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Expression profiling of oocyte specific genes, transcription factors 
and microRNAs during early embryonic development in rainbow trout 

(Onchorhyncus mykiss) 
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Abstract 
Genes specifically expressed in oocytes are important for the development of 

oocytes and early embryos. By analyzing ESTs from a rainbow trout oocyte cDNA 
library, we identified a novel EST sequence that does not show homology to any 
sequences in the GenBank. Analysis of tissue distribution by RT-PCR revealed that this 
gene was only expressed in unfertilized oocytes. Sequencing of the EST clone identified 
a cDNA of 3163 bp. Northern blot analysis showed the novel gene has a single transcript 
of 3.4 kb. Additional 5’ sequence was obtained by 5’ RACE, extending the novel cDNA 
to 3333 bp. Analysis of the full length cDNA identified an open reading frame encoding a 
protein of 564 amino acids. The novel protein contains a conserved oxysterol binding 
protein (OSBP) domain at the C terminus that is characteristic of OSBP-related proteins 
implicated in lipid metabolism. Therefore, we named the novel gene as Oocyte-specific 
Oxysterol binding protein Related-Protein of Trout (OORP-T). In situ hybridization 
showed that the OORP-T mRNA appears to be confined to the cytoplasm of vitellogenic 
oocytes. Transcription of OORP-T appears to start during pre-vitellogenesis and 
increases steadily, reaching its peak in the late vitellogenic stage. OORP-T transcript is 
abundantly present in unfertilized eggs but the level drops significantly in day 2 embryos 
and continues to decline in day 7 embryos after which it remains low. It is proposed that 
OORP-T may play an important role in the utilization of yolk derived lipid products 
during oocyte development and early stages of embryonic development in rainbow trout. 

Maternal-zygotic transition (MZT) is the first major transition in early 
development leading to the activation of embryonic genome. Effective transcription 
machinery including transcription factors must be in place during MZT for it to occur. 
Therefore, measuring the transcript abundance of key transcription factors prior to and 
after MZT can give important clues about the roles of transcription factors during this 
process. In this study, we quantitatively measured mRNA abundance of 9 selected 
transcription factors (Figla, P300, YY1, HMGA1, HMGB1, HMGN1, ATF-1, TEAD2 
and OCT-4) in unfertilized eggs and early stage embryos from day 1 through day 7 post 
fertilization using quantitative real time PCR. Our results demonstrate that significant 
amounts of mRNA for all transcription factors studied are present in unfertilized eggs and 
day 1 embryos, and the expression of all transcription factors reaches minimum levels in 
day 2 embryos. While some transcription factors remain at low levels of expression 
throughout late stage development, others show significant increase of expression 
following embryonic genome activation. The expression patterns of these transcription 
factors are suggestive of their roles in MZT as well as in early development in rainbow 
trout. 

Current literature and our results on expression patterns of oocyte specific genes 
and transcription factors suggest global but highly regulated maternal mRNA degradation 

 



 

at the time of embryonic genome activation (EGA). We hypothesized that microRNAs 
(miRNAs), naturally occurring 19-21bp long post-transcriptional regulators, are involved 
in this degradation process. We analyzed the expression pattern of dicer, an enzyme 
required for the processing of microRNAs. Dicer is abundantly expressed until 24 hours 
post-fertilization and gets down-regulated afterwards. This supports the hypothesis that 
dicer processes mature miRNAs during these stages and these miRNAs in turn degrade 
maternal mRNAs. To identify candidate microRNAs involved in this process, we 
constructed a miRNA library from a pool of oocytes and early stage embryos (0 hour 
post-fertilization through 96 hours post-fertilization). Sequencing analysis of clones 
showed that there are at least 15 miRNAs expressed during these stages, 4 of which are 
novel to rainbow trout. We carried out quantitative real-time PCR to learn more about 
their expression pattern. Our results show that several microRNAs are up-regulated when 
maternal RNAs are degraded. Stat3, a transcription factor which is involved in activating 
the transcription of miR-21 is also abundantly expressed in early rainbow trout embryos. 
Taken together, these results indicate that up-regulated microRNAs, some induced by 
stat3, could be responsible for degradation of maternal mRNAs in early embryos. 

Identification and characterization of a novel oocyte specific gene with a 
conserved domain that is involved in oxysterol (a metabolite of cholesterol, a precursor 
molecule of all steroid hormones) metabolism is described here. Expression pattern of 
OORP-T follows the pattern of estrogen during oogenesis indicating its unique role in 
oogenesis and early embryonic development although the functions of OORP-T remain 
to be discovered. None the less, the OORP-T can potentially be used as a marker in 
selecting for high growth, better nutritional efficiency, disease resistance etc. Based on 
the results of studies on expression pattern of transcription factor mRNAs and 
microRNAs, it appears that microRNAs may be involved in maternal mRNAs 
degradation before EGA. The microRNAs identified and characterized here might also 
serve as markers for above mentioned economically important traits especially because 
microRNA might be regulating several target genes involved in any of the above 
mentioned phenotypes. 
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INTRODUCTION 
Aquaculture is increasingly becoming the focus for assuring food security for the 

growing world population given the limited land resources. The rainbow trout 

(Oncorhynchus mykiss) is a commercially important aquaculture species. It is a native of 

North America and Russia and is one of the most studied model fishes in wide areas of 

research. Extensive information on basic biology is available for rainbow trout as a result 

of widespread culture as food and sport fish (Thorgaard et al. 2002). Since they are 

closely related to other salmonid species like Atlantic and Pacific salmon and chars, they 

can serve as a surrogate for research on these economically important species. Over the 

last 20 years, rainbow trout is featured in over 20,000 scientific reports dealing with 

physiology, ecology and behavior. Because of its large size, it is amenable to surgical 

manipulations, experiments that need large amounts of specific tissues and cell types. The 

rainbow trout are well suited for toxicological and carcinogenesis studies because of its 

sensitivity to low concentrations of toxic materials (Bailey et al. 1996). Unlike other fish 

models, elaborate information is available on natural populations of rainbow trout to aid 

answering evolutionary questions (Hershberger 1992). Various other branches of science 

where rainbow trout are being used as a model include comparative immunology, disease 

ecology, physiology of sensory systems, circulation, respiration, osmoregulation, muscle 

structure & function and reproduction (Thorgaard et al. 2002).  

The ability of rainbow trout to produce a large number of gametes throughout the 

year, the transparency of their eggs, external fertilization, ease of egg incubation and 

manipulation make rainbow trout an ideal model for studies on early embryonic 
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development. Areas where rainbow trout is used as a model include gamete physiology, 

sex determination, vitellogenesis, and reproductive endocrinology.  

These studies were conducted after assessing the importance of rainbow trout 

embryonic development from the points of view of understanding basic biology of early 

embryonic development using trout as a model and potentially identifying molecular 

markers to aid selection of quality broodstock. Three approaches were used in this study. 

Several oocyte specific genes have proven to be missing links in our understanding on 

oogenesis, oocyte-somatic interactions and early embryonic development (see review). 

Therefore the first project was designed to identify and characterize novel genes 

specifically expressed in rainbow trout oocytes and early embryos. Embryonic genome 

activation is the most important landmark and the first major transition in embryo’s life. 

The aim of the second project was to characterize the existence & distribution of 

transcription machinery during embryonic genome activation. Degradation of maternally 

inherited messenger RNAs at the time of embryonic genome activation is essential for 

normal development. A similar pattern of degradation was observed in the first two 

projects leading to the third project. The objective of the third project was to identify and 

characterize potentially involved microRNAs in degradation of maternal mRNAs during 

embryonic genome activation in rainbow trout. 
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REVIEW OF LITERATURE 

Oocyte-somatic interactions 
The physical proximity of the oocyte and surrounding somatic cells prompted 

biologists to hypothesize that oocyte growth is supported by granulosa cells. As early as 

1935, Pincus and Enzmann hypothesized that somatic cells surrounding the oocyte 

maintain the oocyte in meiotic arrest based on the observation that fully grown oocytes 

separated from antral follicles underwent spontaneous gonadotrophin-independent 

resumption of meiosis (Pincus and Enzmann 1935). But role of oocyte in signaling its 

surrounding cells was not realized until 1970 when el-Fouly et al. showed that rabbit 

follicles undergo precocious luteinization when the oocyte-cumulus complex was 

removed (el-Fouly et al. 1970). Since that pioneering study, there has been a great 

interest in characterizing the interaction between oocyte, cumulus cells and granulosa 

cells. This interaction is thought to be in place from recruitment of primordial follicles 

until after ovulation. Extensive information is available on hormonal and non-hormonal 

interactions between oocytes and somatic cells (Buccione et al. 1990a; Combelles et al. 

2004). 

Formation and early development of primordial follicles 

Presence of an oocyte is essential for the structural and functional identity of a 

follicle (Eppig 2001). An oocyte specific basic-helix-loop-helix transcription factor called 

factor in germline alpha (figla) is expressed early in the embryo’s life and is required for 

this process. Because of its transcription factor nature, Figla controls expression of zona 

pellucida genes and probably other genes (Soyal et al. 2000). Other basic-helix-loop-

helix transcription factors that are germline specific and required for folliculogenesis are 
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Sohlh1 and Shohlh2. Transcription factor Sohlh1 and its downstream target Lhx8 are 

required for oogenesis and mice lacking Sohlh1 are sterile (Pangas et al. 2006). Female 

mice lacking another oocyte specific homeobox gene nobox have severe deformities in 

primordial follicle growth and transition from primordial to primary follicles (Rajkovic et 

al. 2004). Taken together, germ line specific transcription factors Figla, Sohlh1, Sohlh2, 

Lhx8 and Nobox control the expression of each other and possibly other transcription 

factors and play crucial roles in folliculogenesis in mice (Zheng and Dean 2007). 

The germ cell specific RNA binding protein Dazla (deleted in azoospermia-like 

autosomal) is implicated in RNA transport and protein synthesis in oocytes and is 

required for development and survival of germ cells and hence causes infertility in mice 

lacking it (Cooke et al. 1996; Padmanabhan and Richter 2006; Ruggiu et al. 1997). Msy2 

also known as Ybx2 is another germline specific RNA/DNA binding protein important in 

stability and translation of cytoplasmic transcripts and a possible transcription regulator 

(Yu et al. 2001). Post-fertilization degradation of Msy2 suggests a role for this gene in the 

oocyte-embryo transition (embryonic genome activation) (Zheng and Dean 2007). 

Cytoplasmic polyadenylation element binding protein 1 (Cpeb1) binds to polyadenylation 

elements in the 3’ untranslated regions of mRNAs and controls their translation. 

Temporally controlled expression of cpeb1 controls expression of several targets 

including Dazla and GDF9 (see below) (Vasudevan et al. 2006). Mice lacking cpeb1 are 

sterile and no germ lines are observed in postnatal ovaries (Tay and Richter 2001). 

The mechanism by which follicles are activated for entry into the growing cohort 

is not well understood. However, two oocyte specific TGFβ family members, namely 

bone morphogenetic protein-15 (BMP15) and growth and differentiation factor-9 
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(GDF9), are thought to act as paracrine controls produced by oocytes (Elvin et al. 2000b; 

Otsuka et al. 2000). Mutations in either of these genes causes failure to develop beyond 

primary follicle stage and results in infertility (Davis et al. 1992; Dong et al. 1996; 

Galloway et al. 2000). Oocyte derived GDF-9 represses expression of a kit ligand gene 

(Kitl) in granulosa cells (Joyce et al. 2000; Joyce et al. 1999) and oocytes possess 

receptors for Kitl (Yoshida et al. 1997) thus completing a loop of oocyte-granulosa cells 

mutual signaling. Bone morphogenetic protein 15 acts synergistically with GDF9 in 

development of granulosa cells, ovulation and fertility (Dong et al. 1996; Su et al. 2004; 

Yan et al. 2001) and a 50% reduction in natural BMP-15 concentration causes increased 

ovulation; possibly because of the disruption in the feedback between the ovary and 

pituitary by the action of increased gonadotrophins and augmented follicular 

development showing that oocyte derived factors have important but indirect roles in 

follicles recruitment (Galloway et al. 2000). 

Proliferation and differentiation of granulosa cells 

Hirshfield (1986) observed that granulosa cells close to the oocyte proliferate 

faster than those further away from it. Oocytes control the proliferation of granulosa cells 

by secreting multiple paracrine factors (Li et al. 2000). Since both recombinant GDF9 

and BMP15 promote proliferation of granulosa cells, they are considered oocyte derived 

mitogens (Hayashi et al. 1999; Otsuka et al. 2000; Vitt et al. 2000). After the formation of 

the antrum, mural granulosa cells and cumulus cells are different both in terms of their 

morphology and gene expression patterns and this differentiation is influenced by the 

oocyte to a great extent (Furman et al. 1986; Joyce et al. 1999). For example, Kitl and 

FSH-induced Lhcgr are expressed by cumulus cells detached from the oocyte and are 
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suppressed by paracrine factors secreted by the oocyte (Eppig et al. 1997). Further, 

expression of these genes is influenced by GDF9 in the same way as in mature oocyte, 

supporting the hypothesis that oocyte acts on granulosa cells through GDF9 and/or 

BMP15 (Elvin et al. 1999; Joyce et al. 2000). However, not-fully grown oocytes fail to 

induce this action in spite of their production of GDF9 indicating the involvement of 

other factors (Eppig 2001). Apart from contributing to normal development of oocyte and 

embryos, these oocyte specific genes are attributed to commercially important traits in 

farm animals. Mutations on BMP-15 and GDF-9 are associated with both increased 

ovulation rate and infertility in sheep (Galloway et al. 2000; Hanrahan et al. 2004). 

Ovulation 

Follicles are termed primordial follicles once encompassed by a squamous layer 

of somatic follicular cells. This large pool of primordial follicles serves as the reservoir 

from which follicles are recruited for ovulation (Eppig 2001). Oocytes resume meiosis 

once they receive external signals to grow. However not all oocytes gain the competence 

to pass the metaphase-I stage if they don’t receive signals from growing antral follicles 

(Handel and Eppig 1998). Resumption of meiosis requires a surge of gonadotrophins 

which also stimulates cumulus cells to secrete hyaluronic acid in turn helping in cumulus 

expansion (Chen et al. 1993; Salustri et al. 1989). Germinal vesicle breakdown causes 

activation of mitogen-activated protein kinase in cumulus cells. This activation requires 

signals from the oocyte and a somatic cell signal downstream of the pre-ovulatory LH 

surge. Cumulus cell differentiation is caused by the factors secreted by oocyte including 

growth and differentiation factor 9 (GDF-9) (Eppig 2001).  
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Pre-ovulatory surges in gonadotrophins levels cause series of reactions leading to 

ovulation. Gonadotrophins induce cumulus cells to produce hyaluronic acid, a non-

sulphated glycosaminoglycon, which is bound to the cumulus cells by linker proteins. 

Upon hydration of hyaluronic acid, the space between cumulus cells becomes enlarged 

and filled with a sticky mucified matrix (Chen et al. 1996; Salustri et al. 1989). However, 

removal of the oocyte-cumulus from the follicle results in no FSH-induced hyaluronic 

acid production but, co-culture of FSH-stimulated oocytectemized complexes with 

denuded fully grown oocytes enables the expansion of the complex (Buccione et al. 

1990b; Eppig 2001). Hence, Eppig (2001) hypothesized that the oocytes secrete a 

cumulus expansion enabling factor (CEEF) to enable the granulosa cells to respond to the 

FSH surge by producing hyaluronic acid. This CEEF is not secreted by not-fully grown 

oocytes, but secreted to some extent by GV stage oocytes and is not detected in 2 cell 

embryos. Prostaglandin-endoperoxide synthase2 (ptgs2 or Cox2) is an enzyme required 

for the synthesis of prostaglandins. Expression of this gene and in turn production of 

prostaglandin is orchestrated by thecal cells and augmented by oocyte (Joyce et al. 2001). 

So oocytes influence granulosa cells in ways essential for ovulation by enhancing 

prostaglandin production and cumulus expansion (Eppig 2001). GDF9 participates in the 

production of prostaglandin by stimulating expression of Ptgs2 and by augmenting 

expression of Ptgerep2, a receptor of prostaglandin (Elvin et al. 2000a).  

Before the pre-ovulatory LH surge, the oocytes suppress expression of urokinase 

plasminogen activator (Plau or uPA) by cumulus cells and prevent protease-mediated 

tissue modification. After ovulation, cumulus cells are insensitive to the oocyte 

suppression and hence secrete uPA and participate in disassembly of the cumulus cell-
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oocyte complex (Canipari et al. 1995; D'Alessandris et al. 2001). Reasons for this 

differential receptivity are unknown indicating a role of several unknown factors. 

Fertilization and early embryonic development 

Formation of the zona pellucida, a three-dimensional extra-cellular matrix 

surrounding oocytes and early embryos, is required for fertilization (Familiari et al. 

2006). Three glycoproteins secreted by the oocyte form this complex namely ZP (zona 

pellucida)1, ZP2 and ZP3 (Bleil and Wassarman 1980). These three oocyte specific genes 

basically form the egg membrane, possess receptors for sperm and control fertilization. 

Disruption of any of these three genes results in infertility/reduced fecundity (Liu et al. 

1996; Rankin et al. 1996; Rankin et al. 1999; Rankin et al. 2001).  It was observed in 

humans and mice that ZP2 is cleaved by a presumptive protease thereby changing the 

three-dimensional structure to produce a non-permissive structure for sperm binding 

irrespective of fertilization (Bauskin et al. 1999; Bleil et al. 1981; Rankin et al. 2003).   

Maternal effect genes are those that are stored in the oocyte before ovulation but 

not required until late in development (Zheng and Dean 2007). Several oocyte specific 

maternal effect genes are identified and characterized. Zygote arrest 1 (zar1) is one such 

gene that is expressed during folliculogenesis and persistent until the two cell stage in 

mice (Wu et al. 2003) and up to 24 hours in rainbow trout (Ramachandra et al., data 

unpublished). Zar1 null mouse oocytes can be fertilized but the two pronuclei do not fuse 

thereby affecting the oocyte to embryo transition (Wu et al. 2003). 

Nucleoplasmin2 (Npm2) is another oocyte specific gene thought to play a very 

important role during post-fertilization nuclear modifications. This nuclear protein is 

conserved in several species but was first identified in Xenopus (Philpott and Leno 1992; 

 8



 

Philpott et al. 1991). Mice lacking npm2 are fertile but show severe heterochromatin and 

acetylation defects (Burns et al. 2003).  

Nalp5 (NACHT, leucine-rich repeat and PYD containing 5) or mater (maternal 

antigen that embryos require) is a cytoplasmic protein required for development of mice 

embryos beyond the 2 cell stage. Nalp5 null mice mimic phenotypes caused by treatment 

of α-amanitin, a chemical that blocks transcription by RNA polymerase II and inhibits 

progression of embryos beyond the 2 cell stage suggesting that it is required for 

transcription (Tong et al. 2000).  

It was famously hypothesized by Eppig (2001) that if oocytes were absent from 

the follicles, granulosa cells would continue to be mural granulosa cells as a default 

pathway and that only oocytes can develop a cumulus cell phenotype. Hence, there has 

been great interest in identifying and characterizing oocyte specific factors in farm 

animals and animal models (Hanrahan et al. 2004; Soyal et al. 2000; Tong et al. 2000). 

Identification and characterization of novel oocyte specific factors have proved to be a 

very important task in filling gaps of our understanding about the interaction between the 

oocyte and its surroundings. So it was the objective of project I (chapter 1) to identify 

novel oocyte specific genes in rainbow trout. 

Embryonic genome activation 

Embryonic genome activation (EGA), also known as the maternal-zygotic 

transition (MZT) is the activation of the zygotic genome at a point when the embryonic 

genome is ready to meet the transcriptional needs of the zygote. EGA occurs at different 

time points depending on the species (Kanka 2003; Telford et al. 1990). In mice, it occurs 

at the 1-2 cell stage (Bolton et al. 1984), 4-8 cell stage in humans (Telford et al. 1990), 8-

 9



 

16 cell stage in bovine (Memili and First 1999) and at mid-blastula stage in Xenopus 

(Etkin and Balcells 1985) and zebrafish (Kane and Kimmel 1993) (hence the name mid-

blastula transition- MBT). Initiation of transcription is a complex process and there could 

be at least three reasons why EGA does not take place earlier: 1) chromatin mediated 

repression, 2) rapid cell cycles and 3) insufficient transcription machinery (Schier 2007). 

The fact that EGA occurs in some species (mice, humans and bovine) even when the 

embryo is beginning to divide, undermines the hypothesis that active division is the only 

reason for the absence of transcription before EGA. However, it could contribute along 

with the other two factors mentioned above in mediating the transcriptionally repressed 

state (Vigneault et al. 2004). Epigenetic imprinting including chromatin mediated 

repression, is believed to make a major contribution to the process (Schier 2007). So the 

transcriptionally repressive state could be due to the non-permissive chromatin structure 

and/or absence/insufficiency of transcription machinery before EGA (Vigneault et al. 

2004).  

Chromatin remodeling 

Histone acetyltransferases (HAT) are enzymes that acetylate histone tails of 

nucleosomes and relax the chromatin structure making the genomic DNA more 

accessible to transcription factors (Marmorstein 2001). Some studies have demonstrated 

the importance of histones in the process of embryonic genome activation (Stein et al. 

1997; Worrad et al. 1995). Chromatin structure and conformation is also determined by 

another class of transcription factors called architectural proteins (Bewley et al. 1998). 

These high mobility group (HMG) proteins produce chromatin conformations favorable 

for transcription (Bianchi and Beltrame 2000). There are at least three main groups of 
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HMG proteins and they are classified based on the conserved domain (systematic 

nomenclature on this website http://www.informatics.jax.org/mgihome/ 

nomen/genefamilies/hmgfamily.shtml) (HMG-Homepage 2007). 

Apart from chromatin structure, transcription factors play a very important role in 

transcription (Vigneault et al. 2004). There are several sequence-specific transcription 

factors that initiate/facilitate recruitment of general transcription factors like TATA box 

binding protein and RNA polymerase II (Nikolov and Burley 1997; Woychik and 

Hampsey 2002). One study investigated the presence of sufficient transcription 

machinery at the time of EGA and found that transcription factors are present during the 

time of EGA in cows (Vigneault et al. 2004). Project II (chapter 2) investigates mRNA 

expression patterns of 9 transcription factors (Figla, P300, YY1, HMGA1, HMGB1, 

HMGN1, ATF-1, TEAD2 and OCT-4) to evaluate the presence of sufficient transcription 

machinery at the time of embryonic genome activation in rainbow trout. 

MicroRNAs 
Introduction  

MicroRNAs (miRNAs) are a class of naturally occurring 19-23 base pair long 

RNAs that bind to specific recognition sequences on the 3’untranslated regions (UTR) of 

their target messenger RNAs and regulate protein production (Pillai 2005). If the 

homology between the recognition sequence and the microRNA is high, the mRNA is 

directed to deadenylation (Wu et al. 2006) and subsequent degradation, and if the 

homology is low, translation is repressed (Brennecke et al. 2005). Each mRNA could 

have recognition sequence for more than one miRNA and each miRNA can  control up to 

200 genes (Brennecke et al. 2005).  
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MicroRNAs were first identified as an isolated oddity in worms. Lin-4 was the 

first member to be identified and was shown to be involved in developmental timing in 

Caenorhabditis elegans (C. elegans) (Lee et al. 1993b). Currently there are 5,071 

(version 10.0 last updated August 2007) miRNAs in the microRNA database managed by 

the Sanger Institute (Griffiths-Jones 2004). Initial discoveries were results of forward 

genetics and were identified based on their mutant phenotypes (Lee et al. 1993b; Reinhart 

et al. 2000). Since then several labs have adopted cloning-sequencing and bioinformatics 

strategies to bypass the rare discovery of forward genetics (Berezikov et al. 2006; Chen et 

al. 2005; Hikosaka et al. 2007; Omoto and Fujii 2006; Takada et al. 2006). Cloning and 

sequencing has been the choice strategy for identifying novel microRNAs expressed in a 

cell type/developmental stage because cDNA cloning needs little/no genomic sequence 

information (Wienholds and Plasterk 2005). Computational methods were developed so 

that if the genomic sequence were available the disadvantages of cloning could be 

avoided. The specific disadvantages are that cDNA cloning might miss miRNAs that are 

in low copy numbers or expressed in a small window of developmental timing or some 

microRNAs could be difficult-to-clone because of their sequence composition (Bentwich 

2005; Bentwich et al. 2005; Grad et al. 2003; Lai et al. 2003). However only a portion of 

predicted miRNAs have been experimentally confirmed (Wienholds and Plasterk 2005). 

Distribution of microRNAs in the genome is not random, about half of the microRNAs 

are arranged within introns of host genes and they are co-expressed with each other. 

Majority of the rest of the microRNAs are arranged as clusters which are co-expressed 

(Baskerville and Bartel 2005; Rodriguez et al. 2004). Several of these microRNAs have 
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tissue/cell type specific expression as shown by cloning or northern blot or microarray 

techniques (Barad et al. 2004; Baskerville and Bartel 2005; Lagos-Quintana et al. 2002). 

Synthesis and mechanism of action 

MicroRNA processing is a stepwise and compartmentalized process which is not 

well characterized (Lee et al. 2002). Schematic representation of their synthesis and 

processing is depicted in figure 0.1. MicroRNAs are transcribed as primary-miRNAs 

(pri-miRNAs) by RNA polymerase II (Lee et al. 2004) and hence possess 5’cap and 

3’poly A tails (Cai et al. 2004). These pri-miRNAs are processed into 70-80bp pre-

miRNAs by the RNase III enzyme Drosha (Lee et al. 2003). Pri-miRNA hairpins are 

exported out of the nucleus into the cytoplasm by exportin5 with Ran-GTP as a cofactor 

(Bohnsack et al. 2004; Lund et al. 2004). Primary miRNAs are then processed into pre-

miRNAs by another RNase III enzyme Dicer (Hutvagner et al. 2001) which was initially 

identified as an enzyme that processes long double stranded RNA molecules into small 

interfering RNAs (siRNAs) (Hammond 2005). These processed double stranded RNA 

molecules unwind and form miRNA. The strand that has the 5’end where initialization of 

this unwinding begins (lowest thermodynamic stability) is called the lead strand and is 

the future miRNA (Hutvagner 2005). This RNA strand is incorporated into a 

ribonucleoprotein complex on the target mRNA (Hutvagner and Zamore 2002) and 

directs the target to (i) degradation if complimentarity is high or to (ii) translational 

repression if the complimentarity is low (Wienholds and Plasterk 2005). In animals 
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mRNA degradation is less common than translation repression (Yekta et al. 2004). 

 

Figure 1 Mechanism of synthesis and processing of microRNAs 
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Functions 

In C elegans, several microRNAs have been shown to regulate early and late 

developmental timing (Lin et al. 2003; Wightman et al. 1993). They have been ascribed a 

function in controlling left/right neuronal asymmetry (Chang et al. 2004). In D. 

melanogaster miRNAs are thought to play a role in programmed cell death and fat 

metabolism (Xu et al. 2003). They are deemed responsible for insulin secretion (Poy et 

al. 2004), heamatopoitic lineage differentiation (Chen et al. 2004), myocyte 

differentiation and proliferation in heart (Zhao et al. 2005) and developmental patterning 

in mice (Yekta et al. 2004). MicroRNAs mediate AU rich element mediated RNA 

instability and deadenylation mediated RNA decay in different cell lines (Jeske et al. 

2006; Wu et al. 2006). MicroRNAs also mediate antiviral defense in human cells 

(Lecellier et al. 2005). Several studies established microRNA expression signatures in 

different types of cancer (reviewed in (Gregory and Shiekhattar 2005; Kusenda et al. 

2006; Meltzer 2005). For example, miR-21 targets a tumor suppressor gene tropomyosin 

and acts as an antiapoptotic factor in brain cancer cells (Chan et al. 2005; Zhu et al. 

2007). With such diverse functions for microRNAs, it is clear that we are beginning to 

appreciate numerous functions performed by these tiny RNA molecules. 

Roles in early development   

Various miRNAs have been identified that are involved in developmental timing 

in worms (Ambros 2004; Kloosterman and Plasterk 2006). Several observations showed 

that microRNAs are essential for normal development of vertebrates (Bernstein et al. 

2003; Houbaviy et al. 2003; Kanellopoulou et al. 2005; Wienholds et al. 2003). Deletion 

of Dicer, an enzyme required for processing of all microRNAs results in abnormal 
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development and brain morphogenesis in zebrafish (Giraldez et al. 2006). The hypotheses 

that microRNAs have specific functions are supported by tissue-specific and temporal 

expression pattern of several microRNAs (Aboobaker et al. 2005; Chen et al. 2005; 

Watanabe et al. 2005; Xu et al. 2006).  

It is well documented that dicer mutant mouse embryos do not survive after axis 

formation but Dicer mutant zebrafish embryos do (Wienholds and Plasterk 2005). 

However, what has escaped attention is the fact that there is a difference in 

developmental timing of EGA in these two species and there could be a relationship 

between EGA and microRNAs. Interestingly, the deformities in dicer mutants begin to 

occur at the time of EGA in both mice (1-2 cells stage) and zebrafish (mid-blastula) 

(Bernstein et al. 2003; Giraldez et al. 2005). Two recent studies by Giraldez et al. (2006) 

and Wu et al. (2006) showed that microRNAs direct rapid deadenylation of maternal 

mRNAs and direct them toward degradation. They also observed that miR-430 is 

abundantly expressed at the time of degradation of maternal mRNAs during EGA. They 

showed that when dicer is deleted, degradation of maternal mRNAs is delayed and 

morphogenesis is postponed. So it was concluded that miR-430 is responsible for 

degradation of maternal mRNAs at EGA (Weigel and Izaurralde 2006).  

However, since it is critical to have recognition sequence on the 3’UTR of an 

mRNA to be directed for degradation by microRNAs, and not all degraded mRNAs have 

recognition sequence for miR-430, it is obvious that there might be more than one 

microRNAs involved in this process. This hypothesis is also supported by the fact that 

the deformities caused by deficiency of Dicer (devoid of all miRNAs) were not 

completely recovered when embryos were injected with only miR-430 (Giraldez et al. 
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2005). Bioinformatics tools can be utilized to predict targets and candidate microRNAs 

involved in degradation of maternal mRNAs if the genomic sequence information is 

available. Since limited genomic information is available for rainbow trout, project III 

(chapter 3) was designed to clone and sequence microRNAs expressed during embryonic 

stages and investigate their expression pattern to identify other candidate microRNAs 

involved in this process. 
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Abstract 
Genes specifically expressed in oocytes are important for the development of 

oocytes and early embryos. By analyzing ESTs from a rainbow trout oocyte cDNA 

library, we identified a novel EST sequence that does not show homology to any 

sequences in the GenBank. Analysis of tissue distribution by RT-PCR revealed that this 

gene was only expressed in unfertilized oocytes. Sequencing of the EST clone identified 

a cDNA of 3163 bp. Northern blot analysis showed the novel gene has a single transcript 

of 3.4 kb. Additional 5’ sequence was obtained by 5’ RACE, extending the novel cDNA 

to 3333 bp. Analysis of the full length cDNA identified an open reading frame encoding a 

protein of 564 amino acids. The novel protein contains a conserved oxysterol binding 

protein (OSBP) domain at the C terminus that is characteristic of OSBP-related proteins 

implicated in lipid metabolism. Therefore, we named the novel gene as Oocyte-specific 

Oxysterol binding protein Related-Protein of Trout (OORP-T). In situ hybridization 

showed that the OORP-T mRNA appears to be confined to the cytoplasm of vitellogenic 

oocytes. Transcription of OORP-T appears to start during pre-vitellogenesis and 

increases steadily, reaching its peak in the late vitellogenic stage. OORP-T transcript is 

abundantly present in unfertilized eggs but the level drops significantly in day 2 embryos 

and continues to decline in day 7 embryos after which it remains low. We propose that 

OORP-T may play an important role in the utilization of yolk derived lipid products 

during oocyte development and early stages of embryonic development in rainbow trout. 

Introduction 
 Genes specifically expressed in the oocyte play important roles in oogenesis, 

ovarian folliculogenesis, fertilization and early embryonic development (Dean 2002). 

Key oocyte-specific genes known to be vital in folliculogenesis include Factor In the 
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Germline alpha (Figla), Growth Differentiation Factor 9 (GDF9) and Bone 

Morphogenetic Protein 15 (BMP-15). The essential roles of these genes in follicular 

development have been demonstrated primarily by their targeted deletion in mice and 

molecular genetic approaches in farm species (Dong et al. 1996; Galloway et al. 2000; 

Soyal et al. 2000; Yan et al. 2001). Following fertilization of an oocyte, the first 

important developmental transition is the activation of the embryonic genome, during 

which transcripts expressed from the zygotic/embryonic genome replace the maternal 

transcripts that direct initial development. Several oocyte-specific genes have been 

identified to be crucial for the initial development of embryos before embryonic genome 

activation. Such genes are called maternal effect genes that include Maternal Antigen 

That Embryos Require (MATER), Nucleoplasmin 2 (NPM2) and Zygote Arrest 1 (Zar1). 

Targeted disruption of these genes in mice resulted in the arrest of early embryonic 

development (Burns et al. 2003; Tong et al. 2000; Wu et al. 2003).  

In fish, accumulation of the maternal transcripts and proteins, which occurs 

mostly at late stages of oocyte maturation, is accompanied by vitellogenesis, a process 

characterized by hepatic production and massive deposition of yolk lipoproteins within 

the oocytes, providing the nutritional reserves necessary for embryogenesis (Tyler and 

Sumpter 1996). Genes involved in this process as well as in the utilization of these 

reserves during early development are essential for normal development of embryos in 

fish.  

To date, attempts to determine and characterize the factors influencing 

folliculogenesis and embryonic development in fish have been sparse. It is of great 

interest to identify and characterize novel oocyte-specific genes to understand the fish 

 20



 

developmental biology. In an attempt to characterize the oocyte transcriptome in rainbow 

trout, we have recently constructed a normalized cDNA library from rainbow trout 

oocytes and generated ~20,000 expressed sequence tags (ESTs) from this library (Yao et 

al. 2005). A significant number of novel EST sequences have been identified, of which 

some appear to be absent in other somatic libraries. Here, we report the identification and 

cloning of a novel gene specifically expressed in trout oocytes based on an EST clone 

derived from the library. The predicted protein contains a conserved oxysterol binding 

protein (OSBP) domain at the C terminus that is characteristic of OSBP-related proteins 

(ORPs) known to be involved in lipid metabolism. Based on the protein structure and the 

expression patterns of this novel gene, we propose an important role of this gene in yolk 

lipid usage during oocyte development and early embryonic development of rainbow 

trout. 

Materials and methods 
Collection of Samples 

Ovarian samples at different stages of development were collected from female 

rainbow trout. The stages of ovarian development were classified based on oocyte 

diameter as described by (Tyler et al. 1994). The stages of ovarian follicles are: early pre-

vitellogenic (Vg, ≤ 0.5 mm), pre-Vg (≤ 0.65 mm), early-Vg (0.65-1.1 mm), mid-Vg (1.1-

2.1 mm) and late-Vg (2.1-4.0 mm). All stage follicles were histologically verified for 

land marks of the appropriate stage (early and late pre-Vg ≤ 5% of follicles in cortical 

alveolar stage, early Vg ≥ 25% of follicles in cortical alveolar stage, mid and late Vg ≥ 

50% in cortical alveolar stage), and the assignment to early, mid or late was done by 

taking both size and histology into account. To produce embryos, eggs were fertilized 
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and incubated at 13 ºC in a flow through system using a photoperiod of 12 h light -12 h 

dark. Unfertilized eggs and developing embryos were collected at day 2, 7, 12, 16 and 22 

after fertilization. Various tissues including spleen, kidney, muscle, liver, heart, eye, 

stomach, brain, skin, ovary and testis were also collected from adult fish. All samples 

were quick frozen in liquid nitrogen and stored at -80oC until RNA extraction. 

RNA Preparation 

Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA) 

according to manufacturer’s protocol and treated with DNase (Promega, Madison, WI) to 

avoid genomic DNA contamination. PolyA+ RNA was purified from total RNA using 

biotinylated oligo d (T) probe and streptavidin attached magnetic beads from the 

PolyATtract mRNA Isolation System (Promega, Madison, WI).  

RT-PCR 

Two μg of DNAse-treated total RNA from various trout tissues were reverse 

transcribed to first-strand cDNA using oligo (dT)18 primer and Superscript II reverse 

transcriptase (Invitrogen, Carlsbad, CA). Negative control reverse transcription reactions 

without the enzyme were carried out to confirm no genomic DNA contamination. First-

strand cDNA was used as template for PCR amplification of a 297 bp fragment for the 

novel gene using gene-specific primers (forward: GGACGTGTCTTCCTACCAACA and 

reverse: GACCTGGACTTCTTGGGTTTC). The PCR condition (reaction mixture of 

25μL) included a 5 min denaturation at 94 oC followed by 35 cycles of 94 oC for 30 sec, 

59 oC for 45 sec and 72 oC for 30 sec, and a final extension at 72 oC for 10 min. Trout β-

actin gene was used as internal control to verify RNA quality. 
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5’ RACE 

To extend the 5’ end of the cDNA sequence, 5’RACE was performed using the 

2nd generation 5'/3' RACE kit (Roche Diagnostics, Indianapolis, IN) following 

manufacturer’s protocol. Two micrograms of total RNA from mature oocytes were 

reverse transcribed to cDNA using a gene-specific primer (SP-1: 

ACAGCTGTCTGGGTCATGAGT) followed by 2 rounds of nested PCR using gene-

specific primers (SP2: TGTAACCAGGCTGACACCTTC and SP3: 

AACTCAGACGGTGTTGGTGCA) in conjunction with d (T) anchor primers provided 

by the kit. The specific product from the second PCR was purified from an agarose gel 

using the Qiagen gel extraction kit (Qiagen, Valencia, CA) and cloned using TOPO ® 

TA cloning kit (Invitrogen, Carlsbad, CA). 

Preparation of Digoxigenin (DIG)-Labeled RNA Probe 

DIG-labeled RNA probes used for Northern blot analysis and in situ hybridization 

were synthesized using a DIG RNA labeling kit (Roche Diagnostics, Indianapolis, IN). A 

plasmid containing a 500-bp fragment of the OORP-T cDNA was used as a template to 

synthesize both anti-sense and sense RNA probes by in vitro transcription. The 

transcriptions were performed from 1 μg of linearized plasmid using either T7 (anti-

sense) or SP6 (sense) RNA polymerases. 

Northern Blot Analysis 

 One μg of mRNA from unfertilized mature oocytes was separated by 

electrophoresis on a 1% denaturing agarose gel containing 2.2M formaldehyde 

(Sambrook and Russell 2001b) along with a RNA marker (Promega, Madison, WI) and 

transferred to Hybond N+ nylon membrane (Amarsham Biosciences, Piscataway, NJ). 
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After UV cross linking, the membrane was pre-hybridized in DIG Easy Hyb solution 

(Roche Diagnostics, Indianapolis, IN) for 1 hour and then hybridized in the same solution 

containing 75 ng/ml of DIG-labeled anti-sense RNA probe overnight at 68 oC. Following 

stringent washes (2x 15 min with 2X SSC, 0.1% SDS at room temperature and 2x 15 min 

with 0.1X SSC, 0.1% SDS at 68 oC), the membrane was incubated in blocking solution 

for 30 min followed by incubation with 1:10,000 diluted (in blocking solution) alkaline 

phosphatase conjugated anti-DIG antibody (Roche Diagnostics, Indianapolis, IN) for 30 

min at room temperature. After 2 washes in washing buffer, the hybridized probe was 

detected with the chemiluminescent substrate CSPD (Roche Diagnostics, Indianapolis, 

IN). Blocking solution and washing solution were from a DIG wash and block buffer set 

(Roche Diagnostics, Indianapolis, IN). 

In-Situ Hybridization 

 Paraformaldehyde-fixed ovary samples were embedded in paraffin, sectioned (5 

μm), and mounted onto glass slides. Paraffin sections were de-paraffinized by immersion 

in xylene (3x 5 min) and then rehydrated through descending ethanol concentrations (3x 

with 100%, and 1x with 90%, 80%, 70% and 50% ethanol, 3 min each) followed by 

immersion in PBS for 10 min. Sections were then digested with proteinase K (2 μg/ml) 

for 15 min at 37 oC and acetylated in 0.25% (v/v) acetic anhydride in 0.1 M 

triethanolamine (pH 8.0). After washing with 4x SSC (2x 10 min) followed by incubation 

in 50% (v/v) deionized formamide in 2x SSC at 42 °C for 30 min, the sections were 

hybridized overnight at 42°C in a humidified chamber with 0.5 μg/ml DIG-labeled RNA 

probe in hybridization buffer containing 50% deioned formamide, 10% (w/v) dextran 

sulfate, 1x Denhardt's solution, 200 μg/ml yeast tRNA, 0.6 M NaCl, 10 mM Tris-HCl, 
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(pH7.4), 1 mM EDTA (pH8.0). After hybridization, the slides were treated with RNase A 

(20 μg/ml) for 30 min at 37 oC and washed with 0.1x SSC at 42°C (3x 20 min). 

Hybridized probes were detected with an alkaline phosphatase conjugated anti-DIG 

antibody (Roche Diagnostics, Indianapolis, IN) and alkaline phosphatase reaction was 

developed with NBT/BCIP (Roche Diagnostics, Indianapolis, IN). 

Quantitative Real Time PCR 

The expression of OORP-T mRNA during folliculogenesis and early embryonic 

development was measured using quantitative real time PCR. Two µg of DNAse-treated 

total RNA from each follicular stage (n=5) and embryonic stage (n=5 pools, 5 

embryos/pool) were converted to cDNA using Superscript II reverse transcriptase 

(Invitrogen, Carlsbad, CA). Real time PCR primers for OORP-T (forward: 

ACCAGCGGTGGAAGAATAAGT and reverse: AAACCTCGGGAGAGTGACATT) 

and the endogenous control gene, histone H2A (forward: 

TCCCCAAGAAGACTGAGAAGG and reverse: TTTGTTGAGCTAGGTGGTTGG) 

were designed based on the corresponding cDNA sequences (rainbow trout histone H2A: 

TC85036 in TIGR database) using Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). Quantitative PCR was performed in duplicate for each 

cDNA sample on a Bio-Rad iCycler iQ Real-Time PCR Detection System using iQ™ 

SYBR® Green Supermix (Bio-Rad, Hercules, CA) in 25-µl reaction volumes containing 

300 nM of each primer and cDNA derived from 0.1 µg of total RNA. Standard curves for 

both OORP-T and the endogenous control were constructed using 10 fold serial dilutions 

of the corresponding plasmid. Standard curves were run on the same plate with the 

samples. Threshold lines were adjusted to intersect amplification lines in the linear 
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portion of the amplification curve and cycles to threshold (Ct) were recorded. For each 

sample, the quantity of OORP-T mRNA and the reference gene mRNA (histone H2A) 

was determined from the appropriate standard curve. The quantity of OORP-T mRNA 

was then divided by the quantity of the reference gene to obtain a normalized value. One-

way analysis of variance (ANOVA) was performed on normalized gene expression 

values using JMP 5.1 (SAS Institute, Cary, NC). The expression of OORP-T mRNA was 

then expressed as relative fold changes.  

Results 
Identification and cloning of OORP-T cDNA 

Analysis of ESTs from a rainbow trout oocyte cDNA library identified many 

novel sequences that do not show significant homologies to sequences of any known 

genes or ESTs deposited in the GenBank database. A number of novel ESTs that were 

present in the oocyte library but absent in libraries from other tissues were selected for 

analysis of expression patterns in multiple tissues by RT-PCR. One of them appears to be 

oocyte-specific as it was abundantly expressed only in mature oocytes and late 

vitellogenic ovary but not in other tissues (Fig. 1.1A). The EST clone was retrieved from 

our library and the complete insert of the clone was sequenced by primer walking. The 

insert size of the cDNA clone is 3163 bp as determined by DNA sequencing. To 

determine the transcript size of this novel gene and verify whether it has any splice 

variants, Northern blot analysis was performed on mature oocytes. As shown in Fig. 

1.1B, this novel gene has a single transcript corresponding to a size of around 3.4 kb and 

no splice variants could be detected. Apparently, the EST clone does not have the full 

length cDNA sequence of this gene. A 5’RACE experiment was performed to clone the 
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missing sequence at the 5’ end of the cDNA. An additional 170 bp 5’ sequence was 

obtained, thus producing a transcript of 3333 bp in length. The complete cDNA sequence 

has been deposited in the NCBI database with the accession number: DQ630461. 

Sequence analysis of OORP-T cDNA and its encoded protein 

Analysis of the novel cDNA sequence revealed that it contains a 12-bp 

5’untranslated region (5’-UTR), an open reading frame (ORF) of 1692 bp and 3’ 

untranslated region (3’-UTR) of 1626b (Fig. 1.2). There are 4 typical polyadenylation 

signal sequences (AATAA) and 2 cytoplasmic polyadenylation elements (TTTTTAT) in 

the relatively long 3’-UTR. The open reading frame of the cDNA codes for a protein of 

564 amino acids with a predicted molecular weight of 63,154 Daltons. Searching of the 

NCBI Conserved Domain database revealed that the novel protein contains a conserved 

oxysterol-binding protein domain (OSBP) at its carboxy terminus (aa 365-556). Protein-

protein BLAST analysis (blastp) showed that the protein shares approximately 35% to 

39% sequence homology with members of the mammalian oxysterol-binding protein-

related proteins (ORPs). Since the novel gene is exclusively expressed in oocytes, we 

named the novel protein as Oocyte-specific Oxysterol binding protein Related-Protein of 

Trout (OORP-T). Phylogenetic analysis of OORP-T with 12 members of the human ORP 

family showed OORP-T is close to human ORP family subgroup 3 which includes ORP3, 

6 and 7 in terms of sequence homology (data not shown). Multiple amino acid sequence 

alignment of OORP-T against human ORP3, 6 and 7 showed that sequences around the 

OSBP fingerprint domain (EQVSHHPP) at the C terminus are highly conserved among 

OORP-T and human ORP3, 6 and 7 (Fig. 1.3). However, OORP-T lacks the N terminal 
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Plextrin Homology (PH) domain which is present in ORP3, 6, 7 as well as other ORPs 

except for ORP2 and ORP9.  

Quantitative analysis of OORP-T mRNA expression during 

folliculogenesis and embryonic development 

To investigate the ovarian mRNA expression of OORP-T during folliculogenesis 

in rainbow trout, ovarian samples collected from 5 developmental stages of follicles 

[early pre-vitellogenic (Vg), late pre-Vg, early Vg, mid Vg, and late Vg] were subjected 

to quantitative real time PCR analysis. The expression of OORP-T in early pre-Vg stage 

ovaries is extremely low and barely detectable. Transcription of OORP-T appears to 

begin in late pre-Vg stage and steadily increases during development, reaching a peak at 

late Vg stage (Fig. 1.4A). This expression pattern suggests a role of OORP-T during mid 

and late vitellogenesis when yolk deposition is at its peak in rainbow trout. 

The expression pattern of OORP-T during embryonic development is shown in 

Fig. 1.4B. Clearly, the OORP-T transcript is highly abundant in unfertilized oocytes (day 

0). The expression level drops significantly 2 days post fertilization (day 2) and continues 

to decline in day 7 embryos. The expression level of OORP-T remains low until day 22. 

This expression pattern of OORP-T during embryogenesis may suggest that this novel 

protein is required for early embryonic development before embryonic genome 

activation. Studies in zebrafish suggest this transition occurs at midblastula development 

(Pelegri 2003) which is approximately 2 days post fertilization in rainbow trout. 

Localization of OORP-T mRNA in ovarian follicles 

Dig-labeled sense and anti-sense RNA probes, prepared by in vitro transcription 

from a 500 bp OORP-T fragment, were used to perform in situ hybridization on trout 
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ovarian sections. OORP-T mRNA appears to be confined to the cytoplasm of large, mid-

vitellogenic (Fig. 1.5A) and early-vitellogenic (Fig. 1.5C) oocytes (blue coloration). No 

specific signals are present in the oocyte nucleus. There appear to be less or no detectable 

signals in the pre-vitellogenic oocytes (Black arrows in Fig. 5C). This result agrees with 

the real time PCR data showing peak transcription of the OORP-T gene in vitellogenic 

follicles and no or little transcription of the OORP-T gene in oocytes at early stages of 

development (Early pre-Vg and Pre-Vg). No specific hybridization signal was detected in 

oocytes of different stages in the ovarian section hybridized with the sense (control) RNA 

probe (Mid-vitellogenic, Fig 1.5B and early vitellogenic, Fig. 1.5D).  

Discussion 
In this study, we identified and characterized a novel gene specifically expressed 

in rainbow trout oocytes. To our knowledge, this is the first report of an oocyte-specific 

gene in rainbow trout. The cDNA sequence of this gene contains a relatively long 3’-

UTR. There are 4 typical polyadenylation signal sequences present in this region. 

Alternative use of these signals could result in multiple transcripts. However, our 

Northern blot analysis clearly shows a single transcript of 3.4 kb which is consistent with 

the size of the cDNA sequence. This indicates that the novel gene uses predominantly the 

last AATAA signal near the 3’end of the sequence for termination of transcription. In 

growing oocytes, some maternal mRNAs, such as c-mos (Gebauer et al. 1994) and cyclin 

B1 (Tay et al. 2000), undergo deadenylation in the cytoplasm where they are packaged 

into messenger ribonucleoprotein (mRNP) particles. During oocyte maturation, 

cytoplasmic polyadenylation extends their poly(A) tail, which is associated with their 

timely translation (Paynton and Bachvarova 1994; Sheets et al. 1994). The presence of 2 

typical U-rich cytoplasmic polyadenylation elements (UUUUUAU) in the 3’-UTR of 
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OORP-T indicates that this gene may have controlled translation during oocyte 

maturation and early embryonic development. 

OORP-T contains a functional OSBP domain which is present in OSBP and its 

related proteins, ORPs. OSBP is the first protein of the ORP family identified as a 

receptor for oxysterols (Taylor and Kandutsch 1985) that are potent signaling lipids 

attributed to play important roles in cellular cholesterol homeostasis, cell differentiation, 

apoptosis, cellular calcium uptake and membrane structure (Olkkonen and Levine 2004). 

To date, 12 members of ORP family have been identified in humans (Lehto et al. 2001). 

Several ORP genes are present in S. cerevisiae (7 homologs), D. melanogaster, and C. 

elegans suggesting that the ORP family has a vital role in eukaryotic kingdom (Lehto et 

al. 2001). 

Even though deletion of individual ORP had no phenotypically distinct effect, 

simultaneous deletion of all 7 ORP genes in yeasts resulted in lethality, indicating that 

ORPs are essential for life (Beh et al. 2001). It also indicates that ORPs have overlapping 

non-essential function but together they perform at least one vital role. Several ORPs 

have been demonstrated to bind phosphoinositide lipids directly (Levine and Munro 

1998; Li et al. 2002) and transport protein and lipid (ceramide in particular) between 

subcellular membranes (Levine 2004; Loewen et al. 2003; Wyles et al. 2002). Recent 

studies proved that OSBP is involved in transportation of cholesterol (Im et al. 2005). 

The study also indicated that many compounds other than sterols may be transported by 

ORPs. ORPs are also known to be involved in sphingomyelin synthesis, protein 

secretion, glycerolipid metabolism (Lagace et al. 1997; Lagace et al. 1999; Li et al. 

2002).Given the importance of ORPs in lipid metabolism/transport and the presence of 
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abundant OORP-T transcripts in mid-late vitellogenic follicles through early stage 

embryos, it could be speculated that OORP-T might play important roles in mobilization, 

transportation and metabolism of yolk lipids. The lipids may be mobilized and 

transported as nutrients or be metabolized into regulatory lipids. Sphingomyelin and 

ceramide have been shown to mediate steroid-induced resumption of meiosis in oocytes 

of amphibians (Morrill and Kostellow 1999; Strum et al. 1995) and evidence suggests 

yolk platelet lipids may serve as a source of the lipids (Buschiazzo and Alonso 2005). A 

role in synthesis and regulation of corticosteroids and sex steroids during follicular 

development and early embryogenesis could also be expected. 

Characteristic of all members of ORP family identified so far is the OSBP domain 

which is conserved even in ORP homologs of D. melanogaster, yeast and C. elegans. 

Even though the overall similarity within the OSBP domain between OORP-T and other 

ORPs is strikingly high, the OSBP fingerprint sequence EQVSHHPP of all ORPs is 

replaced by EQVCHHPP of trout OORP. The uncharged polar amino acid, Serine, is 

replaced by another uncharged polar amino acid Cysteine which contains sulfur. Cysteine 

is unique among all 20 amino acids in that it has a thiol group that can form a disulfide 

bond with another cysteine leading to a variety of structural and functional implications 

(Voet et al. 2005). This sulfur containing amino acid may confer unique functions to 

OORP-T which distinguishes OORP-T from ORPs. 

For many of the oxysterol regulatory processes, it is important that ORPs are 

localized on specific cell organelles like Golgi apparatus or endoplasmic reticulum. Most 

ORP members have an N-terminal Plextrin Homology (PH) domain which specifies 

Golgi localization of ORPs. Studies by (Lagace et al. 1997) and (Levine and Munro 
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1998) suggested that PH domain is required and sufficient to target the OSBP to Golgi 

apparatus. In addition, many of ORPs contain recently described FFAT motif that leads 

to endoplasmic reticulum localization (Loewen et al. 2003). OORP-T lacks both of these 

motifs indicating that it is structurally and functionally different from the known ORP 

members. No signal peptides or organelle localization motifs are present in OORP-T 

indicating that it is a cytoplasmic protein. Indeed, our in situ hybridization experiment 

has confirmed that OORP-T is localized in the cytoplasm of mature oocytes. It is hard to 

distinguish cellular components in the mature oocytes because of huge amount of yolk 

present. However, since OORP-T does not have the PH domain, it is highly unlikely that 

OORP-T localizes on Golgi apparatus. However we can not exclude the possibility that 

OORP-T does localize on Golgi apparatus or on endoplasmic reticulum by some other 

mechanism as suggested (Wyles et al. 2002). 

OORP-T is expressed specifically in trout oocytes while all ORP genes are 

ubiquitously expressed (Lehto et al. 2001). As shown by phylogenetic analysis, OORP-T 

is closely related to members of human ORP family subfamily 3 (ORP3, 6 and 7). No 

specific roles of this subfamily have been reported. However, members of this subfamily 

show tissue-specific transcriptional regulation. For instance, ORP3 and ORP7 are most 

abundant in the kidney and gastrointestinal tract, respectively, whereas expression of 

ORP6 is highest in the skeletal muscle and the brain (Lehto et al. 2001). The oocyte 

specificity of OORP-T adds another line of evidence suggesting that OORP-T is 

functionally different from the ORPs. 

In summary, OORP-T is an oocyte-specific gene expressed abundantly in mid-

late vitellogenic follicles and early stage embryos. The protein contains a conserved 
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OSBP domain; therefore it may share similar functions as the ORPs in lipid metabolism. 

However, the unique structure of OORP-T (substitution of Serine by Cysteine in the 

OSBP fingerprint domain, lack of PH domain and FFAT motif) and its oocyte-specific 

expression suggest a distinct and important role for OORP-T in trout oogenesis and early 

embryonic development.  
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Figures 
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Figure 1-1 Expression of OORP-T mRNA in rainbow trout tissues. A. RT-PCR analysis of tissue 
distribution of OORP-T mRNA. Tissues examined were: spleen (SP), kidney (Ki), muscle (Mu), liver 
(Li), heart (He), eye (Ey), stomach (St), brain (Br), skin (Sk), ovary (Ov), testis (Te) and mature 
oocyte (Oo). Trout β-actin was used as a control for RNA quality. B. Northern blot analysis of 
OORP-T mRNA. mRNA from unfertilized eggs was used in the analysis and the blot was hybridized 
with a DIG-labeled anti-sense RNA probe generated by in vitro transcription of a 500-bp OORP-T 
fragment. 
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     1  GGCCTTGCAGTCATGTCTATCAACAAGAAATCCAATCGTATCGATTTGGATGCAGGAGATGTTCTATATCATATGAAGGCCAATAGTCAT 
 

     1               M  S  I  N  K  K  S  N  R  I  D  L  D  A  G  D  V  L  Y  H  M  K  A  N  S  H  
 

    91  GACTTGTTCTATATCTGGGTGGCCAAGCTGAGTGCCCATCGCATGTTCAAGAAGAATGAGGCTGCTCAAGTGCACAATGGCTTTTTCCAG 
    27   D  L  F  Y  I  W  V  A  K  L  S  A  H  R  M  F  K  K  N  E  A  A  Q  V  H  N  G  F  F  Q  
 

   181  GCCTTGTCCCAGGGCACCAGTGTGCCTGGACTAGCACAGAGGAACGGCATGCAGGACGTGTCTTCCTACCAACACTACCATAGCACTACA 
    57   A  L  S  Q  G  T  S  V  P  G  L  A  Q  R  N  G  M  Q  D  V  S  S  Y  Q  H  Y  H  S  T  T  
 

   271  GACTCTTACGTGGGTGAGATAGCTGCACCAACACCGTCTGAGTTTCCCTCTGTCAACCCGGGGGTGAATGGGAAGGTGTCAGCCTGGTTA 
    87   D  S  Y  V  G  E  I  A  A  P  T  P  S  E  F  P  S  V  N  P  G  V  N  G  K  V  S  A  W  L  
 

   361  CAACAGACTCATGACCCAGACAGCTGTGCTCAAGAGCTGAACCGTTGTCAGTTGGAACTGTCTGAGCTGAACCGACTGGTCCGGAGGCTG 
   117   Q  Q  T  H  D  P  D  S  C  A  Q  E  L  N  R  C  Q  L  E  L  S  E  L  N  R  L  V  R  R  L  
 

   451  CAGTTGCTGGAAGGGGGCCAGCAGGCCTTCACCGACGGCGAGCTGCAGCGCATCATCAGCATGCAGAATCTCTCTCTTGAGAAACCCAAG 
   147   Q  L  L  E  G  G  Q  Q  A  F  T  D  G  E  L  Q  R  I  I  S  M  Q  N  L  S  L  E  K  P  K  
 

   541  AAGTCCAGGTCTTGCAAGATATGGGGTCACTCGCGCACAATGTCAAGGGTAGAGGCCCTTGGAATGGTAAGACAGCTGTCCTCTAGTCAC 
   177   K  S  R  S  C  K  I  W  G  H  S  R  T  M  S  R  V  E  A  L  G  M  V  R  Q  L  S  S  S  H  
 

   631  CTGAACAGCTCGTCCCAACTGGGTGCGTCTGTCCCCTCCCTTCAAGACTATGTCCCCGCCGTCCCGGACTATGTCTACTCCCAGCTGTCC 
   207  L  N  S  S  S  Q  L  G  A  S  V  P  S  L  Q  D  Y  V  P  A  V  P  D  Y  V  Y  S  Q  L  S  
 

   721  CCTCCCACCAACACCTCCCCAGAAGGCAGGAAGATCCAGCAGGACATCTGTAGCGTGTCCCAAAGAGTACACGCGTCCCTCAAGTCTGTG 
   237   P  P  T  N  T  S  P  E  G  R  K  I  Q  Q  D  I  C  S  V  S  Q  R  V  H  A  S  L  K  S  V  
 

   811  CATGATGCCTTGGCCCAGGAGCGTCAGAGACTGCAGGATACCTACCACCAATCAACCACACTGGCTGAGACTGTATCTGGGAACGAGTCC 
   267   H  D  A  L  A  Q  E  R  Q  R  L  Q  D  T  Y  H  Q  S  T  T  L  A  E  T  V  S  G  N  E  S  
 

   901  CGTCGCACGCCATCGGTGACAGACTCTGCAGCTGAGTATTTTGATGCGAGTGACGGTGTCCTGAATGGGAGCTTCTCTGAGTCTGAGTCT 
   297   R  R  T  P  S  V  T  D  S  A  A  E  Y  F  D  A  S  D  G  V  L  N  G  S  F  S  E  S  E  S  
 

   991  GGTCTGAGTGAAGGGACAACCAGCAACTCTGAACCTGAGGAAGGACATGCTTCAGCCACTCGTGAGTACCGTGCCAGCATCTCTAAGACT 
   327   G  L  S  E  G  T  T  S  N  S  E  P  E  E  G  H  A  S  A  T  R  E  Y  R  A  S  I  S  K  T  
 

  1081  CCCAACTGTGTCGTGCCCAAAAATACGGGCCGCCGTACCACCCTGGCCGCCCACTGCCCGGACAACGCCCAGGTGGGCCTGATGCAGATC 
   357   P  N  C  V  V  P  K  N  T  G  R  R  T  T  L  A  A  H  C  P  D  N  A  Q  V  G  L  M  Q  I  
 

  1171  CTCTATAACAACATAGGCAAGGACCTGTCCCGTGTCTCCATGCCTGCTGCTCTCAACGAGCCCATCAATCTGATGCAAAGACTGTGTGAG 
   387   L  Y  N  N  I  G  K  D  L  S  R  V  S  M  P  A  A  L  N  E  P  I  N  L  M  Q  R  L  C  E  
 

  1261  GAGCTTGAGTACTCTGAGCTGCTGGACACTGCCAACAACACACAAGACCCCTACCAGAGGATGGTCTACGTAGGTGCCTTTGCCATCTCT 
   417   E  L  E  Y  S  E  L  L  D  T  A  N  N  T  Q  D  P  Y  Q  R  M  V  Y  V  G  A  F  A  I  S  
 

  1351  GGCTATGCTACAGCTCACTACCGCAACCGCTACAAGCCCTTCAACCCACTCCTGGGGGAGACCTATGAATGTCTGAGAGAAGACAAGGGC 
   447   G  Y  A  T  A  H  Y  R  N  R  Y  K  P  F  N  P  L  L  G  E  T  Y  E  C  L  R  E  D  K  G  
 

  1441  TTCCGCTACATCAGTGAGCAGGTCTGCCACCACCCCCCCATCTCTGCGTGTCACGCAGACTCCGATAACTTCTCCTTCTGGCAGGACCAG 
   477   F  R  Y  I  S  E  Q  V  C  H  H  P  P  I  S  A  C  H  A  D  S  D  N  F  S  F  W  Q  D  Q  
 

  1531  CGGTGGAAGAATAAGTTCTGGGGGAAGTCACTGGAGATCATGCCAACAGGGATGGTGAATGTCACTCTCCCGAGGTTTGGGGACCACTAT 
   507   R  W  K  N  K  F  W  G  K  S  L  E  I  M  P  T  G  M  V  N  V  T  L  P  R  F  G  D  H  Y  
 

  1621  GAGTGGAACAAAGTGGTGACCTGCATCCATAATGTCCTGAGCCAGCAGCGCTACCTGGAGCACTATGGGGGAGGTCATCATCCGTAACCT 
   537   E  W  N  K  V  V  T  C  I  H  N  V  L  S  Q  Q  R  Y  L  E  H  Y  G  G  G  H  H  P  * 
 

  1711  CAACGGCAATGCGTGCACCTGTAAGATCACCTTCGTTAAGTCCCGCTATTGGGGGTCGGACACCAACAAGAATGAAGTGCAGGGCACCGT 
  1801  GCTCGACCAGACTGGGAGTGTTATCCACCGGTTTGGGGGGCTGTGGCATGAGGGGCATCTTCTGTGACACCTTGCCCACTCCACAGTGTA 
  1891  TCTGGAAAGCCAAATTCCCAGCCCAAGGACTACTACCTGTACTACGGCTTCTCAAGCTTCACACTAGAGCTGAACGAGCTCACCCCAGGC 
  1981  CTGAAGCCTCTTCTGCCCCCCACAGACTCACGCCTTCGTCCTGACCAGAGGATGCTGGAGGATGGGAGGGTGGATGACTGTGACAAGTTT 
  2071  AAAGAAGAAGTGGAAGACATGCAGAGGGAGCGGAGGAAACAACTGGCTAAGAAAGGACAGGAGCACACGCCGCGCTTCTTTAAGAAAGCC 
  2161  ATGGATTCCTCTGGGAGGGATGTGTGGCTGACCAATGGAACCTATTGGAAAGTCCGAGAGAACCCGGGCTTTGCTAACACCAAAAACCTG 
  2251  GAACTATGGTGAATAAACAGACCGACTGGGGCCATTTGTTGGAATTGGTGAAGGCATCGATGAACCGTCCTGAGGTCCCACCTTCCATCA 
  2341  TTGCCATCTGATTTGCACTCCCTCCCTGGCTGCTTCATGGGAAACCTCTGGGGAAAGTCTGGAAACGACTTGCATCCACTGAAACGTCAA 
  2431  GTTGAAAATAGTTCCCAGAATGTGTAGTGTCACCTGTTCCGCCACCTGGAAAGGATAAATAGACTTTTCTCTCATACTCGCATTTAGTCC 
  2521  ATTGCAATGTATTTATGGTCATTCCCCATTTGTGTACATTTATGTTATCCTGTCAAGATGTATTTGCTTTCTAGAGGGCTGGAAGTGTGA 
  2611  GGTTAATTTGCTCAGGTCAAGACATTTACTGTGACTAATCTTCAGATATTGTAAAGGTAGAAAAATGTGTATTTAATACTCCCGGAGCTC 
  2701  CTAACTCAATCTTTTTGCGTCATCACTCAATTTTCACACGTCTCTCTAAGTCATCTATGCATGATTTGTGGATCCTAAGTTAGGATTAAG 
  2791  CCCATTTTATGAATTATTGTTGAATCATATTTATTTCAGTGGCATTGGTGTGTTCAAACATTCCTTTCTCCTACCTGAGTGTTTTAGTAA 
  2881  GTCAAACAATTTGACATGGGAATGGAACCTATAACAGTCTGTCATTTAGGGTGCACATAAACTACTTTTTATAATGTAAGTGTTGTATTT 
  2971  TTGATTAGATTTTTAGTGAACAATAATAATGCTGTTACTTGTGATTTAACAAATTGCTCTTGAAAGGGGTTACCAAGGCAACTGGTTGCA 
  3061  TAATGAGTCTGTGTTAATAAAGTATATTTTATGATTGAGTATAATTAAATTATAATCAAGCTATACTTAATATCAACATGTCTAATATAC 
  3151  AGTACAATGGGTATGTGGGTATTATTCAGTTTATAATTTTGAGGTTGTCTTTTTTTTATTTTATTTTTTACTTTGGTTTGAGATTCAATT 
  3241  TAAACAGTTGTGATTATGAAATGTTAATTCATGAATAAAACACAGTAAAAGACAATTAAAGCCACCTTTTAATAAATTAAAAAAAAAAAA 
  3331  AAA 
  
Figure 1-2 Full-length cDNA and deduced amino acid sequences of rainbow trout OORP-T. The 
cDNA has an ORF encoding a protein of 564 amino acids. The protein contains a conserved oxysterol 
binding protein (OSBP) domain at the C terminus (shaded). Polyadenylation signals (AATAA) are 
shown in bold and the cytoplasmic polyadenylation elements (TTTTTAT) are both underlined and 
bolded. The cDNA sequence has been deposited in the NCBI database with the accession number: 
DQ630461. 
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Figure 1-3 Multiple alignment of the deduced amino acid sequence of rainbow trout OORP-T with 
members of human ORP subfamily 3 (hORP3: AY008315, hORP6: AF323728; ORP7, AF323729) by 
ClustalW analysis (http://www.ebi.ac.uk/clustalw). The PH domain is indicated by stars. The OSBP 
fingerprint domain is boxed. 
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Figure 1-4 Quantitative analysis of OORP-T mRNA expression during ovarian and embryonic 
development by real time PCR. A. Relative expression of OORP-T mRNA during ovarian 
development. Different stages of ovarian follicles analyzed include: early pre-vitellogenesis (Early 
pre-Vg), pre-vitellogenesis (Pre-Vg), early-vitellogenesis (Early-Vg), mid vitellogenesis (Mid-Vg) and 
late vitellogenesis (Late-Vg). B. Relative expression of OORP-T mRNA during embryonic 
development. Embryonic stages analyzed include day 0 (unfertilized eggs), 2, 7, 12, 16 and 22 
embryos. The quantity of OORP-T mRNA was normalized to trout histone H2A. The means of the 
normalized gene expression values for each stage of ovary/embryo were calculated and expressed as 
relative fold changes. Different letters indicate significant difference (P < 0.05). 
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Figure 1-5 Localization of OORP-T mRNA in ovarian follicles by in situ hybridization. Mid-
vitellogenic (A) and early-vitellogenic (C) ovarian section hybridized with DIG-labeled anti-sense 
RNA probe. B and D are ovarian sections (Mid and early vitellogenic ovary respectively) hybridized 
with sense RNA probe (negative control). Arrows in Fig. C indicate pre-vitellogenic oocytes. Bar = 
100 μm 
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Abstract 
Early embryonic development is a complex process that requires regulated 

expression of numerous genes. The maternal-zygotic transition (MZT) is the first major 

transition in early development leading to the activation of the embryonic genome. 

Effective transcription machinery, including transcription factors, must be available 

during the MZT for it to occur. Therefore, measuring the transcript abundance of key 

transcription factors, prior to and after MZT, can provide important clues about the roles 

of transcription factors in this process. In this study, we quantitatively measured mRNA 

abundance of 9 selected transcription factors (Figla, P300, YY1, HMGA1, HMGB1, 

HMGN1, ATF-1, TEAD2 and OCT-4) in unfertilized eggs and early stage embryos from 

day 1 through day 7 post fertilization using quantitative real time PCR. Our results 

demonstrate that significant amounts of mRNA for all transcription factors studied are 

present in unfertilized eggs and day 1 embryos, and the expression of all transcription 

factors reaches minimum levels in day 2 embryos. While some transcription factors 

remain at low levels of expression throughout later stages of development, others show 

significant increase of expression following embryonic genome activation. The 

expression patterns of these transcription factors are suggestive of their roles in MZT as 

well as in early development in rainbow trout. 
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Introduction 
Accumulation of maternal transcripts in the oocyte during its growth and final 

maturation is necessary to sustain life until the embryo develops its own machinery to 

meet subsequent transcriptional needs. This shift from stored maternal factors to 

synthesized embryonic signals is called the maternal-zygotic transition (MZT). It takes 

place in several bursts with a small scale initiation followed by global activation. Major 

activation occurs at the 1- to 2-cell stage in mice (Schultz 1993), 4- to 8-cell stage in 

humans (Telford et al. 1990) and 8- to 16-cell stage in cattle (Memili and First 1999). 

However in amphibians and teleosts, this transition takes place after 10-12 asynchronous 

cell cycles at the mid-blastula stage (Aizawa et al. 2003; Kane and Kimmel 1993; 

Newport and Kirschner 1982). Hence in teleosts and amphibians, this process is called 

the mid-blastula transition. The MZT is considered to be an important milestone in an 

embryo’s life and requires precise and timely coordinated expression of numerous genes.  

Initiation of transcription in transcriptionally silent embryos prior to the MZT 

requires factors involved in chromatin remodeling. Histone acetylation and de-acetylation 

have been shown to be key regulatory switches for transcription (Stein et al. 1997). In 

addition, proper chromatin architecture is necessary to facilitate transcription of selected 

genes. High Mobility Group (HMG) proteins are members of a unique family of gene 

regulatory proteins called architectural transcription factors (Grosschedl et al. 1994) and 

HMG activity is suspected to produce a transcription-friendly conformation of the 

chromatin (Bianchi and Beltrame 2000). Once the chromatin conformation permits the 

access of transcription factors, these factors must be present to initiate the transcription. 

They may act either by influencing RNA polymerase II or by binding to promoters of 

downstream genes. Some transcription factors are specific to particular genes, while 
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others are general transcription factors promoting transcription of a set of downstream 

genes.  

Transcription factors play important roles in many biological processes. Early 

embryonic development is a complex process that involves timely and quantitative 

control of gene transcription. The importance of transcription factors in embryonic 

development has been demonstrated in several previous studies (Fujiwara et al. 1996; 

Koutsourakis et al. 1999; Marin et al. 1997). In rainbow trout (Oncorhynchus mykiss), the 

developmental expression pattern of an important transcription factor, FoxF1, has been 

described (Hidaka et al. 2004). However, quantitative measurements of gene expression 

profiles of transcription factors during rainbow trout embryonic development have not 

been reported. In this study, we evaluated 9 selected transcription factors for their 

expression patterns during early embryonic development in rainbow trout. These factors 

were chosen based on their suspected roles in early transcription during embryogenesis 

(Table 1). Quantitative real time PCR was used to determine the relative mRNA 

abundance of these transcription factors in unfertilized eggs and embryos of day 1 

through day 7 post fertilization. Our results show that all embryonic stages observed 

contain detectable amounts of mRNA for all transcription factors studied, and 6 

transcription factors (Figla, P300, YY1, HMGA1, ATF1 and OCT-4) share similar 

expression patterns while the other 3 (HMGB1, HMGN1 and TEAD2) show another 

pattern of expression. This study represents the first attempt to determine the expression 

of key transcription factors in rainbow trout early embryos and indicates possible roles of 

transcription factors in and around the MZT during early embryogenesis in rainbow trout. 
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Materials and methods 
Animals and embryos 

Fishes were reared under standard farming conditions. Rainbow trout eggs from a 

commercial farm were fertilized and incubated at 13 ºC in a flow through system using a 

12 h light cycle. Unfertilized eggs (day 0) and developing embryos were collected at day 

1, 2, 3, 4, 5, 6 and 7 post-fertilization. All samples were quick frozen in liquid nitrogen 

and stored at -80oC until RNA extraction. 

RNA and cDNA preparation 

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA) according to 

manufacturer’s protocol. Total RNA was treated with DNase (Promega, Madison, WI) to 

avoid genomic DNA contamination. Two µg of DNAse-treated total RNA from each 

stage (n=5 pools, 5 embryos/pool) were converted to cDNA using Superscript II reverse 

transcriptase (Invitrogen, Carlsbad, CA).  

Quantitative real time PCR 

Quantitative real time PCR was carried out as described (Ramachandra et al. 

2007). Briefly, primers were designed based on the corresponding cDNA sequences in 

TIGR database (http://compbio.dfci.harvard.edu/tgi/) using Primer3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and listed in Table 2-2. Two 

µg of DNAse-treated total RNA from each embryonic stage (n=5 pools, 5 embryos/pool) 

were converted to cDNA using Superscript II reverse transcriptase (Invitrogen, Carlsbad, 

CA). Quantitative PCR was carried out using the Bio-Rad iCycler iQ Real-Time PCR 

Detection System using iQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA). 

Standard curves for all genes and an endogenous control (Histone H2a) were constructed 
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using 10 fold serial dilutions of the corresponding plasmid. The quantity of each gene 

was divided by the quantity of the control gene to obtain a normalized value. The 

expression of transcription factor mRNA was then expressed as relative fold changes. 

Specificity of amplification is confirmed by melt curve analysis using iCycler software 

(Bio-Rad). Histone H2A was chosen as the endogenous control as it shows stable 

expression during rainbow trout embryonic development (data not shown). This gene has 

also been reported to be consistently expressed in bovine embryos during early 

development (Robert et al. 2002).  

Statistical analysis 

One-way analysis of variance (ANOVA, Tukey’s HSD comparison) and paired t-

test were performed on normalized gene expression values using JMP 5.1 (SAS Institute, 

Cary, NC). Differences between groups were reported significant (denoted by a different 

alphabet in figures) with confidence level of 95% (p=0.05).  

Results and discussion 
Our real time PCR data show that detectable quantities of mRNA for all 

transcription factors studied are present in unfertilized eggs and all embryonic stages 

(Fig. 2.1 and Fig. 2.2). Significant amounts of mRNA for all transcription factors are 

present in unfertilized eggs and day 1 embryos, and the expression for all transcription 

factors reaches minimum levels in day 2 embryos. Of the 9 transcription factors studied, 

Figla, P300, YY1, HMGA1, OCT-4 and ATF-1 show similar patterns of expression, i.e. 

they remain at low levels of expression throughout the late stage development following 

the decrease in day 2 embryos (Fig. 2.1), whereas the other 3 transcription factors, 
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HMGN1, HMGB1 and TEAD2, show increased expression in late stage embryos 

following the drop in day 2 embryos (Fig. 2.2).  

The presence of abundant maternal transcripts for the transcription factors in 

unfertilized mature eggs could mean that these transcription factors play a role during the 

initial development prior to the MZT. The mRNA levels for all genes start to decline in 

embryos 2 days post-fertilization, which is the expected time of mid-blastula transition in 

rainbow trout. Recruitment of the mRNA by the translation machinery and subsequent 

degradation could be the explanation for reduction of mRNA in day 2 embryos.  

Figla is a germ cell specific transcription factor (Huntriss et al. 2002; Liang et al. 

1997) which is required for ovarian follicle formation (Soyal et al. 2000). Expression of 

this gene in embryonic development has not been reported in other species. Although the 

role of this factor in late stage development of embryos is not clear, the presence of 

abundant transcripts of this gene in unfertilized eggs and day 1 embryos leads us to 

believe that this gene might be involved in embryonic genome activation in addition to its 

known function in folliculogenesis and zona pellucida formation. P300, YY1, HMGA1 

and OCT-4 are all important transcription factors involved in many biological processes. 

P300 has acetyltransferase activity and helps in making the tightly packed chromosome 

accessible for transcription factors (Vo and Goodman 2001). YY1 is a multifunctional 

protein with four zinc fingers at the C-terminus and it activates transcription by binding 

to many other factors (Donohoe et al. 1999; Lee et al. 1993a). OCT-4 is implicated in 

maintaining the pluripotency of embryos (Morrison and Brickman 2006). HMGA1 is a 

member of HMGA proteins that participate in a wide variety of nuclear processes and act 

as architectural transcription factors that regulate the expression of numerous genes 
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(Reeves 2001). In rainbow trout, although the mRNA levels for these 4 genes did not 

reach the levels in the unfertilized eggs and day 1 embryos following embryonic genome 

activation (day 2), they maintained steady levels of expression throughout the late stages 

of development (Fig. 2.1). In a bovine study, characterizing the expression patterns of 

multiple transcription factors during early embryogenesis, Vigneault et al. (2004) 

demonstrated that the expression of these 4 transcription factors was at the lowest levels 

in 8-cell stage embryos, which is the expected time of embryonic genome activation in 

cattle. Our data is in good agreement with this finding showing the lowest mRNA levels 

for these factors in day 2 embryos, the estimated time of the MZT in rainbow trout. The 

expression pattern of ATF-1 is rather unique compared to the patterns of other factors 

during early embryonic development in cattle (Vigneault et al. 2004). It shows no 

significant decrease at the 8-cell stage and maintains the same level of expression before 

and after MZT. This expression pattern for ATF-1 was not observed in rainbow trout. 

Inherent differences between mammals and teleosts could explain this discrepancy. 

However, the use of in vitro produced embryos in the bovine study could also be a source 

of variation since differences do exist between in vivo and in vitro derived embryos 

(Lonergan et al. 2003a; Lonergan et al. 2003b). 

Both HMGN1 and HMGB1 are non-histone chromosomal proteins that facilitate 

transcription through relaxing the compaction of chromatin (Bianchi and Beltrame 1998; 

Bustin 2001). TEAD2 is a member of the highly conserved TEAD/TEF transcription 

factor family and is expressed in mouse embryos immediately after fertilization (Kaneko 

et al. 1997). The expression of these 3 genes increases in rainbow trout early embryos 

following the decrease during MZT. Apparently, they are derived from zygotic 

 46



 

transcription and presumably play a role in activating transcription of other genes during 

late development of the embryos. Increased expression for these 3 genes in bovine 

embryos following embryonic genome activation has also been observed (Vigneault et al. 

2004). 

In summary, we have shown that abundant amounts of mRNA for all 9 

transcription factors examined in this study are present in mature rainbow trout oocytes 

and embryos prior to MZT, suggesting that maternal transcripts for transcription factors 

are stored in mature oocytes and translated when needed for the MZT. Significant 

amounts of mRNA for 8 of the 9 transcription factors (all except for Figla) are found in 

early embryos (day 3 to day 7) following embryonic genome activation, suggesting that 

they continue to play a role during early embryogenesis after the embryonic genome is 

activated.  
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Tables and figures 
 
Table 2-1 . Relevant information about transcription factors evaluated 
Gene 
Name Relevance in this study References 

Figla 
Germline specific transcription factor known to 
regulate zona pellucida genes. So far attributed only to 
folliculogenesis and zona pellucida formation. 

(Liang et al. 1997; 
Soyal et al. 2000)  

P300 
Structurally related to CREB binding protein (CBP). 
Co-activates transcription by binding to hundreds of 
other transcription factors 

(Vo and 
Goodman 2001) 

YY1 
Transcriptional activator. Binds to many other factors 
to enhance transcription. Its localization from 
cytoplasm to nucleus is correlated to MZT in mice. 

(Lee et al. 1993a), 
(Donohoe et al. 
1999) 

HMGN1 

Non-histone chromosomal protein called architectural 
protein. When bound to chromatin, they reduce 
compaction facilitating transcription. Knock down in 
mice delays development and reduces total RNA 
production. 

(Bustin 2001; 
Bustin et al. 1995; 
Mohamed et al. 
2001) 

HMGA1 

Another architectural protein that bind to AT rich 
regions of chromatin. Recruits transcription initiation 
machinery to transcription initiation site by forming 
huge complexes. 

(Reeves and 
Beckerbauer 
2001) 

HMGB1 
Non-histone chromosomal protein that binds linker 
DNA between nucleosomes and disrupts the chromatin 
by inducing sharp bends that facilitate transcription. 

(Bianchi and 
Beltrame 1998) 

TEAD2 
Contains a conserved TEA DNA binding domain and 
is expressed at high levels during pre-implantation 
development in mice. 

(Kaneko et al. 
1997) 

ATF-1 
Related to CREB both structurally and functionally. 
Responds to various growth factors to promote 
transcription. 

(Hai and Hartman 
2001) 

OCT-4 
Correlated to pleuripotency of cells and it has also 
been shown to participate in the expression of 
numerous pluripotent cell genes  

(Ovitt and Scholer 
1998)  
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Table 2-2 Primers used for quantitative real time PCR 

Gene 
Name 

TIGR TC 
number Primer Sequence 

Product 
Length 

(bp) 

Figla TC72755 For 5’-GCAACTTCTGATGGGATGTGT-3’ 133 Rev 5’- CTCCAAACCCTGTAGTCACCA-3’ 

P300 TC88246 For 5’ -AGTCCTTTCCCTACAGGACGA-3’ 99 Rev 5’ –CTGAACCGTACTCCTGCACAT-3’ 

YY1 TC93486 For 5’ –CTATGGAGGGGGAATTCTCTG-3’ 139 Rev 5’ –AGCTTCTTCCCCGTCATGTAT-3’ 

HMGN1 TC70379 For 5’ –ATCCTCCATCTGGTTGGTCTT-3’ 127 Rev 5’ –AGAGAAGGCTGTGAACGACAA-3’ 

HMGA1 TC82112 For 5’ –GTATGGAGCGGGACATGAGTA-3’ 92 Rev 5’ –CCTCTGCTTCTTCCCAAACTC-3’ 

HMGB1 TC86880 For 5’ – CTCTGCAGCTGAGGAGAAGAA-3’ 110 Rev 5’ – AGGCCGTATCCACTCTACCAT-3’ 

TEAD2 TC80298 For 5’ –GGAGTATGCACGGTTTGAGAA-3’ 109 Rev 5’ –CTTCTCTGGCAGGTGTTTGAG-3’ 

ATF-1 TC71207 For 5’ –TGGTCATGACTTCCCCTGTAG-3’ 150 Rev 5’ –CCACACGATTCTCCAGACATT-3’ 

OCT-4 TC85975 For 5’ –CTTTTTCTGCCTGCAGATGTC-3’ 112 Rev 5’ –GTATGGGTGTGTTTGCATGTG-3’ 
Histone 
H2a TC85036 For 5’ –TCCCCAAGAAGACTGAGAAGG-3’ 114 Rev 5’ –TTTGTTGAGCTAGGTGGTTGG-3’ 
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Figure 2-1 Relative abundance of Figla (A), P300 (B) and YY1 (C), HMGA1 (D), OCT-4 (E) and 
ATF-1 (F) mRNA in rainbow trout unfertilized eggs (day 0) and embryos from day 1 through day 7 
post fertilization. The mRNA levels for each gene were normalized to Histone H2a. The means of the 
normalized gene expression values for each stage of embryo were calculated and expressed as 
relative fold changes (mean ± S.D., n=5). Different letters indicate significant difference between 
groups (P < 0.05). 
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Figure 2-2 Real time PCR analysis of relative abundance of HMGN1 (A) HMGB1 (B) and TEAD2 
(C) mRNA in rainbow trout unfertilized eggs (day 0) and embryos from day 1 through day 7 post 
fertilization. The mRNA levels for each gene were normalized to Histone H2a. The means of the 
normalized gene expression values for each stage of embryo were calculated and expressed as 
relative fold changes (mean ± S.D., n=5). Different letters indicate significant difference between 
groups (P < 0.05). 
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Abstract 
Current literature and our results on expression pattern of oocyte specific genes 

and transcription factors suggest a global but highly regulated maternal mRNA 

degradation at the time of embryonic genome activation (EGA). We hypothesized that 

microRNAs (miRNAs), naturally occurring 19-21bp long post-transcriptional regulators, 

are involved in this degradation process. We analyzed the expression pattern of dicer, an 

enzyme required for the processing of microRNAs. Dicer is abundantly expressed until 

24 hours post-fertilization and gets down-regulated afterwards. This supports the 

hypothesis that dicer processes mature miRNAs during these stages and these miRNAs in 

turn degrade maternal mRNAs. To identify candidate microRNAs involved in this 

process, we constructed a miRNA library from a pool of oocytes and early stage embryos 

stages (0 hour post-fertilization through 72 hours post-fertilization). Sequencing analysis 

of clones showed that there are at least 15 miRNAs expressed during these stages, 4 of 

which are novel to rainbow trout. We carried out quantitative real-time PCR to learn 

more about their expression pattern. Our results show that microRNAs miR-100t, miR-

21t, miR-21, miR-23, miR-26 and miR-92a are up-regulated when maternal RNAs are 

degraded. Stat3, a transcription factor which is involved in activating the transcription of 

microRNAs is also abundantly expressed in early rainbow trout embryos. Taken together, 

these results and literature on functions of stat3 indicate that up-regulated microRNAs, 

some induced by stat3, could be responsible for degradation of maternal mRNAs in early 

embryos. 
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Introduction 
The embryo remains dependent on maternally stored mRNAs for its 

transcriptional needs until its own transcription machinery is functional. The time of this 

transcriptional independence, called embryonic genome activation (EGA), varies greatly 

with species. While it occurs by the 2 cell stage in mice (Bolton et al. 1984), it does not 

take place until mid-blastula in teleosts (Kane and Kimmel 1993) and amphibians (Slevin 

et al. 2005). There could be at least three reasons why the embryonic genome is not able 

to transcribe mRNAs before EGA namely (i) Epigenetic and chromatin mediated 

repression, (ii) insufficient transcription machinery and (iii) lack of sufficient time for the 

chromosome to transcribe while it is undergoing rapid cell divisions (Schier 2007). In 

fish, the maternal-zygotic transition is characterized by asynchronous cell division, 

lengthening of cell cycles and cell motility (Kane and Kimmel 1993). After this 

activation, the embryo becomes increasingly dependent on its own transcription to 

exhaust maternally derived mRNAs. It was recently shown that it is critical to degrade 

inherited mRNAs to achieve normal morphogenesis and morphogenesis is delayed if 

maternally derived mRNAs are not degraded (Giraldez et al. 2006). So, it seems 

reasonable to expect a tightly controlled regulatory mechanism in nature to degrade 

maternal mRNAs at the time of embryonic genome activation. 

We previously showed that several transcription factors (Ramachandra et al., 

2007 unpublished) and oocyte specific genes (Ramachandra et al. 2007) are degraded 

during/around the time of embryonic genome activation in rainbow trout. Apart from the 

involvement of Tata binding protein (TBP) during the activation of mRNA degradation 

machinery at the maternal-zygotic transition (Ferg et al. 2007), our knowledge about 

other requirements are limited. Mechanisms by which this degradation is accomplished 
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had escaped scientific attention until recently. It was shown by Giraldez et al. (2006) that 

microRNA miR-21 are involved in this activation of degradation process. 

MicroRNAs are small, 19-23 bp long non-coding RNAs that bind to their 

respective recognition sequence on 3’ un-translated region (UTR) of an mRNA and direct 

it to either degradation in the case of high complimentarity or translational repression in 

the case of partial complimentarity (Cullen 2006). Interestingly, a microRNA can bind to 

its recognition sequence on the 3’ UTR of up to 200 genes and each mRNA could have 

recognition sequence for more than one microRNAs (Wienholds and Plasterk 2005). The 

microRNA model is well suited to explain maternal mRNA degradation because 

microRNAs degrade mRNAs in a specific and large scale manner which is the case in 

EGA. The absence of all microRNAs caused by the deficiency of Dicer, an enzyme that 

is required for processing microRNAs, results in severe early embryonic deformities and 

faulty brain morphogenesis (Giraldez et al. 2006). The same study also showed that miR-

430 rapidly de-adenylates maternal mRNAs resulting in their degradation. However, 

when maternal zygotic dicer mutants were injected with miR-430, the brain 

morphogenesis phenotype was not completely recovered indicating that there could be 

other microRNAs involved in this process. 

Due to the lack of genomic information in rainbow trout and to avoid errors 

caused by computational algorithms, we designed this experiment to identify and 

characterize all microRNAs potentially regulating this degradation process during these 

embryonic stages in rainbow trout. Here we present data to show that dicer, and several 

microRNAs are abundantly expressed at the time of maternal mRNA degradation. Signal 

transducer and activator of transcription3 (Stat3), which activates transcription of 
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microRNAs is also abundant in these stages indicating its role in inducing microRNA 

expression and thereby directing maternal mRNAs for degradation. 

Materials and methods 
Animals and embryos 

Fishes were reared under standard farming conditions. Rainbow trout eggs from a 

commercial farm (Laurel Hill Trout farm, Somerset, PA) were fertilized and incubated at 

13ºC in a flow through system using a 12 h light cycle. Unfertilized eggs (0 hours post-

fertilization-hpf) and developing embryos were collected at 12(4-8 blastomeres), 24 

(blastodisc formation), 36 (onset of interphase lengthening), 48 (blastoderm thickening) 

and 72 (blastoderm flattening) hours post fertilization and frozen in liquid nitrogen and 

stored at -800C until total RNA isolation. 

Quantitative Real-time PCR for dicer and stat3 

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA) as instructed by 

the manufacturer. Total RNA was used as template for quantitative real time PCR as 

described before (Ramachandra et al. 2007).  Primers were designed based on the 

CoreNucleotide sequence (AY523839 for Dicer and U60333 for Stat3) in NCBI database 

(http://www.ncbi.nlm. nih.gov/) using Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi -dicer forward: AGG AGG CAG TGC TAC CCT AAA, 

dicer reverse: AAG TTG AGT TCG TCA GGC AGA, stat3 Forward GCT GGA CAA 

CAT CAT TGA CCT and stat3 reverse GTG ACT GCC TCC CTC CTT ACT). Two µg 

of DNAse-treated total RNA from each embryonic stage (n=5 pools, 5 embryos/pool) 

were converted to cDNA using Superscript II reverse transcriptase (Invitrogen, Carlsbad, 

CA). Quantitative PCR was carried out using Bio-Rad iCycler iQ Real-Time PCR 
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Detection System using iQ™ SYBR® Green Supermix (Bio-Rad, Hercules, CA). 

Standard curves for dicer/stat3 and endogenous control (Histone H2a) were constructed 

using 10 fold serial dilutions of the cDNA pool. The quantity of dicer/stat3 was divided 

by the quantity of the control gene (Histone 2A- forward: TCC CCA AGA AGA CTG 

AGA AGG and reverse: TTT GTT GAG CTA GGT GGT TGG- TC85036 in TIGR 

database- www.tigr.org) to obtain a normalized value. The expression of dicer/stat3 

mRNA was then expressed as relative fold changes. Specificity of amplification is 

confirmed by melting curve analysis using iCycler software (Bio-Rad, Hercules, CA). 

MicroRNA Cloning 

Total RNA was isolated using TRIzol™ (Invitrogen, Carlsbad, CA) using 

manufacturer’s instructions. Total RNA from oocyte (0 hours post-fertilization) and early 

embryos (12, 24, 36, 48, 72, 96 and 120 hours post-fertilization) were pooled. A small 

RNA cloning kit, miRCat™ (IDT DNA, Coralville, IA), was used with some 

modifications for cloning microRNAs (fig 3.1). In brief, 500µg of total RNA was size 

fractionated using 12% denaturing polyacrylamide gel electrophoresis (PAGE) as 

described by (Sambrook and Russell 2001a). Excised gels were homogenized in water 

and heated for 15 minutes at 70oC to solubilize small RNA and a 3’ linker (5’ 

phosphorylated) was ligated to the small RNA fraction in the absence of ATP. This was 

again size fractionated using 12% PAGE and 5’ linkers were ligated in the presence of 

ATP.  This mixture was then reverse transcribed using a primer on a 3’ linker and PCR 

amplified using primers on both linkers. Amplified products were Ban I digested and 

concatemerized and polished with taq polymerase and TA-cloned using TOPO TA 

cloning kit (Invitrogen, Carlsbad, CA). Transfected bacterial cells were plated and grown 
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overnight. Individual colonies were picked and screened for presence of insert using 

colony PCR. Clones with inserts were sequenced and sequence data was analyzed by 

BLAST search on Sanger database (http://microrna.sanger.ac.uk/) and named based on 

the homology to published microRNAs based on the universal nomenclature (Ambros et 

al. 2003).  

Quantitative Real-time PCR for microRNAs 

Total RNA was prepared using TRIzol™ (Invitrogen, Carlsbad, CA) according to 

manufacturer’s instructions. The expression of microRNAs during early embryonic 

development was measured using quantitative real-time PCR. Two µg of DNAse-treated 

total RNA from each embryonic stage (n=5 pools, 5 embryos/pool) were added with 

several As using polyA polymerase and then converted to cDNA using an oligo dT 

anchored reverse primer (NCode™ miRNA First-Strand cDNA Synthesis and qRT-PCR 

Kits, Invitrogen, Carlsbad, CA). Real-time PCR primers for the microRNAs are tabulated 

in table 1. Histone H2A was used as endogenous control gene, (forward: TCC CCA AGA 

AGA CTG AGA AGG and reverse: TTT GTT GAG CTA GGT GGT TGG) (rainbow 

trout histone H2A: TC85036 in TIGR database- www.tigr. org). All primers were 

designed using Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi). Quantitative PCR was performed in duplicate for each 

cDNA sample on a Bio-Rad iCycler iQ Real-Time PCR Detection System using 

NCode™ miRNA qRT-PCR Kit (Invitrogen, Carlsbad, CA) or iQ™ SYBR® Green 

Supermix (Bio-Rad, Hercules, CA) in 25-µl reaction volumes containing 300 nM of each 

primer and cDNA derived from 0.1 µg of total RNA. Standard curves for all microRNAs 

and the endogenous control were constructed using 10 fold serial dilutions of a pool of 

 58



 

cDNAs from all stages. Standard curves were run on the same plate with the samples. 

Threshold lines were adjusted to intersect amplification lines in the linear portion of the 

amplification curve and cycles to threshold (Ct) were recorded. For each sample, the 

quantity of microRNA and the reference gene mRNA (histone H2A) was determined 

from the appropriate standard curve. The quantity of microRNA was then divided by the 

quantity of the reference gene to obtain a normalized value.  

Statistical analysis 

One-way analysis of variance (ANOVA, Tukey’s HSD comparison) and paired t-

test were performed on normalized gene expression values using JMP 5.1 (SAS Institute, 

Cary, NC). Differences between groups were reported significant (denoted by a different 

alphabet in figures or a star [*] if one group is significantly different from all others) with 

confidence level of 95% (p=0.05). The expression of microRNAs was then expressed as 

relative fold changes. 

Bioinformatics analysis 

Sequences were analyzed for any homology to published microRNAs by doing 

BLAST search in the Sanger database (microRNA.sanger.ac.uk). Multiple sequence 

alignments were carried out using BioEdit (http://www.mbio.ncsu.edu/BioEdit/ 

bioedit.html). 

Results and discussion 
Expression pattern of Dicer 

Dicer is the RNase III enzyme with two catalytic subunits (Bernstein et al. 2001; 

Bernstein et al. 2003) involved in processing of all microRNAs (Bernstein et al. 2003; 

Yang et al. 2005). Since processing of all microRNAs requires Dicer, if our hypothesis 
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that microRNAs are involved in maternal mRNA degradation during early embryonic 

development was true, dicer must be present during these stages. So we decided to 

investigate the expression pattern of dicer in rainbow trout during early embryonic 

development. We found that dicer is abundantly expressed in embryos until the early 

blastula stage (24 hours post-fertilization) as shown by real-time PCR in Fig 3.2. Like all 

other maternally inherited mRNAs (Bashirullah et al. 1999; Hamatani et al. 2004; 

Vigneault et al. 2004), dicer gets down-regulated at the time of mid-blastula transition 

(between 24 and 48 hours post-fertilization- fig 3.2). The fact that dicer is present at the 

time of degradation of maternal mRNAs suggests that microRNAs are processed at that 

time and thus they may be involved in the degradation of maternal mRNAs.  

Giraldez et al. (2005) showed that Dicer regulates brain morphogenesis in 

zebrafish through the action of microRNAs (Giraldez et al. 2005). The same study also 

showed that the deformities begin approximately at mid-blastula which is the time when 

embryonic genome activation takes place in zebrafish (Giraldez et al. 2005; Kane and 

Kimmel 1993). In the case of mice, dicer deficient mice embryos start to show 

deformities as early as 1 cell stage (Tang et al. 2007; Yang et al. 2005). Interestingly in 

mice, embryonic genome activation takes place at 1-2 cells stage (Bultman et al. 2006). 

Based on all these observations it is clear that degradation of maternal mRNAs is 

essential for embryonic genome activation (Giraldez et al. 2006; Weigel and Izaurralde 

2006) and microRNAs are involved in this degradation (Bernstein et al. 2003; Giraldez et 

al. 2005; Giraldez et al. 2006; Tang et al. 2007; Yang et al. 2005).  

The deformities caused by absence of all microRNAs (due to the lack of their 

processing enzyme Dicer) are rescued to some extent if one microRNA, miR-430a is 
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injected into embryos (Giraldez et al. 2005).  However, the phenotype is not quite 

rescued completely indicating that other microRNAs are also required for normal 

embryonic development (Giraldez et al. 2005). Therefore we constructed a microRNA 

library from a pool of oocytes and early embryos to identify other candidate microRNAs 

involved in this process. 

MicroRNA library construction and sequencing 

We are the first to characterize microRNAs in rainbow trout. A schematic 

diagram of the method used to construct miRNA library is depicted in fig 3.1. Out of 150 

clones sequenced, 32 clones had significant similarities with published microRNAs 

(Sanger database Version 10.0 (Griffiths-Jones et al. 2006)). All names were assigned 

based on the homology between the cloned sequence and published microRNA 

sequences in the Sanger database (table 3.1) using internationally accepted uniform 

nomenclature (Ambros et al. 2003). Fifteen unique microRNAs were identified from 

rainbow trout that were conserved across several species (table 3.1). Four microRNAs 

were novel in rainbow trout in that their sequence had high homology with published 

microRNAs but differed in at least 1 base pair. Since we obtained more than one copies 

of the same sequence in the library, it is highly unlikely that these are sequencing errors 

so we annotated them as omy-miR-100t, omy-miR-21t, omy-miR-125t and omy-miR-

126t (omy standing for onchorynchus mykiss and names end with t for trout, Table 3.1 

and fig 3.3). These microRNAs that are specific to the rainbow trout (omy-miR-100t, 

omy-miR-21t, omy-miR-125t and omy-miR-126t) are of special interest because of their 

unique sequence and possibly unique targeting mechanisms. These miRNAs differ in at 

least one base pair and this difference might have profound impact on target recognition 
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and post-transcriptional regulation. Omy-miR-21t has G to A mismatch with miR-21 of 

cows at position 16 but this mismatch seems to be common to all fishes (miR-21 of 

zebrafish, fugu and pufferfish, see fig 3.3a). MiR-21 from all these three fishes are 23bp 

long whereas in humans and mice, miR-21 is only 22bp long. However, the A to G 

mismatch between trout and other fishes at position 22 is absent between trout and 

mammals (fig 3.3a). In case of omy-miR-100t, there is a U to C single base pair 

mismatch at position 17 and this seems to be specific to rainbow trout (fig 3.3b). So is the 

case with omy-miR-125t, only that the mismatch is C to U at positions 11 and 12 (fig 

3.3c). Presence of closely related miR-125b identical to miR-125b of other species (table 

3.1), and 125t which is specific to rainbow trout, suggests another layer of complexity in 

post-transcriptional regulation by microRNAs. Omy-miR-126t sequence is identical to 

that of chicken, mammals and fish up to position 20, but has an A to G one-base pair 

mismatch at position 21 as compared to chicken miR-126 (fig 3.3d). These mismatches 

may not have profound influence on target recognition and mRNA degradation because 

they are not in the seed sequence (first 6-8bp from 5’ end) but they are likely to fine-tune 

the expression of their targets (Brennecke et al. 2005). 

Expression pattern of microRNAs 

 Despite our repeated efforts, we were able to amplify only 6 microRNAs out of 

15 microRNAs cloned from rainbow trout oocytes and embryos using quantitative real-

time PCR. Nine other microRNAs were presumably too low in abundance to be detected 

by real-time PCR. 

Out of 4 microRNAs that are novel in rainbow trout (omy-miR-21t, omy-miR-

100t my-miR-125t and omy-miR-126t), only omy-miR-21t and omy-miR-100t could be 
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amplified using real-time RT-PCR. Both of these two novel microRNAs have a similar 

expression pattern (fig 3.4a and 3.4b for miR-100t and miR-21t respectively). Abundance 

increases from 0 hours post-fertilization until 24 hpf and decreases and stays low 

thereafter. A significant increase in abundance during early embryonic development 

suggests an important role in the early development of rainbow trout.  

Omy-miR-21 was the most abundant microRNA in our library. The expression 

pattern of this miRNA supports the hypothesis that several microRNAs might be 

involved in degradation of maternal effect genes during early embryonic development 

(fig 3.4c). This pattern is in agreement with that of the zebrafish embryos at similar 

developmental stages (Chen et al. 2005). MiR-21 is one of the most ubiquitous 

microRNAs being implicated as an anti-apoptotic factor (Chan et al. 2005; Si et al. 2007) 

and an oncogene (Zhu et al. 2007). Suppression of miR-21 causes down-regulation of 

apoptosis related proteins like bcl2 leading to increased apoptosis (Si et al. 2007). 

However in HeLa cells, inhibition of miR-21 causes a profound increase in cell growth 

(Cheng et al. 2005). Rapidly dividing embryos mimic cancer cells but in rainbow trout, 

miR-21 is down regulated when the active large scale division begins (fig 3.4c). It is 

possible that expression of miR-21 is essential to coordinate the cell division/cell growth 

in early embryos. High abundance of miR-21 at the time of maternal mRNAs degradation 

supports our initial hypothesis. 

 MiR-23 is known to target important genes in neuronal development (Kawasaki 

and Taira 2003). It is present in adult fish tissues and frog ovaries (Lagos-Quintana et al. 

2001) and neuronal cells (Smirnova et al. 2005). Mir-23 is also known to down-regulate 

cell growth when inhibited in cell lines (Cheng et al. 2005). In rainbow trout embryos, 
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miR-23 is abundantly expressed up to 24 hours post fertilization but is down regulated 

afterwards (fig 3.4d). With limited understanding of the functions of this microRNA in 

early embryonic development, the importance of this pattern is not clear. Nevertheless, 

miR-23 follows the characteristic up-regulation of microRNAs at the time of embryonic 

genome activation. 

The transcript level of miR-26 is abundant only at 12 hpf indicating a specific role 

for this miRNA at a small window during development (fig 3.4e). MiR-26 is induced 

under hypoxic conditions and reduces pro-apoptotic signals (Kulshreshtha et al. 2007). 

Expression of miR-26 gains relevance because fish eggs undergo fertilization and 

embryonic development in aquatic environments where dissolved oxygen is often in short 

supply, Mir-26 also produces caspase inhibitory effects (Fabbri et al. 2007) which could 

have important consequences in early metabolism of stored glycoproteins in trout 

embryos. 

Mir-92 is previously shown to be ubiquitously expressed in adult tissues and 

embryonic stem cells indicating that it controls some basic cell functions common to 

stem cells and other adult tissues (Houbaviy et al. 2003). Expression of miR-92 is 

universal in early fish embryos and becomes restricted to highly proliferative tissues late 

in development (Ason et al. 2006). Polycystronic expression of miR-17-92 is associated 

with some types of cancers (He et al. 2005; Venturini et al. 2007). Transgenic over-

expression of this cluster promotes cell proliferation and prevents differentiation in lung 

epithelial progenitor cells (Lu et al. 2007). In rainbow trout, the expression of miR-92 is 

relatively high at 12 hours post-fertilization, which is the time of the first few divisions 
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(fig 3.4f). We suggest that miR-92 is involved in making an embryo competent of 

proliferation and it might also play a role in keeping these early cells un-differentiated. 

Expression pattern of stat3 

It was recently shown that activation of microRNA-21 is necessary for the 

survival of myeloma cells (Loffler et al. 2007). This induction is mediated by a conserved 

enhancer and signal transducer and activator of transcription 3 (stat3) is involved in this 

process. Stat3 proteins are transcription factors that virtually activate transcription and 

they become functional with tyrosine phosphorylation by various cytokines (Bromberg 

and Chen 2001; Kretzschmar et al. 2004). Expression of miR-21 is indirectly but strictly 

dependent on stat3 (Loffler et al. 2007). In rainbow trout, stat3 transcript level is 

abundant when the miR-21 begins to accumulate as shown in figure 3.4c and 3.5. 

Between 24 and 48 hours post-fertilization, the abundance of stat3 transcripts decrease 

and so does the miR-21 abundance (Fig 3.4c). It is possible that stat3 is involved in 

activation of other microRNAs and thereby regulating degradation of maternal mRNAs 

in early embryos.  

Conclusions 
In this study we present cloning and expression pattern of microRNAs from 

rainbow trout. Four novel microRNAs are reported here emphasizing species specific 

distribution and potential functions of microRNAs. We were able to amplify all six 

microRNAs at 12-24 hpf consistent with a role in degradation of maternal mRNAs. Stat3 

is also abundantly expressed at the time of expression of microRNAs in rainbow trout 

embryos indicating a possible role for stat3 in early embryonic development. Therefore 

we suggest that the activation of stat3 leads to the activation of several microRNAs, 
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including miR-21. We also conclude that these microRNAs play a major role in 

degrading maternal mRNAs at the time of embryonic genomic activation. 



 

Table and figures 
Table 3-1 Rainbow trout microRNAs. Sequences, length, primers used for real time PCR and conservation across species. 

miRNA1
  Sequence Size Real Time Primer Sequence Conserved in other species.2

omy-miR-21 UAGCUUAUCAGACUGGUGUUGGC 23 TAGCTTATCAGACTGGTGTTGGC dre, fru, tni 
omy-miR-21t UAGCUUAUCAGACUGGUGUUGAC 23 TAGCTTATCAGACTGGTGTTGAC See fig 3A 
omy-miR-23a AUCACAUUGCCAGGGAUUUCCA 22 ATCACATTGCCAGGGATTTCCA dre, fru, tni, bta 

omy-miR-26a UUCAAGUAAUCCAGGAUAGGCU 22 TTCAAGTAATCCAGGATAGGCT dre, ssc, ptr, ggo, lla, mml, ppa, fru, tni, 
bta   

omy-miR-30d UGUAAACAUCCCCGACUGGAAG 22 TGTAAACATCCCCGACTGGAAG bta, hsa, mmu, rno, gga dre, ptr, ggo, 
mne, ppa, fru, tni, xtr 

omy-miR-92a UAUUGCACUUGUCCCGGCCUGU 22 TATTGCACTTGTCCCGGCCTGT dre, ggo, lme, age, ppa, ppy, ptr, mml, 
sla, lla, mne, fru, tni, bta 

omy-miR-100t AACCCGUAGAUCCGAAUUUGU 21 AACCCGTAGATCCGAATTTGT See fig 3B 
omy-miR-125a UCCCUGAGACCCUUAACCUGUG 22 TCCCTGAGACCCTTAACCTGTG dre, fru, tni, xtr 

omy-miR-125b UCCCUGAGACCCUAACUUGUGA 22 TCCCTGAGACCCTAACTTGTGA 
dre, dme, hsa, rno, gga, dps, aga, dre, 
ssc, ggo, ppa, ssc, age, ppy, ptr, mml, 
sla, lla,, mne, lca, fru, tni, bta, xtr, mdo 

omy-miR-125t UCCCUGAGACUUUAACUUGUGA 22 TCCCTGAGACTTTAACTTGTGA See fig 3C 
omy-miR-126t UCGUACCGUGAGUAAUAAUGCAC 23 TCGTACCGTGAGTAATAATGCAC See fig 3D 
omy-miR-126* CAUUAUUACUUUUGGUACGCG 21 CATTATTACTTTTGGTACGCG mmu, hsa, rno, gga, dre, xtr 
omy-miR-200b UAAUACUGCCUGGUAAUGAUGAU 23 TAATACTGCCTGGTAATGATGAT gga, xtr 
omy-miR-214* GCCUGUCUACACUUGCUGUGC 21 GCCTGTCTACACTTGCTGTGC mmu, has 
omy-miR-455 UAUGUGCCCUUGGACUACAUCG 22 TATGTGCCCTTGGACTACATCG dre, fru, tni, gga, xtr 

                                                 
1 MiRNA annotations were based upon universally accepted nomenclatures as published in  
2 Annotations: aga- Anopheles gambiae, age- Ateles geoffroyi, dme- Drosophila melanogaster, dps- Drosophila pseudoobscura, fru- 
Fugu rubripes, ggo-Gorilla gorilla, lca- Lemur catta, lla- Lagothrix lagotricha, lla-Lagothrix lagotricha, lme- Lemur catta, mdo-
Monodelphis domestica, mml- Macaca mulatta, mml- Macaca mulatta, mne- Macaca nemestrina, ppa- Pan paniscus, ppy- Pongo 
pygmaeus, ptr-Pan troglodytes, ptr-Pan troglodytes, ptr-Pongo pygmaeus, rno-Rattus norvegicus, sla-Saguinus labiatus, ssc-Sus 
scrofa, tni-Tetraodon nigroviridis. 
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Figure 3-1 Schematic diagram showing method used to clone small RNAs. MirCat ™ (IDT DNA 
Technologies, Coralville IA) microRNA cloning kit was used with modifications. 
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Figure 3-2 Expression pattern (fold change) of Dicer transcripts as shown by real-time PCR. Stages 
examined are indicated hours post-fertilization (0, 12, 24, 36, 48 and 72 hpf). Quantity of dicer 
mRNA was normalized to histone 2a. The means of the normalized gene expression values for 
oocyte/each stage of embryo were calculated and expressed as relative fold changes ±sem. Different 
letters indicate significant difference (P < 0.05). 
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Figure 3-3 Alignment of novel rainbow trout microRNAs. Highly homologous miRNAs from other 
species are aligned using BioEdit program. 
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Figure 3-4 Expression patterns (fold change) of microRNAs as shown by real-time PCR. Stages 
examined are indicated as hours post-fertilization (0, 12, 24, 36, 48 and 72 hpf). Quantity of each 
microRNA was normalized to histone 2a. The means of the normalized gene expression values for 
oocyte/each stage of embryo were calculated and expressed as relative fold changes ±sem (A: omy-
miR-100t, B: omy-miR-21t, C: omy-miR-21, D: omy-miR-23, E: omy-miR-26 and F: omy-miR-92a). 
Different letters indicate significant difference at P<0.05) and star (*) indicates significant difference 
from all other stages at p<0.05. 
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Figure 3-5 Expression pattern (fold change) of Stat3 transcripts as shown by real-time PCR. Stages 
examined are indicated hours post-fertilization (0, 12, 24, 36, 48 and 72 hpf). Quantity of Stat3 
mRNA was normalized to histone 2a. The means of the normalized gene expression values for 
oocyte/each stage of embryo were calculated and expressed as relative fold changes ±sem. Different 
letters indicate significant difference (P < 0.05). 
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CONCLUSIONS 
Historically, it is accepted that the interaction between the oocyte and surrounding 

somatic cells is required for normal reproduction (see review). Oocyte signals from 

instruct surrounding cells to allow normal maturation, ovulation, fertilization and 

embryonic development. Apart from a few identified genes, this oocyte-to-somatic cell 

interaction remains elusive. So it was the objective of the first project to identify novel 

genes expressed in rainbow trout oocyte and characterize them to help us better 

understand oocyte-somatic interaction. We identified OORP-T, a novel oocyte specific 

gene containing oxysterol binding domain that is accumulated in oocytes during 

vitellogenesis and persistent until embryonic genome activation. With lipid stored as food 

for the embryo and with steroidal hormones acting, OORP-T might make a significant 

contribution to the normal development of rainbow trout embryos. 

Dependence on maternal mRNAs ends after the embryonic genome is capable of 

synthesizing transcripts on its own. Reasons for the absence of transcription before 

embryonic genome activation are not well understood. One possible reason could be the 

absence of sufficient transcription machinery prior to that stage. To evaluate this 

hypothesis, we quantitatively measured the abundance of several transcription factors and 

architectural proteins during embryonic genome activation in rainbow trout. Our results 

show that mRNAs of all transcription factors and architectural proteins measured were 

present in detectable amounts before the activation. It is therefore possible that other 

mechanisms might regulate the availability of these factors for transcription. 

We also observed that all the transcripts were degraded at the time of activation, 

even if they are produced later on. We hypothesized that this large-scale, but specific 
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degradation, is regulated by microRNAs. MicroRNAs bind to their recognition sequences 

on 3’ un-translated regions of the target genes and mediate degradation or translational 

repression. We measured transcript levels of Dicer, an enzyme required for procession of 

all microRNAs during development. We found that Dicer is abundantly expressed during 

the time of genome activation indicating that microRNAs are processed during these 

stages. Since no genomic sequence is available for rainbow trout, we constructed a 

microRNA library from a pool of oocytes and early embryos. We identified 15 unique 

microRNAs from rainbow trout, four of which are specific to rainbow trout. We 

performed quantitative real time PCR to characterize the expression pattern of these 

microRNAs and found that all the microRNAs we could amplify were present 

before/during genome activation. Our results show that Stat3, an activator of transcription 

that is known to induce the expression of miR-21, is expressed during early 

developmental stages in rainbow trout. We propose that stat3 mediates the expression of 

miR-21 and possibly other microRNAs thereby inducing the degradation of maternal 

mRNAs during embryonic genome activation. 
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