenic muscle 

wasting with age and highly express the protein SIRT1, and that SIRT1 is a known up-stream 

regulator of mitochondria—whose dysfunction has been long linked to aging [1,2]—through the 

PGC-1α axis [3].  

In this dissertation, we demonstrated that in aged, non-sarcopenic mice, hindlimb muscle 

function is not affected by the abundance of SIRT1 in adult skeletal muscle, although major 

reductions in contraction force can be seen if SIRT1 is absent from muscle satellite cells in aged 

mice. Young, wild-type mice showed impaired strength recovery after recovery from CTX-induced 

injury, though this difference was not seen in aged mice of any genotype. (This finding may be 

explained in part by the [F*] seen in our data for the CSA of the YWT mice—although we did not 

show significant differences, the CSA of YWT mice post-CTX recovery indicated that the soleus 

muscles of young mice did not recover to their full size. Secondly, because it was difficult to detect 
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significant reductions in muscle cross sectional area for the aged models, the older mice may 

have possessed enough increased oxidative stress in their muscles associated with aging to 

promote further muscle repair while not possessing enough stress to impair muscle functionality.)  

Neither the presence nor absence of SIRT1 affected fatigue resistance in the hindlimbs of un-

injured, aged mice. Interestingly, both the muscle knockout and overexpressor models of SIRT1 

showed improved fatigue resistance relative to baseline fatigability, with the SIRT1 overexpressor 

model’s force profile suggesting the muscles underwent postactivation potentiation—an increase 

in muscle force during low frequency activation (for example, during endurance exercise) 

following a conditioning activity, such that a previous muscle contractions improves the following 

contraction [4]. 

Next, we showed that very few differences occurred in the mitochondria between different 

genotypical models of SIRT1 expression in aged mice compared to the young wild-type controls. 

Although mitochondria tended to be significantly larger in aged mouse models relative to the 

young, wild-type controls, the models showed very little variability in number, internal complexity, 

mitochondrial membrane potential, or mitochondrial complex activity. Although this data was 

surprising based on our initial expectations, the accrual of recent literature has begun to suggest 

that the intercellular levels of [NAD+] and its enzymatic regulators are more important to the pro-

longevity functions associated with SIRT1 than actual SIRT1 abundance [5–7]. Also surprising 

was that despite expecting to find an increase in mitochondrial complex activity, mitochondrial 

membrane potential, and mitochondrial population in the mitochondria from our aged 

overexpressor model, our data suggested that ΔΨm and the activity of complex IV and ATP-

synthase were instead blunted with the overexpression of SIRT1, a visible difference and trend 

relative to the other transgenic models we investigated.  
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Finally, we showed that the loss of SIRT1 in adult skeletal muscle, rather than the 

overexpression of SIRT1, improved early proliferation of satellite cells, although this effect 

appeared to be attenuated somewhat later in the process of regeneration.  

Overall, the importance of SIRT1 in the skeletal muscle of aged mice is largely dependent 

on its abundance in muscle satellite cells, rather than in adult skeletal muscle. Furthermore, even 

the large boost in satellite cell proliferation seen in the skeletal muscle knockout model of SIRT1 

appears to have very little effect on muscle function. Surprisingly, it seems that a disruption in 

SIRT1 activity in aged skeletal muscle improves the fatigue resistance of the muscle after 

recovery from injury, regardless of whether the muscle has an increase or loss of function, 

indicating that SIRT1 may be a secondary or tertiary regulator for muscle function after injury. 

Interestingly, the injury-recovery models that showed an improvement in their fatigabilities also 

showed an increased abundance of the protein p53, a downstream target of SIRT1. Thus, 

although our current evidence indicates altering SIRT1 abundance should not be a primary focus 

for interventions against muscle loss associated with aging, the investigation of SIRT1’s 

relationship with p53 in the process of muscle repair is an important next step in understanding 

the aging of skeletal muscle. 

3.2. General Discussion 

Despite the many studies examining the expression of SIRT1 in various models of aging 

[8], few have focused on the translational effects of SIRT1 expression in muscle to functional 

relevance [9]. Our data show interesting and novel insights regarding SIRT1’s effect on hindlimb 

muscle function in aged and injured mouse models. However, some data seemingly conflict with 

previous studies, especially in the context of muscle fiber structure and composition. Earlier 

studies from the Guarente lab have shown that overexpression of SIRT1 could rescue mice from 

the phenotype of Duchenne’s muscular dystrophy and shift the fiber-type distribution toward 

oxidative fibers [10]. These findings were strengthened by studies showing that overexpression 



90 
 

of PGC-1α, a downstream target of SIRT1 regulation, and resveratrol, a known activator of SIRT1 

[11], produced a similar rescue of dystrophic function and fiber-type shift [12,13]. These conflicts 

may arise from the degree of dysfunction in the dystrophic phenotype, as SIRT1 transgenic mice 

have also been shown to have distinctly similar muscle characteristics compared to wild-type mice 

in several studies, including size and weight [7,10,14]. Furthermore, the loss of dystrophin has 

been shown to affect the structural integrity of satellite cells during regeneration by dysregulating 

scaffold formation, a contributing phenotypical difference not present in the non-dystrophic 

C57BL/6J background mice [15]. 

Although our study only takes a shallow look into the make-up of the gastrocnemius, 

soleus, and tibialis anterior muscles of the mouse hindlimb, we have shown no significant 

difference in muscle fiber cross sectional area or fiber-type composition between the SIRT1 

models. One explanation for this mismatch is the power of our statistical analysis. Analysis of the 

cross-sectional areas (CSAs) of fiber types revealed significant differences did exist between 

groups when assessed by two-way ANOVA with corrections for multiple comparisons against the 

YWT control, but significance could not be established between specific groups, likely due to a 

masking effect, as indicated by the large effect sizes calculated for the Cohen’s d statistic. 

Although it is possible to infer from the data that the CSA of gastrocnemius muscles is decreased 

in aged wild-type mice, but is possibly rescued by altering the expression of SIRT1, these results 

cannot be confirmed by our current data. However, the total cross-sectional area attributed to type 

I fibers in the gastrocnemius muscles does stay consistent among the models, indicating that 

altering SIRT1 expression levels alone does not seem to influence the relative make-up of mixed-

fiber muscles.  

Along with the small differences detected in the muscle structure, we also reported few 

differences between the majority of the transgenic models in respect to mitochondrial complexity, 

population, and complex activity. These findings suggest that SIRT1’s role in promoting longevity 
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or a caloric-restriction phenotype likely requires very little expression of the protein itself, and is 

more dependent on an outside activator. Recent literature has indicated that SIRT1 

overexpression models show significantly different genetic profiles compared to caloric restriction 

or exercise trained mice, and possess different mitochondrial functionality compared to such 

models, characterized by lower rates of mitochondrial respiration and lower glucose clearance 

[7]. These findings are supported by studies showing the vast effectiveness of supplementation 

of NAD+ conjugates, such as nicotinamide riboside, in promoting cellular longevity [5] and pro-

longevity factors, such as increased mitophagy, lower blood glucose levels, and muscle stem cell 

population [16,17] 

In other aspects, however, our data reflect the findings in studies using similar models; for 

example, literature has reported that the muscle creatine kinase-knockout model of SIRT1 (MKO) 

shows that loss of SIRT1 activity does not affect oxidative metabolism or myofiber composition in 

skeletal muscle [10]. Furthermore, their MKO model also showed no difference from WT mice in 

fatigability under more mild exercise training. An important caveat is that dystrophic mice suffer 

from structural weakness due to a dysfunctional dystrophin protein; furthermore, affected muscle 

in these cases are susceptible to contraction-induced rupture of the sarcolemma [12] and often 

present many fibers with centrally-located nuclei [10], a phenotypical sign of muscle damage. Our 

data may shed some light on how SIRT1 overexpression rescues muscle function, as our work 

has shown that after injury, in models where the protein p53 is significantly increased in recovered 

muscle, resistance to fatigue is improved; moreover, co-expression of the SIRT1 overexpressed 

protein and p53 show signs of muscle potentiation, improving the force output for fatigue 

contractions in the early stages of the exercise protocol.  

The protein p53 is a highly studied gene, important to cancer research, that encodes a 

transcription-regulating protein with wide effects on cellular biology, most notably its ability to 

promote cell cycle arrest and apoptosis [18]. The ability of p53 to induce cell cycle arrest may also 
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function as a stop-gap in which p53 can act to promote DNA damage repair, as recent evidence 

continues to link the protein to several DNA-repair pathways [19]. Curiously, our data indicates 

that p53 shows an increase in abundance in both the MKO and OE aged models after injury, 

hinting that SIRT1 dysregulation may lead to increased protein expression of p53 through multiple 

regulatory pathways or by altogether different means. A possible explanation for the MKO model 

is that in the absence of SIRT1, which promotes the mitochondrial regulatory activity of PGC-1α 

including stimulating biogenesis and upregulating the antioxidant proteins that manage oxidative 

phosphorylation, CTX-induced muscle damage coupled with more overall oxidative stress (from 

the lower abundance of antioxidants) could cause the stimulation of p53 transcription/translation 

to rise as a compensatory mechanism. Because a loss of SIRT1 would also reduce inhibition of 

the SIRT1 target NF-κB, an inducer of the inflammatory response and inhibitor of p53, increased 

NF-κB could be potentially inhibiting the apoptotic-functions of p53 [20,21]. Thus, only the DNA 

repair pathways mediated by p53 after CTX-injury might be activated and could therefore account 

for the improved fatigue resistance in MKO mice. Alternatively, our data indicate that the loss of 

SIRT1 abundance in adult skeletal muscle promotes early proliferation of satellite cells as 

determined by EdU staining in vitro, with an apparent attenuation of activity after 21 days as 

determined by BrdU staining in vivo. These assays also indicate the attenuation of satellite cell 

proliferation in the OE-80 and SKO-80 models relative to proliferation in WT-80 mice, which 

strongly suggests the upregulation of SIRT1 during the process of skeletal muscle differentiation 

inhibits satellite cell proliferation. This data is supported by Ryall et al. [22], who showed that 

SIRT1 protein expression correlating with the oxidative metabolic state of quiescent satellite cells 

acts to inhibit their activation—whereas downregulation of SIRT1 in satellite cells promotes a 

metabolic switch to glycolysis and subsequent activation of these cells. Thus, the down-regulation 

of SIRT1 prior to satellite cell activation and up-regulation of SIRT1 during differentiation may be 

part of a metabolic signal within the muscle that controls satellite cell activity. This would indicate 

a pathway possibly independent of p53, wherein the MKO-80 model’s improved muscle 
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performance after hindlimb injury and repair stems from improved muscle satellite cell 

proliferation.  

 Conversely in the OE models, p53 recruited after injury may be more effectively enhanced 

by SIRT1 overexpression, which acts to directly bind and deacetylate p53 to inhibit its apoptotic 

functions by blockings its translocation to the nucleus [22]. Blocking p53’s access to the nucleus 

may therefore promote translocation of p53 to mitochondria, where it can act to form mitochondrial 

DNA complexes [23]. Because previous studies have shown that p53 expression can improve 

endurance exercise capacity [24] it may likely be through this mechanism that p53 upregulation 

correlates with improved endurance exercise capability in the OE model after injury. Research 

published by Zhao et al. have shown that prior to apoptosis, p53 translocates to the mitochondria 

where it targets the manganese-dependent superoxide dismutase (MnSOD) [25]. Subsequently, 

the loss of MnSOD’s superoxide scavenging activity results in an increase of oxidative stress in 

the mitochondria was associated with a drop in ΔΨm. These findings reflect the data we reported 

for the mitochondrial membrane potential and complex activities, wherein the ΔΨm and activities 

were similar for most of the SIRT1 transgenic models, except for the OE-80 model which showed 

a trend for decreased ΔΨm and complex IV and ATP synthase activity. Furthermore, our data 

suggest a masked significant decrease for the mitochondrial abundance of the OE-80 model 

relative to the control model (Fig. 1). Taken together, these findings indicate that increased SIRT1 

abundance from overexpression may be interacting with increased levels of p53 stimulated by 

muscle injury to redirect p53 from the nucleus to the mitochondria. In cases of cellular stress, 

SIRT1 has been shown to promote cellular protection by inhibiting the apoptotic capabilities of 

the FOXO proteins, which share somewhat similar functions with p53, while improving their DNA 

repair capability in cells chemically stressed by H2O2 [26]. This process likely results from partial 

deacetylation (and therefore, only partial deactivation) of the FOXO/p53 transcription factors; 

indeed, p53 is known to be a target of both the SIRT1 and PID/HDAC1 deacetylases [22] that can 
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alter its translocation targets. This possibility is supported by recent literature reporting that p53 

localization to the mitochondria helps to adapt the mitochondria to endurance exercise training, 

an effect which is attenuated in muscle knockout models of SIRT1 [14]. Furthermore, these 

models indicated p53 possesses some sort of regulatory function for mitochondrial autophagy—

in the absence of p53, autophagy signaling was increased, but clearance of autophagosomes 

was impaired. Taken altogether, a possible explanation for our data is that the abundance of 

SIRT1 in the aged overexpressor model interacts with p53 after muscle injury to promote 

mitochondrial health by inducing translocation of p53 to the mitochondria, where it promotes 

mitochondrial housekeeping functions. 

3.3. Future Directions 

Although the idea behind this mechanism comes from several established studies, further 

investigation is required to test and verify the veracity of the beneficial effects of SIRT1 and p53 

co-expression in skeletal muscle. Future studies could focus on models with alternate levels of 

p53 expression, much like the various SIRT1 mouse models employed in this dissertation. 

Alternatively, experiments focusing on the overexpression of SIRT1 and p53 both independently 

and under co-expression in mouse models treated with exercise and/or injury would be a first step 

in deriving a mechanism by which these proteins interact. 

Another point to expand upon for future studies is examining how metabolic interventions 

affect SIRT1’s and/or p53’s roles in muscle repair after injury. Caloric restriction has long been 

linked to SIRT1 and is often employed as an activator of SIRT1 activity [8]. It is possibly that the 

muscle structure for our SIRT1 OE mice did not show significant differences from WT mice 

because the SIRT1 was not entirely activated, despite being overexpressed. Our initial 

experimental design included a component to include caloric intake as a variable, but budgetary 

and physical restraints related to the housing cost of animals and the ability to accurately assess 

obese mouse hindlimb function (obese mice were too large to fit in our dynamometer set-up and 
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thus their muscle function could not be accurately assessed) prohibited the inclusion of these 

variables. Thus, examining the physiological effects of caloric restriction or diet-induced obesity 

on the muscle function in these variant SIRT1 expressing mouse models could further elucidate 

the role of SIRT1 in muscle function. These data could prove interesting, given that SIRT1 

overexpression appeared to work synergistically with p53 expression to promote increased 

fatigue resistance in muscle recovered from CTX-induced injury despite the absence of a 

secondary intervention designed to activate SIRT1 activity.  

Finally, another set of future experiments could focus on understanding the role of SIRT1 

in muscle fiber development during the formation of new fibers from muscle satellite cells. 

Although a paper published from the Sartorelli lab by Ryall et al [27] suggest that the lack of SIRT1 

in early muscle satellite cells causes premature differentiation of the satellite cells into 

dysfunctional and deformed muscle fibers, some discrepancies within the model still exist. 

Specifically, both our data and data published by the Ryall study seem to indicate that in the Pax7-

promoter driven muscle satellite cell knockout of SIRT1, SIRT1 expression is still ablated in adult 

skeletal muscle. However, Pax7 is only expressed in quiescent satellite cells, so SIRT1 should 

theoretically be expressed at or near the level of SIRT1 in of wild-type mice in skeletal muscle 

where the Pax7 promoter is no longer active. Establishing the role of SIRT1 and its importance in 

the various steps of the metabolic regulation of muscle satellite cells during proliferation and/or 

differentiation could further elucidate the results seen in our data and help to establish a timeline 

for the importance of SIRT1 expression in the regulation of satellite cell differentiation and nascent 

fiber formation. These studies could be further supported with a complementary genetic 

conditional knockout model combining the MKO-cre and Pax7-cre mice (crossed with SIRT1-

floxed mice) to create a SIRT1 knockout model with continuous ablation of SIRT1 from the satellite 

cell to the fully formed muscle fiber. This proposed study would be important in determining where 
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SIRT1 shifts from being necessary for normal function to being non-critical, but beneficial to 

muscle repair. 
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3.5 Figures & Figure Legends 

3.5.1. Figure 1. 
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3.5.2. Figure 1. Mitochondrial abundance among SIRT1 transgenic mouse models. 

Mitochondria were isolated and then quantified with a FACSCalibur flow cytometer equipped with 

a 15-MW 488nm argon laser and 633nm red diode laser using 488 nm excitation with 530 nm 

and 590 nm bandpass emission filters to selectively probe and gate for respiring mitochondria, 

identified by JC-1 dye. The abundance was quantified as the mean ± SD number of events for 

the YWT, WT-80, OE-80, MKO-80, and SKO-80 transgenic mouse groups (n=5) for (A.) the 

subsarcolemmal and (B.) interfibrillar mitochondrial populations. [F*] denotes that a significant 

difference was observed for the global two-way ANOVA tests, but not for specific comparisons. 
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