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ABSTRACT 
 

Palladium-Catalyzed Synthesis of Carbazole Derivatives and the Formal 
Total Syntheses of Several Naturally Occurring Carbazole Alkaloids 

 
Tricia L. Scott 

 
 

A mild and efficient route to substituted carbazolones has been developed.  This novel 
procedure consists of two consecutive palladium-catalyzed reactions, an intermolecular Stille 
coupling followed by an intramolecular reductive N-heteroannulation.  For example, 1,2-
dihydro-4(3H)-carbazolone was prepared in good isolated yield (74%) by the reductive 
cyclization of 2-(2-nitrophenyl)-2-cyclohexen-1-one using Pd(dba)2 (6 mol%), 1,3-
bis(diphenylphosphino)propane (6 mol%), 1,10-phenanthroline monohydrate (12 mol%), and 
carbon monoxide (90 psi) in DMF at 80 oC.  2-(2-Nitrophenyl)-2-cyclohexen-1-one was 
prepared via a Stille coupling of 2-iodo-2-cyclohexen-1-one and 2-(tri-n-butylstannyl)-1-
nitrobenzene.  Many functional groups and ring sizes were tolerated in these reactions. 
 This novel approach to carbazolones was successfully applied to the formal total 
syntheses of several naturally occurring carbazole alkaloids including murrayaquinone A, 
murrayafoline A, koenigine-quinone A, murrayanine, dimeric O-demethylmurrayafoline A, and 
(+)-aspidospermidine.  These new syntheses are generally more efficient and higher yielding 
compared to the previously reported syntheses of these natural products. 
 In addition, reductive cyclizations of 2-(2-nitrophenyl)-2-cycloalkenones using 10% Pd/C 
and 1 atm of hydrogen gas in methanol at ambient temperature yielded carbazole derivatives in 
excellent yields.  For example, reduction of 2-(2-nitrophenyl)-2-cyclohexen-1-one gave 1,2,3,4-
tetrahydrocarbazole in 95% yield.  Methyl-substitution on the cyclohexenone ring 
regioselectively produced methyl-substituted tetrahydrocarbazoles, however substitution on the 
benzene ring led to mixtures of carbazole products.   
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Part I 
 

Synthesis of Carbazolones via Palladium-Catalyzed  
N-Heteroannulations 

 
 
 
1.  Introduction 

Carbazole alkaloids have received considerable attention since their discovery in the 

1960’s and the realization of their pharmacological potential.1  They exhibit a wide range of 

biological properties ranging from antibiotic to antitumor activity.  Developing new synthetic 

methods toward the core carbazole structure in these alkaloids is of great interest to researchers. 

 

1.1.  Carbazolones 

Carbazolones are carbazole derivatives that are interesting synthetic targets.  Many 

carbazolones are biologically active.  The synthetic drug ondansetron2 shown in Figure 1 is a 

carbazolone that is a potent 5-HT3 receptor antagonist used to prevent severe nausea often caused 

by chemotherapy and radiation treatments in cancer patients. 

 

Figure 1 
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Carbazolones are also of interest as synthetic precursors to naturally occurring 

carbazoles.  A common method for preparing carbazolequinones involves the oxidation of 
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carbazolones.  For example, carbazolone 1 was oxidized to the carbazole alkaloid 

murrayaquinone-A using 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (Scheme 1).3 

 

Scheme 1 
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dioxane, reflux
N

H

Me

O

O

1 2 (45%)  

 

A variety of methods have been utilized to obtain carbazolones.  One of the most 

common methods used is the Fischer indole synthesis.  1,2-Dihydrocarbazol-4(3H)-one (5) was 

synthesized by the Fischer reaction of phenylhydrazine and 1,3-cyclohexanedione (Scheme 2).4 

 

Scheme 2 
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Palladium-catalyzed Heck-type reactions have also been used to produce carbazolones.  

The intramolecular catalytic cyclization of bromo enaminones such as 6 produced carbazolones 

in variable yields (Scheme 3).5 
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Scheme 3 

Br

N
C2H5

O

Pd(OAc)2(PPh3)2
NaHCO3 N

C2H5

O

6 7 (15%) `  

 

Carbazolones have also been synthesized by the arynic condensation of enaminones in 

the presence of  NaNH2-tBuONa according to Scheme 4.6 

 

Scheme 4 

Cl

Me

HN O

NaNH2-tBuONa

THF
N

H

O

Me
8 9  

 

In the search for new analogs of carbazole alkaloids with modified pharmacological 

activity azacarbazoles have been studied.  One approach to azacarbazoles involves the 

photocyclization of N-(chloropyridinyl)enaminones (Scheme 5).7 
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Benzo[5,6]cyclohepta[b]indol-6-one derivatives have been prepared by the 

intramolecular cyclization of acids such as 13 using a large excess of polyphosphoric acid 

(Scheme 6).8  Derivatives of 14 are being studied for their antitumor potential. 

 

Scheme 6 
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Me
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13 14 (62%)  

 

1.2.  Reductive N-Heteroannulation Reactions 

 Recently, a new procedure for the synthesis of indoles was developed in our group.9  This 

new procedure involves the palladium-catalyzed reductive N-heteroannulation reaction of 2-

nitrostyrenes (Scheme 7).  Three reagents were found to be crucial in this reaction:  a palladium 

catalyst, a phosphine, and carbon monoxide.  This reaction has proved to be useful for the 

synthesis of a number of indole products including several mushroom metabolites (Figure 2).10 

 

Scheme 7 
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Figure 2 
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This type of reaction is not unknown in the literature.  There are other reports of 

reductive carbonylations of nitroarenes with unsaturated groups in the ortho position leading to 

indoles.  Watanabe et al11 published a related procedure using a catalytic amount of 

PdCl2(MeCN)2 in the presence of triphenylphosphine, excess tin dichloride, and 20 atm of 

carbon monoxide (Scheme 8).  Another very similar reaction was reported by Cenini et al12 using 

Pd(TMB)2/TMPhen (TMBH = 2,4,6-trimethylbenzoic acid; TMPhen = 3,4,7,8-tetramethyl-1,10-

phenanthroline) as the catalytic system (Scheme 9).  Many other kinds of heterocyclic 

compounds can be obtained from this type of reaction including amides, amines, oximes, ureas, 

carbamates, and isocyanates.13 

 

Scheme 8 
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Scheme 9 
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All these metal-catalyzed reductive cyclization reactions generally produce good yields 

of indoles.  However, compared to the method developed in our group most of these methods 

employ rather harsh conditions.  The reaction conditions developed in our group are much 

milder.   Our reactions proceed at a much lower pressure of carbon monoxide, lower 

temperature, and do not require the addition of a Lewis acid such as tin dichloride. 

 Due to the inherent similarity between indoles and carbazoles, we decided to apply this 

new method to the synthesis of carbazole derivatives.  The synthesis of several substituted 

carbazolones using this palladium-catalyzed reductive cyclization reaction is presented. 

 

2.  Results and Discussion 

 We envisioned that carbazolones could be prepared via the reductive cyclization of 2-(2-

nitrophenyl)-2-cyclohexenones as shown in Scheme 10.  First, we needed to develop a method to 

synthesize a variety of substituted 2-(2-nitrophenyl)-2-cycloalkenones in order to test the scope 

and limitations of our reductive cyclization. 

 

Scheme 10 
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We decided to make our cyclization precursors via a Stille coupling reaction between 

cycloalkenones and nitrobenzenes.  Johnson et al14 have reported the Stille couplings of 2-

iodocycloalkenones with aryl stannanes using 5 mol% PdCl2(PhCN)2, 10 mol% Ph3As, and 10 

mol% CuI in NMP (N-methylpyrrolidinone) to produce 2-phenyl-2-cyclohexenones in good 

yields.  We adapted these conditions to our Stille reactions with good results (Scheme 11).   

Table 1 shows the results of our Stille couplings to produce a variety of substituted 2-(2-

nitrophenyl)-2-cycloalkenones.  Some modifications of the reaction conditions were required for 

the synthesis of compounds 37 and 40.  Best yields of 37 were obtained when Ph3As was 

replaced with dppf  (1,1’-bis(diphenylphosphino)ferrocene).  The yield of 40 was improved 

slighty by degassing the reaction mixture.  Compound 38 was prepared via an alternative 

procedure using PdCl2(PPh3)2 in DMF.   

Most of the Stille couplings proceeded in good yields.  Slightly lower yields were 

obtained from aryl bromides as compared to aryl iodides.  The lower yields of 38 and 40 are 

probably due to steric factors.  In comparing entries 1 and 6 we see very little difference in yield 

resulting from reversing the polarity of substrates in the reaction.  The use of an aryl stannane 

and vinyl iodide or a vinyl stannane and an aryl iodide both give the Stille product in good yield. 

Products of the Stille reactions were easily discernable from starting materials by 1H 

NMR.  For example, the C-H proton in iodocyclohexenone 19 shows up as a triplet at 7.76 ppm, 

while the same proton in coupling product 32 is located upfield at 6.98 ppm. 

Some side-products complicating the purification of the desired compounds were 

identified in the Stille reactions (Figure 3).  In some cases the homocoupling product 42 or 43 

was present in significant amounts.  Butyl group transfer also occurred in the reaction of 30 

producing methyl 2-butyl-3-nitrobenzoate (44).  Homocoupling of stannanes is a common side 
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reaction in Stille couplings.15  Although the transfer of alkyl groups from the stannane is 

generally much slower than the transfer of aryl or vinyl groups, the transfer of alkyl groups is 

also sometimes observed.16 

 

Scheme 11 

O

I NO2
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O
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Table 1a 

O
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O
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I

O
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O
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O

NO2
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O
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25 32 (76%)

33 (74%)

34 (65%)

35 (68%)

36 (46%)

1
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3
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5
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"

"
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Table 1 continued 

O
SnBu3 NO2

NO2

NO2

NO2

NO2

NO2

O

NO2

O

NO2

O

NO2

O

NO2

O

NO2

O

NO2

Br

Br
MeO2C

OMe

MeO2C

Br

Entry Cycloalkenone Nitrobenzene Stille Product

24
I

I

26

27

28

29

30

32 (71%)

37 (67%)b

38 (31%)c

39 (62%)

40 (44%)d

41 (56%)31

Br

MeO

6

7

8

9

10

11

"

"

"

"

"
IBr

 
 a) General conditions:  1.2 eq. Sn reagent, 5 mol% PdCl2(PhCN)2, 10 mol% Ph3As, 10 mol% CuI, NMP, 80 
oC.  For more exact details see:  Experimental Section.  b) Ph3As was replaced with dppf.  c) Conditions used:  
PdCl2(PPh3)2, DMF, 110 oC.  d) Reaction mixture was degassed. 
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Figure 3  
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Two different organostannanes were prepared for the Stille reactions.  Aryl stannane 25 

was prepared from 1-iodo-2-nitrobenzene (26) according to Kosugi’s procedure17 (Scheme 12) 

using hexabutylditin, in situ formed Pd(PPh3)4, and toluene.  Vinyl stannane 24 was prepared 

according to Scheme 13.  The metal-halogen exchange reaction of 46 with t-BuLi, followed by 

addition of tributyltinchloride and deprotection of the ketone with acid produced the stannane 24 

in 83% yield. 

 

Scheme 12 

I

NO2

(Bu3Sn)2, Pd(dba)2

PPh3, Toluene, 80 oC

SnBu3

NO2

26 25 (80%)  

 

Scheme 13 
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 The literature procedure was followed for preparing 2-iodocycloalkenones 19 and 21, and 

this method was utilized for the preparation of the previously unknown compounds 20 and 22 

(Scheme 14).18  Most of the cycloalkenone starting materials were commercially available.  5-

Methyl-2-cyclohexen-1-one (47) was prepared according to literature procedure19 (Scheme 15), 

although in our hands this reaction failed to produce the reported yield of 78% for this 

compound. 

 

Scheme 14 

O

(   ) nR

O

R (   ) n

I2, CCl4, Pyridine
I

19 (81%), R = H, n = 1
20 (85%), R = CH3, n = 1
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Scheme 15 
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 Bromobenzocycloheptenone 52 was prepared from 1-benzosuberone (48) according to 

Scheme 16.  The silyl enol ether 49 was converted to benzocycloheptenone 50 by a palladium-

catalyzed dehydrosilylation reaction.20  Compound 52 was then prepared via a literature 

procedure consisting of a two step bromination-dehydrobromination sequence.21 
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Scheme 16 

O
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OTMS
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O
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O
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Nitrobenzenes 26 and 28 were commercially available.  Compounds 27 and 30 were 

previously synthesized in our laboratory according to literature procedures.9, 10  Compounds 29 

and 31 were prepared by the Sandmeyer type reactions of their corresponding anilines (Scheme 

17). 

 

Scheme 17 
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With the preparation of several substituted 2-(2-nitrophenyl)-2-cycloalkenones we now 

had sufficient substrates ready to test the scope of the reductive cyclization reaction.  Our first 

attempted N-heteroannulation of 32 using palladium diacetate (6 mol%), triphenylphosphine (24 

mol%), and carbon monoxide (4 atm) in acetonitrile at 70 oC surprisingly gave only starting 

material.  Since it is known that palladium phenanthroline complexes are particularly active 

catalysts for the reductive carbonylation of nitrobenzenes forming isocyanates,22 we chose to 

modify our cyclization conditions to those shown in Scheme 18.  The expected 1,2-dihydro-

4(3H)-carbazolone (5) was obtained in good isolated yield using Pd(dba)2 (6 mol%), dppp (1,3-

bis(diphenylphosphino)propane) (6 mol%), 1,10-phenanthroline monohydrate (12 mol%), and 

carbon monoxide (90 psi) in DMF at 80 oC. 

Next we tested these promising reaction conditions on the substrates shown in Table 1.  

Results of these reductive cyclizations are summarized in Table 2.  All reactions proceeded 

smoothly affording excellent yields of products.  Five-membered to seven-membered 

cycloalkenones all gave good results.  Substitution on the cycloalkenone ring was also well 

tolerated in the reaction.  The presence of electron donating or withdrawing groups at various 

positions on the aryl ring also presented no problems with the N-heteroannulation. 

  

Scheme 18 

O

NO2

Pd(dba)2, dppp

1,10-Phenanthroline monohydrate

CO (90 psi), DMF, 80 oC N
H

O

32 5 (74%)  
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Most of the reductive cyclizations were complete in 1-3 days.  However, substrate 41 

required an extended period of 8 days to go to completion.  The yield of the bromocarbazolone 

63 also was slightly lower than the other cyclizations.  4-Bromo substitution has previously been 

problematic in this type of reaction.  The attempted cyclization of the related substrate, 

bromonitrostyrene 64, performed previously in our laboratory yielded only starting material 

(Scheme 19).9 

 

Table 2a 
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Table 2 continued 

O

NO2

O

NO2

O

NO2

O

NO2

O

NO2

OMe

MeO2C

Br

37

38

39

40

41

Stille Product Carbazolone

N
H

O

N
H

O

N
H

O

N
H

O

N
H

O

OMe

MeO2C

Br

59 (89%)

60 (79%)

61 (75%)

62 (75%)

63 (52%)

 
 a) General conditions:  Pd(dba)2 (6 mol%), dppp (6 mol%), 1,10-Phenanthroline monohydrate (12 mol%), 
CO (90 psi), DMF, 80 oC.  For more exact details see:  Experimental Section. 
 

Scheme 19 

NO2

Br
Pd(OAc)2, PPh3

CO (4 atm), MeCN

70 oC

N
H

64 65 (0%)

Br

 

 



   

 16 

 The formation of 58 is of substantial synthetic interest.  Benzocycloheptaindole 

derivatives are being studied for their antitumor potential.8  This reaction could be useful for the 

preparation of such compounds. 

The cyclization reactions are typically monitored by thin layer chromatography.  Progress 

of the reactions can also be determined by 1H NMR.  Cyclization products are distinguishable 

from starting materials by certain NMR characteristics including the presence of a broad N-H 

peak between 8 and 11 ppm and the disappearance of the triplet C-H signal of the starting 

material.  For example, carbazolone 5 has a distinct N-H signal at 8.55 ppm and the C-H triplet 

at 6.98 of the starting material 32 has disappeared. 

 New synthetic analogs of carbazoles are currently being investigated for their modified 

biological activity.  For this reason we decided to apply our reductive cyclization reaction toward 

the synthesis of an azacarbazole (Scheme 20).  We constructed the cyclization precursor 67 via a 

Stille coupling reaction of 2-chloro-3-nitropyridine (66) and stannane 24.  The Stille product 67 

could not be isolated in any significant amount, although the crude NMR indicated that the 

reaction was working well.  We were convinced that the isolation problem was due to extensive 

decomposition upon purification by silica gel chromatography.  We were unable to isolated the 

product in any yield greater that 33% after column chromatography.  Therefore, we opted to 

carry on the crude Stille product to the cyclization reaction.  This proved to be a good decision 

providing the azacarbazole 68 in 54% yield over two steps. 

In a search for alternative substrates for the cyclization reaction we discovered an 

additional route to 1,2-dihydro-4(3H)-carbazolone (5).  2-(2-Nitrophenyl)-1,3-cyclohexanedione 

(70) and 3-methoxy-2-(2-nitrophenyl)-2-cyclohexenone (71), derived from 1,3-

cyclohexanedione23 (69), both gave the carbazolone product 5 in good yields, although reaction 
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times were much longer compared to the reductive cyclization of 32 even at elevated 

temperatures (Scheme 21). 
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 At this time the mechanism for the reductive cyclization reaction remains unknown.  It is 

very unlikely that the reaction proceeds by initial reduction of the nitro group to an amine 

followed by an amino-�����������	
-hydride elimination sequence as in the Hegedus indole 

synthesis.24  This type of reaction requires a palladium (II) catalyst which has to be regenerated 

by an added oxidant.  No oxidant is present in these cyclization reactions.  There are also 

mechanistic studies indicating that the formation of aniline is insignificant in the formation of 

indoles.25  Additional evidence against the role of aniline in the carbazolone reactions is that the 

direct reduction of the nitro group in 2-(2-nitrophenyl)-2-cyclohexenones by palladium-catalyzed 

hydrogenation does not produce carbazolones.  The results of this study are presented in part III.   

 Watanabe et al have proposed through some mechanistic studies that the reaction 

proceeds through the formation of an active transition metal nitrene intermediate followed by an 

insertion reaction.26, 11  Although no metal-bound nitrene intermediates have been isolated in the 

indole syntheses, the reaction of 2-nitrobiphenyl (72) using Ru3(CO)13 produced the ruthenium-

bound nitrene 73 (Scheme 22).27  The structure of 73 was determined by X-ray crystallography.  

When treated with carbon monoxide 73 gives carbazole as well as 2-aminobiphenyl.  This 

evidence supports the theory that a nitrene intermediate is involved in the synthesis of indoles. 

 

Scheme 22 
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One possible mechanism to a nitrenoid intermediate by a deoxygenative sequence is 

presented in Scheme 23.  Palladium addition to the nitro group followed by carbon monoxide 

insertion and elimination of carbon dioxide could give a palladium-nitroso intermediate.  

Another insertion by carbon monoxide and subsequent elimination of carbon dioxide gives the 

palladium-bound nitrene.  Insertion into the C-H bond of the cyclohexenone by the nitrene can 

follow to give the carbazolone product. 
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3.  Conclusions 

 We have successfully developed a mild and efficient method of preparing functionalized 

carbazolones.  This novel route consists of two sequential palladium-catalyzed reactions, an 

intermolecular Stille coupling followed by a reductive N-heterocyclization.  Many functional 
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groups and ring sizes are well tolerated in these reactions.  This novel procedure has been 

applied to the synthesis of naturally occurring carbazole alkaloids presented in the next section.  
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Part II 

Formal Total Syntheses of Carbazole Alkaloids 

 

1.  Introduction 

 Carbazole alkaloids are of great interest due to their numerous biological activities.  For 

example, these natural products show antitumor, antibiotic, and antifungal properties, as well as 

having an inhibitory effect on mitosis and activity against malaria.28  Many carbazole alkaloids 

have been isolated from plants belonging to the Rutaceae family.  Most of these compounds have 

a one-carbon substituent in the 3-position and an oxygen functionality in the 1- or 2- position.  

Dimeric and quinoid structures are also known in this group.  We have been interested in a 

number of these natural products, many of which are from plants of the genus Murraya.  These 

plants consist of small trees and shrubs endemic to Southern Asia that have been used for years 

in folk medicine for analgesics and treatment of ailments such as eczema and rheumatism.29 

 Figure 4 shows a few of the carbazole alkaloids that have been of synthetic interest to us.  

Murrayaquinone A, 30 murrayafoline A,30 and dimeric O-demethylmurrayafoline A31 are 

examples of alkaloids isolated from Murraya euchrestifolia Hayata.  Murrayaquinone A is 

known to induce myocardial contraction.  Dimeric O-demethylmurrayafoline A exhibits 

antiplasmodial activity against P. falciparum in vitro.  Murrayanine32 and koenigine-quinone A33 

were both isolated from Murraya koenigii Spreng (Figure 5).34  Murraya koenigii Spreng is 

commonly known as the Indian curry tree.  The leaves which have a distinct odor of anise are 

widely used as a flavoring in Indian curries.  (+)-Aspidospermidine35 has been found in plants of 

the Aspidosperma genus.  While aspidospermidine in itself doesn’t possess any significant 
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biological properties, alkaloids with similar ring structures are known to have antitumor activity.  

Therefore, it can be considered a model for the design of new synthetic approaches toward these 

more functionalized compounds. 
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There have been several syntheses of these carbazole alkaloids presented in the literature.  

One common approach to carbazoles is via the Fischer method.  Murrayanine and murrayafoline 

A were prepared in this manner (Scheme 24).32  The Fischer indole synthesis was used to prepare 

carbazolone 1 which was converted to carbazole 75 via dehydrogenation.  Methylation produced 

murrayafoline A, followed by bromination and then hydrolysis with KOH to compound 76.  

Manganese dioxide oxidation of 76 produced the product, murrayanine. 

 

Scheme 24 
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 Murrayafoline A and murrayaquinone A have also been synthesized by a similar 

approach (Scheme 25).36  The key carbazole intermediate 78 along with a small amount of 79 

was also produced by the Fischer method.  Dehydrogenation of tetrahydrocarbazole 78 to the 
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carbazole 80, followed by hydrolysis of the mesyl group gave 81.  Compound 81 could then be 

converted  either to murrayafoline A by methylation, or to murrayaquinone A by oxidation. 

 

Scheme 25 
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Koenigine-quinone A also was synthesized via a Fischer indole synthesis-

dehydrogenation-oxidation sequence (Scheme 26).33 
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Scheme 26 
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Another synthetic method to the carbazole, murrayafoline-A, is outlined in Scheme 27.28  

Bringmann et al constructed the carbazole skeleton starting with the indole 85.  Boc-protection 

of the indole nitrogen and olefination with phosphonate 86 using the Horner-Emmons method 

gave 87.  Cyclization with sodium acetate in acetic anhydride followed by methanolysis and then 
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O-methylation gave 88.  Carbazole 88 was converted to murrayafoline A by lithium aluminum 

hydride reduction. 

Moody et al have developed a method toward 1-oxygenated carbazoles starting from 

indole-2-carboxylates (Scheme 28).37  Murrayafoline A was formed from indole-2-carboxylate 

89 by condensation with 4-methylbutyrolactone to give lactone 90, followed by hydrolysis and 

decarboxylation to alcohol 91, and then oxidation to aldehyde 92.  Aldehyde 92 cyclized to 

murrayafoline A upon treatment with boron trifluoride-methanol.  Murrayafoline A was 

converted to murrayaquinone A via a two step demethylation-oxidation sequence. 
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 Some other synthetic methods to key intermediates of murrayaquinone A include the 

novel Diels-Alder approach by Miki et al38 (Scheme 29), the thermal electrocyclization reactions 
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by Hibino and coworkers39 (Scheme 30), and the annulations of bromo-1,4-benzoquinones and 

enaminones presented by Murphy et al40 (Scheme 31).   
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Åkermark and coworkers41 have also reported the palladium-catalyzed oxidative 

cyclization of 2-arylamino-1,4-quinones to yield several carbazole alkaloids including 

murrayaquinone A (Scheme 32). 

 

Scheme 32 
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Another metal-mediated reaction toward the synthesis of carbazoles was developed by 

Knölker and coworkers42 (Scheme 33).  They use an electrophilic aromatic substitution such as 

that of aniline 103 with a cyclohexadienyltricarbonyliron cation as the key step in the synthesis 

of several carbazoles. 
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Dimeric alkaloids such as dimeric O-demethylmurrayafoline A have been produced via 

the oxidative couplings of carbazole monomers (Scheme 34).43   
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Scheme 34 
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The [ABC]-type subunit in (+)-aspidospermidine has been constructed using a 

copper(I)iodide-promoted arylation originally reported by Suzuki44 in the synthesis by Desmaele 

and d’Angelo (Scheme 35).35  The critical stereochemistry at the CD ring junction was set by the 

asymmetric Michael addition of chiral imine 107 to methyl acrylate.  The ee obtained in this 

reaction was only 86%, but the optical purity of 108 could be efficiently upgraded through 

semicarbazone derivatization and crystallization.  The synthesis of dione 110 was carried out in 

several steps from 108.  The preparation of intermediate 112 was achieved by condensation of 

110 with 2-iodoaniline, followed by cyclization of the enaminone 111.  This synthesis of (+)-

aspidospermidine was completed in a linear sequence of 22 steps from 2-ethylcyclohexanone 

with a 2.7% overall yield. 

 While there are many methods for preparing carbazoles, these methods are not without 

limitations.  Some of the traditional methods lack regioselectivity, and the conditions employed 

are too harsh for some sensitive functional groups.  Another limitation is the availability of 

starting materials for these transformations.  Upon developing our method for the synthesis of 

carbazolones presented in the previous section we decided to apply our approach to the synthesis 

of natural products.  Regioselectivity is not a problem in our method, and a number of functional 

groups are tolerated in these reactions.  The availability of starting materials has also not been a 

difficulty.  The formal total syntheses of several naturally occurring carbazole alkaloids is 

presented. 
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2.  Results and Discussion 

2.1.  Formal Total Synthesis of Murrayaquinone A 

 Carbazolequinones have been efficiently synthesized via the oxidation of 

hydroxycarbazole precursors as previously described.  It is known in the literature38,45 that 3-

methyl-4-hydroxycarbazole can be oxidized to murrayaquinone A using Fremy’s salt 

((KO3S)2NO) in excellent yield (83%).  Therefore, we decided that a potentially useful route to 

the alkaloid would be through carbazolone 116 (Scheme 36).  Dehydrogenation of 116 would 

lead to hydroxycarbazole 117, thus completing the formal total synthesis of murrayaquinone A. 
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 Carbazolone 116 was prepared according to our method previously described, a Stille 

coupling followed by a N-heteroannulation reaction.  2-Iodo-6-methyl-cyclohexen-1-one (114) 
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was prepared from cyclohexenone 113 in 71% yield by the iodination method previously 

described in Scheme 14.  The Stille reaction of 114 and stannane 25 in the presence of 

PdCl2(PhCN)2, Ph3As, and CuI in NMP at 80 oC gave 115 in an excellent yield of 87%.  The 

reductive cyclization of 115 also proceeded in an excellent yield (97%) of carbazolone 116.  The 

dehydrogenation reaction of carbazolone 116 using 10% Pd/C in a mixture of diphenyl ether and 

1,2,4-trimethylbenzene at 230 oC gave hydroxycarbazole 117.  It was discovered that the 

addition of a small amount of 1,2,4-trimethylbenzene was critical for the dehydrogenation to 

occur.31  

 Our synthesis of the murrayaquinone A precursor 116 is much more efficient and higher 

yielding than the synthesis by Miki et al.38  Their synthesis took nine steps from dimethyl indole-

2,3-dicarboxylate with an overall yield less than 16%.  Our synthesis was completed in only four 

steps from 6-methyl-2-cyclohexen-1-one with an overall yield of 38%. 

 

2.2.  Formal Synthesis of Four Carbazole Alkaloids 

 While working on our first synthesis of murrayaquinone A, we were also investigating an 

alternative route to this compound via carbazolone 1 (Scheme 37).  We applied the conditions to 

�������	
-iodo-�	
-unsaturated ketones originally developed by Piers and Nagakura46 to prepare 

3-iodo-5-methyl-2-cyclohexen-1-one (119).  The Stille coupling of the cyclohexenone 119 and 

stannane 25 produced 120 in excellent yield (89%).  The reductive cyclization of 120 gave 

carbazolone 1 also in good yield (77%). 

 Carbazolone 1 is an advanced intermediate in reported syntheses of four different 

carbazole alkaloids.  Not only has this intermediate been used in the synthesis of 

murrayaquinone A, but also in the preparation of murrayafoline A, murrayanine, and dimeric O-



   

 33 

demethylmurrayafoline A.  Carbazolone 1 can be converted to murrayaquinone A through DDQ 

oxidation in 45% yield.47  In the same synthetic sequence murrayafoline A was prepared via the 

dehydrogenation of 1 followed by methylation (see Scheme 24), and then murrayanine was 

produced in two steps from murrayafoline A.32  Dimeric O-demethylmurrayafoline A can also be 

prepared from this intermediate.  1-Hydroxy-3-methylcarbazole,32 the dehydrogenation product 

of carbazolone 1, under oxidative coupling conditions gives the dimeric alkaloid in 87% 

yield.31,48  
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2.3.  Formal Synthesis of Koenigine-quinone A  

 The formal synthesis of koenigine-quinone A was carried out in much the same manner 

as the other syntheses described above.  Stannane 124 was first prepared starting from 
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aminophenol 121 (Scheme 38).  Sandmeyer type reaction of aminophenol 121 produced 

iodophenol 122 which was methylated to 123.  Stannane 124 was prepared from 123 using 

Kosugi’s procedure.17  Stille reaction of 118 and 124 under our usual conditions produced 125 in 

excellent yield (96%) (Scheme 39).  The reductive cyclization also proceeded smoothly giving 

the key intermediate carbazolone 83 in 79%.  Koenigine-quinone A can be synthesized by the 

dehydrogenation reaction of carbazolone 83 followed by oxidation with Fremy’s salt as in the 

synthesis by Saha and Chowdhury.33  Their synthesis gives an overall yield for 83 of 50% in two 

steps from 2-hydroxymethylene-5-methylhexanone and 3-methoxyphenyldiazonium chloride 

while our synthesis produced this intermediate in 76% yield in two steps. 

 

Scheme 38 

SnBu3

NO2

OMe

I

NO2

OMe

(Bu3Sn)2

Pd(dba)2, PPh3

Toluene, 80 oC

124 (77%)

I

NO2

OH

NH2

NO2

OH

1) H2SO4, H2O, NaNO2

2) KI, Cu, H2O

122 (61%)

MeI, K2CO3

Acetone

123 (100%)121  

 

Scheme 39 

O

I

SnBu3

NO2

OMe

O

NO2

OMe

O

N
H

OMe

O

N
H

OMe

O

Koenigine-quinone A83 (79%)

PdCl2(PhCN)2
Ph3As, CuI

NMP, 80 oC

Pd(dba)2, dppp

1,10-Phenanthroline

CO (90psi), DMF

80 oC

Lit.

+

118 124 125 (96%)

 



   

 35 

2.4.  Formal Synthesis of (+)-Aspidospermidine  

 Desmaele and d’Angelo’s synthesis of (+)-aspidospermidine involves the synthesis of the 

key carbazolone intermediate 112 (Scheme 35).35  The synthesis of this intermediate required 

nine steps from 2-ethylcyclohexanone in 23% yield.  With our new method for making 

carbazolones we thought we could improve upon the synthesis of this intermediate. 
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 We prepared cyclohexenone 109 according to the literature procedure from 2-

ethylcyclohexenone except that we replaced the DDQ oxidation with the palladium-catalyzed 
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dehydrosilylation (Scheme 40).  In our hands, the DDQ method failed to produce 109.  Iodide 

127 was prepared using iodine and pyridine in carbon tetrachloride in 86% yield.  The Stille 

reaction of 127 and 25 with the usual palladium-catalyzed conditions produced 128 in good yield 

(80%).  Cyclization of 128 proceeded smoothly to carbazolone 112 in 76% yield. 

 The synthesis of carbazolone 112 is slightly improved by our method.  In only six steps 

from 2-ethylcyclohexanone we produced this intermediate with an overall yield of 30%. 

 

3.  Conclusions 

 We have successfully applied our novel method of preparing carbazolones to the 

synthesis of several carbazole alkaloids.  The formal total syntheses of murrayaquinone A, 

murrayafoline A, murrayanine, dimeric O-demethylmurrayafoline A, koenigine-quinone A, and 

(+)-aspidospermidine have been achieved using a Stille reaction followed by a palladium-

catalyzed reductive N-heteroannulation as the key steps.  These new syntheses are generally 

more efficient and higher yielding than the previous syntheses of these alkaloids.  
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Part III 
 

Synthesis of Carbazole Derivatives via Palladium-Catalyzed 
Hydrogenation Reactions 

 
 
 
1.  Introduction 
 
 We described a novel route to substituted carbazolones in the previous sections.  

Although the mechanistic details of this reaction are unclear it is doubtful that the reaction 

proceeds through an aniline-type intermediate resulting from reduction of the nitro group.  We 

were curious as to what products might result from the direct reduction of the nitro group in 2-(2-

nitrophenyl)-2-cyclohexen-1-one (32).  

We chose to effect the reduction by a palladium-catalyzed hydrogenation reaction 

(Scheme 41).  Compound 32 in the presence of 10% Pd/C and 1 atm of hydrogen gas in 

methanol at ambient temperature produced 1,2,3,4-tetrahydrocarbazole (129) in 95% yield.  No 

additional products were produced in the reaction. 
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Reduction of compounds related to 32 with TiCl3 have been reported to give 1,2,3,4-

tetrahydrocarbazoles.49  The reduction of 130 with aqueous TiCl3 in acetone gave 1,2,3,4-

tetrahydrocarbazole in 88% yield (Scheme 42).  This latter reaction is inherently regioselective. 
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 Other common methods to form carbazoles such as the Fischer indole synthesis50 and 

palladium-catalyzed annulations between iodoanilines and ketones51 often suffer from the lack of 

regioselectivity and produce isomers (Scheme 43). 
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To the best of our knowledge there is only one example in the literature of a reductive 

�����������	���������	�	������������	���	��	�	
-unsaturated ketone moiety.  The reduction of 2-

(2-nitrophenyl)propenal using PtO2 and hydrogen (1 atm) in methanol was reported to produce 

3-methylindole in 40% yield (Scheme 44).52 

 

Scheme 44 

CHO
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We envisioned the reductive cyclization of compounds such as 32 using simple 

hydrogenation procedures to be potentially promising for the synthesis of carbazole derivatives.  

We have investigated the scope and limitations of this reaction using several examples. 

 

2.  Results and Discussion  

 We had previously prepared a number of substituted 2-(2-nitrophenyl)-2-cycloalkenones 

for the synthesis of carbazolones as described in Part I and II.  Additional substrates were made 

according to similar procedures.  Compound 142 was synthesized starting from 4-

methylcyclohexanone (138) (Scheme 45).  The silyl enol ether 139 was prepared, followed by 

palladium-catalyzed dehydrosilylation20 to give 4-methyl-2-cyclohexen-1-one (140).  The low 

yield of the dehydrosilylation reaction may be contributed to the volatility of the product.  Iodide 

141 was prepared according to Johnson’s procedure18 using iodine and pyridine in carbon 

tetrachloride in 65% yield.  The Stille reaction of 141 and stannane 25 using PdCl2(PhCN)2, 
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Ph3As, and CuI in NMP gave 142 in good yield (80%).  Compound 144 was prepared similarly 

from the Stille coupling of 2-iodo-3-methylcyclohexenone18 (143) and 25 in 78% yield (Scheme 

46). 

Scheme 45 
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Scheme 46 
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The results of the reductive cyclizations are summarized in Table 3.  The reductions were 

carried out using 10% Pd/C (~20 mol% Pd) and hydrogen gas (1 atm, balloon) in methanol at 

room temperature.  Most of the reactions were complete in 20 minutes to 2 hours as monitored 

by thin layer chromatography.  Some of the compounds appeared to be acid-sensitive, so for 
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these compounds additional handling precautions were taken such as using base-washed 

glassware, filtering NMR solvents through potassium carbonate prior to use, and using a small 

amount of triethylamine in the chromatography solvents.   

Excellent yields of methyl-substituted carbazoles were obtained from the reductions of 

substrates 115, 33, 142, and 144.  These reactions were very regioselective producing only one 

product per substrate without the formation of other isomers. 

 Investigation of ring-size in the reductive cyclization reaction gave a different result.  

Cycloheptenone 35 gave the expected product 5,6,7,8,9,10-hexahydrocyclohepta[d]indole (147).  

However, cyclopentenone 34 produced the unexpected product 146. 

 Substitution on the benzene ring greatly affected the types of products produced.  Not 

only were tetrahydrocarbazole products produced but tetrahydrocarbazolones and 

hexahydrocarbazoles as well.  There appears to be no correlation between the electron donating 

or withdrawing nature of substituents and the type of products produced.  Two products were 

isolated for the reaction of each substrate 37, 39, and 40. 

 Substrate 70 also gave a surprising result.  The reductive cyclization of this compound 

not only produced the expected carbazolone 5, but 1,2,3,4-tetrahydrocarbazole (129) as well.  In 

order to determine what was happening in this reaction, carbazolone 5 was subjected to the 

hydrogenation conditions (Scheme 47).  Carbazolone 5 did yield some tetrahydrocarbazole 129, 

but 39% of the starting material was still present even after 3 days. 
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Table 3 

O

NO2

N
H

Stille Product Carbazole(s)

129 (95%)

O

NO2

O

NO2

O

NO2

N

H

N

H

N

H

O

NO2
N
H

131 (91%)

135 (92%)

145 (89%)

134 (78%)

32

142

144

33

115

NO2

O

O

NO2

N

H

N

H

146 (83%)

147 (72%)

34

35  
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Table 3 continued 

Stille Product Carbazole(s)

O

NO2

O
MeO2C

NO2

N
H

N

H

N

H

N
H

O

CO2Me CO2Me

O

NO2

OMe

O

NO2
OH

N

H

N
H

N

H

N

H

MeO MeO

O

148 (17%) 149 (40%)

150 (25%) 151 (39%)

152 (62%) 153 (9%)

129 (22%) 5 (45%)

39

40

37

70

 
General conditions:  10% Pd/C (~20 mol% Pd), hydrogen gas (1 atm, balloon), MeOH, RT.  For more 

exact details see:  Experimental Section. 
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We also investigated the effect of the amount of palladium in this reaction (Scheme 48).  

Substrate 39 gave only 149 in quantitative yield when the amount of palladium was decreased to 

2 mol%.  This result leads us to believe that the product distribution in other reactions can be 

controlled by adjusting the amount of palladium used.  The reductive cyclizations of other 

substrates have yet to be performed with reduced amounts of catalyst. 

Scheme 48 

O

NO2 N

H

O

Pd/C (2 mol % Pd)

H2 (1 atm)

MeOH, 1h 20min
149 (100%)39  

Scheme 49 shows the possible intermediates in this reaction.  Reduction of the nitro 

group produces an amine intermediate 154 which can react in either a 1,2- or a 1,4-addition 

fashion with the enone.  The 1,2-addition pathway can give compound 155 which leads to 

tetrahydrocarbazole 129 by direct reduction and isomerization or through intermediate 156 with 

subsequent reduction.  A hexahydrocarbazole product can be formed from many different 

intermediates.  Reduction of intermediates 155 and 156, as well as the tetrahydrocarbazole 

product 129, could all yield a hexahydrocarbazole.  Although the latter pathway is the least likely 

due to the aromaticity of the the tetrahydrocarbazole 129.  Tetrahydrocarbazolone 159 can be 

produced through a 1,4-addition of amine 154 to the enone, followed by tautomerization of enol 

158. 
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Scheme 49 
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3.  Conclusions 

We have developed a mild and efficient route to carbazole derivatives through two 

consecutive palladium-catalyzed reactions, a Stille coupling followed by a reductive cyclization 

reaction.  Unsubstituted 2-cyclohexenone and methyl-substituted cyclohexenone starting 

materials give the corresponding 1,2,3,4-tetrahydrocarbazole products exclusively in excellent 

yields.  Substitution on the benzene ring leads to mixtures of 1,2,3,4-tetrahydrocarbazoles, 

1,2,4a,9a-tetrahydro-4(3H)carbazolones, and 1,2,3,4,4a,9a-hexahydrocarbazoles.  The 

cycloheptenone 35 underwent the reductive cyclization to give the expected 5,6,7,8,9,10-
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hexahydrocyclohepta[d]indole, whereas the cyclopentenone 34 resulted in 1,2,3,3a,4,8b-

hexahydrocyclopenta[b]indole.  As of now, there are no explanations for the types and mixtures 

of products in some of these reactions.  However, the method does seem to be excellent for 

selectively producing methyl-substituted carbazoles which can be difficult by other means.  

Further studies of the regiochemistry and mechanism of the reductive cyclization are currently 

underway. 
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Part IV 

Experimental Section 

 

1.  General Procedures 

 

All NMR spectra were determined in CDCl3 at 270 MHz (1H NMR) and 67.5 MHz (13C 

NMR).  The chemical shifts are expresse�	��	�	������	��������	��	��4Si (0.00, 1H and 13C) or 

CDCl3 (7.26, 1H and 77.00, 13C) internal standards.  1H-1H coupling constants are reported as 

calculated from spectra; thus, a slight difference between Ja,b and Jb,a is usually obtained.  Results 

of APT (attached proton test) 13C NMR experiments are shown in parentheses, where relative to 

CDCl3, (-) denotes CH3 or CH and (+) denotes CH2 or C. 

Tetrahydrofuran (THF), toluene, and diethyl ether were distilled from sodium 

benzophenone ketyl prior to use.  Pyridine, triethylamine, hexanes, acetonitrile, 

diisopropylamine, and ethyl acetate were distilled from calcium hydride.  Chemicals prepared 

according to literature procedures have been footnoted the first time they are used; all other 

reagents were obtained from commercial sources and used as received.  Silica gel (200-400 

mesh) was used for flash chromatography.  All reactions were performed in oven-dried 

glassware under an argon atmosphere unless otherwise noted.  Solvents were removed on a 

rotary evaporator at water aspirator pressure unless otherwise stated.  IR spectra were recorded 

on neat compounds using NaCl plates unless otherwise noted.  Elemental analyses were 

performed by Atlantic Microlab, Inc., Norcross, GA.  High Resolution Mass Spectra (HRMS) 

were performed at University of California Riverside Mass Spectrometry Center. 
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2.  Experimental Details 

 

2-Iodo-5-methyl-2-cyclohexen-1-one (20).  

To a solution of 5-methyl-2-cyclohexen-1-one19 (47) (502 mg, 4.55 mmol) in 20 mL of 

1:1 CCl4/pyridine cooled to 0 oC was added dropwise a solution of iodine (2.30 g, 9.04 mmol) 

dissolved in 20 mL of 1:1 CCl4/pyridine with stirring.  The reaction mixture was allowed to 

warm to ambient temperature overnight.  The reaction mixture was diluted with ether (100 mL) 

and washed successively with water (40 mL), HCl (5%, aq, 2 x 40 mL), water (40 mL), and 

Na2S2O3 (20%, aq, 40 mL).  The organic phase was dried (MgSO4) and concentrated under 

vacuum.  The crude product was purified by flash chromatography (hexanes/EtOAc, 9:1) to give 

20 (911 mg, 3.86 mmol, 85%) as a light yellow solid:  mp 39-40 oC; IR 2955, 1682, 1590 cm-1; 

1
�	���	�	����	 ��	J = 5.9 Hz, 3H), 2.11-2.53 (m, 4H), 2.69-2.83 (m, 1H), 7.72 (dd, J = 5.9 and 

2.9 Hz, 1H); 13C 
���	�	!"��#	 -), 30.4 (-), 37.9 (+), 45.0 (+), 103.5 (+), 158.6 (-), 192.5 (+); 

HRMS (EI) calcd for C7H9IO (M+)  235.9698, found 235.9703. 

 

2-Iodo-2-cyclohepten-1-one53 (22).  

To a solution of 2-cyclohepten-1-one (535 mg, 4.86 mmol) in 20 mL of 1:1 CCl4/pyridine 

cooled to 0 oC was added dropwise a solution of iodine (2.71 g, 10.7 mmol) dissolved in 20 mL 

of 1:1 CCl4/pyridine with stirring.  The reaction mixture was allowed to warm to ambient 

temperature overnight.  The reaction mixture was diluted with ether (100 mL) and washed 

successively with water (40 mL), HCl (5%, aq, 2 x 40 mL), water (40 mL), and Na2S2O3 (20%, 

aq, 40 mL).  The organic phase was dried (MgSO4) and concentrated under vacuum.  The crude 
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product was purified by flash chromatography (hexanes/EtOAc, 9:1) to give 22 (786 mg, 3.33 

mmol, 69%) as a light yellow solid. 

 

2-(tri- n-Butylstannyl)-2-cyclohexen-1-one54 (24).  

tert-Butyllithium (34.5 mL of a 1.7 M solution in hexanes, 58.7 mmol) was added 

dropwise to a solution of 6-bromo-1,4-dioxaspiro[4,5]dec-6-ene55 (46) (6.00 g, 27.4 mmol) in 

diethyl ether (480 mL) cooled to –78 oC.  After 30 min, tributyltinchloride (8.2 mL, 30.2 mmol) 

was added slowly, and the reaction mixture stirred another 30 min at –78 oC.  The reaction 

mixture was allowed to warm to room temperature, and HCl (10%, aq, 200mL) was added 

slowly.  The reaction mixture was stirred for 3 h.  After dilution with diethyl ether (500 mL), the 

reaction mixture was washed successively with water (500 mL), NH4OH (10%, aq, 500 mL), and 

water (500 mL).  The organic phase was dried (MgSO4) and concentrated.  The crude product 

was purified by flash chromatography (hexanes/EtOAc, 95:5) to give 24 (8.38 g, 21.8 mmol, 

79%) as a clear, colorless oil. 

 

3-Iodo-2-nitrotoluene56 (29).  

To a mixture of 3-methyl-2-nitroaniline (502 mg, 3.30 mmol), ice, water (4mL), and 

H2SO4 (conc., 0.2 mL) cooled in an ice bath was added a solution of NaNO2 (251 mg, 3.64 

mmol) in water (1 mL) very slowly (~1 drop/min).  After the addition, the reaction mixture was 

stirred 20 min and additional H2SO4 (conc., ~0.07 mL) was added.  The reaction mixture was 

poured slowly into an ice-cold solution of KI (656 mg, 3.95 mL) in water (1 mL).  After a few 

minutes Cu powder (4 mg, 0.06 mmol) was added, and the reaction mixture was warmed slowly 

to 80 oC for about 30 min.  The reaction mixture was allowed to cool, was extracted with CH2Cl2 
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(3 x 50 mL), washed with Na2S2O3 (20%, aq, 50 mL), dried (MgSO4), and concentrated under 

vacuum.  The crude product was purified by flash chromatography (hexanes/EtOAc, 8:2) to give 

29 (764 mg, 2.90 mmol, 88%) as a yellow-orange solid. 

 

4-Bromo-2-iodo-1-nitrobenzene (31).  

To a mixture of 5-bromo-2-nitroaniline57 (54) (198 mg, 0.910 mmol), ice, water (5 mL), 

and H2SO4 (conc., 0.2 mL) cooled to 0 oC was added a solution of NaNO2 (70.2 mg, 1.02 mL) 

very slowly (~1 drop/min).  The reaction mixture was stirred for 1.5 h at room temperature, and 

then was added very slowly to an ice-cold solution of KI (190 mg, 1.14 mmol) in water (1 mL).  

After a few min Cu powder (2 mg, 0.03 mmol) was added, and the reaction mixture was heated 

slowly to 80 oC for 20 min.  The reaction mixture was allowed to cool, was extracted with 

CH2Cl2 (3 x 50 mL), washed with Na2S2O3 (10%, aq, 50 mL), dried (MgSO4), and concentrated 

under vacuum.  The crude product was purified by flash chromatography (hexanes/EtOAc, 9:1) 

to give 31 (182 mg, 0.55 mmol, 61%) as a yellow solid: mp 77-79 oC; IR 1563, 1518, 1335 cm-1; 

1
�	���	�	 ���	J = 8.5 and 2.0 Hz, 1H), 7.77 (d, J = 8.5 Hz, 1H), 8.22 (d, J = 2.0 Hz, 1H); 13C 

���	�	�$�%	 &'�	�"#�% -), 127.7 (+), 132.2 (-), 144.1 (-), 151.7 (+). 

 

2-(2-Nitrophenyl)-2-cyclohexen-1-one23 (32).   

To a solution of 2-iodo-2-cyclohexen-1-one (19)18 (808 mg, 3.64 mmol) and 2-(tri-n-

butylstannyl)-1-nitrobenzene (25)17 (1.80 g, 4.34 mmol) in N-methylpyrrolidinone (NMP) (4 

mL) was added PdCl2(PhCN)2 ( 77.5 mg, 0.20 mmol), Ph3As (117 mg, 0.40 mmol), and CuI 

(77.2 mg, 0.40 mmol).  The reaction mixture was heated at 80 oC for 20 h.  The reaction mixture 

was diluted with EtOAc (100 mL) and washed successively with NH4OH (10%, aq, 3 X 30 mL) 
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and H2O (2 X 30 mL).  The aqueous portions were extracted with EtOAc (50 mL).  The organic 

phases were combined, dried (MgSO4), and concentrated.  The crude product was purified by 

flash chromatography (hexanes/EtOAc, 9:1) to give 32 (603 mg, 2.77 mmol, 76%) as a light 

yellow solid. 

Alternate procedure:  Compound 32 was also prepared repeating the above procedure 

except using 2-(tri-n-butylstannyl)-2-cyclohexenone (24) (931 mg, 2.42 mmol), 1-iodo-2-

nitrobenzene (26) (502 mg, 2.01 mmol), PdCl2(PhCN)2 (38.5 mg, 0.10 mmol), Ph3As (70.1 mg, 

0.22 mmol), CuI (41.9 mg, 0.22 mmol), and NMP (4 mL) to give 32 (309 mg, 1.42 mmol, 71%). 

 

5-Methyl-2-(2-nitrophenyl)-2-cyclohexen-1-one (33).  

The same procedure as described for 32 was repeated except that a mixture of 2-iodo-5-

methyl-2-cyclohexen-1-one (20) (241 mg, 1.02 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene 

(25) (455 mg, 1.10 mmol), PdCl2(PhCN)2 (20.6 mg, 0.05 mmol), Ph3As (31.6 mg, 0.10 mmol), 

CuI (19.1 mg, 0.10 mmol), and NMP (1 mL) gave 33 (175 mg,  0.75 mmol, 74%) as a pale 

yellow solid:  mp 107-109 oC;  IR 1672, 1517, 1340 cm-1;  1�	���	�	!���(	 ��	J = 8.1 Hz, 3H), 

2.10-2.35 (m, 3H), 2.44-2.59 (m, 2H), 6.90 (dd, J = 5.5 and 2.8 Hz, 1H), 7.16 (dd, J = 7.5 and 

1.6 Hz, 1H), 7.35 (td, J = 6.4 and 1.6 Hz, 1H), 7.49 (td, J = 7.3 and 1.2 Hz, 1H), 7.88 (dd, J = 8.1 

and 1.2, 1H);  13C 
���	�	�������-), 29.9 (-), 34.3 (+), 46.1 (+), 123.9 (-), 128.6 (-), 131.5 (-), 

131.7 (+), 133.2 (-), 138.8 (+), 146.0 (-), 148.4 (+), 196.5 (+);� ���	
������������������13H13NO3 

(MH+) 232.0974, found 232.0965. 
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2-(2-Nitrophenyl)-2-cyclopenten-1-one (34).  

The same procedure as described for 32 was repeated except that a mixture of 2-iodo-2-

cyclopenten-1-one (21)18 (290 mg, 1.40 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene (25) (643 

mg, 1.56 mmol), PdCl2(PhCN)2 (26.7 mg, 0.07 mmol), Ph3As (43.7 mg, 0.14 mmol), CuI (29.2 

mg, 0.15 mmol), and NMP (2.8 mL) gave 34 (183 mg,  0.90 mmol, 65%) as a pale yellow solid:  

mp 94.5-96.5 oC;  IR 1697, 1518, 1349 cm-1;  1H NMR �	!	"�)#-2.60 (m, 2H), 2.78-2.83 (m, 2H), 

7.32 (dd, J = 7.5 and 1.6 Hz, 1H), 7.49 (td, J = 7.5 and 1.4 Hz, 1H), 7.61 (td, J = 7.5 and 1.4 Hz, 

1H), 7.69 (t, J = 2.8 Hz, 1H), 8.02 (dd, J = 8.1 and 2.6 Hz, 1H);  13C 
���	�	"$��	 &'�	(%�)	 &'�	

124.3 (-), 127.1 (+), 129.1 (-), 131.2 (-), 133.0 (-), 143.7 (+), 148.2 (+), 159.0 (-), 205.3 (+);  

Anal. Calcd for C11H9NO3: C, 65.02; H, 4.46.  Found: C, 65.15; H, 4.46. 

 

2-(2-Nitrophenyl)-2-cyclohepten-1-one (35).  

The procedure as described for 32 was repeated except that a mixture of 2-iodo-2-

cyclohepten-1-one (22) (389 mg, 1.65 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene (25) (820 

mg, 1.99 mmol), PdCl2(PhCN)2 (31.9 mg, 0.08 mmol), Ph3As (51.7 mg, 0.16 mmol), CuI (31.2 

mg, 0.16 mmol), and NMP (1.6 mL) gave after purification by flash chromatography 

(benzene/CH2Cl2, 95:5) 35 (259 mg,  1.12 mmol, 68%) as a pale yellow sold:  mp 83-85 oC; IR 

1665, 1517, 1340 cm-1;  1�	���	�	!����-1.99 (m, 4H), 2.53-2.61 (m, 2H), 2.74-2.80 (m, 2H), 

6.74 (t, J = 6.5 Hz, 1H), 7.28 (dd, J = 7.5 and 1.6 Hz, 1H), 7.43 (td, J = 8.1 and 1.6 Hz, 1H), 7.58 

(td, J = 7.5 and 1.6 Hz, 1H) 8.00 (dd, J =8.1 and 1.2 Hz, 1H);  13C 
���	�	!"���	 &'�	")��	 &'�	

27.8 (+), 42.4 (+), 124.2 (-), 128.5 (-), 132.6 (-), 133.5 (-), 135.1 (+), 142.9 (+), 143.1 (-), 147.2 

(+), 202.5 (+);  HRMS (EI) calcd for C13H13NO3 (M
+) 231.0895, found 231.0895. 
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8,9-Dihydro-5H-6-(2-nitrophenyl)-benzocyclohepten-5-one (36).  

The same procedure as described for 32 was repeated except that a mixture of 6-bromo-

8,9-dihydro-5H-benzocyclohepten-5-one (23)21 (250 mg, 1.06 mmol), 1-(tri-n-butylstannyl)-2-

nitrobenzene (25) (496 mg, 1.20 mmol), PdCl2(PhCN)2 (21.5 mg, 0.06 mmol), Ph3As (34.1 mg, 

0.11 mmol), CuI (21.0 mg, 0.11 mmol), and NMP (1 mL) after 40 h gave 36 (183 mg,  0.90 

mmol, 65%) as an orange oil:  IR 3408, 2941, 1665, 1517, 1340 cm-1; 1�	���	�	"�$�	 *�	J = 5.1 

Hz, 2H), 3.14 (t, J = 5.1 Hz, 2H), 6.81 (t, J = 5.1 Hz, 1H), 7.19-7.70 (m, 7H), 8.07 (dd, J = 8.1 

and 2.9 Hz, 1H); 13
+	���	�	(��#	 &'�	((�$	 &'�	�"%�(	 -), 127.0 (-), 128.2 (-), 128.6 (-), 129.9 (-), 

132.1 (-), 132.5 (-), 133.4 (-), 136.2 (+), 139.1 (+), 140.9 (+), 141.5 (+), 144.2 (-), 148.1 (+), 

194.2 (+); HRMS (DEI) calcd for C14H15NO4 (MH+) 280.0974, found 280.0964. 

Impurity: 1-nitro-2-(2-nitrophenyl)benzene (43).  Partial 1H	���	�	��"(	 ��	J = 8.1 

Hz). Partial 13
+	���	�	�"%���	�",�"�	�(��,�	�((�)� 

 

2-(4-Methoxy-2-nitrophenyl)-2-cyclohexen-1-one (37).  

The same procedure as described for 32 was repeated except that a mixture of 2-(tri-n-

butylstannyl)-2-cyclohexen-1-one (24) (183 mg, 0.48 mmol), 1-bromo-2-nitro-4-

methoxybenzene (27)58 (103 mg, 0.44 mmol), PdCl2(PhCN)2 (8.2 mg, 0.02 mmol), dppf (24.1 

mg, 0.04 mmol), CuI (8.9 mg, 0.04 mmol), and NMP (1 mL) after 3 days gave 37 (73.4 mg,  

0.30 mmol, 67%) as a yellow-orange solid:  mp 63-65 oC;  IR 1682, 1531, 1357, 1234 cm-1;  1H 

NMR �	!"��%	 �������	J = 5.9 Hz, 2H), 2.52-2.60 (m, 4H), 3.85 (s, 3H), 6.96 (t, J = 4.1, 1H), 7.13-

7.16 (m, 2H), 7.55 (d, J = 3.9 Hz, 1H);  13C 
���	�	!""�#	 &'�	"#�"	 &'�	(��(	 &'�	))��	 -), 109.1 (-

), 119.5 (-), 124.1 (+), 132.4 (-), 139.0 (+), 146.2 (-), 149.0 (+), 159.5 (+), 196.8 (+);  HRMS (EI) 

calcd for C13H13NO3 (M
+) 247.0845, found 247.0849. 
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2-(6-Methyl-2-nitrophenyl)-2-cyclohexen-1-one (38).  

The same procedure as described for 32 was repeated except that a mixture of 2-(tri-n-

butylstannyl)-2-cyclohexen-1-one (24) (351 mg, 0.91 mmol), 2-bromo-3-nitrotoluene (28) (177 

mg, 0.82 mmol), PdCl2(PPh3)2 (27.7 mg, 0.04 mmol), and DMF (5 mL) heated at 110 oC for 26 h 

gave 38 (58.2 mg, 0.25  mmol, 31%) as a pale yellow solid:  mp 79-80 oC;  IR 1671, 1520, 1356 

cm-1;  1�	���	�	!"��,-2.20 (m, 2H), 2.22 (s, 3H), 2.51 (q, J = 5.7, 2H), 2.57-2.74 (m, 2H), 6.72 

(t, J = 4.2 Hz, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H);  

13C 
���	�	!"���	 -), 22.5 (+), 26.0 (+), 38.2 (+), 121.6 (-), 127.9 (-), 131.4 (+), 134.4 (-), 137.2 

(+), 138.3 (+), 146.8 (-), 149.4 (+), 196.8 (+);����	
�����������������13H13NO3 (M
+) 231.0895, 

found 231.0902. 

 

2-(3-Methyl-2-nitrophenyl)-2-cyclohexen-1-one (39).  

The same procedure as described for 32 was repeated except that a mixture of 2-(tri-n-

butylstannyl)-2-cyclohexen-1-one (24) (385 mg, 1.00 mmol), 3-iodo-2-nitrotoluene (29) (215 

mg, 0.82 mmol), PdCl2(PhCN)2 (15.7 mg, 0.04 mmol), Ph3As (25.3 mg, 0.08 mmol), CuI (16.1 

mg, 0.08 mmol), and NMP (2.5 mL) after 2 days gave 39 (117 mg,  0.51 mmol, 62%) as a pale 

yellow solid:  mp 129-131 oC;  IR 1677, 1523, 1362 cm-1;  1H NMR �	!"���	 �������	J = 6.2 Hz, 

2H), 2.39 (s, 3H), 2.48-2.58 (m, 4H), 6.99 (t, J = 4.3 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 7.26 (d, J 

= 7.8 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H);  13C 
���	�	!���)	 -), 22.5 (+), 26.3 (+), 38.3 (+), 128.9  

(-), 130.4 (-), 130.6 (+), 130.7 (+), 131.2 (-), 137.8 (+), 148.6 (-), 150.3 (+), 196.5 (+);� ���	
��

(EI) calcd for C13H13NO3 (M
+) 231.0895, found 231.0898. 
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2-(6-Carbomethoxy-2-nitrophenyl)-2-cyclohexen-1-one (40).  

The same procedure as described for 32 was repeated except that a mixture of 2-(tri-n-

butylstannyl)-2-cyclohexen-1-one (24) (887 mg, 2.30 mmol), 1-carbomethoxy-2-bromo-3-

nitrobenzene (30)10 (501 mg, 1.92 mmol), PdCl2(PhCN)2 (38.2 mg, 0.10 mmol), Ph3As (59.8 mg, 

0.20 mmol), CuI (39.7 mg, 0.20 mmol), and NMP (4 mL) was degassed by four freeze-pump-

thaw cycles (-78 oC to rt) and was heated at 80 oC for 96 h to give 40 (233 mg,  0.84 mmol, 44%) 

as a yellow-orange solid:  mp 86.5-88.5 oC;  IR 1730, 1681, 1531, 1357, 1294, 1273 cm-1;  1H 

���	�	!"��)	 �������	J = 6.3 Hz, 2H), 2.47 (q, J = 5.3 Hz, 2H), 2.63 (t, J = 6.3 Hz, 2H), 6.66 (t, J 

= 4.1 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H) 7.99 (d, J = 8.1, 1H), 8.12 (d, J = 7.9 Hz, 1H);  13C NMR 

�	!""�"	 &'�	"#��	 &'�	(���	 &'�	)"�(	 -), 126.9 (-), 128.5 (-), 132.5 (+), 132.7 (+), 133.8 (-), 136.9 

(+), 144.6 (-), 150.3 (+), 165.4 (+), 196.3 (+);����	
�����������������14H15NO4 (M
+) 275.0794, 

found 275.0804. 

Impurity: Methyl 2-butyl-3-nitrobenzoate (44).  1
�	���	�	��,�	 ��	J = 7.3 Hz, 3H), 

1.25-1.42 (m, 4H), 1.64 (pentet, J = 6.9, 2H), 3.63 (s, 3H), 7.68 (t, J = 7.9 Hz, 1H), 8.28-8.33 (m, 

2H).  Partial 13C 
���	�	!�(�%	 -), 17.4 (+), 26.6 (+), 27.6 (+), 52.4 (-), 127.7 (-), 128.8 (-), 134.7 

(-). 

 

2-(5-Bromo-2-nitrophenyl)-2-cyclohexen-1-one (41).   

The same procedure as described for 32 was repeated except that a mixture of 2-(tri-n-

butylstannyl)-2-cyclohexen-1-one (24) (459 mg, 1.19 mmol), 4-bromo-2-iodo-1-nitrobenzene 

(31) (318 mg, 0.97 mmol), PdCl2(PhCN)2 (18.9 mg, 0.05 mmol), Ph3As (30.5 mg, 0.10 mmol), 

CuI (18.2 mg, 0.10 mmol), and NMP (3 mL) after 2 days gave 41 (160 mg, 0.54 mmol, 56%) as 

a yellow-orange solid:  mp 168-169 oC; IR 2948, 1668, 1520, 1557, 1520, 1348 cm-1; 1�	���	�	
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2.14 (p, J = 5.8 Hz, 2H), 2.52-2.61 (m, 4H), 7.02 (t, J = 3.2 Hz, 1H), 7.41 (d, J = 3.5, 1H), 7.59 

(dd, J = 8.9 and 3.4 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H); 13
+	���	�	""�%	 &'�	"#�"	 &'�	(���	 &'�	

125.7 (-), 127.9 (+), 131.7 (-), 133.9 (+), 134.4 (-), 134.5 (+), 138.4 (+), 147.3 (-), 196.1 (+); 

HRMS (DEI) calcd for C12H10BrNO3 (M
+) 295.9923, found 295.9915. 

 

[(6,7-Dihydro-5H-benzocyclohepten-9-yl)oxy]trimethylsilane59 (49).  

Butyllithium (10.7 mL of a 1.6 M solution in hexanes, 17.1 mmol) was added dropwise 

to a solution of diisopropylamine (2.85 mL, 20.3 mmol) in THF (42 mL) cooled to –78 oC.  The 

reaction mixture was stirred 5 min, and a solution of 1-benzosuberone (2.49 g, 15.6 mmol) in 

THF (13 mL) was added slowly to the reaction mixture.  The reaction mixture was stirred for 45 

min, and then TMSCl (2.4 mL, 18.9 mmol) and Et3N (4.35 mL, 31.2 mmol) were added slowly.  

The reaction mixture was allowed to warm to ambient temperature over 1 h.  The reaction 

mixture was diluted with diethyl ether (200 mL), washed with water (3 x 50 mL), dried 

(MgSO4), and concentrated.  The crude product was purified by flash chromatography 

(hexanes/Et2O, 9:1) to give 49 (3.43 g, 14.8 mmol, 95%) as a clear, colorless oil. 

 

8,9-Dihydro-5H-benzocyclohepten-5-one60 (50).  

To a solution of 49 (3.04 g, 13.1 mmol) in DMSO (100 mL) was added Pd(OAc)2 (293 

mg, 1.30 mmol).  The reaction flask was flushed with O2 for 5 min.  The reaction mixture was 

stirred at 40 oC under O2 (1 atm, balloon) for 27 h.  The reaction mixture was allowed to cool, 

and then was diluted with 400 mL of EtOAc and washed with water (3 x 100 mL).  The organic 

phase was dried (MgSO4) and concentrated.  The crude product was purified by flash 
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chromatography (hexanes:EtOAc, 9:1) to give 50 (1.92 g, 12.2 mmol, 93%) as a clear, colorless 

oil. 

 

1,2-Dihydrocarbazol-4(3H)-one4 (5).  

2-(2-Nitrophenyl)-2-cyclohexen-1-one (32) (285 mg, 1.31 mmol), Pd(dba)2 (45.3 mg, 

0.08 mmol), dppp (32.5 mg, 0.08 mmol), 1,10-phenanthroline monohydrate (31.2 mg, 0.16 

mmol), and DMF (5 mL) were placed into a pressure tube fitted with a pressure head.  The tube 

was flushed 3 times with CO, and the reaction was heated and stirred at 80 oC under CO (90 psi) 

for 24 h.  The reaction mixture was filtered through Celite and was concentrated under high 

vacuum.  The product was purified via flash chromatography (hexanes/EtOAc, 7:3) to give 5 

(180 mg, 0.97 mmol, 74%) as a white powder. 

Alternate procedure A for compound 5.  Compound 5 was also prepared using the 

above procedure except that a mixture of 2-(2-nitrophenyl)-1,3-cyclohexanedione23 (70) (202 

mg, 0.87 mmol), Pd(dba)2 (29.7 mg, 0.05 mmol), dppp (22.5 mg, 0.05 mmol), 1,10-

phenanthroline monohydrate (23.5 mg, 0.12 mmol), and DMF (5 mL) heated at 100 oC for 90 h 

gave 5 (133 mg, 0.72 mmol, 83%). 

Alternate procedure B for compound 5.  Compound 5 was also prepared using the 

above procedure except that a mixture of 3-methoxy-2-(2-nitrophenyl)-2-cyclohexen-1-one23 

(71) (141 mg, 0.57 mmol), Pd(dba)2 (20.6 mg, 0.04 mmol), dppp (16.3 mg, 0.04 mmol), 1,10-

phenanthroline monohydrate (15.4 mg, 0.08 mmol), and DMF (5 mL) heated at 120 oC for 96 h 

gave 5 (64.5 mg, 0.35 mmol, 61%). 
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2-Methyl-1,2-dihydrocarbazol-4(3H)-one (55).  

The same procedure as described for 5 was repeated except that a mixture of 5-methyl-2-

(2-nitrophenyl)-2-cyclohexenone (33) (98.3 mg, 0.42 mmol), Pd(dba)2 (14.7 mg, 0.03 mmol), 

dppp (10.5 mg, 0.03 mmol), 1,10-phenanthroline monohydrate (10.2 mg, 0.05 mmol), and DMF 

(5 mL) after 36 h gave 55 (75.1 mg, 0.38 mmol, 89%) as a white powder:  mp 260-261 oC; IR 

(Nujol) 2925, 1630, 1583, 1458, 1376 cm-1; 1H NMR (CDCl3 + DMSO-d6'	�	���,	 ��	J = 6.2 Hz, 

3H), 2.22-2.71 (m, 4H), 2.98-3.11 (m, 1H), 7.11-7.21 (m, 2H), 7.32-7.40 (m, 1H), 8.04-8.12 (m, 

1H), 11.25 (s, 1H); 13C NMR (CDCl3 + DMSO-d6'	�	"��(	 -), 30.4 (+), 30.7 (-), 45.6 (+), 110.5 

(-), 111.1 (+), 119.7 (-), 120.7 (-), 121.6 (-), 123.7 (+), 135.4 (+), 150.8 (+), 192.4 (-). 

 

3,4-Dihydrocyclopent[b]indol-1(2H)-one61 (56).  

The same procedure as described for 5 was repeated except that a mixture of 2-(2-

nitrophenyl)-2-cyclopenten-1-one (34) (125 mg, 0.61 mmol), Pd(dba)2 (21.2 mg, 0.04 mmol), 

dppp (15.7 mg, 0.04 mmol), 1,10-phenanthroline monohydrate (14.8 mg, 0.07 mmol), and DMF 

(5 mL) after 3 days gave 56 (90.4 mg, 0.53 mmol, 86%) as a white powder. 

 

6,7,8,9-Tetrahydrocyclohept[b]indol-10(5H)-one5 (57).  

The same procedure as described for 5 was repeated except that a mixture of 2-(2-

nitrophenyl)-2-cycloheptenone (35) (136 mg, 0.59 mmol), Pd(dba)2 (20.4 mg, 0.04 mmol), dppp 

(14.5 mg, 0.04 mmol), 1,10-phenanthroline monohydrate (14.7 mg, 0.07 mmol), and DMF (5 

mL) after 48 h gave 57 (77.9 mg, 0.39 mmol, 66%) as a white powder. 

 

 



   

 59 

6,7-Dihydrobenzo[4,5]cyclohept-[1,2-b]indol-12(5H)-one8 (58).  

The same procedure as described for 5 was repeated except that a mixture of 36 (31.5 mg, 

0.11 mmol), Pd(dba)2 (5.1 mg, 0.009 mmol), dppp (3.5 mg, 0.009 mmol), 1,10-phenanthroline 

monohydrate (3.4 mg, 0.017 mmol), and DMF (3 mL) after 30 h gave 58 (24.1 mg, 0.098 mmol, 

86%) as a white powder. 

 

7-Methoxy-1,2-dihydrocarbazol-4(3H)-one5 (59).  

The same procedure as described for 5 was repeated except that a mixture of 2-(4-

methoxy-2-nitrophenyl)-2-cyclohexen-1-one (37) (43.5 mg, 0.18 mmol), Pd(dba)2 (6.3 mg, 0.01 

mmol), dppp (4.6 mg, 0.01 mmol), 1,10-phenanthroline monohydrate (4.5 mg, 0.02 mmol), and 

DMF (5 mL) after 22 h gave 59 (33.8 mg, 0.16 mmol, 89%) as a white powder. 

 

5-Methyl-1,2-dihydrocarbazol-4(3H)-one (60).  

The same procedure as described for 5 was repeated except that a mixture of 2-(6-methyl-

2-nitrophenyl)-2-cyclohexen-1-one (38) (117 mg, 0.51 mmol), Pd(dba)2 (17.5 mg, 0.03 mmol), 

dppp (12.7 mg, 0.03 mmol), 1,10-phenanthroline monohydrate (12.4 mg, 0.06 mmol), and DMF 

(5 mL) after 36 h gave 60 (79.5 mg, 0.40 mmol, 79%) as a white powder:  mp 234-235 oC;  IR 

(Nujol) 1711, 1620, 1575 cm-1;  1H NMR (CDCl3 + DMSO-d6'	�	!"��#	 �������	J = 5.9 Hz, 2H), 

2.50 (t, J = 5.9 Hz, 2H), 2.86 (s, 3H), 2.97 (t, J = 5.9 Hz, 2H), 6.88 (d, J = 7.2, 1H), 7.03 (t, J = 

7.4 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 11.47 (s, 1H);  13C NMR (CDCl3 + DMSO-d6'	�	!"(�(	 -), 

23.6 (+), 23.9 (+), 38.9 (+), 109.4 (-), 113.5 (+), 123.2 (-), 123.7 (-), 124.6 (+), 131.7 (+), 137.0 

(+), 153.0 (+), 192.1 (+);  HRMS (EI) calcd for C13H13NO (M+) 199.0997, found 199.0997. 
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8-Methyl-1,2-dihydrocarbazol-4(3H)-one6 (61).  

The same procedure as described for 5 was repeated except that a mixture of 2-(3-methyl-

2-nitrophenyl)-2-cyclohexen-1-one (39) (108 mg, 0.47 mmol), Pd(dba)2 (16.5 mg, 0.03 mmol), 

dppp (11.9 mg, 0.03 mmol), 1,10-phenanthroline monohydrate (11.4 mg, 0.06 mmol), and DMF 

(5 mL) after 144 h gave 61 (69.8 mg, 0.35 mmol, 75%) as a white powder. 

 

Methyl 1,2-dihydrocarbazol-4(3H)-one-5-carboxylate62 (62).  

The same procedure as described for 5 was repeated except that a mixture of 2-(6-

carbomethoxy-2-nitrophenyl)-2-cyclohexen-1-one (40) (158 mg, 0.57 mmol), Pd(dba)2 (19.7 mg, 

0.03 mmol), dppp (14.2 mg, 0.03 mmol), 1,10-phenanthroline monohydrate (13.6 mg, 0.07 

mmol), and DMF (5 mL) after 96 h gave 62 (105 mg, 0.43 mmol, 75%) as a white powder. 

 

6-Bromo-1,2,3,9-tetrahydro-4H-carbazol-4-one63 (63).  

The same procedure as described for 5 was repeated except that a mixture of 2-(5-bromo-

2-nitrophenyl)-2-cyclohexen-1-one (41) (123 mg, 0.42 mmol), Pd(dba)2 (14.3 mg, 0.025 mmol), 

dppp (10.4 mg, 0.025 mmol), 1,10-phenanthroline monohydrate (9.9 mg, 0.050 mmol), and 

DMF (5 mL) after 8 days gave 63 (56.9 mg, 0.22 mmol, 79%) as a white powder. 

 

6,7,8,9-Tetrahydro-5H-pyrido[3,2-b]indol-9-one7 (68).  

A mixture of 2-(tri-n-butylstannyl)-2-cyclohexen-1-one (24) (621 mg, 1.61 mmol), 2-

chloro-3-nitropyridine (66) (201 mg, 1.26 mmol), Pd(dba)2 (22.1 mg, 0.038 mmol), Ph3As (47.1 

mg, 0.15 mmol), and toluene (5 mL)were heated at reflux for 20 h.  The reaction was diluted 

with benzene (100 mL) and washed with NH4OH (10%, aq, 3 X 50 mL) and H2O (2 X 50 mL).  
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The organic phase was dried (MgSO4) and concentrated.  The crude product (67) was used in the 

next procedure without purification.  The same procedure as described for 5 was repeated except 

that the mixture of crude 67, Pd(dba)2 (43.6 mg, 0.075 mmol), dppp (31.2 mg, 0.076 mmol), 

1,10-phenanthroline monohydrate (30.1 mg, 0.152 mmol), and DMF (5 mL) after purification by 

flash chromatography (CHCl3 to CHCl3/MeOH, 9:1) gave 68 (128 mg, 0.685 mmol, 54%) as a 

tan solid. 

 

2-Iodo-6-methyl-2-cyclohexen-1-one (114).  

To a solution of 6-methyl-2-cyclohexen-1-one19 (113) (441 mg, 4.00 mmol) in 20 mL of 

1:1 CCl4/pyridine cooled to 0 oC was added dropwise a solution of iodine (2.09 g, 8.23 mmol) 

dissolved in 20 mL of 1:1 CCl4/pyridine with stirring.  The reaction was allowed to warm to 

ambient temperature overnight.  The reaction mixture was diluted with ether (100 mL) and 

washed successively with water (40 mL), HCl (5%, aq, 2 x 40 mL), water (40 mL), and Na2S2O3 

(20%, aq, 40 mL).  The organic phase was dried (MgSO4) and concentrated under vacuum.  The 

crude product was purified by flash chromatography (hexanes/EtOAc, 9:1) to give 114 (675 mg, 

2.86 mmol, 71%) as a light yellow oil: IR 2929, 1682, 1594, 1454 cm-1; 1�	���	�	��"�	 ��	J = 

6.7 Hz, 3H), 1.75-1.91 (m, 1 H), 2.06-2.18 (m, 1H), 2.35- 2.68 (m, 3H), 7.68-7.73 (m, 1H); 13C 

���	�	�)�"	 -), 29.0 (+), 29.9 (+), 40.7 (-), 102.8 (+), 158.3 (-), 193.9 (+); HRMS (EI) calcd for 

C7H9IO (M+) 235.9698, found 235.9688. 

 

2-(2-Nitrophenyl)-6-methyl-2-cyclohexen-1-one (115).   

The same procedure as described for 32 was repeated except that a mixture of 2-iodo-6-

methyl-2-cyclohexen-1-one (114) (606 mg, 2.57 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene 
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(25) (1.26 g, 3.07 mmol), PdCl2(PhCN)2 (48.9 mg, 0.13 mmol), Ph3As (78.5 mg, 0.26 mmol), 

CuI (48.7 mg, 0.26 mmol), and NMP (5 mL) after 1.5 days gave 115 (491 mg,  2.12 mmol, 83%) 

as a pale yellow oil:  IR 2931, 1679, 1524, 1349 cm-1; 1�	���	�	���,	 ��	J = 6.7 Hz, 3H), 1.82-

1.98 (m, 1H), 2.12-2.23 (m, 1H), 2.50-2.67 (m, 3H), 6.96 (td, J = 3.6 and 2.0 Hz, 1 H), 7.26 (dd, 

J = 8.3 and 1.6 Hz, 1H),  7.47 (td, J = 7.5 and 1.6 Hz, 1H), 7.59 (td, J = 7.7 and 1.6 Hz, 1H), 8.02 

(dd, J = 8.1 and 1.4 Hz, 1H); 13
+	���	�	�%�$	 -), 25.5 (+), 30.3 (+), 41.5 (-), 123.9 (-), 128.5 (-), 

131.6 (-), 132.1 (+), 133.2 (-), 138.6 (+), 146.0 (-), 148.3 (+), 198.9 (+); HRMS (DEI) calcd for 

C13H13NO3 (MH+) 232.0974, found 232.0968. 

Impurity: 1-nitro-2-(2-nitrophenyl)benzene (43).  1�	���	�	$�(�	 ���	J = 8.1 and 1.6 

Hz), 7.70 (td, J = 7.5 and 1.6 Hz), 8.23 (dd, J = 8.1 and 1.6 Hz).  Partial 13
+	���	�	�"%�%�	

128.9, 130.8, 134.0. 

 

1,2,3,9-Tetrahydro-3-methyl-4H-carbazol-4-one35 (116).  

The same procedure as described for 5 was repeated except that a mixture of 6-methyl-2-

(2-nitrophenyl)-2-cyclohexenone (115) (187 mg, 0.80 mmol), Pd(dba)2 (31.0 mg, 0.05 mmol), 

dppp (22.2 mg, 0.05 mmol), 1,10-phenanthroline monohydrate (21.4 mg, 0.10 mmol), and DMF 

(5 mL) after 48 h gave 116 (156 mg, 0.78 mmol, 97%) as a white powder. 

 

3-Methyl-9H-carbazol-4-ol64 (117).  

A mixture of 3-methyl-1,2-dihydrocarbazol-4(3H)-one (116) (159 mg, 0.80 mmol), 10% 

Pd/C (108 mg), diphenyl ether (6 mL), and 1,2,4-trimethylbenzene (0.75 mL) was degassed by 

bubbling argon through the mixture for 10 min.  The reaction mixture was heated at 230 oC for 

20 h.  The reaction was filtered through a short column of silica gel using petroleum ether 
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followed by CH2Cl2/formic acid (99.9:0.1) to give 117 (98.9 mg, 0.50 mmol, 63%) as a white 

solid. 

 

3-Iodo-5-methyl-2-cyclohexen-1-one (119).  

To a solution of triphenylphosphine (4.75 g, 18.1 mmol) in acetonitrile (80 mL) was 

added iodine (4.53 g, 17.8 mmol).  The reaction mixture was stirred for 2 h.  Triethylamine (2.6 

mL, 18.7 mmol) was added slowly, followed by 5-methyl-1,3-cyclohexanedione (2.04 g, 16.2 

mmol).  The reaction mixture was stirred for 14 days at ambient temperature.  The solvent was 

evaporated, and the crude product was purified by flash chromatography (hexanes/EtOAc, 95:5) 

to give 119 (3.44 g, 14.6 mmol, 90%) as a light yellow oil:  IR 2956, 1676, 1592 cm-1; 1H NMR 

�	���$	 ���	J = 6.5 and 1.8 Hz, 3H), 2.10 (ddd, J = 12.1, 11.7, and 3.6 Hz, 1H), 2.24-2.40 (m, 

1H), 2.46-2.65 (m, 2H), 2.95-3.06 (m, 1H), 6.77-6.82 (m, 1H); 13
+	���	�	�,�,	 -), 30.9 (+), 

44.0 (-), 47.6 (-), 125.7 (+), 139.4 (-), 194.3 (+); HRMS (EI) calcd for C7H9IO (M+) 235.9698, 

found 235.9696. 

 

3-(2-Nitrophenyl)-5-methyl-2-cyclohexen-1-one (120).   

The same procedure as described for 32 was repeated except that a mixture of 3-iodo-5-

methyl-2-cyclohexen-1-one (119) (1.00 g, 4.24 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene 

(25) (2.10 g, 5.08 mmol), PdCl2(PhCN)2 (81.3 mg, 0.21 mmol), Ph3As (130 mg, 0.42 mmol), CuI 

(80.8 mg, 0.42 mmol), and NMP (8.4 mL) gave after 48 h 120 (873 mg,  3.78 mmol, 89%) as a 

pale yellow solid:  mp 62-64.5 oC; IR 2956, 1669, 1525, 1346 cm-1; 1�	���	�	���%	 ��	J = 5.5 

Hz, 3H), 2.13-2.63 (m, 5H), 5.99 (s, 1H), 7.32 (d, J= 7.5 Hz, 1H), 7.56 (td, J = 7.5 and 2.4 Hz, 

1H), 7.69 (td, J = 7.7 and 2.4 Hz, 1H), 8.11 (d, J= 8.1 Hz, 1H);13
+	���	�	"��,	 -), 30.7 (-), 38.8 
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(+), 45.4 (+), 124.8 (-), 127.1 (-), 129.4 (-), 129.6 (-), 133.8 (-), 136.4 (+), 146.5 (+), 159.8 (+), 

199.0 (+); HRMS (DEI) calcd for C13H13NO3 (MH+) 232.0974, found 232.0974. 

 

2,3,4,9-Tetrahydro-3-methyl-1H-carbazol-1-one31 (1).  

The same procedure as described for 5 was repeated except that a mixture of 5-methyl-3-

(2-nitrophenyl)-2-cyclohexenone (120) (133 mg, 0.58 mmol), Pd(dba)2 (19.9 mg, 0.03 mmol), 

dppp (14.3 mg, 0.03 mmol), 1,10-phenanthroline monohydrate (13.7 mg, 0.07 mmol), and DMF 

(6 mL) after 72 h gave 1 (88.5 mg, 0.44 mmol, 77%) as a white powder. 

 

4-Iodo-3-nitrophenol65 (122). 

The same procedure as described for 29 was repeated except that 4-amino-3-nitrophenol 

(1.01 g, 6.55 mmol), water (8mL), concentrated H2SO4 (1mL), NaNO2 (506 mg, 7.33 mmol), KI 

(1.30 g, 7.8 mmol), and Cu powder (8.00 mg, 0.13 mmol) gave 122 (1.06 g, 4.00 mmol, 61%) as 

a yellow solid. 

 

1-Iodo-2-nitro-4-methoxybenzene66 (123).   

4-iodo-3-nitrophenol (122) (1.00 g, 3.78 mmol), MeI (2.35 mL, 37.7 mmol), K2CO3 (2.63 

g, 19.0 mmol), and acetone (16 mL) were combined and heated at reflux for 20 h.  The reaction 

mixture was allowed to cool and was filtered.  The filtrate was concentrated to yield 122 (1.05 g, 

3.78 mmol, 100%) as a yellow solid. 
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1-(tri- n-Butylstannyl)-2-nitro-4-methoxybenzene (124).   

To a solution of 123 (923 mg, 3.32 mmol) in toluene (6 mL) was added hexabutylditin 

(2.50 mL, 4.95 mmol), PdCl2(PPh3)2 (23.6 mg, 0.03 mmol), and PPh3 (17.6 mg, 0.06 mmol).  

The reaction was heated at 80 oC for 4 days.  The reaction was diluted with benzene (100 mL) 

and washed with NH4OH (10%, aq, 3 X 30 mL) and H2O (2 X 30 mL).  The organic phase was 

dried (MgSO4) and concentrated.  The product was purified by flash chromatography (hexanes) 

to give 124 (1.13 g, 2.55 mmol, 77%) as a yellow oil:  IR 2956, 1528, 1344 cm-1; 1�	���	�	

0.87 (t, J = 7.3 Hz, 3H), 1.10 (t, J = 7.7Hz, 2H), 1.30 (sextet, J = 4.0 Hz, 2H), 1.42-1.54 (m, 2H), 

3.89 (s, 3H), 7.19 (dd, J = 8.1 and 2.6 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 4.3 Hz, 1H); 

13
+	���	�	����	 &'�	�(�#	 -), 27.3 (+), 29.0 (+), 55.5 (-), 108.8 (-), 120.6 (-), 130.0 (+), 138.0 (-), 

154.5 (+), 160.5 (+): HRMS (FAB) calcd for C19H33NO3Sn (M-) 443.1482, found 443.1491. 

 

3-(4-Methoxy-2-nitrophenyl)-5-methyl-2-cyclohexen-1-one (125).   

The same procedure as described for 32 was repeated except that a mixture of 3-iodo-5-

methyl-2-cyclohexen-1-one (119) (208 mg, 0.88 mmol), 1-(tri-n-butylstannyl)-4-methoxy-2-

nitrobenzene (124) (445 mg, 1.00 mmol), PdCl2(PhCN)2 (17.2 mg, 0.04 mmol), Ph3As (27.1 mg, 

0.08 mmol), CuI (17.8 mg, 0.09 mmol), and NMP (2 mL) after 2 days gave 125 (222 mg,  0.84 

mmol, 96%) as a yellow solid:  mp 45-47 oC; IR 2953, 1666, 1531, 1350 cm-1; 1�	���	�	����	

(d, J = 6.1, 3H), 2.11-2.61 (m, 5H), 3.9 (s, 3H), 5.96 (s, 1H), 7.18-7.21 (m, 2H), 7.58 (d, J = 5.5 

Hz, 1H); 13C ���	�	"���	 -), 30.7 (-), 38.9 (+), 45.4 (+), 56.0 (-), 109.81 (-), 119.9 (-), 127.3 (-), 

128.7 (+), 130.7 (-), 147.5 (+), 159.9 (+), 160.03 (+), 199.34 (-); HRMS (DEI) calcd for 

C14H15NO4 (MH+) 262.1080, found 262.1078. 
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2,3,4,9-Tetrahydro-7-methoxy-3-methyl-1H-carbazol-1-one33 (83).  

The same procedure as described for 5 was repeated except that a mixture of 5-methyl-3-

(4-methoxy-2-nitrophenyl)-2-cyclohexenone (125) (73.6 mg, 0.28 mmol), Pd(dba)2 (9.7 mg, 0.02 

mmol), dppp (6.9 mg, 0.02 mmol), 1,10-phenanthroline monohydrate (6.7 mg, 0.04 mmol), and 

DMF (5 mL) gave 83 (57.7 mg, 0.25 mmol, 89%) as a white powder. 

 

Methyl (+)-(S)-1-ethyl-2-oxo-3-cyclohexene-1-propanoate35 (109).   

To a solution of  methyl (+)-(S)-1-ethyl-2-oxocyclohexane-1-propanoate35 (108) (3.25 g, 

15.3 mmol) in DMF (23 mL) was added triethylamine (11.3 mL, 81.1 mmol).  Trimethylsilyl 

chloride (5.93 mL, 46.7 mmol) was added slowly to the reaction mixture.  The reaction mixture 

was heated at 100 oC for 3 days.  The reaction mixture was allowed to cool to RT, and then was 

diluted with hexanes (50 mL) and poured into cold water (50 mL).  The layers were separated, 

and the aqueous portion was extracted with hexanes (3 X 50 mL).  The organic phases were 

combined, dried (MgSO4), and concentrated.  To a portion of the crude silyl enol ether35 (1.94 g, 

6.82 mmol) in DMSO (50 mL) was added Pd(OAc)2 (159 mg, 0.71 mmol).  The flask containing 

the reaction mixture was flushed with oxygen, and was kept under oxygen (1 atm, balloon) while 

being heated at 40 oC for 72 hrs.  Additional Pd(OAc)2 (95.6 mg, 0.43 mmol) was added to the 

reaction mixture, and the reaction was heated at 60 oC for 24 hrs.  The reaction mixture was 

cooled and diluted with ethyl acetate (200 mL).  The reaction mixture was washed with water (3 

X 50 mL), dried (MgSO4), and concentrated.  The product was purified by flash chromatography 

(hexanes/EtOAc, 7:3) to give 109 (820 mg, 3.90 mmol, 57%) as a colorless oil. 
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Methyl (S)-1-ethyl-2-oxo-3-iodo-3-cyclohexenone-1-propanoate (127).  

The same procedure was repeated as described for 22 except that a solution of iodine 

(1.26 g, 4.96 mmol) in CCl4 (5 mL) and pyridine (5 mL) was added to a solution of 109 (508 mg, 

2.42 mmol) in CCl4 (5 mL) and pyridine (5 mL).  The product was purified via flash 

chromatography (hexanes/EtOAc, 8:2) to give 127 (698 mg, 2.08 mmol, 86%) as a light yellow 

oil:  IR 3450, 2944, 1732, 1679 cm-1; 1�	���	�	���(	 ��	J = 7.5 Hz, 3H), 1.49-1.71 (m, 2H), 

1.80-2.01 (m, 4H), 2.11-2.36 (m, 2H), 2.43-2.50 (m, 2H), 7.64 (t, J = 4.1 Hz, 1H); 13
+	���	�	

7.9 (-), 26.8 (+), 28.5 (+), 28.5 (+), 30.0 (+), 47.7 (+), 51.4 (-), 103.4 (+), 157.3 (-), 173.5 (+), 

195.3 (+); HRMS (DEI) calcd for C12H17IO3 (MH+) 336.0222, found 336.0210. 

 

Methyl (S)-1-ethyl-2-oxo-3-(2-nitrophenyl)-3-cyclohexenone-1-propanoate (128).   

The same procedure as described for 32 was repeated except that a mixture of 127 (250 

mg, 0.74 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene (25) (369 mg, 0.89 mmol), PdCl2(PhCN)2 

(14.9 mg, 0.04 mmol), Ph3As (23.1 mg, 0.08 mmol), CuI (14.5 mg, 0.08 mmol), and NMP (1.4 

mL) after 40 h gave 128 (196 mg,  0.59 mmol, 80%) as a yellow oil:  IR 3446, 2939, 1736, 1669, 

1526, 1353 cm-1; 1�	���	�	���$	 ��	J = 7.5 Hz, 3H), 1.52-2.05 (m, 6H), 2.28 (t, J = 7.7 Hz, 2H), 

2.58 (q, J = 4.6 Hz, 2H), 6.94 (t, J = 4.2 Hz, 1H), 7.24 (dd, J = 7.5 and 1.4 Hz, 1H), 7.44 (td, J = 

7.6 and 1.4 Hz, 1H), 7.57 (td, J = 7.5 and 1.4 Hz, 1H), 7.96 (dd, J = 8.1 and 1.2 Hz, 1H); 13C 

���	�	$��	 -), 22.6 (+), 26.2 (+), 28.4 (+), 28.5 (+), 30.0 (+), 46.8 (+), 51.4 (-), 123.7 (-), 128.5 

(-), 131.8 (-), 132.1 (+), 132.9 (-), 138.0 (+), 145.4 (-), 148.7 (+), 174.0 (+), 199.3 (+); HRMS 

(DEI) calcd for C12H17IO3 (MH+) 332.1498, found 332.1512. 
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Methyl (-)-(S)-[3-ethyl-4-oxo-2,3,4,9-tetrahydro-1H-carbazol-3-yl]propanoate35 (112).  

The same procedure as described for 5 was repeated except that a mixture of 128 (184 

mg, 0.56 mmol), Pd(dba)2 (19.5 mg, 0.03 mmol), dppp (14.0 mg, 0.03 mmol), 1,10-

phenanthroline monohydrate (13.5 mg, 0.06 mmol), and DMF (5 mL) after chromatography and 

recrystallization (hexanes/EtOAc, 2:1) gave 112 (126 mg, 0.42 mmol, 76%) as a white 

crystalline solid. 

 

1,2,3,4-Tetrahydrocarbazole49a (129).  

Hydrogen gas was bubbled through a mixture of 2-(2-nitrophenyl)-2-cyclohexen-1-one 

(32) (54.3 mg, 0.25 mmol) and 10% Pd/C (50.7 mg) in MeOH (10 mL) for 5 min.  The reaction 

mixture was stirred under H2 (1 atm, balloon) for 2 h.  The reaction mixture was filtered through 

Celite and concentrated.  The crude product was purified by flash chromatography 

(hexanes/EtOAc, 8:2) to yield 129 (41.1 mg, 0.24 mmol, 95%) as a white solid. 

Alternate procedure A for 129 and 5.  The same procedure as described above was 

repeated except that a mixture of 70 (52.9 mg, 0.23 mmol) and 10% Pd/C (51.6 mg) in MeOH 

(10 mL) gave 129 (8.5 mg, 0.049 mmol, 22%) and 5 (18.9 mg, 0.10 mmol, 45%). 

Alternate procedure B for 129.  The same procedure as described above was repeated 

except that a mixture of 5 (18.5 mg, 0.10 mmol) and 10% Pd/C (19.0 mg) in MeOH (5 mL) gave 

129 (6.0 mg, 0.035 mmol, 35%) and recovered 5 (7.3 mg, 0.039 mmol, 39%) after 3 days. 

 

[(4-Methyl-1-cyclohexen-1-yl)oxy]trimethylsilane49a (139).   

Butyllithium (20.0 mL of a 2.5 M solution in hexanes, 50.0 mmol) was added dropwise 

to a solution of diisopropylamine (8.15 mL, 58.2 mmol) in THF (160 mL) cooled to –78 oC 
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under an argon atmosphere.  The reaction mixture was stirred 10 min and a solution of 4-

methylcyclohexanone (5.01 g, 44.6 mmol) in THF (40 mL) was added slowly to the reaction 

mixture.  The reaction mixture was stirred for 30 min, and then TMSCl (6.80 mL, 53.6 mmol) 

and Et3N (12.5 mL, 89.7 mmol) were added slowly.  The reaction mixture was allowed to warm 

to room temperature over 1 h.  The reaction mixture was diluted with diethyl ether (400 mL), 

washed with water (3 x 100 mL), dried (MgSO4), and concentrated.  The crude product was 

purified by flash chromatography (hexanes/EtOAc, 9:1) to give 139 (8.23 g, 44.6 mmol, 100%) 

as a clear, colorless oil. 

 

4-Methyl-2-cyclohexen-1-one19 (140).  

To a solution of 139 (3.14, 17.0mmol) in DMSO (100 mL) was added Pd(OAc)2 (366 

mg, 1.63 mmol).  The reaction flask was flushed with O2 for 5 min.  The reaction mixture was 

stirred at 40 oC under O2 (1 atm, balloon) for 24 h.  The reaction mixture was allowed to cool, 

and then was diluted with 400 mL of EtOAc and washed with water (3 x 100 mL).  The organic 

phase was dried (MgSO4) and concentrated.  The crude product was purified by flash 

chromatography (hexanes:EtOAc, 9:1) to give 140 (676 g, 6.14 mmol, 36%) as a clear, colorless 

oil. 

 

2-Iodo-4-methyl-2-cyclohexen-1-one (141).  

The same procedure was repeated as described for 22 except that a solution of iodine 

(2.97 g, 11.7 mmol) in CCl4 (10 mL) and pyridine (10 mL) was added dropwise to a solution of 

140 (628 mg, 5.70 mmol) in CCl4 (10 mL) and pyridine (10 mL) to yield 141 (873 mg, 3.70 

mmol, 65%) as a yellow oil:  IR 2958, 2870, 1686, 1585, 1454 cm-1; 1�	���	�	���,	 ��	J = 7.2 
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Hz, 3H), 1.68-1.83 (m, 1H), 2.11-2.23 (m, 1H), 2.48-2.82 (m, 3H), 7.61 (d, J = 2.9 Hz, 1H); 13C 

���	�	�,�$	 -), 30.6 (+), 35.6 (+), 35.7 (-), 103.0 (+), 164.7 (-), 192.0 (+). 

 

4-Methyl-2-(2-nitrophenyl)-2-cyclohexen-1-one (142).   

The same procedure as described for 32 was repeated except that a mixture of 2-iodo-4-

methyl-2-cyclohexen-1-one (141) (405 g, 1.72 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene (25) 

(854 mg, 2.07 mmol), PdCl2(PhCN)2 (32.9 mg, 0.09 mmol), Ph3As (52.6 mg, 0.17 mmol), CuI 

(32.7 mg, 0.17 mmol), and NMP (4 mL) after 2 days gave 142 (318 mg,  1.38 mmol, 80%) as a 

light yellow oil:  IR 2960, 2871, 1682, 1525, 1352 cm-1; 1H NMR �	��"#	 ��	J = 7.1 Hz, 3H), 

1.74-1.91 (m, 1H), 2.14 (m, 1H), 2.46-2.84 (m, 3H), 6.81 (m, 1H), 7.25 (d, J = 5.9 Hz, 1H), 7.47 

(t, J = 6.3 Hz, 1H), 7.60 (t, J = 7.9 Hz, 1 H), 8.02 (d, J = 8.1 Hz, 1H); 13
+	���	�	"��"	 -), 30.5 

(+), 31.6 (-), 37.0 ( +),124.1 (-), 128.7 (-), 131.6 (-), 131.9 (+), 133.2 (-), 138.1 (+), 148.5 (+), 

152.1 (-), 196.4 (+). 

Impurity: 1-Nitro-2-(2-nitrophenyl)benzene (43).  Partial 1�	���	�	$�$,	 ��	J = 7.9 

Hz), 8.22 (d, J = 8.1 Hz).  Partial 13
+	���	�	�"%�#	 -), 129.0 (-), 130.8 (-), 133.4 (-), 134.0. 

 

3-Methyl-2-(2-nitrophenyl)-2-cyclohexen-1-one (144).   

The same procedure as described for 32 was repeated except that a mixture of 2-iodo-3-

methyl-2-cyclohexen-1-one18 (143) (404 mg, 1.71 mmol), 1-(tri-n-butylstannyl)-2-nitrobenzene 

(25) (850 mg, 2.06 mmol), PdCl2(PhCN)2 (32.9 mg, 0.09 mmol), Ph3As (52.4 mg, 0.17 mmol), 

CuI (32.8 mg, 0.17 mmol), and NMP (4 mL) gave 144 (309 mg,  1.33 mmol, 78%) as a light 

yellow solid:  mp 75-77 oC; IR 2943, 2873, 1663, 1622, 1522, 1356 cm-1; 1H NMR �	��$�	 ��	

3H), 1.99-2.22 (m, 2H), 2.42-2.64 (m, 4H), 7.16 (dd, J = 7.5 and 1.6 Hz, 1H), 7.47 (td, J = 7.7 
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and 1.6 Hz, 1H), 7.60 (td, J = 7.5 and 1.4 Hz, 1H), 8.08 (dd, J = 8.1 and 1.4Hz, 1H); 13
+	���	�	

21.8 (+), 22.4 (-), 32.3 (+), 37.5 (+), 124.4 (-), 128.4 (-), 131.7 (+), 132.5 (-), 133.0 (-), 135.1 (+), 

148.8 (+), 156.5 (+), 196.6 (+). 

 

1-Methyl-1,2,3,4-tetrahydrocarbazole67 (131).  

The same procedure as described for 129 was repeated except that a mixture of 6-methyl-

2-(2-nitrophenyl)-2-cyclohexen-1-one (115) (37.0 mg, 0.16 mmol), 10% Pd/C (37.4 mg), and 

MeOH (10 mL) after 2 h and chromatography (hexanes/EtOAc, 95:5) gave 131 (27.2 mg, 0.15 

mmol, 91%) as a white solid. 

 

4-Methyl-1,2,3,4-tetrahydrocarbazole68 (134). 

The same procedure as described for 129 was repeated except that a mixture of 3-methyl-

2-(2-nitrophenyl)-2-cyclohexen-1-one (144) (155 mg, 0.67 mmol), 10% Pd/C (151 mg), and 

MeOH (10 mL) after 30 min and chromatography (hexanes/EtOAc/Et3N, 98:2:1 mL per 500 mL 

of solvent) gave 134 (97.6 mg, 0.52 mmol, 78%) as a white solid. 

 

2-Methyl-1,2,3,4-tetrahydrocarbazole51 (135).  

The same procedure as described for 129 was repeated except that a mixture of 5-methyl-

2-(2-nitrophenyl)-2-cyclohexen-1-one (33) (100 mg,  0.43 mmol), 10% Pd/C ( 100 mg), and 

MeOH (10 mL) after 2 h and chromatography (hexanes/EtOAc/Et3N, 98:2:1 mL/500 mL of 

solvent) gave 135 (73.6 mg, 0.40 mmol, 92%) as a white solid. 
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3-Methyl-1,2,3,4-tetrahydrocarbazole50a (145).  

The same procedure as described for 129 was repeated except that a mixture of 4-methyl-

2-(2-nitrophenyl)-2-cyclohexen-1-one (142) (150 mg, 0.65 mmol), 10% Pd/C (175 mg), and 

MeOH (10 mL) after 30 min and chromatography (hexanes/EtOAc/Et3N, 98:2:1 mL/500 mL of 

solvent) gave 145 (107 mg, 0.58 mmol, 89%) as a white solid. 

 

1,2,3,3a,4,8b-Hexahydrocyclopent[b]indole69 (146).  

The same procedure as described for 129 was repeated except that a mixture of 2-(2-

nitrophenyl)-2-cyclopenten-1-one (34) (117 mg, 0.58 mmol), 10% Pd/C (115 mg), and MeOH 

(10 mL) after 20 min without purification gave 146 (76.1 mg, 0.48 mmol, 83%) as a white solid. 

 

5,6,7,8,9,10-Hexahydrocyclohept[b]indole68 (147).  

The same procedure as described for 129 was repeated except that a mixture of 2-(2-

nitrophenyl)-2-cyclohepten-1-one (35) (65.8 mg, 0.28 mmol), 10% Pd/C (66.0 mg), and MeOH 

(10 mL) after 2.5 h and chromatography (hexanes/EtOAc, 95:5) gave 147 (37.8 mg, 0.20 mmol, 

72%) as a white solid. 

 

8-Methyl-1,2,3,4-tetrahydrocarbazole70 (148) and 8-Methyl-1,2,3,4,4a,9a-

hexahydrocarbazol-1-one (149).  

The same procedure as described for 129 was repeated except that a mixture of 2-(3-

methyl-2-nitrophenyl)-2-cyclohexen-1-one (39) (90.7 mg, 0.39 mmol), 10% Pd/C (90.5 mg), and 

MeOH (10 mL) after 20 min and chromatography (hexanes/EtOAc/Et3N, 98:2:1 mL per 500 mL 

of solvent) gave a mixture of 148 (12.7 mg, 0.07 mmol, 17%) as a white solid and 149 (31.9 mg, 
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0.16 mmol, 40%) as a white solid:  mp 102-104 oC; IR 2934, 1707, 1516, 1370 cm–1;1�	���	�	

1.73-2.58 (m, 7H, 2.33 (s, 3H), 3.64 (dd, J = 12.4 and 5.3 Hz, 1H), 7.16 (d, J = 7.9 Hz, 1H), 7.21 

(d, J = 7.7 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H); 13
+	���	�	�$�$	 -), 25.4 (+), 27.5 (+), 35.1 (+), 

42.1 (+), 52.4 (-), 127.4 (-), 129.5 (+), 129.9 (-), 130.0 (-), 130.8 (+), 151.4 (-), 207.7 (+). 

Alternate procedure for compound 149.  8-Methyl-1,2,3,4,4a,9a-hexahydrocarbazol-1-

one (149) was also prepared exclusively in the same manner as described above using a mixture 

of 39 (141 mg, 0.61 mmol), 10% Pd/C (13.4 mg), and MeOH (10 mL) after 1 h 20 min to give 

149 (136 mg, 0.67 mmol, 100%). 

 

5-Carbomethoxy-1,2,3,4-tetrahydrocarbazole (150) and 5-Carbomethoxy-1,2,3,4,4a,9a-

hexahydrocarbazol-1-one (151).   

The same procedure as described for 129 was repeated except that a mixture of 2-(6-

carbomethoxy-2-nitrophenyl)-2-cyclohexen-1-one (40) (50.8 mg, 0.18 mmol), 10% Pd/C (54.9 

mg), and MeOH (10 mL) after 2 h and chromatography (hexanes/EtOAc, 95:5) gave a mixture of  

150 (10.7 mg, 0.05 mmol, 25%) and 151 (16.8 mg, 0.07 mmol, 37%) as white solids:  150 1H 

���	�	��$$-1.97 (m, 4H), 2.73-2.82 (m, 2H), 2.85-2.93 (m, 2H), 3.94 (s, 3H), 7.11 (td, J = 7.7 

and 1.7 Hz, 1H), 7.43 (dt, J = 8.1 and 1.7 Hz, 1H), 7.64 (dt, J = 7.4 and 1.7 Hz, 1H), 7.93 (s, 

1H); 151 1�	���	�	��)�-1.77 (m, 4H), 1.89-2.06(m, 2H), 3.51 (p, J = 6.2 Hz, 1H), 3.80-3.87 

(m, 2H), 3.88 (s, 3H), 6.84 (d, J = 7.9 Hz, 1 H), 7.07 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H). 
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7-Methoxy-1,2,3,4-tetrahydrocarbazole71  (152) and 7-Methoxy-1,2,3,4,4a,9a-

hexahydrocarbazol-1-one72 (153)  

The same procedure as described for 129 was repeated except that a mixture of 2-(4-

methoxy-2-nitrophenyl)-2-cyclohexenone (37) (105 mg, 0.42 mmol), 10% Pd/C (104 mg), and 

MeOH (10 mL) after 20 min and chromatography (hexanes/EtOAc/Et3N, 95:5:1 mL per 500 mL 

of solvent) gave an inseparable mixture of 152 (52.5 mg, 0.26 mmol, 62%) and 153 (7.9 mg, 

0.04 mmol, 9%).  Yields were estimated from the 1H NMR spectrum.
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