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Abstract

Distributed Joint Sensor and Target Location Estimation

by

Muammar Ali
Master of Science in Electrical Engineering

West Virginia University

Natalia A. Schmid, D.Sc., Chair

The area of wireless sensor networks (WSN) is a fast growing area and has a variety
of applications such as environmental monitoring, health care, agricultural applications,
and military applications. While this research area has been active since 1980s, new ap-
plications bring new constraints, and these lead to new open problems. This thesis ap-
proaches one of them. It focuses on the problem of target location estimation with limited
knowledge about sensor locations in a WSN. Sensors in a WSN are randomly deployed
over a known area. The true locations of the sensors are unknown, but each sensor node
is equipped with positioning technolgy system such as GPS generating noisy measure-
ments of the true unknown location. A target is modeled as a point source generating
a spatial parametric signal or field. The shape of the parametric field is known, but the
location of the point source is unknown. The sensors monitor the field and report their
noisy measurements to a base station called Fusion Center (FC). The measurements are
wirelessly transmitted to the FC via Additive White Gaussian Noise (AWGN) channels.
We assume two cases of transmission channel in this thesis. In the first case, the observed
data are modulated using a linear analog modulation such as amplitude. In the second
case, the observed data are quantized to M quantization levels and then transmitted to
the FC using a digital modulation scheme such as ON-OFF Keying (OOK). Each sensor
transmits two sets of data: (1) noisy measurements of the field and (2) the measurements
of the sensor position provided by its positioning system. Given noisy measurements of
the field and noisy measurements of sensor locations, the task of the FC is to find the lo-
cation of the point source. The FC applies the Maximum Likelihood estimation approach
to solve for unknown parameters. In this thesis, the numerical solution is due to the Bi-
section method that iteratively estimates the location of the point source and the location
of sensors and alternates these two steps. The field generated by a point source is mod-
eled as a Gaussian bell function. The measurements of sensor location are assumed to be
drawn from a two-dimensional Gaussian distribution with the true location of a sensor
as its mean and known covariance matrix. The performance of the proposed solution is
measured in terms of the square error (SE) between the true and estimated location of the
point source. The MS is analyzed as a function of many parameters of the WSN, FC and
parametric field. A comparison with a baseline case, when the locations of sensors are
known to the FC, is made.
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Notation

We use the following notation and symbols throughout this thesis.

A area of interest
K number of sensors
N Number of sensor locations measurements per sensor
xk, yk the true locations of the k-th sensor
xc, yc object location
X̃k, Ỹk estimated sensor location of the k− th sensor via the positioning system
G physical field
θ the unknown parameters
W the noise in observation channel
T(.) the transformation of sensor measurement prior transmission
V the noise in transmission channel
R the noisy sensor measurements of the field
Z the signal received by the FC
RX,RY the noisy transformed versions of sensor location supplied by the positioning system
σ2 the noise variance of field measurements in the observation channel
ξ2 the variance of the estimated measurements of sensor positions
η2 the noise variance in the communication channel
Λ the signal power of the field
M the number of quantization levels
λ the j− th reproduction reproduction points of the quantizer
τj a boundary point of the j− th quantizer regions
pk,j the probability for the output of the sensor k to map to the j-th reproduction point
Q(R) quantized sensor measurements
QX̃ , QỸ quantized sensor position estimates
fQR the pd f of the quantized sensor measurements
fQX̃

, fQỸ
the pd f of the quantized measurements of sensor locations

fZ the pd f of the noisy sensor measurements
fRX , fRY the pd f of the quantized and transmitted measurements of sensor locations
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Chapter 1

Introduction

The area of wireless sensor networks (WSN) is a fast growing area, and has a va-

riety of applications such as environmental monitoring [1], health care [2], agricultural

applications [3], and military applications [4, 5, 6]. However, designing WSNs is a chal-

lenging task. It requires a good knowledge of wireless communication protocols , power

allocation and signal processing [7, 8]. Building WSNs assumes dealing with various

constraints such as bandwidth constraints, energy constraints, and communication con-

straints [9, 10, 11].

WSNs consist of spatially distributed nodes. A sensor node is composed of four basic

components: sensing unit, processing unit (Micro-controller or Embedded Computing

System)[12], transceiver unit and power unit [11, 13]. Sensors are a type of transducers,

devices that convert one form of energy into another [11, 14].

The first component of a sensor node is a sensory unit, which senses a process and

gathers information about a certain phenomenon and converts measurements into a form

that can be transmitted to neighboring nodes or to a base station. Sensors don’t need to be

very close to the object in order to gather the information. They can accumulate the data

remotely via remote sensing. After collecting the desired data, they manipulate them in

a way that corresponds to the hardware and the software structure of the system. The

second component is the processing unit, which performs some operations on a sensory

data, for instance, amplification, attenuation or removing the undesirable noise. The third

component is a transceiver [15], which connects the node to the network. The fourth
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Figure 1.1: Components of Sensor Node.

component is a power unit, which powers all the components in a sensor node [11]. The

four mentioned components of the sensor node are shown in Fig. 1.1.

There are two main types of configurations in WSNs. In the first type of WSN, sensors

send their real measurements to a base station also known as Fusion Center (FC) for joint

processing and making an inference. This type of networks are known in literature as

distributed sensors networks.The second type is called decentralized sensor networks. In

this type, sensors exchange information with their neighbors and perform local inferences

[16].

WSNs are built to incorporate multiple constraints. One of these constraints is the en-

ergy constraint, which is due to the limited energy stored in the sensors batteries. There-

fore, preserving the energy and wisely distributing it among sensors is one of the major

factors to consider while designing wireless sensor networks. In the past two decades,

many methods to save the energy and optimally allocate it across the network of sensors

have been proposed. One of the proposed techniques is to limit the communication pro-

cess between the sensory unit and the base station unless there is important data to be

send [10, 11].

Another constraint is a communication constraint. For some applications the band-
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width that can be utilized by a system is limited. Therefore, to fulfill this requirement,

a variety of algorithms managing bandwidth constraint were introduced. Many of these

algorithms focused on minimizing the amount of data to be sent to the base station. This

is typically done by giving priorities to certain nodes to send their data[9].

As stated above, WSNs are used for a variety of applications such as source localiza-

tion, signal detection and object tracking applications [7, 8]. Many researchers assume

that all parameters of WSN are known or well estimated. However, in practice this may

not be the case.

In this thesis, we develop a framework for distributed estimation of location of a

source in the presence of the uncertainty in sensor locations. The problem of sensor local-

ization ( determining positions of sensors in a WSN ) is often considered separately from

the inference problem. It is often assumed that sensors are placed on the ground and they

determine their position immediately, at the time of their placement.

WSN localization is very important in many applications of WSN, however, it makes

the architecture of WSN more complicated, since more hardware components are re-

quired for localization such as node beacon (the node that knows its location), positioning

system to define the location of the sensor, synchronization equipments, etc [8, 17, 18].

Consequently, network localization increases the cost of WSN, energy consumption, as

well as software and hardware complexity [19]. As a separate topic, WSN localization

has attracted attention of many researchers [20, 21]. Many adaptive solutions have been

proposed.

In this thesis, we assume only partial knowledge of positions of sensors in a network.

Each sensor node is equipped with a positioning system. We also assume that the main

task of the network is to localize an object (modeled as a point source radiating energy)

sensed by the network.

The nodes in the network transmit both their measurements of a signal generated by

the point source and the readings of the estimated sensor position to a Fusion Center.

We pose the problem of source localization with uncertainty in sensor location as the

problem of joint estimation of the source and sensor location. The FC implements an

iterative algorithm that alternatively updates the estimates of sensor positions and the
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source position.

The remainder of this thesis is organized as follows. Chapter two presents a literature

review on the topic of source localization using wireless sensor networks. Chapter three

formulates the problem of joint sensor and source localization and introduce an iterative

solution. Chapter four presents numerical results. Finally, we summarize the entire work

and propose some ideas for the future work in chapter five.
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Chapter 2

Literature Review

WSNs have been an active area of research since 1980s. WSNs are used in different ap-

plications such as environment monitoring, medical applications, military applications,

etc [22, 23, 24, 25]. Many research problems related to WSNs are addressed in the liter-

ature. One of them is the problem of WSN localization. It is defined as the problem of

estimating positions of sensors in a WSN at the moment of its installation [26]. This also

can be viewed as the problem of network calibration. There is a vast amount of literature

devoted to this topic. The latest trend is the application of so-called consensus algorithm

[27, 28, 29] for calibration of a distributed WSN.

Another important problem relevant to the topic of this thesis is object ( target or

point source) location estimation. In the past, many algorithms have been developed

to estimate a target location using measurements collected by a WSN. Some of the pa-

pers considered estimation in a decentralized WSN. Others assumed a distributed set up.

Many works stated the problem of object localization as a constrained optimization prob-

lem involving bandwidth and power constraints. Following, we present a brief summary

of these works.

In [30], Xiao and Luo implemented a Decentralized Estimation Scheme (DES). In this

scheme, they tried to minimize the utilized bandwidth and maintain the overall system

performance. In order to do this, each sensor has to send a number of bits to the FC,

this number of bits vary according to the signal to noise ratio (SNR) of each sensor, or the

local noise variance of each sensor, which guarantees that the performance is within a con-
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stant factor of the performance achieved by the best linear unbiased estimator (BLUE)[16].

Therefore, the algorithm depends on signal to noise ratio (SNR) rather than probability

density function (pdf) of the noise. SNR is calculated by each sensor and the data, which

are coming from sensors, are gathered at the FC in order to estimate a real valued pa-

rameter. The algorithm achieves a low value of Mean Squared Error (MSE) with a small

amount of exchanged data to satisfy the minimum bandwidth constraint. There are two

considered approaches. The choice of the approach depends on whether the noise pdf is

known or unknown. The numerical results show that the same MSE performance can be

achieved by a universal DES with low communication requirement (measured in bits).

In [31], Wu, Huang, and Lee discuss energy-constrained decentralized best-linear-

unbiased estimation via partial sensor noise variance knowledge. There are two assump-

tions that they made on this method. The first assumption each sensor can send only

quantized version of its raw data to the FC, the second assumption the sensor noise vari-

ance is unknown to the FC. Their algorithm relies on maximizing the reciprocal of MSE

with the respect to noise variance distribution. They have done several approximations

to derive a lower bound on the estimation of parameters to achieve a closed form solu-

tion. Their conclusion was, under budget constraints, sensors with a bad communication

quality are to be turned off in order to save the designated power.

In [32], Cui, Xiao, Goldsmith, Luo, and Poor studied estimation diversity and energy

efficiency in distributed sensing. In this paper, they assumed a group of sensors send

their data to the FC via a fading channel, the FC uses BLUE estimator to estimate the real

environment. They used joint estimation scheme under power constraint that takes in

consideration channel fading and a channel noise. In addition to that, they showed that

multiple sensor nodes are necessary to obtain a certain level of mixture, which will reduce

the effect of channel fading during signal transmission. They came up with a result that

turning off sensors with poor quality of observations will save some power and in the

mean time will not affect the diversity.

In [33], Li and AlRegib studied a generic framework for energy-constrained distributed

estimation in WSNs from energy-distortion perspective and introduced the concept of

equivalent unit-energy MSE function. Based on this concept, two different algorithms



Muammar Ali Chapter 2. literature review: Distributed Estimation 7

were introduced according to a type of used network. For a homogeneous sensor net-

works, optimal energy-constrained distributed estimation algorithm was used, and for

heterogeneous sensor networks, a quasi-optimal energy-constrained distributed estima-

tion algorithm was applied. Li and AlRegib compromised between the number of active

sensors and the allocated energy for each active sensor in heterogeneous sensor networks.

The results of analysis show that the mentioned method can accomplish a substantial re-

duction in MSE when compared with other uniform schemes.

In [34], Li and AlRegib discussed function-based network lifetime and introduced a

new concept for the network lifetime. In addition to that, the network is considered oper-

ative if it can generate an estimate satisfying the given distortion requirement. Otherwise,

it is considered nonfunctional. Furthermore, they derived an upper bound on a function

based network lifetime for estimation and maximized it by introducing the concept of

equivalent unit-resource Mean Square Error (MSE) function.

In [35] Wang, Ishwar and Saligrama studied a general distributed field reconstruction

problem using a dense network of finite bit rate. They developed a field reformation

scheme based on quantized samples of observations which is interfered by zero-mean

additive Gaussian noise independent across sensors. Each sensor is quantized via a bi-

nary quantizers, after a certain number of snapshots, the data will be sent to the FC to

perform parameter estimation. One contribution in this paper is adding important hard-

ware. This hardware is a noisy operational amplifier adequate for high-resolution dis-

tributed field reconstruction. Another contribution is in the overall improvement of the

general distributed field reconstruction. Finally, the results show that when the noise, the

arrangement of sensor location, and the sensor satisfy requirements stated in the paper, it

is possible to drive MSE to zero with increasing sensor density.

In [36] Ribeiro and Giannakis studied deterministic mean-location parameter estima-

tion when a quantized version of the original observations is available. In order to fulfill

bandwidth constraints, Ribeiro and Giannakis introduced a type of Maximum Likelihood

Estimator (MLE) that requires just one bit per sensor. Different values of signal to noise

ratio were used (from low, medium to high). The simulation results show that at high

SNR even a classic estimator requires transmitting a small number of extra bits greater
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than the MLE. Moreover, they implemented a good estimator for a total number of bits

that converged to Cramer Rao Lower Bound (CRLB), which compromises between re-

ducing the quantization step or giving more space to send independent measurement.

Furthermore, they compared MLE with Quantized Sample Mean Estimator (QSME), and

figured out that, at high value of SNR, even a least complex scheme performs close to

optimum. Eventually, the conclusion was that the numerical maximization required by

MLE can be considered as an optimization problem.

In [37], Ruixin, Chen and Varshney discussed the problem of fusing decisions trans-

mitted over fading channels in WSNs and proposed a new likelihood ratio (LR)-based

fusion rule. They showed that when the channel SNR is low, the fusion rule minimizes to

a statistic rule in the structure of an equal gain combiner (EGC). Ruixin, Chen and Varsh-

ney proposed four fusion rules. The first fusion rule is the Optimal LR-Based Fusion Rule.

This rule assumes CSI (Channel state information) knowledge regarding fading channel

and local sensor performance. The second rule is the ChairVarshney fusion rule. This

rule does not require knowledge of CSI, but it requires the knowledge of the probability

of false alarm and detection. The third rule is the maximum ratio combiner (MRC) fusion

rule. This rule requires the knowledge of the channel gain, but it does not require the

knowledge of the probability of false alarm and detection. The fourth rule is the EGC fu-

sion rule, which requires a minimum amount of information. At the end, they compared

the performance of the four mentioned rules and concluded that the ChairVarshney fu-

sion statistic rule provides a high SNR approximation to the new fusion statistic rule. The

new fusion rule surpasses the EGC and the ChairVarshney fusion rule, as well it outper-

form the MRC fusion rule for most high values of SNR.

In [38], Ruixin and Varshney discussed the problem of target location estimation in

sensor networks with quantized data. They assumed that the signal received power at

the local sensors is inversely proportional to the square of distance from the target. Fur-

thermore, they proposed an intensity based ML target location estimation method using

only quantized data. In their proposed method each sensor collects data from the field,

and these data are quantized to discrete values and sent to a FC. Based on the received

data, the FC will locate the position of the target. Ruixin and Varshney used two dif-
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ferent estimation algorithms for target location for the purpose of comparison. The first

algorithm is the MLE. In this model the estimation of the target location is determined by

finding the location that maximizing the log-likelihood function of the received signal at

the FC. The second algorithm is conducted by using the Weighted Average (WA) method.

In this type of algorithm, the estimation of the target location is performed by taking the

average weight of all sensor locations. After performing simulations using these two dif-

ferent methods, the results show that the ML method gives a better performance than the

WA method, except when the number of sensors in the region of interest is very small.

As the number of sensors increases, the performance of the ML method gets better.

In [39], Addesso, Marano, and Matta studied the estimation of target location via

likelihood approximation in sensor networks . In this paper, they assumed that there

is no FC, sensors communicate among each other in order to estimate the target location.

Their main idea was to design a decentralized estimator through information exchanged

between the nearby sensors in the network. The sensor who reaches the maximum of

the likelihood will declare the position of the target in the Region Of Interest (ROI), but

this sensor has to define his position before that. The main contribution of this paper is

optimizing the number of communication tasks to the best number that gives the best

performance. The other contribution is deriving estimated formula for the log-likelihood

function when the sensor density increase without bound. Finally, they derived a formula

to calculate the optimal iteration number that gives a low MSE.
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Chapter 3

Problem Statement and Proposed

Solution

In this section we discuss the problem of distributed joint sensor and target location

estimation and propose a solution to this problem. We assume that we have a point

source generating a physical field. The field is sensed by a WSN deployed over a finite

area A. The true locations of sensors in the WSN are unknown. However, estimates of

the true sensor locations are supplied by means of a positioning technology. Each sensor

takes a sample of the field generated by a point source augmented with a sample of an

AWGN. Sensors send their noisy samples of the field to a FC via parallel channels with

AWGN. The FC collects noisy observations from all sensors and uses the MLE rule to

update the estimates of sensor locations and estimate the location of the point source.

We consider two cases of local signal processing (processing of data performed at the

location of each sensor). The first case assumes that sensors send their observations to

the FC without any local processing. The only processing applied to the measurements

is an analog modulation and demodulation. In this thesis, we assume linear modulation

and synchronous demodulation. The second case assumes that the data are quantized to

a number of levels and these data are sent to the FC in a digital form (as bits). This case is

named as digital. The signal processing for this case assumes that sensor measurements

are quantized and digitally modulated. They are then demodulated at the receiver end

and used for joint parameter estimation. No decoding at the receiver end is applied.
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3.1 Models and Assumptions

In mathematical terms, consider a network of K sensors distributed over an area

A. The true locations of the sensors, denoted by (xk, yk), k = 1, ....., K are unknown.

Sensors act independently of one another and take noisy measurements of a physical

field denoted as G(x, y), (x, y) ∈ A. A sample of G(x, y) at the location (xk, yk) is de-

noted as Gk = G(xk, yk). The field G(x, y) is characterized by L unknown parameters

θ = [θ1, ..., θL]T . The sensor noise, denoted by Wk, k = 1, ...K is known and modeled as

Gaussian distributed with zero mean and variance σ2. The noise of sensors is indepen-

dent and identically distributed (i.i.d.). Let Rk, k = 1, ...K be the noisy sample of the field

at the location of the k− th sensor. The Rk is modeled as

Rk = Gk + Wk, k = 1, ..., K. (3.1)

Thus, the measurements Rk are independent Gaussian distributed with mean Gk and

variance σ2.

These noisy observations are transmitted over noisy parallel channels to a FC. The

method to send these observations and the required signal processing will be described

below.

Denote by T(.) the transformation that field and sensor locations measurements un-

dergo prior to thier transmission. Let Vk be the AWGN in the k− th transmission channel.

Then, the signal received by the FC, denoted by Zk is modeled as:

Zk = T(Rk) + Vk, (3.2)

where Vk is N(0, η2) . The sensors also have the ability to inform the FC about their

positions, with an error. This error is modeled as a Gaussian random vector with zero

mean and the 2×2 diagonal covariance matrix

[
ξ2 0

0 ξ2

]
, where ξ2 is known. This results

in the following model for the uncertainty in the position of sensors:[
X̃k

Ỹk

]
∼ N

([
xk

yk

]
,

[
ξ2 0

0 ξ2

])
, (3.3)
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where [X̃k, Ỹk]T is the estimated measurement of the k− th sensor position and [xk, yk]T is

the true position, but unknown position in a vector form.

The goal of this work is to estimate a vector of unknown parameters that character-

izes the deterministic field generated by a point source based on noisy observations of

the underlying field. Due to the uncertainty in the sensor positions, estimates of the pa-

rameters will not be reliable. To make the estimates more reliable, the sensors positions

have to be as accurate as possible. To do so, the sensors have to inform the FC about their

positions as many times as the system permits, say N times. To save the energy, N can

not be large. The model for the uncertainty in sensor positions is known to the FC. Each

sensor communicates N realizations of [X̃k, Ỹk]T to the FC. Denote by RXk and RYk noisy

transformed versions of X̃k and Ỹk, respectively. Let ((rxk,1, ryk,1), ..., (rxk,N , ryk,N)) be N re-

alizations of (RXk,RYk). Since we assume that the estimated measurements of the sensor

locations are communicated to the FC over the same channel used to communicate noisy

measurements of the field, we arrive to the following model for (RXk,RYk) :

RXk = T(X̃k) + VXk, (3.4)

RYk = T(Ỹk) + VYk, (3.5)

where VXk and VYk are i.i.d. Gaussian random variables. Note, RXk and RYk are

independent random variables.

3.1.1 Analog Modulation

In the case when data are transmitted over analog channels, both the measurements

of the field Rk and the estimated sensor locations ((x̃k,1, ỹk,1) . . . (x̃k,N , ỹk,N)) are modulated

to a high carrier frequency fc by using an amplitude modulation. In Fig. 3.1, the random

variable Rk is multiplied by cos(2π fct) to form a signal Rk(t)=Rk cos(2π fct). The wave-

form Zk(t) observed at the FC contains AWGN signal Vk(t):

Zk(t) = Rk(t) + Vk(t). (3.6)
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The power spectral density of Vk(t) is known and equal to No/2. To extract a signal space

representation, the received random signal Zk(t) is multiplied by the same carrier signal

cos(2π fct) and integrated over an interval To with the length To = m/ fc, where m is a

positive integer. The gain 2/To is applied to the output signal. Given the processing steps

  

)2cos( tfc

)(tRk

)(tVk

)(tZ k

)2cos( tfc

 dt
T

Z

T

k 
0

00

2 kZkR

Figure 3.1: Signal Processing using Analog Modulation.

shown in Fig. 3.1, the probability density function (pdf) of the received signal can be

easily evaluated. The received signal Zk is expressed as the following integral:

Zk =
2
To

∫ To

0
{Rk cos(2π fct) + Vk(t)} cos(2π fct)dt. (3.7)

Since cos2(2π fct)=1
2 + 1

2 cos(4π fct) and assuming that To = m/ fc,

Zk = Rk +
2
To

m

∑
i=1

∫ iTc

(i−1)Tc
Vk(t) cos(2π fct)dt, (3.8)

where Tc = 1/ fc.

Since the second term in eq.(3.8) presents a linear combination of Gaussian random vari-

ables, the result of the integration, denote it as Vk(i), is also a Gaussian random variable.

Its mean is zero and variance is

E
(∫ iTc

(i−1)Tc

∫ iTc

(i−1)Tc
Vk(t)Vk(u) cos(2π fct) cos(2π fcu)dtdu

)
=

∫ iTc

(i−1)Tc

∫ iTc

(i−1)Tc

No

2
δ(t− u) cos(2π fct) cos(2π fcu)dtdu

=
No

2

∫ iTc

(i−1)Tc
cos2(2π fcu)du

=
NoTc

4
, (3.9)
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and 2
To

∑m
i=1 Vk(i) is Gaussian distributed with zero mean and variance 4

T2
0

(
NoTc

4 m
)

= No
To

.

Thus, the received random variable Zk = Rk + Vk, where Vk = 2
To

∑m
i=1 Vk(i) is a Gaussian

random variable with mean zero and variance No
To

which we will denote as η2. The mea-

surements Rk and the additive channel noise Vk are independent random variables.

Each sensor transmits three sequences of data to the FC. The first and the second se-

quences are a set of estimates of sensor locations in a shape of Gaussian random vec-

tor with the mean of the vector being the true location of sensors. The last sequence

is a set of noisy field measurements at the true location of sensors. Denote by RXk =

[RXk,1, ...RXk,N]T a vector of N observations of x-location of the k − th sensor at the FC.

Denote by RYk = [RYk,1, ...RYk,N]T a vector of N observations of y-location of the k − th

sensor at the FC. Finally, the noisy observations of the field received by the FC are denoted

as Zk, k = 1, ...K. All random variables in these sequences are mutually independent. The

joint probability density function of these random variables will be:

fZ,RX,RY(z, rx, ry) =
K

∏
k=1

[ N

∏
n=1

fRX(rxk,n) fRY(ryk,n)
]
× fZ(zk),

=
K

∏
k=1

[ N

∏
n=1

1√
2π(ξ2 + η2)

exp

(
− (rxk,n − xk)

2

2(ξ2 + η2)

)
1√

2π(ξ2 + η2)
exp

(
−
(
ryk,n − yk

)2

2(ξ2 + η2)

)]

× 1√
2π(σ2 + η2)

exp

(
− (zk − G (xk, yk : θ))2

2(σ2 + η2)

)
. (3.10)

The log of this pdf is:

l(z, rx, ry) = log

{
K

∏
k=1

[
1√

2π(σ2 + η2)
exp

(
− (zk − G (xk, yk : θ))2

2(σ2 + η2)

)

×
N

∏
n=1

1√
2π(ξ2 + η2)

exp

(
− (rxk,n − xk)

2

2(ξ2 + η2)

)
1√

2π(ξ2 + η2)
exp

(
−
(
ryk,n − yk

)2

2(ξ2 + η2)

)]}
(3.11)
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l(z, rx, ry) = −K
2

log
(

2π(σ2 + η2)
)
−

K

∑
k=1

(zk − G (xk, yk : θ))2

2(σ2 + η2)
− NK log

(
2π(ξ2 + η2)

)
−

K

∑
k=1

N

∑
n=1

(
(rxk,n − xk)

2

2(ξ2 + η2)

)
−

K

∑
k=1

N

∑
n=1

((
ryk,n − yk

)2

2(ξ2 + η2)

)
. (3.12)

3.1.2 Digital Modulation

Due to a potential bandwidth constraint, the messages sent by sensors to the FC may

need to be quantized. In this case, we have three types of data that need to be sent to the

FC. The first two sets of data are the noisy measurements of the sensor location, which are

provided by positioning technology system. Each estimate of sensor location is denoted

by X̃k and Ỹk. The other data are the measurements of the sensors, denoted as Rk. There-

fore, quantization will be performed on these three different data sets separately. Let Zk

be the received sensor measurement of the field at the receiver side, RXk be the received

noisy sensor position in x dimension, RYk be the received noisy sensor position in y di-

mension and Wk,n be AWGN. Below we first introduce the model to describe the received

signals at the FC, then we will justify it. Denote by T(.) the transformation of an input

data due to a uniform deterministic quantizer. Denote by q the output of the quantizer. If

the input to quantizer is a random variable, its output is a random variable too.

Consider a measurement Rk of the k − th sensor as an input to an M-level uniform

deterministic quantizer. Its output qk is a discrete random variable with the following

values and probability mass function:

qk =


λ1, with probability pk,1 =

∫ τ1
−∞ fRk(r) dr

λ2, with probability pk,2 =
∫ τ2

τ1
fRk(r) dr

...

λM, with probability pk,M =
∫ +∞

τM−1
fRk(r) dr


,

where λ1, λ2 . . . , λM are known as reproduction points of the quantizer and (τj, τj+1) are

quantizer regions. For more details see [40].

In the following, quantized sensor measurements of the field will be denoted as Q(Rk),

where k = 1, . . . , K and quantized estimated sensor position will be denoted as Q(X̃k,n)
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and Q(Ỹk,n), where k = 1, . . . , K and n = 1, . . . , N.

We assume that the noise in the transmission channels is AWGN with variance η2.

Therefore, the received quantized observations are modeled as:

Zk = Q(Rk) + Vk, (3.13)

RXk,n = Q(X̃k,n) + VXk,n, (3.14)

RYk,n = Q(Ỹk,n) + VYk,n, (3.15)

where the subindex n indicates that more than one estimate of sensor positions is trans-

mitted to the FC.

Since the transmission channels are parallel with independent noise samples and since

the estimated sensor locations measurements and sensor measurements of the field are

independent too, we can write a joint expression for the pdf of the data received by the

FC as following:

fZ,RX,RY(z, rx, ry) =
K

∏
k=1

[ N

∏
n=1

fRX(rxk,n) fRY(ryk,n)
]
× fZ(zk). (3.16)

Denote by fQR the probability density function of the quantized sensor measurements

and fQX̃
, fQỸ

are the probability density functions of the quantized sensor locations mea-

surements. Therefore, the marginal pdf of the quantized field measurements and quan-

tized estimated sensor locations measurements are:

fZ(zk) = fQR(zk) ∗ fVk(zk), (3.17)

fRX(rxk,n) = fQRX
(rxk,n) ∗ fVXk,n(rxk,n), (3.18)

fRY(ryk,n) = fQRY
(ryk,n) ∗ fVYk,n(ryk,n), (3.19)

where ∗ stands for convolution, fZk(zk) is the probability density function of the quantized

sensor measurement of the field, and fRXk,n(rxk,n), fRYk,n(ryk,n) are the probability density

functions of the quantized sensor location measurements.

The pdf of QRk = qk is given as:

fqk(ν) =
M

∑
j=1

pk,jδ(ν− λj), (3.20)
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where pk,j is the probability for the output of the sensor k to be mapped to the j-th repro-

duction point, and can be written as:

pk,j =
∫ τj+1

τj

1√
2πσ2

exp

(
− (t− Gk)

2

2σ2

)
dt, (3.21)

where τj and τj+1, j = 1, . . . , M are the boundaries of the j-th quantization region. The

below equations describes the probability density function of the quantized field and

sensor locations measurements:

fQRk
(rk) =

M

∑
j=1

∫ τj+1

τj

1√
2πσ2

exp

(
− (r− G (xk, yk : θ))2

2σ2

)
dr δ(zk − λj),

fQX̃k,n
(rxk,n) =

M

∑
j=1

∫ τj+1

τj

1√
2πξ2

exp
(
− (x− xk)2

2ξ2

)
dx δ(rxk,n − λj),

and

fQỸk,n
(ryk,n) =

M

∑
j=1

∫ τj+1

τj

1√
2πξ2

exp
(
− (y− yk)2

2ξ2

)
dy δ(ryk,n − λj),

by substituting fQRk
(rk), fQX̃k,n

(rxk,n) and fQỸk,n
(ryk,n) in eq.(3.17), eq.(3.18) and eq.(3.19),

and performing convolution we obtain:

fZk(zk) =
M

∑
j=1

[
Q

((
τj − G (xk, yk : θ)

)
σ

)
−Q

((
τj+1 − G (xk, yk : θ)

)
σ

)]

× 1√
2πη2

exp

(
−
(
zk − λj

)2

2η2

)
, (3.22)

fRXk,n(rxk,n) =
M

∑
j=1

[
Q

((
τj − xk)

)
ξ

)
−Q

((
τj+1 − xk)

)
ξ

)]

× 1√
2πη2

exp

(
−
(
rxk,n − λj

)2

2η2

)
, (3.23)

fRYk,n(ryk,n) =
M

∑
j=1

[
Q

((
τj − yk)

)
ξ

)
−Q

((
τj+1 − yk)

)
ξ

)]

× 1√
2πη2

exp

(
−
(
ryk,n − λj

)2

2η2

)
. (3.24)
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By substituting the equations (3.22), (3.23) and (3.24) in (3.16) we get the formula of the

joint pdf at the FC:

fZ,RX,RY(z, rx, ry) =
K

∏
k=1

( M

∑
j=1

[
Q

((
τj − G (xk, yk : θ)

)
σ

)
−Q

((
τj+1 − G (xk, yk : θ)

)
σ

)]

× 1√
2πη2

exp

(
−
(
zk − λj

)2

2η2

)
N

∏
n=1

( M

∑
j=1

[
Q

((
τj − xk)

)
ξ

)

−Q

((
τj+1 − xk)

)
ξ

)]
× 1√

2πη2
exp

(
−
(
rxk,n − λj

)2

2η2

))
M

∑
j=1

[
Q

((
τj − yk)

)
ξ

)
−Q

((
τj+1 − yk)

)
ξ

)]

× 1√
2πη2

exp

(
−
(
ryk,n − λj

)2

2η2

))
. (3.25)

The log-likelihood of the likelihood in (3.25) can be written as:

lZ,RX,RY(z, rx, ry) =
K

∑
k=1

(
log

M

∑
j=1

[
Q

((
τj − G (xk, yk : θ)

)
σ

)
−Q

((
τj+1 − G (xk, yk : θ)

)
σ

)]

× 1√
2πη2

exp

(
−
(
zk − λj

)2

2η2

)
+

N

∑
n=1

log
( M

∑
j=1

[
Q

((
τj − xk)

)
ξ

)

−Q

((
τj+1 − xk)

)
ξ

)]
× 1√

2πη2
exp

(
−
(
rxk,n − λj

)2

2η2

))

+
N

∑
n=1

log
( M

∑
j=1

[
Q

((
τj − yk)

)
ξ

)
−Q

((
τj+1 − yk)

)
ξ

)]

× 1√
2πη2

exp

(
−
(
ryk,n − λj

)2

2η2

))
. (3.26)

3.1.3 Justification of the Model for Transmission Channels

To justify the model describing the data at the FC, we consider the signal processing

for communications in details. For simplicity we consider On-Off Keying (OOK) modu-

lation and coherent demodulation of the received signal. However, a similar model can

be derived for other linear modulation schemes.
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To apply OOK modulation, the data have to be presented in a binary form. Each

reproduction point λj , j = 1, . . . , M of the quantizer is presented as one of integers

1, . . . , M and encoded using log2(M) bits.

Since Q(Rk) is a random variable and Q(Rk) = λj , j = 1, . . . , M occurs with proba-

bility pk,j, the prior probability on the encoded QRk is also equal to pk,j. Denote by B k a

random binary codeword for Q(Rk). The codeword can take values b k,j with probability

pk,j, where j = 1, . . . , M. The codeword B k is modulated using OOK modulation to a

known frequency fc.

The modulated vector signal

B k(t) = B kcos(2π fct) (3.27)

is transmitted over a AWGN channel, bit by bit, to the FC. Thus, the received vector signal

RB k(t) = B k(t) + V k(t), (3.28)

where V k(t) is a vector random signal composed of i.i.d white Gaussian noise processes

with zero mean and power spectral density No
2 . Note that each bit is transmitted and

received over an interval of length T. The intervals do not overlap.

To extract a vector representation in a signal space, we assume that RB k(t) is passed

through a correlator or a matched filter. Then the received signal is

RB k(t) =
2
T

∫ T

0
RB k(t) cos(2π fct) dt.

=
2
T

[∫ T

0
B k cos2(2π fct) dt +

∫ T

0
V k(t) cos(2π fct) dt

]
. (3.29)

Denote by V k a vector of i.i.d Gaussian random variables with mean zero and variance
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σ2
Vk

= E
[∫ T

0

∫ T

0
Vk(t)Vk(u)cos(2π fct)cos(2π fcu) dtdu

]
=

∫ T

0

∫ T

0
E [Vk(t)Vk(u)] cos(2π fct)cos(2π fcu) dtdu

=
No

2

∫ T

0

∫ T

0
δ(t− u)cos(2π fct)cos(2π fcu) dtdu

=
No

2

∫ T

0
cos2(2π fct) dt

=
No

2

[
T
2

+
1
2

∫ T

0
cos(4π fct) dt

]
. (3.30)

If T is selected such that T = m 1
fc

, m is a positive integer, then

σ2
Vk

=
No

T
(3.31)

and

RB k = B k + V k. (3.32)

This justifies the use of Gaussian models for the noise in transmission channels of

the WSN. The block diagram detailing the signal processing for the transmission of the

quantized field observations to the FC is shown in Fig. 3.2.

  

)2cos( tfc )2cos( tfc

 dt
T

T


0

00

2kB )(tBk )(tRB k

)(tV k

kRB

Figure 3.2: Signal processing for digital modulation and demodulation.
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3.2 Proposed Solution

In this section we will discuss the used algorithms to solve the problem stated in the

previous section. The used estimation method is MLE method [41, 42]. Since the likeli-

hood function is the joint probability of the observed data, MLE will look for the value of

parameter θ that maximizes the likelihood function. After formulating the MLE solution,

an iterative method to solve a set of nonlinear equations is proposed using a bisection

algorithm.

3.2.1 Maximum Likelihood Solution for Analog Case

Maximum Likelihood is an estimation approach that maximizes the likelihood func-

tion (joint probability density function) of the observed data in order to estimate the

unknown parameters of the received data [41, 42]. The MLE solution is using the joint

pdf obtained in section 3.1.1 to estimate the unknown parameters that maximize the log-

likelihood in eq.(3.12). The estimated parameters θ̂ML is the solution to the following

optimization problem:

θ̂ML = arg max
θ∈Θ

l(Z, RX, RY : θ), (3.33)

where Θ is a set of admissible solutions. The necessary condition solve eq.(3.33) is as

follows:

∇lθ (Z, RX, RY)
∣∣∣
θ̂

= 0. (3.34)

The unknown parameters in our problem θ include the unknown sensors positions

[(x1, y1) . . . (xk, yk)]T, k = 1, 2, ...K and the unknown location of the point source (xc, yc).

The total number of the unknown parameters is (2K + 2). For the estimation problem to be

well posed, we need the same or larger number of data points. Therefore, we assume that

we have N estimates of each sensor position. Taking the derivatives of the log-likelihood

function in eq.(3.12) with respect to the true sensor locations and applying the necessary
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conditions yields:

∂l(Z, RX, RY)
∂xk

= −
K

∑
k=1

(zk − G (xk, yk : θ))

(σ2 + η2)

(
−∂G (xk, yk : θ)

∂xk

)
−

K

∑
k=1

N

∑
n=1

(− (rxk,n − xk)

ξ2

)
= 0, (3.35)

∂G (xk, yk : θ)

∂xk
= −h

(xk − xc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
,

where σ2
g the spread of the field.

and

∂l(Z, RX, RY)
∂yk

= −
K

∑
k=1

(zk − G (xk, yk : θ))

(σ2 + η2)

(
−∂G (xk, yk : θ)

∂yk

)

−
K

∑
k=1

N

∑
n=1

(
−
(
ryk,n − yk

)
ξ2

)
= 0, (3.36)

where

∂G (xk, yk : θ)

∂yk
= −h

(yk − yc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
.

The derivatives of the log-likelihood function with respect to the field parameters are

given as:

∂l(Z, RX, RY)
∂xc

= −
K

∑
k=1

(zk − G (xk, yk : θ))

(σ2 + η2)

(
−∂G (xk, yk : θ)

∂xc

)
= 0, (3.37)

where

∂G (xk, yk : θ)

∂xc
= h

(xk − xc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
,

and

∂l(Z, RX, RY)
∂yc

= −
K

∑
k=1

(zk − G (xk, yk : θ))

(σ2 + η2)

(
−∂G (xk, yk : θ)

∂yc

)
= 0, (3.38)

where

∂G (xk, yk : θ)

∂yc
= h

(yk − yc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
.
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3.2.2 Maximum Likelihood Solution for Digital Case

The necessary conditions to find the MLE for digital case are as follows:

∇lθ (Z, RX, RY)
∣∣∣
θ̂

= 0. (3.39)

The derivatives of the log-likelihood function with respect to the sensor locations are

as follows:

∂l(Z, RX, RY)
∂xk

=
K

∑
k=1

 ∂ fZ(zk)
∂xk

fZ(zk)
+

N

∑
n=1

∂ fRX(rxk,n)
∂xk

fRX(rxk,n)

 , (3.40)

where

∂ fZk(zk)
∂xk

=
M

∑
j=1

(
exp

(−(τj − G (xk, yk : θ))
2σ2

)
− exp

(−(τj+1 − G (xk, yk : θ))
2σ2

))

× 1√
2πσ2

(
∂G (xk, yk : θ)

∂xk

)
1√

2πη2
exp

(
−
(
zk − λj

)2

2η2

)
, (3.41)

∂G (xk, yk : θ)

∂xk
= −h

(xk − xc)
σ2

g
exp

(
− (xk − xc)2 − (yk − yc)2

2σ2
g

)
,

and

∂ fRXk,n(rxk,n)
∂xk

=
M

∑
j=1

(
exp

(−(τj − xk)
2ξ2

)
− exp

(
−(τj+1 − xk)

2ξ2

))

× 1√
2πη2

exp

(
−
(
rxk,n − λj

)2

2η2

)
, (3.42)

and

∂l(Z, RX, RY)
∂yk

=
K

∑
k=1

 ∂ fZ(zk)
∂yk

fZ(zk)
+

N

∑
n=1

∂ fRY(ryk,n)
∂yk

fRY(ryk,n)

 , (3.43)

where

∂ fZk(zk)
∂yk

=
M

∑
j=1

(
exp

(−(τj − G (xk, yk : θ))
2σ2

)
− exp

(−(τj+1 − G (xk, yk : θ))
2σ2

))

× 1√
2πσ2

(
∂G (xk, yk : θ)

∂yk

)
1√

2πη2
exp

(
−
(
zk − λj

)2

2η2

)
, (3.44)
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∂G (xk, yk : θ)

∂yk
= −h

(yk − yc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
,

and

∂ fRYk,n(ryk,n)
∂yk

=
M

∑
j=1

(
exp

(−(τj − yk)
2ξ2

)
− exp

(
−(τj+1 − yk)

2ξ2

))

× 1√
2πη2

exp

(
−
(
ryk,n − λj

)2

2η2

)
. (3.45)

The derivatives of the log-likelihood function with respect to the target location are

given as:

∂l(Z, RX, RY)
∂xc

=
K

∑
k=1

∂ fZ(zk)
∂xc

fZ(zk)
, (3.46)

where

∂ fZk(zk)
∂xc

=
M

∑
j=1

(
exp

(−(τj − G (xk, yk : θ))
2σ2

)
− exp

(−(τj+1 − G (xk, yk : θ))
2σ2

))

× 1√
2πσ2

(
∂G (xk, yk : θ)

∂xc

)
1√

2πη2
exp

(
−
(
zk − λj

)2

2η2

)
, (3.47)

∂G (xk, yk : θ)

∂xc
= h

(xk − xc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
, (3.48)

and

∂l(Z, RX, RY)
∂yc

=
K

∑
k=1

∂ fZ(zk)
∂yc

fZ(zk)
, (3.49)

where

∂ fZk(zk)
∂yc

=
M

∑
j=1

(
exp

(−(τj − G (xk, yk : θ))
2σ2

)
− exp

(−(τj+1 − G (xk, yk : θ))
2σ2

))

× 1√
2πσ2

(
∂G (xk, yk : θ)

∂yc

)
1√

2πη2
exp

(
−
(
zk − λj

)2

2η2

)
, (3.50)

and

∂G (xk, yc : θ)

∂yc
= h

(yk − yc)
σ2

g
exp

(
−(xk − xc)2 − (yk − yc)2

2σ2
g

)
. (3.51)
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3.2.3 Iterative Solution

The algorithm used in the thesis to find the roots of the log-likelihood function to

determine the position (xk, yk) of the sensors as well as the target location (xc, yc) is the

bisection algorithm [43, 44, 45]. Bisection algorithm is an iterative method to solve for

roots of nonlinear equations. Suppose we need to find roots of a non-linear function f (x).

This algorithm is performed by assuming two initial values, for instance a and b, for the

argument of a function f (x). The function f (x) evaluated at a and b. Takes values of the

opposite sign this ensures that the root of the function is somewhere between these two

values. To iteratively approach the root of a nonlinear equation involving f (x), a new

value of the argument x is introduced. The new value c is set to a mid-value between

a and b, a+b
2 . After substituting the value of c in the function f (x), we check the sign of

f (c). If f (c) is positive, then c will replace a, otherwise it will replace b. This procedure

will continue till the method reaches the root of the function f (x). The main advantage of

the bisection algorithm is the robustness of the algorithm and the accuracy of results. The

main contribution we made in this part of the thesis is in the improvement of the accuracy

of the bisection algorithm by incorporating new constraints. The new constraints will

prevent the system from picking initial values that do not meet the requirement. The

flow chart explains how the bisection algorithm works with the new constraints.
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Figure 3.3: Flow chart of the bisection algorithm.
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Chapter 4

Numerical Results

In this chapter we describe our experimental setup and analyze the performance of the

proposed algorithm through Monte Carlo simulations. In all experiments below the goal

is to estimate the position of an object of interest. In this chapter, the object is characterized

by a parametric physical field modeled as a Gaussian bell. However, the framework for

distributed parameter estimation developed in the previous chapters can be applied to

any parametric field. The estimation performance will be evaluated using a square error

measure defined as:

SE = (xc − x̂c)2 + (yc − ŷc)2. (4.1)

In our experiments a distributed network of K sensors are deployed over an area A of

size 10×10. A field generated by an object is modeled as a Gaussian bell :

G(x, y) = Λ exp

(
− (x− xc)2 + (y− yc)2

2σ2
g

)
, (4.2)

where Λ is the field strength and its value in this simulation is assumed to be 100, and the

value of σ2
g is fixed at 5.

Each sensor takes a measurement of the field and reports its measurement to the FC

via a noisy wireless channel. The channels are assumed to be AWGN channels. The

unknown parameters in this problem are the target location (xc, yc) and the true sensor

locations (xk, yk), k = 1, ..., K.
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Many results of this chapter are described using a box plot. Box plot is a graphical

method to describe a certain range of data. A box plot has the following features:

• The top and bottom of the box are the 25th and 75th percentiles of the observations.

• The line in the middle of the box is the median of the observations.

• The lines above and under the box are the maximum and the minimum of the ob-

servations.

• The observations that are above the maximum and marked by a red plus signs ++

are called outliers.

In this chapter we will present the simulation results for analog and digital case.

4.1 Auxiliary Performance Measures

In this section we will define certain performance measures such as the probability of

outliers and signal to noise ratio for the analog and digital cases assumed in our simula-

tions.

4.1.1 Probability of Outliers

Outliers are defined as the values of SE that lie above the maximum value in a box

plot. The Probability of outliers is defined here as the probability that the square error is

above a certain threshold τ > 0:

Poutliers(τ) = P[SE > τ]. (4.3)

4.1.2 Signal to Noise Ratio for Analog Channel

When sensors take measurements of the field, these measurements are mixed with

the noise in channel. All numerical illustrations presented in this chapter rely on the

assumption of AWGN in the observation and transmission channels. However, the basic
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Gaussian models can be easily generalized to include fading and shadowing effects as

well as the effect of interference.

In order to characterize the strength of each signal and compare it to the strength of

the noise, we define signal-to-noise ratio in observation channel, (SNRo):

SNRo =

∫ ∫
AG(x, y : θ)2dxdy

Aσ2 . (4.4)

For majority of simulations, SNRo is set to 20 dB. Therefore from eq.(4.4) the noise

variance in the observation channel is set to σ2=14.9217.

In addition to that, after the sensors collect the information about the field they need to

send this information to the FC over AWGN channels with variance η2. To characterize

distortions encountered by sensor measurements during their transmission, we define

SNR of the transmission channel, SNRc:

SNRc =

∫ ∫
AE[R2(x, y)]dxdy

Aη2 . (4.5)

In many experiments we set SNRc to 20 dB. Therefore, from eq.(4.5) the noise variance

in the communication channel is η2=15.0710.

4.1.3 Signal to Noise Ratio for Digital Channel

Since the measurements taken by sensors in the case of analog and digital modulations

are the same, the SNRo is also the same:

SNRo =

∫ ∫
AG(x, y : θ)2dxdy

Aσ2 . (4.6)

On the other hand, Signal to Noise Ratio in the communication channel SNRc under

the digital modulation will be different, because of the quantization applied to measure-

ments prior to their transmission. Therefore, SNRc in the case of digital modulation is

defined as:

SNRc =

∫ ∫
AE[q2(R(x, y))]dxdy

Aη2 . (4.7)
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It is set to 20 dB in simulations. Therefore, from eq.(4.7) the variance of the noise in a

communication channel is η2= 0.1271.

4.2 Numerical Results for Analog Case

In this section we evaluate the performance of the proposed algorithm when the sys-

tem is sending raw data (non-quantized data) to the FC. We will investigate how different

parameters of the WSN affect the performance of the distributed estimator.

4.2.1 The Effect of Varying the Number of Sensors

In this experiment, we evaluate how the sensor density will affect the performance

of target location estimation. All remaining parameters in this experiment will be fixed.

The number of sensors is varied as 10, 20, 30, 50, 70, 90. The number of estimated sensor

location measurements per sensor is fixed at N = 5, the variance of the estimated measure-

ments of sensor positions is set to ξ2 = 0.4, and the variances of the noise in observation

and transmission channels are set to σ2=14.9217 and η2=15.0710. After performing this

experiment, we noticed that with increasing the number of sensors over a fixed area the

value of the square error is decreasing. From Fig. 4.1 we also note that varying the num-

ber of sensors from K = 10 to K = 20 has a significant effect on the performance of the

estimator, but this effect becomes less significant when the number of sensors increases

to K > 50.

4.2.2 Varying the Strength of the Field Λ

In this experiment we show how the strength of the field can influence the perfor-

mance of the distributed estimator. The number of sensors is fixed at K = 50 and the

number of estimated sensor location measurements per sensor is fixed at N = 5. The field

strength Λ is varied in the range 10, 30 ,50 ,70, 90, 100. Since the strength of the field has

a major effect on the signal to noise ratio, it is expected that increasing the strength of

the field will improve the performance of the estimator, and it is confirmed by the con-
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Figure 4.1: Dependence of the simulated SE on the number of sensors.

ducted experiment. From the box plot in Fig. 4.2 we also observe that when the strength

of the field is above 70, Λ > 70, varying the strength of the field has a minor effect on the

performance of the estimator.

4.2.3 The Probability of Outliers with Varying the Number of Sensors

In this section we are varying the number of sensors and evaluating the probability

of outliers. The experiment is conducted for K = 10, 30, 70. The value of the threshold

is varied from 0 to 1 with unit step of 0.1. As expected, from Fig. 4.3 the probability of

outliers decreases when the threshold value τ increases. We also notice that, with the

number of sensors increasing the probability of outliers decreasing.

4.2.4 Comparison with the Baseline Case when Sensor Positions are

Known

To evaluate performance degradation due to the uncertainty in sensor locations, we

compare our results with a clairvoyant case, when position of sensors are known to the
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Figure 4.2: Dependence of the simulated SE on the strength of the field.

Figure 4.3: Dependence of the probability of outliers on the threshold τ parametrized by
three different values of K.

FC. Fig. 4.4 shows the results of the comparison. The number of sensors is fixed at K = 50.

The below box plot shows the clairvoyant case where there is certainty in sensor locations

and for the case when the FC uses N = 5 number of estimated measurements of sensor



Muammar Ali Chapter 4. Numerical Results 33

location per sensor where there is uncertainty in sensor locations.

Figure 4.4: The performance comparison between estimators with certainty and uncer-
tainty in sensor locations. The network is composed of K = 50 sensors.

4.2.5 Varying Signal to Noise Ratio

In this part of the numerical results we vary the value of the signal to noise ratio and

evaluate its effect on the performance of the proposed estimation algorithm. In this case

the number of sensors is fixed at K = 50 and the number of estimated sensor measure-

ment is set to N = 5. In order to perform this simulation the observation signal to noise

ratio SNRo and the transmission signal to noise ratio SNRc are set to different values

SNRo=SNRc = 10, 15, 20. From the generated box plot we notice that the square error of

target estimation is decreasing with increasing signal to noise ratio, as expected.
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Figure 4.5: Dependence of the simulated SE on the signal to noise ratio.

We also evaluate the probability of outliers for the same three values of signal to noise

ratio. The results of this simulation are shown in Fig. 4.6.

Figure 4.6: Dependence of the probability of outliers on the value of τ. The plots are
parametrized by three different values of SNR.
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As well, in Fig. 4.7 we also observe the effect of varying SNR on the performance of

estimating sensor locations.

Figure 4.7: Dependence of estimating sensor locations on the signal to noise ratio.

4.2.6 Sensitivity of the Algorithm to the Choice of Initial Values

Choosing the initial values of parameters during their numerical evaluation has a sig-

nificant effect on the the performance of the bisection algorithm. Therefore, in this section

we are going to study this effect. We will partition the area of interest A into four no over-

lapping rings with the true location of the target and the sensor as the center of the rings.

The radii of the rings are increasing from one to four, and the initial values are randomly

chosen within each ring. The first ring is the closest to the true location and the fourth

ring is the farthest one. As seen from Fig. 4.8, the closer we are to the true location of

sensor and target the more accurate our results are.
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Figure 4.8: The effect of choosing the initial values on the performance of the estimator.

4.3 Numerical Results for Digital Case

In this section we evaluate performance of the proposed algorithm when the system

is sending quantized data to the FC. The performance is displayed as a function of few

parameters such as the number of sensors K, the number of quantization levels M, the

number of estimated sensor location measurements per sensor, and SNRs. It is measured

in terms of square error (SE) and in terms of probability of outliers.

The assumed area is 10× 10, the number of quantization levels is M = 8, SNRo = 20,

ξ2 = 0.4, σ2 = 15.6782, the target location xc = yc = 5, SNRc =20, η2 = 0.1280. All results

are obtained using 1000 Monte Carlo simulations.

4.3.1 The Effect of Varying the Number of Sensors

In this experiment we evaluate how the number of sensors deployed over the area

affects the performance of the developed estimator. We fix almost all parameters in this

experiment, but the number of sensors. The number of sensors is varied as follows: 10,

20, 30, 50, 70, 90. The number of estimated sensor location measurements per sensor is

fixed at N = 5. The number of quantization levels is fixed at M = 8. After performing
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this experiment we noticed that with the increasing the number of sensors over the area

the value of the square error is decreasing, as expected. We also observe from Fig. 4.9

that increasing the number of sensors from K = 10 to K = 20 has significant effect on the

performance of the estimator.

Figure 4.9: Dependence of the simulated SE on the number of sensors for the case of the
digital channel with M = 8.

4.3.2 Varying the Strength of the Field Λ

In this experiment we show how the strength of the field can influence the perfor-

mance of the designed estimator in the digital case. The number of sensors is fixed at

K = 50 and the number of estimated sensor location measurements per sensor is fixed at

N = 5. The number of quantization levels is fixed at M = 8 and the field strength Λ is

varied as 10, 30 ,50 ,70, 90, 100. Since the strength of the field has major effect on the signal

to noise ratio, it is expected that increasing the strength of the field will improve the per-

formance of the designed estimator. As seen in Fig. 4.10, this hypothesis is confirmed. We

also observe that when the strength of the field is above 70, Λ > 70, varying the strength

of the field has a minor effect on the performance of the estimator.
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Figure 4.10: Dependence of the simulated SE on the strength of the field in the case of the
digital channel with M = 8.

4.3.3 Probability of Outliers with Varying the Number of Sensors

To take a closer look at the performance of the proposed estimator, we evaluated the

probability of outliers for different values of K = 10, 30, 70. To obtain the plots shown in

Fig. 4.11, we vary the value of the threshold τ in the interval [0,1] with the step 0.1.

From the generated plots, as anticipated, the probability of outliers decreases when

the threshold value τ increases. We notice as well that with increasing the number of

sensors the probability of outliers is decreasing, as expected.

4.3.4 Comparison with the Case when Sensor Locations are known

Similar to the case considered in Sec.4.2.5, we compare the performance of our dis-

tributed estimator with a baseline performance. We assume that the baseline case esti-

mates only location of the object, while the sensor locations are known. Fig. 4.12 shows

the plot of the square error with two different estimators . In this experiment the num-

ber of sensors K is set to 50. The SNR in observation and transmission channel is set to

SNRo = SNRc = 20.
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Figure 4.11: Dependence of the probability of outliers on the threshold τ for three choices
of K, K=10, 30, and 70.

Figure 4.12: The performance comparison between estimators with certainty and uncer-
tainty in sensor locations. The network is composed of K = 50 sensors.

4.3.5 Varying Signal to Noise Ratio

In this section we vary the value of the signal to noise ratio and evaluate its effect on

the performance of the proposed algorithm. The number of sensors is fixed at K = 50,
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the number of estimated sensor location measurements per sensor is set to N = 5, and

the number of quantization levels is set to M = 8. In order to perform this simulation,

the signal to noise ratio in the observation channel SNRo and the signal to noise ratio

SNRc in the transmission channel each takes values 10,15,20. The noise variance in the

observation and transmission channels is calculated for each value of the signal to noise

ratio. From the generated box plot shown in Fig. 4.13, as expected, the square error of

target estimation is decreasing with increasing signal to noise ratios.

Figure 4.13: Dependence of the simulated SE on the signal to noise ratio, SNRo = SNRc.

We also evaluated the probability of outliers for the same values of the signal to noise

ratio. Three plots parametrized by three different SNR values are shown in Fig. 4.14.
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Figure 4.14: Dependence of the probability of outliers on the threshold values. The plots
are parametrized by three different values of SNRo = SNRc = 10, 15, 20.

As well, in Fig. 4.15 we also observe the effect of varying SNR on the performance of

estimating sensor locations.

Figure 4.15: Dependence of estimating sensor locations on the signal to noise ratio.
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4.3.6 Varying the Number of Quantization Levels

Quantization is an important factor in the process of the digital modulation. In this

experiment we will evaluate the effect of this factor on the performance of the distributed

estimator by varying the number of quantization levels.

To conduct this experiment, we start with the number of quantization levels M = 4 and

we implement 500 Monte Carlo simulations. Then, we do the same for M = 8, M = 16,

M = 32 and M = 128. Since increasing the number of quantization levels will reduce

quantization error, the performance of the estimator improves with increasing the number

of quantization levels. We also note that, when M = 128 the performance of the digital

case converges to the performance of the analog case. This result is displayed in Fig. 4.16.

Figure 4.16: Dependence of the simulated SE on the Number of Quantization Levels.

4.3.7 Sensitivity of the Algorithm to the Choice of Initial Values

Similarly, what did in the analog case we are going to study the the sensitivity of our

algorithm to the choice of initial values. We will partition the area of interest A into four

no overlapping rings with the true location of the target and the sensor as the center of
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the rings. The radii of the rings are increasing from one to four, and the initial values are

randomly chosen within each ring. The first ring is the closest to the true location and

the fourth ring is the farthest one. From Fig. 4.17, we observe that closest ring to the true

location has the best performance compared to the other rings.

Figure 4.17: The effect of choosing the initial values on the performance of the estimator.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis we studied the problem of distributed joint sensor and target locations

estimation. The problem can be summarized as following. We have an area 10 × 10.

Sensors are randomly distributed over this area. There is a source point within this area

generating a deterministic parametric field. The location of the source point and the true

positions of sensors are unknown, but we have noisy measurements of the sensor loca-

tions via positioning technology system such as GPS. The noisy measurements are real-

izations of Gaussian random variables with the true locations of the sensors as their mean

and known variance. The sensors are measuring the field. There is an AWGN added to

these measurements due to observation channel. The data observed by sensors are sent

to the FC through AWGN channels.

We considered two cases of transmitting data to the FC. The first case assumes the

transmission of raw data and uses a linear analog modulation (such as Amplitude mod-

ulation), the second case assumes that the data are quantized and uses a linear digital

modulation (such as ON-OFF keying). At the FC we applied MLE solution in order to

estimate the unknown parameters of the field and the true sensor locations. Finally, we

used the bisection algorithm as our iterative method to solve the highly nonlinear equa-

tions representing MLE solution.

Based on the numerical results generated and discussed in chapter four, we conclude
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that the performance of the proposed algorithm in the case of analog modulation is better

than the one in the case of digital modulation due to the quantization error in the digital

case. In addition to that, the performance is effected by different parameters such as

the density of the distributed sensors over the area, signal to noise ratio, the strength of

the field, and the number of quantization levels in the case of digital modulation. These

effects can be observed mainly when there are few sensors distributed over the area.

To summarize the overall results, the algorithm is robust and converging with few

number of sensors, as well as the performance is improving and the number of outliers

decreasing with the increasing number of sensors, the strength of the field, the signal to

noise ratio, and with the increasing number of quantization levels in the case of digital

modulation.

5.2 Claimed Novelties

This work claims the following novelties:

• Formulating the problem and deriving all equations including the Likelihood func-

tion and applying the MLE estimator in order to estimate the unknown parameters

of the true sensor locations and the target location.

• The robustness of the bisection algorithm. This algorithm was applied to solve

highly nonlinear equations representing the MLE solution.

• The justification of Gaussian noise models due to linear analog and digital modula-

tions for data transmission.

• The performance analysis of the proposed solution.

5.3 Future Research

In the future, this work can be extended in many different ways. The suggested future

work can be summarized as follows:
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• We considered the shape of the field to be Gaussian bell function. Other shapes,

such as field decays according to the inverse square law, can be used.

• In this thesis the FC is collecting data from sensors and estimating the location of

the target. Other approaches can assume that sensors are communicating with each

other to define the location of the target. We can also assume that the target is

moving.

• The source point in our case is assumed to be a single target fixed at a certain point.

In the future we can assume a mluti-target scenario.

• The type of WSN in our case is considered to be a homogeneous network. In the

future we can consider a heterogeneous network, where each sensor is characterized

by a different noise.

• The communication channel is assumed in our case to be AWGN channel. This can

be changed to include fading effects.
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