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ABSTRACT 

 

Growth of Chlorella vulgaris and Chlamydomonas reinhardtii for biodiesel 

production and carbon dioxide capture 

by Mariana T. Farcas 

 

The growth of two strains of green microalgae, Chlorella vulgaris (UTEX 2714) and 

Chlamydomonas reinhardtii (UTEX 90) was tested in three types of media; Tris Acetate 

Phosphate (TAP), Bushnell Haas Broth (BHB), and Wright's Cryptophytes (WC buffered with 

either glycylglycine or Tris-base). Also, initial medium pH is ranging from 4 to 10, light 

intensity ranging from 100 to 600 µmol photons/m
2
s, and CO2 concentrations ranging from 

0.038% (ambient) to 12%, were tested. WC medium at pH 8 buffered with glycylglycine 

sustained the highest yield and best buffering capacity for growth of both C. vulgaris and C. 

reinhardtii. A light intensity of 200 µmol photons m
-2

s
-1 

provided for both good growth and 

electron transport rate (ETR). Both C. vulgaris and C. reinhardtii produced highest final yields 

when grown with 6% CO2. Also, lipid content increased with increasing CO2 concentration. 

Myristoleic acid (C14:1), palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n9), 

linoleic acid (C18:2), and docosahexaenoic acid (DHA) were found in higher content when C. 

vulgaris was grown on 12% CO2, while the content of palmitoleic acid (C16:1), elaidic acid 

(C18:1t9), vaccenic acid (C18:1n7) were similar among all CO2 concentration tested. CO2 

capture was explored using two approaches: consumption of known quantities of CO2 in sealed 

serum bottles, and consumption of CO2 flowing through immobilized algal beads. In both cases, 

fixation rate decreased with increasing CO2 concentration. CO2 consumption generally decreased 

over the five day experiment. The rate observed using immobilized algae was 20% of the 

maximum obtained in liquid culture, indicating the need to future optimize this novel method for 

CO2 capture. 
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GENERAL INTRODUCTION 

  

 As a result of the industrial revolution in the 20
th

 century, an increased volume of CO2 

has been released into earth’s atmosphere. The upper safety limit for atmospheric CO2 is 

350 parts per million (ppm) and since 1988 this limit has been exceeded (National Oceanic 

and Atmospheric Administration). CO2 concentration in the atmosphere is still increasing 

and the outcome of this increase has already had a profound effect on the global 

environment. It is widely accepted that global warming is impacted by greenhouse gas 

emissions from anthropogenic activities (Intergovernmental Panel on Climate Change, 

2005). Thus actions are being taken to mitigate greenhouse gas emissions from 

anthropogenic activities (Gough, 2008). There are three types of mitigations strategies: (1) 

chemical reaction-based approaches: washing with alkaline solutions, multiwalled carbon 

nanotubes, and amine coating activated carbon; (2) direct injection underground or  to  the 

ocean; and (3) biological CO2 mitigation, with CO2 being biologically converted to organic 

matter ( Ho et al., 2011).  Biological CO2 fixation is accomplished by all terrestrial plants 

and photosynthetic microorganisms through the process of photosynthesis. However, plants 

are expected to account for only a 3–6% reduction in global CO2 emissions (Skjanes et al., 

2007). Costa et al. (2000) estimated that due to faster growth of microalgae and 

cyanobacteria, CO2-fixation efficiency should be 10–50 times greater. Microalgal biomass 

also could be used as a feed stock for a variety of biofuels, medications, cosmetics, and 

nutritious foods, representing additional benefits from the microalgal CO2 reduction 

process (de Morais and Costa, 2007). 

 In 2010, the U.S. Department of Energy funded twelve large projects (more than $107 

M total) for “Innovative Concepts for Beneficial Reuse of Carbon Dioxide”. Six of these 

projects are systems that use microalgae to capture CO2 from power plant flue gas and 

convert it (via sunlight, water, and nutrients) into natural oils that are readily processed into 

liquid transportation fuels such as biodiesel. Photosynthetic green algae are good 

candidates to capture excessive amounts of atmospheric CO2, since these organisms are 

capable of fixing CO2 to produce energy and chemical compounds (fatty acids) upon 

exposure to sunlight.  

 Under optimal conditions of growth, fatty acids of microalgae constitute about 5–20% 
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of dry cell weight (DCW), but under unfavorable environmental or stress conditions for 

growth, algae alter their lipid biosynthetic pathways towards accumulation of neutral lipids 

(20–50% DCW), in the form of triacylglycerol (TAGs) (Guschina and Harwood, 2006; Hu 

et al., 2008; Thompson, 1996). Based upon the photosynthetic efficiency and growth 

potential of algae, theoretical calculations indicate that annual oil production can be 100-

fold greater than that of soybeans. However, few systems of algae-based biofuel production 

have progressed beyond the small laboratory or field testing stages (Hu et al., 2006). 

 

 The overall objective of the current project is to build an effective system to grow the 

green algae Chlorella vulgaris and Chlamydomonas reinhardtii for CO2 capture and the 

production of biodiesel. Experiments were designed to compare photoautotrophic growth 

rates and biomass production by Chlorella vulgaris and Chlamydomonas reinhardtii with 

varying conditions of CO2, light, and nutrient availability. This information was utilized to 

design two growth systems to investigate capture of CO2 by Chlorella vulgaris and 

Chlamydomonas reinhardtii using: 1) fed-batch growth; and 2) a flow-through system 

based on immobilized algae in alginate beads. 
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CHAPTER 1 
 

Growth of Chlorella vulgaris and Chlamydomonas reinhardtii with  

varying growth media, pH, light, and CO2 concentration 

 

1.1. INTRODUCTION  

          Unicellular microalgae capture light energy for CO2 fixation and biomass production. A 

portion of this biomass accumulates as triacylglycerols, which can be harvested to produce 

biodiesel transportation fuels (Francisco et al., 2010). In laboratory experiments, growth 

conditions for production of Chlorella vulgaris and Chlamydomonas reinhardtii associated with 

fatty production were investigated. 

 Early attempts in the late 1800’s to culture microalgae were reviewed by Allen and 

Nelson (1910) including basic media developed by Farmintzin, Beijerinck and Miquel. These 

works first described the significance of culture pH, iron, and vitamins for healthy algal growth 

and also the relationship to amounts of dissolved oxygen and carbonic acid, metal toxicity, and 

impurities in distilled water (Allen and Nelson, 1910).  In the USA, the Stanford Research 

Institute was the first to attempt large-scale algal culture. They demonstrated the technical 

feasibility of Chlorella sp. production as an industrial raw material (Burlew, 1976). Spoehr and 

Milner (1949) first studied the effect of environmental conditions on chemical composition of 

Chlorella sp., and, in particular, the fatty acids profile of this alga. They found that nitrogen 

limitation increases lipid content. 

          Microalgae frequently are cultivated in batch culture. An algal inoculum is added to a 

specific growth medium containing nutrients necessary for growth until stationary phase is 

reached and the total culture is harvested (Richmond, 2004). Optimal batch growth conditions 

for microalgal cultures are strain specific, and final biomass production is influenced by many 

factors. The most important abiotic parameters regulating algal growth are: light cycle and 

intensity, temperature, nutrient quantity and quality, pH, carbon dioxide, salinity, and biotic 

factors like cell fragility and cell density. These factors affect photosynthesis, influence the 

pattern, pathway and activity of cellular metabolism and as a result dynamic cell composition 

(Anderson, 2005). Mechanical factors affecting growth include mixing, gas bubble size and 

distribution, and mass transfer (Schenk, 2008).  
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          Growth of microalgae in culture media requires a suitable composition of essential 

macronutrients and micronutrient (Anderson, 2005). For autotrophic growth, supplemental CO2/ 

HCO
3-

 often is necessary to supply the C-requirements of high yield autotrophic algal 

production. According to Redfield ratio, the stoichiometric ratio of the phytoplankton is C: N: 

P=106:16:1, thus, most media are nitrogen-rich relative to carbon, and carbon can become 

limiting (Riebesell et al., 1993). 

The carbonate-bicarbonate system is the main buffer to control and uphold appropriate 

pH levels optimum for algal culture (Richmond, 2004). If culture pH increases quickly to 9 or 

higher, this may be a signal that carbon may be limiting. To prevent a reduced growth rate or cell 

yield, bubbling with CO2 or adding more bicarbonate in late exponential phase often is used. 

Previous studies have shown that the CO2 supply needs to be optimized, because higher levels 

can cause growth inhibition and low levels can limit growth (Rados et al., 1975). These 

maximum (inhibition) and minimum (limitation) concentrations vary among species. The most 

studied technique of supplying CO2 is by injection of CO2 mixed in the airflow (Chini et al., 

1996) or directly in the culture medium (Molina-Grima et al., 1994).  

          Algal productivity requires the essential nutrients nitrogen and phosphorus (Schenk, 2008). 

The usual nitrogen sources in algal media are ammonium, nitrate, or urea. Special attention is 

required for ammonium as a sole source of nitrogen since the culture pH can drop sharply during 

active growth due to the release of H
+
 ions, especially in dense cultures at high temperature. 

When nitrate is used as the sole nitrogen source, an increase in pH occurs (Richmond, 2004). 

Urea can also serve as a good nitrogen source once it is hydrolyzed, by the action of either the 

enzyme urease, or the enzyme urea amidolyase (Hodson, 1975). The major source of phosphorus 

in algal growth media is inorganic phosphates.   

          Other than C, N, and P, significant nutrients for algal nutrition are K, Ca, Mg, Cl, Mn, S, 

and Na in ionic form. They are constituents of chlorophyll (Mg) and are involved in 

photosynthesis (Cl, Mn), and cell metabolism (K, Na, Ca, S). Trace elements like Zn, Cu, Mo, 

and Mn are important nutrients involved in redox reactions (Taiz and Zeiger, 2002). 

Some algae also require vitamins (Croft, 2006). The most common are vitamin B12 

(cyanocobalamin), thiamine, and biotin. Usually, only few algae need all three vitamins 

(Provasoli and Carlucci, 1974). 
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          Buffers are important components of algal media. The most common pH buffers used to 

prevent or reduce metal precipitation and to maintain constant pH values are: TRIS (2-amino-2-

(hydroxymethyl)-1-3-propanediol) and glycylglycine (2-[(2-aminoacetyl) amino] acetic acid) 

(McLachlan, 1973). Comparing TRIS and glycylglycine with other buffers like MOPS (3-N-

morpholino propanesulfonic acid), HEPES (N-[2-hydroxyethyl] piperazine-N΄-[2-

ethanesulphonic acid]), and TAPS ([2-hydroxy-1, 1 bis (hydroxymethyl) ethyl] amino)-1-

propanesulfonic acid]), Loeblich (1975) noted that TRIS and TAPS provided maximal growth 

with minimal pH change. TRIS also can serve as carbon source for contaminant bacteria, 

interfere with the analysis of dissolved organic nitrogen and ammonium, and toxic to some algal 

species (Fabregas et al., 1993). TRIS can have harmful effects on photosynthesis by inhibiting 

the mechanisms of HCO
3-

 transport across the plasma membrane (Axelsson et al. 2000; 

Hellblom et al., 2001) or O2 evolution in Photosystem II (Sofrova et al. 1978; Rickert et al. 

1991).  

          Light energy is captured during photosynthesis for autotrophic CO2 fixation. The 

photosynthetic process occurs in two phases, a photochemical phase that is light dependent and a 

biochemical dark phase that is light independent. ATP and NADPH produced during the light 

dependent phase are essential in the dark phase to synthesize molecules essential for growth 

(Laval and Mazliak, 1995). The optimal light intensity varies among different species, and the 

growth rate is lower at light intensities values below this value (Ojala, 1993). At high light 

intensities growth can be limited by the phenomenon of photoinhibition (Bouterfas et al., 2006). 

Therefore, the intensity, spectral quality and photoperiod of light must be considered because all 

can impact the circadian rhythm of photosynthesis, respiration (Piquemal, 1990), cellular 

division (Hobson et al., 1979), growth rate (Redalje and Laws, 1983), and enzymatic activities 

(Hobson et al., 1979). Light can be natural or provided by fluorescent tubes emitting either in the 

blue or the red light spectrum able to support photosynthesis. Care must be taken with artificial 

lights to prevent overheating of cultures. Algae exhibit a growth rate proportional to the duration 

of the effective light period (Foy and Gibson, 1993), and also a light/dark cycle is needed for a 

maximal growth.  

          Mechanical factors like mixing and aeration can influence optimal algal growth. In batch 

cultures, mixing is important for preventing sedimentation of algal cells and to ensure all algal 

cells are equally exposed to the light and nutrients (Molina-Grima et al., 1999). Air bubbles can 
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damage microalgae (Eriksen, 2008) due to shear sensitivity caused by eddies in the growth 

medium.  To avoid cell adhesion to gas bubbles and reduce shear damage (cell death), cultures 

can be supplemented with non-ionic surfactants (Ma et al., 2004).  

Biofuels are defined as solid, liquid, or gaseous fuels that are produced from 

biorenewable feedstock (Demirbas, 2009). As fossil hydrocarbons become limited and costly, 

conversion of algal biomass into liquid biofuels is becoming more cost-effective and attractive 

(Demirbas, 2011). The use of domestically produced biofuels can reduce political and economic 

vulnerability, reduce greenhouse gas emissions, and invigorate the economy by creating a new 

energy sector (Balat, 2010). For example, algae could use CO2 from power plant emissions for 

conversion to biomass and into biofuels (Aksoy et. al, 2011). Studies showed the potential of 

microalgae to reduce CO2 levels from industrial waste gas with an increase in biomass (Yun, 

1997). There are advantages and disadvantages of biofuel production by microalgae. One 

advantage is the ability of algae to utilize less land resources and water than conventional 

agricultural crops. Another advantage is the high efficiency of CO2 mitigation. The main 

problems that impede the commercial implementation of algae for biofuel production are the 

current low yield and high cost of biomass harvest, high capital costs to establish commercial 

facilities, and the increased care required by a microalgal farming facility compared to a 

conventional agricultural farm (Demirbas, 2011).  

Previous studies (Converti et al., 2009; Rodolfi et al., 2009) have shown that biochemical 

composition of microalgae and cell lipid content can vary as a result of changes in environmental 

manipulations (growth conditions, nutrient concentration, and nutrient availability). The purpose 

of the preliminary work was to study the growth of two strains of green microalgae, Chlorella 

vulgaris (UTEX 2714) and Chlamydomonas reinhardtii (UTEX 90). Three types of media Tris 

Acetate Phosphate (TAP), Bushnell Haas Broth (BHB), and Wright's Cryptophytes (WC), a pH 

range from 4 to 10, light intensity from 100 to 600 µmol photons m
-2

s
-1

, and CO2 concentration 

of 0.038% (ambient), 3%, 6%, and 12%, were tested. 
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1.2.MATERIALS AND METHODS 

1.2.1. Growth media and initial pH 

 

          Two strains of green microalgae Chlorella vulgaris (UTEX 2714) and Chlamydomonas 

reinhardtii (UTEX 90) were purchased from UTEX (The Culture Collection of Algae at the 

University of Texas at Austin). Both were maintained in under 12:12 light:dark cycle (200 μmol 

photons m
-2

s
-1
) at 25 2 C. Ambient air was bubbled through the vessels at   50 mL min

-1
. The 

growth of both algae was compared in three media: Tris Acetate Phosphate (TAP), Bushnell 

Haas Broth (BHB), and Wright's Cryptophytes medium (WC). 

         Table 1 describes the chemical composition of Tris-Acetate-Phosphate (TAP) medium 

(Gorman and Levine, 1965). For the trace elements solution, EDTA was dissolved in boiling 

water, and the FeSO4 was prepared last to avoid oxidation. All solutions were mixed, and EDTA 

was added last. Initially the mixture was green; however, after 1-2 weeks the solution eventually 

turned purple and could be used. Bushnell Haas Broth was purchased as a dehydrated medium 

(Difco, MD). The formula per liter is: MgSO4 0.2g, CaCl2 0.02g, K2HPO4 1g, KH2PO4 1g, 

NH4NO3 1g, and FeCl3 0.05g. The medium was prepared by dissolving 3.27g in 1L distilled 

water, followed by sterilization at 121-124˚C for 20 minutes. The third medium used was 

Wright's Cryptophytes (WC) medium (Guillard and Lorenzen, 1972). Table 2 describes the 

chemical composition of WC medium. Either glycylglycine (WC-Gly) or Tris base (WC-Tris) 

were used as buffers. Table 3 contains the formula for the trace metal solution used in WC 

medium. All components were added to 950 mL of dH2O, the final volume was adjusted to 1 

liter with dH2O, and was sterilized at 121-124˚C for 20 minutes. To prepare the vitamin solution 

(Table 4) used in WC medium, the thiamine was dissolved in 950 mL of dH2O, 1 mL of the 

primary stock of biotin (vit. H) and cyanocobalamin (vit. B12) were added and the final volume 

was adjusted to 1 liter with dH2O. The final solution was filter sterilized and stored at 4ºC. The 

initial pH of all three media (TAP, BHB, and WC) was adjusted to range from pH 4 to pH 10 

using either 20% KOH or 1N HCl as needed. 

          Growth was compared using 24 vertical 200 ml glass test tubes attached to wood support. 

Six test tubes held 100 mL of TAP medium ranging from pH 4 to pH 10 (Fig. 1, Fig 2). Six more 

held BHB medium ranging from pH 4 to pH 10.  Another twelve test tubes held WC medium 

ranging from pH 4 to pH 10, six of them using glycylglycine as buffer, and other six using Tris 
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base as buffer. The experiments were repeated twice. Two 460-watt metal GE grow lights 

(General Electric, Fairfield, CT) were suspended 1.5 m above the test tubes and supplied light 

(200 µmol photons m
-2

s
-1

) on a 12 hours light/12 hours dark schedule. Aluminum foil placed at a 

45-degree angle at the base reflected light onto the test tubes. Un-inoculated controls were 

composed of a pH series of 4, 5, 6, 8, 9, and 10. The mouths of all tubes were closed using foam 

stoppers. Three mL of algal inocula (OD750=0.250) (See Appendix 1) was injected into each 

cultures tubes using a syringe. Air (ambient CO2 level = 0.038%) at 50 mL min
-1

 was bubbled 

through the testing tubes using a pipette to agitate the solution. Absorbance (OD750) was 

measured every 24 hours during a 5-day period. The sampling was done by withdrawing three 

mL of algal suspension with a syringe, transfer to polymethacrilate cuvettes (Sigma-Aldrich, 

MO, USA), and determination the optical density (OD750) using a Spectronic 20 Genesys 

spectophotometer (Spectronic Instruments, NY). The pH was measured every 24 hours using a 

Corning 320 pH Meter (Corning Incorporated, NY). 

 

1.2.2. Light intensity  

 

          A second type of photobioreactor was constructed to investigate the effect of light 

intensity on growth rate and photosynthetic efficiency. Three mL inocula of C. vulgaris and C. 

reihardtii (OD750=0.250) (See Appendix 1) were injected in 100 mL WC medium (pH=8) in the 

same test tubes used in the previous experiments but placed on their sides on two shelves 

illuminated with a variable light source (460-watt metal GE grow lights source, P.L Light 

Systems). Light intensities were varied using a rheostat from 100-600 µmol photons m
-2

s
-1

 (12 

hours light/ 12 hours dark) (Fig. 3) and air (CO2=0.038%) was supplied at 50 mL min
-1

. The 

experiments were repeated twice with three replicates for each algal species and light intensity. 

Control test tubes were run with air (ambient CO2 level = 0.038%) at 50 mL/min in the same 

light condition but not inoculated. Absorbance was measured at 750 nm every 24 hours during a 

5-day period. The sampling was done as described above. 

Phytoplankton Analyzer (PHYTO-PAM, Heinz Walz GmbH, Germany) (Fig. 4) was 

used to measure the relative electron transport rate (ETR) as a function of PAR 

(Photosynthetically Active Radiation) on day two, three and four of the experiment. The 

measuring principle is based on selective amplification of a fluorescence signal which is 
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measured with the help of intense, but very short pulses of measuring light. Three mL of algal 

sample was withdrawn from the tests tubes and dark adapted, by keeping the polystyrene 

fluorometer cuvettes (Sigma-Aldrich, MO, USA) in the optical unit for five minutes. The 

minimal fluorescence yield (Fo) was measured and immediately followed by the maximal 

fluorescence yield (Fm). When the actinic light provided by the halogen lamp was switched on, 

the minimum fluorescence in actinic light (Ft) was measured and followed by simultaneous 

measurement of the maximum fluorescence yield in actinic light (Fm’). 

The maximum efficiency of dark-adapted PSII (Fv/Fm) was calculated as: 

Fv/Fm = Fm – Fo/Fm 

The maximum efficiency of PSII in actinic light (ΦPSII) was calculated as: 

ΦPSII = (Fm’ – Ft) / Fm’ 

Photosynthetic ETR (μmol m
–2

 s
–1

) was calculated as: 

ETR (μmol electrons m
–2

 s
–1
) = ΦPSII × incident PAR (μmol photons m

–2
 s
–1

) × 0.5 × 0.84 

where 0.5 is a correction factor based on the general assumption that half of the absorbed light 

energy was diverted to PSII, and 0.84 is absorptivity. 

 

1.2.3. CO2 concentration  

 

          To determine biomass production as a function of CO2 concentration, a third type of 

photobioreactor was constructed.  These photobioreactors consisted of six 160 mL glass serum 

bottles filled with 100 mL WC and sealed with solid stoppers (Fig. 5). Two needles were inserted 

through the stopper to bubble the gas through the medium and to provide an exit/sampling point. 

Laboratory air and CO2 were mixed. CO2 concentrations of ambient air (CO2 level=0.038%), 

3%, 6%, and 12% were established and verified by using a Carle AGC Series 100 gas 

chromatograph (Hach Co., Loveland, CO, USA) connected to a BD40 chart recorder (Kipp & 

Zonen, Inc., Bohemia, NY, USA). Light, held constant at 200 µmol m
-2

 s
-1

, was provided by two 

GE grow lights source (12 hours light/12 hours dark) (General Electric, Fairfield, CT, USA). 

Three mL inocula of C. vulgaris and C. reinhardtii (OD750=0.250) (See Appendix 1) were 

injected in 100 mL WC medium (pH=8). The experiments were repeated twice with three 

replicates for each algal species and CO2 concentration. Two un-inoculated bottles were incubate 

under the same condition and used as controls. 

         Absorbance and ETR measurements were done as described above (See 1.2.2.). 
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1.2.4. Lipid extraction 

Lipid and fatty acid composition were compared as a result of bubbling different CO2 

concentrations (mixed with air) through the medium as the carbon source for photosynthesis. 

Two systems were used for lipid extraction: 8000M Mixer/Mill® (SPEX SamplePrep LLC, 

Metuchen, NJ, USA) and Soxtec™ 2055 System (Foss Analytical, Denmark). 

 

1.2.4.1. Mixer/Mill system 

The SPEX SamplePrep 8000 Mixer/Mill is an efficient, compact laboratory mill capable 

of pulverizing samples in the 10-gram range by shaking the containers back and forth at 

approximately 1080 cycles per minute (Fig. 6). It has been used for pulverizing rocks, minerals, 

sand, cement, slag, ceramics, and many others hard samples (8000M Mixer/Mill, Spex 

SamplePrep, Operating Manual). 

Extractions were performed using freeze dried algal biomass. One gram of dried cells 

was transferred to a 25 ml stainless steel vial of a mixer/mill shake container. Twenty mL 

chloroform/methanol (2/1) was added to the container and the sample was shaken for 10 minutes 

(1425 rpm). Then the entire mixture was transferred to 30 mL glass tube and centrifuged at 5000 

rpm for 5 min to recover the liquid phase. After cell disruption, the mixture was washed with 4 

ml 5% NaCl solution and vortexed for few seconds. After this step, the mixture was centrifuged 

at low speed (2000 rpm) for 10 min to separate the two phases. The upper phase was removed 

using a Pasteur pipette. The supernatant was collected and the solvent was vaporized under a 

nitrogen stream. The total lipid content was then measured gravimetrically using an analytical 

balance with e=0.0001g (Denver Instrument XE-100, NY, USA). 

 

1.2.4.2. Soxtec system 

The Soxtec™ 2055 System (Foss Analytical, Denmark) represents a new patented 

version of the Soxhlet extraction technique, consisting of an Extraction Unit and a Control Unit 

(Fig 7). The system is designed for maximum user convenience through batch handling of six 

samples at a time. 

The extraction was performed using freeze dried algal biomass. One gram of freeze dried 

sample was weighed into a thimble and a defatted cotton plug was place on top of the sample. 
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Next, the samples were inserted into the extraction unit using the thimble support holder. A 

mixture of 45 ml chloroform/methanol (2/1) was added to the glass containers and 4-5 glass 

beads to relieve hot spots. After the 3-step extraction procedure consisting of boiling (20 min at 

120ºC), rinsing (45 min), recovery (3 min), and drying (20 min), the extractable matter was 

collected in the cup. The total lipid content was measured gravimetrically as describe above. 

1.2.5. Determinations of fat and fatty acids 

The total fat and fatty acid content of the lipids were determined by the Agricultural 

Experimental Station, Chemical Laboratories, University of Missouri-Columbia. Samples were 

analyzed according to AOAC official method 996.06.  Fat and fatty acids were extracted by the 

hydrolytic method and then methylated to fatty acid methyl esters (FAMEs) using BF3 in 

methanol, then quantified by capillary gas chromatography (GC). 

1.3.RESULTS 

 

1.3.1. Effect of growth medium and initial pH 

 

Relative growth of C. vulgaris and C. reinhardtii was examined in four media: 1) Tris 

Acetate Phosphate (TAP); 2) Bushnell Haas Broth (BHB); 3) WC medium buffered with 

glycylglycine (WC-Gly); 4) WC medium buffered with Tris base (WC-Tris). The increase in 

OD750 of both algae in each medium over a five-day period is reported in Figure 8 and 10. Initial 

experiments focused on TAP and BHB media. TAP is widely accepted as a laboratory growth 

medium for microalgae (Anderson, 2005; Harris, 1989), while BHB is a pre-formulated simple 

salts solution used to examine carbon source utilization by aquatic bacteria (Roy et al., 2002). At 

day five, all three factors of variability: algae type, medium type, and initial pH had a significant 

effect on final OD750 (See ANOVA table, Table 5).  Overall, C. vulgaris displayed a greater 

growth response than C. reinhardtii.  Between media types, TAP had a significantly higher final 

OD750 compared with BHB. The pH that supported the greatest final growth was pH 7, followed 

by pH 8.  Lowest final growth was observed at pH 4 and pH 10.  

There was a significant interaction between algae type and medium type (Table 5), i.e. 

the effect of algae type on growth is dependent on the medium type. C. vulgaris had a higher 

overall OD750 in TAP medium than BHB, while C. reinhardtii grew a better in BHB rather than 

TAP.  The significant interaction between medium type and initial pH (Table 5) demonstrated 
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that TAP and BHB medium at pH 8 or 7 gave the highest growth. The lowest final OD750 was 

observed at pH 4. The effect of algae type on growth was dependent on the initial pH (Table 5). 

C. vulgaris at pH 8 and pH 7 showed the highest response and C. reinhardtii indicated a better 

growth at pH 7. The lowest response was observed at pH 4 for both algae. 

The three-way interaction between algae type, medium type, and initial pH also was 

significant (Table 5). A simple comparison of the final OD750 obtained at day five for each alga 

in each medium is reported in Table 6. C. vulgaris grew optimally at pH 8 in TAP, while in BHB 

similar final growth was obtained at pH 6 and 7. In TAP C. reinhardtii grew equally well at pH 6 

and 7, while in BHB had a similar growth response in the range of pH 6 to 8. 

The growth responses described above in TAP and BHB media were complicated by the 

final pH measured in each culture vessel at day 5. Although un-inoculated controls maintained 

their initial pH readings throughout the incubation (Figure 12), inoculated samples generally 

exhibited a significant decrease of 0.5 to 1.0 pH units at the end of the growth experiment as a 

result of active algal growth (Figure 9 and 11, Table 7). In general, the observations of optimal 

growth at circumneutral pH in TAP and BHB are correct, but uncertainty of the actual medium 

pH at any given time compromises the interpretation of the statistical comparisons reported 

above. The data suggested the need for a more strongly buffered growth medium that would 

resist acidification resulting from algal growth. After an extensive literature review, a decision 

was made to test Wright’s Cryptophyte Medium, buffered either with glyclglycine or Tris base. 

Superior growth was indeed observed in this medium (see below), however both WC-Gly and 

WC-Tris exhibited significant increases from initially acidic pH treatments, and significant 

decreases from initially basic conditions (range 0.5 to 3.1 pH units) over the 5 day incubation, 

again complicating an examination on the effect of pH on growth of these algae (Table 7 A, B).  

Using WC medium, at day five all three factors of variability: algae type, medium type, 

and initial pH, had a significant effect on final OD750 (See ANOVA table, Table 8).  Overall 

growth of C. vulgaris in both WC media types was significantly higher than that of C. 

reinhardtii. Furthermore, WC-Gly medium supported better overall growth of both algae than 

did WC-Tris. An initial pH of 8 resulted in a significantly higher final OD750 compared with all 

other pHs tested. 

The effect of algae type on growth was dependent on the medium type (Table 8). Both 

algal species showed a significantly higher OD750 in WC-Gly medium compared with WC-Tris. 
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Also, there was no significant difference between C. vulgaris growth in WC-Tris and C. 

reinhardtii growth in WC-Gly. The interaction between algae type and initial pH (Table 8), 

demonstrated that C. vulgaris grew better at pH 8, while C. reinhardtii had the highest growth at 

pH 7. The interaction between medium type and initial pH (Table 8) demonstrated that WC-Gly 

at pH 8 gave the best growth response, and the lowest growth was observed with WC-Tris at pH 

4. 

The three-way interaction between algae type, medium type and initial pH was 

significant (Table 8). According to the Tukey HSD test, C. vulgaris grown in WC-Gly medium 

at pH 8 had the greatest growth response. The best response for C. reinhardtii was obtained in 

WC-Gly medium at pH 8 (Table 6). 

Analysis of all growth data obtained using all four media demonstrated that the three-way 

interaction between algae type, medium type and initial pH was significant (Table 8). C. vulgaris 

grown in WC-Gly medium at pH 8 had the highest final growth. The best growth response for C. 

reinhardtii also was obtained in WC-Gly medium at pH 8 (Table 6). Therefore further 

experiments reported below were performed by growing both algae in WC-Gly medium adjusted 

to an initial pH of 8. 

1.3.2. Effect of light intensity  

 

Relative growth and the relative electron transport rate of C. vulgaris and C. reinhardtii 

were examined at light intensities ranging from 100 to 600 µmol photons m
-2

s
-1

. The absorbance 

at 750 nm is reported in Figure 13. The relative electron transport rate (ETR) as a function of 

PAR (Photosynthetically Active Radiation) during day two, three and four is reported in Figure 

14, 15, and 16. The growth and ETR were analyzed by multivariate analysis of variance 

(MANOVA), followed by univariate ANOVA using a fully factorial three-way model and 

planned contrast analyses. MANOVA indicated a significant effect on growth of algae type 

(F(1,24)=3.6844, p<0.0001) and light intensity  (F(5,24)=2.4308, p<0.0001). Also, the interaction 

between algae type and light intensity is significant (F(5,24)=5.2018, p<0.0001). 

On day two, neither algae species showed a significant difference in growth response 

(Table 9), but on day three C. vulgaris had significantly higher growth comparing with C. 

reinhardtii (Table 10). This result also was observed on day four (Table 11) (Figure 13). 
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The overall effect of light intensity over time among both algae species, indicated that on 

day two the highest growth was observed at higher light intensities, however on day three and 

four a light intensity of 200 or 300 µmol photons m
-2

s
-1 

offered a better growth.  

The interaction between algae type and light intensity was significant (Table 9, 10 and 

11) and suggested that C. vulgaris outgrew C. reinhardtii at all the light intensity tested. Also, C. 

reinhardtii growth was not significantly different among all light intensity studied. In the case of 

C. vulgaris, growth at light intensity of 300 µmol photons m
-2

s
-1 

was significantly higher 

comparing to all other tested. 

 

MANOVA showed a significant effect on ETR of algal type (F(1,11)=16.3654, p<0.0001), 

and light intensity (F(5,11)=1.5951, p=0.0002).  Also, the interaction between algae type and light 

intensity was significant (F(5,11)=2.3229, p<0.0001). 

Overall, C. reinhardtii showed a significant higher ETR over time compared to C. 

vulgaris (Table 12, 13, and 14) (Fig 14, 15, and 16).  

On day four, light intensities from 200 to 500 µmol photons m
-2

s
-1 

resulted in 

significantly higher ETR than 100 and 600 µmol photons m
-2

s
-1 

(Table 14). ETR values obtained 

from C. reinhardtii at light intensities from 200 to 500 µmol photons m
-2

s
-1

 were significantly 

higher compared with results found at 100 and 600 µmol photons m
-2

s
-1

. ETR values for C. 

vulgaris were not significantly different among light intensities with the exception of 400 µmol 

photons m
-2

s
-1

. 

 

1.3.3. Effect of CO2 concentration 

Relative growth and the relative electron transport rate of C. vulgaris and C. reinhardtii 

were examined at different CO2 concentrations: 0.038% CO2 (ambient), 3% CO2, 6% CO2 and 

12% CO2. The absorbance at 750 nm (Figure 17) and the relative electron transport rate (ETR) as 

a function of PAR (Photosynthetically Active Radiation) during day two, three and four is 

reported in Figure 18, 19, and 20. Growth and ETR were analyzed by multivariate analysis of 

variance (MANOVA), followed by univariate ANOVA using fully factorial three-way models 

and planned contrast analyses. MANOVA indicated a significant effect on growth of algae type 

(F(1,16)=10.7660, p<0.0001), and %CO2 tested (F(3,16)=19.5426, p<0.0001). However, there is not 
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significant interaction between algae type and %CO2 over time (F(3,16)=0.5061, p=0.0805, 

α=0.050). 

Overall, C. vulgaris showed significantly higher growth during entire experiment 

compared to C. reinhardtii (Table 15, 16, 17, and Fig. 17). Furthermore, the highest OD750 was 

obtained when 6% CO2 was bubbled into the bottles, followed by 3% CO2, 12% CO2, and 

0.038% CO2. On day four, the growth of C. vulgaris at 6% CO2 was not significantly different 

from the response at 12% CO2, and C. reinhardtii growth at 6% CO2 was not significantly 

different from the response of C. reinhardtii at 3% CO2. The lowest OD750 was obtained during 

growth on ambient CO2 for both algae (Table 17). 

 

MANOVA indicated a significant effect on ETR of algae type (F(1,16)=19.1880, 

p<0.0001), and different %CO2 tested (F(3,16)=3.7597, p<0.0001), and also a significant 

interaction between  algae type and %CO2 over time (F(3,16)=3.4448, p<0.0001, α=0.050). 

Overall, ETR among both algae at CO2 concentration tested decreases from day two (ETR=69), 

day three (ETR=54) and to day four (ETR=35).  

During the entire experiment, C. reinhardtii showed a significant higher ETR compared 

to C. vulgaris (consistent with the results determined in the light experiment) (Fig. 18, 19, 20 and 

Table 18, 19, and 20). The highest ETR was obtained when 0.038% CO2 was bubbled into the 

bottles and then decreases with increasing CO2 concentration (exception day four, when ETR 

was higher at 6% CO2 but not significantly different from ambient and 3% CO2. Determinations 

on day three and four indicated that 12%CO2 negatively affected the ETR. 

 

1.3.4. Total lipid content of C. vulgaris and C. reinhardtii grown at ambient, 6% and 12% 

CO2 

The total lipid contents for the microalgae cultured in this study ranged from 8.57% to 17.79% of 

the dry weight (Table 23). ANOVA (Table 21) showed that the algal type and CO2 concentration 

had a significant effect on lipid content, but the extraction type was not significant. The total 

lipid content of C. vulgaris (14.9121 g lipid/ 100g algae biomass) was significantly higher 

compared to C. reinhardtii (12.5746 g lipid/ 100g algae biomass). Furthermore, a higher CO2 

concentration resulted in significantly higher lipid content. The total lipid content at 12% CO2 
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was 16.0475 g lipid/ 100g algae biomass, at 6% CO2 the lipid content was 13.8056 g lipid/ 100g 

algae biomass, and at ambient CO2 the lipid content was 11.3769 g lipid/ 100g algae biomass.  

1.3.5. Total fat content of C. vulgaris and C. reinhardtii grown at ambient, 6% and 12% 

CO2 

Analyzing the percentage of total fatty acids per 100mg biomass, ANOVA indicated that 

algal type and CO2 concentration had a significant effect on the total fat content, but the 

extraction type was not significant (Table 22). The total fat content of C. vulgaris (10.61 g fat/ 

100g algae biomass) was significantly higher compared to C. reinhardtii (8.67 g fat/ 100g algae 

biomass). Furthermore, the data indicate that higher CO2 concentrations resulted in significantly 

higher fat content. The total fats at 12% CO2 were 11.3839 g/ 100g algae biomass, at 6% CO2 the 

total fatty acids was 9.8777 g/ 100g algae biomass, and at ambient CO2 total fats were 7.6600 g 

fat/ 100g algae biomass. There was no effect of algal type on the fat content depending on the 

level of extraction type, and no effect of algae type on the fat content depending on the level of 

%CO2.  

1.3.6. Fatty acids profiles of C. vulgaris and C. reinhardtii grown at ambient, 6% and 12% 

CO2 

Generally, linoleic acid (C18:2) and palmitic acid (C16:0) were found in a significantly 

higher concentration, followed by linolenic acid (ω18:3), elaidic acid (C18:1t9) and oleic acid 

(C18:1n9) (F(9,29)=386.6372,  p<0.0001). Fig. 21 presents the major fatty acid composition of C. 

vulgaris at different CO2 concentrations.  

The higher CO2 concentrations had a significant effect on each fatty acids of C. vulgaris 

(F(2,29)=11.1242,  p<0.0001) (Fig. 21). Myristoleic acid (C14:1), palmitic acid (C16:0), stearic 

acid (C18:0), oleic acid (C18:1n9), linoleic acid (C18:2, and DHA were found in higher content 

when C. vulgaris was grown on 12% CO2, while the content of palmitoleic acid (C16:1), elaidic 

acid (C18:1t9), vaccenic acid (C18:1n7) were similar among all CO2 concentration tested. On the 

contrary, linolenic acid (ω18:3) was greater when C. vulgaris was grown at ambient CO2 rather 

than higher CO2 concentrations. 

For C. reinhardtii, linoleic acid (C18:2) and palmitic acid (C16:0) are found in a significant 

higher concentration, next oleic acid (C18:1n9) (F(9,29)=65.1665,  p<0.0001) Fig. 22 presents the 
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major fatty acid composition of C. reinhardtii at different CO2 concentrations. Similar to C. 

vulgaris, the CO2 concentrations have a significant effect on each fatty acids of C. reinhardtii 

(F(2,29)=24.0857,  p<0.0001) (Fig. 22). Cells grown at 12% CO2 and 6% CO2 will results with a 

higher content of fatty acids compared with cells grown at ambient CO2.  Palmitic acid (C16:0), 

stearic acid (C18:0), oleic acid (C18:1n9), linoleic acid (C18:2), and DHA is found in higher 

content when C. reinhrdtii is grown at 12% CO2. The CO2 concentration did not effect the 

content of these fatty acids: myristoleic acid (C14:1), palmitoleic acid (C16:1), elaidic acid 

(C18:1t9), linoleic acid (C18:2), and vaccenic acid (C18:1n7). 

1.4. DISCUSSION  

 

1.4.1. Growth media and initial pH 

 

TAP and WC media previously have been used by several researchers to examine such 

factors as growth rate, stress response, photosynthetic rate, oil accumulation, and heavy metal 

removal by microalgae (Harris, 1989; Anderson, 2005; Fischer et al., 2006; Jo et al., 2006; 

Laurinavichene et al., 2002; Ribeiro et al., 2010; Siaut et al., 2011, Vandamme et al., 2011). In 

the present study the highest growth yield of both Chlorella vulgaris and Chlamydomonas 

reinhardtii was obtained using WC medium supplemented with glycylglycine. This WC 

medium, buffered with glyclylglycine rather than Tris, uses nitrate rather than ammonium as a 

nitrogen source, is supplemented with vitamins and Na2SiO3, and contains lower concentrations 

of CaCl2 and MgSO4 than the other media tested. TAP medium originally was developed for 

growth of photoheterotrophs using acetate as a carbon source, and may not be optimimal for 

photoautotrophic growth. Commonly, TAP is used for those algae which use ammonium rather 

than nitrate as a nitrogen source (Awasthi, 2005). BHB medium, a simple phosphate buffered 

salts solution formulated without a carbon source, normally is used to study hydrocarbon-

degrading bacteria (Roy et al., 2002) and has not previously been used for photoautotrophic 

growth of microalgae.  

The buffering capacity of both WC medium with glycylglycine and WC medium 

supplemented with Tris buffer was strong as evidenced by changes in initial pH to more 

circumneutral values.  Consistent with the known ecophysiology of these algae (Taiz, 2002), 

greatest growth yields were obtained under neutral to slightly alkaline conditions. Lowest growth 

yields occurred at the lowest (pH 4) and highest (pH 10) initial medium pH. Decreasing pH in 
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TAP and BHB media generally was observed with time. Fabregas (1993) noticed pronounced 

bacterial populations in non-axenic cultures which inhibited algal growth; however, once TRIS 

buffer was omitted from the medium normal microalgal growth was recovered. Ursi et al. (2008) 

found that TRIS had a deleterious effect on growth rate and pigment content of Gracilaria 

birdiae. Sofrova et al. (1978) demonstrated that TRIS and substances with similar structure 

(tricine, pentaerythritol, mannitol and sucrose) affected photochemical activity and decreased 

oxygen evolution and photoreduction of an artificial electron acceptor (DCPIP). Hellblom et al. 

(2001) reported a 70% reduction in the net photosynthetic rate of Zostera marina when TRIS 

buffer was used. In contrast, comparing TRIS with eight other buffers, Loeblich (1975) reported 

the maximal growth rate and minimal pH fluctuations when TRIS was added in a seawater 

medium containing vitamins and sodium nitrate as nitrogen source for growth of Cachonina niei. 

In the present study, TRIS buffer worked well for growth with WC medium but not TAP. Most 

likely this was due to the use of nitrate rather than ammonium as the nitrogen source in WC 

medium. Ammonium utilization can cause production of excess acidity. Since WC medium with 

glycylglycine sustained the highest yield and best buffering capacity for growth of both 

Chlorella vulgaris and Chlamydomonas reinhardtii, this medium was chose to conduct all 

subsequent experiments. 



1.4.2. Growth variation at different light intensity  

 

          Photosynthetic microalgae use light as their source of energy to assimilate inorganic 

carbon for conversion into organic matter. In an optimal system where no other factors are 

limiting, light availability controls the rate of photosynthesis and cell yield (Molina-Grima et al., 

1999). Light requirements vary greatly among different algal species (Ojala, 1993). 

Photoautotrophic growth systems must be designed to optimize light availability with increasing 

algal density and culture depth. Growth with light intensities ranging from 125 to 1,250 µmol 

photons m
-2

s
-1 

have been reported (Lavens and Sorgeloos, 1996). In the present study, growth 

yield of C. vulgaris increased with increasing light intensity from 100 µmol photons m
-2

s
-1 

to 300 

µmol photons m
-2

s
-1

. There was no statistical difference in the observed growth yields of 

Chlamydomonas reinhardtii with light intensity.  Bhola et al. (2011) reported that C. vulgaris 

tolerated light intensities ranging from 150 to 350 μmol photons m
−2

 s
−1

, but that intensities 
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beyond 370 μmol photons m
−2

 s
−1 

resulted in decreased biomass production. Sorokin and Krauss 

(1958) reported decreased growth of C. vulgaris at light intensities above 90 µmol photons m
-2

s
-

1
. Hartig et al. (1998) demonstrated a linear decrease of the photochemical efficiency of PSII of 

unspecified microphytobenthic algae with increasing irradiances. Fischer et al. (2006), observed 

a strong negative influence on the efficiency of photosynthesis and PSII photodamage in C. 

reinhardtii  at high light (2,500 µmol photons m
-2

s
-1

)
 
compared with low light (120 µmol 

photons m
-2

s
-1

) growth conditions. They suggested that the high charge separation at PSII 

exceeds the availability of the electron acceptor NADP
+ 

at PSI resulting in the degradation of the 

PSII core D1 protein. Sorokin and Krauss (1958) reported decreased growth of Chlorella 

pyrenoidosa and C. reinhardtii at light intensities above 300 µmol photons m
-2

s
-1

. Fans were 

used in the current study to decrease the temperature at the surface of the glass growth vessels 

for high light intensities. Temperatures measured at 400 to 600 µmol photons m
-2

s
-1 

 ranged from 

30 to 35ºC, compared with 25 to 27ºC for the experiments run at 100 to 300 µmol photons m
-2

s
-1

, 

which may somewhat confound comparison of these data. 

 

1.4.3. Growth variation at different CO2 concentration 

In the present study, both C. vulgaris and C. reinhardtii produced highest final yields 

when grown with 6% CO2 and were capable of growth in a 12% CO2 atmosphere.  de Morais 

and Costa (2007) observed no significant difference in growth rates in Chlorella kessleri and 

Scenedesmus obliquus cultivated with 6% and 12% CO2. However, the growth rate value and 

biomass productivity of C. kessleri decreased when the CO2 concentration reached 18%. Other 

studies have demonstrated that C. vulgaris can grow in elevated CO2 atmospheres ranging from 

10 to 40 % (Hirata et. al, 1996; Hanagata et. al, 1992). Maeda et al. (1995) found a strain of 

Chlorella sp. T-1 which could grow under 100% CO2, even though the maximum growth rate 

occurred at 10%.  Sung et al. (1999) compared the growth of a new species Chlorella KR-1 with 

concentrations of CO2 ranging from 10 to 70% (v/v) in air. They reported optimum growth at 

10% CO2, while cultures at higher concentrations exhibited a longer lag period before growth 

started. Chinnasamy et al. (2009) reported increased chlorophyll content and biomass of 

Chlorella vulgaris ARC 1 grow with 6% and 14% CO2.  

 The maximum CO2 concentration reported for growth of Chlamydomonas sp. is 15% 

(Salih, 2011). Fischer et al. (2006) reported higher photosynthetic activity of C. reinhardtii cells 
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grown in a medium containing 5% CO2 compared ambient air. Chinnasamy et al. (2009) 

reported that the carbonic anhydrase (an enzyme that catalyzes the rapid interconversion of CO2 

and water to bicarbonate and protons) of Chlamydomonas reinhardtii had much lower tolerance 

for high CO2 levels compared with C. vulgaris. This mechanism may explain the inferior growth 

of C. reinhardtii at 12% compared with 3% and 6% CO2 observed in the present study. 

 

1.4.4. Variation of ETR at different light intensity and CO2 concentration 

 

The ETR measurements at different light intensities exhibited a decrease at higher light 

intensity (Fig. 14, 15, 16). Similar results were reported by Bhola et al. (2011) who noticed that 

for C. vulgaris, light intensity beyond 370 µmol photons m
-2

s
-1 

resulted in decreased ETR values. 

Also, Hartig et al. (1998) demonstrated a linear decrease of the actual photochemical efficiency 

of PSII of motile microphytobenthic algae with increasing irradiances. Fischer et al. (2006) 

showed that at high light intensity the photosynthetic electron transport chain is reduced because 

a high charge separation rate at PSII exceeds the availability of the electron acceptor NADP
+ 

at 

PSI. Also, they believe that this process stimulated the degradation of the PSII core D1 protein 

followed by inactivation of photosynthesis and photoinhibition.  

Furthermore, ETR values decreased over time. A similar observation was described by 

Hofstraat et al. (1994) who noticed higher overall ETR for Dunaliella tertiolecta in the first five 

days of the experiment compared with the observation after 17 days. Masojídek et al. (2001) 

measured the light-response curves of photosynthetic oxygen evolution and ETR of a 

phytoplankton mixture from a fish pond, at various times of the day. Interestingly, they observed 

that the highest efficiency of light utilization was at 8:30 am and the highest inhibition of 

photosynthesis during the day was at 10:30 am. However, at 14:00 pm the ETR increased almost 

to the morning value. 

The overall ETR results were considerably higher for C. reinhardtii than C. vulgaris 

during the light or CO2 experiments (Fig. 14, 15, 16, 18, 19, and 20). The ETR results obtained 

from the light experiment did not demonstrate the same rapid decrease for C. reinhardtii 

compared to C. vulgaris; which might indicate that C. reinhardtii is able to easily adapt to 

different light intensities. This hypothesis is supported by the presence of an “eyespot” (the 

simplest visual system found in nature) in flagellates like Chlamydomonas sp. which assist 

http://plankt.oxfordjournals.org/search?author1=Ji%C5%98%C3%AD+Masoj%C3%ADdek&sortspec=date&submit=Submit
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guidance of the algae in places where light conditions are optimal for photosynthetic growth 

(Hegemann, 1997). 

 

1.4.5. Total lipid content of C. vulgaris and C. reinhardtii grown at ambient, 6% and 12% 

CO2 

Lipid content increased with increasing CO2 concentration. Similar findings were 

reported by Widjaja et al. (2009) who demonstrated that increasing CO2 concentrations increased 

lipid productivity of C. vulgaris. When the CO2 flow was increased to 50 ml/min, the lipid 

productivity increased by more than 50% over standard controls conditions. Fulke et al. (2010) 

found maximum lipid productivity of Chlorella sp. at 3% CO2, when a range from ambient to 

15% was compared. However, Chiu et al. (2008) found that the lipid content of Chlorella sp. 

cultured at 2%, 5%, 10%, and 15% CO2 was very similar in their single cell photobioreactor. 

Production of biomass and lipid content significantly increased (6x) in a six-cell parallel 

photobioreactor compared with the single-cell photobioreactor, implying that detention time and 

light exposure were the most important factors. 

The highest lipid content of total algal dry biomass was almost 18% for C. vulgaris and 

for 14% C. reinhardtii. These numbers are lower than have been reported by others (Demirbas 

2011; Liang, 2009; Mata, 2010). In his review, Demirbas (2011) reported the average lipid 

content on a dry matter basis of C. vulgaris was between 14-22 % and for C. reinhardtii was 21 

%. Mata (2010) reported 5-58 % lipid content for C. vulgaris. In our experiments, the carbon 

source was provided via bubbling of CO2-enriched air into the culture medium. The reason for 

these low amounts of lipid content might be due to low absorption of CO2 since the bubbles 

formed were large and tended to rise to surface, leading to considerable waste of gas to the 

atmosphere.  Carvalho and Malcata (2001), studying the transfer of CO2 into microalgal cultures, 

demonstrated that the use of microporous hollow fibers, rather than plain bubbling, offers 

technological enhancements in the effectiveness of mass transfer. In addition, this type of system 

offers the opportunity to recirculate the gas and to use lower gas pressures, thus reducing 

operating costs. 
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1.4.6. Fatty acids profiles of C. vulgaris and C. reinhardtii grown at ambient, 6% and 12% 

CO2 

The quality of biodiesel is considerably affected by the fatty acids used in its production. 

In the present study, GC analysis showed that the main fatty acid components of the two 

examined microalgae ranged from C16 to C18 in chain length, and generally were unsaturated. As 

a result, biodiesel produced from these two microalgae would have low viscosity and desirable 

low-temperature properties (Knothe, 2008).  

The fatty acids composition of C. vulgaris and C. reinhardtii varied with different CO2 

concentrations used during growth. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid 

(C18:1n9), linoleic acid (C18:2) were higher in content when the algae were grown at 12% CO2. 

These findings are comparable to observations made by Tsuzuki et al. (1990). Similarly, Yoo et 

al. (2010) reported the presence palmitic acid, oleic acid, and linoleic acid as the main fatty acids 

in C. vulgaris, whereas palmitoleic acid and stearic acid were minor components. They also 

reported that oleic acid content was higher in Botryococcus braunii compared to C. vulgaris. 

Decreased content of linolenic acid (ω18:3) in C. vulgaris exposed to higher CO2 concentrations 

also was observed by Tsuzuki et al. (1990). In contrast, Moreno (2011) found a significantly 

higher content of linolenic acid when C. vulgaris UTEX 259 was grown at 5% CO2. He also 

observed an increase in fatty acids grown at higher CO2 concentration compared with ambient.  
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1.5. CONCLUSIONS 

 

          The choice of microalgae for CO2 mitigation and production of biodiesel requires selection 

according to their growth rate, lipid content, and tolerance of high levels of CO2. Results showed 

that C. vulgaris had a faster growth rate, higher lipid content, and better tolerance for high CO2 

levels compared to C. reinhardtii (Table 6, Table 11, Fig. 15). Furthermore, data indicate that 

CO2 concentrations result in higher lipid content.  

Wright's Cryptophytes medium supplemented with glycylglycine (WC-Gly) had the best 

buffering capacity and the highest growth rate among the media tested: Tris Acetate Phosphate 

(TAP), Bushnell Haas Broth (BHB), and Wright's Cryptophytes medium supplemented with 

TRIS (WC-Tris). A light intensity of 200 µmol photons m
-2

s
-1 

provided the best growth yield and 

ETR.  

          In future studies, it would be valuable to examine the effect of different temperatureon the 

growth yield and ETR. After nutrient quantity and quality, environmental temperature is the key 

parameter that controls the basic rates of all biochemical reactions in the algal cell. By 

optimizing the temperature, it may be possible to increase the biomass productivity and lipid 

content can be increased as has been suggested by Sandnes et al., 2005, Converti et al., 2009. 

          Examination on possible nitrogen limitation effects on the lipid content and biomass of the 

microalgae could provide a better perspective on the best method for enhancing algae biofuel. 

Deng et al. (2011) noticed that the external carbon source has little impact on lipid accumulation 

whereas N or S deficiency in a high carbon medium achieved significantly higher lipid 

accumulation. 
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Table 1. Chemical composition of TAP medium (Gorman and Levine, 1965). 

 

Stock Solution 

(SL) 

Quantity Component Concentration in 

SL 

Conc. in final 

Medium 

Tris base 2.42 g H2NC(CH2OH)3 

Tris(hydroxymethyl)-aminomethan 

2.00 x 10
-2

 M 

TAP-salts 

(Beijerinck 

salts) 

 

25 mL NH4Cl 15 g L
-1

 7.00 x 10
-3

 M 

MgSO4 • 7H2O 4 g  L
-1

 8.30 x 10
-4

 M 

CaCl2 • 2H2O 2 g  L
-1

 4.50 x 10
-4

 M 

Phosphate 

solution 

 

0.375 mL K2HPO4 28.8 g 100 mL
-1

 1.65 x 10
-3

 M 

KH2PO4 14.4 g 100 mL
-1

 1.05 x 10
-3

 M 

Trace elements 

solution 

(Hutner 

trace elements) 

1 mL Na2EDTA • 2H2O 5.00 g  100 mL
-1

 1.34 x 10
-4

 M 

ZnSO4 • 7H2O 2.20 g  100 mL
-1

 1.36 x 10
-4

 M 

H3BO3 1.14 g  100 mL
-1

 1.84 x 10
-4

 M 

MnCl2 • 4H2O 0.50 g  100 mL
-1

 4.00 x 10
-5

 M 

FeSO4 • 7H2O 0.50 g  100 mL
-1

 3.29 x 10
-5

 M 

CoCl2 • 6H2O 0.16 g  100 mL
-1

 1.23 x 10
-5

 M 

CuSO4 • 5H2O 0.16 g  100 mL
-1

 1.00 x 10
-5

 M 

(NH4)6MoO24 • 

4H2O 

0.11 g  100 mL
-1

 4.44 x 10
-6

 M 
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Table 2. Chemical composition of WC medium (Guillard and Lorenzen, 1972). 

 

Component Quantity Stock Solution Molar 

Concentration in 

Final Medium 

Buffer: Glycylglycine 

          Tris base 

500 mg --- 3.78 x 10
-3

 M 

NaNO3 1 mL 85.01 g L
-1

 dH2O 1.00 x 10
-3

 M 

CaCl2 • 2H2O 1 mL 36.76 g L
-1

 dH2O 2.50 x 10
-4

 M 

MgSO4 • 7H2O 1 mL 36.97 g L
-1

 dH2O 1.50 x 10
-4

 M 

NaHCO3 1 mL 12.60 g L
-1

 dH2O 1.50 x 10
-4

 M 

Na2SiO3 • 9H2O 1 mL 28.42 g L
-1

 dH2O 1.00 x 10
-4

 M 

   K2HPO4 1 mL 8.71 g L
-1

 dH2O 5.00 x 10
-5

 M 

Trace metal solution 1 mL (see below) --- 

   Vitamin solution 1 mL (see below) --- 
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Table 3. Trace metal solution for WC medium. 

 

 

Table 4. Vitamin solution for WC medium. 

Component Primary Stock 

Solution 

Quantity Molar Concentration 

in Final Medium 

Thiamine · HCl (vit. B1) --- 100 mg 2.96 x 10
-7

 M 

Biotin (vit. H) 0.5 g/L dH2O 1 mL 2.05 x 10
-9

 M 

Cyanocobalamin (vit. B12) 0.5 g/L dH2O 1 mL 3.69 x 10
-10

 M 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component Primary Stock 

Solution 

Quantity Molar 

Concentration in 

Final Medium 

FeCl3 • 6H2O --- 3.15 g 1.17 x 10
-5

 M 

Na2EDTA • 2H2O --- 4.36 g 1.17 x 10
-5

 M 

CuSO4 • 5H2O 10.0 g  L
-1

  dH2O 1 mL 4.01 x 10
-8

 M 

Na2MoO4 • 2H2O 6.0 g  L
-1

  dH2O 1 mL 2.48 x 10
-8

 M 

ZnSO4 • 7H2O 22.0 g  L
-1

  dH2O 1 mL 7.65 x 10
-8

 M 

CoCl2 • 6H2O 10.0 g  L
-1

  dH2O 1 mL 4.20 x 10
-8

 M 

MnCl2 • 4H2O 180.0 g  L
-1

  dH2O 1 mL 9.10 x 10
-7

 M 

H3BO3 --- 1.00 g 1.62 x 10
-5

 M 
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Figure 1. The experimental set-up for evaluation of growth medium and pH (before 

incoculation). The mouths of the tubes were covered with foam stoppers. Air at 50 mL/min was 

bubbled through the testing tubes using a pipette to agitate the solution. A syringe provides an 

exit/sampling point. 

 
 

Figure 2. The experimental set-up for evaluation of growth medium and pH (day 5).  

Visible growth at pH 7 and pH 8. Controls show no growth. 
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Figure 3. The experimental set-up for optimization of light intensity. Test tubes were placed on 

their sides on two shelves illuminated with 460-watt metal GE grow lights source. Light was 

varied by rheostat from 100-600 µmol photons m
-2

s
-1

 (12 hours light/ 12 hours dark). 
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Figure 4. Phytoplankton Analyzer PHYTO-PAM (Heinz Walz GmbH, Germany) was used to 

measure the relative electron transport rate (ETR) as a function of PAR (Photosynthetically 

Active Radiation) on day two, three and four. 

 
 

Figure 5. The experimental set-up for evaluation of CO2 concentration. Glass serum bottles filled 

with WC medium and sealed with solid stoppers. Two needles were inserted in the stopper to 

bubble the gas (CO2 level=0.038%, 3%, 6%, and 12%) through the medium and to provide an 

exit/sampling point. Light was held constant at 200 µmol m
-2

s
-1

. The medium was stirred 

continuously using magnetic stirrers. 
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Fig 6. 8000M Mixer/Mill® system (Spex SamplePrep,USA). 

 

 
 

 

  

Fig.7. Soxtec™ 2055 system (Foss Analytical, Danemark). 
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Figure 8. Chlorella vulgaris growth curve using Tris Acetate Phosphate (TAP), Bushnell Haas Broth (BHB), and Wright's 

Cryptophytes (WC) medium over a 5-day period. The initial pH of the media ranged from pH 4 to pH 10.
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Figure 9. pH variation during growth of Chlorella vulgaris growth using Tris Acetate Phosphate (TAP), Bushnell Haas Broth (BHB), 

and Wright's Cryptophytes (WC) medium over a 5-day period. 
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Figure 10. Growth of Chlamydomonas reinhardtii growth curve using Tris Acetate Phosphate (TAP), Bushnell Haas Broth (BHB), 

and Wright's Cryptophytes (WC) medium over a 5-day period. The initial pH of the media ranged from pH 4 to pH 10. 
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Figure 11. pH variation during Chlamydomonas reihardtii growth using Tris Acetate Phosphate (TAP), Bushnell Haas Broth (BHB), 

and Wright's Cryptophytes (WC) medium over a 5-day period.  
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Fig.  12. Variation of pH in un-inoculated vessels.  
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 Table. 5.  Analysis of variance (ANOVA) table at day five for TAP and BHB medium. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 27 2.0287 150.2228 <.0001 

Algae type 1 0.3962 792.2854 <.0001 

Medium type 1 0.0626 125.1723 <.0001 

Algae type* Medium type 1 0.1725 344.9751 <.0001 

Initial pH 6 1.1010 366.8946 <.0001 

Algae type* Initial pH 6 0.1258 41.9232 <.0001 

Medium type * Initial pH 6 0.0498 16.5848 <.0001 

Algae type* Medium type* Initial pH 6 0.1206 40.1945 <.0001 

Error 84 0.0420   

Total 111 2.0708   

 

Table 6. Comparison of OD750 at day five between the algae species (*=significant) and among all pH tested (Levels 

not connected by same letter are significantly different). 

    

 

    Medium 

type TAP BHB WC-Gly WC-Tris 

Initial 

pH C. vulgaris C. reinhardtii C. vulgaris C. reinhardtii C. vulgaris C. reinhardtii C. vulgaris C. reinhardtii 

4 0.135
f
 0.102

d
 0.080

e
 0.087

d
 0.324

e
 0.386*

b
 0.197

d
 0.223

bc
 

5 0.371*
d
 0.170

c
 0.269

c
 0.237

bc
 0.707*

d
 0.229

d
 0.332*

bc
 0.190

c
 

6 0.390*
d
 0.283

a
 0.395*

a
 0.289

ab
 0.746*

cd
 0.298

c
 0.341*

bc
 0.233

bc
 

7 0.512*
b
 0.318

a
 0.423

a
 0.367

a
 0.688*

d
 0.439

a
 0.382*

b
 0.286

a
 

8 0.652*
a
 0.207

b
 0.314

b
 0.299

ab
 0.910*

a
 0.442

a
 0.582*

a
 0.265

ab
 

9 0.431*
c
 0.137

cd
 0.227*

c
 0.155

d
 0.832*

b
 0.361

b
 0.505*

a
 0.263

ab
 

10 0.268*
e
 0.160

c
 0.169

d
 0.161

cd
 0.796*

bc
 0.365

b
 0.282

cd
 0.258

ab
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          B) C. reinhardtii 

 

 

Table 7. Comparison between initial pH and final pH ( *=significant different) ( α = 0.05). 

A) C. vulgaris 

Medium type Final pH 

Initial pH TAP BHB WC-Gly WC-Tris 

4 3.90 3.90 7.14* 7.41* 

5 4.00* 3.97* 7.81* 7.52* 

6 5.47* 5.79* 7.89* 7.67* 

7 5.90* 6.82* 7.95* 7.84* 

8 7.67* 7.53* 8.47* 8.38* 

9 8.56* 8.14* 8.84* 8.76* 

10 8.92* 8.66* 8.95* 8.76* 

Medium type Final pH 

 

Initial pH TAP BHB WC-Gly WC-Gly 

4 3.85* 3.93 7.83* 7.48* 

5 3.53* 4.44* 7.67* 7.55* 

6 4.84* 5.82* 7.91* 7.40* 

7 5.79* 6.81* 8.09* 7.81* 

8 7.74* 7.54* 8.53* 8.29* 

9 8.57* 8.13* 8.99 8.87* 

10 8.78* 8.47* 9.25* 9.43* 
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Table 8. Analysis of variance (ANOVA) table at day five for WC-Gly and WC-Tris medium. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 27 4.8698 248.7527 <.0001 

Algae type 1 1.6391 2260.5490 <.0001 

Medium type 1 1.4476 1996.4610 <.0001 

Algae type* Medium type 1 0.3563 491.3842 <.0001 

Initial pH 6 0.7150 164.3561 <.0001 

Algae type* Initial pH 6 0.5144 118.2521 <.0001 

Medium type * Initial pH 6 0.0605 13.9157 <.0001 

Algae type* Medium type* Initial pH 6 0.1369 31.4642 <.0001 

Error 84 0.0609   

Total 111 4.9307   
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Table 9. Analysis of variance (ANOVA) table of OD750 with different light intensities on day two. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 0.0802 10.1755 <.0001 

Algae type 1 0.0006 0.7928 0.3821 

Light intensity 5 0.0547 15.2699 <.0001 

Algae type* Light intensity 5 0.0249 6.9577 0.0004 

Error 24 0.0609   

Total 35 0.0974   

 

Table 10. Analysis of variance (ANOVA) table of OD750 with different light intensities on day three. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 0.3558 11.5330 <.0001 

Algae type 1 0.1126 40.1300 <.0001 

Light intensity 5 0.0712 5.0756 0.0026 

Algae type* Light intensity 5 0.1721 12.2711 <.0001 

Error 24 0.0673   

Total 35 0.4232   

 

Table 11. Analysis of variance (ANOVA) table of OD750 with different light intensities on day four. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 1.1396 48.5503 <.0001 

Algae type 1 0.4306 201.7673 <.0001 

Light intensity 5 0.2966 27.7953 <.0001 

Algae type* Light intensity 5 0.4125 38.6618 <.0001 

Error 24 0.0512   

Total 35 1.1908   
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Table 12. Analysis of variance (ANOVA) table of ETR with different light intensities on day two. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 3836.0716 15.3984 <.0001 

Algae type 1 2437.3574 107.6218 <.0001 

Light intensity 5 240.0179 2.1196 0.0978 

Algae type* Light intensity 5 1158.6963 10.2325 <.0001 

Error 24 543.5385   

Total 35 4379.6102   

 

Table 13. Analysis of variance (ANOVA) table of ETR with different light intensities on day three. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 4636.9867 14.6571 <.0001 

Algae type 1 3741.3937 130.0882 <.0001 

Light intensity 5 362.7087 2.5223 0.0570 

Algae type* Light intensity 5 532.8843 3.7057 0.0126 

Error 24 690.2505   

Total 35 5327.2372   

 

Table 14. Analysis of variance (ANOVA) table of ETR with different light intensities on day four. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 10203.237 68.6915 <.0001 

Algae type 1 7199.7261 533.1801 <.0001 

Light intensity 5 1339.7153 19.8427 <.0001 

Algae type* Light intensity 5 1663.7960 24.6427 <.0001 

Error 24 324.081   

Total 35 10527.318   
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         Figure 13. Growth of Chlorella vulgaris and Chlamydomonas reinhardtii at different light intensities (from 100-600 µmol photons m
-

2
s

-1
). 
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         Figure 14. Chlorella vulgaris and Chlamydomonas reinhardtii relative electron transport rates (ETR) at different light intensities 

         (from 100-600 µmol photons m
-2

s
-1

) measured on day two, three and four. 
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Figure 15. Chlorella vulgaris and Chlamydomonas reinhardtii relative ETR (Electron Transport Rate) as a function of PAR 

(Photosynthetically Active Radiation) at light intensities of 100-300 µmol photons m
-2

s
-1

 measured on day two, three and four. 

 

                                                        Legend: 
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Figure 16. Chlorella vulgaris and Chlamydomonas reinhardtii relative ETR (Electron Transport Rate) as a function of PAR 

(Photosynthetically Active Radiation) at light intensities of 400-600 µmol photons m
-2

s
-1

 measured on day two, three and four. 

 

                                                                 Legend: 
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Figure 17. Growth of Chlorella vulgaris and Chlamydomonas reinhardtii in ambient air (0.038%), 3% CO2, 6% CO2, and 12% CO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Day 1 Day 2 Day 3 Day 4 Day 5

O
D

7
5

0
 

Chlorella vulgaris  

0.038% CO2

3% CO2

6% CO2

12% CO2

0

0.2

0.4

0.6

0.8

1

Day 1 Day 2 Day 3 Day 4 Day 5

O
D

7
5

0
 

Chlamydomonas reinhardtii  

0.038% CO2

3% CO2

6% CO2

12% CO2



 
 

- 53 - 
 

Table 15. Analysis of variance (ANOVA) table of OD750 with different CO2 concentrations on day two. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 0.0955 27.1731 <.0001 

Algae type 1 0.0376 72.9149 <.0001 

% CO2 3 0.0441 29.2650 <.0001 

Algae type* % CO2 3 0.0138 9.1673 0.0009 

Error 16 0.0080   

Total 23 0.1035   

 

Table 16. Analysis of variance (ANOVA) table of OD750 with different CO2 concentrations on day three. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 0.7515 36.0975 <.0001 

Algae type 1 0.2322 79.0914 <.0001 

% CO2 3 0.5027 56.3368 <.0001 

Algae type* % CO2 3 0.0166 1.8604 0.1770 

Error 16 0.0476   

Total 23 0.7991   

 

Table 17. Analysis of variance (ANOVA) table of OD750 with different CO2 concentrations on day four. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 1.6581 107.5106 <.0001 

Algae type 1 0.5017 227.7067 <.0001 

% CO2 3 1.1142 168.5734 <.0001 

Algae type* % CO2 3 0.0421 6.3826 0.0047 

Error 16 0.0353   

Total 23 1.6934   
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Table 18. Analysis of variance (ANOVA) table of ETR with different CO2 concentrations on day two. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 5889.1250 70.7829 <.0001 

Algae type 1 3981.4656 334.9797 <.0001 

% CO2 3 894.2447 25.0790 <.0001 

Algae type* % CO2 3 1013.4147  28.4211 <.0001 

Error 16 190.1711   

Total 23 6097.2961   

 

Table 19. Analysis of variance (ANOVA) table of ETR with different CO2 concentrations on day three. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 6974.2753 17.7621 <.0001 

Algae type 1 4291.9627 76.5155 <.0001 

% CO2 3 1495.4897 8.8870 0.0011 

Algae type* % CO2 3 1186.8230 7.0527 0.0031 

Error 16 897.4841   

Total 23 7871.7594   

 

Table 20. Analysis of variance (ANOVA) table of ETR with different CO2 concentrations on day four. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 7 6088.5057 869.7870 <.0001 

Algae type 1 3629.7430 291.2247 <.0001 

% CO2 3 2184.9535 58.4350 <.0001 

Algae type* % CO2 3 273.8092 7.3228 0.0026 

Error 16 199.4195   

Total 23 6287.9252   
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Figure 18. Chlorella vulgaris and Chlamydomonas reinhardtii relative electron transport rates (ETR) in ambient air (0.038%), 3% CO2, 

6% CO2, and 12% CO2 measured on day two, three and four. 
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Figure 19. Chlorella vulgaris and Chlamydomonas reinhardtii relative electron transport rates (ETR) as a function of PAR 

(Photosynthetically Active Radiation) at ambient CO2 (0.038% CO2) and 3% CO2 measured on day two, three and four. 

 

Legend: 
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Figure 20. Chlorella vulgaris and Chlamydomonas reinhardtii relative electron transport rates (ETR) as a function of PAR 

(Photosynthetically Active Radiation) at 6% CO2 and 12% CO2 measured on day two, three and four. 
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Table 21. Analysis of variance (ANOVA table) of the total lipid content of Chlorella vulgaris and Chlamydomonas reinhardtii grown 

at different CO2 concentrations and using two types of extractions. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 137.3847 8.7883 0.0004 

Algae type 1 32.7834 23.0683 0.0004 

Extraction type 1 1.3680 0.9626 0.3459 

Algae type*Extraction type 1 0.0294 0.0207 0.8880 

% CO2 2 87.3055 30.7165 <.0001 

Algae type*% CO2 2 10.2033 3.5898 0.0600 

Extraction type*% CO2 2 2.7361 0.9626 0.4095 

Algae type*Extraction type*% CO2 2 2.9589 1.0410 0.3829 

Error 12 17.0538   

Total 23 154.4385   

 

Table 22. Analysis of variance (ANOVA table) of the total fatty acid content of Chlorella vulgaris and Chlamydomonas reinhardtii 

grown at different CO2 concentrations and using two types of extractions. 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 11 89.3821 6.4777 0.0016 

Algae type 1 22.6095 18.0240 0.0011 

Extraction type 1 0.0077 0.0062 0.9388 

Algae type*Extraction type 1 0.2952 0.2353 0.6363 

% CO2 2 56.1538 22.3826 <.0001 

Algae type*% CO2 2 7.3585 2.9330 0.0918 

Extraction type*% CO2 2 1.3754 0.5482 0.5918 

Algae type*Extraction type*% CO2 2 1.5821 0.6306 0.5490 

Error 12 15.0529   

Total 23 104.4350   
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        Table 23. Lipid content, total fat content and fatty acid content of C. vulgaris and C. reinhardtii (g/ 100g biomass) grown at ambient                

…….CO2 concentration, 6 % CO2 and 12% CO2 using 8000M Mixer/Mill and Soxtec extraction system. 

Algae 

type 

Extraction 

type 

% 

CO2 

Lipid 

content 

Total fat  

content 14:1  16:0 16:1 18:0 18:1t9  18:1n9  18:1n7  18:2  ω18:3 DHA 

Chlorella Mixer/Mill 0.038 13.1250abc 9.0739abc 0.1033b 1.4058bcd 0.3511ab 0.1146c 0.8606a 0.7249ab 0.3049 1.5657abcd 1.6561ab 0.0120cd 

Chlorella Mixer/Mill 6 14.4350ab 10.2462ab 0.0960b 1.8871abcd 0.3603ab 0.1609abc 0.8307a 0.8391ab 0.3686 2.0463abcd 1.4047abc 0.0150bcd 

Chlorella Mixer/Mill 12 17.7875a 12.8995a 0.1951a 2.1841abcd 0.4020a 0.2335abc 0.7359ab 1.2059ab 0.3364 2.7603a 1.3134abc 0.0258a 

Chlorella Soxtec 0.038 12.8525bc 9.5864abc 0.0743b 1.8301abcd 0.3624ab 0.1644abc 0.9346a 0.6869ab 0.3015 1.5496abcd 1.7965a 0.0163abcd 

Chlorella Soxtec 6 13.6700ab 10.1419abc 0.0892b 2.1224abcd 0.3814ab 0.2058abc 0.7279ab 0.9333ab 0.3139 1.9791abcd 1.2373abcd 0.0152bcd 

Chlorella Soxtec 12 17.6025a 11.7184a 0.1219b 2.2405abcd 0.3838ab 0.2442abc 0.6764ab 1.1129ab 0.3062 2.5950ab 1.1823abcd 0.0223ab 

Chlamydo Mixer/Mill 0.038 10.9600bc 6.2355bc 0.0923b 1.2050d 0.1262d 0.1021c 0.1806c 0.2436b 0.3063 0.6847d 1.0194bcd 0.0086d 

Chlamydo Mixer/Mill 6 13.5975ab 8.9830abc 0.1144b 1.6551abcd 0.3100abc 0.1486bc 0.4477bc 0.6724ab 0.3400 1.3701bcd 1.2647abcd 0.0135bcd 

Chlamydo Mixer/Mill 12 13.9875ab 10.5122ab 0.0610b 2.6086a 0.2070bcd 0.3201a 0.3899bc 1.9415a 0.2393 2.3252abc 0.8171cd 0.0189abc 

Chlamydo Soxtec 0.038 8.5700c 5.7432c 0.0532b 1.3424cd 0.1402cd 0.1482bc 0.2470c 0.5943ab 0.2493 0.9909cd 0.6367d 0.0110cd 

Chlamydo Soxtec 6 13.5200ab 10.1397abc 0.0522b 2.4732ab 0.2069bcd 0.3099a 0.4056bc 2.0375a 0.0000 2.2671abc 0.8688cd 0.0193abc 

Chlamydo Soxtec 12 14.8125ab 10.4056ab 0.0817b 2.4037abc 0.2503abcd 0.2888ab 0.4433bc 1.5667abc 0.2114 2.0269abcd 1.0479bcd 0.0186abc 

 

 

 

 

 

 

 

 



 
 

- 60 - 
 

Fig.21. Major fatty acid composition of C. vulgaris grown using different CO2 concentrations. 
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Fig.22. Major fatty acid composition of C. reinhardtii grown using different CO2 concentrations. 
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CHAPTER 2 
 

Comparison of CO2 uptake by Chlorella vulgaris and Chlamydomonas reinhardtii  

in liquid culture and immobilized algal beads 

2.1 INTRODUCTION 

 

          One of the today’s biggest environmental challenges is emission of greenhouse 

gases (GHG) such as CO2 from combustion of fuels (Melillo et al., 1993). Common remediation 

approaches to managing the levels of CO2 released into the atmosphere include 1) increased 

efficiency of energy conversion, 2) use of lower carbon energy sources, and 3) various forms of 

carbon sequestration (Keffer and Kleinheinz, 2002). 

Microalgae can fix carbon dioxide from the atmosphere using open-culture systems 

(lakes or ponds) or closed-culture systems called photo-bioreactors. Open-culture systems are 

less expensive to build and operate, are more durable than bioreactors and have a large 

production capacity when compared with closed systems. Photo-bioreactors are advantageous 

because they are flexible systems that can be optimized according to the biological and 

physiological characteristics of the algal species being cultivated which allows cultivation of 

algal species that cannot be grown reliably in open ponds. Mitigation techniques using 

membrane-type photo-bioreactors have high CO2 removal efficiency (Cheng et al., 2006; Fan et 

al., 2008). However, membrane-type photo-bioreactors have operational problems, which 

include membrane fouling and high design and operational costs (Cheng et al., 2006). Therefore, 

tubular and bubble column-type photo-bioreactors are commonly applied for use in algal 

photoreactors (Chiu et al., 2009; de Morais and Costa, 2007a; Fan et al., 2008). 

Biological CO2 sequestration (accomplished by plants and photosynthetic 

microorganisms) is a promising strategy since the biomass produced can be further utilized for 

value-added products (de Morais and Costa, 2007a). Sequestration strategies include deep ocean 

injection, below ground storage of CO2 in geological formations such as in oil and gas fields or 

saline aquifers (Stevens, 2000; Nordbotten et al., 2005), and biological sequestration (de Morais 

and Costa, 2007a,b,c). The potential of carbon capture by green plants has been estimated to be 

3-6% of fossil fuel emissions (Skjanes et al., 2007). Microalgae have the ability to fix CO2 

during photosynthesis with efficiency 10 to 50 times greater than that of terrestrial plants (Li et 

al., 2008; Usui and Ikenouchi, 1997). According to Sahoo (2010), one ton of algae can fix 0.36 
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tons of carbon, 0.6 tons of nitrogen and 0.008 tons of phosphorus. Microalgae and cyanobacteria 

species used for CO2 mitigation include Botryococcus braunii (Yoo et al., 2010), Chlorella 

vulgaris (Chen et al., 2010; Cheng et al., 2006), Chlorella kessleri (de Morais and Costa, 2007b), 

Chlorocuccum littorale (Ota et al., 2009), Scenedesmus sp. (de Morais and Costa, 2007a; Ho et 

al., 2010), Chlamydomonas reinhardtii (Packer, 2009) and Spirulina sp. (de Morais and Costa, 

2007a,b,c).  Microalgal species that grow well under the natural day–night cycle are suitable for 

large scale outdoor cultivation systems (Stewart and Hessami, 2005), and strains that can directly 

use the CO2 in power-plant flue gas are preferred (Benemann, 1993; de Morais and Costa, 2007c; 

Maeda et al., 1995). However, few Chlorella sp. and cyanobacteria species could grow well and 

achieve high CO2 fixation ability (500–1800 mg L
−1

 d
−1

) under a relative high tolerance for 

temperature or CO2 concentration (Maeda et al., 1995; Ono et al., 2007; Yue and Chen, 2005). 

There are several advantages of using microalgae for bio-mitigation purposes. Firstly, 

microalgae have higher growth and CO2 fixation rates compared with terrestrial plants (Chisti 

2007; Li et al. 2008). Secondly, CO2 can be completely recycled because it can be transformed 

to biofuel and other bioproducts (Li et al. 2008; Huntley and Redalje 2000). Thirdly, microalgae 

CO2 fixation is more cost-effective and environmental sustainable when it is combined with other 

processes such as wastewater treatment (Wang et al., 2008). However, to reduce CO2 levels from 

industrial waste gas, microalgae have to be tolerant not only to high levels of CO2, but they 

would also have to be able to grow in the presence of sulfur dioxides, nitrogen oxides, and 

volatile organic compounds (VOCs) which exist in the waste gases (Brown, 1996). Some 

researchers propose isolation of microalgae from lakes or ponds in the area of coal or oil fired 

thermoelectric power plants to obtain microalgae tolerant to the conditions prevalent in that 

particular area, in this way the adaptation of exotic strains to the new cultivation conditions 

existing in a power plant can be avoided (de Morais and Costa, 2007b). 

          There are several factors that play an important role in controlling the efficacy of CO2 

uptake by microalgae. High light intensity greater than saturation and high oxygen concentration 

can inhibit photosynthesis and CO2 fixation (Pope, 1975; Jeon et al., 2005). Basic growth 

nutrients are fundamental for maintaining the physiological integrity of the culture (Anderson, 

2005). Temperature can be a decisive factor in the selection of the proper type of microalga with 

the purpose of CO2 sequestration (Caron et al., 1986). Sakai et al. (1995) isolated Chlorella sp. 

from hot springs in Japan able to grow at temperatures up to 42°C and more than 40% CO2 in 
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air. Tolerance to both high temperature and high CO2 content made this alga potentially suitable 

for bio-CO2 mitigation from flue gas. Recent reports (Hsueh et al., 2007; Zhang et al., 2002) 

observed that the CO2 fixation can be influenced by aeration rate, bubble size, and residence time 

of the bubble. In general, obtaining an extensive air/liquid interface area is the first vital step to 

improve the CO2 mass transfer efficiency (Carvalho and Malcata, 2001; Ryu et al., 2009). 

          Immobilized algae have become a new branch of biotechnology of rapidly growing 

importance (Hameed and Ebrahim, 2007). An immobilized cell is defined as a cell prevented 

from moving independently of its neighbors to all parts of the aqueous phase of the system, 

either by natural or artificial methods (Tampion and Tampion, 1987). The most frequent method 

used for algae immobilization is entrapment using alginate or carrageenan as polymers, where 

the cells are free within their compartments and the pores in the material allow substrates and 

products to diffuse to and from the cells (Mallick, 2002).  

Studies on immobilized algae report varying results. Some studies found that the growth 

rates of immobilized cells are generally lower (Bailliez et al., 1985; Robinson et al., 1985) than 

those of the free cell cultures (Chevalier and de la Noue, 1985). Other studies suggest that there 

is no difference in oxygen evolution between free and immobilized Chlorella cells observed 

under a range of light intensities (Robinson et al., 1985). Still other studies found that oxygen 

evolution was greater in the immobilized state, suggesting a fundamental change of metabolism 

(Bailliez et al., 1988). Leon and Galvan (1995) studied the production of glycerol in 

Chlamydomonas reinhardtii cells immobilized in Ca-alginate and found that the immobilized 

cells showed a higher production rate in comparison to their free-living counterparts. Other 

studies demonstrated a decrease in productivity with immobilization. For example, keto-acid 

production by Anacystis and Chlorella was reduced by 70–90% (Wilkstrom et al., 1982) 

following immobilization. The CO2 fixation rates of algae immobilized in alginate beads are still 

largely unexplored. The present study is the first report of CO2 uptake rates by C. vulgaris and C. 

reinhardtii alginate beads, using influent CO2 concentration ranging from 3 to 9% CO2. 

The purpose of this study was to compare CO2 fixation by C. vulgaris and C. reinhardtii 

grown in liquid cultures at ambient (0.038%), 3%, 6%, 9%, and 12% CO2. The rates of CO2 

fixation on immobilized algal beads with a CO2 influent of 3%, 6%, and 9% CO2 were also 

identified. 
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2.2.  MATERIALS AND METHODS 

 

2.2.1. Consumption of CO2 in liquid culture  

   

2.2.1.1.  Microalgal strain and culture conditions  

 

Algae Chlorella vulgaris (UTEX 2714) and Chlamydomonas reinhardtii (UTEX 90) 

were grown at ambient (0.038%) CO2, 3% CO2, 6% CO2, 9% CO2, and 12% CO2 for seven days 

using Wright's cryptophytes (WC-Gly) medium in 250 ml flasks, and stirred continuously. 

Temperature was maintained at 21˚C and light intensity was maintained at 200 μmol m
-2

 s
-1

 with 

a photoperiod of 12 h light/12 h dark. The light energy for the photosynthetic fixation of CO2 by 

the algae was provided by two GE grow lights source (General Electric, Fairfield, CT, USA).  

 

2.2.1.2.  Assay system and CO2 measurements by gas chromatography  

          Cells were harvested by centrifugation and the final absorbance was adjusted to 

OD750=0.050 (See Appendix 1). Three ml of the algal suspensions were added to 100 ml of 

Wright's Cryptophytes medium in five replicate 160 ml serum bottles and the head space was 

adjusted to 12% CO2 (Figure 23).  Each bottle corresponded to a specific time (0, 9, 21, 26, and 

34 hrs. after inoculation). Another five bottles were not inoculated and used as controls.  The 

bottles were kept under light on four stirrer plates (Cimarec, Thermo Scientific, USA). The 

experiment was run in duplicate. Three milliliters of gas were sampled using a 5 cc syringe 

(Becton Dickinson, NJ, USA) at each time point from each bottle, and the amount of CO2 

consumption of gas was monitored by gas chromatography with a Carle AGC Series 100 gas 

chromatograph (Hach Co., Loveland, CO, USA) connected to a BD40 chart recorder (Kipp & 

Zonen, Inc., Bohemia, NY, USA). From the same samples, the absorbance was measured at 750 

nm using Spectronic 20 Genesys spectrophotometer (Spectronic Instruments, NY). 
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2.2.2. Consumption of CO2 flowing through immobilized algal beads  

 

2.2.2.1. Microalgal strain and culture conditions  

          C. vulgaris (UTEX 2714) and C. reinhardtii (UTEX 90) were grown in 250 ml flasks at 

ambient (0.038%) CO2 using WC-Gly medium, 21˚C temperature, and 200 μmol m
-2

s
-1

 light 

intensity and stirred continuously.  

          Immobilized algal beads were prepared by pouring a concentrated suspension of algal cells 

(500 mL, OD750=2.200, See Appendix 1) into an equal volume of 2.5% sodium alginate solution 

(Mallick, 2002) (Figure 24). The algae/alginate suspension was mixed for 2-3 hours using a 

stirrer until completely homogenized. Next, the suspension was drawn into a syringe and dripped 

slowly from the syringe tip into 100mM CaCl2 solution to form the spherical beads. The beads 

were left overnight to cross-link the alginate molecules with calcium ions, trapping the cells in a 

matrix of calcium alginate. Next day, the beads were separated from the resulting sodium 

chloride solution and transferred into two 100 cm Tygon tubes (Thermo Fisher Scientific, 

Pittsburg, PA, USA) (ID=2.5 cm). For the control columns, beads were prepared in the same 

manner, without algal cells suspension.  

 

2.2.2.2. Culture system and CO2 measurements by gas chromatography 

 

          Gas in the range of 3% – 9% CO2 was obtained by mixing compressed air with CO2 from 

two tanks (Airgas Mid America, West Virginia, USA) in an stainless steel mixing chamber (20 

cm length and an 4 cm internal diameter) (Figure 3). Gas flow through the columns was adjusted 

to 10-13 mL min
-1

 for 3% and 6% CO2 and 18-22 mL min
-1

 for 9% CO2. Influent (3, 6, and 9%) 

and effluent CO2 concentrations were measured by gas chromatography with a Carle AGC Series 

100 gas chromatograph (Hach Co., Loveland, CO, USA) connected to a BD40 chart recorder 

(Kipp & Zonen, Inc., Bohemia, NY, USA), over a five day period.  
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2.3.  RESULTS 

 

2.3.1. Consumption of CO2 in liquid culture  

 

ANOVA analysis showed that both C. vulgaris and C. reinhardtii had the same 

maximum uptake rate, but the CO2 concentration used to grow the cells had a significant impact 

on uptake (Table 25). Overall, cells grown at higher CO2 concentration exhibited lower CO2 

uptake compared with cells grown at ambient CO2 concentration. The highest CO2 fixation rate 

was 278 mg CO2 L
-1

 day
-1

 in case of C. vulgaris grown at ambient CO2 and the lowest CO2 

fixation rate was 117 mg CO2 L
-1

 day
-1 

displayed by C. reinhardtii grown at 12% CO2 (Table 

24).  

The OD750 also was measured (Fig. 27). Overall C. vulgaris grew to higher densities 

compared with C. reinhardtii, and cells grown at lower CO2 concentration grew better than cells 

grown at higher CO2 concentration (Table 25). C. vulgaris had higher growth than C. reinhardtii 

at all CO2 concentrations tested. 

 

2.3.2. Consumption of CO2 flowing through immobilized algal beads  

 

The percentage of CO2 reduction by C. vulgaris and C. reinhardtii was measured as the 

difference of influent CO2 and effluent CO2 measured at both sample ports (See Fig. 25, port D 

and port F), for each treatment (3%, 6% and 9% CO2 influent). The difference between influent 

CO2 and effluent CO2 measured for control columns also was taken into account. The percentage 

of CO2 reduction was examined at day one versus day five. On day one, immobilized C. vulgaris 

exhibited significantly higher capacity for CO2 reduction, compared with C. reinhardtii. C. 

vulgaris sequestered 34%, 13% and 5% of CO2 from influent atmospherics containing 3%, 6% 

and 9% CO2, respectively. In comparison, C. reinhardtii sequestrated 26%, 12% and 4%. Both 

strains showed higher fixation efficiency on day one.  Fixation efficiency declined over time 

(Table 26, Figure 28, 29, and 32). 

The interaction between algae type and influent CO2 concentration was not significant 

(Table 26 and 27). However, when rates were estimated without considering controls, higher 

rates of 6% CO2 consumption were apparent for both C. vulgaris and C. reinhardtii. On day one, 
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rates estimates varied from 35 to 53 mg CO2 L
-1

 day
-1

 (Table 30). These rates are considerably 

lower than those observed using liquid batch cultures. 

 

2.4.  DISCUSSION 

 

2.4.1. Consumption of CO2 in liquid culture  

 

Algal cells grown at ambient CO2 levels were able to fix CO2 more rapidly than cells 

grown at higher CO2 concentrations. Similar findings were reported by Chinnasamy et al. 

(2009). They demonstrated that CO2 uptake by C. vulgaris decreased by 29% under elevated 

CO2 (6% CO2). They reported that algal cells grown at the ambient levels of CO2 and higher 

temperature (40
o
C) exhibited a 23% growth rate of CO2 uptake. Increase in temperature 

significantly enhances the process of photorespiration thus causing depletion of intracellular 

CO2. To the contrary, DeLucia et al. (1985) found that the rate of photosynthesis initially 

significantly increased for a short period at high CO2 concentrations followed by a gradual 

decrease. 

Table 24 presents a comparison between the carbon fixation rates indicated in the 

literature and the results of this study. The differences could be due to different conditions of 

growth (different media, light intensity, CO2 concentrations, and pH) and type of reactors 

(tubular, bubble column, membrane, and air-lift) used in the various studies. Badger and Price 

(1994) explained that the efficiency of dissolved inorganic carbon (DIC) utilization for 

photosynthesis in low-CO2 grown cells was higher due to the activity of carbonic anhydrase (an 

enzyme that catalyzes the interconversion of CO2 and HCO
3-

). Carbonic anhydrase activity in 

low-CO2 grown cells was higher than that of cells grown in high-CO2. Also, cells grown in low-

CO2 exhibited lower photorespiration, a lower CO2 compensation point, and low O2 inhibition of 

photosynthesis.  

A reason for lower CO2 consumption rates obtained in the present study might be due to 

difficulty of mixing all the batch culture on the stirrer plates, and unequal distribution of light. As 

presented in the previous chapter, light intensity can affect photosynthesis and algal growth. 

Mixing is important for better diffusion of carbon dioxide in the medium, and preventing 

sedimentation of algal cells. Algae can fix carbon dioxide from carbon dioxide and 
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hydrogencarbonate dissolved in their aqueous surroundings, but must overcome the low rate of 

carbon dioxide diffusion in water. The key enzyme that catalyzes the fixation of carbon dioxide, 

ribulose-1, 5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) is localized in the 

chloroplast pyrenoid (center of carbon dioxide fixation within the chloroplast). CO2 is the 

substrate required by Rubisco and not hydrogencarbonate, therefore the accumulated HCO
3-

 

must be converted to CO2 before inorganic carbon fixation takes place. The carbonic anhydrase 

catalyses the interconversion of hydrogencarbonate into carbon dioxide and results in a high 

local concentration of carbon dioxide, which Rubisco can use rapidly before the CO2 has a 

chance to leak out of the cell (Moroney and Somachi, 1999). 

Another method to improve the CO2 fixation rate could be changing the light cycle from 

12 h light/12 h dark to 24 h light/0 h dark. Jacob-Lopes et al. (2009) reported an increase rate of 

CO2 fixation from 562 mg CO2 L
-1

 day
-1 

to 1,440 mg CO2 L
-1

 day
-1

 when such a change was 

implemented. 

 

2.4.2. Consumption of CO2 flowing through immobilized algal beads  

 

The CO2 reduction efficiency of alginate-immobilized C. vulgaris and C. reinhardtii 

decreased as the CO2 influent was increased. One factor that confounds this result is the different 

flow rate at the different CO2 concentrations tested. The columns flows were 10-13 mL min
-1

 for 

3% and 6% CO2 and 18-22 mL min
-1

 for 9% CO2.  Unfortunately, this was unavoidable due to 

technical difficulties in achieving a stable 9% CO2. Similarly, Doucha et al. (2005) reported a 

10-50% decrease in CO2 mitigation by Chlorella sp. in an outdoor open thin-layer 

photobioreactor due to increasing flue gas rate. Also, often it was not possible to maintain a 

constant CO2 concentration for 24 hrs, therefore it was necessary to recalibrate the gas 

composition each morning. For future experiments a more stable flow rate and CO2 

concentrations will give a better idea of the CO2 fixation efficiency of immobilized algal beads. 

On day one C. vulgaris had a significant higher uptake compared with C. reinhardtii, but 

on day five there was not a significant difference.  

Only one study has evaluated CO2 capture by immobilized algae. Rooke et al. (2011) 

studied immobilized C. vulgaris and Botryococcus braunii cells in low sodium silica gel, and 

demonstrated growth inhibition due to competition for space. They also reported that the 

mesoporosity of the gels enabled diffusion of nutrients and gases, and promoted the light and 
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dark photosynthetic reactions. Furthermore, the activity and the viability of encapsulated cells 

were for at least 80 days. During this time, the efficiency of the photosynthetic bioreactor in 

terms of CO2 remediation was monitored and suggested the capability for long term productivity 

of living gels. However, they noticed a decrease in photosynthetic yield. They assumed that this 

was an indicator of nutrient stress and suggested the need for improvement of gas diffusion, 

replenishment of nutrients, or cell acclimatization prior immobilization. Interestingly, also they 

noticed a differentiation in the durability of living gels in term of algal species. C. vulgaris cells 

were more viable and consistent to the matrix than Botryococcus braunii.  

When was observed the experimental columns on day five, a general decrease in bead 

diameter. This might happen because air flowing through the columns dried out the beads, 

shrinking the beads and decreasing the space available to living algal cells. In future experiments 

it would be beneficial to flow the influent gas through sterile liquid media to maintain the 

alginate beads in a high humidity atmosphere. 

Future studies could include the efficient removal of wastewater nitrogen and phosphorus by 

alginate-immobilized C. vulgaris and C. reinhardtii. Chevalier and de la Noue (1985) reported 

that immobilized Scenedesmus was capable of removing 90% of the ammonium (within four 

hours) and 100% of phosphate (within two hours) from a typical effluent, suggesting possible 

uses in the tertiary treatment of wastewaters. Similar findings were reported by Tam et al. (2000) 

who used Chlorella vulgaris cells immobilized in alginate beads for removing of ammonia and 

phosphate from wastewater. They also suggested that immobilized Chlorella vulgaris can be 

used as a secondary treatment process for domestic wastewater. Wang and Huang (2003) co-

immobilized Chlorella pyrenoidosa and activated sludge for nitrate and phosphate removal. 

They reported 80% nitrate removal and 88% phosphate removal. 
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2.5.  CONCLUSION 

 

CO2 fixation was explored using two approaches: 1) consumption of known quantities of 

CO2 in sealed serum bottles, 2) consumption of CO2 flowing through immobilized algal beads. In 

liquid culture, the cells grown at higher CO2 concentration exhibited lower CO2 uptake compared 

with algae grown at ambient CO2 concentration. In the immobilized algae study, a significant 

decrease in CO2 fixation from day one to day five and a decrease in CO2 uptake with increasing 

the influent CO2 concentration were evident. Both cases showed a similar trend in CO2 fixation 

rate based on increasing CO2 concentration level. The fixation rate decreased with increasing 

CO2 concentration.  

CO2 consumption generally decreased over the five day experiment. The maximum CO2 

consumption rate observed using immobilized algae was only 20% of the maximum obtained in 

liquid culture. Clearly, additional work is needed to optimize and sustain CO2 uptake in alginate 

beads. 
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Figure 23. Sealed serum bottles used for CO2 consumption and growth measurements 

inoculated with Chlorella vulgaris. 

 

Figure 24. Production of immobilized algal beads. 
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Figure 25. The experimental system designed for CO2 consumption measurements of 

immobilized algae beads.  

A- CO2 tank  

B- air tank  

C- gas mixing chamber  

D- CO2 influent gas sample port*  

E- Tygon tubes containing immobilized algae  

F- CO2 effluent gas sample port*  

* - CO2 measured by gas chromatography 
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              Figure 26. Consumption of 12% atmospheric CO2 and growth over a 34-hrs period by C. vulgaris and C. reinhardtii using algal     

………..inoculum grown initially at ambient (0.038%) CO2, 3% CO2, 6% CO2, 9% CO2, and 12% CO2. 
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Figure 27. Growth of C. vulgaris and C. reinhardtii in serum bottle filled with 12% atmospheric CO2 using algal inoculum grown 

initially at ambient (0.038%) CO2, 3% CO2, 6% CO2, 9% CO2, and 12% CO2 
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Table 24. CO2 fixation rates (mgCO2 L
-1

 day
-1

) of 12%CO2 atmospheric C. vulgaris and C. reinhardtii cells grown at ambient, 3%, 6%, 

9%, and 12% CO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microalgal species CO2(%) CO2 consumption rate 

(mg L
− 1

 d
− 1

) 

Reference 

C. vulgaris 0.038 278 This work 

C. vulgaris  3 149 This work 

C. vulgaris  6 152 This work 

C. vulgaris  9 146 This work 

C. vulgaris  12 152 This work 

C. reinhardtii 0.038 176 This work 

C. reinhardtii 3 169 This work 

C. reinhardtii 6 154 This work 

C. reinhardtii 9 121 This work 

C. reinhardtii 12 117 This work 

Chlorella sp. 10 1767 Sung et al. (1999) 

Chlorella sp. 20 1316 Sakai et al. (1995) 

C. vulgaris 0.038 75 Scragg et al. (2002) 

C. vulgaris 10 612 Jin et al. (2006) 

C. vulgaris 0.8–1 6240 Cheng et al. (2006) 

C. vulgaris 0.09 3450 Fan et al. (2008) 

Chlorella sp. 2 857 Chiu et al. (2008) 

Chlorella sp. 10 717 Chiu et al. (2009) 

Chlorella sp. 5 700 Ryu et al. (2009) 

C. vulgaris 5 251 Sydney et al. (2010) 
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Table 25. Analysis of variance (ANOVA) table of CO2 uptake in liquid culture after 34 hrs. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 9 31.1224 5.2915 0.0078 

Algae type 1 2.5590 3.9020 0.0765 

CO2 growth 4 23.4958 8.9567 0.0024 

Algae type* CO2 growth 4 5.1775 1.9737 0.1747 

Error 10 6.5582   

Total 19 37.7906   

 

 

Table 26. Analysis of variance (ANOVA) table of OD750 in liquid culture after 34 hrs. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 9 0.0607 14.8536 0.0001 

Algae type 1 0.0400 88.1924 <.0001 

CO2 growth 4 0.0132 7.3160 0.0051 

Algae type* CO2 growth 4 0.0074 4.0564 0.0330 

Error 10 0.0045   

Total 19 0.0652   
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Figure 28. Consumption of 3%, 6%, and 9% influent CO2 flowing through immobilized C. vulgaris algal beads. 
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Figure 29. Consumption of 3%, 6%, and 9% influent CO2 flowing through immobilized C. reinhardtii algal beads. 
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Figure 30. C. vulgaris % CO2 reduction over a 5-day period at different %CO2 influent. 
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Figure 31. C. reinhardtii % CO2 reduction over a 5-day period at different %CO2 Influent. 

 

Day 1 Day 2 Day 3 Day 4 Day 5

3% Influent 0.83 0.60 0.50 0.53 0.32

6% Influent 0.72 0.43 0.38 0.34 0.09

9% Influent 0.31 0.23 0.18 0.10 0.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90
%

 C
O

2 
R

ed
u

ct
io

n
 



 
 

- 87 - 
 

Table 27. Analysis of variance (ANOVA) table of %CO2 reduction by algal beads on day one. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 5 0.6722 34.6232 0.0002 

Algae type 1 0.0456 11.7511 0.0140 

% CO2 Influent 2 0.6216 80.0365 <.0001 

Algae type* % CO2 Influent 2 0.0050 0.6459 0.5571 

Error 6 0.0233   

Total 11 0.6956   

 

 

Table 28. Analysis of variance (ANOVA) table of %CO2 reduction by algal beads on day five. 

 

Source of Variation dF Sum of Squares F Ratio Prob > F 

Model 5 0.1613 1.4750 0.3222 

Algae type 1 0.0225 1.0305 0.3492 

% CO2 Influent 2 0.0910 2.0812 0.2058 

Algae type* % CO2 Influent 2 0.04771 1.0911 0.3943 

Error 6 0.1312   

Total 11 0.2925   
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Table 29. Influent and effluent CO2 concentration of control column and column containing algal beads. 

A) Control column 

%CO2 3% CO2 6% CO2 9% CO2 

Day Influent Effluent Influent Effluent Influent Effluent 

Day 1 2.9618 ± 0.03 2.5987 ± 0.05 6.0566 ± 0.08 5.0377 ± 0.08 8.9416 ± 0.25 7.9481 ± 0.17 

Day 2 3.0000 ± 0.03 2.5796 ± 0.08 5.9434 ± 0.08 4.9245 ± 0.08 9.0584 ± 0.08 8.0649 ± 0.17 

Day 3 2.9618 ± 0.08 2.5605 ± 0.05 6.0000 ± 0.01 5.1509 ± 0.08 9.1753 ± 0.25 8.1818 ± 0.33 

Day 4 3.0000 ± 0.03 2.5414 ± 0.08 5.9434 ± 0.08 5.1509 ± 0.08 9.0000 ± 0.33 8.0649 ± 0.33 

Day 5 3.0191 ± 0.05 2.5796 ± 0.08 6.0566 ± 0.24 5.0377 ± 0.08 9.0000 ± 0.17 8.1234 ± 0.08 

 

B) C. vulgaris column 
     %CO2 3% CO2 6% CO2 9% CO2 

Day Influent Effluent Influent Effluent Influent Effluent 

Day 1 2.9554 ± 0.11 1.5923 ± 0.15 6.0566 ± 0.11 4.2453 ± 0.07 8.7468 ± 0.21 7.3247 ± 0.19 

Day 2 2.9045 ± 0.09 1.8471 ± 0.08 6.0377 ± 0.14 4.3585 ± 0.15 8.8247 ± 0.21 7.5584 ± 0.16 

Day 3 2.8471 ± 0.15 1.7771 ± 0.04 5.9622 ± 0.09 4.5660 ± 0.06 8.8247 ± 0.11 7.6753 ± 0.09 

Day 4 2.9873 ± 0.05 1.8408 ± 0.06 6.0000 ± 0.15 4.6604 ± 0.09 8.9221 ± 0.18 7.8117 ± 0.15 

Day 5 3.0191 ± 0.07 2.2675 ± 0.06 5.9623 ± 0.24 4.5849 ± 0.10 8.7468 ± 0.26 7.8312 ± 0.18 

 

C) C. reinhardtii column 
    %CO2 3% CO2 6% CO2 9% CO2 

Day Influent Effluent Influent Effluent Influent Effluent 

Day 1 3.1338 ± 0.04 1.9427 ± 0.04 6.0566 ± 0.11 4.2453 ± 0.07 8.8247 ± 0.16 7.5195 ± 0.21 

Day 2 3.0828 ± 0.05 2.0637 ± 0.06 6.0377 ± 0.14 4.3585 ± 0.15 8.7857 ± 0.21 7.5584 ± 0.09 

Day 3 2.9745 ± 0.04 2.0701 ± 0.09 5.9623 ± 0.09 4.5660 ± 0.07 8.9221 ± 0.07 7.7532 ± 0.21 

Day 4 3.0191 ± 0.05 2.0318 ± 0.07 6.0000 ± 0.15 4.6604 ± 0.07 9.0000 ± 0.07 7.9675 ± 0.18 

Day 5 3.0701 ± 0.06 2.3121 ± 0.09 5.9623 ± 0.24 4.5849 ± 0.10 8.7468 ± 0.12 7.8701 ± 0.15 
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Table 30. Rates of CO2 uptake (mg L
-1

 day
-1

) by alginate-immobilized C. vulgaris and C. reinhardtii at 3%, 6% and 9% CO2 influent. 

%CO2 

Influent 
3% CO2 6% CO2 9% CO2 

Time C. vulgaris C. reinhardtii C. vulgaris C. reinhardtii C. vulgaris C. reinhardtii 

Day 1 40.28 35.28 53.65 51.41 42.12 38.66 

Day 2 31.32 30.18 49.74 43.03 37.50 36.35 

Day 3 31.69 26.79 41.35 38.00 34.04 34.62 

Day 4 33.96 29.24 39.68 33.53 32.89 30.578 

Day 5 22.26 22.45 40.79 32.97 27.12 25.96 
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Figure 32. C. vulgaris and C. reinhardtii % CO2 uptake at different influent CO2%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Day 1 Day 2 Day 3 Day 4 Day 5
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Chlorella 6% Influent 13 11 9 9 6
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Appendix 1.  

Fig. 1. C. vulgaris standard curve  for conversion of OD750 values to cell numers. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. C. reinhardtii standard curve  for conversion of OD750 values to cell numers. 
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Table 1. Conversion of OD750 values to cell numers. 

Experiments Inoculum OD750 # Cell mL
-1

 

C. vulgaris C. reinhardtii 

Chapter 1 

(varying growth medium, 

pH, light, and CO2 

concentration) 

0.250 6.09E+06 

 

2.32E+06 

 

Chapter 2 

Consumption of CO2 in 

liquid culture 

0.050 1.09E+06 

 

0.32E+06 

 

Chapter 2 

Consumption of CO2 

flowing through 

immobilized algal beads 

2.200 5.48E+07* 

 

2.18E+07* 

 

 

* # cells cm
-3
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