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ABSTRACT

Optical Gradation for Crushed
Li mestone Aggregates

Ken Cheng

The strength and durability of asphalt pavement is directly affected by the characteristics
of its main ingredient, mineral aggregate.  Besides material strength, research has shown
that mixture properties such as particle shape and mixture gradation have a significant
affect on the quality of the asphalt concrete.  A standard called “Superpave” has been
developed which sets forth specifications for material selection and methods for
measurement of aggregate properties.  These standards require monitoring of aggregate
properties, particularly gradation.  In this dissertation, the feasibility of developing an
optically based method for determining aggregate gradation was explored.  The physical
system primarily consists of a standard monochrome CCD video camera and a computer
with a frame grabber board.  Software was developed to separate touching or overlapping
particles in the image, and to detect the size and shape of each particle.  Correlation to
estimate each particle’s mass and to predict the sieving behavior for crushed limestone
aggregates was developed and tested.  Laboratory testing demonstrated the ability to
measure gradation over a range of particle sizes from 4.75 mm to 25 mm with an accuracy
of �3 in terms of percent-passing residual when compared with mechanical sieving.
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1.  INTRODUCTION

1.1 Historical Background

 Hot-mix asphalt concrete is widely used to build modern highways.  The strength

and durability of asphalt concrete pavements are profoundly affected by the

characteristics of the aggregates. Beyond the obvious dependence on aggregate’s

properties such as the strength and durability, characteristics such as particle shape, and

gradation (i.e., size distribution) are extremely important.  Research performed as part of

the Strategic Highway Research Program provided a standard for asphalt concrete mix

design called “Superpave” [1], which specifies limits for aggregate gradation, particle

angularity, and percentage of thin and elongated particles.

The particle size distribution in the mixed asphalt plays a vitally important role in

the quality control for the highway building. For instance, pavements constructed with

too high a percentage of fine particles such as natural sand will display unallowable

levels of permanent deformation when loaded by traffic. On the other hand, too many

large particles in the mixed asphalt can produce a large amount of voids. As a result, the

strength and durability of the pavement will be compromised.  The quality of pavement

demands the appropriate mixture of various sizes of particles, and the size distribution of

the mixture is presented by the gradation curve.

Particle shape is also important because rough or angular aggregates provide more

strength than rounded, smooth-textured aggregates as shown in Fig. 1.1.  Even though a

jagged piece and a rounded piece of aggregate may possess the same material strength,

angular aggregate particles tend to lock together resulting in a stronger mass of material.

On the other hand, rounded aggregate particles tend to slide by each other.  Flat and
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elongated aggregates tend to break during handling, construction and under traffic load,

changing the design gradation and compromising strength.

 (a) Angular aggregates tend to lock                  (b) Rounded aggregates tend to slide

Figure 1.1 Aggregate

     Traditional methods for evaluating size, shape and texture of aggregates are time-

consuming and labor intensive.  Until very recently, some of aggregate evaluation for

pavements was done manually.  Individual coarse aggregate particles are visually

examined to determine the number of fractured faces per particle.  For determination of a

particle’s flatness and elongation, a proportional device is used, as illustrated in Fig. 1.2.

The aggregate particle is first placed with its largest dimension between the swinging arm

and fixed post at position A.  The swinging arm is locked in position, the same aggregate

is placed between the swinging arm and post at position B.  If the aggregate passes this

gap, then it is counted as a flat or elongated particle.  Procedures such as these are time-

consuming and are limited to a small sample sizes.  There is no possibility of using these

methods to provide real-time feedback for process control.
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                                                                            Fixed post B

                                                       1:5 pivot point

Fixed post A

                                                                    Swinging arm

Figure 1.2 Proportional Calipers

Some of drawbacks existing in the traditional method can be overcome by taking

advantage of modern machine vision techniques.  It is believed that through processing

and analyzing the aggregate images captured by machine vision system (a video camera,

a frame grabber, and a PC), the size distribution, shape and angularity of aggregates can

be determined.  Instead of the mechanical sieving, “vision sieving” may be used to

achieve results close to those obtained mechanically.  Vision sieving offers two potential

improvements over the traditional methods: reduced level of manual involvement and

potential for automated gradation control.

1.2 Problem Identification

This work investigates the feasibility of using non-contact optical methods to

provide information generally obtained by mechanical methods.  Three particularly

difficult problems arise within using machine vision for aggregate evaluation:

1) Particles are usually touching, overlapping, or even entirely occluded.  Rapid

discrimination of one particle from another is both necessary and difficult.
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2) Standards for classifying particles by size are generally based on mechanical

sieving and the process results depend on a combination of both size and 3-

dimensional shape of particles.  It is desirable to avoid the complexity and

expense of explicitly measuring the 3rd dimension of each particle.

3) Sieving standards are also set up to report particle gradation on a “percent

passing” basis, where the fraction is based on mass.  So in addition to

extrapolation of the interaction between a particle’s 2-D features and the

sieving process, it is necessary to develop a means to extrapolate the

relationship between a particle’s 2-D features and its volume.  These

extrapolations will be dependent on general size and shape properties that

vary from particle to particle.  For example spherical particles will have

different sieving and volume transformation than cylindrical, cubic, or

triangular particles.

The fundamental question is then, “Can we extract a set of features from the 2-D

image which will provide adequate information to accurately predict volume

characteristics, elongation, angularity, and the sieving behavior from the particles’ 2-D

video image?”

1.3 Research Objectives

The work can be broken into three major tasks as follows:

1) To effectively describe the sieving characteristics of 3-D aggregates based on

2-D geometric size and shape of the particles.
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2) To develop a functional relationship between a particle’s plan features and its

corresponding volume.  In other words, inferring volume information of the 3-

D particle under consideration by means of measurements obtained from 2-D

image.  This will be the main theme of this research.

3) To develop a simple and efficient method that can separate the touching and

overlapping particles in the scene.

1.4 What is Superpave?

From 1987 through 1992, the Strategic Highway Research Program (SHRP)

conducted a research effort to develop new ways to specify, test, and design asphalt

materials.  After 1992, the Federal Highway Administration (FHWA) assumed a

leadership role in the implementation of SHRP research.  An essential part of FHWA’s

implementation strategy was educating agency and industry personnel in the proper use

and application of the final SHRP asphalt products, collectively referred to as Superpave

[1].

Definitions for properties of aggregate such as size, shape and texture may vary

from standard to standard, depending on the agencies involved.  However, because this

research is a project aimed at improving methods of aggregate gradation and shape

identification, size, shape and other related definitions given in the Superpave guide book

have become the guidelines in terms of comprehending the aggregate’s characteristics.
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1.4.1 Aggregate Size

Many technical reports in the field of mineral aggregate property studies

explicitly or implicitly regard the area of the particle in a 2-D plane as particle size [3, 4,

5, 6].  In Superpave [1], the aggregate size is considered as being the dimension of a

square sieve opening through which the particle falls by its own gravity.  Let a sieve size

be a square of Di�Di, where Di takes a discrete value of a sequence with DN>DN-1>DN-

2…>D1.  The aggregate size d is then a value that satisfies

                                             Di-1< d � Di                                                           (1.1)

Superpave prefers to use the 0.45 power gradation chart to define an allowable

gradation limits.  This chart uses a unique graphing technique to judge the cumulative

particle size distribution of a blend of aggregates.  The ordinate of the chart is percent

passing, the abscissa is an arithmetic scale of sieve size in millimeters, raised to 0.45

power.  Fig. 1.3 illustrates how the abscissa is scaled.  In this example, the 4.75 mm sieve

is plotted as 2.02 units to the right of the origin.
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Figure 1.3 Graphical Basis for 0.45 Power Chart

For the sake of convenience, in this work an alternative way of construction of

percent passing curve is used: the ordinate of the chart is still percent passing, but the

abscissa indicates the actual sieve size in millimeters, as shown in Fig. 1.4.

Figure 1.4 Graphical Basis for Actual Sieve Size Chart

Percent Passing
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                         1            2             3            4
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  100

   80

   60

   40

   20

0  1.18  2.36  4.75            9.5        12.5                19.0         25.0
                            Sieve Size of Actual measuring Unit mm
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1.4.2 Aggregate Shape

The Superpave manual [1] describes the particle shape as:

� Flat and elongated: The ratio of a maximum to minimum dimension is greater

than 5.

The aspect ratio of the particle can be used for detection of elongated shape.

Aspect ratio is defined as the ratio of the maximum diameter to the orthogonal minimum

diameter of the shape silhouette.

In Superpave, shape identification is performed by obtaining the percentage by

mass of coarse aggregates that are elongated.  Elongated particles are undesirable because

they have a tendency to break during construction and under traffic.
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2. LITERATURE REVIEW

2.1 Introduction

This research is associated with many aspects in the fields of image processing,

image analysis and statistics.  Related work in image processing mainly involves image

segmentation, more specifically, separation of touching and overlapping shapes, and

object size and shape characterization.  To optically “sieve” the particles, it needs to

predict the particle mass based on 2-D image measurements.

There are many publications on image edge detection, image size and shape

analysis.  Many techniques in shape characterization such as Fourier analysis and

template matching have been reported in literature. Some novel methods such as

polygonal harmonics are also attracting attention.  By comparison, fewer articles

regarding separation of the touching and overlapping imaged shapes exist.  There are

some reports about inferring the objects’ 3-D information (volume) from their 2-D

measurements. Some insights into optical sieving may be shared from the reports on

existing technology, and several video graders using these technologies have been

marketed commercially.

2.2 Existing Technology

In searching for the work related to this research project, only three commercial

products that perform the functions desired for Superpave quality control were

discovered.  There are some helpful descriptions of these three commercially available

systems given by H. Kim, et al [33].
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The EMACO corporation of Montreal, Canada markets a device called the VDG

40TM, which uses optical methods to perform particle sieving.  The VDG 40 employs a

line-scan camera and approximates particle boundaries by drawing successive chords

across the particles falling off the vibrating feeder.  Although there has been some debate

about its accuracy by some independent testers [32], this system is claimed to perform the

following functions:

� Produce gradation curves for particles whose sizes range from 1 to 50 mm.

� Calculate mean elongation coefficient.

� Estimate the “flattening coefficient”.

� Uncertainty less than 1.7% for samples with enough particles in each class.

Based upon the assumption that the thickness of the particle is the same as its

width, the volume is computed using an ellipsoid of revolution [32].  No clear

information about how to separate the touching and overlapping is provided even though

the falling particles may be overlapped when viewed in any direction.  A description of

the on-going effort on testing and improving VDG  40 is summarized by R.L. Weingart,

et al [31].

Several products are marketed by the WipWare Company in Bonfield, Ontario,

Canada [35, 39].  WipFragTM  performs optical gradation on bulk materials on the ground

or on moving conveyor belts.  The WipFrag system is based on area scan video cameras.

Some case studies using the Wipfrag image analysis system were presented by Maerz

[40].  Another product, WipShape, uses a conveyor and two video cameras to image one

particle at a time and compute the percentage of flat, elongated particles [35, 37].
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N.H. Maerz used stereology and object geometric probability to explore the

possible solution of the problem of inferring the true size distribution of a body of

particles, given the observed profile distribution on an imaged scene [27].  The process is

known in stereology as “unfolding” a distribution.  The problem is: can one reconstruct a

block size distribution of a pile of blast fragmented rock from a measurement made on

the surface of that pile? Maerz found that if one applies the stereological theory

developed by previous researchers to this problem, many of the assumptions made for the

existing theory are violated.  Therefore, Maerz suggested a new method of unfolding the

distribution.

This new method is based on analyzing fragmentation using image analysis, and

first assuming all particles to be spherical for a quick solution.  The distribution from the

image can be calculated.  Maerz states that the observed distribution should be further

divided into a number of classes, in each of which the particles have a similar diameter. A

calibration function was added to account for numerous effects to improve algorithm’s

accuracy.  This makes the equation become “semi-empirical”.  The calibration function is

determined by back calculation from a known size distribution.

An experimental system is under development by Rao, et al at the University of

Illinois [32]. Rao developed an experimental device that uses three cameras to capture

orthogonal images of a single particle at a time. Rao’s objective is to improve the

detection of flat, elongated particles, and it was claimed that the system performs more

accurately than either the VDG 40 or the WipFrag system [32]. The tests have

demonstrated volume measurement errors ranging from 5% to more than 10%, but errors

in detection of flat, elongated particles were within approximately 1-2%. Rao’s device is
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quite slow, however. A processing time for 1037 particles of 70 minutes was reported.

The volume errors are also relatively high (�10%) when compared with the published

claims of commercially available systems [31].

The method of calculating aggregate volume is straight forward.  Three video

cameras are mounted from three orthogonal directions: front, side, and top.  The images

acquired from these three views provide some capability to reconstruct the 3-D shape of

the particle needed for volume computation.  The particle is confined in the smallest box

whose sides are found to be the smallest rectangle that includes the particle projected area

in that viewing direction.  Those pixels, called solid pixels, can be found readily which

belong to the particle body from all three viewing directions.  All the cubes made up of

the solid pixel are summed up, and calibrated to cubic millimeters. Hence, the volume of

the particle under study is obtained. However, it is fairly easy to envision shapes for

which even three orthogonal views are taken would not be sufficient to accurately

evaluate particle volume [33]. The particle touching and overlapping problem is avoided

because all particles fall one at a time onto a belt that is in motion.  Though the system

performance is expected to give improved accuracy, it is more time consuming since the

particle is processed individually on a conveying belt.

The Micrometrics Corporation sells a device similar in design to the VDG 40.

The Optisizer PSDATM uses a vibrating feeder and a CCD camera to capture a 2-D image

of particles from 40 micrometers to “greater than 10 mm” [36].  This device is more suited

to pharmaceutical environments than construction work, however.  No mention of particle

shape analysis is provided, nor are statistics on the sieving accuracy of the machine.
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In addition to these devices, articles related to optical sieving or particle size and

shape evaluation have been published in the technical literature by a variety of authors.

Parkin, et al published a proposal for a laser based aggregate scanning device in 1995, but

no further references to their system have been found [4].

2.3 Separation of Overlapping Image Objects

Bennamoun and Bouashash [3] introduced a segmentation method based on the

successful completion of robust edge detection. The segmentation algorithm begins with

extracting the convex dominant points (CDP), then use these CDP’s for the part

segmentation by simultaneously moving each of them normal to the edge contour until

one CDP touches another point.  Next the initial locations of CDP’s are joined to the

touched points.  This process is repeated until the whole object has been segmented into

constituent parts.  The segmented parts are then isolated and modeled by superquadratics

with varying parameters for recognition purposes.

A templating approach for separating the touching and overlapping spots is

introduced by Noordmans and Smeulders [14].  The technique consists of two phases:

detection phase and characterization phase.  In the detection phase, all image positions

are matched to a spot model with predefined parameter vector and coordinate. The

optimal match is given by the specific value of parameter vector that results in a minimal

match error. Following the detection phase is the characterization phase.  The primary

purpose of this phase is to further reduce the match error.  Detecting two overlapping

spots is based first on the observation of two major match errors, then extracting the local

image. After removing one neighboring spot, the first spot is optimally matched with the
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model using numerical minimization procedure. By the same method, the second spot can

be detected and characterized.  This way, two overlapping spots are thus detected and

characterized independently.

In morphological image processing, the watershed detection approach proves to

be an efficient way of segmenting gray scale images or binary images. Vincent [28]

provides a faster, more efficient algorithm than those introduced previously to detect the

watershed for a gray toned image.  The basic principle behind this technique is that the

whole gray scale image under study is considered as a topographic surface.  This surface

is made up of basins (valleys) and mountains.  The watershed algorithm computes the

dividing lines between the different “catchment basins”, which become regions or objects

in the image.  In the case of a binary image, the effect is to separate touching or

overlapping particles.  A modification of this approach was developed for use in this

research.

2.4 Particle Passage Probability in Sieving

Most probabilistic studies of particle-passage through a sieve relate the

probability of passage to sieve aperture size and particle shape. Bocoum [41] reviewed

some probability theory in sieving.  In summary, the particle-passing probability through

a screen depends on the following aspects:

1) Three dimensional shape of the screen, and

2) Its relative size to the size of the particle

3) The percentage of open area on the screen surface.

4) Screen surface roughness.
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5) The speed of the particle upon impact.

The primary studies of particle-passing probability were developed for particles of

three geometric shapes: spheres, ellipsoids, and cylinders.  For these three shapes, the

theoretic passing probability was reviewed in Bocoum’s paper.  However, no conclusive

information was presented for the irregularly shaped particles passing through the square

sieve aperture.

2.5 Object Shape

Particle shape is an important factor in particle handling and product quality

control.  Since the particle shape influences how particles flow, react, sinter, break,

agglomerate, and fluidize, numerous shape characterization techniques have been

demonstrated over the last decades [8].

Particle shape analysis can be divided into two broad categories: behavior

analysis and image analysis [9].  Most image analysis techniques rely on examining a

two-dimensional image silhouette of the particle shape.  Analysis of particle image can be

conducted in either a microscopic or macrosopic manner.  The microscopic method is

used to describe the particle’s relatively subtle change on the surface such as angularity

and  roughness.  The macroscopic method, on the other hand, is more general in the sense

of describing particle shape.  This approach usually provides information in 2-D image

about particle characterized shape such as triangle, four-sided, etc.

In a microscopic shape study, Clark made some explorations of fractal analysis

[7].  Fractal analysis originates from the fact that the perimeter of the silhouette edge is

dependent on the step length with which it is measured.  The small detailed features on
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edge can be taken into account with step length small enough, while taking large step

length will ignore some delicate characteristics of the edge.  The measured perimeter is

increased if the step length used is decreased, yielding the notion of “fractal dimension”

that can be used to describe particle ruggedness over a range of scale. A logarithmic plot

of perimeter against step length produces a curve with negative slope. Steepness of the

curve slope is used as a descriptor indicating the extent of the ruggedness of that particle

silhouette. Fractal dimension shows the general degree of particle ruggedness, but does

not provide general geometric shape information.

In a more macroscopic approach, Clark, and Reilly introduced a novel approach

called polygonal harmonics to describe the particle shape [9, 10].   A starting point is

selected on the edge of the particle, then a pair of dividers is set at some distance and

used to find another point on the curve. Sequential points on the edge are found in the

same manner by marching along the edge of the particle.  The procedure is similar in

this regard to a structured walk to find fractal dimension as mentioned previously.  The

walk continues past the first starting point, traversing the silhouette edge over and over

again.  Eventually a polygon is formed with a fixed dividing step length within the

shape.  Different step lengths produce different polygons for the same particle shape.

Harmonic persistence is defined as the ratio of the largest step length to the smallest

step length yielding that particular polygon.  High harmonic persistence is an indicator

of general particle shape.

This approach has shown some satisfactory results. However, in general it does

not guarantee that a particular polygon exists for a given shape silhouette. Repetition of

computation using different step lengths to find harmonics persistence is needed for each
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particle [10].  Moreover, the persistences are not unique to each analytical shape, nor can

the shape be reconstructed using the persistences [12].

Fitting approaches have been found in a variety of literature. In the papers by

Bennamoun and Bosshash [3], Rosin and West [6], object shapes are described by fitting

the object edge silhouette with superellipses.  Each superellipse is described by three

parameters: major and minor axis, and shape factor.  One superellipse can be found to be

the best fit to the shape in question by minimizing the Eucidean distance between the

point on the superellipse and the point on the edge silhouette. Using the three identified

parameters of this particular superellipse, the shape can thus described.  The advantage of

this technique is that a superellipse can represent a wide variety of shapes. with a small

number of parameters.

Another template matching is to fit the object edge silhouette with a square

instead of a superellipse.  The side length of the square is used as the descriptor for the

shape to show how square-like or rhombic-like that particle is.  The best fitting square

is found by minimizing the area error between the square and the particle of interest.

The merit of this technique is that only a few parameters are necessary for describing

the shape in question.  However, neither the superellipse nor the square fitting approach

can accurately represent shapes with odd numbers of sides.  For instance, a triangle

shaped particle can never be fitted well by either the superellipse or square. Moreover,

both techniques are computationally intensive. Algorithm convergence is not always

guaranteed.  This disadvantage is even more severe when applied to a large number of

particles in a single image.
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A set of descriptors called “invariant moments” was studied [2].  Invariant

moments are derived using the central moments of the image shape.  Because of the

relation of central moments with the regular moments, and the uniqueness of these

regular moments relating to a certain image function, the chance that different shapes

have the same or even close invariant moments is small.  Therefore, invariant moments

can be utilized to describe the shape features.

All the above shape descriptors share the same merit: they are translation-

invariant, rotation-invariant, and scale change invariant. These attributes are necessary

for shape feature classification in a multi-object situation.  The negative aspect about

using the above techniques is the computational intensity.

 Fourier analysis has long successfully employed on smooth, rounded particles. In

Fourier analysis, the edge is described by expressing the radius from the centroid of the

shape as a function of the swept angle, using a Fourier series.  For instance, the second

coefficient gives an implication of aspect ratio, and the third coefficient indicates

triangularity, and so on.  Particle shapes can be compared in a n-dimensional space

composed of the n orthogonal Fourier coefficients [13].  The well-known weakness of

Fourier analysis lies in the fact that it does not deal efficiently with highly reentrant

shapes.

2.6 Object Size

Size and shape issues are usually intertwined in image processing problems.

Various specifications for object size description have been found in technical reports: for

objects of regular shapes such as squares and circles, side length and diameter are used
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respectively to define sizes.  For irregularly shaped objects, major and minor dimensions

are well-defined measures, although they do not guarantee uniqueness of shape

description.  Size, defined by the object’s projected area, can be found explicitly and

implicitly described in various papers.  In Rosin and West [6], it can be inferred that the

size is defined by the parameters of the superellipses, and is also represented by its area.

Size definition is problem-oriented.  In the Superpave manual [1], the size of

aggregate is measured by its sieve size.  Fig. 2.1 illustrates how a particle’s minor

diameter corresponds to the square sieve opening size.

                                                                                   Minor diameter

                                                                                   Major diameter

                                                                                       Sieve opening

Figure 2.1 Aggregate Size by Superpave

The correlation between a particle’s minor diameter and the sieve opening size is

rather complex, sensitive to the actual size, particle shape, surface roughness, orientation

and the interaction with all the touching particles at the moment it is about to pass the

opening, and very sensitive to the amplitude and waveform of vibration.  It becomes

more complicated to quantitatively analyze and simulate the mechanical sieving process.
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3. LABORATORY  SET-UP AND

                                               MEASUREMENT CALIBRATION

3.1 Introduction

A video camera translates light levels focused on the image plane into electronic

signals which can be transmitted and reproduced on a monitor set.  The most common

type of video camera uses a charge coupled device (CCD) chip to translate the light into

electrical signals.  The CCD chip is actually a grid of tiny individual light measuring

devices which break the scene up into individual picture elements, or pixels.  The camera

used for this research breaks each scene into an array of 512 pixels wide and 484 pixels

high.

To process these signals using a computer, the light level represented by the video

signal must be digitized by translating the signals into a series of numbers that the

computer can manipulate.  This is implemented by a frame grabber board, which

performs very fast analog-to-digital conversion on the electronic signal for the camera.

As a result, a grid (matrix) of numbers ranging from 0 to 255, with one number for each

pixel, is formed.  Low numbers represent dark parts of the image and high numbers

represent bright parts of the image.

To optically sieve the particles, it is necessary to translate the pixel measurements

into standard dimensions of millimeters. Pixels are in general not square, and so a unit of

one pixel represents a different length in the x direction than it does in the y direction. In

addition, the object is projected optically onto a CCD array.  This causes the size of the

image to depend not only on the size of the object but also on its distance from the

camera, and on the focal length of the lens used to project the image onto the CCD
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sensor.  Therefore, a scale of mm / pixel needs to be determined before any useful image

analysis takes place.

3.2 Hardware Set-up and Operating Condition

The laboratory consists of a video camera housed in a curtained enclosure to

allow control of the lighting conditions, a computer with a frame grabber card, a box with

translucent cover to backlight the aggregates, and miscellaneous equipment for scene

illumination, positioning the camera, measuring the light level, etc.  The photo in Fig. 3.1

demonstrates the actual lay-out of the hardware components. The interior of the wall was

painted black to reduce light reflection.  All the components involved are numbered and

illustrated in Fig. 3.2.  Other associated devices, such as mechanical sieves, laboratory

balance, were used in the Asphalt Pavement Laboratory in the Civil and Environment

Engineering Department at West Virginia University.

  

                  (a) Image capturing set                              (b) Image processing set

Figure 3.1 Photo of Lab
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                                                         (6) `                     (7)

                  (2)       (3)

(8)                                (9)
                                    (4)     (5)

          (1)

3.2 Lab Equipment Lay-out

Referring to Fig. 3.2, the representation of the numbered item is as follows:

(1) Stationary table.

(2) Pan-tilt device with 6-degrees of freedom.

(3) Video camera.

(4) High contrast lighting box.

(5) Aggregate particles.

(6) Photographic strobe light for oblique lighting.
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(7) Personal computer with frame grabber.

(8) Light intensity meter.

(9) Monitor.

The operating specifications for image capturing using the lighting box are given

in the table below:

Table 3.1 Operating Condition

Camera
Distance from
background

20 inches Camera
aperture 6

Camera
Focus

20 inches
Ambient lighting
intensity

12 LUX

Camera
Shutter speed

1/125 Sec

3.3 Image Acquisition

In order to properly “sieve” the aggregates, it is necessary to distinguish one

particle from another in the video image.  The gray scale video images that are most

commonly seen, seem simple to the human observer to see where object boundaries are,

while the information presented to the computer from these images is nothing more than

a large grid of numbers.  To detect these boundaries, most approaches involve some sort

of gradient detection  - looking for places in the image where there are rapid changes

from light to dark or vice versa.  Some of the object boundaries are clearly defined by

contrast between the background and the existence of object shadows.  But if imaged

objects such as mineral particles overlap, the contrast between two particles may not be

so distinct.  In addition, the existence of ridges or corners on the particles can produce

high-contrast edges which are not true particle boundaries in the 2-D sense.
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Various edge-finding algorithms and lighting angles were explored to find a

method that would reliably detect the boundary of each particle.  The simplest and most

common edge detectors are first-order high-pass filters based on the Sobel Operator or

variants thereof [2].  These filters are highly sensitive to noise and directional in nature,

performing best on edges that are either vertical or horizontal.  Sobel filters combined

with top lighting are also prone to including unwanted edges, such as those resulting from

corners or shadows on the top surface of the particle.

To eliminate interior edges, a small light table was constructed for backlighting

the aggregates.  This lighting method produces extremely high contrast images with well-

defined edges.  In the phase of obtaining image data, objects are backlit to obtain sharply

distinctive edges from black images on a white background, as illustrated in Fig. 3.3.

Once the image has been captured under the operating conditions specified previously,

each image is stored as a set of x-y points.  Image processing and analysis are performed

on these sets.                                                                                           

                                                                               Video Camera

                              Object                                                              Translucent plastic glass

Light source         

         Figure 3.3 Image Capturing with Backlighting
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Fig. 3.4 illustrates the procedure related to image analysis and processing..

                                         Object

                                                                                     Image Display

                          Image Acquisition

       
       

                                                                                   Image Processing and analysis

                       

Figure 3.4 Image Acquisition and Processing System

3.4 Image Measurement Calibration

The measuring unit for the image is the number of pixels.  For example, the image

area for a given particle might be 100 pixels, and the circumference length might be 50

pixels, etc.  The actual measuring unit is millimeters, thus a conversion from pixels to

millimeters is required.  In other words, the scale of mm/ pixel needs being determined.

Video
Camera

Monitor,
Printer

         Personal Computer
         with Framegrabber

    Floppy Disk,
    Computer Memory

Aggregate
Particles
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3.4.1 Sample for Calibration

Three types of sample circles were found using penny, nickel, and quarter.  Their

diameters are 19.05mm, 21.12 mm, 24.20 mm, respectively.  The corresponding areas

are 285.02 mm2, 350.33 mm2, and 459.96 mm2.  The distance between the camera and

the imaging background is 20 inches, set constant for all images.  The parameters of the

camera such as shutter speed and aperture were unchanged during the imaging process.

Fig. 3.5 shows the samples used for calibration.

                                 

               (a) Pennies                              (b) Nickels                               (c) Quarters

Figure 3.5 Samples for Calibration

3.4.2 Finding Pixel Number

Fig. 3.6 shows the pixel number for the diameter of the three sample circles.  Note

that the horizontal and vertical numbers are different.  They are obtained by scanning the

image in two orthogonal directions.  Note also that although 9 coins are used for each

type of circle, the plot shows that some resultant pixel numbers are coincident with each

other.
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Figure 3.6 Maximum Pixel Number

Using least squares curve fitting, both the horizontal and vertical pixel data points

can be fitted with a straight line, which is forced to go through the origin. Fig. 3.7

illustrates the result.

Figure 3.7 Data Curve Fitting
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The reciprocal of the slope of each straight line is taken as the desired scaling

factor of mm / pixel .  The results are:  0.8802 mm/pixel in the horizontal direction, and

0.6551 mm/pixel in the vertical direction.

3.4.3 Area Correction

Prior to calibration, the object area is measured in number of pixels.  Using the

scale factors obtained previously, the measured area in terms of square millimeters can be

acquired.  Fig. 3.8 shows the plot of the findings against the corresponding actual areas.

Figure 3.8 Measured and Actual Area

The measured area data points are curve fitted by a straight line using least square

method, as shown in Fig. 3.9.  Note that the value on the abscissa is actual area, and this

leads to the relation between the actual area and the measured area.  This function was

found to be
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Where

At : actual area (mm2).

Am : measured area (mm2).

The above transformation is necessary because there are “dead areas” in the

image between pixels, so simply multiplying the two scaling factors leads to incorrect

results.

Figure 3.9 Curve Fitting for Measured Area

As illustrated in Fig. 3.10, the measured areas are much closer to the

corresponding actual areas.  As a result, the accuracy of the measured areas is improved.
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Figure 3.10 Improvement of Measured Area

The improvement in the measured areas can be demonstrated by observing their

absolute percent error before and after using Eqn. (3.1).  The absolute percent error for

three circle samples are shown in Fig. 3.11.

(a) absolute percent error for pennies
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(b) absolute percent error for nickels

(c) absolute percent error for quarters

Figure 3.11 Absolute Percent Error Improvement
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4.  IMAGE PROCESSING AND ANALYSIS

4.1 Introduction

For each imaged object, that is, a non-touching-overlapping particle, the size and

shape as well as some other parameters must be computed for the particle volume

estimation and optical sieving purposes.  Based upon the binary images – all particles are

white and background is black, the area, size, shape, and some other related statistics are

calculated. Image preprocessing includes binary conversion, edge detection, and

separation of the touching and overlapping particle shapes. By image analysis herein, it

means finding the particle shape centroid, area, major and minor diameters, identifying

shapes, and computing all the needed statistics of the particle in question.

Solution for finding above measurements is summarized in actual research

sequence as follows:

1) Binary image conversion.

2) Image capturing and seeding

3) Edge detection, region growing and particle projected area calculation.

4) Centroid location.

5) Major and minor diameter computation.

6) Particle profile shape characterization.

Successful completion of the image preprocessing and analysis paves the way to

establishing a mathematical model to estimate the volume of particle, and ultimately, to

obtain the particle size distribution through a sieving correlation process.
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4.2 General Description

Fig. 4.1 shows images of four simulated particles. Sub-figure (a) simulates the

binary image that is the result of image processing, while (b) shows the completion of

the analysis to it. Once the particles have been converted to binary images and separated,

analysis starts with horizontal scanning and tracking the edge of each particle.  During

the edge following, edge points (or pixels) are stored in an ordered list, and the interior

points are counted to compute the projected area of the particle.   Calibrated scaling

factors are used to transform pixel numbers into dimensional measurements.  The

centroid of the particle is calculated during the scanning process, and the pixels

belonging to the particle under consideration are labeled so they can be eliminated from

future scans.

             (a)                                                            (b)

Figure 4.1 Simulated Particles with Centroid,Edges
                                                      and Interior Points Labeled

Once this process is done, the list of edge points is sampled and the Euclidean

distance from the centroid to each of the edge points is computed.  Because particle sizes

vary significantly, the sampling algorithm may be set up to choose an adequate number

of points from the edge to yield a good description of the particle silhouette in oder to
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minimize the amount of computation required per particle.  In this research, each edge

point is sampled.   This sampling method results in samples at uneven intervals of the

polar angle �  from the centroid, but avoids the time-consuming search for points

satisfying the angle interval criterion and the repeated calculation of the inverse tangent

function.

To characterize the particle’s profile shape, the “edge signature” is constructed.  A

signature gives the distance between each edge point and the centroid, or, the radius at

each edge point, so the information about the particle’s shape can be stored in the

signature function.  To eliminate the noise, the signature function is fitted by a

polynomial.  Since the order of the polynomial is lower than the number of signature

points, significant smoothing of the curve occurs, yet the polynomial is complex enough

to track even relatively jagged particle boundaries accurately.  The maxima and minima

of the polynomial can be computed, as can the sum of squared errors between the actual

signature points and the fitted curve.  In general, maxima of the polynomial corespond to

the vertices of the particle, and the “significant” minima are often created by flat faces, as

demonstrated in Fig. 4.2.
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                      (a) two similar shapes                           (b) normalized signatures

Figure 4.2 Shapes and Corresponding Signatures

One important further use of the edge points is made.  To correlate particle size to

sieve size, it is critical to measure a particle’s dimension.  For spherical particles the

correlation is easy, but for crushed aggregates it becomes very difficult.  The solution is

to compute a covariance matrix from the edge points, and then to use the two

eigenvectors of that matrix to compute the “major” and “minor” diameters of the particle.

These dimensions are usually close to but not always coincident with the actual

maximum and minimum dimensions of the particle shape.  Major and minor diameters

are used to compute the elongation of a particle.  Note that the relationship between

actual particle dimension and sieve size is very complex, involving quantization effects

and sensitivity to particle shape and orientation.  In this work, the minor diameter is used

to correlate the sieve size.
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4.3 Binary Image Conversion

Edge detection can be carried out much more easily on a binary image than a gray

scaled one.  Computations involved in finding particle projected area, locating the

centroid, characterizing profile shape are all originated from edge detection.

 A high contrast image can be obtained using the backlighting box to silhouette

aggregates spread on its surface. In Fig. 4.3 (a), two pieces of aggregate were placed in

the scene and digitized on a 484x512 image matrix. Note that the shadow is present

because backlighting is not used.  To make the problem clear and simple, the two rocks

were separated.  Fig. 4.3 (b) shows the image captured using the backlighting box.  In

order to efficiently extract geometric information from the image, thresholding is taken

to reduce unnecessary gray-scale variation, thus a binary image is obtained, as depicted

in Fig. 4.3 (c) and (d).

             (a)                                                       (b)

                                             (c)                                              (d)   
Figure 4.3 Binary Image Conversion
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Fig. (a): Image captured without using lighting box.  Particle edges can be difficult to

distinguish from shadows.

Fig. (b): Image captured using lighting box.  Conversion to binary image is carried out

on this image.

Fig. (c) (d): binary image obtained, before and after removal of small speckle noise.  The

speckle noises can be caused by both insignificant tiny particles and unclean

camera lens.   Checking the spot size experimentally can remove them.

4.3 Object Detection and Seeding

The whole object detection and seeding procedure is featured by “piecewise”

processing in terms of particle number order. The object of interest is processed by the

algorithm designed for acquiring all the needed measurements.

Particle detection is performed by taking advantage of horizontal scanning over

the binary image.  An object is detected when the first edge point belonging to that

specific object is encountered by the scan moving point (SMP), which is travelling

horizontally from left to right within the object.  This first encountered point works also

as a seeding point, or simply seed.  A seed is always located at the top-most-then-left-

most (TMLM) position on the detected Object.  Object detection and seeding is

completed simultaneously.  The seed is used as the starting point from which the region

growing will take place. In Fig. 4.4, the brightest point on the object indicates that the

object is detected and seeded.  Note that for demonstration purposes, the image presented

here is not a binary one, but rather an intensity one with gray scale 64.  This is for
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showing up the seed location.  In fact, pixel labeling is imbedded throughout the

algorithm for various processing purposes.

Figure 4.4 Object Detected and Seeded

In the multi-object case, an object whose TMLM edge point is also in the top-

most and left-most position in the image matrix, will be detected and seeded first, since

the SMP is traveling rightward, and the scan line is moving downward.  Once the object’s

last pixel has been encountered by SMP, this object is isolated from all other objects,

processed and would-be-processed alike, in order to avoid being re-encountered by the

SMP.  The detail about isolation is given in the later section.  The processed object can

also be considered as having been converted to the background, and it will be ignored by

the SMP. The next candidate object to be detected and seeded is the one whose TMLM

edge point satisfies the position conditions for detection priority.   Fig. 4.5 shows four

simulated overlapped but separated objects. Fig. 4.6 illustrates the sequence of detection

and seeding for these four objects.
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Figure 4.5 Four Simulated Objects

                 (a)                                (b)                                (c)                               (d)

             
                (e)                                (f)                                (g)                               (h)

Figure 4.6 Sequence of Multi-object Detection and Seeding

4.5 Edge Detection, Region Growing and Particle Projected Area

 The edge following point (EFP) traverses counter-clockwise along the edge of

the detected object from the seed.  Fig. 4.7 (a) illustrates a simulated object.  During the

edge traverse, the object interior points are scanned row by row, and counted before the
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EFP moves to the next edge position below, as shown in Fig. 4.7 (b).  Logic tests keep

the algorithm from double-counting areas or missing parts of irregular objects.  The

scanning ends at the point where the original seed is reached again, as shown in Fig. 4.7

(c).  At the end of the scanning, the particle edge and all of its interior points have been

labeled and counted, and each edge point is stored in an ordered list.

           (a) before growing                  (b) during growing              (c) finished growing

Figure 4.7 Region Growing

Fig. 4.8 demonstrates the edge traverse recording.  The solid curve shows the

vertical moving trajectory of the EFP, while dashed curve shows its horizontal moving

trajectory.  Note that both curves start at the same point, i.e., seed, and also end at that

point.  This shows that the full edge following has been completed.
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Figure 4.8 Edge Traverse Recording

When the edge following is completed, the total number of pixels on that object is

known. Each pixel’s area in terms of square millimeters is calculated using the mm /pixel

scale factors and Eqn. (3.1) obtained in the calibration described in Chapter 3.  The

summation of all the individual pixel areas equals the projected area of that object in

question.

4.6 Centroid Location

When the region growing process is finished, the total number of edge points of

that object is also available.  This is accomplished by bookkeeping the number of new

points on the edge while traversing is in progress.

 In image processing problems, locating the centroid of an object in the 2-D plane

is of great importance in shape description and object recognition.  In many cases, the
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centroid is used as a reference point to which the position of other points in question can

be determined.

For a function f(x,y), the moment of order (p+q) is defined as mpq, and the

centroid coordinates can be found at
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where x and y indicate the coordinates of the image matrix.

Emdedding Eqn. (4.1) ~ (4.5) in the algrithm, the position of the centroid for each

individual shape in the image is located.  The centroid finding procedure now is applied

to the real image as shown in Fig. 4.9.
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     (a)                                                            (b)

Figure 4.9  Eight Particles Imaged

Fig. 4.10 shows the centroids found in the eight aggregate particles marked by the

cross.   Note that in each figure the values on x and y axis are the coordinates which

enclose the particle shape in question.  In other words, particle’s edge is entirely included

by the figure border.

.

    

           (a) 1st particle                                                       (b) 2nd particle
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                            (c) 3rd particle                                                       (d) 4th particle

    

                        (e) 5th particle                                                            (f) 6th particle

    

                          (g) 7th particle                                                        (h) 8th particle

Figure 4.10 Centroid of Profile Shape

Fig. 4.11 (a) shows the binary image of large number of aggregate particles, and

(b) shows all the particles that have been processed.
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(a) binary image of stock agregates
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(b) finished particle processing

Figure 4.11 Aggregate Processing

4.7 Major and Minor Diameter Computation

Image shape analysis relies on examining a two dimensional silhouette of the

object.  Techniques for describing the shape measure the simple geometric proportion of

the object, such as the perimeter-to-diameter ratio, aspect ratio, etc..  Aspect ratio plays

an important role in this research because aspect ratio reflects a particle’s elongation, and

the length of the minor axis is related to the sieve size.  Aspect ratio is defined as the ratio

of the maximum diameter to the orthogonal minimum diameter of the shape silhouette.

For a random shape, finding its aspect ratio can be performed using principal component

analysis, also called “principal eigen analysis”.  The two end-points of the major diameter
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must be on the major eigen axis, and the two end-points of the orthogonal minor diameter

must be on the minor eigen axis, as demonstrated in Fig. 4.12.

                                        Figure 4.12 Major and Minor Diameter

Consider a set P of edge point p(x,y) on the contour of interest, with P =[ p1 p2 …

pn] and
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The mean vector and the covariance matrix are defined as
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where T indicates vector transpose, E is the expected value operator.  Because pi and mp

are two dimensional, Cp must be a matrix of order 2� 2.  Element cii of Cp is the variance
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of x and  y in pi, and element cij  of Cp is the covariance between x and y.  The matrix Cp

is real and symmetric.

For M vector samples, namely, M edge points, the mean vector and covariance

matrix are computed as
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Because the matrix Cp is real and symmetric, finding a set of orthogonal eigenvectors of

dimension 2 is always possible [2].  Let �1 and �2 be the eigenvalues of Cp, with �1>�2,

and correspondingly, let e1 and e2 be the resultant eigenvectors.  The direction of vector e1

indicates the orientation of the particle’s major eigen axis, and likewise, the direction of

e2 coincides with the direction of its minor eigen axis.  The end-points of the major and

minor axes within the contour can be found, so that the major diameter and its orthogonal

minor diameter can thus be obtained.

Fig. 4.13 shows the two end-points of major and minor axis found on the edge

line of the image shown previously in Fig. 4.9.  Note that some major and minor

diameters do not appear orthogonal because of pixel’s aspect ratio.
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       (a) diameters for object #1                              (b) diameters for object #2

  

      (c) diameters for object #3                               (d) diameters for object #4

  

               (e) diameters for object #5                               (f) diameters for object #6
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      ( g) diameters for object #7                              (h) diameters for object #8

Figure 4.13 Major and Minor Diameter

After obtaining the major and minor diameter, the aspect ratio of the profile shape

of the particle is computed.

4.8 Profile Shape Characterization

The major reason for needing to know the approximate shape of the particles lies

in the fact that shape affects the strategy for converting the particle profile into an

equivalent sieve size.  For example, rectangular particles will sieve to the smaller of the

two dimensions, which can be found approximately using the minor diameter.  On the

other hand, a triangular shaped particle will sieve to one vertex and the opposite side, the

length that is sieved to is greater than the minor diameter of the profile shape.  This

requires modification of the minor diameter.

Using the list of edge points to plot the radius from the centroid to each edge

point, a relation called “signature” is constructed.  Fig. 4.14 illustrates such a functional

relation for a square.  Irrespective of how such a signature is created, the basic idea
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remains to reduce the boundary description to a 1-D function, which is easier to describe

than the original 2-D contour.

Signatures generated in this way are invariant to translation, but they do depend

on rotation and scaling.  To achieve invariance of the signature to both scaling and

orientation, the plot may be normalized by finding a consistent way to select the same

starting point to generate the signature.   For instance, the edge point, which has the

maximum radius to the centroid, can be selected to start calculating the radius.  The

maximum radius is also used to scale all signatures to a uniform range, [0,1]. The

normalization step removes dependency on size and rotation but preserves the

fundamental shape of the particle’s contour.

Figure 4.14 Signature

Signatures are used to store and reveal the profile shape information.  Analyzing

their patterns can give certain shape characteristics.  For example, a relatively straight

                                                     a
                  r

     1.414a
              a

                                                                                      edge point

              r
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line parallel to the abscissa indicates that the object’s shape is circular.  If the signature of

a convex shape has four sharp peaks of the same radius and four smooth valleys also of

the same radius, and all are evenly spaced along the abscissa, it can be deduced that this

object’s shape is square shaped.  Three peaks and three valleys in a signature imply a

triangular shape in a general sense.   For a convex object, its shape can be characterized

by its simplified contour obtained from connecting all the characteristic vertices,

provided these characteristic vertices can be detected.  Fig. 4.15 demonstrates this idea, in

which the contour ABCD can be used to characterize the object’s original shape.

                                      Figure 4.15 Characterizing a Shape

Although all the vertices can be extracted from the signature by observing its first

derivative quantities, identifying a few characteristic ones is not an easy task.  This is

because the signature of an imaged object usually is very noisy, and many points that

may not serve the characterizing purpose may be picked as major vertices, making the

shape feature description complex.  In order to efficiently find the characteristic vertices,

noise must be removed.

                       
             A

                               

  B

   D

              C
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Polynomial curve-fitting can effectively approximate functions (interpolating

polynomials) to smooth out noisy experimental and numerical data, and provide a simple

analytical expression. The most commonly chosen form is the polynomial:

                    g(x)=a0 x
p+ a1 x

p-1+ a2 x
p-2+ a3 x

p-3+ … + ap-2 x
2+ ap-1 x+ap                 (4.11)

where x is the variable of edge points.

Determination of the order of the polynomial p is problem dependent. For a given

set of data points, an order too high causes detection of unwanted and insignificant

vertices, an order too low lacks sensitivity of detection.  After trial-and-error, p=18 was

selected in this research.  After the order was chosen, the first derivative of the

polynomial was taken to identify characteristic vertices, using:

                                                     0
)(
�

dx

xdg
                                                    (4.12)

to locate the positions of the desired vertices on the original signature.  The number of

maxima and minima is an indicator to the number of “corners” and “sides” that the

particle has.

Now, taking the same images as shown in Fig. 4.9, the selected polynomial is

applied to identify these eight particles’ profile shape.  Fig. 4.16 demonstrates the results.

All plots in the left column show the polynomial curve-fitting effect, and shapes

identified on the other.
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              (a) curve-fitting for object #1                    (b) characterized shape for object #1

   

             (c) curve-fitting for object #2                   (d) characterized shape for object #2

   

            (e) curve-fitting for object #3                    (f) characterized shape for object #3
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             (g) curve-fitting for object #4                   (h) characterized shape for object #4

   

              (i) curve-fitting for object #5                   (j) characterized shape for object #5

   

             (k) curve-fitting for object #6                    (l) characterized shape for object #6
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              (m) curve-fitting for object #7                   (n) characterized shape for object #7

     

           (o) curve-fitting for object #8                    (p) characterized shape for object #8

Figure 4.16 Curve-fitting and Shape Characterization

Note that some obviously triangular shapes are “over characterized”, which

means that an expected triangular shape is identified as four or five-sided shape instead.

Naturally, reducing the order of the polynomial may be able to partially overcome this

drawback. However, the side effect is inevitable, that is, some true four or five-sided

shapes may be mistaken as triangles.  So, in the algorithm of this research, it is regulated

that if the number of edge points covering a side length of the shape is less than 1/8 the

total number of edge points, this side can be ignored.
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5.  SEPARATION OF TOUCHING AND

OVERLAPPING PARTICLES

5.1 Introduction

In the processing of aggregate particle images, two problems must be solved

before size and shape analysis begin.  First, if the particles are touching or overlapping,

two or more particles will appear as one large, irregularly shaped particle.  Second, each

image consists of many individual particles, all of which must be processed individually

to determine particle size, shape and mass. These two problems demand separation of all

touching or overlapping particles before further analysis can be conducted on the image.

Morphological processing techniques can be used to convert the binary image to a

gray scale topographic surface [21].  In this chapter, some basic morphological concepts

are reviewed.  The 3-D geometric characteristics existing between two touching or

overlapping objects are analyzed.  A morphological erosion process is demonstrated,

which leads to finding a saddle point in a concave particle outline.  A cut line is made

through the saddle point and eventually the two objects are separated.

5.2 Binary Erosion

The fundamental operations of mathematical morphology are erosion and dilation.

In this work, erosion is the more important process, and can be described as follows:

suppose a binary image Im�n contains background pixels with value 0 and object pixels

with value 1.  Assume that the object pixels are grouped into a single, contiguous object

A comprised of q pixels a1, a2, … aq, q�m�n.  Let B={b1 b2 … bk } be a structuring

element, which is a set of binary points that are usually (but not necessarily) contiguous
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and that usually (but not necessarily) describes some geometric shape – a line, disk,

rectangle, etc.  Let br be the reference point for B.  Note that br is usually (but not

necessarily) an element of B.  The structuring element B moves over the image. When B

is completely contained in A, the reference point location goes into the eroded set.  In

other words, an eroded image is constructed by a set that is made up of the locations of

the reference point of structuring element B, for those locations B�A.  Fig. 5.1 portrays a

typical erosion process.

Figure 5.1 Typical Erosion as Shrinking

5.3 Sequential Erosion

The erosion process is performed by mathematically “moving” the structuring

element over the object image.  At each location, a simple Boolean process is used.  If the

structuring element is completely contained in the object to be eroded, the pixel location

corresponding to the reference point of the structuring element is placed in the new set,

which forms the eroded object.  Otherwise, the reference pixel becomes background in

the new image that contains the eroded object(s).

A B
BA�

Reference point
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In a sequential erosion, when the eroded object can not be eroded any more, in

other words, at the point when the eroded object can not entirely contain the structuring

element any more, this state is called ultimate erosion.

Sequential erosion on binary images is widely used in morphological processing.

For example, computation of gradients, marking functions, distance functions are based

on sequential erosion [21].  The basic mechanism is that as an erosion is performed, the

eroded section is labeled with a value that increases with each erosion operation. The

original binary image is thus converted to a gray-scaled ‘mountain’.  The brightest part

(largest gray value, or highest altitude) is located at the ultimate erosion for that shape.

Fig. 5.2 illustrates the sequential erosion process.
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(a) original binary image

      Gray value (label)

                Altitude Altitude

(b) after ultimate erosion (oblique view)

(c) after ultimate erosion (top view: topographic surface)

Figure 5.2 Sequential Erosion

Fig. 5.3 shows the whole sequential erosion process for a simulated image on a

matrix of size 44�40 in which touching and overlapping take place.  A structuring

element of size 3�3 was used.
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                        (a) before erosion                                    (b) 1st erosion

                      

                            (c)  2nd erosion                                        (d) 3rd erosion

                        

                              (e) 4therosion                                   (f) ultimate erosion

Figure 5.3 Sequential Erosion on Simulated Image
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The pseudocode of the sequential erosion is listed in Table 5.1 below.

Table 5.1 Pseudocode of Sequential Erosion

/* A binary image set I  is available, a structuring element B is selected. */

for (total each number of erosion operation)

     for  (each pixel in the image)
            if  (the structuring element B is completely included in an object )
                     -  create a new set E , E forms the eroded object in the new image set.
           end
     end

-  label C, the complement set of I and E, a non-zero value which will be increased for next erosion
operation   Otherwise all are labeled 0 for background, 1 for E.

-  assign this new image set to I which becomes the next image to be further eroded in next operation.

     /*  Check if  the ultimate erosion is reached. */
    if  (the the eroded object still can contain B )
          -  start next erosion operation on this new image.
    else
          -  stop.
          -  obtain the final sequentially eroded grayscale image (topographic surface) by adding up all C’s
   end

end  /*end of  the first “for” loop*/

The total number of erosion operations necessary to reach the ultimate erosion

and morphological gradient of the eroded grayscale image depends on structuring

element size, and on the size and shape of the object.  The smaller the structuring element

size (greater than one pixel, of course), the more topographic information can be

revealed.  Obviously, this comes with a trade-off of longer run time for computer.
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5.4 Separating Location

As shown in Fig. 5.3, successive bands (or rings) created by the erosion are

assigned grayscale values, increasing with each erosion operation.  The bands generate a

contour for each object, similar to a topographic contour map.  After the ultimate erosion,

a complete topographic surface is formed.   An inevitable characteristic for those

touching and overlapping object shapes can be noted: a saddle shaped surface exists

between two connected objects in the topographic plane.  The erosion process serves the

purpose of creating the topographic surface, on which the right place to cut these two

connected objects apart is located.  The right place to cut is located at the “saddle point”,

which mathematically is the point where a 3-D function simultaneously reaches a (local)

minimum in one direction and a (local) maximum in the other direction.  Examples

would be the center of a saddle seat or the lowest point (gap) in a ridge between two hills.

Fig. 5.4 depicts the saddle shaped surface over two connected hills and saddle point

location.  Note that the saddle point S has the minimum value in the plane A, and

meanwhile the maximum value in the plane B.  Both planes are perpendicular to the

background and intersect each other through the saddle point.
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                                                                            Plane B

               Plane A Saddle Point  S

          Figure 5.4 Saddle and Saddle Point

The saddle point in the ultimately eroded image shown in Fig. 5.3 (f) can be

located.  Fig. 5.5 (a) shows the two dissecting plane locations to find the saddle point

between two hills, and (b) illustrates these two corresponding plane locations in the

topographic map.  Mathematically, the point set in each plane constructs a parabolic

curve, with opposite opening direction.  The saddle point is located at the intersecting

point of these two curves.  Note that the same saddle point has the minimum value for the

set of all the gray value points in the plane A, and the maximum value in the plane B.

Notationally, let A be the set of all gray value points in the plane A, and B the set of all

gray value points in the plane B, s the gray value at the saddle point, then the following

equations hold:

                                                 s=min{ ai, �ai�A,  i=1,2,…,n}                                      (5.1)

                                                s=max{ bi, �bi�B,  i=1,2,…,m}                                      (5.2)
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Once the saddle point is located, next is to determine the direction of cutting.  The

cutting line is contained in the plane that contains maximum gray value with the

parabolic curve opening downward.  In the above example, the cutting line is contained

in plane B.

(a) dissecting planes (top view)

Plane B

Plane A
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(b) dissecting planes (oblique view)

Figure 5.5 Dissecting Planes for Finding Saddle Point

More specifically, Fig. 5.6 (a) shows the altitude in gray value in dissecting plane

A with a fitting parabola opening upward.  Similarly, (b) shows the altitude in dissecting

plane B with a fitting parabola opening downward.  Note that both sets intersect at gray

level of 0.6, and the desired saddle point is located at position (13,22) with the gray level

0.6.

Plane A

Plane B
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(a) altitude in plane A

(b) altitude in plane B

Figure 5.6 Gray Level Altitude in Plane A and B

5.5 Detection of Saddle Point by Filtering

5.5.1 Filter Design

A filter (or mask) can be designed to detect the saddle shaped domain and

accordingly, the saddle point in the topographic surface.  Based on finding saddle point,
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the cutting line can be oriented and separation can be carried out.  Since the geometric

characteristics of saddle surface are known, a filter was engineered to serve the separating

purpose.

 Again, hold the same definitions made for the plane A, plane B and the set A, set

B, as stated in the last section.  Further, let a filter have the size of n�m, each grid holds

value fij, i=1,2,…,n, j=1,2,…,m.  Fig. 5.7 shows a filter of size 5�5.

Figure 5.7 A Filter of Size 5�5

The objective of designing a filter is to locate the saddle point.  This requires that

the filter can detect the gray value points distributing in a parabolic pattern in both planes

A and B.  To achieve this, the value in each grid of the filter is assigned with +1 or –1,

symmetric about the reference point fij in planes A and B.  At each reference point, plane

A and B are assumed to be orthogonal to each other, and may rotate simultaneously from

0o to 90o anti-clockwise searching for the orientation that qualifies the reference point to

be the saddle point.  If the preset conditions as given in the next section are met, the

current reference point becomes the saddle point, and cutting then begins in the

orientation of plane B.  Fig. 5.8 demonstrates the values given for a filter of size 5�5, and

the filter rotates from 0o to 90o.

f11    f12     f13      f14    f15

f21   f22      f23     f24     f25

f31   f32      f33     f34     f35

f41   f42      f43     f44     f45

f51    f52     f53     f54     f55
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                                (a) filter at 0o                    (b) filter rotated by 22.5o

     (c) filter rotated by 45o       (d) filter rotated by 67.5o    (e) filter rotated by 90o

Figure 5.8 Rotation of Filter

5.5.2 Saddle Point Conditions

The filter demonstrated above can be extended to any larger size, and the rotating

angle step then may be smaller accordingly.  Suppose that in the plane A, there exist two

points that are symmetrical to the reference point S (recall that S is also in the plane B).

Let these two points denote PA,R and PA,L (subscript R and L indicate Right and Left to S in

the plane A), which take the gray value (altitude) IA,R and IA,L, respectively.

Correspondingly, assume that the filter values at these two locations are fA,R and fA,L (Note

that if one is +1, the other must be –1), respectively.

0       0     +1      0      0

0       0     +1      0      0

+1    +1     0      -1    -1

0       0      -1     0      0

0       0      -1     0      0

0     +1      0       0      0

0     +1      0      -1     -1

0       0       0      0       0

+1    +1     0     -1      0

0       0      0      -1     0

+1     0      0      0      -1

0      +1     0      -1      0

0       0       0      0       0

0      +1      0     -1      0

+1      0     0       0     -1

0       0      0      -1      0

+1    +1     0      -1      0

0       0       0      0       0

0      +1      0     -1     -1

0      +1     0       0      0

0       0      -1      0      0

0       0      -1      0      0

+1    +1     0      -1    -1

0       0      +1     0      0

0       0      +1     0      0
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Mathematically, if this reference point is detected as a saddle point S which takes

gray value sij, the following conditions hold:

In plane A, at certain orientation � in the image plane,

                                                     IA,R fA,R + IA,L fA,L =0                                                   (5.3)

      sij =min{ Pij,� Pij�A}                                                (5.4)

Eqn. (5.3) ensures the two gray value points in plane A have the same gray value, and

Eqn. (5.4) indicates that the parabolic shape opens upward, and the reference point S is at

bottom on the parabola.

Similarly, in orthogonal plane B at (� �90o) in the image plane,

                                                           IB,R fB,R + IB,L fB,L =0                                             (5.5)

            sij =max{ Pij,� Pij�B}                                         (5.6)

For the sake of clarity, two more characteristics may be observed,

                                                                  sij�(A� B)                                                    (5.7)

                                                         (A,B)c=(A � B)-(A� B)                                        (5.8)

where (A,B)c denotes the complement set of sets A and B.

The separation algorithm can be described as follows:

Step 1: At each reference point with 0o orientation in plane A, first check its left

and right neighboring pixels’ gray value, see if all conditions set in Eqn. (5.3) and  (5.4)

are satisfied.  If not, then extend to next pair of pixels before and after the two pixels just

checked in the same plane. Same process is taken until the conditions are satisfied within

the preset filter size n.

Step 2: If the conditions are met during searching within the preset filter size n,

then further check its upper and lower neighboring pixels in the orthogonal plane B, see if
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all conditions set in Eqn. (5.5) and (5.6) are satisfied.  If not, check next pair of pixels’

gray value extending upward and downward within the preset filter size m.

Step 3: If an affirmative answer has been obtained for step 1 and 2, in other

words, if logical AND is used to combine the two conditions set in step 1and step 2, and a

positive answer is found, then the current reference point is the desired saddle point.

Followed is to carry out the cutting process in the direction of plane B.  Step 1 to Step 3

are repeated for the next new reference point in the image.

Step 4: If a negative answer has been found in either step 1 or step 2, in other

words, the AND logic fails, then the current reference point is not the saddle point at the

current orientation, stop.

Step 5: Simultaneously rotate the plane A and plane B to certain orientation, repeat

step1 to step 5.

Step 6: If after a rotation of 90o is finished, and no AND logic is found affirmative,

then the current reference point is detected as a non-saddle-point.  Move to the next new

reference point, repeat Step 1 to Step 6.

The simplified pseudocode of separation for touching and overlapping shapes is

listed as follows:
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Table 5.2 Pseudocode of Separation

/*A gray scale ultimately eroded image G is available, and a filter of size n�m is selected.*/
/*Scan with the filter */
for (each reference point)

       if    (within the filter size n  in plane A, all conditions are met, referring to Eqn. (5.3)and (5.4))
            AND   (within the filter size m in plane B, all conditions are met, referring to Eqn. (5.5) and
                           (5.6))
              -  the current reference point is a saddle point
              -  cut in the direction of plane B
       else

-  simultaneously rotate both plane A and B anti-clockwise to certain angle, provided a total 90o is
not swept.  Otherwise stop.

              -  go back to above ”if  ” condition, check AND logic again in new orientation just rotated.
       end

end  /* end of “for” loop */

Referring to Fig. 5.5 (a), the separated shapes are shown in Fig. 5.9 (b), while (a)

shows the connected shapes.

                          

                        (a) connected shapes                               (b) separated shapes

Figure 5.9 Separation by Filtering

5.6 Testing on a Real Image

Now, using a structuring element of size 3�3 for sequential erosion, and a filter of

size 15�15 for saddle point detection, the touching and overlapping limestone rocks
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digitized in a 484�512 matrix, as shown in Fig. 5.10 (a), was separated.  The

corresponding binary image is given in sub-figure (b).  A total of 10 erosion operations

has been elapsed before the ultimate erosion is reached.  Sub-figure (c) demonstrates the

resultant topographic surface, while (d) portraits the same topographic surface in an

oblique view.  Finally, an image of separated particles is presented in sub-figure (e).

(a) gray scale image
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(b) binary image

(c) topographic surface (Top view)
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(d) topographic surface (Oblique view)
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(e) particle separated image

Figure 5.10 Separation Process

The size of the filter used in the separation process is problem dependent.  Larger

filters give more accurate detection, but take longer to perform the filtering.  Proper size

can be determined experimentally.  Some “false cutting” can occur for particles whose

edge contour is significantly concave on opposite edges.
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6.  VOLUMETRIC MODELING

6.1 Introduction

Particle size distribution (gradation) in the Superpave and in many other

applications is based on the sieve mesh sizes and particle mass.  In most sieving

operations, gradation is evaluated as “percent-passing” by mass.  The minor diameter of

the particle profile shape obtained through using principal eigen analysis is used as a

particle’s size.  This dimension is correlated to the sieve size.  In this research, the density

is assumed a constant, so the total mass is proportional to the volume of aggregates.  Also

in this research, all the obtainable information comes from a 2-D image. Volume

information is not directly observed.  Lack of 3-D information brings the need to estimate

the volume using some of the available 2-D measurements, such as area, aspect ratio,

signature mean and variance.  In other words, modeling the volume of aggregates is

needed.

Statistical techniques are important for image analysis.  From the images captured

of the mineral aggregates, all the sizes and shapes are random.  The process of extracting

useful information becomes equivalent to estimating random variables.  The objective in

this chapter is to estimate the volume of mineral aggregates to serve the purpose of

gradation.

6.2 Modeling Sample Preparation

To observe how particle mass might be correlated with some of its parameters

found in 2-D images, some samples of aggregate were collected.  Fig. 6.1 demonstrates

images of some of these samples.  Altogether 501 pieces of limestone rock varying in
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size and shape were imaged.  The following measurements were taken for each individual

particle:

� Projected area (mm2)

� Major and minor diameter (mm)

� Aspect ratio

� Non-normalized signature mean (mm) and variance (mm2)

� Mass (g) and volume (mm3) with a measured constant density of of 0.00305

(g/mm3)

The methods for obtaining above measurements except mass and volume were

described in Chapter 4.  The mass of each particle was found using a laboratory digital

balance, and added to the data vector. All the measurements are listed in Appendix I.

The aggregates were arranged on the lighting box as shown in Fig. 6.1 so that each

particle could be paired with its image statistics.  The particles’ sizes are visually judged

ranging from 4.75 (mm) to 25.00 (mm).

 
                        (a) size � 4.75 (mm)                  (b) size � 9.50 (mm)
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            (c) size � 12.50 (mm)                      (d) size � 19.00~25.00 (mm)

Figure 6.1 Sample Photos

To gain some intuitive perceptions about how some parameters from a particle’s

2-D image influence its mass, Fig. 6.2 illustrates the observations in which the mass of

each individual particle is plotted against its area, aspect ratio, non-normalized signature

mean and variance, major and minor diameter, respectively.

                    (a) mass vs. area                                            (b) mass vs. aspect ratio
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              (c) mass vs. signature mean                            (d) mass vs. signature variance  

              (e) mass vs. major diameter                              (f) mass vs. minor diameter

Figure 6.2 Sample Data Observations

If coupled with shape information, the particle’s projected area can reflect its size.

The signature mean is basically the “effective radius”.   The projected area and signature

mean are apparently the dominant factors that correlate with the mass from both intuitive

and experimental considerations.  The general trend shows that particle mass value grows

as its area and signature mean increase.  The aspect ratio gives partial information about

the profile shape, but is obviously not correlated directly with mass, at least in this
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sample. The signature variance may reveal how irregular the particle shape is, more

specifically, how far the actual edge line deviates from the circumference  whose radius

is the signature mean.  Major and minor diameter also indicate particle size.

Evidently, discovering a way to more accurately predict particle’s 3-D

measurements should be attempted based on combinations of several pertinent 2-D

variables.  The objective here must be to create a model using appropriate measurements

from the image data, so that a “good” model is obtained.  A good model will be the one

in which the estimated particle volumes and the actual particle volumes are equal, at least

when averaged over sufficient number of particles.

6.3 Model Selection

  Regression analysis is a statistical technique for modeling the relationship

between two or more variables.  Once an adequately good model is found, it is then used

to predict the response to the new set of variables of the same type.  In fact, multiple

regression is one of the most widely used statistical techniques [16].

In general, for a dependent variable, or response, y that may be related to k

independent variables, the standard multiple linear regression (MLR) model takes form

                                          ����� ������ kk xxxy ...22110                                    (6.1)

where

y  : Observation or response.

           �j  : Partial regression coefficient,  j=0,1, 2, …k  

xj : Regressor variable, j=1, 2, …k

            �:   Random error with zero mean and variance �
2.
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This model describes a hyperplane in the k-dimensional space of the independent

variables {xj}.  The parameter �j represents the expected change in the response y per unit

change in xj when all the remaining independent variables xi  (i�j) are held constant.

It is worth mentioning that, in general, any regression model that is linear in the

parameters, that is, the � values, is a linear regression model.  Models that are polynomial

or include interaction effects in the parameters may also be analyzed by multiple linear

regression model by defining regressor variables that include the nonlinear effects [16].

In matrix notation, the model in Eqn. (6.1) can be expressed as

                                                    Y=X�+�                                                       (6.2)

Where

Y= 

�
�
�
�

	




�
�
�
�

�




ny

y

y

�

2

1

                      X=

�
�
�
�
�
�

	




�
�
�
�
�
�

�




nknn

k

k

k

xxx

xxx

xxx

xxx

�

����

�

�

�

11

33231

22221

11211

1

1

1

1

 �=

�
�
�
�

	




�
�
�
�

�




k�

�

�

�

2

1

                         �=

�
�
�
�

	




�
�
�
�

�




n�

�

�

�

2

1

The summation of error square is
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The vector of least square estimators, 
�

â , can be obtained by minimizing L and satisfying

                                            
��

�

ââ
L

= -2XTY+2XTX
�

â =0                                    (6.4)

thus

                                                                  
�

â =(XTX)-1XTY                                            (6.5)

The estimated regression model is

                                                                       
��

� âXY                                         (6.6)

6.4 Particle Geometric Assumptions and Definitions  

To use MLR model, the regressor variables that may influence the observations

must be found.  Reasonably, these variables are particle geometry related.

 Referring to Fig. 6.3, some important variables that will relate to the prospective

MLR model are defined:

Htop : Top height, which is measured from the imaged background up to the

highest point found in the upper surface of the particle.

Hcent : Central height, which is also measured from the imaged background and

through the centroid of the profile shape to the upper surface.

Hnom : Nominal height, which is the most related variable.  The value of this

height quantitatively results from the actual volume of the particle, as

illustrated in sub-figure (a), divided by its projected area, as depicted in

sub-figure (c).  In other words, the actual volume of any particle can be

obtained by multiplying its projected area with its nominal height.

Dmaj : Major diameter of the particle’s profile shape.
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Dmin : Minor diameter of the particle’s profile shape.

                                                                           Viewing direction

Htop                                                                                                                           Hcent

(a)  actual
 shape and
 volume

                                                                                                                    Hnom

(b) equivalent
      shape and
      volume               Dmaj

                           Dmin

(c) common projected area

Figure 6.3 Geometric Perspective of  Particle
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It is clear that the posture of the particles in the imaging scene may affect the

modeling results.  Here the following assumptions regarding the pattern of particle

positioning in the imaged scene are claimed:

1) After randomly vibrating and toppling, the majority of the particles will lie on

the background with their maximum projected area facing down.  This state is

termed “stable state” hereafter.

2) All particles are assumed to have a constant density.

The assumption 1) can lead to the following inequalities:

For any geometric objects, at the stable state

                                           0<Hnom�Hcent�Htop�Dmin                                         (6.7)

While for the most crushed limestone aggregates at the stable state, it holds

                                                                0<Hnom�Dmin                                                  (6.8)

thus

                                                                 10
min

��
D

H nom                                                  (6.9)

The term 

minD

Hnom  is defined as the flatness of particle throughout this work.

6.5 MRL Model Building

Flatness of the particle is suspected to relate to some geometric attributes, such as

elongation, roundness of the profile shape, and jaggedness of the edge line.  All the

mentioned variables are defined to be particle size and volume independent.
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Following MLR model is build first, then each variable in it is described

thereafter.

              ����� �
�
�

�

�

�
�

�

�

�
�
�

�
�
�
�

�
�����

�1

23
min

2
min

10
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sig

majnom

M

V

M

D

D

D

D

H
             (6.10)

where

Hnom : Nominal height (mm).

Dmin : Minor diameter (mm).

Dmaj : Major diameter (mm), also as defined in Chapter 4.

Msig : Mean value of the non-normalized signature (mm).

Vsig : Variance of the non-normalized signature (mm2).

            �    : Random error.

Definition and interpretation of each variable in Eqn. (6.10) are as follows:

minD

Hnom  : Flatness, as illustrated in Fig. 6.4 (a).

minD

Dmaj
 : Elongation.  It takes the value of aspect ratio, as depicted in Fig. 6.4 (b).

sigM

D

2
min  : Roundness.  It measures the circularity of the particle. Its value increases

              to 1 as the profile shape of the particle becomes more circular.  See Fig.

              6.4 (c).

2
sig

sig

M

V
 : Jaggedness. For a perfectly smooth edge line, the value is zero, as

demonstrated in Fig. 6.4 (d).
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                              Dmin                                                                                                       Dmin

          Dmaj                   

          Hnom                                                 

                                                                                                    Dmaj

                 (a) flatness: 
minD

Hnom                                     (b) elongation: 
minD

Dmaj

                                                           2Msig                          Msig

                                                                                                                                       Vsig

                   Dmin

                             (c) roundness: 
sigM

D

2
min                                    (d) jaggedness: 

2
sig

sig

M

V

Figure 6.4 Interpretation of Model Variables

Some aspects regarding 
2
sig

sig

M

V
 need to be mentioned here: first, the signature

mean is squared in the denominator to make the parameter dimensionless.  Second, the

logarithm transformation of 
2
sig

sig

M

V
 makes the very small ratio values more readable and

offsets the possible inaccuracy caused by numerical truncation in the computer system.

Third, the reciprocity of the negative logarithm transformation ensures a positive value

that decreases to zero as the edge line becomes smoother.  To clearly demonstrate the
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purpose of this data transformation, given a array of small (not very small in order to

view the plots effectively) values, starting from 0.01 up to 0.33, increasing step by 0.04,

Fig. 6.5 shows values of the logarithm transformation of this array, and the final values of

the negative reciprocity of this transformation.

Figure 6.5 Data Transformation

The model in Eqn. (6.10) can be simplified, correspondingly, as

                                   Yflat = �0+�1Xelong+�2Xround+�3Xjagged+�                            (6.11)

where Xelong , Xround, and Xjagged are equivalent to the corresponding regressor variables in

Eqn. (6.10).

In matrix notation,

                                                           Yflat=
�

â X+�                                                        (6.12)

The unbiased regression coefficient estimators are thus in matrix form

                                                 
�

â =(XTX)-1XTYflat                                                 (6.13)
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The prediction of flatness for each particle is

                            jaggedroundelongflat XXXY 3210

�����

���� ����                      (6.14)

where

                                             
minD

H
Y

nom
flat

�

�

�                                                        (6.15)

 Recall that the final goal is to use this model to predict the volume of the particle.

Since the volume estimate used in this research equals the projected area multiplied by

corresponding nominal height, the following expression holds:

                                          partflatpartnom ADYAHV min

���

��                                   (6.16)

where

Apart : Particle projected area (mm2).

6.6 Overall Modeling Effect

Using all the available data from the modeling sample of 501 particles, the

complete model in Eqn. (6.10) was found to be:

             

1

2
min

minmin

log4668.0
2

4754.01390.06660.0
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D

D

D

D

H
         (6.17)

From Eqn. (6.14) and Eqn. (6.15), Eqn. (6.16) can be rewritten as

jaggedpartroundpartelongpartpart XDAXDAXDADAV min3min2min1min0

�����

���� ����       (6.18)

Now, further define
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min
*
0 DAX part�

elongpartelong XDAX min
* �

roundpartround XDAX min
* �

jaggedpartjagged XDAX min
* �

Thus, Eqn. (6.18) becomes

                                           *
3

*
2

*
1

*
00 roughroundelong XXXXV

�����

���� ����                         (6.19)

with the same 
�

â  values as obtained.

Fig. 6.6 shows the overall modeling effect, i.e., comparison of estimated and true

volume. Fig. 6.7 zooms in on the constituent parts of the plot in Fig. 6.6 (b) for better

viewing.

(a)



91

(b)

Figure 6.6 Volume Comparison

  

             (a) particle #1~#55                          (b) particle #56~#110                    (c) particle #111~#165
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            (d) particle #166~#220                       (e) particle #221~#275                     (f) particle #276~#330

    

           (g) particle #331~#385                      (h) particle #386~#440                     (i) particle #441~#501

Figure 6.7 Modeling Effect Observation

6.7 Model Adequacy

To simplify the statistical analysis of the model, Eqn. (6.19) is treated as an

approximated standard MLR model with zero intercept.  A number of techniques can be

used to measure the adequacy of a multiple regressor model [16]. Two of those

techniques to present the adequacy of the model were used.  The pertinent theoretical

basis can be reviewed in the book by Hines and Montgomery [16] and Myens [18].

6.7.1 The Coefficient of Multiple Determination

The coefficient of multiple determination, in a loose sense, is a measure of the

amount of reduction in the variability of the response obtained by using the regressor
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variables [16], is defined in the problem as

                                                    
vv

E

S

SS
R ��12                                                 (6.20)

where
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where SSE is the sum of squares for error, and Svv is the sum of squares.

For the modeling sample of 501 particles, it was calculated that SSE= 118075237,

Svv= 1257933386, thus R2=0.91.  This indicates that about 91% of the variability in the

actual volume V has been explained when the three regressor variables are used in the

model.

6.7.2 Error Normality

One of the assumptions for fitting a regression model is that the errors are

uncorrelated random variables and normally distributed with mean zero and constant

variance, i.e., NID(0, 2
e� ).  Fig. 6.8 shows the errors plotted against the particle

sequence.  Note that it follows the same particle sequence as that used in Fig. 6.6.
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Figure 6.8 Model Error vs. Particle Sequence

To test the normality of the residual which is the difference between actual

volume and estimated volume, one may standardize the residuals by computing the

quantity

                                                                
E

i
i

MS
d

�
�                                                  (6.23)

where i=1,2,3,…, n

MSE : mean squares, and

                                                                2)( eEMSE ��                                                (6.24)

where E(�) denotes the expectation, and 2
e� is the error variance [16].
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If the error are NID(0, 2
e� ), then approximately 95% of the standardized residuals

should fall in the interval (-2,2).  Fig. 6.9 presents the histogram of the dI’s for the

sample.

Figure 6.9 Histogram of Standardized Residuals

The percentage of the resultant standardized residuals that are within (-2,2) is

found to be 94.01 %, the errors can thus be regarded as being distributed normally.

6.8 Model Testing

The quality of the developed volumetric model needs to be tested using the

randomly selected samples.  If the sample population satisfies the size range (minor

diameter is between 4.75 mm and 25.00 mm), it is reasonable to expect a satisfactorily

accurate result.
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6.8.1 Preparation of Testing Sample Population

Due mainly to the size constraints of the lighting box on which the particles are

placed, the number of particles in an image is limited.  Eight batches of testing sample

were prepared.  Particles in each batch were then placed in the imaging scene and were

photographed.  The same particles were photographed five times.  Each time the particles

were “stirred up” to give a completely new image.  The five images of each batch were

marked with a, b, c, d, e respectively for analysis, thus there were 40 total images in the

sample.

To test the model, one out of five images from each sample batch was randomly

selected.  The statistics of the each batch are tabulated in Table 6.1.  The histograms of

some useful measurements for each and for the combined batch are included in Appendix

II.   The total actual mass of the each batch is obtained by weighing.

Table 6.1 Sample Measurement Statistics

Batch /
Image

#

Total
particle

#

Total
true

mass (g)

Area
mean
(mm2)

Area
STD+

(mm2)

Major
diameter

mean
(mm)

Major
Diameter

STD+

(mm)

Minor
diameter

mean
(mm)

Minor
Diameter

STD+

(mm)

    #1 / b

#2 /a

#3 / e

#4 / d

#5 / a

#6 / a

#7 / c

#8 / e

345

376

215

251

378

76

71

150

316.25

265.91

475.06

383.46

625.52

512.02

521.38

1006.19

96.3661

75.2003

169.2037

125.3001

128.0232

362.9582

376.1573

356.2143

40.0473

38.4560

81.5658

75.1036

78.6642

197.1795

204.8211

206.9573

11.4350

9.8945

15.4329

13.1246

13.1727

23.5464

23.1580

22.5798

3.0401

3.4555

4.7307

4.4820

5.0281

7.7220

7.3076

8.0629

7.8602

6.5525

10.8713

8.8168

8.8973

16.1730

17.3936

16.2522

2.2699

2.1892

3.6119

3.6209

5.9956

5.3785

6.2691

6.1154

STD+ : Standard deviation.
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6.8.2 Testing Results

For five images from the same batch, eight batches in total, using the volumetric

model and the same density used before to compute the estimated mass, sub-figure (a)

shows the estimated mass of each image from batch #1 to #8.  So, for a single batch,

every five mass estimates are plotted versus one actual mass.  In (b), for each batch,

averaging these five estimated mass values as a data point, then plot them against the

actual mass.  (c) demonstrates the percent error from (b).

(a) mass comparison
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(b) mass comparison

                                                              (c) percent error

Figure 6.10 Model Testing for Mass
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From sub-figure (c), it is observed that the percent error can reach as high as

around �6% for batch #4, #5and #6.  If the size of the population N is increased,  the

accuracy can then be improved.  To do this, take a random combination of the images,

and each image of the combination was randomly selected from one of the eight batches.

This indicates that the total number of particles will increase up to N=1862, which is a

total particle number of eight batches.  Fig. 6.11 illustrates such a random combination

formed by image b,a,d,e,c,e,c,d from the sample batch #1, #2, … #8, respectively.



100

Figure 6.11 A Random Combination of Sample Batches (badececd)

Batch #2  (N2 =376 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #3  (N3 =215 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #4  (N4 =251 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #5  (N5 =378 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #6  (N6 =76 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #7  (N7 =71 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Batch #8  (N8 =150 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

Photo
   a

Photo
   d

Photo
   e

Photo
   c

Photo
   e

Photo
   c

Photo
   d

Combination

Photo
   b

Batch #1  (N1 =345 particles)

Photo
   a

Photo
   b

Photo
   c

Photo
   d

Photo
   e

N=1862
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100 combinations were tested.  Each combination may represent one “grand”

image covering all 1862 particles.  Each new constituent image results from a new “stir-

up”, and in total 100 stir-ups were conducted for producing 100 grand images.  The result

is shown in Fig. 6.12.   Fig. 6.13 shows the percent error,which mainly stays within �2%,

and is greatly reduced as anticipated.

Figure 6.12 Modeling Result for 100 Combinations
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Figure 6.13 Percent Error for 100 Combinations
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7.  SIEVING CORRELATION

7.1 Introduction

Since the Superpave specifications are given on the basis of percent passing by

mass, two correlations must be made.  First, particles are optically sieved into “bins” or

sizes based on the minor dimension of the particle.  In each bin, the number of particles is

not important, rather, the total mass of the particles in that  bin is. Second, particle’s

mechanical sieving behavor must be correlated with the optical sieving behavor.  The

model which correlates information obtained from the 2-D image to the volume has been

established.  In this chapter, a sieving correlation method was developed by first

modeling the particle cross section into a rectangle, plus the scaling factors obtained from

calibration to take the actual cross section shape and other related elements into account.

Based on the flatness distribution from 501 sample particles, a criterion was set to

determine the sieving strategy for each particle.  Results are presented as gradation curves

in the format used for Superpave analysis.  The optical sieving results were also

compared against mechanically sieved measurements of the same samples to test

accuracy. The results showing satisfactory correspondance were presented.

7.2 Identified Sieving Problems

Either a circular sieve opening or a cylindrical particle as shown in Fig. 7.1 (a)

will make the sieving process easy to describe analytically.  In either case, the fashion in

which the particles fall through the sieve opening is rotation invariant in the falling

direction.  Unfortunately, neither the sieve opening shape nor the cross section of the

particle is circular.  Sieve openings are square, and the cross section of crushed particles
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is randomly shaped as illustrated in Fig. 7.1 (b).  This makes the sieving analysis rather

complex.

                                                                        Cross section

                                                               Profile shape

                    (a) circular cross section              (b) random shape cross section

Figure 7.1 Particle Cross Section Shape

For example, for a fairly flat particle with 22 mm minor diameter, it is clear that it

can not pass if its minor diameter is parallel to the square sieve opening of 19.00 mm.

However, after rotating a certain angle � , it becomes passable since 22 mm is smaller

than the diagonal (26.87 mm) of the square opening, as shown in Fig.7.2.  There is a

tendency for flat particles, especially those with rounded edges to pass diagonally

through the sieve.
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                                                  22 mm

       Cross section                                         Sieve opening                               Passable

          Particle                                                                                                       �

   Profile shape

                                                                                                                             Impassable
                                                                                                   19.00 mm
Direction of passing

Figure 7.2 Particle Passing Mechanism

In vision sieving, the particle minor diameter is approximately known, but particle

thickness is not, and the thickness is undoubtedly a critical factor that influences particle

sieving behavior.  This requires development a method for relating the 2-D observable

features to the sieving behavior of particles.  It will probably be impossible to do this

with extreme accuracy for individual particles.  However, it is expected that reasonably

accurate results for bulk measurements should be obtained.

7.3 Analytical Discussion

To simplify the complexity of the sieving behavior problem, the interaction

between the particle cross section and the square mesh of a given sieve was first

analytically modeled.   Let  dsv be the size of a given sieve, and as defined previously,

Dmin be the minor diameter, and Hnom be the nominal height.  This way the cross section

takes the shape of a rectangle, as illustrated in Fig. 7.3.
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                                                                        Actual cross section contour
                                         

     Hnom

                       
                                                    Dmin

Figure 7.3 Modeled Particle Cross Section

The interaction of the cross section with the sieve size takes place only for those

particles whose minor diameters are within the range dsv<Dmin< 2 dsv.  The reason that

the equal sign “=” was not included is that, if particle minor diameter equals the sieve

size, it is expected to pass, while if it has the same dimension as the diagonal of square

mesh, it will be retained with certainty, since particles are not “razor thin”.

Given a sieve mesh size dsv, the critical position for a particle with assumed

rectangular cross section of minor diameter Dmin and nominal height Hnom to pass or be

retained in the sieve is illustrated in Fig. 7.4.
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 Hnom

         Dmin         Hcrit

                                                                                                      Actual cross section

                       45o

                                                                    dsv

Figure 7.4  Critical Position

For any given minor diameter Dmin satisfying dsv<Dmin< 2 dsv., it has a “critical

height”, denoted as Hcrit in above figure.  The hatched rectangle is correspondingly

formed by Dmin and Hcrit , as also shown in above figure.  If the nominal height Hnom is

shorter than Hcrit , the particle passes this sieve, otherwise it is retained.  The following

simple relation holds for Hcrit and Dmin :

                                                   min2 DdH svcrit ��                                                 (7.1)
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Two special cases determine the range of Hcrit

i) if Dmin= 2 dsv , then Hcrit =0.  This means that unless the particle is “razor

thin”, it will be retained on the sieve.  Particles with this Dmin will always be

retained in practice.

ii)  if Dmin= dsv , then Hcrit =0.4142 Dmin.  Particles with this Dmin will be expected

to pass the sieve.

From i) and ii), the range of the critical height is thus

                                                     0<Hcrit<0.4142 Dmin                                                                    (7.2)

Recall that the flatness of the particle is defined as

                                                          
minD

H
Y nom

flat �                                                       (7.3)

and further define the critical flatness for a particle of Dmin as

                                                          
minD

H
Y crit

crit �                                                        (7.4)

Apparently, the state of any particle of Dmin in the sieve can be determined by the

following conditions:

                                        
�
�
�

�

�

retainedYYif

passYYif

critflat

critflat

,:

,:
                                        (7.5)

One may argue that for the crushed limestone aggregates, the shapes of the cross

section are not retangular, so the conditions set in inequality (7.4)  are not sufficient to

determine a particle’s passing or being retained.  To remedy this, a calibration factor is

obtained experimentally and added to correct the above conditions, as described later .
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7.4 Sieving Probability Analysis

For any particle with Dmin in a sieve, the conditions expressed in inequality (7.5)

are fundamental for judging its ultimate state: passing or being retained.  From Eqn. (7.1)

and (7.4), the corresponding critical flatness can thus be easily obtained as

                                              12
min

��
D

d
Y sv

crit                                          (7.6)

Now the question arises:  what is the flatness, Yflat, of the particle of interest?

The sample of 501 particles was analyzed to determine the probability distribution

of the particle flatness.  Fig. 7.5 and Fig. 7.6 present a scatter diagram and a histogram of

the sample flatness statistics.

Figure 7.5 Scatter Diagram of Sample Flatness
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Figure 7.6 Sample Flatness Histogram

The cumulative distribution of the 501 sample particles is obtained from the

probability density data.   Its approximated distribution function is attained by applying a

curve-fitting technique, shows as the solid curve in Fig. 7.7.  The distribution function is

approximated as

     P(Ycrit)=-19.9524 5
critY +67.4.1075 4

critY -83.6898 3
critY +44.4792 2

critY -7.6510 critY +0.4069

                                                                                                                            (7.7)
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Figure 7.7 Sample Flatness Distribution

The strategy for using the function in Eqn. (7.7) is straightforward:

1) Given the particle’s measured minor diameter Dmin, select those particles for

which dsv<Dmin< 2 dsv .

2) Calculate the Hcrit.

3) From the cumulative probability distribution function in Eqn. (7.7), calculate

                                                     P*={P(Yflat)�Ycrit}                                                     (7.8)

                  where P(�) indicates probability.

4) Create a random number � on [0,1] using a uniform distribution.

5) If ��  P*, the particle passes.  Otherwise it is retained.
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This approach makes no attempt to determine analytically whether an individual

particle passes or is retained.  Rather, it exploits the central tendency of the data to

provide an estimate which proves to be fairly accurate over a large sample.

For the sake of convenience, rewrite inequality (7.5) which are the conditions for

sieving behavior.

                                           
�
�
�

�

�

retainedYYif

passYYif

critflat

critflat

,:

,:
                                         (7.9)

Recall that inequalities expressed in (7.9) are based on the assumption that the

particle has rectangle shaped cross section which is not true in reality.  Also, the

conditions in (7.9) is for analytical determination whether an individual particle passes or

is retained.  At this point, the analytical determination for an individual partilcal has been

converted to statistical determination for a group of particles. This fact imposes an

additional modification to P* to compensate for inaccuracies caused by irregular shaped

cross section.  Referring to the steps in using sample flatness distribution function stated

previously, multiply P* by a scaling factor called sieving calibration factor, �sv , where

�sv �1.00.  Then conditions for sieving behavior becomes

                                        
�
�
�

�

�

retainedPif

passPif

sv

sv

,:

,:
*

*

��

��
                                          (7.10)

where �sv can be calibrated experimentally for the given sieve size.

7.5 Sieving Phase Analysis

7.5.1 Size Modification for Triangular Shapes

The minor diameter of the shape is regarded as the size that determines the

sieving behavior.  For triangular shaped particles as shown in Fig. 7.8, however, the
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actual sieve size will be greater than the minor diameter, to an extent that may vary

according to the actual shape.  This requires to sort out those triangle shapes, and modify

the minor diameter that is the most vital element to determine passing or staying on a

given sieve.

Figure 7.8 Triangle Shaped Particles

Rather than determine the modifying extent for each triangular particle, the minor

diameter is multiplied by a correction factor, which can be obtained experimentally.  This

factor found to work well is:

                                          )1(min
*
min �	� DD                                                  (7.11)

where

*
minD : modified minor diameter.

    � : a uniformly distributed random number within [0,0.3].
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7.5.2 Sieve Series and Sieving Phase

The same sample population that had been applied to test the volumetric model

was used to determine the calibration factors, �sv .  As stated previously, it consists of

eight batches, whose basic statistics are tabulated in Table 6.1.  The histograms of some

measurements for each batch and for the total sample are included in Appendix II.

The sieve set consists of five sizes: 4.75 mm, 9.50 mm, 12.50 mm, 19.00 mm, and

25.00 mm.  They are stacked with the largest mesh size at the top, with successively

smaller mesh sizes below, as shown in Fig. 7.9.   For the sake of notational convenience,

dsv denotes a sieve of any size.  Note that the particles in investigation are poured in the

top 25.00 mm sieve, falling through onto the next sieve below if not retained.  Sieves are

vibrated and rotated using an automatic sieve shaker.
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                                    Particles

  dsv25.00 =25.00 mm

            dsv19.00 =19.00 mm

             dsv12.50 =12.50 mm

             dsv9.50 =9.50 mm

  dsv4.75 =4.75 mm

Figure 7.9 Physical Sieve Cascade

For a given sieve of size dsv, only those particles whose minor diameter Dmin, are

within the range dsv <Dmin< 2  dsv, are candidates for sieving behavior consideration.

The particles outside this range will be either retained in the upper sieve or pass through

onto the lower sieve.

Fig. 7.10 outlines the overall sieving analysis for the whole prospective sample

population.
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                :   A symbolic curve that means the particle may or may not be retained on the

sieve.

:  The state in which all particles within the corresponding size range are

partially retained, i.e., some pass, some remain in the current sieve.

     : The state in which all particles within the corresponding size range are

absolutely retained.

     : The state in which all particles within the corresponding size range are

partially retained either in the sieve of dsv12.50, or in the sieve of dsv9.50.

Retained probability
1.00

0.00         
          dsv2.36            dsv4.75                                dsv9.50                                                                     dsv19.00

                                                                                dsv12.50

                          4.75       2 4.75        9.50        12.50   2 9.50   2 12.50         19.00         25.00

Overall Particle size (mm)

Figure 7.10 Overview of Sieving Phase Analysis

After all particles in the image scene have been processed, three available

parameters can be used to conduct the vision sieving process: shape, minor diameter, and

estimated mass, denoted as Sshp, Dmin, and 
�

M , respectively.  For N particles in the image
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scene having been processed, a data array can thus be formed ready for vision sieving

processing:

                                 


















�

�


















�

�

�

�

�

��

�

�

NNNshp

NNNshp

shp

shp

MDS

MDS

MDS

MDS

min,,

11min,1,

12min,2,

11min,1,

���                                      (7.12)

The shape parameter gives information about the triangle shaped particles, whose

minor diameter must be modified to correctly relate them to their sieving behavior.

In the algorithm, the sieving starts off with scanning the first column in matrix

(7.12), finding triangles and modifying their diameters. Then the second column is

scanned to group particles by size into bins for the percent passing statistics. The

elements in the third column are assigned to the corresponding “volume bins” (sieves)

suitable to their minor diameters.  At the end of the “binning ” algorithm, the percent

passing is computed as the Superpave specifies according to the formula:

                                                      100

1

1 �

�

�

�

�

�

�

N

w

w

m

k

k

M

M
                                              (7.13)

where

m : the total number of particles retained in the sieve in question.

N :  the total number of particles in the population.
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             kM
�

 : mass of kth  particle in the sieve in question.

            wM
�

 : mass of wth  particle in the population.

The pseudocode of the overall sieving procedure is given in Table 7.1.  Note that

the actual working code can be written in various ways, and the coding presented in the

following pseudo code is not necessarily the optimal one. The major purpose here is to

clearly present the logic thread imbedded in the optical sieving phase.
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Table 7.1 Pseudocode of Sieving Procedure

/* After all particles have been processed, and the matrix of (7.12) is formed */

/* Scan 1st column for triangular shapes. */
for  (each shape element in 1st column)

if  (it is a triangle)
                  -  modify its minor diameter in the 2nd column.
               end
end

/* Scan 2nd column for excluding  particle sizes that are definitely retained in the sieve. */
for  (each minor diameter element in 2nd column)

if  (Dmin� 4.75  or  4.75 2 �Dmin� 9.50  or 12.50 2 �Dmin� 19.00 )
- place its mass into the corresponding sieve that retains it.

end
end

/* Scan 2nd column again for particle sizes that are partially retained in the sieve. */
for  (each minor diameter element in 2nd column)

if (Dmin� 19.00  or  9.50 2 �Dmin� 12.50 2  or 12.50�Dmin� 9.50 2  or …

9.50�Dmin� 12.50  or  4.75�Dmin� 4.75 2 , referring to Fig. 7.10   )
-  compute for its critical flatness Ycrit using Eqn. (7.6)
-  calculate the probability P(Yflat)�Ycrit using Eqn. (7.7)
-  generate a uniformly distributed random number � .

          if  (� � )( critsv YP� , referring to conditions in (7.10) )

-  pass the current sieve.

if   (12.50�Dmin� 9.50 2 )
                                       -  place it into sieve 9.50 mm for testing again.
                                    end /*  end of  “if” condition * /

                         elseif (� > )( critsv YP� , also referring to conditions in (7.10)

                                   -  retained in the current sieve.  Place its mass in this sieve.
                          end   /*  end of  “if” condition * /

               end  /*  end of  “if” condition * /

end   /*  end of  “for” loop * /

/*  Compute for the percent passing  using Eqn  (7.13) * /

7.6 Benchmark

The particle size distribution (gradation) obtained from the vision sieving is

calibrated against the results obtained from mechanically sieving the same sample.  The
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result works as the “benchmark” for the sieving parameter calibration.   The same eight

batches of sample particles were used to obtain the benchmark.

The eight batches of sample particles are mechanically sieved.  Each batch was

sieved ten times in order to achieve better accuracy.  As a result, for each batch, ten

percent passing curves and ten percent retained curves were obtained.  The desired

results, the percent retained and percent passing, can be acquired.  By percent retained, it

means the percent of the particles in terms of volume (or mass) retained on each of the

five sieves.  As an example, Fig. 7.11 (a) and (b) shows the result for batch #4 of percent

retained and percent passing from mechanical sieving, respectively.

(a) percent retained
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(b) percent passing

Figure 7.11 Percent Retained and Percent Passing for Sample Batch #4

As expected, each resultant curve does not coincide with each other.  In other

words, ten times of mechanical sieving come up with ten different results. Two major

reasons may explain these differences.  First, borderline particles may only pass for a

very particular orientation, which may or may not be achieved during the random

tumbling of the sieving process.  Secondly, attrition occurs during the sieving process.

When all the particles are toppling in the enclosure of the vibrating and rotating sieves,

particles are hitting and breaking down each other, inevitably reducing the size and

volume of each particle.  As a consequence, the mass in each sieve decreases as sieving

goes on.  This affects the value of percent retained, and thereby, affects the percent

passing.  Fig. 7.12 shows for sample batch #7 the data scattering for the 9.50 mm, 12.50

mm, and 19.00 mm sieve results.
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Figure 7.12 Mass Change in Sieving Process

To obtain the benchmark, the data points at each sieve size was averaged.  Fig.

7.13 (a) (b) shows the benchmark of percent retained and percent passing, respectively,

for sample batch #4.
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             (a) percent retained                                  (b) percent passing

Figure 7.13 Benchmark for Sample Batch #4

By the same method, the benchmark of all other batches was obtained, and given

in Appendix III.

A sample population of larger size was formed by combining all the particles

from the eight batches The corresponding percent retained and percent passing

benchmark are shown in Fig. 7.14, and the values are listed in Table 7.2.

7.7 Sieving Calibration Factor

Using a large sample population formed by combining all eight batches, the

sieving calibration factor, �sv, as introduced in inequality (7.10), was calibrated to be

                                    �sv=
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�
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�

�

                                                    (7.14)

The calibration factors can be interpreted as follows:

The cross section of the particle is not rectangular. In most cases, the height at

two ends of the minor diameter is shorter than the critical height Hcrit, as illustrated
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previously in Fig. 7.4.  This apparently increases the probability for the particles to pass

the sieve.  �sv�1 accounts for this rounding effect.

For each sieve of different size, there is a different calibration factor value.  All

these factors have been determined by back calculation from the large sample population

with known size distribution.  With the addition of these calibration factors, the sieving

strategy’s conditions expressed in inequality (7.10) becomes semi-empirical, because

they are empirically derived values.  The significance of �sv is that it accounts for

numerous effects such as particle’s cross section shape distribution.  In summary, the

physical significance is to account for combination of the following aspects:

1) The effect of the particle’s cross section shape distribution.  Although there is

no theoretical a priori knowledge about cross section shape distribution

inherent in the used method, it does affect the behavior of particles in the

sieve to pass or be retained.

2) The effects of separation of overlapping and touching particles.  Using the

developed algorithm, the separated particles’ shape and mass are not the same

as they are manually isolated.   This affects the particle’s sieving behavior.

Again, no a priori knowledge is available to determine even statistically how

the sieving behavior will be influenced.

3) The effects caused by vision system errors such as hardware calibration,

software imperfection.

4) The effects of sample population size.
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(a) percent retained                                      (b) percent passing

Figure 7.14 Benchmark for Combined Sample Batches

Table 7.2 Benchmark Values for Combined Sample Batches

Sieve Size (mm)
Type

4.75 9.50 12.50 19.00 25.00

Percent
Retained (%)

28.806 23.996 28.390 18.250 0.000

Percent
Passing  (%)

0.557 29.383 53.385 81.766 100

7.8 Vision Sieving Result

With the calibrated �sv’s, sieving correlation testing conducted.  The samples are

the same as those used for volumetric model testing, i.e., eight batches with a total of

1862 particles. Recall that the benchmark has been available, as shown in Fig. 7.14. The

basic algorithm was written in Table 7.1

Again, a random combination of the images was taken, each of combination’s

constituent image was randomly selected from one different sample batch.  This indicates

that the total number of particles will increase up to N= N1+N2+…+N8 =1862, which is a
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summation of particle number of all eight batches.  Fig. 7.15 illustrates how a random

combination of photo d, a, b, e, b, d, c, a selected from sample batch #1, #2, …, #8

respectively, is formed.
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Figure 7.15 A Random Combination of Sample Batches (dabebdca)

Batch #1  (N1 =345 particles)
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In effect, each random combination represents one “grand” image covering all

1862 particles.  Each constituent image results from a new “shuffling” of the same

sample batch.  Therefore, each random combination of images may be regarded as result

of “grand shuffling” of 1862 particles.

Testing on five grand images was conducted.  This means that 1862 particles were

shuffled five times to produce these five grand images.  On each grand image, all

particles were “optically” sieve ten times, final vision sieving result is taken by averaging

these ten results, and then compare it to the benchmark.

Figures from Fig. 7.16 to Fig. 7.20 demonstrate the results of these five testings.

From the results, it shows that the percent passing residuals are within �3%.  The residual

between the percent passing benchmark and vision sieving percent passing is listed in

Table 7.3.  The error may be contributed to by the following reasons:

1) Simple measurement of the particle minor diameter is not an entirely true

representation of what happens in physical sieving.  Particles that are

somewhat flat can turn diagonally in the sieve and pass a smaller mesh size

than one would suspect from simple size measurements.

2) Error in the calibration factor mm/pixel can contribute to vision sieving error.

3) Accurate measurement of percent passing requires accurate projection of the

volume from the optically measured parameters.  This in practice is

impossible to achieve with extreme accuracy, especially for individual

particles.

4) Error existing in minor diameter estimation for triangular shapes can

contribute to sieving correlation error.
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5) Overlapping and touching particles’ profile shape and volume estimate change

during separation.

6) If the size sample population is not sufficiently large, it will create error in

vision sieving process because a uniformly distributed random number is

involved in determining “pass or retain” for a particle in the sieve.

7) The benchmark itself has certain discrepancies due to particle physical sieving

behavior.
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sieve size (mm)                                                                                    sieve size (mm)

                    (a) percent retianed                                    (b) percent passing residual

(c) cumulative percent passing

Figure 7.16 Sieving Correlation Testing #1

(Combination: image e,e,d,b,c,d,c,e from sample batch #1 to #8, respectively)
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sieve size (mm)                                                                                    sieve size (mm)

                      (a) percent retained                                 (b) percent passing residual

(c) cumulative percent passsing

Figure 7.17 Sieving Correlation Testing #2

(Combination: image c,e,a,c,a,b,d,e from sample batch #1 to #8, respectively)
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sieve size (mm)                                                                                    sieve size (mm)

            (a) percent retained                                   (b) percent passing residual

(c) cumulative percent passsing

Figure 7.18 Sieving Correlation Testing #3

(Combination: image e,d,e,a,a,a,b,c from sample batch #1 to #8, respectively)
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sieve size (mm)                                                                                    sieve size (mm)

                  (a) percent retained                                      (b) percent passing residual

(c) cumulative percent passsing

Figure 7.19 Sieving Correlation Testing #4

(Combination: image b,e,c,e,a,e,e,e from sample batch #1 to #8, respectively)
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                                     sieve size (mm)                                                                                    sieve size (mm)

           (a) percent retained                                 (b) percent passing residual

(c) cumulative percent passsing

Figure 7.20 Sieving Correlation Testing #5

(Combination: image e,d,d,a,c,e,d,b from sample batch #1 to #8, respectively)
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Table 7.3 Testing Residuals

Sieve Size (mm)

4.75 9.50 12.50 19.00 25.00Test
number Percent-Passing Residual (%)

#1 1.0406 -1.6774 -2.8493 -1.2805 0.0000

#2 1.1905 -0.1776 -2.3980 -0.7918 0.0000

#3 1.2950 -0.2743 -1.7304 -0.8218 0.0000

#4 1.1915 -0.0563 -1.9429 0.4042 0.0000

#5 1.2828 -1.1989 -2.9305 0.3992 0.0000

Mean
Error

1.2001 -0.6769 -2.3702 0.4181 0.0000
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8.  SYSTEM PERFORMANCE

8.1 Introduction

The testing results that have been obtained thus far were from the sample

population in which all the particles were separated manually.  In practice, it is

implausible to manually arrange a large number of particles prior to being imaged.

In this chapter, a sample population was arranged in such a way that particle

touching and overlapping occurrences were allowed. The touching and overlapping

particles are separated using the separation algorithm described in chapter 5, then go

through the same process of image analysis as did the samples previously.  The

benchmark of percent passing for the sample tested is obtained from the WVU civil

engineering laboratory.  By comparison of the optical sieving result and the benchmark,

the performance of the system is evaluated.

8.2 Sample Preparation and Discussion

A sample of population of N=1972 particles was prepared for testing the

performance of the developed system.  These particles were broken down into ten sample

groups due to backlight panel dimension limitation.  In each sample group, touching and

overlapping were allowed among particles. For sample group #2, Fig. 8.1 (a) shows the

binary images with some occurrences of touching and overlapping of limited extent,

while (b) shows the corresponding image in which separation was completed.  The

similar figures for all ten groups are given in Appendix IV.
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(a) group #2: particles with touching and overlapping

 

(b) group #2: particles after separation

Figure 8.1 Particles of Sample Group #2
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Some effects caused by separation can be observed after applying the algorithm to

such a large number of particles.  For a few particles, “false cutting” took place, mainly

for particles with a concave shape.  This increases the total number of particles retained

in smaller sieves.  “Miscutting” was noted among a very small number of particles.  By

miscutting, it means that the connected particles are separated, but not at the place they

should be. The reason for miscutting is complex, and is definitely related to the contour

shape of the connected particles.  In most cases, the separating process appears

satisfactory.  The impact on the sieving results caused by separation is assumed to be

insignificant.

To gain some statistical perception of the sample population tested, the histogram

of optically measured minor diameter, estimated flatness, and estimated volume are

presented in Fig. 8.2, Fig. 8.3, and Fig. 8.4, respectively.

Figure 8.2 Histogram of Measured Minor Diameter
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Figure 8.3 Histogram of Estimated Flatness

Figure 8.4 Histogram of Estimated Volume
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8.3 Sample Benchmark

The sample of 1972 particles was mechanically sieved ten times in the laboratory.

Each time the sieving result is expectedly different.  The causes of these differences were

described in section 7.6.  Fig. 8.5 (a) shows the percent retained curves from the ten

sievings, and (b) is the benchmark that is averaged from these ten values at each sieve

size.    Correspondingly, Fig. 8.6 (a) shows the ten percent passing curves, and (b) works

as the percent passing benchmark for the sample population that will be sieved optically.

(a) percent retained curves for sieving 10 times
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(b) averaged curve as the benchmark

Figure 8.5 Percent Retained Benchmark

(a) percent passing curves for sieving 10 times
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(b) averaged curve as the benchmark

Figure 8.6 Percent Passing Benchmark

The statistics of the mechanical sieving is tabulated in the table below.

                        Table 8.1 Statistics of the Benchmark (Sieving of 10 times)

Percent Retained
(%)

Percent Passing
(%)

Sieve size
(mm)

Mean Variance Sieve size
(mm)

Mean Variance

25.00 0.00 0.00 25.00 100.00 0.00

19.00 16.51 0.10 19.00 83.49 0.10

12.50 32.65 0.08 12.50 50.84 0.03

9.50 29.06 0.03 9.50 21.78 0.02

4.75 21.06 0.03 4.75 0.72 0.00
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8.4 Results Comparison

To establish confidence in the optical sieving system, the technique must yield

results readily comparable to mechanical sieving methods.

For these separated 1972 particles, the same sieving procedure was used as had

been for those samples described in section 7.8.  The same sieving calibration factors

were used.  The sample was “optically” sieved 10 times, and the mean of the results was

taken as the test value.

The results are listed in Table 8.2 and Table 8.3.  Fig. 8.7 and Fig. 8.8 show the

graphical comparison.

Table 8.2 Percent Retained Result Comparison

Sieve Size  (mm)

4.75 9.50 12.50 19.00

Benchmark Value  (%)

21.06 29.06 32.65 16.51

Comparison and Residual

Test
-ing

  #

Testing
result

Residual
Testing
result

Residual
Testing
result

Residual
Testing
result

Residual

1
2
3
4
5
6
7
8
9
10

23.33
22.16
22.34
23.45
22.95
22.55
22.19
23.06
22.59
22.49

2.27
1.10
1.28
2.39
1.89
1.49
1.13
2.00
1.53
1.43

27.85
29.47
28.95
28.77
28.08
29.27
29.59
28.59
29.21
28.64

-1.21
 0.41
-0.11
-0.29
-0.98
 0.21
 0.53
-0.47
 0.15
-0.42

33.91
31.10
32.09
32.62
34.12
32.67
31.95
31.26
32.12
33.16

1.26
-1.55
-0.56
-0.03
 1.47
 0.02
-0.70
-1.39
-0.53
 0.51

13.28
15.45
14.91
13.63
13.27
13.85
14.59
15.47
14.40
13.97

-3.23
-1.05
-1.60
-2.87
-3.24
-2.65
-1.91
-1.04
-2.11
-2.54

Average Values

22.71 1.65 28.84 -0.22 32.50 -0.15 14.28 -2.22
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Figure 8.7 Percent Retained Correlation

Table 8.3 Percent Passing Result Comparison

Sieve Size  (mm)

4.75 9.50 12.50 19.00

Benchmark Value

0.72 21.78 50.84 83.49

Comparison and Residual  (%)

Test
-ing

  #

Testing
result

Residual
Testing
result

Residual
Testing
result

Residual
Testing
result

Residual

1
2
3
4
5
6
7
8
9
10

1.63
1.82
1.71
1.53
1.58
1.65
1.68
1.62
1.68
1.74

0.90
1.10
0.99
0.81
0.86
0.93
0.95
0.89
0.95
1.02

24.96
23.97
24.05
24.98
24.53
24.20
23.87
24.68
24.27
24.23

3.17
2.19
2.26
3.19
2.74
2.42
2.08
2.90
2.48
2.45

52.81
53.44
53.00
53.75
52.61
53.48
53.45
53.28
53.48
52.87

1.96
2.60
2.15
2.90
1.77
2.63
2.61
2.43
2.64
2.03

86.72
84.55
85.09
86.37
86.73
86.15
85.41
84.53
85.60
86.03

3.23
1.05
1.60
2.87
3.24
2.65
1.91
1.04
2.11
2.54

Average Values

1.66 0.94 24.37 2.59 53.22 2.37 85.72 2.22
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Figure 8.8 Percent Passing Correlation

The vision sieving results of percent passing are all over-estimated after the ten

algorithm executions, but the residuals all are under 3 points, which is reasonably

acceptable. Several literature reports concerning video grading point out that sample

preparation and segmentation methods are a primary source of error.  There can be

numerous causes that contribute to the testing error, as stated in section 7.8.  To analyze

aggregates samples comprised of a mix of widely different particles, sorting the sample

into groups of similar size is suggested [33, 39].
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9. CONCLUSIONS AND FUTURE RESEARCH

9.1 Conclusions

In this dissertation, the feasibility was investigated of using a non-contact optical

technique to provide information on crushed limestone aggregates’ gradation. The

research was conducted mainly on the following three areas and have contributed some

insights to prospective application of optical sieving which is to replace relatively slower

mechanical methods.

First, particles are often touching and overlapping in the imaged scene.  One

major contribution of this work has been the development of a simple and effective

method to discriminate the touching and overlapping particles in the imaged scene.

Second, standards for classifying particles are generally based on size and mass.

Mass needs to be known in order to perform gradation.  A second major contribution is

the development of a volume model that relates variables available from 2-D aggregate

image to particle volume.  Assuming constant density, mass is estimated from volume.

Third, as Superpave stipulates, percent-passing curve is used to measure proper

mixture of particles of varying sizes.  The conventional way of obtaining this curve is

based on mechanical sieving.  A contribution made in this work is that using statistical

analysis, a correlation between mechanical and optical sieving has been constructed.

9.2 Future Research

There are three major areas that are related to this research and may need to be

studied further.
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First, is there a possibility to apply the same technique to fine particles?  It is

believed that the processes developed in this research project constitute a feasible

approach to the problem of optical sieving of fine aggregates.  Although the methods in

this research were only demonstrated for the coarse aggregates, it is believed that similar

techniques could be applied to fine aggregates by positioning the camera closer to the

particles or by using a longer focal length lens to obtain greater magnification, or simply

by using a higher resolution camera.  It is unlikely that any single scanning technology

can yield the desired accuracy for measuring particle sizes over a very broad range. For

example, one may need two different grading station designs; one optimized for scanning

fine aggregates and a second optimized for scanning coarse aggregates [33]. Since fine

particles and dust tend to agglomerate in piles several layers thick, some additional

methods may be necessary to evaluate the fines.

Second, specifications are given to coarse aggregate angularity in the Superpave

guidebook.  In this work, significant effort to this subject has not been devoted.

However, it is reasonable to believe that using the similar methods developed in this

work for particle shape characterization, automated means to measure coarse aggregate

angularity could be feasible.

Consideration of the source of system error is a broad and important topic. There

are many factors inherent in the measuring system that adversely affect its accuracy.  Of

interest would be studies of various types of aggregates and their characteristics,

requirements for camera resolution, sampling methods and limitation, and refinements of

the volume and sieving models. N. Maerz has investigated some aspects of system error

in [25], but the topic remains a rich one for continuing the work.
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The approach developed in this work was based on a relatively low cost vision

system and sophisticated image analysis.  The algorithms were tested on a limited

number of samples, and have produced encouraging results.  The approaches described in

this dissertation are theoretically sound and practically plausible.  The research shows

that the automation of coarse aggregate inspection is a feasible idea.
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APPENDIX I

Modeling Sample Statistics
(Total of 501 particles)

Area :    Projected area (mm2)
Aps.  :   Aspect ratio
Dmaj  :   Major diameter (mm)
Dmin  :   Minor diameter (mm)
MNsig:   Non-normalized signature mean (mm)
VRsig :   Non-normalized signature variance  (mm2)
Mass:    Particle actual mass (g)

                                              Area     Asp.     Dmaj     Dmin    MNsig   VRsig    Mass

79.7623    1.0797    9.0093    8.3439    4.3932   0.3751    0.4110
43.6570    2.1019    8.8433    4.2073    3.1808    0.9354    0.2040
50.7597    1.0618    6.8671    6.4672    3.3289    0.2773    0.2940
63.7812    1.2011    8.7778    7.3084    3.8873    0.3601    0.3900
37.1462    1.2040    5.5286    4.5919    2.6133    0.1777    0.2640
50.1678    1.4524    8.0294    5.5286    3.4113    0.4535    0.2600
44.8408    1.2620    7.4402    5.8956    3.0841    0.2023    0.2780
53.1272    2.1019    8.8433    4.2073    3.5668    0.9646    0.2720
33.0030    1.0697    4.9120    4.5919    2.4312    0.1575    0.2420
22.3490    2.5000    3.2755    1.3102    1.7460    0.2320    0.2360
36.5543    1.3173    5.7814    4.3889    2.6613    0.1340    0.3060
31.2273    2.4512    6.4672    2.6384    2.4935    0.7110    0.2220
56.0867    2.9265   10.8826   3.7186    3.8627    1.8787    0.6000
31.8192    2.0487    6.4672    3.1568    2.5225    0.5574    0.1640
45.4327    1.4717    7.7661    5.2769    3.1783    0.3998    0.1650
37.1462    1.4626    6.2992    4.3068    2.7250    0.3054    0.1880
57.2705    1.1776    7.4180    6.2992    3.5148    0.2784    0.3100
49.5759    1.2620    7.4402    5.8956    3.3514    0.3253   0.3820
62.5975    1.6759    8.8433    5.2769    3.9591    0.8836    0.4890
36.5543    1.4626    6.2992    4.3068    2.7048    0.3180    0.2820
40.6975    2.5546    8.0644    3.1568    3.0127    0.7156    0.2510
44.2489    2.1019    8.8433    4.2073    3.1931    0.7903    0.1920
69.7001    1.3119    8.8990    6.7834    4.1040    0.3806    0.4270
76.8028    1.8238   11.5149    6.3136    4.4950    1.3156    0.5300
74.4353    1.0000    8.0294    8.0294    4.1791    0.2462    0.3160
41.2894    1.9585    7.3573    3.7567    2.9718    0.6607    0.2520
48.9840    1.1667    7.6806    6.5834    3.2703    0.2611    0.4100
36.5543    1.2040    5.5286    4.5919    2.6008    0.1789    0.3190
60.8218    1.2184    7.6747    6.2992    3.7048    0.4201    0.4940
67.3326    2.3898   11.7388    4.9120    4.2317    1.6890    0.5170
47.8002    1.4000    7.6806    5.4861    3.2664    0.3090    0.4040
51.3516    1.2287    8.0888    6.5834    3.3832    0.3439    0.3460
57.2705    1.3723    8.5279    6.2145    3.6654    0.5241    0.3990
50.7597    2.6974   10.0305    3.7186    3.6012    1.5517    0.3100
47.8002    1.6245    8.5723    5.2769    3.3323    0.7259    0.3520
50.7597    1.7544    8.0559    4.5919    3.2774    0.5542    0.2630
33.5949    1.5000    6.5834    4.3889    2.5218    0.1847    0.2130
41.8813    2.8190    8.8990    3.1568    3.2486    1.4370    0.3920
70.2920    1.6189   10.2212    6.3136    4.2535    0.7799   0.3850
54.3110    1.3723    8.5279    6.2145    3.4875    0.3252    0.3290
40.6975    2.1593    8.0294    3.7186    3.0389    0.9985    0.2570
47.8002    1.6759    8.8433    5.2769    3.3514    0.6560    0.3140
52.5353    1.0769    6.7834    6.2992    3.3669    0.1805    0.3740
37.7381    1.4626    6.2992    4.3068    2.8003    0.3753    0.2700
46.6164    1.6196    7.4372    4.5919    3.0853    0.3686    0.2120
43.6570    1.1204    6.3136    5.6350    3.0026    0.2523    0.3320
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33.0030    1.2174    5.1220    4.2073    2.4590    0.1752    0.1760
63.1894    1.3674    8.6136    6.2992    3.7665    0.2506    0.5550
43.0651    1.0000    6.2992    6.2992    2.9938    0.1465    0.3910
43.0651    1.0000    6.2992    6.2992    2.9713    0.1298    0.2550
46.0246    1.4744    8.0888    5.4861    3.2029    0.4393    0.3420
30.0435    1.4047    5.2769    3.7567    2.2732    0.1943   0.3060
53.1272    2.2686    9.7704    4.3068    3.6921    1.2996    0.5570
41.8813    1.2476    6.5834    5.2769    2.9295    0.2953    0.2260
30.6354    1.5854    5.8956    3.7186    2.3848    0.2750    0.2000
32.4111    1.4633    5.4413    3.7186    2.4596    0.2747    0.2770
37.7381    1.2040    5.5286    4.5919    2.6308    0.1916    0.2800
36.5543    1.0000    5.4413    5.4413    2.6446    0.1123    0.3500
51.9434    3.4473   10.8826    3.1568    3.7306    2.0425    0.2010
60.8218    1.3344    8.9341    6.6955    3.7582    0.4630    0.3450
35.9624    1.8005    6.6955    3.7186    2.6568    0.4279    0.2670
 48.3921    1.6347    8.0294    4.9120    3.3379    0.6171    0.2570
 49.5759    2.4697    9.1838    3.7186    3.4110    1.0659    0.2140
 67.9245    2.6033   12.3273    4.7352    4.2931    2.2148    0.5150
 26.4922    1.3333    4.3889    3.2917    2.1192    0.2644    0.1270
 33.0030    1.4633    5.4413    3.7186    2.4967    0.1826    0.1600
 44.2489    1.4582    7.1625    4.9120    3.1100    0.3364    0.3870
 36.5543    1.3084    5.6350    4.3068    2.7054    0.3693    0.2610
 18.7976    1.0709    3.1568    2.9478    1.5118    0.1485    0.1700
 30.6354    1.0000    4.5919    4.5919    2.2942    0.1235   0.2220
 40.6975    1.0000    5.4413    5.4413    2.8456    0.2836    0.3210
 57.8623    1.6096    8.8990    5.5286    3.7418    0.6895    0.2470
 64.9650    2.0420   10.0305    4.9120    4.0201    0.9648    0.5710
 54.9029    1.0769    6.7834    6.2992    3.4535    0.1838    0.1860
 30.0435    1.4633    5.4413    3.7186    2.3338    0.2424    0.1620
 46.6164    1.5296    7.5134    4.9120    3.2138    0.3943    0.3240
 35.3705    1.1182    5.9007    5.2769    2.5878    0.1315    0.1350
 38.9219    1.4626    6.2992    4.3068    2.7973    0.3025    0.2180
 55.4948    2.0046    9.6398    4.8088    3.6847    0.9862    0.2860
 42.4732    1.3850    7.3084    5.2769    2.9755    0.2836    0.1770
 38.3300    1.0000    5.4413    5.4413    2.7366    0.1815    0.2730
 69.7001    1.2922    8.8433    6.8436    4.1182    0.5430    0.2860
 35.9624    1.2476    6.5834    5.2769    2.6198    0.1478    0.4200
 52.5353    1.4524    8.0294    5.5286    3.4573    0.4545    0.3340
 47.2083    1.7474    8.4031    4.8088    3.3484    0.7351    0.3450
 38.9219    2.1949    8.1619    3.7186    2.9864    1.0482    0.1800
 31.2273    1.9954    6.2992    3.1568    2.4774    0.6235    0.1510
 57.2705    2.0420   10.0305    4.9120    3.8060    1.1974    0.3820
 31.2273    1.0000    4.5919    4.5919    2.3441    0.1667    0.1780
 48.9840    1.0000    6.2992    6.2992    3.2433    0.2002    0.3010
 69.7001    2.0832   11.5174    5.5286    4.3162    1.6979    0.3750
 66.1488    1.6551   10.4496    6.3136    4.0515    0.8678    0.5930
 76.8028    2.8774   12.3923    4.3068    4.5885    2.2085    0.3260
 60.8218    1.5982    8.6963    5.4413    3.6759    0.5610    0.3850
 60.8218    1.0000    7.1625    7.1625    3.7306    0.2956    0.2880
 53.7191    1.6616    8.1619    4.9120    3.6038    0.7141    0.3610
 24.7165    1.0000    3.5812    3.5812    1.9372    0.1008    0.2080
 43.0651    1.5546    6.6955    4.3068    3.0421    0.4013    0.2820
 67.3326    1.5217   10.4496    6.8671    4.1082    0.8122    0.4110
 79.7623    1.0033    8.0559    8.0294    4.4157    0.4360    0.4070
 33.0030    1.0697    4.9120    4.5919    2.4179    0.1533    0.1650
 33.5949    1.9954    6.2992    3.1568    2.5905    0.5235    0.1510
 36.5543    1.0000    5.4413    5.4413    2.6449    0.1179    0.2780
 57.2705    1.8697    9.1838    4.9120    3.7085    0.6413    0.2920
 61.4137    1.8143   10.0305    5.5286    3.9523    1.0023    0.2100
 60.8218    1.0000    7.5134    7.5134    3.7840    0.3584    0.3200
 47.2083    2.0663    8.8990    4.3068    3.3933    1.0446    0.1650
 46.6164    2.3931    8.8990    3.7186    3.3300    1.1587    0.1860
 44.2489    1.6631    7.1625    4.3068    3.0881    0.3955    0.3050
 35.3705    1.1182    5.9007    5.2769    2.5878    0.1315    0.2060
 56.6786    1.2059    8.4147    6.9779    3.6144    0.4927    0.3510
 44.8408    1.0709    6.3136    5.8956    3.0628    0.2454    0.4020
 41.8813    1.9261    7.1625    3.7186    3.0241    0.5558    0.3260
 54.3110    1.4524    8.0294    5.5286    3.5507    0.4853    0.3670
 61.4137    1.0357    7.4180    7.1625    3.6906    0.1546    0.3200
 54.9029    2.0663    8.8990    4.3068    3.6390    0.9993    0.3190
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34.7786    1.0697    4.9120    4.5919    2.5139    0.1827    0.2710
35.9624    2.0487    6.4672    3.1568    2.7046    0.4961    0.2830
64.3731    1.0434    8.4147    8.0644    3.8273    0.2905    0.3370
52.5353    1.8117    8.8990    4.9120    3.5763    1.0077    0.3250
46.0246    1.4876    8.7778    5.9007    3.1620    0.5225    0.2760
47.2083    2.0358    9.6398    4.7352    3.4471    1.1268    0.2760
67.3326    1.7163    9.3388    5.4413    3.8948    0.6192    0.4980
58.4542    2.6742   11.5174    4.3068    4.0483    2.1783   0.5730
83.9055    3.1126   14.7389    4.7352    5.0951    3.2102    0.8110
54.9029    1.9395    9.1838    4.7352    3.6570    0.8641    0.3090
33.5949    2.2689    7.1625    3.1568    2.6538    0.8001    0.2760
51.9434    2.2912    9.6398    4.2073    3.5747    1.1322    0.4320
48.3921    2.4348   10.2441    4.2073    3.4401    1.2769    0.3730
41.8813    2.2438    8.3439    3.7186    3.1032    0.9808    0.3240
57.8623    1.6313    9.0187    5.5286    3.7141    0.5357    0.3490
53.1272    1.0256    6.8671    6.6955    3.4124    0.1597    0.3260
43.6570    1.0709    6.3136    5.8956    2.9910    0.2679    0.3280
59.0461    1.9316   10.2212    5.2916    3.8183    0.9765   0.4050
37.7381    1.4626    6.2992    4.3068    2.7547    0.3194   0.1860
62.0056    2.0420   10.0305    4.9120    3.9066    1.0494   0.5120
66.1488    1.7673    9.7704    5.5286    4.0812    0.9401    0.5220
38.9219    1.0000    5.4413    5.4413    2.7532    0.1187    0.2040
40.6975    1.3690    6.5834    4.8088    2.8889    0.2770    0.3460
40.1057    1.2040    5.5286    4.5919    2.8185    0.2356    0.2820
44.8408    1.4773    6.7834    4.5919    3.0272    0.2606    0.3270
97.5190    1.3237   10.6284    8.0294    4.9230    0.6314    1.0380
122.3783    3.1299   18.3675    5.8685    6.2892    5.2102   1.2680
72.6596    1.0000    8.0644    8.0644    4.2074    0.3274    0.7870
54.3110    1.8938    8.6963    4.5919    3.4368    0.8696    0.5170
128.2972    1.5572   14.3007    9.1838    5.8036    1.0903   0.8830
98.1109    1.1434   10.1751    8.8990    5.0490    0.6294    0.6040
45.4327    1.1608    6.8436    5.8956    3.1137    0.2472    0.2860
73.2515    1.0000    8.3439    8.3439    4.2068    0.3146    0.8790
95.1514    3.5566   15.3177    4.3068    5.3553    3.8780    1.1410
54.9029    1.3708    8.0888    5.9007    3.5325    0.3817    0.4320
122.9702    1.8231   14.6214    8.0202    5.9582    2.2441  1.0310
82.7217    1.4051   10.4496    7.4372    4.5683    0.5869    0.9590
93.9676    1.2036    9.8240    8.1619    4.8075    0.3008    1.1830
53.1272    1.4238    7.5134    5.2769    3.4675    0.5402    0.5170
118.2351    1.7139   14.3007    8.3439    5.6099    1.4745   1.0670
69.1083    1.0000    8.0294    8.0294    4.0068    0.1911    0.2800
98.1109    1.5763   12.7118    8.0644    5.1119    1.1307    0.9050
157.2998    3.3876   21.9086    6.4672    7.1604    8.2957   1.3560
72.0677    1.9533   10.6284    5.4413    4.1481    1.1642     0.6600
105.2135    1.3094   12.6220    9.6398    5.1861    0.5905   0.5620
82.7217    1.0000    8.8990    8.8990    4.4716    0.3329    0.5060
124.1540    1.1827   12.0890   10.2212    5.7300    0.5339  0.6500
72.6596    1.0120    8.4437    8.3439    4.1994    0.4167    0.8430
99.8865    1.0000   10.6434   10.6434    5.0043    0.4043    1.2490
80.3542    1.8718   11.5174    6.1531    4.6089    1.3237    0.6800
80.3542    1.9163   12.0989    6.3136    4.7217    1.8847    0.6550
62.5975    1.0357    7.4180    7.1625    3.7537    0.3230    0.5900
48.9840    1.1101    7.3084    6.5834    3.2388    0.2388    0.3540
59.6380    1.0000    7.1625    7.1625    3.6795    0.1713    0.5200
111.7243    1.0000   12.0989   12.0989    5.3546    0.3968  0.7970
63.7812    1.6056    9.8796    6.1531    4.0123    0.6731    0.5050
80.9460    1.0000    8.8990    8.8990    4.4364    0.2540    0.6450
98.7027    3.5680   17.5257    4.9120    5.8114    5.6451  0.8890
56.6786    1.5167    9.6398    6.3559    3.6931    0.7591    0.7870
76.2109    1.3768   10.2441    7.4402    4.3723    0.6003    0.8580
72.6596    2.5648   12.5983    4.9120    4.5287    2.2169    0.5890
52.5353    1.3633    7.4180    5.4413    3.3213    0.3117    0.5370
92.1920    1.9680   12.7275    6.4672    4.9321    1.5020    0.9380
81.5379    2.0505   12.0890    5.8956    4.5949    1.2627    0.5450
169.1376    1.6615   17.3625   10.4496    6.8799    1.8186  1.0680
75.6190    1.5690   10.6434    6.7834    4.3507    0.7751    0.4840
91.0082    1.0034    9.2154    9.1838    4.7871    0.4857    0.8820
115.8675    2.1039   15.0692    7.1625    5.5192    2.5726  1.0780
80.9460    1.5741   11.0096    6.9943    4.5338    0.8869    0.4130
56.0867    1.0000    7.1625    7.1625    3.5215    0.1204    0.4120
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 80.3542    1.2605    9.2154    7.3107    4.4068    0.5238    0.8500
 86.8649    1.7530   11.7369    6.6955    4.6776    1.0261    0.4640
 88.6406    1.3237   10.6284    8.0294    4.6686    0.5023    0.9980
 84.4974    1.4229   11.0504    7.7661    4.6623    0.8694    1.0230
 72.0677    1.0033    8.0559    8.0294    4.1272    0.3597    0.7750
153.1566    2.4466   20.5592    8.4031    6.9945    4.2900    1.7210
127.1135    1.5792   16.1776   10.2441    5.9888    1.9654    1.4900
147.8296    2.5211   18.4308    7.3107    6.4370    4.3321    1.0570
 57.2705    2.0535    9.8750    4.8088    3.6762    0.9261    0.4060
 67.9245    1.0000    8.5723    8.5723    4.0060    0.3476    0.7900
 86.8649    1.4728   10.7670    7.3107    4.6960    0.7470    0.5360
 55.4948    1.8938    8.6963    4.5919    3.4895    0.9060    0.5340
112.3162    1.1317   11.0571    9.7704    5.3243    0.3272    0.6100
 95.7433    2.4849   13.5210    5.4413    5.0637    2.6781    0.9050
 67.3326    1.7163    9.3388    5.4413    3.9201    0.7698    0.4730
 54.9029    2.4713   10.6434    4.3068    3.7807    1.6268    0.5260
 44.8408    1.6196    7.4372    4.5919    3.0625    0.4546    0.5050
 69.1083    1.0357    7.4180    7.1625    3.9841    0.1912    0.4710
116.4594    2.8925   17.7980    6.1531    6.0134    4.7829    0.8650
 85.0893    1.5438   11.0571    7.1625    4.5573    0.8167    0.6690
 85.6812    2.0060   13.7757    6.8671    4.9237    2.0698    0.6700
105.2135    1.6851   11.9022    7.0632    5.3080    1.1652    0.8640
 76.2109    1.3337   10.0209    7.5134    4.3029    0.3980    0.6930
 70.2920    2.9252   12.5983    4.3068    4.5139    2.6451    0.6220
 63.7812    2.3290   10.0305    4.3068    4.0035    1.1576    0.3670
120.0108    2.4082   15.1698    6.2992    5.6529    2.8124    1.0490
 63.7812    1.3674    8.6136    6.2992    3.7999    0.3973    0.5770
118.8270    1.6250   14.2640    8.7778    5.6956    1.5141    0.6620
 87.4568    1.5318   11.2700    7.3573    4.7695    1.0591    0.4430
 73.2515    1.8544   10.8826    5.8685    4.3136    1.0369    0.3310
 67.3326    2.3296   12.3273    5.2916    4.3325    2.1516    0.4060
128.2972    1.9826   14.2005    7.1625    5.7744    2.2621    1.2750
 69.1083    1.1651    8.5723    7.3573    4.0988    0.4765    0.7530
 68.5164    1.5615   10.2796    6.5834    4.1483    0.6278    0.5820
 53.7191    1.0221    6.8436    6.6955    3.4504    0.2299    0.6650
 65.5569    1.4119    9.8750    6.9943    3.9971    0.4907    0.4850
127.7053    1.5318   12.9345    8.4437    5.9032    1.1644    0.9290
120.6027    1.4357   12.9345    9.0093    5.8036    1.6456    0.4750
108.7649    1.7631   13.9559    7.9153    5.4734    1.4735    0.6470
129.4810    2.1013   16.9278    8.0559    6.2150    3.0732    0.5330
101.0703    1.3750   12.0695    8.7778    5.1958    0.8500    0.9400
 95.1514    1.0000    9.8796    9.8796    4.8781    0.3659    1.1040
160.8512    1.4083   14.4265   10.2441    6.9231    3.3571   1.1130
112.3162    1.7557   14.1440    8.0559    5.5926    1.6225    1.0800
141.9107    1.4601   15.2575   10.4496    6.3162    1.3339    1.7830
114.6838    1.1245   11.1603    9.9249    5.5244    0.5555    0.7640
 83.9055    1.0831    8.6963    8.0294    4.5996    0.7168    0.6710
 72.0677    1.0033    8.0559    8.0294    4.0961    0.2893    0.4330
 73.8434    1.7298   10.6434    6.1531    4.3595    0.9276    0.2720
 77.9866    1.5848    9.9829    6.2992    4.2729    0.5188    0.6050

145.4620    1.4168   14.2751   10.0753    6.3505    1.3536    1.6020
 69.1083    1.0000    8.1619    8.1619    4.0320    0.2186    0.7120
136.5837    1.8083   14.5193    8.0294    5.9676    1.9360    1.8280
 85.0893    1.6873   10.6284    6.2992    4.4682    0.9145    0.4890
160.2593    1.7087   17.9611   10.5114    6.8611    2.9235    1.3810
 86.8649    1.7618   12.0989    6.8671    4.8367    1.5427    0.6270
 86.8649    1.0284   10.5114   10.2212    4.6554    0.3932    0.7240
136.5837    2.1622   17.3411    8.0202    6.3827    3.4223    0.6100
134.8080    1.0439   13.1384   12.5857    5.9650    0.5768    1.2600
120.6027    1.5383   12.3923    8.0559    5.7234    1.0930    0.6210
156.1160    1.0000   12.9345   12.9345    6.5020    0.6826    1.6040
238.3887    2.7158   24.1677    8.8990    8.3593    7.8828    2.0820
105.2135    1.7631   13.9559    7.9153    5.4010    2.0249    1.1520
 80.3542    1.5690   10.6434    6.7834    4.5243    0.7366    0.7510
182.7511    1.2655   15.3107   12.0989    7.1217    1.3136    3.8620
156.7079    2.5239   20.2421    8.0202    7.0573    5.0621    1.5620
 86.8649    1.3938    9.9829    7.1625    4.5482    0.5018    0.8300

157.2998    1.1924   15.3490   12.8722    6.6275    1.4381    2.4470
 76.2109    1.7899   11.2750    6.2992    4.2974    1.0705    0.6260
 86.8649    1.7093   10.7670    6.2992    4.6279    1.0659    0.6360
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 72.6596    1.3806    8.6963    6.2992    4.1058    0.4990    0.3330
108.1730    1.0000   11.7388   11.7388    5.2987    0.4603    1.2190
 83.3136    1.1477    9.2154    8.0294    4.4895    0.4281    0.6760
 64.9650    1.4546    9.1838    6.3136    4.0058    0.8988    0.6020
122.9702    1.9311   14.3249    7.4180    5.9500    2.3281    1.2670
151.9728    1.4082   14.7147   10.4496    6.4686    1.3254    1.6760
 89.8244    1.1535   10.5942    9.1840    4.8459    0.8047    0.8080
 88.0487    1.1350    9.4705    8.3439    4.6632    0.2890    0.9320
 75.0271    1.0000    8.0294    8.0294    4.2545    0.3175    0.3860
135.3999    1.2171   12.8947   10.5942    6.1248    0.9791  1.2350
 73.8434    1.8075   10.4496    5.7814    4.3545    1.0245    0.3710
106.9892    2.7984   15.4710    5.5286    5.6280    3.2864    0.8800
103.4379    1.5116   13.8828    9.1840    5.3700    2.0040    1.3090
 55.4948    1.6428    8.4147    5.1220    3.6611    0.7764    0.5750
112.9081    1.4087   12.5857    8.9341    5.4463    0.6789    1.4170
147.2377    1.2629   13.9559   11.0504    6.3830    1.1420    0.8820
104.0297    1.1724   10.7670    9.1838    5.1168    0.6026    1.0210
133.0323    1.3361   13.6872   10.2441    5.9262    1.0655    1.0970
135.3999    1.3689   15.5176   11.3361    6.0934    1.3459    1.0030
125.9297    1.8997   15.3661    8.0888    5.8985    1.8637    0.4500
 94.5595    1.3938    9.9829    7.1625    4.8026    0.8350      1.1420
 44.8408    1.4582    7.1625    4.9120    3.1474    0.4339   0.5360

111.7243    1.3075   11.5628    8.8433    5.3552    0.4970    1.3400
146.0539    2.0132   17.3411    8.6136    6.5336    3.0532    1.1470
143.0945    1.3097   14.6168   11.1603    6.2917    1.3589    1.5340
280.4129    1.4872   19.7317   13.2678    8.7393    1.7457    3.0610
304.6804    1.2095   20.3264   16.8063    9.4210    1.5487    4.1600
262.0643    1.1998   18.2270   15.1911    8.4743    0.8011    5.0950
256.1454    1.5802   19.7183   12.4785    8.4284    2.3970    4.3470
291.0669    1.5797   24.2664   15.3612    9.4516    4.3773    5.4410
193.9970    1.0000   16.7750   16.7750    7.3451    1.0168    1.9110
228.3266    2.4813   24.8890   10.0305    8.4393    7.7350   1.9320
138.9512    1.4337   14.0082    9.7704    6.0090    0.7346    1.9450
295.8020    1.4380   19.0793   13.2678    9.0719    2.6343    3.5680
416.5476    1.5943   27.3336   17.1445   11.1546    4.3778    6.3480
299.9453    1.6840   22.3429   13.2678    9.1885    4.3493    2.8850
279.8210    1.3292   19.9659   15.0207    8.8602    1.4852    3.4930
199.3240    1.3636   17.9545   13.1667    7.5776    1.4872    3.0340
339.6019    1.0000   19.5409   19.5409    9.8057    0.7566    4.9470
183.3430    2.0245   18.5929    9.1838    7.2541    3.4912    1.8700
156.1160    1.6469   16.1786    9.8240    6.6206    1.6480    3.1620
231.8779    1.2636   19.2795   15.2575    8.1593    1.5376    4.2230
200.5078    2.0375   20.3398    9.9829    7.7205    3.5845    2.8950
263.8400    1.5252   20.6226   13.5210    8.8221    2.8419    2.8310
299.9453    1.2684   21.1665   16.6879    9.2899    1.9715    3.8300
147.8296    1.8638   16.5857    8.8990    6.3042    2.4060    1.5020
176.8322    1.2881   14.8360   11.5174    6.8609    0.5728    1.7210
128.2972    1.0647   12.0695   11.3361    5.9320    0.7837    1.4950
186.3024    1.0725   15.1698   14.1440    7.0951    0.3969    1.3030
143.6864    1.4582   14.3249    9.8240    6.3319    1.2873    1.0850
143.0945    1.1478   13.2197   11.5174    6.1067    0.6325    1.1470
325.3965    1.0940   20.5308   18.7673    9.7433    1.1664    5.6810
214.1212    1.4107   18.6006   13.1852    7.8445    1.5786    1.9300
214.1212    1.6435   18.5306   11.2750    7.8287    1.9900    3.1500
173.8727    1.6667   16.4584    9.8750    7.1676    2.4274    2.2430
159.6674    2.4812   19.9000    8.0202    7.1265    5.5197    1.6130
398.7909    1.8503   29.0713   15.7114   11.1853    6.0729    9.0520
230.1023    1.0239   16.8875   16.4939    8.0816    1.0446    4.7610
167.9538    1.2941   16.3346   12.6220    6.8399    1.5287    1.3050
268.5751    1.2373   18.5929   15.0267    8.8129    2.2491    2.2800
127.1135    1.0593   11.2750   10.6434    5.7089    0.2168    1.7100
124.1540    1.7636   15.1911    8.6136    5.9472    2.1015    0.8450
176.2403    1.8642   17.1795    9.2154    7.1428    2.7149    2.5200
245.4914    1.1267   16.2913   14.4596    8.4939    2.2017    4.0500
289.2912    2.5732   25.1415    9.7704    9.3025    8.6492    3.7100
284.5561    1.0329   17.3927   16.8389    8.9552    1.1641    2.2700
286.3318    1.0326   18.7847   18.1915    9.0178    0.7478    3.8030
237.2049    1.7153   21.2568   12.3923    8.2121    3.9021    2.9000
240.7563    1.2500   19.3971   15.5176    8.3865    2.3694    4.3000
333.0911    1.2251   19.1725   15.6503    9.7797    1.6583    7.6170
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160.8512    1.0668   13.2197   12.3923    6.5257    0.3560    2.5230
227.7347    1.0000   15.5323   15.5323    7.9923    0.6492    4.0220
254.9616    1.5853   23.1716   14.6168    8.7629    3.1614  3.5210
193.4051    1.6755   17.7327   10.5833    7.4357    2.2669  2.6130
167.3620    1.2042   13.8693   11.5174    6.6220    0.6591  1.6630
148.4215    1.8160   17.2172    9.4811    6.6099    2.6152  2.1730
238.9806    1.4551   17.6054   12.0989    8.2170    2.2423  2.2680
224.7753    1.0000   18.4793   18.4793    7.9968    1.2383  1.8400
109.9486    1.0217    9.9829    9.7704    5.2791    0.2405  1.7200
207.6105    1.7000   18.6529   10.9723    7.9201    3.7296  2.1400
307.0479    1.1176   19.3807   17.3411    9.3653    1.5228  5.4370
273.9021    1.0000   19.2128   19.2128    8.8108    0.9249  4.0450
156.7079    1.0941   14.4265   13.1852    6.5729    0.8417  2.2480
315.9263    1.1885   22.3384   18.7953    9.6034    2.1346  5.3280
386.3612    1.1834   21.7367   18.3675   10.5406    1.5157  3.5830
169.7295    1.2421   13.2197   10.6434    6.6895    0.6965  1.5230
282.7805    1.5265   22.0720   14.4596    8.9958    2.8131  3.3370
193.4051    1.8609   19.4455   10.4496    7.5777    3.8607  2.0920
165.5863    2.2949   18.4271    8.0294    6.6796    4.0206  2.3270
217.0807    1.4458   18.6435   12.8947    8.0630    2.6901  4.0610
196.9564    1.6341   17.3927   10.6434    7.3104    2.4078  1.5760
288.6994    1.8557   22.9960   12.3923    9.0316    4.7178  5.1130
312.9668    1.0000   18.5306   18.5306    9.4348    0.6829  4.2080
247.8590    1.8456   21.2568   11.5174    8.2473    3.0892  3.8650
353.8072    1.4054   22.3429   15.8977    9.9314    2.2130  5.2430
379.2585    1.5553   26.2917   16.9051   10.6514    5.6575  8.5850
146.6458    1.4553   15.1911   10.4382    6.4036    1.3961  2.3370
124.1540    1.3398   11.9225    8.8990    5.6337    1.0788  1.4420
130.6648    1.3530   13.2197    9.7704    5.8048    0.6729  1.8940
139.5431    1.0000   12.0989   12.0989    6.0535    0.4864  2.3600
236.0212    1.7784   20.8764   11.7388    8.1456    3.2111  2.1000
215.3050    1.3002   16.1118   12.3923    7.6033    0.9857  1.5310
175.6484    1.0738   13.8884   12.9345    6.9363    0.6916  2.2800
133.6242    1.0000   11.6101   11.6101    5.9559    0.5937  2.1780
227.7347    1.2226   16.6315   13.6032    7.9427    1.1907  3.1700
190.4457    1.3387   16.5890   12.3923    7.1802    1.5797  2.0180
216.4888    2.2352   22.1839    9.9249    8.2164    6.2157  2.9910
181.5673    1.3958   16.8875   12.0989    7.0841    1.3517  2.1810
204.6510    1.6017   17.2080   10.7437    7.4279    1.4859  3.4400
151.3809    1.3444   14.4439   10.7437    6.3516    1.1559  2.0000
121.7864    1.3829   12.3062    8.8990    5.6292    1.0629  1.7790
105.2135    1.6127   12.9345    8.0202    5.3522    1.4913  0.8350
273.3102    1.0539   18.1451   17.2172    8.8755    1.2537  3.2320
166.7701    1.0256   12.9204   12.5983    6.7010    0.5924  2.5890
214.7131    1.1646   16.4718   14.1440    7.6406    1.1268  1.9530
170.3214    1.5629   16.3320   10.4496    6.9448    1.9633  1.8770
150.1972    1.0000   12.3923   12.3923    6.3671    0.6300  0.9730
142.5026    1.0000   10.6434   10.6434    6.1383    0.5685  1.8620
250.8184    1.0000   17.6527   17.6527    8.3805    0.4271  4.3330
238.9806    1.4870   18.4271   12.3923    8.0286    1.8552  2.0250
310.0074    1.2102   19.3214   15.9650    9.4680    2.8160  5.0120
255.5535    1.2948   20.0926   15.5176    8.6937    2.4521  4.7230
225.9590    1.2888   17.9865   13.9559    8.0995    2.3585  4.5100
196.9564    1.4958   16.2784   10.8826    7.2874    1.3673  3.3020
166.1782    1.4860   14.5193    9.7704    6.5866    1.2616  1.5310
311.7831    1.4941   22.7768   15.2447    9.7369    3.7023  5.9860
177.4241    1.5526   15.1698    9.7704    6.8190    1.4753  2.0470
214.1212    1.0145   15.2447   15.0267    7.7412    0.9347  3.7950
140.7269    1.2573   13.1384   10.4496    6.2192    1.6679  1.3900
186.8943    1.9974   17.7751    8.8990    7.1123    3.6970  2.2530
186.3024    2.2173   19.7317    8.8990    7.1011    3.7621  1.3630
167.3620    1.5112   16.4459   10.8826    6.7301    1.5265  1.0970
130.0729    1.0000   11.5174   11.5174    5.7904    0.1674  0.9300
296.9858    1.0675   20.0335   18.7673    9.2277    1.2493  4.5110
204.0591    1.1639   16.8293   14.4596    7.6064    1.7898  1.7980
305.2723    1.3733   22.0771   16.0759    9.4974    2.2703  5.8780
170.9133    1.7426   17.4054    9.9881    7.0173    2.5224  2.4000
141.9107    1.4296   15.0267   10.5114    6.3161    1.8291  2.2870
287.5156    1.5023   23.6029   15.7114    9.2533    3.0566  3.3020
141.3188    1.6671   15.3107    9.1838    6.2074    1.9438  1.1530
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233.6536    1.6942   20.1643   11.9022    8.0649    2.8011  4.6500
273.3102    1.5766   21.2222   13.4605    8.7381    2.4405  5.5050
163.8106    2.3838   17.9100    7.5134    6.9738    4.8760  2.0500
314.7425    1.0439   18.4271   17.6527    9.3812    1.0481  4.7070

                                                       581.09         1.49       31.75      21.28      13.27        5.59    10.7100
                                                       544.40        2.04        32.89      16.11      13.11       11.85   11.8720
                                                       452.06        1.00        22.16     22.16       11.44        0.89    10.5750
                                                       465.67        1.37        26.08     19.03        11.85       4.06    13.1580
                                                       556.83        1.64        30.59     18.67        12.69       6.37    12.0200
                                                       572.81        1.26        29.04     22.97        12.89      3.22     18.1270
                                                       558.60        1.02        26.09     25.66        12.80      1.47      13.8900
                                                       669.28        1.36        30.31     22.25        13.93      4.96      12.0110
                                                      748.60         1.41        32.21     22.92        14.74      5.74      10.1970
                                                      597.67         1.19        26.26     22.04        13.10      2.26        9.5780
                                                      427.20         1.89        29.43     15.53         11.33      7.59        8.0010
                                                         688.22       1.40      33.77       24.20       14.33       6.45    16.2100
                                                        587.01        2.04      36.54       17.95       14.30      20.35   15.9500
                                                        674.61        1.00      29.07       29.07       14.16        2.50   14.8450
                                                        676.98       1.48      35.64       24.11       14.68      11.41    14.9550
                                                        784.70        1.33      34.42       25.80       15.48        4.87    16.1830
                                                        532.56        1.31      27.40       20.91       12.43        2.72    12.7140
                                                        809.56        1.99      43.73       21.93       16.51      19.12    18.6390
                                                       399.38        1.00      23.99       23.99       10.83        3.80    13.5690
                                                       389.91        1.07       21.74       20.24       10.66        1.69    7.1320
                                                       483.43        1.15       25.95       22.51       12.08        4.09    14.3340
                                                       509.47        1.00       25.72       25.72       12.37        2.79   14.1000
                                                       472.78        1.00       26.20       26.20       11.87        2.15    10.3300
                                                       669.28        1.21       29.04       24.09       13.93        2.29    11.1010
                                                       548.54        1.40       29.81       21.22       12.64        5.12    13.8000
                                                       072.36        2.10       46.99       22.35       17.98       20.13    26.2380
                                                       682.31        1.00       28.39       28.29       14.18        1.58    16.4900
                                                       637.91        1.03       24.64       23.91       13.68        2.82    14.3610
                                                       671.06        1.34       37.31       27.83       14.39        6.17    16.3100
                                                       630.22        1.66       31.31       18.90       13.55        6.84    18.1430
                                                       631.40        1.68       34.11       20.29       13.56       7.21     16.2000
                                                       367.42        1.29       23.02       17.91       10.41        3.00      8.9150
                                                       620.16        1.47       31.39       21.38       13.53       6.67    16.2880
                                                       524.27        1.03       27.33       26.53       12.55        2.64      6.2300
                                                       515.99        1.19       25.79       21.62       12.21       2.26    11.0210
                                                       547.95        1.35       29.50       21.93       13.07        6.69    15.2630
                                                       533.74        1.69       31.93       18.90       12.80        8.01    12.2820
                                                       852.77        2.25       45.79       20.38       17.03      23.80   23.1000
                                                       467.45        1.02       24.18       23.60       11.85        4.15    12.1200
                                                       507.70        1.04       23.11       22.16       12.19        2.84    13.0680
                                                       534.33        1.05      24.38       23.22       12.44         1.01      8.0100
                                                       382.81        1.82       26.08       14.30       11.20        8.37      9.0010
                                                       542.62        1.33       31.42       23.60       12.83        4.63    16.5500
                                                       727.29        1.38       34.11       24.68       14.45        3.89    10.5530
                                                       605.95        1.22       28.55       23.48       13.26        2.10    13.7730
                                                       640.28        1.20       27.57       22.92       13.60        2.04    10.2980
                                                       427.79        1.00       23.30       23.30       11.29        2.96    11.4800
                                                       436.67        1.00       20.41       20.41       11.22        1.66    10.7130
                                                       520.13        1.34       27.09       20.29       12.26        3.35    10.1970
                                                       525.46        1.00       25.50       25.50       12.49        2.71      9.4190
                                                       456.20        1.31       26.78       20.50       11.73        3.14      6.8400

468.6339    1.7363   30.3822   17.4982   12.0923    7.0839  9.4850
459.7555    1.3033   26.4395   20.2870   11.4271    1.8524  6.1390
671.0602    1.0000   29.7762   29.7762   14.1421    1.6282  11.1570
504.7391    1.1253   26.7298   23.7537   12.2484    2.4358  10.9750
514.2094    1.0841   25.3312   23.3670   12.3166    2.2577  12.4230
446.1420    1.0000   22.3533   22.3533   11.5191    2.3569  11.2200
426.0178    1.0721   20.2609   18.8975   11.1532    2.1963  5.7050
423.0583    1.6708   28.1178   16.8293   11.4429    5.9909  8.1560

737.9437    1.9448   38.4287   19.7593   14.8512   11.5347  18.5320
504.1472    1.0375   25.7893   24.8580   12.2096    2.1089  6.9000
562.1524    1.0926   25.5004   23.3401   12.7735    1.5068  10.4440
626.0765    1.7723   37.7268   21.2867   14.0071   11.9240  15.5310
444.9583    1.0000   23.0347   23.0347   11.4245    1.5698  8.4590
427.7935    1.0000   21.2867   21.2867   11.1655    1.6755  12.0010
415.3638    2.0687   31.0859   15.0267   11.3523    9.2711  7.7910
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534.9255    1.0310   25.2444   24.4858   12.7001    2.8860  10.9510
691.1844    1.3684   35.5063   25.9477   14.6260    5.8700  16.2770
514.2094    1.4102   27.5567   19.5409   12.1605    4.1793   6.3610
444.9583    1.0738   22.7511   21.1884   11.5378    2.8463   8.5550
475.1446    1.3893   27.6462   19.9000   11.9212    4.3961  10.9650
494.6770    1.0000   25.0686   25.0686   12.0026    0.9314   8.9800
479.2879    1.1763   24.2584   20.6226   11.8091    2.4841   9.7150
584.0524    1.1339   26.9886   23.8015   13.0513    2.6182  12.9830
678.1628    1.1289   30.1384   26.6969   14.0391    1.7422  13.1530
856.3217    1.5543   37.0638   23.8465   15.8469    8.2670  10.8610
582.8686    1.5518   31.5810   20.3517   13.2787    6.2631   4.8260
630.2198    1.6099   32.8632   20.4135   13.5947    7.1258   14.4650
443.7745    1.0000   23.9929   23.9929   11.6009    3.3615   7.7630
552.0903    1.0000   25.3410   25.3410   12.8485    3.1034  10.9800
496.4527    1.0000   25.1713   25.1713   12.1781    2.3412  10.8150
501.1878    1.0000   24.0883   24.0883   12.1034    1.3417  13.1830
454.4285    1.0000   25.5594   25.5594   11.5097    1.0172   7.5730
671.6520    1.3153   30.6987   23.3401   14.2797    6.9476  14.9100
662.7737    2.4538   40.8097   16.6315   14.8398   17.7264  14.3110
659.2224    1.2428   31.3146   25.1967   14.0829    5.5969  13.7600
337.2343    1.5692   22.4792   14.3249   10.0383    5.1795  13.5030
692.9601    1.3256   35.9730   27.1377   14.4843    4.6877 13.3720
464.4906    1.8380   28.4393   15.4732   12.1970    7.8637   7.4730
388.1368    1.4175   27.9771   19.7370   10.8048    3.3067  11.0270
640.2819    1.7518   36.0891   20.6014   14.3510   12.2876  11.2180
397.0152    1.5948   26.5235   16.6315   10.9940    4.9561   5.4000
537.8850    1.0211   24.3025   23.8015   12.5737    3.4042  10.4600
550.3146    2.7791   38.4114   13.8214   14.0220   22.9717   6.9080
661.5899    1.1436   28.2243   24.6804   13.8712    2.6678  10.2410
597.0739    1.4657   30.8348   21.0370   13.4677    4.0772  10.4360
415.9557    2.0901   28.3562   13.5668   11.3975    7.2165   4.7590
544.3957    1.0804   27.3999   25.3614   12.7614    2.9944 12.0180
453.8366    1.9514   31.3006   16.0404   12.1155    9.9215  11.0930
513.0256    1.1578   24.8785   21.4874   12.1806    1.5118 11.2600

                                                      329.5398    1.4352   24.9653   17.3953   10.0674    4.4330   5.6810
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APPENDIX   II

Histogram of Model Testing Samples
(Total of 8 batches)

       (a) projected area (mm2)                                          (b) aspect ratio

 

                    (c) minor diameter (m)                                   (d) major diameter (m)

APPENDIX II-1 For Sample Batch #1, Image a, 345 particles
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(a) projected area (mm2)                                         (b) aspect ratio

 

                  (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-2 For Sample Batch #2, Image a, 376 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                   (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-3 For Sample Batch #3, Image a, 215 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                  (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-4 For Sample Batch #4, Image a, 251 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                   (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-5 For Sample Batch #5, Image a, 378 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                  (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-6 For Sample Batch #6, Image a, 76 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                    (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-7 For Sample Batch #7, Image a, 71 particles
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(a) projected area (mm2)                                         (b) aspect ratio

                  (c) minor diameter (m)                                     (d) major diameter (m)

APPENDIX II-8 For Sample Batch #8, Image a, 150 particles
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APPENDIX II-9 Histogram of Minor Diameter For Combined
                 Sample Batches, Image a, 1862 particles



171

APPENDIX III

Benchmark of Samples
(Total of 8 batches)

 

                       (a) percent retained                                      (b) percent passing

APENDIX III-1 Benchmark for Sample Batch #1

 

                      (a) percent retained                                         (b) percent passing

APENDIX III-2 Benchmark for Sample Batch #2
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                     (a) percent retained                                         (b) percent passing

APENDIX III-3 Benchmark for Sample Batch #3

                     (a) percent retained                                         (b) percent passing

APENDIX III-4 Benchmark for Sample Batch #4
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                     (a) percent retained                                         (b) percent passing

APENDIX III-5 Benchmark for Sample Batch #5

                       (a) percent retained                                         (b) percent passing

APENDIX III-6 Benchmark for Sample Batch #6
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                      (a) percent retained                                         (b) percent passing

APENDIX III-7 Benchmark for Sample Batch #7

                     (a) percent retained                                         (b) percent passing

APENDIX III-8 Benchmark for Sample Batch #8
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APPENDIX IV

Samples for Testing System Performance
(Total of 10 Groups)

  

                           (a-1) group #1                                                (a-2) processed with N1=162

  

(b-1) group #2                                             (b-2) processed with N2=188
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                            (c-1) group #3                                               (c-2) processed with N3=170

  

                        (d-1) group #4                                           (d-2) processed with N4=227

  

                                (e-1) group #1                                        (e-2) processed with N5=227
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       (f-1) group #6                                        (f-2) processed with N6=194

           

(g-1) group #7                                           (g-2) processed with N7=166

  

    (h-1) group #8                                                    (h-2) processed with N8=145
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                                     (i-1) group #9                                              (i-2) processed with N9=174

  
                                  (j-1) group #10                                                 (j-2) processed with N10=321
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