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Abstract 

Lumbar Posture and Tissue Loading During Short-Term Static Trunk Bending 

Faisal Alessa 

Low back pain (LBP) is among the most prevalent occupational health problems worldwide 

and is a leading cause of lost work days. Previous studies have suggested that static prolonged 

trunk bending could generate lumbar muscle fatigue and introduce creep to the lumbar 

posterior tissues. Such physical changes could lead to alterations to the lumbar active and 

passive tissue sharing mechanism and also elevate spinal loading, which is highly associated 

with the risk of LBP. In the past, most occupational ergonomic studies focused on the 

instantaneous spine biomechanical responses during task performance. A few studies assessed 

the changes of spine biomechanics due to spinal tissue creep (introduced by prolonged trunk 

full flexion) and lumbar muscle fatigue (introduced by prolonged or repetitive trunk bending). 

However, the dynamic changes of lumbar and trunk postures and spinal tissue loadings during 

the performance of relatively short-term trunk bending tasks are still unclear. Therefore, the 

purpose of the current study was to investigate the changes of lumbar biomechanics during 

short-term, sustained trunk bending.  

In the present study, fifteen participants performed short-term (40 seconds) static trunk 

bending tasks in two different trunk postures (30 or 60) with two different hand load levels 

(0 or 15lbs). Results of the current study revealed significant reduction of lumbar muscle 

activities during the course of task performance. This change was coupled with significant 

increase of lumbar flexion angle and lumbar passive moment. Such increase of lumbar passive 

tissue loading could help relief/delay lumbar muscle fatigue by compensating the reduced 

lumber active tissue loading. Findings of this study suggest that, during the performance of 

sustained trunk bending, there is an internal mechanism to shift loading from lumbar active 

tissues to passive tissues by increasing the lumbar flexion. This mechanism is beneficial in 

reducing the amount of lumbar muscle fatigue; however, lumbar passive tissue creep could be 

generated at a faster rate.
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Chapter 1: Introduction 

Low back pain (LBP) remains one of the most prevalent occupational health problems 

worldwide (Deyo et al., 2006). Approximately 80% of U.S. population members are estimated 

to experience at least one episode of LBP in their lifetimes (Hellman & Imboden, 2009). 

Although the majority of people recover, approximately 20% of patients with acute LBP 

experience chronic back problems (Weiner & Nordin, 2010).  

Globally, occupational-related LBP has been among the leading causes of lost work days. 

In the World Health Organization (WHO) 2010 Global Burden of Disease study, LBP was 

ranked 6th, (rising from 11th in 1990), among top diseases and injuries that cause the largest 

number of Disability Adjusted Life-Years (DALYs), which is a measure of the overall disease 

burden, expressed as the number of years lost caused by illness, disability or early death 

(Global Burden of Disease, 2010). In the United States, the economic burden associated with 

LBP is extremely large. Several studies have estimated that the direct (e.g. medical) and 

indirect (e.g. lost time, productivity) cost related to LBP is around 100 billion dollars annually 

(Luo et al., 2004; Katz, 2006).   

The etiology of LBP is multifactorial. Previous studies have suggested that in general LBP 

is associated with genetic factors (Junqueira et al., 2014), psychosocial factors (Gatchel et al., 

1995), individual factors (Richard & Edward, 1989), biomechanical factors (Bernard, 1997; 

Marras et al., 1995), and other risk factors (Hoogendoorn et al., 2000). Previous effort in 

studying biomechanical factors mainly focused on finding the association between the 

magnitude and duration of mechanical loadings on spinal tissues and LBP risks. Evidence 

provided by in-vitro studies showed that excessive mechanical loading could cause vertebra 

fracture (Brinckmann et al., 1988) and intervertebral disc rupture (Adams et al., 2000). As 
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indicated by the evidence stated above, having a clear understanding of the spinal tissue 

loadings during task performance is critical for the prevention of LBP.  

The structure of the human lumbar spine is complex. Mainly, the lumbar spine consists of 

two types of tissues: active tissues (e.g. the contractile component of muscles) and passive 

tissues (ligaments, fascia discs, bone, and non-contractile component of muscles). During 

forward trunk bending, a transition of load from lumbar active tissues to passive tissues occurs 

at deeper trunk flexion postures (Ning et al., 2011; Ning et al., 2012). This load shifting 

demonstrates the synergy between lumbar active and passive tissues and was termed as 

flexion relaxation phenomenon (FRP) by Floyd and Silver (1951, 1955). Previous studies 

showed that the load sharing synergy between lumbar active and passive tissues could be 

altered by several factors including ligament creep caused by prolonged trunk bending (Shin 

et al., 2009), the direction and speed of trunk bending (Ning et al., 2011; Sarti et al., 2001), 

and lumbar muscle fatigue (Descarreaux et al., 2008). 

In the past, ergonomic studies have suggested that maintaining flexed trunk posture for a 

prolonged period of time could elevate the risk of LBP due to increased spinal loading and 

muscle fatigue (Solomonow et al., 2003). In occupational settings static trunk bending tasks 

are commonly observed in many industries such as mining (Gallagher 2008), agriculture 

(Fathallah 2010) and construction (Boschman et al., 2011). Previous studies also found that 

instead of trunk posture, lumbar posture may be the major factor that influences lumbar active 

and passive tissue synergy which affects spinal stability and loading (McGill et al., 2000). 

Previous efforts in studying lumbar postures and tissue loadings have been mainly focusing on 

dynamic motions (e.g. during lifting and lowering) (Arjmand et al., 2011; Potvin et al 1991). 

For static postures, most previous industrial ergonomic studies have not considered the 
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evolvement of biomechanical responses during the task performance (Arjmand and Shirazi-

Adl, 2005; McGill et al., 2000; Kahrizi et al., 2007). However, during a prolonged posture 

holding task, the lumbar-pelvic posture as well as trunk muscle activation patterns could alter 

significantly without affecting the general trunk posture (Shin et al., 2009; McGill and Brown, 

1992). Such changes could also alter the synergy between lumbar active and passive tissues 

and change spinal tissue loadings; which is highly associated with the risk of LBP.  

Therefore, the purpose of the current study was to investigate the changes of lumbar 

posture and the associated lumbar active and passive loadings during static trunk bending 

tasks. It was hypothesized that when maintaining a short-term bended trunk posture, we will 

observe reduced lumbar extensor muscle activity and increased lumbar flexion angle. It was 

also hypothesized that lumbar passive moment will increase to compensate for the reduced 

lumbar active moment. 
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Chapter 2: Background 

2.1 Trunk flexion as a LBP risk factor 

Trunk flexion is commonly involved in occupational tasks performed in industries such as 

mining (Gallagher 2008), agriculture (Fathallah 2010) and construction (Boschman et al., 

2011) (Figure 1). Previous studies have identified both static (e.g. posture holding) and 

dynamic (e.g. lifting and lowering) trunk flexion as occupational risk factors for the 

development of LBP (Liira et al., 1996; Marras et al., 1995; Kraus et al., 1997), especially 

when performing prolonged static trunk flexion and repetitive trunk bending tasks (Marras, 

2000; Manchikanti, 2000; BLS, 2009; Muslim et al., 2013; Hoogendoorn et al., 2000). 

 

Figure 1: Workers in different occupational settings perform repeated short-term trunk bending tasks.  

 

As the trunk flexes forward from the upright standing posture, the external loading acting 

on the spinal (especially the lumbar spine) starts to increase (Figure 2). To counter balance 

this elevated external loading and control trunk posture, the lumbar extensor muscles (such as 
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erector spinae, multifidus) start to contract and generate active internal force. Due to the 

relatively small moment arms that lumbar muscles have, these muscle forces are relatively 

high which result in high loading (compression and shear forces) on the vertebrae and 

intervertebral discs (Toussaint et al., 1995).  

Previous studies have shown that excessive loading on the spinal structure could cause 

fracture on the vertebral body (Brinckmann et al., 1988) and herniation on the discs (Adams et 

al., 2000), which further lead to spinal disorder and pain (Marras et al., 2001a). Although 

occasionally performed trunk flexion with moderate hand load is unlikely to cause immediate 

damage to the spinal structure, studies have found that prolonged or repetitive trunk flexion 

could generate micro damage to the spinal structure and eventually lead to LBP over a period 

of time (e.g. in days, months or years) (Coenen et al., 2012; Brinckmann et al., 1988).  

 

Figure 2: Trunk and lumber flexion angle vs. external and internal moment (adopted from Ning et al., 

2012).   
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The degrees of trunk and lumbar bending are the determining factors of the load sharing 

mechanism between lumbar active tissues and passive tissues. With the increase of lumbar 

and trunk flexion, the mechanical loadings on lumbar posterior ligamentous and discs increase 

(Adams and Dolan, 1996; Arjmand et al., 2011; McGill, 1997; Potvin et al., 1991; Kahrizi et 

al., 2007). In vivo studies have found an exponential increment in the bending moment 

resisted by lumbar passive tissues (spinal ligaments and discs) when the trunk is flexed more 

than half of the range between upright standing and full flexion (Adams and Dolan, 1991; 

Dolan et al., 1994b; Ning et al., 2012; Ning and Nussbaum, 2015). A number of previous 

studies have shown that the increase of lumbar and trunk flexion significantly increases spinal 

loading (Ning et al., 2012; Ning and Nussbaum 2015; Arjmand and Shirazi-Adl, 2006; 

Kahrizi et al., 2007), which was highly associated with the occurrence of LBP (Granata and 

Marras, 1993; Granata et al., 1997; Marras and Granata, 1995; Marras and Granata, 1997). 

2.1.1 Dynamic trunk motion 

Trunk dynamic motion (e.g. lifting and lowering) was evidently linked to the occurrence of 

MSDs (Bernard, 1997; Marras et al., 1995). In the past, ergonomic studies have investigated 

trunk cyclic movement via both in vitro (Yoganandan et al., 1994) and in vivo studies (Olson 

et al., 2004) to understand its effects on the biomechanical response of the spine. Cyclic trunk 

motion was found to have several effects on the spinal biomechanical response including 

development of muscle fatigue (Dolan and Adams, 1998), alteration of the lumbar active and 

passive tissues’ recruitment (Olson et al., 2004; Shin and D’Souza, 2010), reduction of spinal 

stability (Solomonow et al., 2008), and increment of spinal bending moment (Dolan and 

Adams, 1998), all of which were recognized as risk factors of LBP.        
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2.1.2 Static trunk motion 

Maintaining flexed trunk posture for an extended period of time could elevate the risk of LBP 

(Solomonow et al., 2003). Several ergonomics studies have examined the mechanical changes 

caused by prolonged static trunk flexion (Toosizadeh et al., 2012; Shin and Mirka, 2007). 

During static full trunk flexion, the gravitational force acting on the upper body and head is 

counterbalanced mainly by moment generated by lumbar passive tissues (Solomonow et al., 

2003; McGill & Kippers, 1994). Maintaining this flexed posture for an extended period of 

time decreases lumbar tissue stiffness and generates creep deformation among lumbar passive 

tissues (Adams and Dolan, 1996; Burns et al., 1984; Li et al., 1995; Solomonow et al., 2003; 

Shin and Mirka, 2007). As a result of creep deformation, more laxity will be developed in the 

lumbar viscoelastic tissues, and the resistance to the sagittal flexion moment will be reduced 

(Adams and Dolan, 1996; Adams et al., 1987; Olson et al., 2004; Solomonow, 2004). The 

reduction of lumbar passive tissue stiffness can be compensated by increasing muscle 

contractions (McCook et al., 2009; Olson et al., 2009). However the increased muscle 

activation level could accelerate the accumulation of muscle fatigue (Shin et al., 2009; Adams 

and Dolan, 1995), which could further reduce spinal stability (Solomonow et al., 2000; 

Granata and Orishimo, 2001). These mechanical changes may lead to an increased risk of 

LBP especially when prolonged trunk flexion is performed without enough rest (Cholewicki 

and McGill, 1996; Solomonow, 2004; Solomonow et al., 2003; Toosizadeh et al., 2012) 

(Figure 3).  
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Figure 3: The relationships between prolonged static trunk flexion risk factors (Shin and Mirka, 2007) 

 

2.2 Risk assessment tools 

To combat the high prevalence of occupational musculoskeletal disorders (MSDs) (including 

LBP), three main approaches have been developed and applied: 1) self-assessment, where 

workers report their own discomfort and injuries and suggest the potential cause of these 

injuries; 2) professional observation, where an expert observer observes the work on site or 

from recorded video, then uses a systematic method to classify risk factors; and 3) Direct 

measurement, where instruments are used directly to evaluate muscle activities joint angles 

and force output etc. (Li and Buckle, 1999).  
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2.2.1 Self-assessment 

Self-assessment is normally survey-based methods in which workers report their pain, 

discomfort and injuries that occurred in work places. Sometimes estimations of the causes of 

these conditions are also included. The large amount of data from workers feedback can help 

to observe problems and issues that are may not be possible to detect via other assessment 

tools (Wang et al., 2015; Spielholz et al., 2001).  

Previously, several survey-based studies have demonstrated high prevalence of LBP 

among different industries such as construction and agriculture (Holmstrom et al., 1992; 

Hildebrandt, 1995; Sturmer et al., 1997; Andersson, 1999; Rosecrance et al., 2006).  A survey 

study of construction workers concluded that prolonged trunk flexion was one of the major 

risk factors for LBP among construction workers (Goldsheyder et al., 2002). In this study of 

construction workers, the two categories: "bending or twisting back in awkward way" and 

"working in the same position for long periods of time" were reported as the most difficult 

work-related activities that were associated with high prevalence of LBP. Similarly, among 

farmers, the two activities "work in same position for a long time" and "bend/twist back 

awkwardly" were reported as the second and third most problematic job factors in 

contributing to work-related pain and injury (Rosecrance et al., 2006). 

2.2.2 Professional observation 

Professional observation is a method typically conducted by safety and health professionals 

with the use of MSDs observational tools to evaluate the health risks among different 

occupational tasks. Some of the observational tools have been widely used to identify MSDs 

risk factors such as awkward postures, repetitive motions, and prolonged working hours in 

occupational settings. Rapid Upper Limb Assessment (RULA) (McAtamney and Corlett, 
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1993) and Rapid Entire Body Assessment (REBA) (Hignett and McAtamney, 2000) are 

examples of the assessments tools that were developed to assess the risk of MSDs.  

Trunk flexion has been one of the main postures assessed in these observational methods. 

Postural assessment tools such as REBA and RULA often assign a higher risk score to a task 

if the task involves trunk flexion greater than 20 from vertical position, which indicates 

increased risk of developing LBP (Hignett and McAtamney, 2000; McAtamney and Corlett, 

1993). The assigned risk score usually is much higher when the trunk flexion angle is greater 

than 60 which clearly demonstrates the role played by trunk flexion angle as a risk factor of 

LBP.   

2.2.3 Direct measurement 

Direct measurement is usually performed by safety and health professionals and researchers in 

either occupational settings or in a laboratory environment. Typically, measurements such as 

body dimensions, trunk kinematics, muscle activities, and hand/ground forces are collected 

using calipers, goniometers, motion sensors, electromyography (EMG) electrodes, force 

sensors, etc. Direct measurement generally yields highly accurate measurements making 

results more dependable in comparison to professional observation and self-assessment (Li 

and Buckle, 1999). However, in many cases, applying direct measurements can be difficult in 

occupational settings. The direct measurement approach often requires sophisticated 

instrumentation, which can be expensive and may not be portable. Therefore, direct 

measurement is more often used in laboratory studies.  

In addition to direct measurement, researchers also use a modeling approach to estimate 

tissue properties and loadings. Such an approach is necessary because of the complexity of the 
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human musculoskeletal system. For instance, to estimate muscle forces and the associated 

tissue loading, EMG-assisted biomechanical models were developed (Marras and Granata, 

1997; Nussbaum and Chaffin 1998). Moreover, to estimate passive tissue loading, several 

anatomical models have been developed (Arjmand and Shirazi-Adl, 2006; Bean et al. 1988) 

with the assistance of tissue property information obtained from in-vitro studies (Adams and 

Hutton, 1985; Brinckmann et al., 1988).   

2.3 Lumbar tissues load sharing mechanism 

2.3.1 Flexion-Relaxation Phenomenon  

Flexion-Relaxation Phenomenon (FRP) was first discovered in the early 1950’s (Floyd and 

Silver, 1951). During the past 30 years, FRP has been studied more intensively to investigate 

the load sharing mechanism between lumbar active and passive tissues (Kippers and Parker, 

1984; Ning et al., 2011; Ning et al., 2012). FRP is identified by an observed reduction and 

eventual silence of the EMG signals of the lumbar extensor muscles during full trunk flexion 

motion (Figure 4A). During trunk bending, a transition of load from lumbar active muscles 

(e.g. lumbar extensor muscles) to lumbar passive tissues (ligaments, fascia discs, bone, and 

non-contractile component of muscles) occurs at deeper trunk flexion postures (Ning et al., 

2011; Ning et al., 2012), which demonstrates the synergy between lumbar active muscles and 

passive tissues. Studies have suggested that this transition of load indicates that the tension 

generated by passive tissue stretching was adequate to counterbalance the external moment 

acting on the lumbar spine, therefore allowing lumbar extensor muscles to cease activation 

(Solomonow et al., 2003; Floyd and Silver, 1951; Allen, 1948). 

Previous studies discovered that the lumbar and trunk posture at which the lumbar 

extensor muscles’ FRP occurs could be changed by several factors such as the speed and the 
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direction of trunk motion (Ning et al., 2011; Sarti et al., 2001), the stance width and foot 

posture (Hu et al., 2014), the rate of lifting (Sarti et al., 2001), lumbar muscle fatigue 

(Descarreaux et al., 2008) and creep among lumbar ligaments (Shin et al., 2009, Kippers and 

Parker, 1984; Gupta, 2001). More recently, FRP was found to be absent or altered among LBP 

patients (Shirado et al., 1995); therefore, FRP observation has potential to be used for the 

identification and diagnosis of LBP patients (Neblett et al., 2003, 2010; Watson et al., 1997).  

 

Figure 4: Onset of EMG activities’ silence (A), and ARB example (B) (Hu et al., 2014). 
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2.3.2 Active region boundary (ARB) 

As explained earlier, FRP represents the local load transition for each lumbar muscle 

individually which could identified by myoelectric silence. In contrast, active region boundary 

(ARB) describes the systematic (global) load shifting from lumbar extensor muscles to lumbar 

passive tissues (Figure 4B). During trunk flexion, ARB is identified when the internal moment 

significantly declined compared to the external moment (Ning et al., 2012; Hu et al., 2014). In 

other words, ARB identifies the lumbar and trunk posture beyond which the internal active 

moment starts to decrease drastically and the passive lumbar tissues stand to be the primary 

load bearer. 

2.3.3 Lumbar posture and spinal tissue loading 

The effect of lumbar posture on lumbar spine loading while lifting has been studied before 

(van Dieen et al., 1999). Potvin et al. (1991) concluded in their study that the risk of LBP may 

be influenced more by the change in lumbar posture rather than the choice of stoop or squat 

techniques. Moreover, previous literature found that instead of trunk posture, lumbar posture 

may be the major factor that influences lumbar active and passive tissue synergy which affects 

spinal stability and loading (McGill et al., 2000). In other words, since lumbar passive tissue 

stress is directly associated with tissue tension or elongation, which is determined by the 

degree of rotation in lumbar spine (i.e. lumbar flexion), lumbar posture plays a main role in 

the alteration of the load bearing.     

Previous efforts in studying lumbar postures and tissue loadings have been mainly 

focusing on dynamic motions (e.g. during lifting and lowering). For static postures, most 

previous studies have considered them as uniform, unchanged tasks. However, during a 

prolonged posture holding task, the lumbar-pelvic posture as well as trunk muscle activation 
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patterns could alter significantly without affecting the general trunk posture. Such changes 

could have fundamental effects on the lumbar tissue load sharing synergy, spinal tissue 

loadings and the associated LBP risks (McGill et al., 2000; Kahrizi et al., 2007; Arjmand and 

Shirazi-Adl, 2005). 

Lumbar posture was found to have a direct impact on the load sharing mechanism 

between lumbar active muscle and lumbar passive tissue. Previous studies showed conflicting 

results in terms of which lumbar posture could reduce the risk of back injuries. Thus, more 

flexed lumbar spine (kyphotic) postures could elevate loadings on lumbar passive tissues 

which could generate tissue creep and therefore increase the risk of back injury (Figure 5) 

(McGill, 1997; Arjmand and Shirazi-Adl, 2005). Furthermore, kyphotic lumbar postures 

could change the orientations of the lumbar extensor muscles, thereby reducing their ability of 

supporting lumbar shear loadings, which is highly associated with the risk of LBP (McGill et 

al., 2000). However, more kyphotic lumbar postures continue to be recommended by some 

researchers as these postures reduce lumbar extensor muscle activities (Gracovetsky et al., 

1981, 1985).  

More lordotic lumbar postures result in higher lumbar extensor muscle activation levels 

which provide improved lumbar stability, as the lumbar passive tissues are less effective in 

protecting the spinal structure (Hart et al., 1986; McGill, 1997, 2000). Recent empirical 

studies have, however, suggested maintaining a neutral lumbar flexion posture (i.e. posture 

with moderate flexion) during static weight holding (Adams et al., 1994; Arjmand and 

Shirazi-Adl, 2005).  
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In conclusion, the existing literature contains conflicts regarding the influence of lumbar 

postures on the risk of lower back injuries. A better understanding of how lumbar posture 

changes during prolonged posture holding and its impact on spinal loading and the associated 

LBP risks are needed.  

 

Figure 5: Kyphotic and lordotic lumbar postures. 

 

2.4 Lumbar muscle fatigue 

Lumbar muscle fatigue has been clearly classified as a major risk factor for the development 

of LBP (Luoto et al. 1995; Kankaanpa et al. 1998; Roy et al. 1990). Specifically, lumbar 

muscles could lose their force generation capacity due to fatigue which consequently reduces 

their support to the spinal structure (Bigland-Ritchie et al., 1995; Golhoffer et al., 1987; 

Gardner-Morse et al., 1995). Lumbar muscle fatigue was also known to alter the load synergy 

between lumbar active muscles and passive tissues (Descarreaux et al., 2008; Olson et al., 

2004). When muscle stiffness decreased because of fatigue (Golhoffer et al., 1987), lumbar 

passive tissues compensate for this reduction to maintain the reduced spinal stability 

(Solomonow et al., 2000). Reduced spinal stability was recognized as a cause and result of 

LBP (Mcgill, 2002). Moreover, the change in muscle recruitment could potentially increase 
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spinal loading which was linked to increased risk of LBP (Hu and Ning 2015a; Marras et al., 

2005). Lumbar muscle fatigue was also found to have influence on lumbar–pelvic motion 

rhythm and coordination (Hu and Ning 2015a, 2015b), which may increase spinal loading and 

lead to elevated risk of LBP.  

2.5 Lumbar passive tissue elongation 

Prolonged, sustained trunk flexion causes lumber passive tissue elongation and may lead to 

tissue creep. Previous researchers have investigated tissue behavior through both in vitro 

(Adams and Dolan, 1996) and in vivo studies (McGill and Brown, 1992) using both human 

and animal samples (Solomonow et al., 2003). The elongation of the lumbar passive tissues is 

mainly affected by the time of exposure to deep trunk flexion postures. The development of 

creep among lumbar passive tissues can be quantified by assessing the trunk sagittal range of 

motion. The increase of the maximum trunk flexion angle during full trunk bending suggests 

the increase of laxity (the development of creep) among lumbar passive tissues (McGill and 

Brown, 1992; Solomonow et al., 2003; Shin and Mirka, 2007).  

Another way to identify lumbar passive tissue elongation is when an increase in lumbar 

flexion angle occurs at a constant bending moment during static trunk bended posture. 

Moreover, lumber passive tissue creep can be identified by the observed delay of the onset of 

EMG activities silence during trunk flexion motions. This increase of FRP onset suggests a 

reduced stiffness of lumbar passive tissues (Solomonow et al., 2003; Shin et al., 2009).  

Bazrgari et al. (2011) investigated the influence of duration and the external load during 

prolonged trunk flexion, revealing that tissue elongation increased with increasing trunk 

flexion duration and with added external load. McGill and Brown (1992) also found that 
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females developed more tissue elongation than males after been exposed to the same period of 

prolonged trunk flexion. Females also have shown more changes in the FRP response than 

males (Solomonow et al., 2003).    

Lumbar passive tissue elongation is linked to the increased laxity among lumbar tissues 

and the reduced ability to resist external moment in the sagittal plane (Adams and Dolan, 

1996; Adams et al., 1987). The lumbar extensor muscles therefore compensate for this 

reduction (Shin et al., 2009). As discussed above, lumbar passive tissue creep as a result of 

prolonged trunk flexion is associated with increased risk of LBP (Adams and Dolan, 1996; 

McGill and Brown, 1992). 

2.6 Rationale and hypotheses 

Existing literature suggests that trunk flexion is a LBP risk factor, especially when 

maintaining in the flexed posture for prolonged period of time (Marras, 2000; Manchikanti, 

2000; BLS, 2009; Muslim et al., 2013; Hoogendoorn et al., 2000). Previous studies have 

found that lumbar posture may be the major factor that influences lumbar active and passive 

tissue synergy, which affects spinal stability and loading (McGill et al., 2000). Also, previous 

efforts in studying lumbar postures and tissue loadings have been mainly focusing on dynamic 

motions (e.g. during lifting and lowering). As stated previously, for static postures, most 

previous studies have considered them as uniform, unchanged tasks. However, during a 

prolonged posture-holding task, the lumbar-pelvic posture as well as trunk muscle activation 

patterns could alter significantly without affecting the general trunk posture (Shin et al., 2009; 

McGill and Brown, 1992), which could have fundamental effects on the lumbar tissue load 

sharing synergy, spinal tissue loadings and the associated LBP risks.  
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Most previous findings in the literature regarding the effects of static trunk bending were 

obtained after exposing participants to prolonged (over 10 minutes) static full trunk flexion. 

The main purpose of these studies was either to investigate the development of creep after 

performing prolonged deep trunk flexion (McGill and Brown, 1992; Solomonow et al., 2003; 

Shin and Mirka, 2007) or to evaluate lumbar biomechanics after the development of lumbar 

passive creep (Toosizadeh et al., 2012; Solomonow et al., 2003). Other studies considered 

lumber posture during static trunk flexion tasks to be uniform; thus, these studies assessed the 

effect of lumber posture on lumber biomechanics instantaneously (Arjmand and Shirazi-Adl, 

2005; McGill et al., 2000; Kahrizi et al., 2007). However, the underlying mechanism of 

lumbar biomechanics during static prolonged trunk flexion remains unclear. The importance 

of understanding lumbar biomechanical behavior during prolonged trunk flexion comes from 

the fact that lumbar angle is found to have a major role in the synergy between lumbar active 

and passive tissues (Arjmand and Shirazi-Adl, 2005; McGill et al., 2000; Kahrizi et al., 2007).  

Therefore, the purpose of the current study was to investigate the changes of lumbar 

posture and the associated lumbar active and passive loadings during short-term sustained 

bended trunk posture. It was hypothesized that when maintaining short-term bended trunk 

posture, we will observe increased lumbar flexion angle, reduced lumbar extensor muscle 

activities, and increased lumbar passive moment to compensate for the reduced lumbar active 

moment.  
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Chapter 3: Method 

3.1 Participants 

Fifteen male participants from the student population of West Virginia University participated 

in the current study (see Appendix A for the recruitment letter). Their average body weight, 

height and age were 168.8 (SD 25.7) lb., 68.4 (SD 3.5) inches, and 24.9 (SD 4) years, 

respectively. All participants reported no current or history of low back injuries or pain. Prior 

to the data collection, participants signed informed consent forms. The experimental design 

and procedures of this study were approved by the West Virginia University Institutional 

Review Board (see Appendix B).     

3.2 Equipment 

Muscle activities (EMG) were recorded via eight bi-polar surface EMG electrodes (Bagnoli, 

Delsys, Boston, MA, USA), placed over the skin of both sides of L3 and L4 paraspinals (4cm 

and 2cm away from the mid-line of spine respectively), rectus abdominus (1 cm above and 2 

cm away from the umbilicus) and external oblique (15 cm away from the umbilicus) (Figure 

6, Figure 9). A magnetic field-based motion tracking system was used to collect lumbar and 

trunk kinematics (Figure 7). Three motion sensors were placed over the skin of C7, T12, and 

S1 vertebrae using double-sided tape (Ning et al., 2011) (Figure 8). Finally, a custom-made 

reference frame was used for participants to reach and maintain the designated TRUNK 

ANGLE (Figure 9). 

3.2.1 Sampled muscles 

Biomechanical studies of the lower back region generally involve sampling activities of the 

major muscle of the lumbar torso. This includes left and right sides of erector spinae (ES), 

multifidus (MU), rectus abdominus (RA), and external oblique (EO) (Marras and Mirka, 
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1992; Arjmand and Shirazi-Adl, 2005; Ning et al., 2011). Extension moments are mainly 

generated by ES and MU while RA and EO are responsible for generating flexion moments. 

Studies that involve investigating lumbar posture changes also require sampling extension 

muscles and flexion muscles, due to co-contraction phenomenon (Granata et al., 2005). Co-

contraction phenomenon is the simultaneous contraction of agonist and antagonist muscles 

around a joint to generate movement or hold a static posture. Moreover, EMG-assisted models 

use EMG signals from both lumbar paraspinal muscles and abdominal muscles to estimate 

internal active and passive moments (Marras and Granata, 1997). 

 

 

Figure 6: Surface electromyography (EMG) data collection system (Model: Bagnoli, Delsys Inc, 

Boston, MA, USA) (left) and bi-polar surface electrodes (right). 

 

Figure 7: Magnetic field-based motion tracking system (Model: Motion Star, Ascension Technology 

Corporation, Burlington, VT, USA). 
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Figure 8: motion tracking sensors 

F  

Figure 9: Demonstration of experiment setup and the trunk angle reference apparatus. 

 

3.3 Experimental design 

3.3.1 Independent variables 

The independent variables of the current study were trunk flexion angle (TRUNK ANGLE), 

external load (WEIGHT), and duration of posture holding (DURATION).  

TRUNK ANGLE was defined as the angle between the vertical line and the line between 

the C7 and the S1 motion sensors, natural upright posture generates a ~0 value (Ning et al., 

2011) (Figure 10). Two levels were considered: 30 and 60. These two levels were examined 
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as they represent the mid-range of trunk flexion prior to the drastic load shifting from active to 

passive lumbar tissue which is reported to occur near 65 of trunk flexion (Arjmand and 

Shirazi-Adl, 2005). This mid-range of trunk flexion is also more realistic in several 

occupational settings.  

The independent variable WEIGHT has two levels: 0 and 15lb. In each trial, participants 

were required to perform a specific trunk posture with or without external load for 40 seconds; 

the two levels of DURATION were defined as the beginning five seconds of the task 

performance and the ending five seconds of the task performance. The duration of 40 seconds 

and the external load of 15lb were set according to the pilot study as tasks could be performed 

without generating muscle fatigue. The load was made of disc weights and secured to a 

polyvinyl chloride (PVC), which also were used as handles. The combination of two levels of 

TRUNK ANGLE and two levels of WEIGHT generated four different conditions. In order to 

avoid the influence of lumbar muscle fatigue, participants performed two repetitions of each 

condition, generating a total of 8 trials.  

3.3.2 Dependent variables 

Dependent variables of this study include: lumbar flexion angle (LUMBAR ANGLE), lumbar 

passive moment (LPM), normalized EMG signals from Erector Spinae (ES), Multifidus 

(MU), Rectus Abdominus (RA), and External Oblique (EO).  

LUMBAR ANGLE was defined as the difference between the pitch angles of the T12 and 

S1 motion sensors in the sagittal plane (Ning et al., 2011) (Figure 10). Each dependent 

variable has two sets of values; averages of the beginning five seconds and averages of the 

ending five seconds. Procedures of estimating LPM is explained in the data processing 

section.  
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Figure 10: Definition of trunk and lumbar flexion angles (Ning et al., 2011). 

 

3.4 Experimental procedure 

Upon the arrival of participants, the procedures of the experiment were explained to 

participants in detail and informed consents were obtained (see Appendix C). Next, basic 

anthropometric data including age, body weight, height, trunk depth, width and length were 

measured. Participants were then given a ~10 minutes training session in order to become 

familiar with the tasks to be performed and to warm-up their back muscles.  

At the beginning of data collection, surface EMG electrodes were first fitted to the above 

explained sites, and participants were required to perform two repetitions of isometric 

maximum trunk flexion/extension exertions at a ~20o trunk flexion posture against a static 

resistance provided by a dynamometer (Humac Norm, CSMi, MA, USA). The maximum 

EMG values recorded while performing these maximum voluntary contraction (MVC) 

exertions were used later for EMG normalization. When completing MVC exertions, motion 

sensors were attached to the sites explained above and participants were asked to perform 
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three full flexion trials, which would be used later to estimate lumbar passive moment. 

Participants were asked to perform a smooth forward trunk flexion (from upright posture to 

full flexion) during 7 seconds while maintaining a straight knee and down arms (Ning and 

Nussbaum, 2015).  After that, participants were directed to stand in front of the reference 

frame to perform the designated tasks. In each trial, participants were required to maintain the 

designated TRUNK ANGLE (30o or 60o) for 40 seconds with or without holding a 15lb load 

in hand.  

Since the main purpose of this study was to investigate how lumbar posture behaves 

during the sustained short-term bended trunk posture, participants were not given any 

instructions in what lumbar posture they should perform. The trunk angle, lumbar angle and 

muscular EMG were measured during the entire 40 seconds of task performance. The 

presentation of the eight trials was randomized and five minutes of rest was provided between 

trials in order to avoid the development of muscle fatigue.  

To further test the development of lumbar muscle fatigue, two fatigue measurement trials 

were performed before and immediately after data collection in order to understand if 

significant lumbar muscle fatigue was generated. The fatigue measurement task required 

participants to hold a 20lb box in a ~45o trunk flexion posture for 6 seconds (Hu and Ning 

2015). Participants that demonstrated clear lumbar muscle fatigue during the data collection 

were excluded from the dataset. 

3.5 Data processing 

EMG signals were first transferred into frequency domain and then filtered with a low-pass 

frequency of 500 Hz, a high-pass frequency of 10 Hz, and a notch filter of 60 Hz and its 

aliases up to 500 Hz. The EMG data were then transferred back to time domain and fully 
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rectified and smoothed. Muscle EMG signals were normalized to their maximum EMG values 

obtained from the MVC trials and presented as a percentage of their maximum. Muscle 

fatigue development was characterized by the reduction of EMG median frequency.  

The method of calculating the median frequencies of the EMG data from the measurement 

tasks is described in the previous literature (Deluca, 1997). The three dimensional coordinates 

of the three motion sensors were used to calculate trunk and lumbar flexion angles. TRUNK 

ANGLE was calculated as the angle formed by the vertical line and the line between the C7 

and the S1 motion sensors, natural upright posture generates a ~0 value (Ning et al., 2011) 

(Figure 10). LUMBAR ANGLE was calculated as the difference between the pitch angles of 

the T12 and S1 motion sensors in the sagittal plane (Ning et al., 2011) (Figure 10). In order to 

investigate the effect of the independent variable DURATION on the dependent variables, 

averages of the beginning five seconds and the ending five seconds of the static tasks 

performance were calculated for all dependent variables.  

3.5.1 Lumbar passive moment (LPM) estimation 

Lumbar posture is the major determining factor for lumbar passive tissue loading. As lumbar 

angle increases, the lumbar posterior passive tissues elongate, resulting in higher stress among 

these tissues. This relationship between the increase of lumbar passive moment and lumbar 

flexion angle follows a two-stage non-linear pattern (Ning et al., 2012; Ning and Nussbaum, 

2015). A recent study modeled the magnitude of lumbar passive moment as a function of 

lumbar flexion angle during trunk flexion motions (Ning and Nussbaum, 2015). The authors 

also concluded that the speed of the bending motion does not have a significant influence on 

the total lumbar passive moment; thus, in the current study, the LPM during static trunk 

bending posture was estimated using Eq(1).  
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𝐿𝑃𝑀(𝑎) =  σ𝑖  ×  (
𝑒𝛽𝑖 ×(𝑎−𝑐) − 1

𝑒𝛽𝑖 − 1
)                                                                                    (1) 

LPM: Lumbar Passive Moment. 

𝑎: Lumbar angle.  

c: Initial lumbar angle in the upright standing posture (participant-specific constant). 

σi and βi: Model parameters for subset i, used to control the shape of the profile. 

Subset 1: from the upright standing posture to the ARB. 

Subset 2: from the ARB to the full trunk flexion posture. 

 Parameters of the model (i.e. σi and βi) were estimated for each subject from the full trunk 

flexion trials using a custom computer program. The least squares fitting technique were used 

and coefficients of determination (R2) were calculated to ensure the best-fit for each subset 

(Figure 11) (Ning and Nussbaum, 2015) (Appendix A). 

For each full trunk flexion trial, lumbar passive moment was estimated as the different 

between external moment and internal active moment. External moment at the L5/S1 joint 

during the full trunk flexion was calculated as a function of upper body mass, center of mass, 

trunk flexion angle, and instantaneous acceleration (Mirka et al., 1998; Ning and Nussbaum, 

2015). Internal active moment was estimated using a previously published EMG-assisted 

model (Marras and Granata, 1997; Ning et al., 2012). This biomechanical model uses 

normalized EMG signals from ES, MU, RA, and EO to estimate the instantaneous muscle 

forces and moment about L5/S1 joint with the consideration of the force–length and force–

velocity relationships (Davis et al., 1998; Marras and Granata, 1997). The moment arms of 

trunk muscles (to the center of the L5/S1 joint) and cross-sectional areas were estimated using 
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regression equations established from the literature (Jorgensen et al., 2001; Marras et al., 

2001).  

After the profile of lumbar passive moment during trunk flexion trials was obtained, the 

dataset was then divided into two subsets at ARB and modeled separately. Parameters such as, 

σ and β were estimated for each subset in each trial. After that, mean values of σi and βi were 

obtained for each subject. Finally, LPM at the beginning and ending of the short-term trunk 

bending tasks were estimated using Eq(1).  

 
Figure 11: A sample of the modeled relationship between lumbar passive moment and lumbar flexion 

angle. The dashed line represent the estimated lumbar passive moment from the full trunk flexion trial. 

The solid line represent the modeled LPM using Eq(1). 
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3.6 Statistical analysis 

Statistical analysis of the current study was conducted in three steps. First, the control of 

TRUNK ANGLE conditions and lumbar muscle fatigue was evaluated. Second, the student’s 

t-test (paired t-test) was performed to assess the effect of DURATION on all dependent 

variables (see Appendix D for the normality test). Thus dependent variables obtained in the 

beginning of each trial were compared to the ending of the same trial. Finally, two-way 

ANOVA was performed to analyze the influence of the independent variables TRUNK 

ANGLE and WEIGHT on the changes of dependent variables from the beginning to the end 

of the static trunk bending task. A criteria p-value of 0.05 was used for all statistical analyses. 

All the statistical analysis was performed using Minitab 17 statistical analysis software 

(Minitab Inc., PA, USA).  

3.7 Power analysis 

Power analysis calculation were done on the difference observed on the dependent 

variable Lumbar angle due to its importance and role in the current study. Since the 

population mean and standard deviation for the change in lumbar angle during static posture 

are not available, sample mean and sample standard deviation were used to calculate the 

power of the statistical analysis. The mean change in lumber angle which was observed in 15 

participants (i.e. sample size) was 1.6o and the standard deviation was 1.07. Thus, power of 

the statistical analysis was 0.99. The following graph (Figure 12) shows the ROC curve and 

the output of power analysis in Minitab.  
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Figure 12: ROC curve and the output of power analysis in Minitab 
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Chapter 4: Results 

4.1 The control of trunk angle and lumbar muscle fatigue 

Results of our statistical analyses showed that for both 30o and 60o TRUNK ANGLE 

conditions the actual trunk angle remained unchanged from the beginning to ending of the 40 

seconds of posture holding (Figure 13). Therefore, the magnitude of external moment was 

constant during the static posture holding trials. In addition, no significant reduction of lumbar 

muscle EMG median frequency was observed on any lumbar muscles (Figure 14), meaning 

that no significant muscle fatigue was generated during the data collection. 

 

Figure 13: Beginning and ending of TRUNK ANGLE posture at 30o and 60o levels. 
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Figure 14: Median frequency from the fatigue measurement trials for the back muscles (ES and MU) 

before and after the task performance. Star indicates significant change. Bars indicate the 

corresponding standard error. 

 

4.2 The effects of DURATION 

Statistical analysis of the independent variable DURATION is the most important in the 

current study because such analysis can reveal the underlying mechanism of LUMBAR 

ANGLE and lumbar active and passive muscle synergy during the static posture holding.  

To investigate how maintaining short-term static trunk flexion could affect the dependent 

variables, the effect of the independent variable DURATION on all dependent variables was 

investigated using paired t-test for each level of TRUNK ANGLE and WEIGHT. Figure 15 

displays how lumbar angle changed during the short-term static postures from beginning to 

ending of the static posture holding. LUMBAR ANGLE was significantly increased at the 

ending of the static postures in all conditions except the condition of 30o trunk angle with 

external weight. Lumbar angle slightly increased in the 30o trunk angle with external weight 
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condition; however, this increment was not statistically significant.  In other words, when 

participants maintained trunk flexion posture for 40s LUMBAR ANGLE increased 

significantly at the end of the posture holding.  

 

Figure 15:  Beginning and ending of LUMBAR ANGLE during the deferent conditions of TRUNK 

ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant change. Bars 

indicate the corresponding standard error. 

 

Together with the increase of LUMBAR ANGLE, significant reduction of muscle 

activities (normalized EMG) were observed from ES and MU in all TRUNK ANGLE and 

WEIGHT conditions but the condition of 30o trunk angle without external weight for ES  

(Figures 16, 17). RA and EO at the 30o condition reduced slightly but significantly at both 

conditions of WEIGHT; while at the 60o condition the effect of DURATION was not 

significant on RA and EO (Figures 18, 19). Finally, LPM increased significantly after 

maintaining short-time static bended trunk postures in all conditions except when maintaining 
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30o trunk angle with external weight; yet LPM increased slightly, but not with a statistically 

significant result in this condition (Figure 20). All these results about the effect of 

DURATION support our initial hypothesis. 

  
Figure 16: Beginning and ending of normalized EMG signals for ES during the deferent conditions of 

TRUNK ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant change. 

Bars indicate the corresponding standard error. 

 

6030

150150

End.Beg.End.Beg.End.Beg.End.Beg.

38

34

30

26

22

18

N
o
r
m

a
li

ze
d

 E
M

G
 (

M
V

C
%

)

 

 

 



 

34 

 

  
Figure 17: Beginning and ending of normalized EMG signals for MU during the deferent conditions 

of TRUNK ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant 

change. Bars indicate the corresponding standard error. 

  

Figure 18: Beginning and ending of normalized EMG signals for RA during the deferent conditions of 

TRUNK ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant change. 

Bars indicate the corresponding standard error. 
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Figure 19: Beginning and ending of normalized EMG signals for EO during the deferent conditions of 

TRUNK ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant change. 

Bars indicate the corresponding standard error. 

 
Figure 20: Beginning and ending of lumbar Passive moment (LPM) at diffract conditions of TRUNK 

ANGLE (i.e. 30o and 60o) and WEIGHT (i.e. 0 and 15lb). Star indicates significant change. Bars 

indicate the corresponding standard error. 
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4.3 The effects of TRUNK ANGLE and WEIGHT  

Further statistical analysis was performed to look at whether changing between different 

conditions of TRUNK ANGLE and WEIGHT could have a significant effect on the amount of 

change at the ending of the short-term static postures. This analysis was done with respect to 

the difference between beginning and ending of all dependent variables. In other words, data 

obtained from the ending of the sustained short-term trunk bending were substituted from that 

obtained from the beginning of the short-term static bending. Univariate ANOVA analysis 

showed that the independent variable TRUNK ANGLE significantly affected the amount of 

change on all dependent variables except ES muscle. The effect of the independent variable 

WEIGHT and the interaction effect between TRUNK ANGLE and WEIGHT were not 

significant (Table1).  

Table 1: Results of univariate ANOVA analysis for the effect of TRUNK ANGLE and WEIGHT on 

the amount of change. Bolded values indicate significant affect by independent variable. 

Independent  

Variables 

Dependent variables 

LUMBAR 

ANGLE 
ES MU RA EO LPM 

TRUNK ANGLE P < 0.001
 

P = 0.104
 

P = 0.012
 

P = 0.009
 

P = 0.043
 

P = 0.001 

WEIGHT P = 0.388
 

P = 0.214
 

P = 0.071
 

P = 0.689
 

P = 0.857
 

P = 0.896 

TRUNK ANGLE 

*WEIGHT 
P = 0.051

 
P = 0.961

 
P = 0.259

 
P = 0.648

 
P = 0.978

 
P = 0.332 

 

Table 2 illustrates the significant effect of TRUNK ANGLE by displaying the mean 

values of change at the ending of the static postures. Conditions of TRUNK ANGLE were 

tested using paired t-test. Changing TRUNK ANGLE from 30o to 60o significantly caused 

more change at LUMBAR ANGLE, MU and LPM. While a similar trend was also observed 
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for the ES muscles, such an effect was not statistically significant. The change at RA and EO 

muscles was also significant, but in an opposite pattern. Increasing TRUNK ANGLE caused 

less change at the ending of the static postures.  

Table 2: Mean values for the amount of change at the end of performing the static postures for 

dependent variables at deferent conditions of TRUNK ANGLE. 

TRUNK ANGLE 

Dependent variables 

LUMBAR 

ANGLE (o) 
ES 

(%MVC) 
MU 

(%MVC) 
RA 

(%MVC) 
EO 

(%MVC) 
LPM 
(Nm) 

30o 0.6 -0.7  -1.5  -0.2  -0.7  1.4  

60o 2.7 -1.7  -3.2  0  -0.4  6.7  
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Chapter 5: Discussion and conclusions 

The goal of the current study was to investigate the changes of lumbar biomechanics during 

short-term sustained trunk bending. During the experiment, participants stayed in 30o or 60o of 

flexed trunk posture with or without an external load for 40 seconds. Since observing changes 

on the lumbar posture was one of the main purposes of this study, no instructions were given 

to participants regarding what specific lumbar posture to obtain. Results showed that trunk 

angle and lumbar muscle fatigue was successfully controlled; thus, external moment was 

constant during the static posture holding, and the effects of lumbar muscle fatigue on trunk 

biomechanics were eliminated.  

Change in both lumbar posture and muscle activities were observed (this change was 

significant in most conditions) during the course of the 40 seconds static trunk bending. 

Specifically, these results indicate that lumbar muscle activity significantly decreased, while 

short-term bended trunk posture was maintained. This reduction of lumbar muscle activity 

was coupled with significant increment of lumbar passive moment, which indicates the load 

shifting from lumbar active to passive tissue. This was also shown by the observed significant 

increment of lumbar flexion angle.   

When maintaining static trunk flexion postures, the external moment about the L5/S1 joint 

(mainly determined by upper body weight and external load) is counterbalanced by forces 

generated by both lumbar active and passive tissues. Given that trunk posture is fixed (i.e. 

constant external moment) and muscle fatigue is controlled, the synergy between active and 

passive tissue to resist the external moment around L5/S1 joint is mainly governed by lumbar 

posture (Arjmand and Shirazi-Adl, 2005). As lumbar angle increases (i.e. flexed posture), 

lumbar passive tissues elongate and generate higher passive force. Consequently, less lumbar 
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active muscle forces are needed to resist external moment. This phenomenon was confirmed 

by the observed reduced lumbar active muscle activity.  Findings of the current study illustrate 

the main role of lumbar posture on the synergy between lumbar active and passive tissue and 

spinal loadings; findings which concur with the existing literature (Potvin et al. 1991; McGill, 

1997; Arjmand and Shirazi-Adl, 2005).  

A possible explanation of the observed reduction in lumbar extensor muscle activation 

during the static posture holding is that this is possibly an internal motor mechanism to help 

reduce the accumulation of lumbar muscle fatigue by allocating loadings to the passive 

tissues. Our results show that participants tended to adopt more flexed postures toward the 

ending of the static posture holding, which transferred more loadings to lumbar passive 

tissues. Such a mechanism is beneficial in protecting lumbar muscles, which in turn will allow 

longer duration of task performance. However, the increased lumbar passive tissue loading 

could lead to the development of lumbar passive tissue creep (Solomonow et al., 2003; Shin 

and Mirka, 2007). 

In the past, creep induced by prolonged static exposure was only reported and investigated 

after maintaining deep full trunk flexion for a long period of time. McGill and Brown (1992), 

for example, reported that after 20 minutes of static trunk full flexion, lumbar flexion angle 

increased (i.e. creep) by an average of 5.5o. Another study observed an average increase in the 

lumbar flexion angle by ~ 4o after performing 10 minutes of full trunk flexion (Shin and 

Mirka, 2007). Creep among lumbar passive tissues is typically caused by maintaining fully 

flexed lumbar posture for an extended period of time. The magnitude of lumbar passive 

moment during such trunk full flexion was reported to be around 120 Nm (Ning et al., 2012; 

Ning and Nussbaum, 2015). In the current study, lumbar passive moment at trunk mid-range 
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flexion (e.g. 60o) reached around 42 Nm at the ending of the static posture holding (Figure 

20). Hence, findings of the present study suggest that mid-range static trunk flexion postures 

(e.g. 30o and 60o) are generally safe but could potentially generate passive tissue creep only 

when performed repeatedly over a long period of time.  

As discussed in the background section, creep deformation increases the amount of laxity 

among lumbar passive tissues, causing these tissues to be stretched more in order to maintain 

the same force output. This reduction of lumbar tissue stiffness may further compromise the 

stability of lumbar structure and its ability to overcome external loading (Adams et al., 1987; 

Olson et al., 2004; Solomonow, 2004). With the development of lumbar passive tissue creep, 

larger active muscle forces are needed to compensate the reduced internal moment (McCook 

et al., 2009; Olson et al., 2009), which could accelerate the accumulation of muscle fatigue 

(Shin et al., 2009; Adams and Dolan, 1995). As a result, the overall spinal stability could be 

further reduced, which elevates the risk of LBP (Solomonow et al., 2000; Granata and 

Orishimo, 2001; Cholewicki and McGill, 1996; Solomonow, 2004). 

Results shown in table 2 indicate that when more flexed trunk posture was maintained (i.e. 

60o), the amount of change in the lumbar angle, extensor muscles (i.e. ES and MU), and LPM 

induced by the sustained short-term trunk bended postures increased. The mean increase in 

lumbar angle at the ending of the posture holding was 0.6o and 2.7o at 30o and 60o trunk angle 

flexion, respectively. When lumbar spine is flexed more (i.e. increased lumbar angle), lumbar 

passive tissue is stretched more which means increased lumbar passive force output. This 

relationship between lumbar flexion angle and passive force was illustrated in the present 

work by the increased amount of LPM at the ending of the 60o trunk posture, as compared to 

30o posture. This relationship was explained in the literature to follow a well-defined non-
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linear pattern of lumbar passive moment increase (Ning et al., 2012; Ning and Nussbaum, 

2015).  

Results of the present work showed that holding an external load during the sustained 

short-term trunk bended postures did not affect the change in lumbar posture and LPM 

significantly (Table 1). A potential explanation could be the relatively light external load used 

in this study (i.e. 15lb) and the short time of exposure. Heavier hand load and longer posture 

holding duration could possibly introduce more changes to the lumbar biomechanics.  

Findings of the present study demonstrate that in real occupational settings, when workers 

are required to sustain short-term bended trunk posture (e.g. harvesting, masonry, assembly 

line, etc.), the internal loading will be gradually shifted from lumbar active tissues to passive 

tissues over time. One previous study reported decreased L5/S1 joint compression and shear 

forces when the lumbar spine is flexed (Arjmand and Shirazi-Adl, 2005).  In such a scenario, 

lumbar passive tissues serve as the main load bearer in counterbalancing the external moment. 

However, as discussed earlier, increased passive load could eventually accumulate creep. 

Thus, it could be prudent to advise those whose jobs involve repetitive short-term bended 

trunk postures to take breaks in between to avoid accumulation of lumbar passive creep. Also, 

it is suggested to train workers in such occupations to perform static trunk bindings with 

slightly flexed lumbar posture in order to avoid/delay muscle fatigue development. This 

suggestion is based on the findings of previous studies that during static bending postures 

muscle fatigue development is much faster than the development of creep deformation 

(McGill and Brown, 1992; Shin et al., 2009).      
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The current study has some limitations that need to be noted. To avoid the possibility of 

unwanted lumbar muscle fatigue, relatively short duration of static trunk posture holding tasks 

were performed. Future studies should investigate the changes of lumbar postures and trunk 

muscle activities when holding static posture for longer periods of time. In addition, the 

magnitude of the external load used in the current study was relatively low. Thus, no 

significant effect of the external load was observed. Finally, only male participants were 

recruited in the present work. Previous studies reported that females may have slightly 

different lumbar tissue structure and soft tissue viscoelastic properties (McGill and Brown, 

1992; Norton et al., 2004).  

In conclusion, the purpose of the current study was to investigate lumbar biomechanics 

during sustained short-term trunk bending tasks. During the performance of these tasks, 

although the general trunk positions remain unchanged, the underlying mechanism of 

controlling the equilibrium between external and internal moment was found to undergo 

several changes. The main finding of the present work is the observed load shifting from 

lumbar active to lumbar passive tissues during the static posture holding. Specifically, at the 

ending of the static posture holding, lumbar active muscle activities decreased, and this 

reduction was compensated by increased passive tissue force output induced by the increased 

lumbar flexion angle. This effect was also shown by the increased lumbar passive moment at 

the ending of the static posture holding. While such a mechanism could prevent or reduce 

lumbar muscle fatigue, it may simultaneously accelerate the development of creep among 

lumber passive tissues, which may lead to long term spinal disorders. 
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5.1 Future direction  

The current study mainly focused on the changes of lumbar biomechanics during static 

short-term bended trunk posture. It was suggested that when workers in occupational setting 

perform such postures, more flexed lumbar posture is recommended in order to delay lumbar 

muscle fatigue. However, in some situations workers perform longer duration (i.e. prolonged) 

or more repetitions of static trunk bending which could result in more changes in lumbar 

biomechanics. Future studies should investigate changes in lumbar biomechanics during 

prolonged and repeated static postures. Results obtained from the current study showed that 

during the sort-term static trunk bending only small portion of internal lumbar active loading 

was transferred into passive loading, meaning that muscle fatigue development would still 

occur at some point. Moreover, studying prolonged or repeated static trunk bending tasks 

could be beneficial in investigating the possibility of lumbar creep deformation occurrence as 

a result of the load shifting from lumbar active to passive component. Also, if prolonged static 

postures could result in more load shifting as compared to short-term static postures, it is 

important to investigate whether the increased lumbar passive loading could elevate the risk of 

injury or not. 
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Appendix D: Statistical analysis 

i. Normality test: 

The normality assumption of the difference between beginning and ending of dependent 

variables was checked using Kolmogorov-Smirnov test as follow: 

Hypothesis: 

H0: The data follow a normal distribution. 

Ha: The data do not follow a normal distribution. 

  α = 0.05 

 

Kolmogorov-Smirnov test was performed using Minitab and the following graphs show 

the probability plots for data of important dependent variables. As can be seen in the 

following figures, p-values are greater than 0.05 which means that the data follow normal 

distribution. 

 

 
Figure (a): Normality test for the difference between beginning and ending lumbar angle. 
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Figure (b): Normality test for the difference between beginning and ending ES activities. 

 

 
Figure (b): Normality test for the difference between beginning and ending MU activities. 
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ii. LPM model parameters: 

 

Mean (SD) values of the parameters used in the LPM model: 

Subset σ β R2 

1 5.43 (3.07) -0.26 (0.15) 0.67 (0.17) 

2 0.25 (0.21) 0.117 (0.032) 0.96 (0.02) 

 

Appendix E: Processed data  

The following data represent the change observed at the ending of the posture holding 

(Ending – Beginning) 

subject 
Trunk 
angle 

Weight 
Lumber 

angle 
ES 

(MVC%) 
MU 

(MVC%) 
RA 

(MVC%) 
EO 

(MVC%) 
LPM 

(Nm.) 

1 

30 

0 
0.45 -0.76 -1.45 -0.07 -0.09 2.73 

0.83 -0.02 -0.41 -0.10 -0.18 4.57 

15 
-1.02 -0.42 -2.49 -0.18 -0.25 -7.04 

-1.00 -1.08 -0.31 -0.10 -0.19 -6.44 

60 

0 
0.49 0.60 -1.82 -0.03 -0.11 0.02 

0.19 1.08 -0.37 0.00 -0.09 0.01 

15 
2.14 -0.01 -2.28 -0.09 0.04 0.08 

2.27 1.46 -3.04 -0.02 0.04 0.14 

2 

30 

0 
1.65 0.28 -0.67 0.01 -0.24 0.00 

1.97 -1.05 -2.43 -0.37 -0.79 0.01 

15 
2.36 -1.16 -1.01 -0.28 -0.68 0.08 

2.04 0.22 -1.54 -0.12 0.18 1.89 

60 

0 
3.46 -10.85 -10.17 -0.23 -0.52 52.75 

2.09 -7.26 -2.65 -0.16 0.33 27.35 

15 
1.99 -7.04 -4.60 -0.01 0.10 15.71 

4.01 -12.99 -12.68 -0.14 -0.21 51.58 

3 

30 

0 
0.80 -0.27 -1.71 -0.23 0.05 5.23 

-1.19 1.46 -1.33 0.01 0.00 -4.62 

15 
-1.59 -1.95 -2.33 -0.43 -0.12 -0.34 

1.99 0.15 -3.69 -0.10 -0.15 6.23 

60 0 
2.62 0.94 -3.16 -0.05 -0.27 8.54 

3.07 1.47 -4.84 -0.08 -0.05 0.00 
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15 
1.75 1.15 -4.01 -0.14 -0.45 0.00 

2.21 3.53 -2.56 -0.39 -0.11 9.70 

4 

30 

0 
0.31 -0.11 0.71 -0.21 -0.48   

0.44 1.03 1.78 -0.27 -0.48   

15 
0.92 1.14 2.71 -0.18 -0.73   

1.03 -0.28 -1.10 -0.33 -0.76   

60 

0 
1.50 -6.20 0.72 -0.04 -0.26 10.75 

0.50 -0.61 -0.54 -0.23 -0.17 5.62 

15 
0.16 -1.98 1.17 -0.08 0.11 2.45 

1.08 -6.31 -1.85 0.00 -0.66 9.40 

5 

30 

0 
0.42 -1.33 -0.61 -0.13 0.63 1.18 

-0.25 1.03 -0.58 -0.10 0.57 -0.73 

15 
0.41 -0.21 -1.33 0.41 0.42 0.91 

0.05 -2.11 -3.23 -0.12 -0.18 0.20 

60 

0 
2.16 0.46 -0.71 0.95 3.89 6.85 

2.70 2.45 -3.28 -0.15 0.32 11.34 

15 
3.30 2.86 -1.64 0.75 4.77 15.15 

4.61 2.96 -3.03 -0.11 1.54 1.52 

6 

30 

0 
-1.09 -9.46 2.66 1.58 -7.14 3.83 

1.39 0.58 -0.85 0.17 -0.29 1.56 

15 
0.28 0.06 -1.53 -0.12 -0.37 0.60 

0.80 1.75 0.20 0.03 -0.22 0.99 

60 

0 
-0.70 0.61 -0.03 0.12 -0.37 -0.76 

3.26 0.49 -1.95 0.05 -0.25 0.00 

15 
2.41 1.64 1.23 0.14 -0.27 0.00 

7.11 -0.04 -4.82 0.18 -0.17 10.42 

7 

30 

0 
2.38 -0.37 -4.42 0.19 -1.67 9.60 

2.03 0.67 1.85 0.45 -0.24 0.00 

15 
1.14 -3.23 -3.83 0.25 -1.48 2.88 

0.13 -1.70 -2.68 0.32 -0.76 0.21 

60 

0 
2.37 -3.06 -7.56 0.31 -0.88 3.65 

3.06 2.19 -0.74 0.34 -0.70 4.67 

15 
2.71 -7.51 -15.34 -0.65 -3.10 3.42 

4.16 1.95 -1.30 0.23 -1.77 5.95 

8 

30 

0 
0.50 -2.31 -3.07 -0.17 -0.84 1.94 

1.36 0.02 -0.93 -0.18 -1.30 7.75 

15 
1.46 -0.53 0.31 -0.10 -0.97 9.98 

-0.01 1.75 -0.44 -0.10 -0.45 0.00 

60 

0 
6.27 -8.18 1.36 0.78 -0.30 30.91 

1.56 -2.64 -0.16 0.38 -0.28 0.00 

15 
3.76 -19.88 -20.04 1.49 -1.51 28.05 

4.34 2.40 0.98 1.71 0.08 19.82 

9 30 0 0.07 -2.05 -0.55 -0.15 -0.51 0.53 
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0.02 -1.91 -0.73 -0.18 -0.59 0.00 

15 
-1.10 -1.03 -0.39 -0.17 -0.76 -0.63 

-0.40 -2.39 -0.78 -0.22 -0.59 -0.63 

60 

0 
1.66 -2.70 -0.45 -0.18 -0.35 12.26 

          -14.66 

15 
0.75 -1.02 -0.32 -0.03 -0.68 5.97 

1.80 -3.65 -1.41 -0.16 -0.70 16.45 

10 

30 

0 
2.17 -1.19 -0.13 -0.29 -0.34 6.20 

1.96 -0.49 -0.22 -0.04 -0.44 5.84 

15 
1.08 -0.40 -0.47 0.13 -0.23 2.41 

3.45 -0.96 -0.47 0.11 -0.48 7.74 

60 

0 
7.75 0.63 -0.62 -0.01 -0.05 0.68 

5.23 0.18 -1.17 0.21 -0.34 0.57 

15 
4.75 -1.30 -2.01 0.36 -0.37 0.37 

6.49 2.67 -2.14 0.00 -0.33 0.59 

11 

30 

0 
0.49 -0.91 -1.03 -0.04 -0.30 0.25 

-0.27 -1.37 -0.11 -0.20 -0.41 -1.08 

15 
-0.27 -1.03 -1.82 -0.11 -0.33 -1.58 

-0.65 -0.16 -0.78 -0.30 -0.39 -3.94 

60 

0 
0.37 -0.52 -0.89 0.12 -0.31 2.64 

0.49 -0.20 -0.28 -0.08 -0.19 4.53 

15 
2.10 -9.27 -17.28 -0.05 -0.07 14.06 

1.97 -2.09 -2.69 0.00 -0.14 11.82 

12 

30 

0 
0.19 -0.11 -1.38 -0.31 -4.63 1.68 

0.78 0.11 -1.34 -1.05 -2.30 1.88 

15 
1.10 -2.05 -0.46 -0.45 -5.79 1.58 

0.24 -1.81 -1.57 -0.17 -2.56 0.79 

60 

0 
0.39 -0.83 -3.18 0.13 -4.61 0.00 

0.64 -0.98 -2.71 -0.60 -2.20 0.00 

15 
0.98 -2.25 -3.24 -1.19 -2.54 0.00 

0.29 -3.60 -2.61 -1.25 -2.60 0.00 

13 

30 

0 
0.94 0.50 -0.88 -0.61 0.19 2.69 

2.77 0.18 -11.54 -0.53 -0.08 1.13 

15 
-1.21 0.38 -4.96 -0.40 0.21 -1.31 

-0.60 0.21 -8.42 -0.34 -0.43 -0.83 

60 

0 
1.78 0.11 -3.68 -0.39 0.43 0.00 

          0.00 

15 
4.47 3.95 -6.14 -0.56 0.14 0.03 

6.13 3.27 -8.89 -0.21 0.35 0.02 

14 30 

0 
0.36 -2.11 -0.46 -1.79 -1.79 1.32 

0.00 -4.69 -2.03 -0.62 -1.30 0.00 

15 
-0.24 -4.96 -2.09 -1.47 -1.28 0.00 

0.66 -4.27 -0.35 -0.19 -1.38 2.10 
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60 

0 
0.72 -0.73 -1.80 -0.18 -1.39 0.28 

-0.33 -1.37 -3.31 -0.12 -1.77 -3.68 

15 
3.40 -3.50 -1.32 -0.35 -0.73 3.71 

1.80 -7.55 -1.76 -0.77 -1.16 0.15 

15 

30 

0 
1.64 1.76 -0.20 0.06 -1.21 7.65 

0.58 0.99 0.42 -0.17 -1.58 0.00 

15 
1.96 0.19 -1.79 -0.23 -0.88 1.65 

0.94 -2.96 -0.91 -0.25 -0.58 1.21 

60 

0 
2.90 -2.62 -4.30 -0.40 1.71 0.01 

1.77 -0.92 -0.61 -0.12 -0.41 8.28 

15 
4.56 -0.19 -1.23 0.05 0.14 0.00 

5.70 0.43 0.58 0.22 0.16 0.01 
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