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ABSTRACT 

Integrating visible, near infrared and short wave infrared hyperspectral and 

multispectral thermal imagery for geological mapping at Cuprite, Nevada 

Xianfeng Chen 

 Visible, near infrared (VNIR), and short wave infrared (SWIR) hyperspectral and 
thermal infrared (TIR) multispectral remote sensing have become potential tool for 
geological mapping.  In this dissertation, a series of studies were carried out to investigate 
the potential impact of combining VNIR/SWIR hyperspectral and TIR multispectral data 
for surface geological mapping.  First, a series of simulated data sets based on the 
characteristics of hyperspectral AVIRIS and multispectral TIR MASTER sensors was 
created from surface reflectance and emissivity library spectra.  Five common used 
classification methods including minimum distance, maximum likelihood, spectral angle 
mapper (SAM), spectral feature fitting (SFF), and binary encoding were applied to these 
simulated data sets to test the hypothesis.  It was found that most methods applied to the 
combined data actually obtained improvement in overall accuracy of classification by 
comparison of the results to the simulated AVIRIS data or TIR MASTER alone. And 
some minerals and rocks with strong spectral features got a marked increase in 
classification accuracy.  Second, two real data sets such as AVIRIS and MASTER of 
Cuprite, Nevada were used.  Four classification methods were each applied to AVIRIS, 
MASTER, and a combined set.  The results of these classifications confirmed most 
findings from the simulated data analyses.  Most silicate bearing rocks achieved great 
improvement in classification accuracy with the combined data.  SFF applied to the 
combination of AVIRIS with MASTER TIR data are especially valuable for 
identification of silicified alteration and quartzite sandstone which exhibit strong 
distinctive absorption features in the TIR region.  SAM showed some advantages over 
SFF in dealing with multiple broad band TIR data, obtaining higher accuracy in 
discriminating low albedo volcanic rocks and limestone which do not have strong 
characteristic absorption features in the TIR region.  One of the main objectives of these 
studies is to develop a automate classification algorithm which is effective for the 
analysis of VNIR/SWIR hyperspectral and TIR multispectral data.  A rule based system 
was constructed to draw the strengths of disparate wavelength regions and different 
algorithms for geological mapping. 
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Chapter 1.  General Introduction 

 Visible (0.4 to 0.7 µm), near infrared (0.7-1.1 µm, NIR, also sometimes combined 

with visible wavelengths as VNIR), and short wave infrared (1.1-2.5 µm, SWIR) 

hyperspectral remote sensing and thermal infrared (8-12 µm, TIR) multispectral remote 

sensing technologies have been important tools for geological mapping in arid and 

semiarid regions for more than 20 years (Crósta et al., 1998; Kruse, 1988; Kruse et al., 

1993b; Collins, 1991; Hook et al., 1994; Rowan and Mars, 2003; Sabine et al., 1994).  

Hyperspectral imaging refers to the acquisition of images with hundreds or more 

contiguous spectral bands, which cover a sufficiently narrow region to discriminate 

spectral features in minerals and other surface materials.  Multispectral imaging implies a 

smaller number of bands, usually in the range of three to ten or more, each of which 

covers a relatively broad spectral region.  The development of hyperspectral VNIR/SWIR 

and multispectral TIR technologies culminated in the recent launches of the satellite 

borne Hyperion hyperspectral and ASTER (Advanced Spaceborne Thermal Emission and 

Reflectance Radiometer) TIR instruments.  The advent of satellite acquisitions is 

important, because when space platforms are used, data is potentially available globally, 

and on a relatively routine basis.  The planned operation of the European sensor, ARES, 

which has both hyperspectral data and multispectral TIR data, should make the 

availability of such data routine in geological applications (Mueller et al., 2003) 

 Part of the significance of VNIR/SWIR hyperspectral and TIR multispectral 

imaging is that these technologies supply information on inherent physical properties, 

namely reflectance and emissivity, which in turn can be related to rock composition.  

This link can in theory be made because minerals tend to have characteristic spectral 
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reflectance and emissivity features (Clark, 1999; Hook et al., 1994) that are produced by 

electronic transitions and vibrational processes resulting from the interaction of 

electromagnetic energy with atoms and molecules.  

Electronic transitions are a result of the change of energy states following the 

absorption of a photon, and include crystal field effects, charge transfer absorptions, 

conduction bands, and color centers (Clark, 1999; Goetz, 1989).  The electronic 

transitions require higher energy levels, and therefore occur at shorter wavelength regions 

compared to the vibrational processes (Goetz, 1989).  Electronic transitions tend to 

dominate mineral spectra in the visible and NIR, but are also found across the SWIR 

region.   

Vibrational processes cause spectral features from the SWIR to beyond the TIR 

(Hunt, 1980), and result from vibrations in the crystal lattice of minerals.  Vibrational 

processes include fundamental, as well as overtone and combination vibrations.  

Absorption features associated with fundamental vibrational processes vary with 

differences in the anion composition, bond strength, and crystal structure of the minerals.  

Vibrational processes produce particularly diagnostic absorption features in the spectra of 

hydroxyl, iron, carbonate and water-bearing minerals (Hunt, 1980; Clark, 1999).   

In the 8-12 µm TIR region, fundamental vibrational processes produce spectral 

features in silicate spectra, and this spectral region is therefore sometimes known as the 

“Si-O stretching region” (Hook et al., 1994).  The wavelength of the major absorption 

feature tends to shift to shorter wavelengths with increasing bond strength (Vincent and 

Thomson, 1971; Hunt and Salisbury, 1974).  Furthermore, for silicate minerals, the 
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wavelength of the Si-O absorption feature varies from 11 to 9 µm, corresponding to 

minerals with chain, sheet, and framework structures (Hunt, 1980).   

The distinctive spectral features of silicates, as well as other important spectral 

features of most non-silicate minerals, including the carbonates, sulfates, phosphates, 

oxides, and hydroxide mineral groups, demonstrate the tremendous potential of the TIR 

region for geological mapping.  Combining information from TIR spectral emissivity 

with measurement of spectral reflectance in the 0.4-2.5 µm region, which is particularly 

good for discriminating clays, iron oxides, and iron hydroxides (Clark, 1999), should 

provide a more comprehensive overview of rock compositional information than using 

data from only one of the two regions (Rowan, 1998). 

Despite the promise of integrating VNIR/SWIR and TIR imagery (Hook et al., 

1999), most previous research has focused on using only either VNIR/SWIR 

hyperspectral data (Crósta et al., 1998; Kruse, 1988; Kruse et al., 1993b), or TIR 

multispectral data (Collins, 1991; Hook et al., 1994; Rowan and Mars, 2003; Sabine et 

al., 1994) on their own, or at most, a comparison of data sets of different wavelength 

(Abrams and Hook, 1991).  Very little attention has been paid to image analysis 

approaches that draw on both VNIR/SWIR hyperspectral and TIR multispectral data 

simultaneously.   

This study investigates the potential value of integration of VNIR/SWIR 

hyperspectral analysis with TIR multispectral analysis, with the anticipation that such an 

approach should provide improved discrimination of a wide range of rocks and minerals.  

The research has three main components.   
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The first part, comprising the stand-alone paper included here as Chapter 2, is an 

analysis of simulated hyperspectral VNIR/SWIR and multispectral TIR data.  Simulated 

data are particularly useful because not only are the makeup and true proportions of the 

constituent minerals in the simulated spectra known, but also the amount and type of 

noise can be controlled.  The simulated data were used to test the improvement in 

classification accuracy when the combination of VNIR/SWIR hyperspectral and TIR 

multispectral data is used, compared to an analysis that uses only the VNIR/SWIR data, 

or TIR data, on their own.  In addition, the simulated data were used to evaluate the 

performance of automatic information extraction algorithms, including the statistical 

classification algorithms of minimum distance and maximum likelihood classification 

(Richards, 1993), as well as the hyperspectral analysis techniques of spectral angle 

mapper (SAM) (Kruse et al., 1993a), binary encoding (Goetz, et al., 1985), and spectral 

feature fitting (SFF) (Crowley et al., 1989; Clark et al., 1990).   

The second independent paper, Chapter 3, uses aircraft imagery to extend the 

results of the study of simulated data to real world data.  The data used were 

hyperspectral VNIR/SWIR Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

and multispectral TIR MASTER (MODIS/ASTER Airborne Simulator) data of Cuprite, 

Nevada.  Cuprite is particularly suited for testing geological remote sensing methods 

because a wide range of rock and alteration types is well exposed in a sparsely vegetated 

environment.  As with the simulated data discussed in Chapter 2, the AVIRIS and 

MASTER data were used to test if the combination of VNIR/SWIR hyperspectral data 

and TIR multispectral data improves the accuracy of lithological mapping.  SAM, SFF, 

minimum distance, and maximum likelihood classification methods were applied to 
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AVIRIS, MASTER, and the combined data, respectively.  Comparisons of the relative 

accuracy of each method and data set offers insight into how spectral characteristics of 

minerals and rocks influence the nature of the optimal data sets and methods for 

discrimination of those minerals.   

The third and final independent paper, Chapter 4, draws on the results of the 

simulated and real data analyses to develop a rule based system for classifying minerals 

and rocks.  The rule based system employs a set of rules to determine, for each pixel 

independently, the optimal data sets (VNIR/SWIR hyperspectral data, TIR multispectral 

data, or both) and classifications methods (SFF, or SAM), to discriminate the minerals 

and rocks of the area.  Thus the final classified image is a composite of different 

approaches applied to different wavelength regions.   

Chapter 5 is a general conclusion linking the three independent papers.  The 

potential value of integration of VNIR/SWIR hyperspectral data and TIR multispectral 

data is evaluated by comparing the results of the simulated and real data analysis, and 

evaluating the benefits of the rule based system approach.  In addition, the relative 

strengths of the maximum likelihood, minimum distance, SFF and SAM classification 

methods are compared.   
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Chapter 2.  Simulated Data Analysis  

Abstract 

This paper investigates the potential impact of combining visible, near infrared 

(VNIR), and shortwave infrared (SWIR) hyperspectral and thermal infrared (TIR) 

multispectral data on the comparative accuracy of different classification methods for 

surface bedrock geological mapping.  A series of simulated data sets based on the 

characteristics of hyperspectral AVIRIS and multispectral TIR MASTER sensors was 

created from surface reflectance and emissivity library spectra of 16 common minerals 

and rocks occurring in Cuprite, Nevada.  System noise, illumination effects, the presence 

of vegetation, and spectral mixing were added to create the simulated data.  Five 

commonly used classification algorithms, minimum distance, maximum likelihood 

classification, binary encoding, spectral angle mapper (SAM), and spectral feature fitting 

(SFF), were applied to all data sets.  All the classification methods, excluding binary 

encoding, achieved nominal to significant improvement in overall accuracy when applied 

to the combined data sets in comparison to using only the AVIRIS data set.  Furthermore, 

certain classification methods of the combined data sets showed a marked increase in 

individual rock or mineral class accuracies.  Limestone, silicified rock, and muscovite, 

for instance, showed an improvement of almost 30 percent or greater in either producer’s 

or user’s accuracy using the combined data sets with SAM.  SFF provided a great 

improvement in accuracy for limestone, quartz, and muscovite.  In terms of overall 

comparative accuracy for the individual and the combined data sets, maximum likelihood 

classification showed the best performance.  For the simulated AVIRIS data, SFF was 

generally superior to SAM, although the accuracy of SAM applied to the combined data 
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sets was slightly better than that of SFF.  SAM applied to the combined data sets 

increased classification accuracy for some minerals and rocks which do not exhibit 

distinct absorption features in thermal infrared region, while for SFF, only the accuracy 

of minerals and rocks with characteristic absorption features in the TIR was improved.   

Key Words:  hyperspectral; multispectral; visible; near infrared; short wave infrared; 

thermal; simulated imagery; classification methods. 

 

1. Introduction 

 
Recent developments in VNIR/SWIR1 hyperspectral and TIR multispectral 

remote sensing have greatly increased the potential for accurate geological mapping.  

Hyperspectral instruments, often referred to as imaging spectrometers, acquire image data 

simultaneously in many narrow, contiguous channels (Goetz et al., 1985), generally 

spanning the reflected solar portion of the electromagnetic spectrum (0.4 - 2.5 µm) (Vane 

et al., 1993).  The spectral bandwidths of hyperspectral image bands are generally less 

than 25 nm, in order to facilitate the identification of diagnostic absorption features of 

minerals (Clark, 1999).  Hyperspectral data have a significant advantage over 

conventional multispectral data, such as Landsat Thematic Mapper imagery, in that with 

hyperspectral data, minerals can be identified by comparisons with generic library spectra 

(Clark et al., 2003).  With hyperspectral data, it is therefore theoretically possible to map 

                                                 
1 An unfortunate inconsistency has developed in the terms used by the remote sensing community for 
regions of the electromagnetic spectrum (Clark, 1999).  In this study, the wavelength regions are defined as 
follows:  visible: 0.4 – 0.7 µm, near-infrared (NIR):  0.7 – 1.1 µm, visible and near-infrared (VNIR):  
0.4 – 1.1 µm, short-wavelength infrared (SWIR):  1.1 – 2.5 µm, mid-infrared (MIR): 3 – 5 µm, and 
thermal infrared (TIR): 8 – 14 µm (Goetz, 1989; Hook et al., 2001).   
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the surface mineralogy of an area without acquiring any ground data from the particular 

site. 

In contrast to the many bands of hyperspectral instruments, TIR multispectral 

sensors measure surface radiance in a small number of broad bands.  TIR imagery 

provides important information regarding temperature, thermal inertia, and emissivity of 

ground materials (Price, 1979; Kahle, 1987; Warner and Chen, 2001).  Surface emissivity 

is potentially the most useful thermal property, because it is an inherent characteristic of 

an object, and is independent of illumination intensity and local temperature.  Emissivity 

is defined as the ratio of the emitted radiation to that of a blackbody at the same 

temperature (Hook et al., 1992).  Emissivity can be used to identify individual minerals, 

and has been related to silica content of rocks (Lyon, 1972), thus offering the possibility 

of discriminating the silicate materials that make up much of the land surface.   

Minerals tend to have characteristic spectral reflectance and associated emissivity 

features, which may potentially be used for remote identification (Clark, 1999; Hook et 

al., 1994).  The characteristic spectral features are produced by the interaction of 

electromagnetic energy with the atoms and molecules of the minerals, which cause 

electronic transitions and vibrational processes.  Electronic transitions tend to dominate 

mineral spectra in the visible and NIR, but are also found across the SWIR region (Clark, 

1999; Goetz, 1989).  Vibrational processes, dominating in SWIR and TIR region, 

produce particularly diagnostic absorption features in the spectra of silicate, hydroxyl, 

oxide, carbonate and water-bearing minerals (Vincent and Thomson, 1971; Hunt and 

Salisbury, 1974; Hunt, 1980; Hook et al., 1994; Clark, 1999).   
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The distinctive spectral features of silicates, as well as other important spectral 

features of most non-silicate minerals, including the carbonates, sulfates, phosphates, 

oxides, and hydroxide mineral groups, demonstrate the tremendous potential of the TIR 

region for geological mapping.  Combining information from TIR spectral emissivity 

with measurement of spectral reflectance in the 0.4-2.5 µm region, which is particularly 

good for discriminating clays, iron oxides, and iron hydroxides (Clark, 1999), should 

provide a more comprehensive overview of rock compositional information than using 

data from only one of the two regions (Rowan, 1998).  

In summary, the combination of VNIR/SWIR hyperspectral data and TIR 

multispectral data appears to have great promise for geological studies because of the 

complementary nature of information from the thermal and shorter wavelengths (Hook et 

al., 1999).  Typically, iron oxide, hydroxyl, and carbonate minerals have absorption 

features in the visible or SWIR region, while the Si-O bonding of silicate minerals exhibit 

absorption features in TIR region.  Nevertheless, combining VNIR/SWIR and TIR data 

has received very little prior attention, with the exception of Abrams and Hook (1991), 

who separately analyzed VNIR/SWIR hyperspectral and TIR multispectral data for 

lithological analysis at Cuprite, Nevada.  

That no previous research has simultaneously analyzed VNIR/SWIR 

hyperspectral and TIR multispectral data is probably due to the fact that data from these 

spectral regions are rarely acquired simultaneously, and that coregistration of aerial 

imagery from different sources can be very challenging.  However, modern aircraft-

acquired data often include navigation information that can be used to remove non-

systematic spatial distortions. Furthermore, in the future, with the increased availability 
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of satellite data, which tends to have simpler geometry than aerial imagery, coregistration 

of different image products may become more routine.  In fact, space-borne hyperspectral 

data is already being collected by the Hyperion instrument, and space-borne multispectral 

TIR data by the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER).  Integrating imagery from different sensors may not even be necessary in the 

future; for example there are plans to fly an airborne hyperspectral sensor in 2005, 

Airborne Reflective Emissive Spectrometer (ARES), which has 160 image bands in the 

visible, NIR, SWIR, and TIR wavelength regions (Mueller et al., 2003). 

This study investigated the potential value of integration of VNIR/SWIR 

hyperspectral analysis with TIR multispectral analysis, with the anticipation that such an 

approach should provide improved geological mapping.  To test this hypothesis, 

simulated data were used to test the improvement in classification accuracy when the 

combination of VNIR/SWIR hyperspectral and TIR multispectral data is used, compared 

to an analysis that uses only the VNIR/SWIR or TIR regions on their own.  In addition, 

the simulated data were used to evaluate the performance of automatic information 

extraction algorithms, including the conventional classification algorithms of minimum 

distance and maximum likelihood classification (Richards, 1993), as well as the 

hyperspectral analysis techniques of spectral angle mapper (Kruse et al., 1993a), binary 

encoding (Goetz, et al., 1985), and spectral feature fitting (Crowley et al., 1989; Clark et 

al., 1990).  

Simulated data have been demonstrated to be useful in developing general 

theories about how information is represented in images and spectra (Strahler et al., 

1986).  For example, simulated data have been used in many studies of image spatial 
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properties (e.g. Woodcock et al., 1988, Jupp et al., 1989, Collins and Woodcock, 1999, 

Warner, 1999, Ferro and Warner, 2002), and spectral properties (e.g. Verhoef, 1984, Li et 

al., 1999, Pandya et al., 2000). 

Simulated data were chosen for this study because with simulated data it is 

possible to evaluate accuracy with complete confidence in the reference data set.  A 

geological map is always complex and heterogeneous.  Ground checking of minerals for 

real hyperspectral analyses is challenging, especially when the minerals are fine grained.  

Although minerals can be identified through laboratory techniques, it is hard to 

generalize from small laboratory samples to 20 meter pixels, and especially difficult to 

estimate the proportions of minerals present in fine mixtures.  Additional uncertainty is 

added by varying desert varnish, vegetation, weathering, and deposition of transported 

material in each pixel.  Thus, in summary, it is close to impossible to produce a “truth 

map” for geological hyperspectral remote sensing.  Perhaps most telling is that we know 

of no previous quantitative assessment of accuracy of geological hyperspectral remote 

sensing classification.   

A second reason for using simulated data is that this approach allows us to vary 

image properties in a controlled fashion, and thus potentially develop an understanding of 

the reasons behind the results we observe.  We are also able to study what aspects of the 

scene model most affect the different methods, a key to developing improvements to the 

different methods.  For example, if illumination variation were found to be a major 

source of error, then we would infer that illumination normalization methods should be 

researched further. 
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The third reason for using simulated data is that simulation provides a simplified, 

but reasonable, representation of real data as long as the major processes that result in a 

real image are included in the analysis.  Simulated data are typically much simpler than 

reality.  This does not necessarily negate the value of simulated data; indeed, the 

simplification can be an advantage, as discussed above.   

In Chapter 3, the classification methods tested in this paper will be applied to real 

data, comprising AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) and 

MASTER (MODIS/ASTER Airborne Simulator) imagery of Cuprite, Nevada.  

2. Methods 

2.1  Classification algorithms 

Image classification methods can be divided into two groups:  empirical 

classification algorithms that use summary class statistics based on groups of image 

pixels, and spectral analysis techniques that match image spectra to previously acquired 

field or laboratory spectra, known as spectral libraries.  With hyperspectral data, 

empirical classification approaches that rely on second order statistical measures tend to 

require excessive numbers of training samples for training the classifier (Landgrebe, 

2000).  The spectral library approach is attractive for hyperspectral image analysis 

because rocks and minerals tend to have distinctive and consistent spectral absorption 

features, as discussed above.  Furthermore, the potential to identify surface materials 

without any local field data is clearly very attractive.  

The two most common empirical classification methods used for geological 

mapping are minimum distance and maximum likelihood classification.  Numerous 
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additional spectral analysis methods have been developed for geological mapping 

(Mustard and Sunshine, 1999), including binary encoding, spectral feature fitting, and the 

spectral angle mapper.  These three spectral analysis methods will be described briefly 

below. 

Binary encoding (Goetz, et al., 1985) is a fast spectral matching algorithm that 

compares summary measures of the spectral shapes of an unknown pixel and the 

reference spectra.  The unknown pixel spectrum of n bands is represented by an n bit 

vector, with each bit set to 1 or 0 respectively, depending on whether the value of the 

spectrum for that band is above or equal to, or below the pixel mean.  Because of its 

simplicity, binary encoding is often used as a provisional, or exploratory, classification 

approach.  Nevertheless, binary encoding is included in this study to give a wider 

representation of hyperspectral analysis methods. 

Spectral feature fitting (SFF) (Crowley et al., 1989; Clark et al., 1990) is based 

on a comparison of the absorption features in the image and reference spectra.  The 

continuum, defined as a convex hull fit over the top of each spectrum utilizing straight 

line-segments to connect local spectrum maxima (Clark et al., 2003, Kruse et al., 1993b), 

is removed by dividing the convex hull into the original spectrum.  The continuum-

removed pixel spectrum and reference spectra are compared at each absorption band 

using a least-square fit.  The root mean square error indicates the relative goodness-of-fit 

of the two spectra. 

Spectral angle mapper (SAM) (Kruse et al., 1993a) builds on the hyperspherical 

direction cosine method (Pouch and Campagna, 1990) by calculating the similarity 
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between pixel spectra and reference spectra in terms of the angle between two n-

dimensional vectors, where n is the number of bands of hyperspectral data.  

2.2  Simulated data 

The creation of the simulated data was carried out using the Interactive Data 

Language (IDL) (Research Systems, 2004a).  The spectra of 16 common minerals, rock 

types, and alteration types (Table 2.1) were chosen for this study because they represent 

the dominant lithological units and alteration types typical of hydrothermal alteration 

areas such as Cuprite, Nevada (Abrams and Ashley, 1980).  The mineral spectra selected 

were those with the finest grain size; for rocks and the three alteration types, a solid 

surface was measured.  All fine grained mineral spectra used have a relative low contrast, 

and they are the most representative of the ground surface in reality.  The spectra were 

resampled to match the approximate spectral bandwidth and signal-to-noise of the 

AVIRIS and MASTER instruments.  A brief introduction to the AVIRIS and MASTER 

instruments is given below (see also Table 2.2), followed by a more detailed discussion 

of the simulated data characteristics. 

The MASTER sensor was developed to support research prior to the launch of the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Hook et al., 2001).  

MASTER has a total of 50 bands from 0.4-13 µm, including 10 TIR bands.  In this study, 

simulated multispectral thermal data are based only on the 10 MASTER TIR bands (7.6-

13 µm).  AVIRIS, flown by NASA since 1987 (Green et al., 1998), acquires data in 224 

narrow, contiguous spectral bands across the reflected solar energy region (0.4-2.5 µm), 

each band approximately 10 nm at full width, half maximum (FWHM). 
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The simulated data for the nine minerals and the four unaltered rocks (Table 2.1) 

were derived from the public domain spectral library included with ENVI (Research 

Systems, 2004b):  the Johns Hopkins University library of spectra of materials from 0.4 

to 14 µm (Salisbury et al., 1991; Research Systems, 2004b).  The simulated data for the 

three hydrothermally altered rocks were derived from spectral measurements of samples 

collected at Cuprite.  The original rocks of hydrothermal alteration ranged from intrusive 

rock to volcanic tuffs.  Silicified rock, the most intensive alteration, contain abundant 

quartz and some other minerals such as calcite, alunite, and kaolinite; opalized rock is the 

moderate altered type, presenting opal and variable amounts of alunite and kaolinite; 

argillized rock is the least altered type consisting of primary quartz, altered 

montmorillonite and kaolinite (Abrams and Ashley, 1980).  For the altered rocks, the 

spectra from 0.4 to 2.5 µm were measured by the author with an Analytical Spectral 

Devices (Boulder, Colorado) field portable spectrometer, FieldSpec Pro Full Range, and 

the spectra from 2 to 14 µm were measured with a Fourier Transform Infrared 

Spectrometer (FTIR) at NASA’s Jet Propulsion Laboratory (JPL).  The Emissivities of 

minerals or rocks are calculated from Kirchoff’s law, which states that spectral emissivity 

equals 1 minus the spectral reflectance.  

To simplify the simulated data construction, the contribution of the atmosphere 

was not modeled directly.  Nevertheless, the effects of the atmosphere were included 

indirectly, because noise equivalent to that found in typical AVIRIS and MASTER 

scenes that include atmospheric effects, was added on a band-by-band basis.  In addition, 

the simulated AVIRIS bands in the atmospheric water absorption regions near 1.4, 1.9, 

and 2.5 µm were deleted, leaving a total of 188 out of the 224 bands for the analysis.  
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Multiplying the spectral radiances with the inverse of the spectral signal-to-noise ratios 

for AVIRIS and MASTER simulated the noise of the sensor system.  The signal-to-noise 

ratio of AVIRIS was estimated using the ratio of the mean and standard deviation of a 3 

by 3 window of pixels from an AVIRIS image of a playa in Luna Lake, Nevada acquired 

on Jun. 23, 1997.  The signal-to-noise ratio of MASTER was calculated in the same way 

using a MASTER image of Lake Mead, Nevada acquired on Sep. 20, 1999.  An 

additional 0.015 variation in emissivity (Gillespie et al., 1998) was added to simulate the 

uncertainty due to the indeterminacy of the emissivity calculation from radiance data. 

The library spectra were also combined in various proportions to simulate real 

pixels, which generally comprise mixed proportions of different surface materials: 

                       λλλ ε+= ∑
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Where 

Lλ  =  reflectance or emissivity at wavelength λ corresponding to a specific AVIRIS or 

MASTER band; 

ai    =  the proportion of the endmember i in the pixel;  

Rλi =  the reflectance or emissivity of endmember i at wavelength λ; 

ελ  =  the error term resulting from all sources of noise at wavelength λ. 

 

 Seven groups of simulated data with different levels of uncertainties were derived 

using equation 1 (Table 2.3).  Each group includes three data sets designed to simulate 

AVIRIS data (188 bands between 0.4 -2.5 µm, after the exclusion of the water absorption 

bands), MASTER thermal data (10 bands between 7.6 -13 µm), and the combination of 

AVIRIS and MASTER multispectral thermal infrared data (a total of 198 bands between 
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0.4 -2.5 µm and 7.6 -13 µm).  The simulated uncertainties include sensor system noise, 

mixing of vegetation and the other endmembers, and variation in solar illumination.  

Solar illumination effects were simulated by varying the total radiance by 0 to 20 percent.  

The first group of data is a theoretical near-perfect data set, containing only reflectance or 

emissivity information and system noise of sensor instruments.  The uncertainties of the 

second group include the system noise and solar illumination effects; in the third group, 

solar illumination effects and a random percentage of vegetation, up to 5 percent, is 

added; the fourth group has solar illumination effects, a random proportion, up to 5 

percent, vegetation, and up to10 percent of another mineral or rock endmember, 

randomly selected from the 16 library spectra; the fifth group is similar to the fourth 

except up to 10 percent of vegetation; the sixth group has up to 10 percent vegetation and 

up to 20 percent of another mineral or rock endmember, and the illumination effects; the 

seventh group has up to 10 percent vegetation, up to 30 percent another endmember, and 

illumination effects.  

2.3  Analysis 

All classification and spectral analysis methods were carried out with ENVI 

image analysis software (Research System, 2004b).  Binary encoding, SAM, and SFF 

were applied using endmember spectra derived from training data.  SFF is normally used 

with data of more limited spectral regions, and therefore SFF was also tested using the 

simulated AVIRIS bands from just the SWIR region (1.96 – 2.44 µm).  Considering that 

SFF’s focus on spectral absorption features makes the method inappropriate for use with 

minerals and rocks with spectrally flat curves, additional comparisons were made using 

only the nine minerals which exhibit absorption features in VNIR, SWIR:  alunite, 
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argillized rock, calcite, goethite, hematite, kaolinite, montmorillonite, opalized rock, and 

gypsum. 

Data sets 5, 6 and 7 have comparatively high levels of uncertainty, and were 

found to produce notably low accuracies, especially for minimum distance and binary 

encoding classification.  Therefore, additional preprocessing was carried out to evaluate 

whether the effect of the uncertainty could be reduced for these methods using the 

minimum noise fraction (MNF) transformation (Green et al., 1988).  MNF was used to 

generate 15 MNF bands for each data set.  MNF consists of two cascaded principal 

component transformations, and is usually used to suppress noise and reduce the number 

of bands prior to classification.  The first transformation decorrelates and rescales the 

noise in the data, assuming the noise has unit variance and no band-to-band correlation.  

The second step is a standard principal component transformation applied on the noise-

free data.  The final transformed data includes two parts: one part associated with large 

eigenvalues representing most of the variance, and a second part with near-unity 

eigenvalues representing the noise-dominated data (Green et al., 1988).   

 Overall accuracies were calculated, and used to evaluate the degree to which the 

combined data aids discrimination by contributing to increased separability of the entire 

group of spectral classes.  ENVI’s confusion matrix procedure (Research Systems, 

2004b) was applied to all classified images to evaluate the performance of the 

classifications.  The same approximately 10,000 pixels used for training the classifiers 

were used for classification assessment.  In conventional accuracy assessment, different 

training and testing pixels are normally used.  However, in this case, with a large random 

sample, there would be little difference in the results if a new data set was used for 
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testing.  In confusion matrix, two parameters, producer’s accuracy and user’s accuracy 

were used to indicate the classification accuracy of each mineral or rock.  Producer’s 

accuracy is defined as the probability that a pixel is classified as class A given that 

ground truth is class A.  User’s accuracy indicates the percentage of the number of 

correctly classified pixel of certain class among the total number of pixel classified as 

that class (Research Systems, 2004b). 

3. Results 

3.1. Evaluation of combining VNIR, SWIR, and TIR spectral regions  

The overall accuracies of classification (Figure 2.1) were found to vary with the 

mapping methods and the data sets.  Figure 2.1 provides evidence to support the 

hypothesis that the combination of AVIRIS and MASTER aids discrimination of 

minerals and rocks.  First, for all classification methods except binary encoding, the 

combined data set always has the highest overall accuracy of the three data sets.  The 

combined data set also produced the highest accuracy for minimum distance 

classification and binary encoding applied to MNF transformed data (Figure 2.2).  

When the classifications are examined in more detail, some of the individual 

minerals and rocks can be seen to show large improvement in classification accuracy 

when the AVIRIS data set was combined with the MASTER data set (Table 2.4).  For 

instance, limestone, muscovite, and silicified rock showed an improvement of almost 30 

percent in either the producer’s accuracy or the user’s accuracy when SAM was applied 

to the combined data set.  However, some minerals and rocks, such as alunite, basalt, and 

kaolinite, showed little improvement, or even a decrease in accuracy.  Most of the 



 25

minerals that showed an improvement in classification accuracy with the combined data 

sets analyzed using SFF classification exhibit characteristic absorption features in the 

thermal infrared wavelength region (Figure 2.3 right).  For example, quartz and 

muscovite, which have deep Si-O features around 9 µm (Figure 2.3 right), generally 

showed a marked improvement in classification accuracy using the combined data set 

(Table 2.4).  Likewise, silicified alteration showed a higher classification accuracy with 

the combined data set because it has relative strong features at 9 µm (Figure 2.4 right).  In 

the VNIR and SWIR regions, basalt and limestone have similar very flat spectra (Figure 

2.4 left).  These two classes were poorly differentiated and both showed  high omission 

and commission error.  However, limestone has a weak feature around 11 µm which 

improved discrimination once MASTER TIR data was combined with the AVIRIS data.  

On the other hand, basalt and sandstone have relatively flat TIR spectra (Figure 2.4 

right), so combining AVIRIS and MASTER wavelength reduced their classification 

accuracies.  Calcite has only two relative weak features in the 9 and 11 µm wavelength 

regions (Figure 2.3), which are diluted by mixing with other minerals or rocks.  

Therefore, calcite did not show much improvement in classification accuracy with the 

combined data set.  Although alunite and gypsum are characterized by strong features in 

the TIR, they are too similar to be separated in the MASTER data, and therefore the 

combined data set did not enhance discrimination.  

When SFF was applied to the AVIRIS SWIR bands alone (1.96 – 2.44 µm), the 

overall accuracy decreased, although some minerals with distinctive absorption features 

in the SWIR region, such as alunite and calcite (Figure 2.3 left), showed slight 

improvement in user’s accuracy (Table 2.5).  However, some minerals with characteristic 
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absorption features in the VNIR region, for instance, hematite and goethite (Figure 2.3 

left), showed a large decrease in accuracy.  Thus, as might be expected, SFF applied to a 

relatively narrow wavelength region only enhances identification of the specific minerals 

or rocks which exhibit distinctive absorption features in that wavelength region.  

3.2.  Evaluation of classification algorithms 

 The major uncertainties added to the data sets include variable vegetation 

coverage, solar illumination effects, and mixing of the other minerals (Table 2.3).  All the 

classification methods, with the exception of maximum likelihood classification applied 

to the simulated AVIRIS data sets, are generally sensitive to the type and degree of 

uncertainty.  For the near-perfect data set of the simulated AVIRIS with only 

instrumental system noise, all methods achieved almost 100 percent classification 

accuracies (Figure 2.1).  When up to 5 percent mixing of vegetation and solar 

illumination effects were added to the data (Uncertainty Level 3), maximum likelihood 

classification, SAM, and binary encoding still resulted in 100 percent accuracy; the 

accuracy of SFF decreased slightly, and the accuracies using the minimum distance 

classification dropped notably.  This suggests that minimum distance classification is 

very sensitive to illumination variation, as might be expected.  With the increase of 

mixing uncertainty, maximum likelihood classification still showed almost 100 percent 

accuracy, whereas SAM and SFF decreased slowly and binary encoding and minimum 

distance classification decreased relatively rapidly.  Although the overall accuracy of 

SAM dropped by 20 percent for uncertainty class 7, it nevertheless obtained the second 

highest accuracy.  In terms of overall accuracy of the different methods, maximum 

likelihood classification is the best method for minerals and rocks classification using the 
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simulated AVIRIS data (Figure 2.1, top left), followed by SAM, then SFF; binary 

encoding and minimum distance classification have relative poor performance.  

 The results of the combined simulated data sets differ slightly from those of the 

simulated AVIRIS data (Figure 2.1, top right).  In terms of overall accuracy, maximum 

likelihood classification almost achieved 100 percent accuracy for all uncertainty level 

data sets, and SFF resulted in the second highest accuracy for data sets 3 and 4.  For data 

sets 5, 6, 7, the accuracy of the SFF method dropped to the third position.  Minimum 

distance classification and binary encoding resulted in the lowest accuracies.  Curves of 

minimum distance and maximum likelihood classification accuracy versus uncertainty 

follow the same trend as those of the AVIRIS data set, but the relative accuracies of the 

other methods differ greatly.  Binary encoding applied to data sets 2, 3, and 4, for the 

combination of simulated AVIRIS and MASTER TIR data generally showed a reduction 

in accuracy.  The performances of SAM and SFF are very close for the combined data 

sets.  It appears that for the combined data these two methods are not sensitive to 

moderate mixing uncertainty. 

 SFF resulted in the third lowest accuracy, less then 50 percent, for the simulated 

MASTER data (Figure 2.1, bottom).  This poor result suggests that, as might be expected, 

SFF is not good for classifying multispectral data with relative broad bandwidths, like 

MASTER data.  

 It is notable that maximum likelihood classification achieved the best 

performance on all data sets.  Factors in the simulated data analysis that favor the 

maximum likelihood classification is the large and representative training sample of 

approximately 10,000 pixels, and that uncertainty in the data sets were modeled with 
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normal distributions.  In real applications, it can be difficult to select sufficiently large 

samples of training data that completely characterize the classes of interest, and 

variability does not necessarily follow a normal distribution.   

 When the minerals and rocks with no distinct absorption features in the VNIR and 

SWIR regions are excluded from the analysis, leaving just 9 minerals, the average results 

of SAM, SFF, and binary encoding (Figure 2.5) are similar in trend to the average results 

found with all 16 minerals and rocks (Figure 2.1), although in detail there are some 

important differences.  Excluding the classes with relatively flat spectral curves, 

including basalt, quartz, limestone, muscovite, sandstone, siltstone, and silicified 

alteration, raised the accuracy of most methods, especially SFF.  In fact, SFF achieved 

the highest position in relative overall accuracy applied to the simulated AVIRIS data for 

the 9 minerals for all uncertainty classes (Figure 2.5, left).  Applied to the combined data 

sets, SAM resulted in the best classification accuracy. Thus, as has been commented on 

before, SFF is not suitable for discriminating minerals with limited or no absorption 

features in the TIR wavelength region, such as kaolinite and montmorillonite.  

4. Summary and conclusions 

A series of simulated data sets based on the characteristics of AVIRIS and 

MASTER sensors was created.  The simulated data sets include surface reflectance and 

emissivity derived from library spectra of 16 common minerals and rocks occurring in 

Cuprite, Nevada.  Five automatic classification algorithms, minimum distance, maximum 

likelihood classification, binary encoding, SAM, and SFF, were applied to all data sets.  

The classification results showed that combining AVIRIS with MASTER data 

sets can be useful for improving the accuracy of identifying the 16 selected minerals and 
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rocks in some circumstances.  First, most methods applied to the combined data sets, 

except binary encoding, achieved varying improvement in overall accuracy in 

comparison to these methods used with the AVIRIS data set alone.  Second, some 

minerals and rocks showed a great improvement in their individual classification 

accuracies.  For instance, quartz, silicified alteration, limestone, and muscovite showed 

an improvement of at least 30 percent or greater in either the producer’s or the user’s 

accuracy using the combined data sets with SAM and with SFF.  Because SFF is an 

absorption feature based method, the combination of AVIRIS with MASTER with SFF 

only enhances discrimination of minerals and rocks exhibiting distinctive features in the 

TIR region.  Within the 16 minerals and rocks, only gypsum, alunite, quartz, muscovite, 

silicified alteration, and opalized alteration, have distinctive features in the TIR region. 

Adding uncertainty to MASTER tends to dilute absorption features.  Therefore, for some 

minerals and rocks, combining MASTER TIR with AVIRIS bands degrades the 

performance of SFF.  

Almost all methods used in this study are sensitive to mixing uncertainty.  The 

only exception is maximum likelihood classification, at least within the constraints of this 

study.  SAM and SFF applied to the data set consisting of minerals exhibiting distinctive 

absorption features was found to be relative tolerant to mixing uncertainty.  SAM, binary 

encoding, and SFF are less sensitive to illumination effects when they are applied to the 

simulated AVIRIS data sets.  Maximum likelihood classification is relatively robust in 

the presence of uncertainties, at least if sufficient training samples can be identified to 

estimate the probability distribution accurately.  Generally however, it may not be 

possible to find a sufficient number of training pixels for the high dimensionality of 
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AVIRIS data.  Therefore, it may be necessary to perform feature extraction, for example 

the MNF transformation, on the simulated AVIRIS and combined data sets before 

maximum likelihood classification is applied.  The accuracy of minimum distance 

classification and binary encoding on MNF transformed data sets was almost 100 

percent, indicating that the performance of MNF is very successful in suppressing the 

noise, and reducing the number of bands, at least for these simulated data. 

In terms of overall accuracy of classification, maximum likelihood classification 

showed the best performance.  However, prior knowledge about the study area is required 

in order to select training samples.  Hyperspectral analysis methods like SFF have an 

advantage over maximum likelihood classification in that, at least potentially, external 

library spectra can replace in-scene training data.  The simulated AVIRIS data showed 

that SFF is generally superior to SAM, although the accuracy of SAM applied to 

combined data sets is slightly better than that of SFF.  SAM applied to the combined data 

sets increased classification accuracy for some minerals and rocks which do not exhibit 

distinct absorption feature in thermal infrared region, while for SFF, only the accuracy of 

minerals and rocks with characteristic absorption features in thermal infrared region was 

improved.  Although binary encoding and minimum distance classification showed a 

relative poor performance on the simulated AVIRIS and combined data sets, binary 

encoding has some advantages, including a relatively simple algorithm, it is very fast, and 

is insensitive to illumination variation.  Minimum distance classification is also relatively 

fast, only needs a small number of training samples, and achieves very high accuracy 

when it is applied to multispectral data sets.  SFF is not good for multispectral data, 
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whereas SAM can achieve relatively good performance with either hyperspectral or 

multispectral data.  
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Tables 

Table 2.1. Minerals, rock types, and alteration types used to create the simulated data 

Type Name 

Minerals Quartz, calcite, hematite, goethite, alunite, kaolinite, montmorillonite, 
muscovite, gypsum. 

Unaltered 
rocks 

Basalt, limestone, sandstone, siltstone 

Altered rocks 
 

Silicified rocks, opalized rocks, and argillized rocks. 

 

 

 

Table 2.2. Summary characteristics of the MASTER and AVIRIS instruments 
 

Sensor Characteristic 
MASTER AVIRIS 

Wavelength range 0.4-13 µm 0.4-2.5 µm 
Number of spectral bands 50 224 
Channel width Varies, 40 to 650 nm 10 nm 
Instantaneous field of view 2.5 mrad 1 mrad 
Total field of view 85.92º 33º 
Number of pixels 716 614 
Platform B200, ER-2, DC-8 ER-2, Twin Otter 
Digitization 16-bit 12-bit 
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Table 2.3. Uncertainty categories of the simulated data  

 

Simulated Noise  

Mixed pixels  
(proportion of cover type) Group 

System Solar 
Illumination Vegetation Additional 

mineral/rock 

1 X    

2 X X   

3 X X 0-5%  

4 X X 0-5% 0-10% 

5 X X 0-10% 0-10% 

6 X X 0-10% 0-20% 

7 X X 0-10% 0-30% 
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Table 2.4.  Classification accuracies of data set 7 minerals and rocks using SAM and SFF 

Accuracy:  SAM Accuracy:  SFF 

AVIRIS COMBINED AVIRIS COMBINED 
Mineral or 

rock 
Prod.  User Prod. User Prod. User Prod. User 

Alunite 96.5 90.7 97.1 95.7 100.0 83.4 94.1 100.0 

Basalt 68.4 100.0 47.8 87.2 85.6 90.0 80.8 91.7 

Calcite 92.8 72.7 97.1 89.7 100.0 38.6 99.9 46.7 

Goethite 83.0 73.9 91.2 92.5 99.1 97.0 89.3 96.0 

Hematite 89.2 96.3 99.1 98.4 98.8 98.0 96.4 99.5 

Kaolinite 98.9 87.2 99.0 97.3 99.9 77.4 79.5 100.0 

Montmorillonite 94.2 69.8 95.5 90.9 99.7 94.3 81.0 100.0 

Muscovite 80.0 64.4 95.3 93.1 40.5 91.0 91.9 77.5 

Quartz 84.2 95.7 97.8 100.0 24.0 18.5 99.9 100.0 

Argillized 99.6 95.7 100.0 98.0 98.9 90.8 91.7 98.5 

Limestone 24.0 42.4 71.8 63.3 22.5 58.6 82.1 93.9 

Opalized 91.5 94.3 95.9 100.0 96.8 99.9 80.3 99.0 

Sandstone 75.6 96.3 67.2 76.5 83.0 98.8 77.5 100.0 

Siltstone 65.0 76.9 87.6 64.4 47.9 89.0 83.5 71.4 

Silicified 36.1 54.0 93.9 91.5 40.6 99.1 82.0 92.3 

Gypsum 89.8 100.0 90.0 100.0 99.5 100.0 90.7 100.0 
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Table 2.5.  Classification accuracies of 9 minerals and rock on data set 7 using SFF 

SWIR Band Only VNIR and SWIR Bands Mineral or 
rock 

Prod. Acc. User Acc. Prod. Acc. User Acc. 

Alunite 99.8 100.0 100.0 99.0 

Calcite 100.0 100.0 100.0 96.0 

Goethite 0.0 0.0 99.1 99.2 

Hematite 0.0 0.0 98.9 100.0 

Kaolinite 99.8 98.6 100.0 99.4 

Montmorillonite. 100.0 100.0 99.7 100.0 

Argillized 98.0 100.0 98.9 99.7 

Opalized 98.6 99.7 97.0 100.0 

Gypsum 100.0 98.4 99.5 100.0 
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Figures 
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Figure 2.1.  Comparison of the overall accuracies using five mapping methods on 
different noise categories of 16 mineral and rock classes.  Upper left: AVIRIS data sets. 
Upper right: Combined data sets. Bottom: MASTER data sets (See Table 2.3 for 
description of uncertainty classes).  
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Figure 2.2.  Overall classification accuracies of minimum distance classification and 
binary encoding applied to MNF transformed data sets (Uncertainty levels 5, 6, and 7). 
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Figure 2.3.  Laboratory reflectance spectra and emissivity spectra of minerals resampled to AVIRIS (left) and MASTER (right) wavelength bands.  
1. Gypsum, 2. Montmorillonite, 3. Kaolinite, 4. Alunite, 5. Quartz, 6. Calcite, 7. Muscovite, 8. Hematite, 9. Goethite (Source: Spectra resampled 
from Salisbury et al., 1991, Research System 2004) 
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Figure 2.4.  Laboratory reflectance spectra and emissivity spectra of rocks resampled to AVIRIS (left) and MASTER (right) wavelength bands.  1. 
Argillized, 2. Opalized, 3. Silicified, 4. Basalt, 5. Limestone, 6. Siltstone, 7. Sandstone (Source: Spectra 1-3 resampled from laboratory and field 
spectra acquired for this study, Spectra 4-7 resampled from Salisbury et al., 1991, Research System 2004) 
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Figure 2.5.  Comparison of the overall accuracies using SAM, SFF, and binary encoding 
on different noise categories of 9 mineral and rock classes with distinctive absorption 
features.  Left: AVIRIS data sets. Right: Combined data sets.  
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Chapter 3.  Real Data Analysis 

Abstract 

 
This study investigated the potential value of integrating hyperspectral visible, 

near infrared, and short wave infrared imagery with multispectral thermal data for 

geological mapping.  Two coregistered aerial data sets of Cuprite, Nevada were used:  

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral data, and 

MODIS/ASTER Airborne Simulator (MASTER) multispectral thermal data.  Four 

classification methods were each applied to AVIRIS, MASTER, and a combined set.  

Confusion matrices were used to assess the classification accuracy.  The assessment 

showed, in terms of kappa coefficient, that most classification methods applied to the 

combined data achieved a marked improvement compared to the results using either 

AVIRIS or MASTER TIR data alone.  SAM showed the best overall classification 

performance.  Minimum distance classification had the second best accuracy, followed 

by SFF and maximum classification.  The results of the study showed that SFF applied to 

the combination of AVIRIS with MASTER TIR data are especially valuable for 

identification of silicified alteration and quartzite sandstone, both of which exhibit 

distinctive features in the TIR region.  SAM showed some advantages over SFF in 

dealing with multispectral TIR data, obtaining higher accuracy in discriminating low 

albedo volcanic rocks and limestone which do not have unique, distinguishing features in 

the TIR region. 

Key Words:  hyperspectral; multispectral; thermal; classification methods; MASTER; 

AVIRIS; data integration. 
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1. Introduction 

The potential for lithologic mapping with hyperspectral data from the reflected 

solar spectrum has been demonstrated since the first acquisition by the Airborne Imaging 

Spectrometer (AIS) in 1983.  Imaging spectrometers measure radiance in many 

contiguous narrow bands, typically from the visible and near-infrared (VNIR, 0.4 - 1.1 

µm), as well as short-wavelength infrared (SWIR, 1.1 - 2.5 µm).  The spectral 

bandwidths of hyperspectral image bands are generally less than 25 nm, in order to 

facilitate the identification of spectral absorption features that are often diagnostic of 

specific minerals (Clark, 1999).  For example, hydroxyl-bearing minerals and carbonate 

minerals can potentially be discriminated by identifying characteristic spectral features in 

the 0.4 - 2.5 µm region.  However some silicate minerals or silicate bearing rocks such as 

quartz and basalt do not exhibit diagnostic absorption features in VNIR and SWIR 

regions.  It is difficult to accurately identify these minerals or rocks using VNIR and 

SWIR hyperspectral data. 

Complementing the development of hyperspectral remote sensing has been the 

development of multispectral thermal infrared (TIR, 8-12 µm) instruments, which 

measure TIR radiance in a small number of broad bands.  Multispectral TIR radiance 

contains information regarding both the temperature and emissivity of the radiating 

surface, with the effect of temperature generally dominating the spectra (Hook et al., 

1992).  The separation of surface temperature and emissivity is complex because of the 

nonlinearity of the relationship between radiance and surface temperature, and the 

underdetermined nature of the problem (Hook, et al., 1992).  A variety of techniques that 

approximate the separation of the emissivity from the temperature information have been 
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proposed (Becker and Li, 1990; Hook et al., 1992; Kahle et al., 1980; Hook and Kahle, 

1990; Kealy and Gabell, 1990; Matsunaga, 1994; Gillespie et al., 1998).  The derived 

emissivity spectra usually have relative high uncertainties and low contrasts.  These 

properties, in addition to the broad spectral bands that may not be sufficient to resolve 

important spectral features, limit accurate classification of surface composition using 

spectral analysis methods with only multispectral TIR data (Collins, 1991).   

Emissivity spectra nevertheless do have potential for discriminating rocks and 

minerals, especially silicates and oxides (Collins, 1991; Hook et al., 1994; Rowan and 

Mars, 2003; Sabine et al., 1994).  The emissivity spectral features of silicates and oxides 

relate to Si-O bonding, ion mass, and crystal structure.  In particular, the emissivity 

spectra minimum of silicates shifts to progressively shorter wavelength as the Si-O bond 

strength increase (Vincent and Thomson, 1967; Hunt and Salisbury 1974). 

Thus, the information provided by multispectral TIR tends to be complementary 

to that of the VNIR and SWIR regions (Hook et al., 1999).  Very little attention, 

however, has been paid to image analysis approaches that simultaneously draw on both 

VNIR/SWIR hyperspectral and TIR multispectral data.  One early exception is Abram 

and Hook (1991), who pointed out that combining AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer) and TIMS (Thermal Infrared Multispectral Scanner) data might 

assist the classification of silicified alteration and limestone.   

Chapter 2 showed that integrating VNIR/SWIR hyperspectral with TIR 

multispectral data could potentially result in a large improvement in the identification of 

oxide and silicate minerals, at least with simulated data.  In this chapter, real AVIRIS and 

MASTER (MODIS/ASTER Airborne Simulator) TIR data sets of Cuprite, Nevada, are 



 51

used to investigate whether integrating VNIR/SWIR hyperspectral analysis with TIR 

multispectral analysis will indeed provide improved lithologic mapping. 

2. Classification algorithms 

The relative information of singular and combined AVIRIS and MASTER data 

was evaluated using four image classification methods.  Using a range of classification 

methods is useful, because the relative accuracy of combining disparate wavelength 

regions may vary with the type of method used.  The methods selected include two 

statistical classification methods, minimum distance and maximum likelihood 

classification, and two spectral analysis approaches, spectral feature fitting (SFF) and the 

spectral angle mapper (SAM).  Each of these methods is described briefly below. 

Minimum distance classification compares Euclidean distances calculated for an 

unknown pixel to each class mean vector, which is estimated from the training data.  The 

unknown pixel is assigned to the class with nearest mean vector.  Minimum distance 

classification is attractive because it requires only a simple calculation and a relatively 

small number of training samples (Richards, 1993). 

Maximum likelihood classification is one of the most common supervised 

classification methods.  Training data are used to calculate the class mean vector and 

covariance matrix, which in turn is used to estimate the class probability distribution 

function.  An unknown pixel is assigned to the class with which it has the largest 

membership likelihood, as determined from the probability density functions.  The 

effectiveness of maximum likelihood classification depends upon acquiring sufficient 

training data to allow reasonably accurate estimation of the class statistics (Richards, 
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1993).  It has been suggested that the minimum number of training samples must be ten 

times to 100 times the number of bands (Swain and Davis, 1978).   

Spectral feature fitting (SFF) (Crowley et al., 1989; Clark et al., 1990) is based 

on a comparison of the absorption features in the image and reference spectra.  The first 

step in SFF is the enhancement of absorption features using the continuum removal 

algorithm.  The continuum is defined as a convex hull fit over the top of each spectrum 

utilizing straight line-segments to connect local spectrum maxima (Clark et al., 2003, 

Kruse et al., 1993b), and is removed by dividing the convex hull into the original 

spectrum.  The second step is the calculation of a least-square estimate of the goodness of 

fit between the continuum removed pixel spectrum and reference spectra.  SFF has an 

advantage over other methods in that it minimizes the influences of the effect of mixtures 

of materials, the mineral grain sizes, and the illumination for that pixel. 

Spectral angle mapper (SAM) (Kruse et al., 1993a) is a fast and efficient 

spectral analysis algorithm for calculating the similarity between pixel spectra and 

reference spectra in terms of the angle between two n-dimensional vectors, where n is the 

number of bands of hyperspectral data.  One of the advantages of SAM is that it tends to 

normalize for variation in topographic illumination effects (Pouch and Campagna, 1990). 

3. Geologic setting of study area 

Cuprite, Nevada, is an ideal geologic test site because a wide variety of rock types 

and alteration types are exposed, with only sparse vegetation cover.  In addition, the 

topographic relief is relatively low.  Furthermore, because Cuprite has been used as a test 

site for more than two decades, a wide range of previous studies is available for 

comparison (Abrams et al., 1977a; Abrams et al., 1977b; Abrams and Ashley, 1980; 
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Goetz and Srivastava, 1985; Abrams and Hook, 1991; Kruse et al., 1990; Hook et al., 

1992; Van der Meer and Bakker, 1997). 

Cuprite is located on the western edge of Esmeralda County, Nevada (37° 29′ to 

37° 35′ North, 117° 9′ to 117° 17′ West) and is separated into east and west sections by 

US Highway 95 (Figure 3.1).  The east section is dominated by Tertiary volcanic rocks 

and Quaternary alluvial deposits.  Cambrian sedimentary rocks, Tertiary volcanics, and 

Quaternary alluvial deposits are exposed in the west section. The Cambrian sedimentary 

rocks include sandstone, siltstone, and limestone.  The Tertiary volcanic rocks consist of 

ash-flow and air-fall tuff, conglomerate, and basalt (Ashley, 1974; Abrams et al., 1977a; 

Abrams et al., 1977b).   

Three field mappable zones of hydrothermal alteration related to fossilized hot 

springs have been identified at Cuprite: silicified rocks, opalized rocks, and argillized 

rocks.  Abundant quartz, some calcite, and minor alunite and kaolinite are present in the 

silicified zone, which comprises the most intensely altered rocks in the study area.  The 

opalized zone, the most widespread alteration zone, contains opal and variable amount of 

alunite and kaolinite. The argillized zone comprises the least intensely altered rocks, and 

generally separates the country rock from the opalized rocks.  The dominant minerals of 

the argillized zone include opal, kaolinite, and montmorillonite.  In addition to the 

minerals mentioned above, small amounts of hematite are present in the opalized and 

argillized rocks (Abrams and Ashely, 1980).   
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4. Data sets 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data 

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Green et al., 

1998) has been flown by NASA since 1987.  AVIRIS acquires data in 224 narrow, 

contiguous spectral bands across the reflected solar energy region (0.4-2.5 µm) (Table 

3.1).  AVIRIS is regarded as one of the premiere hyperspectral instruments because of its 

high signal-noise ratio (SNR) and good image geometry. The AVIRIS data of Cuprite 

(Figure 3.1, left) was acquired on June 19, 1996, at a flying height of 20 km, with 

approximately 20 m pixels. 

MODIS/ASTER Airborne Simulator (MASTER) 

The MODIS/ASTER Airborne Simulator (MASTER) was developed to support 

scientific studies prior to the launch of the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Hook et al., 2001). The MASTER instrument (Table 3.1) 

has 10 TIR bands of which a total of 50 bands cover the 0.4-13 µm wavelength region.  

The MASTER data that are used in this study (Figure 3.1, right) were acquired at 

approximately 19:36 GMT on June 9, 1999, under clear weather conditions.  The 

instrument flown on a US Department of Energy King Air B-200, at elevation of 9,648 

meters above the ground, resulting in approximately 20 m pixels. 
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5. Data preprocessing methods and analysis 

5.1 Image preprocessing 

Prior to the spectral analysis of the AVIRIS and MASTER data, a range of pre-

processing steps was applied, including image rectification and calibration of radiance to 

reflectance or emissivity.   

United States Geological Survey (USGS) black and white Digital Orthophoto 

Quarter Quadrangles (DOQQs), with 1 meter pixels, were used for map control for image 

rectification.  A total of 92 and 239 ground control points (GCPs) were identified on the 

DOQQs for the AVIRIS and MASTER images, respectively.  A second-order polynomial 

transformation was performed for the AVIRIS GCPs, giving a root mean square (RMS) 

error of 0.72 pixels.  The MASTER imagery has a more complex geometry, partly 

because it was acquired at a lower height than the AVIRIS data was.  Consequently a 

rubber sheeting transformation was used to rectify the MASTER data, with a RMS error 

of 0.89 pixels based on 30 evaluation points.  Both images were resampled to the same 

UTM grid, using nearest neighbor convolution. 

The main atmospheric effects on TIR radiance include atmospheric absorption, 

downwelling atmospheric irradiance, and upwelling atmospheric path radiance. The 

MODTRAN4 atmospheric model (Berk et al., 1999), implemented as PCModWin (Ontar 

Corporation, 2002), was used to estimate these three atmospheric parameters for the 

MASTER data.  Ignoring the incident radiance from adjacent pixels, the TIR at-sensor 

radiance is expressed by following equation (Gillespie et al., 1998): 

            L x, y, λ   ≈ τ x, y, λ  ε x, y, λ  Bλ (T x, y) + τ x, y, λ  ρx, y, λ S↓ x, y, λ + S↑y, x, λ    (1) 

Where  
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x, y = position in scene (m) 

λ     =   wavelength 

L     =   radiance at-sensor (Wm-2 µm-1 sr-1) 

B     =   radiance of black body at temperature T (Wm-2 µm-1 sr-1) 

T    =   temperature (Kevin) 

ε     = emissivity of ground surface 

S↓   = downwelling atmospheric irradiance, normalized by π sr (Wm-2 µm-1 sr-1) 

τ     = atmospheric transmissivity  

ρ    = reflectance of ground surface 

S↑  = upwelling atmospheric path radiance (Wm-2 µm-1 sr-1) 

Airsonde data acquired at the time of over-flight was used for the atmospheric 

profile to estimate S↓, S↑, and τ.  Surface radiance data of TIR was retrieved from 

Equation 1, and subsequently converted to estimated emissivity using the ENVI 

implementation of the alpha residual method (Hook, et al., 1992).  The alpha residual 

method was chosen because it is relatively straightforward to calculate, yet is less 

susceptible to noise than the reference channel and emissivity normalization technique 

(Kealy and Hook, 1993). 

 All bands near the atmospheric water absorption regions of 1.4, 1.9, 2.5, 7.7, 12.8 

µm, as well as some bands with relative low signal-noise ratio (AVIRIS bands 1-3) were 

deleted, leaving a total of 185 out of the 224 AVIRIS bands, and 8 out of 10 TIR 

MASTER bands for the analysis.   
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5.2 Lithologic classes 

A total of 11 lithological classes, including volcanic tuffs, basalt, diabase, felsite 

dyke, limestone, siltstone, sandstone, argillized rocks, opalized rocks, and silicified rocks, 

were chosen for the spectral classification.  All classification and spectral analysis 

methods were carried out with ENVI image analysis software (Research System, 2004).  

Regions from which the training data for the classification were selected were chosen 

based on Abrams and Ashley’s (1980) geological and alteration map of Cuprite, as well 

as field work by the authors, conducted in 2004.  The geological map is relatively 

generalized, categorizing lower Cambrian sandstone and siltstone into a single lithologic 

unit, the Harkless Formation (Abrams and Ashley, 1980).  However, it was found 

through field work and preliminary visual interpretation that these two rock types could 

be differentiated based on their spectral characteristics.  In addition, an additional 

lithologic class, diabase, which was not shown on the geological map, was identified in 

the field work. 

5.3 Classification accuracy assessment 

 To investigate the potential value of integration of VNIR/SWIR hyperspectral 

analysis with TIR multispectral analysis, the accuracies of classification results using the 

AVIRIS, MASTER, and combined data were compared.  The classification accuracy was 

summarized using a confusion, or contingency, matrix.  The test data were independent 

of the training data, but were also selected based on the geological map and field work. 

 To compare the two classification results, the Kappa coefficient, a measure of 

how well the predicted rock units agree with the test data, was computed for each matrix.  

The Kappa coefficient is calculated by 
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where N is the total number of pixels in all the testing samples, ∑
k

kkX  is the sum of the 

confusion matrix diagonals ( kkX ), ΣkX  is the sum of the testing samples in class k, kX Σ  

is the sum of the predicted pixels in class k (Cohen, 1960, Research Systems, 2004).  The 

overall accuracy, computed by summing the number of pixels predicted correctly and 

dividing by the total number of testing samples, is another parameter indicating the 

overall agreement.  The producer’s accuracy is the probability that a pixel is predicted as 

class A, given that the ground truth class is indeed A.  User’s accuracy is the probability 

that true class is A given a pixel is predicted as class A.  The producer’s and user’s 

accuracies are measures of how well each individual class is classified. 

6. Results  

Kappa coefficients of classification using training samples selected from the 

imagery showed that for SAM, minimum distance, maximum likelihood classification, 

the overall accuracy was notably greater with the combined data set, than with the 

AVIRIS or MASTER data alone (Figure 3.2).  SAM applied to the combined data set 

achieved the highest accuracy, followed by minimum distance classification, SFF and 

maximum likelihood classification.  The results of classifications of the AVIRIS data 

alone showed a different accuracy rank compared to classification of the combined data 

set.  SFF obtained the highest classification accuracy, followed by maximum likelihood 

classification, and then SAM; minimum distance classification had the lowest accuracy.  

Applied to MASTER data, maximum likelihood classification had the best performance, 
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SAM had the second place, followed by minimum distance classification; SFF produced 

a relative poor result with the MASTER data.  The observation that SFF was less suitable 

for the broad MASTER TIR bands supported the modeling results described in Chapter 2. 

Although the overall accuracy of classification of SFF applied to the combined 

data set was slightly lower than for the AVIRIS data, some rock types showed 

remarkable improvement in producer accuracy’s and user’s accuracy (Table 3.2).  For 

instance, basalt showed 26 percent and 47 percent increase in producer’s and user’s 

accuracy, respectively.  Silicified rock and sandstone also achieved marked increase in 

producer’s accuracy.  On the other hand, limestone, opalized rock, and argillized rocks 

showed a large decrease in accuracy, and other rocks, such as unaltered tuff, siltstone, 

and felsite, showed a small decrease in accuracy.   

Examining the confusion matrices of SFF (Tables 2.3 and 2.4) in more detail 

indicates that the worst omission error and commission error with the AVIRIS data 

occurred with basalt, whereas the worst omission error and commission error with the 

combined data set was for argillized rock.  For the classification of the AVIRIS data, 

most of the basalt pixels were misclassified as volcanic tuff 1 and tuff 2.  Neither basalt 

nor tuff have distinctive absorption features in the 0.4 – 2.5 µm wavelength region 

(Figure 3.3, left), and thus it is very difficult to discriminate these rocks in the VNIR and 

SWIR regions.  However, in the TIR region, they exhibit Si-O features around 10 µm 

(Figure 3.3, right).  Argillized and opalized rocks were also often confused for SFF 

applied to the combined data set because they have similar spectral features in the TIR 

region.  When SFF was applied to the AVIRIS data, opalized and argillized rocks 

resulted in fairly high classification accuracies, even though both contain the same clay 
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mineral, kaolinite.  Opalized rock exhibits characteristic absorption features at 1.16, 1.27, 

1.72, 2.18, and 2.32 µm (Figure 3.3, right).  Argillized rock has absorption features at 

0.88, 2.20, and 2.32 µm.   

The combination of AVIRIS with MASTER did not assist in discrimination of 

argillized and opalized rocks.  Likewise, limestone exhibits such weak spectral feature at 

9.6 and 11.3 µm region that SFF is apparently not sensitive enough to capture them.  The 

main constituent mineral of silicified rock and sandstone is quartz, which exhibits strong 

Si-O feature at 9 µm position (Figure 3.3, right).  Therefore, SFF with the combined 

AVIRIS and MASTER data is only helpful for identification of rocks which exhibit 

distinctive spectral features. 

 Table 3.5 shows that most rocks, except for opalized and argillized rocks, resulted 

in some improvement in classification accuracy with the SAM classification for the 

combined data, compared to AVIRIS alone.  Silicified rock, the two volcanic tuffs, 

basalt, diabase, and limestone all greatly increased in classification accuracy.  In 

particular, the classification method and data set that produced the highest accuracy for 

volcanic tuffs and basalt was SAM applied to the combined data set (Table 3.7).  These 

rocks were otherwise only poorly separable (Table 3.6), probably because of a generally 

low albedo without distinctive absorption features in the VNIR and SWIR regions.  The 

improvement in accuracy for silicified rocks with the combined data set applied to SAM 

is most likely due to the strong TIR silica feature.  Limestone has only very weak features 

in TIR region.  Nevertheless, limestone resulted in the highest accuracy among all rock 

types with the combined data set.  These results suggest that SAM applied to the AVIRIS 

and MASTER TIR data has great potential for identification of a wide range of rocks and 
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minerals, including both those that exhibit distinctive absorption features, and those that 

do not. 

 As was found from an early modeling study (Chen et al., 2004), the results of 

SAM and SFF methods showed a relative high classification performance.  However, it 

was surprising that minimum distance classification was the second best method when 

applied to the combined data.  Rocks with low albedo in the VNIR and SWIR regions, 

such as volcanic tuffs, basalt, and diabase in particular, showed a great improvement in 

classification accuracy when the combined data was used with minimum distance 

classification.  Adding TIR wavelength data for these rocks was helpful in differentiating 

the mean vector of these classes.  The results of maximum likelihood classification 

indicated that its performance was highly dependent on the spectral variability of the 

classes.  For instance, limestone, siltstone, and sandstone are relatively uniform in 

spectral properties in the imagery.  The large areas of rock outcrops of these units were 

classified with a high degree of accuracy.  In comparison, the felsite and argillized rocks 

showed much greater variability, and a very low classification accuracy. 

7. Conclusions  

 The result of this study demonstrated the potential value of integrating 

hyperspectral AVIRIS data with multispectral MASTER TIR data for geological 

mapping.  The assessment showed, in term of kappa coefficient, most classification 

methods applied to the combined data achieved a marked improvement compared to the 

results of the use of AVIRIS and MASTER TIR data alone.  SAM showed the best 

classification performance.  Minimum distance classification had the second best 

accuracy, followed by SFF and maximum classification. However, prior knowledge 
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about the study area is required in order to select training samples for performing 

conventional classification methods.  Hyperspectral analysis methods have an advantage 

over maximum likelihood classification and minimum distance classification in that, at 

least potentially, field and library spectra can replace in-scene training data.  However, 

for this study, the field spectra were apparently not sufficiently representative, and the 

resulting classification accuracies were very low. 

 The results of the study showed that SFF applied to the combination of AVIRIS 

with MASTER TIR data are especially valuable for identification of silicified alteration 

and quartzite sandstone which exhibit strong distinctive absorption features in the TIR 

region.  SAM showed some advantages over SFF in dealing with multiple broad band 

TIR data, obtaining higher accuracy in discriminating low albedo volcanic rocks and 

limestone which do not have strong characteristic features in the TIR region.   
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Tables 

 

 

Table 3.1.  Summary characteristics of the MASTER and AVIRIS instruments 
 

Sensor Characteristics 
MASTER AVIRIS 

Wavelength range 0.4-13 µm 0.4-2.5 µm 
Number of channels 50 224 
Channel width Varies, 40 to 650 nm 10 nm 
Instantaneous field of view 2.5 mrad 1 mrad 
Total field of view 85.92º 33º 
Number of pixels 716 614 
Platform B200, ER-2, DC-8 ER-2, Twin Otter 
Digitization 16-bit 12-bit 
Number of spectrometers 4 4 
 



 71

Table 3.2. Classification accuracies of rocks using SFF applied to AVIRIS, MASTER 

TIR, and combined data 

 

Accuracy:  SFF (%) 

AVIRIS MASTER COMBINED 
Mineral 
or rock 

Prod.  User Prod. Prod. Prod. User 

Silicified 80.7 99.1 16.2 66.7 95.3 96.1 

Opalized 66.1 89.6 34.5 33.4 65.6 74.6 

Argillized 75.8 68.3 54.2 24.3 60.0 36.6 

Tuff 1 76.5 61.3 72.6 54.8 69.4 66.1 

Tuff 2 92.8 86.5 75.4 62.5 77.1 72.7 

Basalt 53.8 40.0 83.0 76.8 79.1 87.1 

Diabase 61.7 58.2 6.0 28.3 33.4 95.3 

Limestone 98.8 96.3 86.4 61.6 86.7 98.5 

Siltstone 97.7 79.7 94.4 79.7 98.1 80.6 

Sandstone 68.2 94.8 20.4 66.1 85.8 98.6 

Felsite 99.2 98.3 5.9 25.2 78.3 81.4 
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Table 3.3.  Confusion matrix for SFF applied to AVIRIS data (overall accuracy 81.0 %)  

 

Class Silicified Opalized Argillized Tuff 1 Tuff 2 Basalt Diabase Limest. Siltstone Sandst. Felsite 

User’s 
Accuracy 
(%) 

Silicified 1126 10 0 0 0 0 0 0 0 0 0 99.1 

Opalized 18 759 70 0 0 0 0 0 0 0 0 89.6 

Argillized 0 236 508 0 0 0 0 0 0 0 0 68.3 

Tuff 1 95 51 89 753 0 184 48 0 0 8 0 61.3 

Tuff 2 55 12 3 47 1189 69 0 0 0 0 0 86.5 

Basalt 102 0 0 184 93 304 63 14 0 0 0 40.0 

Diabase 0 18 0 0 0 0 264 0 21 151 0 58.2 

Limestone 0 5 0 0 0 8 21 1111 5 0 4 96.3 

Siltstone 0 29 0 0 0 0 0 0 1125 256 1 79.7 

Sandstone 0 17 0 0 0 0 32 0 0 891 0 94.8 

Felsite 0 11 0 0 0 0 0 0 0 0 645 98.3 

Prod. Acc. 
(%) 80.7 66.1 75.8 76.5 92.8 53.8 61.7 98.8 97.7 68.2 99.2  
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Table 3.4.  Confusion matrix for SFF applied to combined data (overall accuracy 79.2 %) 

Class Silicified Opalized Argillized Tuff 1 Tuff 2 Basalt Diabase Limest. Siltstone Sandst. Felsite  

User’s 
Accuracy
(%) 

Silicified 1330 27 91 0 0 0 0 0 0 10 8 96.1 

Opalized 5 753 237 0 0 0 0 0 0 0 14 74.6 

Argillized 27 319 402 3 30 5 89 0 11 115 99 36.6 

Tuff 1 0 0 0 683 242 60 49 0 0 0 0 66.1 

Tuff 2 0 0 0 296 988 14 10 50 0 0 2 72.7 

Basalt 0 0 0 0 0 447 29 37 0 0 0 87.1 

Diabase 0 0 1 1 0 4 143 0 0 0 1 95.3 

Limestone 0 0 0 0 0 11 0 975 0 0 4 98.5 

Siltstone 0 36 16 0 0 24 100 30 1129 53 13 80.6 

Sandstone 3 12 1 0 0 0 0 0 0 1121 0 98.6 

Felsite 31 1 4 1 22 0 8 31 11 7 509 81.4 

Prod. Acc. 
(%) 95.3 65.6 60.0 69.4 77.1 79.1 33.4 86.7 98.1 85.8 78.3  
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Table 3.5.  Classification accuracies of rocks using SAM applied to AVIRIS, MASTER 

TIR, and combined data  

Accuracy:  SAM (%) 

AVIRIS MASTER COMBINED 
Mineral 
or rock 

Prod.  User Prod. Prod. Prod. User 

Silicified 54.4 64.5 59.2 74.0 75.4 90.4 

Opalized 67.2 88.2 36.7 50.8 64.8 91.2 

Argillized 84.3 60.8 49.7 26.1 90.9 52.3 

Tuff 1 73.1 79.7 62.3 50.0 99.3 91.3 

Tuff 2 76.9 82.9 62.7 65.6 93.8 96.3 

Basalt 70.8 32.2 84.3 73.0 88.3 97.7 

Diabase 57.5 65.6 41.4 34.4 85.8 86.0 

Limestone 67.8 92.8 85.1 99.7 100.0 99.6 

Siltstone 93.8 88.3 93.4 86.0 97.3 85.8 

Sandstone 89.7 92.6 55.1 64.7 84.3 96.6 

Felsite 45.4 42.0 66.6 79.6 65.4 58.1 
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Table 3.6.  Confusion matrix for SAM applied to AVIRIS data (overall accuracy 72.4 %) 

Class Silicified Opalized Argillized Tuff 1 Tuff 2 Basalt Diabase Limest. Siltstone Sandst. Felsite 

User’s 
Accuracy 
(%) 

Silicified 759 49 18 0 0 61 0 0 0 0 289 64.5 

Opalized 10 771 84 0 0 0 0 0 0 0 9 88.2 

Argillized 41 320 565 0 0 0 3 0 0 0 1 60.8 

Tuff 1 71 0 0 720 99 14 0 0 0 0 0 79.7 

Tuff 2 20 0 0 172 986 12 0 0 0 0 0 82.9 

Basalt 163 0 0 87 197 400 23 354 5 0 15 32.2 

Diabase 45 0 0 0 0 0 246 4 42 8 30 65.6 

Limestone 0 0 0 0 0 59 0 763 0 0 0 92.8 

Siltstone 0 1 0 0 0 0 18 0 1079 123 1 88.3 

Sandstone 0 0 0 0 0 0 80 0 4 1171 10 92.6 

Felsite 287 7 3 5 0 19 58 4 21 4 295 42.0 

Prod. Acc. 
(%) 54.4 67.2 84.3 73.2 76.9 70.8 57.5 67.8 93.7 89.7 45.4  
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Table 3.7. Confusion matrix for SAM applied to combined data (overall accuracy 86.2 %)   

Class Silicified Opalized Argillized Tuff 1 Tuff 2 Basalt Diabase Limest Siltstone Sandst Felsite 

User’s 
Accuracy 
(%) 

Silicified 1053 16 1 0 0 0 0 0 0 0 95 90.4 

Opalized 9 744 53 0 0 0 0 0 0 0 10 91.2 

Argillized 38 386 609 4 0 0 0 0 17 0 110 52.3 

Tuff 1 0 0 3 977 59 24 3 0 0 0 4 91.3 

Tuff 2 0 0 0 3 1203 35 8 0 0 0 0 96.3 

Basalt 0 0 0 0 0 499 12 0 0 0 0 97.7 

Diabase 0 0 0 0 20 7 367 0 0 33 0 86.0 

Limestone 0 0 0 0 0 0 0 1125 1 0 4 99.6 

Siltstone 0 0 3 0 0 0 38 0 1120 142 2 85.8 

Sandstone 35 0 0 0 0 0 0 0 0 1101 0 96.9 

Felsite 261 2 1 0 0 0 0 0 13 30 425 58.1 

Prod. Acc. 
(%) 75.4 64.8 90.9 99.3 93.8 88.3 85.8 100.0 97.3 84.3 65.4  
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Figures 

 
Figure 3.1.  Left:  AVIRIS image of Cuprite, Nevada (band 199, 2.26 µm).  Right:  MASTER image of the same area (band 45, 9.67 
µm). 
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Figure 3.2.  Kappa coefficients of five classification methods applied to AVIRIS, 
MASTER TIR, and combined data.   
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Figure 3.3.  Image derived reflectance spectra and alpha emissivity residual spectra of 
eleven rocks of AVIRIS (left) and MASTER (right).   
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Chapter 4.  A Rule Based System for Integrating 
VNIR/SWIR and TIR data 

Abstract 

Previous research has shown that integrating hyperspectral VNIR/SWIR with 

multispectral TIR data can lead to improved mineral and rock identification.  However, 

inconsistent results were found regarding the relative accuracies of different classification 

methods for dealing with the integrated data set.  

In this study, a rule based system was developed for integration of VNIR/SWIR 

hyperspectral data with TIR multispectral data, and evaluated with a case study of 

Cuprite, Nevada.  Previous geological mapping (Abrams and Ashley, 1980), 

supplemented by field work and sample spectral measurements, was used to develop a 

generalized knowledge base for analysis of both spectral reflectance and spectral 

emissivity.  The characteristic absorption features, albedo, and the location of the spectral 

emissivity minimum were used to construct the decision rules.  A continuum removal 

algorithm was used to identify absorption features from VNIR/SWIR hyperspectral data 

only; spectral angle mapper (SAM) and spectral feature fitting (SFF) algorithms were 

used to estimate the most likely rock type.  The rule based system was found to achieve a 

notably higher performance than SAM, SFF, minimum distance, and maximum 

likelihood classification methods on their own.   

Key Words:  hyperspectral; multispectral; visible; near infrared; short wave infrared; 

thermal; classification methods; data integration; rule based system. 
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1. Introduction 

 Hyperspectral sensors, sometimes called imaging spectrometers, measure 

reflected solar energy in many narrow, contiguous bands from the visible and near 

infrared (VNIR) to the short wave infrared (SWIR), typically from 0.4 to 2.5 µm.  

Imaging spectroscopy has shown great potential for mapping minerals and rock 

composites because the narrow bands resolve the diagnostic absorption features 

associated with specific chemical bonds and physical structure of minerals and rocks 

(Farmer, 1974; Hunt, 1977, 1982; Clark, et al., 1990; Clark, 1999).  Hyperspectral 

imagery has been used in geological investigations for over two decades, and during that 

time a wide range of data processing routines and spectral analysis algorithms have been 

developed (Boardman, 1989; Boardman et al., 1995; Clark et al., 1990, 1995; Gao et al., 

1991; Green, 1990; Green et al., 1993; Kruse et al., 1993a; Kruse et al.1993b; Leprieur et 

al., 1995; Roberts et al., 1997; Staenz et al., 1996; Van der Meer and Bakker, 1997).   

 One approach that has been successfully used for mineralogical and lithological 

mapping is that of an expert system (Kruse et al., 1993b; Clark et al., 2003).  Expert 

systems use decision rules derived from knowledge of the spectral or other properties of 

the classes of interest.  A particular advantage of expert systems is that they can exploit 

information selectively from the full range of information embedded in each pixel’s 

spectrum.   

 The USGS Tetracorder Expert System, one of the most well known hyperspectral 

expert system for mineralogical mapping, contains data on more than 400 minerals, 

vegetation species, snow cover types, and manmade materials (Clark et al., 1990, 2003; 

Clark and Swayze, 1995).  It utilizes two basic algorithms: a continuum removal 
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algorithm to extract absorption features, and a least-squares algorithm to calculate the 

goodness of fit between library reference spectra and remotely sensed spectra.  The 

Tetracorder Expert System identifies surface materials by identifying one or more 

diagnostic absorption features, and has achieved good results even for minerals with 

relatively similar absorption features (Dalton et al., 2004).   

 Spectral analysis methods that focus on absorption features are, however, less 

successful in identifying minerals having only limited or no diagnostic absorption 

features.  For example, the silicate mineral quartz, which dominates many crustal rocks, 

does not exhibit any diagnostic absorption feature in the VNIR/SWIR region, although it 

does have spectral features in the thermal infrared (TIR) wavelength region (8-14 µm). 

 The example of quartz, given above, suggests that information complementary to 

that obtained in VNIR/SWIR wavelengths can potentially be obtained from the TIR 

wavelength region.  Indeed, silicate minerals in general have TIR diagnostic features 

related to the characteristics of their silicon-oxygen bonds.  Thus, most studies using 

multispectral TIR data for lithological mapping have focused on silicate or silicate-

bearing rocks (Abrams et al., 1991; Gillespie et al., 1984; Hook et al., 1992, 1994, 1998; 

Lahren et al., 1988; Rowan, 1998; Sabine et al., 1994).  Despite the advantages of using 

TIR, it is important to note that lithological mapping using multispectral TIR data is 

limited by the small number and broad wavelength intervals covered by the multispectral 

bands.  In addition, the presence of weathering materials, desert varnish, and vegetation 

dilute the spectral features.   

 The combination of VNIR/SWIR hyperspectral data and multispectral TIR data 

can potentially be an effective combination for lithologic mapping (Abrams and Hook, 
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1991; Chen et al., 2004, 2005).  However, in experiments with simulated (Chapter 2) and 

real data (Chapter 3), the standard hyperspectral analysis approaches of spectral angle 

mapper (SAM) and spectral feature fitting (SFF) show some problems when applied to 

combined VNIR/SWIR/TIR data sets.  SFF was found to take advantage of strong 

distinctive absorption features in the spectra, but it resulted in relatively poor 

performance when applied to rocks with low albedo and with no diagnostic absorption 

features, particular in the TIR region.  By comparison, SAM achieved better results in 

discriminating low albedo volcanic rocks, but was not as good as SFF for rocks with 

strong diagnostic absorption features.   

 Based on observations in these previous chapters that different minerals were 

found to be most effectively classified using different wavelength regions and different 

methods (Chen et al., 2004, 2005), a rule based system algorithm was developed for this 

paper to integrate hyperspectral VNIR/SWIR and multispectral TIR data.  The rule based 

system was designed to draw on the strengths of SFF and SAM, as well as to exploit the 

spectral information selectively from the full range of VNIR, SWIR, and TIR 

wavelengths.  The rule based system developed in this research was evaluated using a 

case study of Cuprite, Nevada, a well known test site for geological application using 

remote sensing techniques (Abrams et al., 1977a; Abrams et al., 1977b; Abrams and 

Ashley, 1980; Goetz and Srivastava, 1985; Abrams and Hook, 1991; Kruse et al., 1990; 

Hook et al., 1992; Van der Meer and Bakker, 1997).  The study area is described in more 

detail in the next section. 
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2. Geological setting of study area 

 Cuprite is an ideal choice for testing mineral and rock classification methods 

because a wide range of volcanic, sedimentary, igneous, and metamorphic rocks, as well 

as hydrothermal alteration types, are exposed in a sparsely vegetated environment.  In 

addition, a wide range of data sets is available for the site. 

 Cuprite is located in southwest Nevada (37° 29′ to 37° 35′ North, 117° 9′ to 

117° 17′ West), near the California border.  The oldest rock units, Cambrian siltstone, 

sandstone and limestone, dominate in the western part of the study area (Abrams and 

Ashley, 1980).  Dominating the northeast of the area are two uppermost Tertiary volcanic 

rock units, which are comprised of sanidine-bearing sodic peralkaline rhyolite ash-flow 

tuffs.  Porphyritic plagioclase-olivine basalt flows are exposed at several places.  A 

number of large felsite dikes containing feldspar and scarce biotite phenocryts were 

intruded along north-trending faults in the southwest of the study area.  

 Most of the Tertiary volcanic rocks were to varying degrees hydrothermally 

altered in middle to late-Miocene times, creating fossilized hot-spring deposits 

(Buchanan et al., 1981).  The alteration has been divided into three zones based on 

alteration intensity: silicified, opalized, and argillized (Ashley and Abrams, 1980).  The 

alteration zones in eastern study area form a bull’s eye pattern, with the silicified zone at 

the core, surrounded by opalized, then argillized zones, which border the unaltered 

country rocks.  

 The silicified rocks are the most intensively altered, and the relict textures of the 

original rocks no longer exit.  Silificied rocks comprise abundant quartz, some calcite, 

and minor alunite and kaolinite.  About 10-30 percent desert vanish is present on the 



 85

weathering surface of the silicified rocks.  The opalized rocks, forming the most 

widespread alteration, contain opal and abundant alunite and kaolinite.  Primary quartz 

phenocrysts are occasionally present as relict minerals.  The argillized rocks, which are 

the least intensively altered, are usually located within opalized zones or at the edge of 

the altered areas.  Glass of the original volcanic rocks is altered to opal, montmorillonite, 

and kaolinite, and plagioclase is altered to kaolinite; primary quartz and sanidine are 

unaltered.  Small amount of hematite may be present in argillized and opalized rocks 

(Abrams et al., 1977a, 1977b; Abrams and Ashley, 1980). 

3. Data sets of study area and preprocessing 

 There is no current sensor that simultaneously acquires hyperspectral 

VNIR/SWIR data and multispectral TIR data.  Therefore, two separate data sets were 

obtained, and co-registered, as described below. 

3.1 AVIRIS data 

The hyperspectral VNIR/SWIR data were acquired by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) (Green et al., 1998) flown aboard the 

NASA ER-2 aircraft at a 20 km altitude on June 19, 1996, under cloud free weather 

conditions (Figure 4.1, left).  AVIRIS has 224 contiguous bands at approximately 10 nm 

intervals between 0.4 and 2.5 µm.  The AVIRIS instrument has an instantaneous field of 

view (IFOV) of 1 mrad, producing pixels of approximately 20 m, and a swath width of 

about 10 km.  A single flight line covers whole study area.  The radiometric calibration to 

reflectance was carried out by NASA Jet Propulsion Laboratory (JPL). 
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3.2 MASTER data 

 The multispectral TIR data was collected by the MODIS/ASTER Airborne 

Simulator (MASTER) (Hook et al., 2001) at approximately 19:36 GMT on June 9, 1999, 

under clear weather conditions (Figure 4.1, right).  The sensor was flown on a US 

Department of Energy King Air B-200, at an altitude of approximately 8,000 meters 

above the ground.  The MASTER instrument has an IFOV of 2.5 mrad, thus producing 

pixels of approximately 20 meters for this data set.  Although MASTER acquires 50 

bands of data in the 0.4 – 13 µm region, only the 10 TIR bands (8-13 µm) were used for 

this study, in order to complement the AVIRIS VNIR/SWIR bands.   

3.3 Image preprocessing 

 The TIR radiance measured by MASTER has three components:  ground 

radiance, reflected downwelling atmospheric radiance, and upwelling atmospheric 

radiance.  The three radiance components are attenuated by atmospheric transmittance.  

The MODTRAN4 atmospheric model (Berk et al., 1999) was used to estimate 

atmospheric transmittance, and both upwelling and downwelling atmospheric radiance.  

A local atmospheric profile, measured with a radiosonde at the time of over-flight, was 

used to initialize the atmospheric model.  After atmospheric correction, the ground 

radiance is dependent on both emissivity and temperature, as defined by the Planck 

function.   

 The separation of temperature and emissivity is an underdetermined problem 

because there is always one more unknown than the number of radiance measurements 

for each pixel (Hook, et al., 1992).  We used the alpha residual approach (Hook et al., 



 87

1992), which results in alpha residual spectra that have a similar shape to emissivity 

spectra.   

 Both AVIRIS reflectance data and MASTER alpha residual data were rectified 

and coregistered using United States Geological Survey (USGS) standard black and 

white Digital Orthophoto Quarter Quadrangles (DOQQs), with 1 meter pixels, as a 

reference map.  For the AVIRIS data, 92 ground control points (GCPs) were used to 

construct a second-order polynomial transformation equation.  The transformed AVIRIS 

data has a root mean square (RMS) error of 0.72 pixels.  The MASTER data has a more 

complex geometry, partly because it was acquired at a lower altitude than the AVIRIS 

data.  Consequently a rubber sheeting transformation with 239 GCPs was used to rectify 

the MASTER data, with a RMS error of 0.89 pixels, based on 30 evaluation points.  Both 

images were resampled to the same UTM grid, using a nearest neighbor approach. 

4. Rule based system 

 The main objective of this research is the development of a rule based system for 

automated identification of minerals and rocks based on their characteristic spectral 

features in the VNIR/SWIR and TIR regions.  The knowledge base for the analysis of 

reflective and emissivity spectra was derived from selected image spectra (Figure 4.2), 

supplemented by measured field spectra (Figure 4.3), and spectral libraries created by the 

Jet Propulsion Laboratory (Grove et al., 1992), the U. S. Geological Survey (Clark et al., 

1993), and Johns Hopkins University (Salisbury et al., 1991; Research Systems, 2002).  

In addition, previous work on classifying simulated (Chapter 2, Chen et al. 2004) and real 

(Chapter 3, Chen et al., 2005) data sets was important in identifying the optimal method 

for classifying each mineral. 
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4.1 Reflectance spectra and emissivity spectra analysis 

 The knowledge base for the rule based system was developed from analyses of 

rock spectra in both VNIR/SWIR and TIR regions.  The decision rules were constructed 

based on spectral characteristics of rocks, including albedo, absorption features in 

VNIR/SWIR region, and spectral features in TIR region. (Table 4.1). These spectral 

characteristics were related to electronic or vibrational processes resulting from the 

interaction of electromagnetic energy with the atoms and molecules which compose the 

minerals that make up a rock.  Iron dioxide, hydroxyl, and carbonate minerals exhibit 

absorption features in VNIR/SWIR region.  By contrast, most silicate minerals have 

spectral features in TIR region (Lyon, 1972; Hunt, 1980).   

 Rock types of interest in this study include volcanic tuffs, basalt, diabase, felsite, 

limestone, siltstone, and sandstone, as well as the three alteration types of argillized, 

opalized, and silicified.  Rock samples were collected in the field for subsequent 

laboratory spectral analysis.   

 A laboratory Fourier Transform Infrared (FTIR) spectrophotometer was used to 

acquire spectra over the range from 2.0–14.0 µm.  The reflectance measurements then 

were converted to emissivity spectra using Kirchhoff’s law.  For VNIR/SWIR spectra, a 

FieldSpec Pro Full Range (0.4–2.5 µm) (Analytical Spectral Devices, Boulder, Colorado) 

field portable spectrometer was used.  Both reflectance and emissivity spectra were 

resampled to AVIRIS and MASTER band passes respectively (Figure 4.3).   

 These reflectance spectra (0.4-2.5 µm) and emissivity spectra (8-13 µm) exhibit 

distinctive spectral features that can be related to rock composition (Table 4.1).  Silicified 

rocks exhibit a relative weak absorption feature centered near 2.3 µm, but a distinctive 
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emittance low at 9.0 µm, due to quartz.  Opalized rocks exhibit strong diagnostic features 

at 1.5, 1.8, 2.2, and 2.3 µm which are related to alunite and kaolinite absorption features.  

Argillized rocks contain montmorillonite, kaolinite, and small amount of hematite.  

Therefore they show characteristic absorption features centered near 2.2 µm due to clay 

minerals, and centered near 0.5 and 0.9 µm related to hematite-absorption.  Opalized and 

argillized rocks also have broad emittance minima in the TIR region, but they are not 

distinctive.  All volcanic rocks, including ash-flow tuffs, basalt, and diabase, have a low 

albedo, with a maximum reflectance less than 0.4.  These silicate-bearing rocks show 

relative flat spectra without diagnostic absorption features in VNIR/SWIR region.  

However they exhibit an emittance minimum in the region 9.0-9.7 µm due to the 

presence of a Si-O bond.  Limestone exhibits a diagnostic absorption feature related to 

carbonate feature at 2.3 µm and a weak spectral feature at 11.3 µm.  The other quartz-

bearing rocks, such as sandstone, also show a diagnostic emittance low at 9.0 µm.  

Siltstone exhibits absorption features located at 2.2, and 2.3, as well as an emittance low 

at 9.7 µm.  In addition to the quartz-feature, sandstone exhibits an absorption feature at 

2.2 µm.  Felsite rocks show the silicate emittance low near 9.0-9.7 µm.  The latter feature 

is not as distinctive as the 2.2 µm absorption feature.   

4.2 Spectral feature matching algorithms 

 The rule based system developed in this study generally treats the reflective solar 

and TIR regions separately.  Many diagnostic absorption features of minerals are 

potentially isolated in the hyperspectral AVIRIS data because the spectral width of 

absorption features ranges can be as narrow as 20 nm to 40 nm in the NIR and SWIR 
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wavelength region.  As discussed above, the MASTER data, however, has only 10 bands 

in TIR wavelength region (8-13 µm), and these are relatively broad bands.  Most narrow 

absorption features are not evident in the multispectral TIR data, and only the shape of 

spectra and the broad absorption features are distinguishable.   

In Chapters 2 and 3 it was found that SAM and SFF algorithms have varying 

effectiveness for identifying different minerals and rocks using different wavelength 

regions (Table 4.2).  SAM show some advantages over SFF in identifying minerals and 

rocks with low albedo and relative flat spectral features.  On other hand, SFF achieves 

better performance when it deals with minerals and rocks exhibiting strong diagnostic 

absorption features.  Therefore, the rule based system employs different spectral feature 

matching algorithms depending on the nature of the input spectrum. 

For AVIRIS data, if the observed spectrum exhibits characteristic absorption 

features, the processing follows the SFF procedure used in the USGS Tetracorder System 

(Clark et al., 2003).  Reflective absorption features are extracted using the continuum 

removal approach to suppress the effects of pixel mixtures.  A least-square fit is 

calculated to compare each diagnostic absorption feature in the pixel spectrum to the 

continuum-removed reference spectra.  The solution is obtained using the standard linear 

least-square algorithm defined as follows: 
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Where  

Oc = the continuum removed pixel spectrum;  

Lc = the continuum removed reference spectrum; 

n = the number of bands covered by the absorption feature;  

c = the band number; 

F = the correlation coefficient; 

If a material in the spectral library has multiple absorption features, a weighted fit 

is calculated separately for each feature in the reference spectrum, and then the results are 

combined (Clark et al., 2003).  The weight value is signed empirically based on its depth, 

width, and significance.  If the observed spectrum does not show any strong characteristic 

absorption features, SAM is used to estimate the spectral feature matching.  SAM 

calculates the angle between the vector of observed pixel spectrum and vectors of 

reference spectra, and assigns the pixel with the reference class having smallest angle 

(Kruse et al., 1993a).  In this study, the cosine of the angle is calculated instead of the 

angle itself.  Therefore, the pixel is assigned with the reference class having the largest 

value. 

For the multispectral TIR MASTER data, the spectral feature matching is carried 

out using original spectra, instead of the continuum removed spectra used for the AVIRIS 
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data, because the overall spectral shape of the TIR data may contain useful information 

for identifying minerals and rocks.  Two methods are used to identify rocks depending on 

their spectral features.  For pixels showing strong emittance features, such as the quartz- 

feature, the wavelength of the minimum emittance is determined using a least-squares fit 

approach similar to that used for the AVIRIS data is used.  Otherwise, the observed 

spectrum is compared to the reference spectra using the SAM algorithm.   

All spectral signatures of rocks were derived from the averaged pixel spectra 

based on the relative homogeneous area corresponding to geological map (Abrams and 

Ashley, 1980) and field work.  

4.3 Decision rules 

The rule based system consists of a hierarchy of decision rules that associate input 

pixel spectra with a single rock type.  The VNIR/SWIR albedo and the presence of 

diagnostic absorption features are used in the decision rules.  In order to take advantage 

of the systematic shift of emissivity minima with different silicate bearing rocks (Lyon, 

1972; Hunt, 1980), the position of minimum in the MASTER TIR spectrum is also 

identified.  The rules assign each pixel to just one class, or if the pixel fails to reach a 

predetermined confidence threshold, it is assigned to the class Unknown.  To simplify the 

rule based system, the confidence threshold is set empirically to 0.1 for SAM and 0.5 for 

SFF.  The rule based system is designed to assign mixed classes to the dominant 

endmember.  The decision to avoid multiple classes was chosen to keep the results 

relatively simple, and to facilitate the evaluation of the method by comparison of the 

results with the generalized geological map.   
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 The decision tree hierarchy is illustrated in Figure 4.4.  The first rule is to 

determine if the pixel belongs to the low albedo group of rocks or minerals by checking if 

the maximum reflectance is less than 0.4.  For those pixels that are in the low albedo 

group, SAM is applied to the combined data set to differentiate between limestone, tuff1, 

tuff2, basalt, and diabase.  The second rule is applied to high albedo pixels, and checks 

for clay absorption features in the 2.09-2.25 µm region using the reference spectrum of 

argillized rock and SFF.  An empirical value of 0.9 was chosen as the threshold 

correlation for separating pixels having the clay absorption feature.  Pixels that show clay 

absorption features are classified as argillized or opalized rock using SFF and AVIRIS 

data.  The third decision rule is to check if the wavelength of emittance minimum is 

greater than 9.0 µm.  Most silicified rock and sandstone pixels have an emittance 

minimum at 9.0 µm or less, and SFF applied to the combined data set is used to 

differentiate these two classes.  Pixels that have an emittance minimum greater than 9.0 

µm are also classified using SFF, except in this case only the AVIRIS data is used, and 

the candidate classes are siltstone and felsite. 

4.4 Evaluation of the rule based system 

 The rule based system applied to the Cuprite, Nevada data (Figure 4.5 Right) was 

evaluated by comparing the results to the distribution of rock units shown in the 

generalized geological map of Abrams and Ashley (1980), supplemented by field work 

conducted in 2004.  Unconsolidated deposits and unclassified pixels were assigned to a 

background class (zero).   
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5. Results and discussion 

 For the rule based system, the area classified as hydrothermal alteration generally 

agrees with the distributions of alteration zones on the geological map (Abrams and 

Ashley, 1980).  In particular, the regions classified as silicified rock are consistent with 

the distribution on the geological map  

 The most conspicuous disagreement between alteration zones shown on the 

geological map and the rule based system is in the distribution of argillized zones on the 

west side of study area.  In this region, the geological map indicates only a few places 

where argillized rocks are found.  In contrast, the rule based system identified a broad 

area of argillized rocks.  The transitional nature of the argillized zones makes this class 

difficult to differentiate, even in hand specimen, from the unaltered country rock and the 

more intensely altered opalized zone.  Identification of argillized rock is mainly based on 

the clay absorption feature at 2.2 µm, and the hematite related absorption features at 0.5 

and 0.9 µm.  The pattern of argillized zones separating opalized zones and country rocks 

on the west side of study area appears reasonable.  However, further field work is needed 

to verify this interpretation. 

 Most volcanic rocks are classified correctly, as indicated by the distribution of 

these rocks on the geological map (Abrams and Ashley, 1980).  With the exception of 

felsite, most volcanic rocks have a low albedo, and no characteristic absorption features 

in the AVIRIS data.  Thus the volcanic rocks are generally discriminated based on their 

overall shape in the VNIR/SWIR and their spectral feature in the TIR region.  Felsite is 

identified based on a characteristic double absorption feature at 2.2 and 2.4 µm.  Diabase 
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is not shown on the geological map, but the extent of diabase as indicated by the rule 

based system agrees well with the field mapping.   

 The limestone identified by the rule based system also agrees well with the 

distribution of limestone on the geological map.  Limestone can be identified due to its 

weak distinctive absorption features at 2.2 and 11.3 µm.  Sandstone and siltstone are not 

separated on the geological map, but are grouped into the lower Cambrian Harkless 

Formation (Abrams and Ashley, 1980).  Sandstone can be identified in the imagery due 

to its absorption features at 2.2 and 9.0 µm, whereas siltstone has spectral features at 2.2, 

2.3, and 9.7 µm.  Confirmation of this separation also requires future additional field 

work. 

 By comparison with the other methods applied to AVIRIS, MASTER, and 

combined data, as discussed in Chapter 3, the rule based system applied to the combined 

data achieved the highest accuracy of the different approaches used.  The overall 

accuracy of the classification with the rule based system is more than 90 percent, almost 

4 percent higher than the second highest accuracy obtained with SAM.  As mentioned 

above, SAM applied to the combined data is effective for discriminating rocks which 

have a low albedo, a relatively flat spectra in the VNIR/SWIR region, and a broad 

emittance low in the TIR.  For example, the SAM accuracy is the highest for limestone, 

tuffs, basalt, and diabase, irrespective of the data set (AVIRIS, MASTER, or combined) 

(Table 4.2).  SFF is effective in identifying rocks with strong absorption features.  

Opalized rocks, argillized rocks, and felsite exhibit multiple characteristic absorption 

features in the VNIR/SWIR region.  Thus, SFF applied to AVIRIS data obtained the 

highest accuracies for those rock units.  SFF applied to the combined data also achieved 
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the highest accuracy for silicified rock and sandstone due to their characteristic 

absorption features in both the VNIR/SWIR and TIR regions.  The classification 

accuracy of each individual rock (Table 4.3) shows that the rule based system 

successfully draws on the information in the AVIRIS and MASTER TIR data, using the 

optimum combination of SAM and SFF algorithms.  The accuracies of most rock units 

are close to, or even better than, the highest accuracy of each individual rock unit with all 

methods and all data sets.  The only exception is felsite, where some silicified rock pixels 

were mislabeled as felsite.  The decision rule based on the wavelength position of the 

emissivity minimum was the source of some misclassification of silicified rocks. 

6. Summary and conclusions 

 AVIRIS and MASTER data acquired over Cuprite, Nevada, on June 19, 1996 and 

June 9, 1999, respectively, were used to evaluate the integration of hyperspectral 

VNIR/SWIR with multispectral TIR data for geological mapping.  The AVIRIS data 

were converted to estimated reflectance.  The MASTER TIR data were corrected for 

atmospheric effects, and converted to emissivity with the alpha residual algorithm.  A 

rule based system was developed that allows automated identification of rock units based 

on spectral features in the VNIR/SWIR and TIR regions.  A set of decision rules was 

established based on analyzing spectra of field samples, as well as generic library spectra 

of selected common rock types and minerals in the study area.  In addition to the 

characteristic absorption features of rocks, the albedo and the wavelength position of 

emissivity minimum was taken into consideration for defining the decision rules.  SAM 

and SFF were employed to estimate the fitness of relative flat spectrum while SFF was 

used to calculate the match of the spectrum with strong spectral features.  
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 The rule based system produced a classification map from AVIRIS and MASTER 

TIR data showing the predominant surface lithology.  This classification map agreed with 

the previous geological map, and provides additional information about unmapped rock 

units.  Several outcrops of diabase corresponding to Tertiary intrusives were identified 

with the rule based system, and verified in a field trip.  More detailed information about 

lower Cambrian sedimentary rocks, specifically the potential discrimination of sandstone 

and siltstone, requires further field checking.   

 By comparison of the other classification methods, the rule based system was 

found to achieve a higher performance than SAM, SFF, minimum distance, and 

maximum likelihood classification methods on their own.  The rule based system draws 

on the strengths of each of the two classification methods used, SAM and SFF.  The rule 

based system demonstrates the value of acquiring simultaneous VNIR, SWIR, TIR 

imagery for geological mapping.  It may serve as a model for future research in 

combining disparate wavelength data. 
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Tables 

Table 4.1.  Spectral characteristics of selected rock types from Cuprite, Nevada 

Spectral Characteristics 

Spectral features Rocks 
Albedo 

VNIR/SWIR TIR 

Silicified High 2.3 µm 9.0 µm 

Opalized High 1.5, 1.8, 2.2, 2.3 µm 9.0 µm 

Argillized High 0.5, 0.9, 2.2 µm 9.7 µm 

Tuff1 Low N/A 9.7 µm 

Tuff2 Low N/A 9.7 µm 

Basalt Low N/A 9.7 µm 

Diabase Low N/A 9.0-9.7 µm 

Limestone Low 2.3 µm 11.3 µm 

Siltstone High 2.2, 2.3 µm 9.7 µm 

Sandstone High 2.2 µm 9.0 µm 

Felsite High 2.2, 2.4 µm 9.0-9.7 µm 



 106

Table 4.2.  Classification accuracies of SAM and SFF applied to AVIRIS, MASTER, and 

combined data respectively (summarized from Chapter 3 & Chen et al., 2005) 

Classification Accuracy (%) 

SAM SFF Rocks 

AVIRIS MASTER Combined AVIRIS MASTER Combined 

Silicified 59.5 66.6 82.9 89.9 41.5 95.7 

Opalized 77.7 43.8 78.0 82.4 34.0 70.1 

Argillized 72.6 37.9 71.6 72.1 39.3 48.3 

Tuff 1 76.4 56.2 95.3 68.9 63.7 67.8 

Tuff 2 79.9 64.2 95.1 89.7 69.0 74.9 

Basalt 51.5 78.7 93.0 46.9 79.9 83.1 

Diabase 61.6 37.9 85.9 60.0 17.2 64.4 

Limestone 80.3 92.4 99.8 97.6 74.0 92.6 

Siltstone 91.1 89.7 91.6 88.7 87.1 89.4 

Sandstone 91.2 59.9 90.5 81.5 43.3 92.2 

Felsite 43.7 73.1 61.8 98.8 15.6 79.9 

Overall 
accuracy 72.4 63.8 86.2 81.0 51.6 79.2 
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Table 4.3. Classification accuracies using the rule based system 

Classification Accuracy (%) 
Rocks Producer’s 

Accuracy 
User’s  

Accuracy 
Average 
Accuracy 

Silicified 87.5 98.7 93.1 

Opalized 75.0 83.7 79.4 

Argillized 75.7 67.0 71.4 

Tuff1 99.2 86.8 93.0 

Tuff2 93.8 95.6 94.7 

Basalt 88.3 97.7 93.0 

Diabase 91.4 91.8 91.6 

Limestone 100.0 99.9 100.0 

Siltstone 97.6 85.7 91.7 

Sandstone 87.1 95.6 91.4 

Felsite 92.6 95.0 88.8 

Overall accuracy 90.1 
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Figure 4.1  Left:  AVIRIS image (band 199, 2.26 mm); Right: MASTER image (band 45, 9.67mm) 
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Figure 4.2.  Image derived reflectance spectra and alpha emissivity residual spectra of 
eleven rocks of AVIRIS (left) and MASTER (right).   
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Figure 4.3.  Measured reflectance spectra and alpha residual emissivity spectra of nine 
rocks resampled to AVIRIS (left) and MASTER (right) wavelength bands.  
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Figure 4.4  Flowchart of the rule based system. γmax is maximum reflectance of pixel spectrum; ωmin is the wavelength of emissivity 
minima. 
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Figure 4.5.  Classification results.  Left: SAM applied to the combined data.  Middle: SFF applied to AVIRIS data.  Right:  The rule 
based system. 
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Chapter 5.  General Conclusions 

 This research investigated the potential of integrating VNIR/SWIR hyperspectral 

and TIR multispectral data for geological mapping.  The simulated data analysis, real 

data analysis, and rule based system classification all clearly showed that the combination 

of these disparate data provided increased information.   

 The simulated data were developed from spectral library and sample 

measurements of rocks and minerals.  Seven levels of uncertainty were identified and 

modeled.  The simulated data provide a highly controlled data set, for which the true 

composition of each pixel is known.  The real data experiments demonstrated the real 

world application of the simulated data work.  The real data comprised AVIRIS and 

MASTER TIR imagery acquired over Cuprite, Nevada, a well known remote sensing test 

site.  The rule based system was specifically designed to integrating these two disparate 

data types, and drew on the results of both the simulated and real data experiments.  The 

rule based system selectively uses all or part of the combined pixel spectrum, and applied 

either SFF (Crowley et al., 1989; Clark et al., 1990) or SAM (Kruse et al., 1993) 

classification, depending on the spectral characteristics of each pixel.   

 The relative value of the combination of VNIR/SWIR and TIR data depends in 

part on the classification method used.  For the simulated data analyses, most of the 

methods investigated, except binary encoding applied to the combined data, achieved 

improvements in overall classification accuracy in comparison to these methods used 

with the AVIRIS data set alone.  For the real data analyses, SAM, minimum distance 

classification, and maximum likelihood classification showed improvement when used 

with the combined data set.  However, SFF applied to the combination of AVIRIS and 
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TIR MASTER bands showed a decrease in classification accuracy.  Thus, integrating 

these two wavelength regions only assisted discrimination of minerals and rocks which 

generally exhibit spectral features in the TIR region.   

 Part of the inconsistency between the different studies may arise from the effect 

of uncertainty.  The simulated data analyses showed that most methods were sensitive to 

mixing uncertainty.  The only exception is maximum likelihood classification, at least 

within the constraints of this study.  SAM and SFF applied to the data set consisting of 

minerals exhibiting distinctive absorption features was found to be relative tolerant of 

mixing uncertainty.  SAM, binary encoding, and SFF are less sensitive to illumination 

effects when they are applied to the simulated AVIRIS data sets.  Maximum likelihood 

classification was found to be relatively robust in the presence of uncertainty, because in 

this study sufficient training samples were available to estimate the probability 

distribution accurately. 

 Evaluation of SAM, SFF, binary encoding, minimum distance, and maximum 

likelihood classification applied to simulated data indicated that maximum likelihood 

classification obtained the best performance, then followed by SAM and SFF; binary 

encoding and minimum distance classification had relative poor classification accuracies.  

However the real data analyses showed slightly different results.  Applied to AVIRIS 

data, SFF obtained the highest classification accuracy, maximum likelihood classification 

took second place, followed by SAM; minimum distance classification had a relative low 

accuracy.  On the other hand, with the combination of AVIRIS and TIR MASTER, SAM 

achieved the best performance, followed by minimum distance classification, SFF and 

maximum like likelihood classification.  I interpret this to indicate that there were 
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insufficient training samples to estimate the covariance matrix of each class with 

sufficient reliability for maximum likelihood classification (Landgrebe, 2000).  SAM and 

SFF do not use second order statistics, and therefore theoretically require fewer training 

samples.  

SFF was generally superior to SAM in identification of minerals and rocks with 

distinctive absorption features, although the accuracy of SAM applied to the combined 

data sets was slightly better than that of SFF.  SAM applied to the combined data sets 

increased classification accuracy for some minerals and rocks which do not exhibit 

distinct absorption feature in thermal infrared region, while for SFF, only the accuracy of 

minerals and rocks with characteristic absorption features in the thermal infrared region 

was improved.  It was found that different methods had their own strength in dealing with 

specific wavelength regions and minerals and rocks.  It was notable in the real data 

analysis that SAM applied to the combined data worked best for discriminating low 

albedo rock units.  Most of the low albedo rocks are volcanics, which do not exhibit 

strong absorption features in the VNIR/SWIR regions, but have distinctive spectral 

features in the TIR.  SFF applied to the AVIRIS data alone gave the best results for the 

opalized and argillized rocks, as well as siltstone and felsite, all of which have diagnostic 

absorption features in the VNIR/SWIR regions.  SFF applied to the combined data was 

the best data and method combination for classifying silicified rock and sandstone, both 

of which have strong spectral features in the TIR. 

 The rule based system was developed to take advantages of spectral information 

across the spectrum from VNIR and SWIR, to TIR.  The knowledge base was established 

from the image spectral analyses and by examining the library spectra and field sample 
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measurements.  In addition to the characteristic absorption features of rocks, the albedo 

and the wavelength position of the emissivity minimum were used in defining the 

decision rules.  Two spectral feature matching algorithms such as SAM and SFF were 

used for spectral matching based on spectral features in the TIR region.  Therefore, the 

rule based system draws on the strength of the SAM and SFF algorithms.  It achieved the 

highest accuracy of the various classification methods tested.  The lithological map 

produced with the rule based system showed relatively strong agreement with 

distributions of these rocks on the geological map.  Moreover, the resulting lithological 

map contained new information about the lithology of the study area not present on the 

map, including the presence of diabase. 

 The rule based system demonstrated the value of integrating VNIR, SWIR, and 

TIR imagery for geological mapping.  It may serve as a model for future research in 

combining disparate wavelength data.  These decision rules might be generalized in order 

to be useful in a wider range of areas.  A generalized integrated classification method 

may particularly be relevant once Airborne Reflective Emissive Spectrometer (ARES) 

(Mueller et al., 2003) data are available., a new test site and new data can be used to test 

the rule based system. 
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