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Abstract

The development of a real-time, on-board measurement of exhaust emissions from heavy-duty

engines would offer tremendous advantages in on-board diagnostics and engine control.  In the absence of

suitable measurement hardware, an alternative approach is the development of software-based predictive

approaches.  This study demonstrates the feasibility of using in-cylinder pressure-based variables as the

inputs to predictive neural networks that are then used to predict engine-out exhaust gas emissions.

Specifically, a large steady-state engine operation data matrix provides the necessary information for

training a successful predictive network while at the same time eliminating errors produced by the

dispersive and time-delay effects of the emissions measurement system which includes the exhaust system,

the dilution tunnel, and the emissions analyzers.  The steady-state training conditions allow for the

correlation of time-averaged in-cylinder combustion variables to the engine-out gaseous emissions.  A

back-propagation neural network is then capable of learning the relationships between these variables and

the measured gaseous emissions with the ability to interpolate between steady-state points in the matrix.

The networks were then validated using the transient Federal Test Procedure cycle and in-cylinder

combustion parameters gathered in real time through the use of an acquisition system based on a digital

signal processor.  The predictive networks for NOX and CO2 proved highly successful while those for HC

and CO were not as effective.  Problems with the HC and CO networks included very low measured levels

and validation data that fell beyond the training matrix boundary during transient engine operation.
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1. Introduction

1.1 General Background

Internal combustion engines have been subject to emission control techniques since the passage

of the regulatory Clean Air Act in1966.  Successive amendments reducing the allowable levels of

emissions emanating from new engines were also extended to cover particulate emissions from diesel

engines. The trend towards lower allowable emissions levels appears to be continuing with particular

emphasis on diesels.   To this end a variety of test procedures has been developed for the measurement of

emissions during typical driving cycles.  These tests must be performed on chassis dynamometers due to

the complex and large scale nature of the required emissions analysis equipment.  Emissions measurement

is used not only to assess regulatory compliance, but in engine and engine controller development as well.

Neural network architectures have gained popularity in recent years due to their excellent pattern

recognition and prediction capabilities.  They have been applied to fields as varied as optical character

recognition and prediction of stock market performance [Haykin, 1994; Ward Systems Group, Inc., 1996].

Emissions formation in internal combustion engines lends itself well to the use of these networks as the

processes involved are nonlinear in nature, multidimensional, highly transient, and difficult to

characterize in a series of predictive equations.  Furthermore, the nature of neural network training does

not necessitate the detailed knowledge of combustion kinetics available only to research laboratories with

extremely expensive and intrusive equipment.

The prediction of diesel engine emissions could potentially provide several benefits.  Currently,

emissions inventories for typical urban driving cycles are determined by approximation through

dynamometers either with engine-only tests or full vehicle chassis testing.  Emissions prediction could

provide real-time and real-world levels in an actual urban driving cycle, eliminating the guesswork and

providing more accurate information.  Engine control schemes might also be able to take advantage of

emissions prediction.  Feedback-based controllers require a signal to indicate air-to-fuel (A/F) ratios and

thus dictate operating conditions to minimize eventual emissions production.  A predictive network could

provide a virtual emissions signal which a controller could use directly for feedback purposes.  Similarly,
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a direct emissions level indicator would reduce testing times for both post production compliance and

engine controller development.  Furthermore, the potential for diagnostic capabilities cannot be

discounted.  Not only can predictive networks supply emissions prediction levels, but they could also

provide valuable information concerning failing equipment in an engine.  Wildly fluctuating emissions

values can indicate a failure somewhere in the engine system; something a typical neural network could

also be trained to recognize, allowing an alert to be sent to the operator.

This study aims to prove that detailed knowledge of the emissions from diesel engines can be

easily obtained through the application of neural networks using information from readily available

engine sensors and established methods such as in-cylinder pressure measurement using flush-mounted

pressure transducers.   This thesis proceeds with an explanation of basic diesel combustion, continues with

a discussion of emissions formation, reviews the literature on neural network applications and

architectures, includes a review of pressure sensing techniques, and details the process of developing an

in-cylinder pressure-based virtual sensing system.

1.2 Problem Statement

Neural networks are mathematical approximations that mimic the human brain's ability to learn

relationships between several variables within an experimental dataset.  They have been utilized in a

variety of applications including control processes, pattern recognition, and trend prediction.  NeuroDyne,

Inc., in collaboration with West Virginia University, has demonstrated virtual emissions sensing using

training data acquired at 20 Hz from a Saturn 1.9 L spark ignition engine.  The virtual emissions sensing

system demonstrated in this work was trained on data acquired on a continuous basis and proved quite

capable of predicting levels of emissions in previously "unseen" data.  The sensing system, however, relies

upon the correct time shifting of the emissions analyzer signals to correspond with the engine parameter

signals.  Since the time difference between these two signals is not constant, due to delays in response

time of the analyzers and the dispersive effect of the dilution tunnel, the use of a constant sized buffer to

time-shift the emissions signals suffers from some inherent inaccuracy.  Further, the use of only extra-
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cylinder engine operating parameters (such as the manifold air pressure, engine speed, throttle position,

etc.), although providing excellent direct applications for industry, provides little information on the

processes affecting the combustion inside the cylinder.  Thus a separate approach based on distinct steady-

state engine operating points and the fast real-time acquisition of in-cylinder combustion information

would seem to be a more robust and informative method.  Further, it is postulated that with sufficient

training on in-cylinder combustion, transient conditions will pose no problems for the neural network’s

predictive capabilities.  Consequently, the main goal of this research is to apply digital signal processing

(DSP) technology to interpret the real-time signals generated by an in-cylinder pressure transducer and to

feed this information to a trained neural network to provide instant information on the level of exhaust gas

emissions produced by the engine.

2. Combustion Fundamentals

2.1 Diesel Combustion

Unlike spark-ignited (SI) engines which rely on throttles, the torque output of a diesel (or

compression ignition (CI)) engine is controlled by the amount of fuel introduced into the combustion

chamber.  Air is inducted into the cylinder during the intake stroke and after significant compression has

occurred during the compression stroke, fuel is injected under high pressure (a direct injection diesel

engine is assumed).  A side effect of this technique is the absence of pumping losses from a throttle,

increasing the inherent efficiency of the diesel engine (typically a maximum of about 45% compared to

approximately 33% for an SI engine).  The conditions inside the cylinder at the time of injection are such

that they exceed the autoignition threshold of the fuel; initiating combustion following a brief ignition

delay period.  As a result, cylinder-to-cylinder variations are minimized as the same effective volume of

air is inducted into each cylinder [Heisler, 1995].  Also, the conditions at the time of fuel injection will

remain nominally the same regardless of engine speed as opposed to a spark-ignition engine which must

compress a fuel-air mixture.  The in-cylinder conditions at the end of the compression stroke are primarily

a function of compression ratio, intake temperature, and the engine speed [Heisler, 1995].  The first two
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factors are rather obvious, but the last, speed, becomes important when the time components of heat

transfer, rates of combustion, and ring blowby are considered.  Additionally, due to the method of

combustion, detrimental autoignition known as “knock” is not a problem; compression ratios can thus be

much higher, increasing thermal efficiency.  Turbocharging also becomes attractive for diesel engines as

the fuel delivery method allows increased intake pressures to boost the density of oxygen available.

 Combustion in the diesel engine is controlled by the kinetics of diffusion flame reactions.  Due to

the prevailing conditions inside the cylinder, fuel injected is combusted more through the action of

turbulent eddies and impinging geometry than anything else.  Fuel spray enters the cylinder under high

pressure, typically 20+ MPa [Heywood, 1988] (135 to 200 MPa in future engines), in an effort to atomize

the droplets into easily combustible particles and provide enough energy to propel the fuel across the

combustion chamber in the short period of time available.  These particles then evaporate rapidly, aided in

part by the heat released by the oxidation of other fuel particles.  Finer atomization of the fuel particles

aids in the process by increasing the surface area for evaporation.  Once the heat release rate through

oxidation exceeds the heat lost by evaporation, convection, and conduction, flame ignition occurs.

The time between the injection of the fuel and the occurrence of the self-sustained oxidation-

ignition is known as the ignition delay.  The start of injection of the fuel can be determined by recording

the time at which the injector needle lifts off the seat.  Typically, the end of the delay can be identified as

the point where there is a discernible change in the slope of the heat release rate [Heywood, 1988].

Once the fuel has been injected and evaporated, oxygen must be supplied to the flame front in

order to sustain combustion.  This is accomplished through in-cylinder turbulence induced by the engine

intake geometry and combustion chambers designed to increase swirl, the circular motion of the charge

around a vertical axis centered on the piston.  This swirl action washes the fuel mixture with fresh oxygen

unless the fuel droplets are too small, in which case the swirl only drags the fuel along, never mixing it.

Oversized droplets do not suffer this problem, but their large size slows down the rate of combustion and

can result in elevated soot emissions, thus leaving an optimal droplet size for a given swirl/engine design.

Atomization of the fuel is only one factor affecting the ignition delay.  Further effects include the

conditions at the time of injection, mainly the pressure and temperature inside the cylinder.  If these
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conditions remain constant over a range of speed, the ignition delay will not vary, but generally, other

parameters such as cylinder wall temperature and time for heat transfer will alter the temperature and

pressure of the air charge at injection, thus affecting the delay.  The higher the temperature and pressure,

the shorter the delay.  As has already been noted, cylinder swirl has a significant effect on combustion,

and the same is true for the delay.  Finally, the cetane number, a measure of a fuel’s tendency to vaporize

and autoignite with higher numbers signifying faster autoignition, will, based on its very definition, affect

the ignition delay.  There are a number of associated parameters that are directly affected by the length of

the ignition delay, among them misfire, smoke emissions, fuel conversion efficiency, and smoothness of

operation [Heywood, 1988].

At the end of the ignition delay, the fuel encounters rapid oxidation and the cylinder experiences

a comparatively rapid pressure rise.  The location of the maximum pressure rise correlates roughly with

the smallest volume and slowest piston speed near the top dead center position.  The peak in-cylinder

pressure is highly dependent on the ignition delay phase as that determines the pressure-volume phasing

of the piston.  Although it would seem that engine speed would have an effect on the combustion duration,

increasing engine speed in fact increases the turbulent swirl of the charge at a rate that keeps this phase

roughly constant in crank angle degrees for a range of speed [Heisler, 1995].  The rapid oxidation phase is

followed by a period of steady combustion as the oxygen concentration becomes diluted and the injectors

continue to supply a steady stream of fuel.  These two phases provide the majority of heat released during

the power stroke.  The amount of energy transferred to the piston depends upon additional conditions

inside the cylinder such as the temperature of the cylinder walls and the proper phasing of the combustion

pressure with the piston position.  As the piston is driven down through the power stroke, the pressure

inside the cylinder drops, causing combustion to tail off.  This reduces the various pollutant formation

kinetics and freezes their respective concentrations, causing incomplete oxidation of some fuel molecules.

Additionally, overly rich fuel regions produce black smoke from this incomplete combustion; as a result,

“most diesel engines are rated for full-load operation just below the point at which the exhaust smoke

visibly darkens” [Heisler, 1995].
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Consequently, the diesel engine does not combust at a designated air-to-fuel ratio (A/F), but

rather at a steady progression of fuel lean conditions [Edwards, 1974].  This situation creates an

inherently stable flame as only a complete removal of fuel or air will interrupt the combustion process,

with the exception of the chamber surfaces acting to quench the flame.  Figure 1 shows a schematic of the

A/F distribution in a typical diesel flame.

Figure 1: Diesel engine fuel spray showing equivalence ratio contours at time of ignition. ΦΦL is the
equivalence ratio at the lean combustion limit (≈≈ 0.3). [Heywood, 1988, p. 622]

Although the local A/F in the vicinity of the injected fuel spray remains reasonably close to

stoichiometric, the overall charge A/F may vary quite considerably depending upon the operating

conditions of the engine.  In order to assure nearly complete combustion without the production of large

amounts of particulates and smoke, an excess air amount of 20% above stoichiometric is typically

maintained as the lower limit [Heisler, 1995].  This leads to a maximum A/F of around 18:1 at full load

conditions and a minimum of around 100:1 at idle conditions [Heywood, 1988].  Figure 2 shows typical

A/F distributions for both diesel and spark-ignited engines.
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Figure 2: Typical A/F operating regions. [Heisler, 1995, p. 228]

2.2 Emissions Formation

2.2.1 Hydrocarbons

Hydrocarbons (HC) represent the family of emissions composed of hydrogen and carbon with a

variety of bonds originating in partially or completely unburnt fuel.  These range from simple non-reactive

methane molecules (CH4) to more complex chemical rings and chains like benzene (C6H6) and the

aldehydes (e.g. acetaldehyde: CH3CHO).  Hydrocarbons are formed when fuel is not adequately oxidized,

or burned.  In diesels, incomplete combustion of the fuel results in soot formation, visible as large clouds

of black smoke, containing up to 0.5% of the fuel mass.  During startup and subsequent misfire, unburnt

fuel may condense and produce clouds of white smoke [Degobert, 1995].  Overall, the level of HC emitted

as a pollutant is strongly dependent upon the fuel distribution, the in-cylinder temperature, and the

resulting combustion process inside the cylinder.

Hydrocarbon emissions can be split into two major groups: non-reactive and reactive.  This

grouping stems from the chemical reactivity of the molecules with respect to the indirect formation of

smog (visible rust-colored air pollution created by the interaction of hydrocarbon chains, oxides of

nitrogen, oxygen, and sunlight).   Hydrocarbons play a secondary role in ozone formation by accelerating

the formation of NO2, which reacts with O2 to produce ozone, the basic component of photochemical
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smog.  The reactive components include all hydrocarbon chains except methane, which is highly stable

and which gives rise to the term “non-methane organic gases”, describing all non-methane hydrocarbons

and oxygenates.  In addition to participating in smog formation, many oxygenates are also irritants to the

eyes and lungs.  Furthermore, many of these molecular chains are not found in the fuel prior to

combustion, thus demonstrating the complex chemical kinetics that occur inside a combustion chamber.

One of the factors in the production of hydrocarbon emissions is the quenching of the flame front

as it approaches the relatively colder surfaces of the cylinder walls and piston.  These surfaces absorb heat

energy to such an extent that combustion cannot be sustained within the fuel-air mixture.  Crevices and

gaps such as those seen between the cylinder walls and piston dominate this mechanism while

hydrocarbons quenched at the walls are readily oxidized later in the cycle [Heywood, 1988].  One source

of emissions unique to direct injection diesels comes from the fuel injector tips.  Fuel left over in the

nozzle tips after injection has ceased slowly evaporates and seeps into the combustion chamber where it

may or may not be oxidized.  However, the major source of HC emissions is the localized rich or lean

conditions found within the combustion zones.  Again, Figure 1 shows typical fuel distribution zones in an

injected spray of diesel fuel.  As the spray is injected, the air mixes with the outer edges of the fuel,

producing very lean zones that oxidize in a non-self-sustaining manner and seldom to completion.  As the

spray continues to mix with the air, these lean zones expand outward, leaving more combustible mixtures

behind in the center of the chamber.   The amount of HC left unburned is then a function of the mixing

rate (or turbulent swirl) of the engine, the cylinder conditions, and because of its association with the prior

two, the ignition delay.  According to Heywood, there is a non-linear relationship between the ignition

delay and the amount of HC produced.  Leanness, however, is not the sole condition aiding in the

formation of hydrocarbon emissions.  Overly rich mixtures will also result in incomplete combustion, a

condition that can be caused by insufficient mixing of the oxygen in the air with the fuel spray.  This is

especially the case just after the injector nozzles have ceased spraying, as the pressure forcing the fuel out

has dropped and the remaining fuel enters the combustion chamber at low speed.   The low velocity of the

fuel causes undermixing of the fuel and air to occur, which generates an overly rich region.  Desorption of

HC from the layer of lubricating oil that coats the cylinder walls adds to the overall level found in exhaust
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gas and is controlled by the characteristics of the fuel being used and its ability to be absorbed by the oil

layer.

Engine operating conditions play a role in HC emissions mainly as a function of the load on the

engine.  Idle and light load conditions can generate overall A/F of around 100:1, causing an excess of

over-lean regions in the injected fuel spray.  Consequently, light load and idle produce substantially more

HC emissions than full load on a mass-per-unit-time specific basis (g/s) [Heywood, 1988].  On the other

end of the spectrum, overfueling of the engine at high loads will produce excessive HC due to an

insufficient supply of oxygen.

The timing of the injection has an effect on HC as well.  If the timing is advanced away from top

dead center and away from the optimum timing, the ignition delay lengthens, allowing a higher

percentage of the total fuel injected to mix with the air and impinge on the cylinder walls.  This also

produces more areas of lean mixtures, hindering efficient combustion and raising the amount of unburned

HC [Degobert, 1995].  On the other hand, retarding the timing produces overly rich regions with

insufficient time to combust, with the end result being visible smoke.  In a similar vein, lengthening the

time that the injectors are open and spraying fuel into the cylinders reduces HC at low load, but at high

load leads to an increase in smoke and particulates [Degobert, 1995].

2.2.2 Particulate Matter

The distinction between particulate matter (PM) and hydrocarbon emissions is a matter of

condensation temperature.  Generally, heated probes in a dilution tunnel are maintained at 190°C and any

hydrocarbon chain gathered by the probe that condenses is filtered out and lumped with the soot and ash

accumulations as particulate matter, which is gathered by filtering the diluted exhaust stream at a constant

52°C.

Particulate formation is a major concern in diesel engine combustion and consists mainly of

carbonaceous conglomerations.  These clumps are formed mostly through incomplete combustion of fuel

with small contributions from the lubricating oil [Heywood, 1988].  As the fuel in the advancing flame

plume combusts, pyrolytic reactions crack the hydrocarbons that have yet to pass through the flame.  As
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these reactions occur, particulate masses form and pass through the flame.  A side effect of this process is

the radiation heat transfer that is given off by the heated particulates, increasing the pyrolytic reactions in

the unburned fuel.  If the fuel mixing is poor within the cylinder, large quantities of particulates can form

[Edwards, 1974].  Typically, above temperatures of 500 °C, the particles are composed solely of clusters of

carbon, while at temperatures below this, higher molecular weight hydrocarbons condense onto the

clumps.  As the particulates travel through the flame front and into the more heavily oxygen-populated

areas, the clumps tend to oxidize reducing their concentrations in the leaner regions of combustion.

Additionally, inorganic compounds in the fuel can form small clumps of material known as ash.  The

sulfur content of the fuel may have an effect upon the amount of PM measured as the sulfur leaves either

as sulfur oxides or as sulfates condensed onto the PM.  A high sulfur fuel (e.g., one with sulfur content

approaching 3.5% by weight) will demonstrate distinctly higher PM emissions in the same engine than a

low- or zero-sulfur fuel as a result.

2.2.3 Oxides of Nitrogen

The main source of nitrogen in the chemical formation of oxides of nitrogen (NOX ) is

atmospheric, although a very small portion is caused by nitrogen compounds found in some fuels.  The

fuel source is a more pronounced contribution in diesel combustion, however.  The basic kinetic equations

for the transformation of atmospheric nitrogen in the presence of oxygen are known as the Zeldovich

mechanism.  Two of these equations have been rigorously tested, with a third equation generally accepted

to contribute significantly; as such, the three are sometimes referred to as the “extended” Zeldovich

mechanism.

O + N NO + N - 75
kcal

mol2 ⇔      (Eq. 2.1)

N + O NO + O + 31.8
kcal

mol2 ⇔      (Eq. 2.2)

N + OH NO + H + 39.4
kcal

mol
⇔      (Eq. 2.3)
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The third reaction is usually found in rich mixtures where OH is readily available. As the burned gas

region behind the flame front absorbs energy from the combusting mixture, the pressure and temperature

of the gas in the cylinder both rise significantly.  It is this region’s high temperature which spurs the

formation of nitric oxide (NO) and in most cases, the flame front production is simply ignored.  The flame

front does, however, play two significant roles by providing the thermal energy required to dissociate the

N2 into N radicals and by providing the reactions which lead to the NO producing chains.  The main

controlling factors are the amounts of oxygen and nitrogen radicals available and the temperature of the

mixture.  This can be demonstrated through a derivation starting with the rate of formation of NO based

on the Zeldovich equations:

[ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ] [ ][ ]H NOO NON NOOH NO NN O
NO

32132221
−−−+++ −−−++= kkkkkk

dt

d

(Eq. 2.4)

where the brackets denote species concentration in moles per volume.  Heywood supplies values taken

from experimental studies for the rate constants ki.  A similar equation is then formulated for monatomic

nitrogen and by way of a steady state approximation, the rate d[N]/dt is set equal to zero.  This supplies a

method of eliminating the concentration of N from the NO rate formation equation; combining this result

with the equilibrium oxygen atom concentration [Heywood, 1988] produces the following NO formation

rate relation (where [  ]e denotes equilibrium concentration) :

s)mol/(cm   ]N[]O[ 
69090-

exp 
10 x 6NO][ 3

22

16
2

1

2
1 ⋅






= eeTTdt

d
     (Eq. 2.5)

This equation can be used as a rough estimate of the NO formed during the combustion cycle provided

that the in-cylinder temperature and concentrations of oxygen and nitrogen are known throughout the

cycle.  Unfortunately, while in-cylinder pressure is roughly uniform across the cylinder at any given time,

the temperature within the cylinder varies significantly depending upon the position of the flame front and

whether the point of "measurement" consists of unburned or burned gases or a mix of the two.

Nonetheless, to gauge approximately the relative influence of the oxygen concentration and the

temperature, a range of potential A/F ratios (to supply the molar concentration of oxygen at equilibrium
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conditions) and temperatures were placed into this equation with Figure 3 resulting.  The temperature of

the mixture is especially important as there is a non-linear relation between it and the rate of formation of

NO.  It is this relation that gives rise to the NOX-efficiency trade-off.  Thermodynamic principles state that

the higher the temperature achieved within the cylinder, the more efficient the engine will be.  However,

higher temperatures result in much higher levels of NOX, leading to the trade-off.

The formation kinetics of NO “freeze” below a given temperature inside the cylinder as the

piston continues downward on the expansion stroke.  It is also this kinetic freeze which causes diesels to

produce a significant amount of nitrogen dioxide (NO2 ).  At light load, there is a considerable portion of

the cylinder charge containing unused and relatively cool amounts of air mixing with the burning fuel.

NO2 is primarily formed in the flame front and can only be conserved by kinetic freezing, a process made

easy by the generous amounts of cooler air at light load.  Thus, concentrations of NO2 can approach 10-

30% of the
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Figure 3: NO formation rate as a function of the in-cylinder temperature and molar concentration of
oxygen.  Based on experimental rate formation equation [Heywood, 1988, p. 575].  Moles of O2

represent a lambda ratio of 1.2 to 20 (not represented linearly) at standard conditions.

overall oxides of nitrogen in a diesel at light load  [Heywood, 1988].  Speed also plays a small role

in NO2 formation as lower speeds increase the residence time of NO with O2 [Degobert, 1995].  All of

these effects also demonstrate why NOX formation can be correlated to the ignition delay.  The length of

the ignition delay will affect the pressure-volume phasing at top dead center producing a significant effect

upon the temperature of the burned-gas region where NOX forms.  However, tests conducted with rapid

sampling techniques indicate that the majority of NO has formed before half of the fuel has been fully

combusted [Heywood, 1988, p. 590], relegating the combustion duration (the time between which 10%

and 90% of the mass fraction of fuel has been burned) to a secondary factor in NO correlation.

A/F also plays a significant role in the production of NOX, with the peak formation rate occurring

at a point just lean of stoichiometric.  This peak can be explained by the still fairly high combustion

temperatures coinciding with the high availability of nitrogen and oxygen, which is why the peak does not
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occur at a point slightly rich of stoichiometric (where combustion temperatures are highest).  As the

combustion in an engine strays farther and farther into the lean region, the combustion temperatures

decrease significantly and it is this effect which dominates the kinetics of NOX formation.  Typically,

combustion temperatures in diesel engines can reach in the neighborhood of 2500+ kelvin.

Efforts to reduce the temperatures inside the cylinder to reduce NOX formation can have

unintended consequences when particulate matter is taken into account.  Particulates form more readily at

lower combustion temperatures and at points below about 500° C, "the particles become coated with

adsorbed and condensed high molecular weight organic compounds" [Heywood, 1988, p. 627].  These

counterproductive trends produce the so-called NOX-particulate tradeoff.

2.2.4 Carbon Monoxide and Carbon Dioxide

Carbon monoxide primarily forms in fuel-rich environments where the oxygen required for

complete combustion is insufficient.  In a diffusion flame, these regions are common, and so CO forms

readily in the early stages of combustion.  However, because of the abundance of oxygen at typical diesel

loads, most CO present in the cylinder will be readily oxidized as the cycle continues [Schafer and van

Basshuysen, 1993].  This reduces the exhaust concentration to almost negligible amounts.  There are

conditions that can produce significant concentrations of CO, mainly occurring under full load.

Primarily, the percentage of areas inside the cylinder that experience fuel-rich conditions is much higher

under full load.

Carbon dioxide (CO2) is one of the primary results of hydrocarbon combustion.  CO2 and water

would be the only gaseous results of combustion in a perfectly stoichiometric reaction.  Because of this, it

can be used to gauge the efficiency of a combustion process.  There are currently no guidelines covering

the emission of CO2, discounting indirect measures such as the corporate average fuel economy

regulation.  Concerns stemming from the controversial issue of global warming may prompt more

attention towards the reduction of CO2 emissions into the atmosphere.
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3. Predictive Neural Networks and Combustion Modeling

3.1 Neural Network Architectures

Artificial neural networks derive their name from the biological system upon which they are

based, namely the human brain.  Conventional theory posits that the brain is composed of millions of

neurons in a complex network with the capability of learning patterns to which it is exposed.  An example

of this is the human capability to identify distinct facial structures on fellow humans.  Artificial neural

networks attempt to mimic this pattern recognition ability.  Additionally, they have the capacity to learn

the traits of given inputs with respect to desired outputs provided a sufficient amount and scope of training

data are supplied.  They operate by learning the associations between input parameters, assuming that

such associations exist.

There are many different types of neural network architectures based on different targeted results,

but the style this study shall focus on is termed a feedforward network.  Specifically, it will focus on a

subset of feedforward networks called Error Back-Propagation (EBP) networks.  These nets consist of

several layers of neurons connected together as in Figure 4.
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Figure 4: Schematic of typical back propagation neural network architecture.

The information from the first layer, the input, x, is multiplied by a weight, w, corresponding to

each neuron and distinct for each link to the hidden layer, and then summed to provide an intermediate

value.  This value is then sent through a non-linear activation function to act as the hidden layer variable.

The hidden layer is likewise multiplied, summed and fed through an activation function to provide the

values of the output [Haykin, 1994].  Thus the two layers are written as:

a w x wj ji i j
i

d

= +
=
∑ 0

1

    and      z aj jg= ( )      (Eqs. 3.1 and 3.2)

and

b w z wk kj j k
j

m

= +
=

∑ 0
1

    and     )(b'y kk g=      (Eqs. 3.3 and 3.4)
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where d and m represent the number of neurons in the input and hidden layers respectively.  The terms

with the 0 in the subscript represent offset biases or thresholds used for better differentiation between

classes.  These classes are the categories in which the network places the output variables.  For some

networks, the classes are large (there would be two for a simple binary "yes-or-no" style output), but for

the EBP, there can be very many according to the dimensional levels of the data set.  The term g

represents the activation function which can be based on a logistic or hyperbolic tangent function or any

other non-linear function between the values of -1 and 1.  As a result, data that is entered into the input

layer is generally scaled to -1 and 1 with each extreme representing the minimum and maximum values

expected to be encountered within each variable in the data set.

Once the network has been initialized through random weight seeding (all w in the equations

above), the process of training begins.  For EBP networks this involves comparing the actual measured

output values to those predicted by the network (yk) and then correcting the weights in all layers

accordingly to improve the prediction.  After one pass through the network, output values are compared to

actual values to produce an error value.  The amount of adjustment that each weight in the previous layer

receives depends upon the initial error calculation and a learning rate parameter (typically on the order of

5% of the input scale) [Haykin, 1994].  Each layer has its corresponding weight matrix updated in this

manner from the output layer backwards, thus giving rise to the EBP moniker.  Once all values in the

dataset have been calculated and compared against the actual values (one complete cycle through the data

is known as an epoch), further training can continue until a predetermined level of accuracy has been

achieved based on the training dataset.

After the network has been sufficiently trained, a test set of data must be introduced to confirm

the network’s accuracy.  This test set should include data that has not been previously “seen” or used by

the network during training.  Published results should generally contain comparisons from this test set as

a means of gauging the accuracy of prediction using the network.
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3.2 Applications of Non-Linear Approaches to Internal Combustion Engine Control

The automotive industry has embraced the revolution in electronics and digital technology that

has been occurring over the past thirty years.  Advancements have included microprocessor control of

electronic fuel-ignition systems and the corresponding electronic circuitry found in the sensors that

provide information to them.  Aside from stricter efficiency regulations and competitive design meant to

attract the consumer, the main impetus for these controls has been ever-tighter regulation of allowable

pollutants stemming from engine combustion.  These regulations have spurred increasingly complex

methods of exactly controlling the A/F ratio to reach the goals that have been set.  Lately, there have been

forays into the realm of nonlinear control techniques to achieve these goals.  This section will review the

many approaches that have been made in this area as well as some other applications of neural networks

to the control of various aspects of the internal combustion engine.  The majority of the research in this

area concerns the dynamics of fueling in the spark-ignition engine.

One approach to improve control of the A/F ratio involves careful modeling of the fuel injection

process.  Due to the fact that injection takes place outside the cylinder, the spark-ignition engine suffers

from complex fueling and air intake dynamics that affect the overall A/F ratio that eventually combusts.

A number of researchers have tackled this problem and applied various techniques to determine the

correct ratio.  Mainly, this is done to better control combustion during fast throttle openings where the

exhaust gas oxygen sensor has too long a delay period to accurately reflect the true A/F ratio.

Additionally, typical hot wire anemometers have long time constants that prevent immediate application

in determining the A/F ratio.

Grizzle et al. [1994] developed a method of predicting the cylinder air charge by applying

nonlinear differential equation modeling to the air intake dynamics and using a least squares fit line

between two previous values and the current value to predict the next time step value.  The cylinder air

charge mass was calculated using values including the mass air flow, intake temperature, and engine

speed.  They reported better results using the predictor to adjust fueling levels over the standard method

used on the test engine leading to approximately 10% reduction in HC emissions on the Federal Test

Procedure driving cycle.
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Shiraishi et al. [1995] applied a cerebellar model articulation controller (CMAC) to mass air flow

determination in an effort to control the A/F ratio more accurately.  The CMAC maps the input data into a

binary indicator field which in turn activates certain weights in the next layer according to their binary

values.  The outputs are then the algebraic sum of the corresponding activated weights.  The researchers

argue that the normal back propagation network is too computationally intense and converges too slowly

for their application.   The CMAC is used to determine the mass flow rate of air based on the two inputs

of manifold  pressure and engine speed.  Results of the study indicate performance equivalent to, if not

better than, stock electronic control modules.

  A popular approach to the problem involves intensive modeling of both the air intake system

and the fuel injection process, especially with regard to deposition and evaporation rates of fuel on the

manifold surface.  Hendricks et al. [1992] tackled this problem and noted that most modern control

systems fail to “compensate for the nonlinear dynamics of the fuel film” or to “estimate correctly the air

mass flow at the location of the injector.”  They built up a set of nonlinear equations based on the

dynamics of these areas, then applied conventional control techniques to account for the fuel film and an

unconventional nonlinear observer to predict the engine's volumetric efficiency.  Jones et al. [1995]

applied a nonlinear least squares algorithm to modified forms of discretized system model equations to

predict the values of fuel and air rates one time step ahead.  The suggested method requires the storage of

values indicating the amount of fuel entering the cylinder as a fraction of that injected versus engine load

and speed.  With those values as the reference, the recursive nonlinear algorithm performed well.  The

authors conclude that “the results… illustrate the excellent air-fuel ratio regulation which may be

achieved by the closed-loop AFR control system when the model parameter values are accurately known.”

Similarly, Bidan et al. [1995] use complex throttle dynamics equations to predict the amount of fuel

inducted from all sources (injectors, evaporation from manifold walls, scavenged from previous cycle,

etc.) for the upcoming cycle.  The prediction is based upon flow behavior and the derivative of the

pressure history at the current time step.

Lenz and Schroeder [1997] implement a three-state model to describe the system.  The three

states consist of one for the air pressure in the intake manifold, one to account for the unvaporized fuel in
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the manifold, and the last based on the engine speed.  The authors develop relations for each state and

produce potential inputs to a Radial Basis Function (RBF) neural network, without actually implementing

them due to the highly parallel processing nature of the network.  They do, however, offer prospective

research topics based on their work.

In an earlier work, Lenz and Schroeder [1996] detailed a method for breaking down the

relationship between throttle angle, air mass, and fuel mass inducted into the engine to produce a given

torque at a proper A/F ratio.  Their method involved predicting the amount of air that should be inducted

in the next engine cycle based on the driver’s manipulation of the throttle.  Upon gaining knowledge of

the future air mass, the correct fuel mass could be injected onto the back of the intake valves in

anticipation.  The authors used  General Regression Neural Networks (GRNN) to learn the various

interdependencies with neuronal populations ranging from 15 to 400.

Another approach to nonlinear control of the A/F ratio utilizes a technique called the sliding

mode observer.  The observer in this case is an arbitrary variable set equal to the difference between the

mass air flow and the product of fuel flow and the stoichiometric value.  The ideal case for the variable is

then the value zero and the "sliding" portion of the name is derived from a differential with respect to time

that adheres to Lyapunov stability which states that a slight disturbance to the system will not cause

chaotic perturbations, but rather that the system will return to a stable condition.  Carnevale et al. [1995]

demonstrated the effectiveness of this technique by maintaining the A/F ratio within 2% of stoichiometric.

Prior to them, Kaidantzis et al. [1993] used this method with success to estimate and compensate for the

transient fuel and air flow dynamics at the intake.

A different approach was formulated by Takahashi [1996], who presented an algorithm for

determining the correct amount of fuel to inject based on a data table produced by applying the δ-rule, a

basic learning law applied to neural networks.  Essentially, the table values are compared against target

values during operation and updated through a partial differentiation scheme.  The table values are then

used to predict the amount of fuel to be injected to achieve the desired A/F ratio.

Shayler et al. [1996] decided to partially eliminate the complex differential equations describing

the amount of fuel delivered to the cylinders by employing a multi-layer neural network.  The network
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works toward predicting the amount of fuel actually inducted into the cylinder based on three input

conditions: air mass flow, coolant temperature, and the fuel film mass on the manifold walls.   The last

input is determined by considering the fuel injected during the last cycle and solving the differential

equations.  The authors used a set of 9 transient data sets, placed 5 nodes in the hidden layer (for a 3:5:1

model), and trained the network over approximately 260 epochs.  Results indicated acceptable

performance with the benefit of vastly simpler calibration procedures, the elimination of a number of look-

up tables, and fast development time.

Due to the necessity of open-loop fuel management, cold starting of an engine offers an

opportunity for neural network application.  Asik et al. [1997] utilized a multi-layer network with back-

propagation containing eight inputs and two hidden layers of eight nodes each to produce one output

signal, the A/F ratio.  Besides typical input parameters like engine speed and load, the authors used a

metric derived from the crankshaft fluctuations induced by rapidly altering the fuel ignition pulse width.

In this manner, data sets were gathered for three different states: lean, rich, and stoichiometric fueling

conditions.  The results for open-loop management indicated good tracking of the network compared to

actual values supplied by a universal exhaust gas oxygen (UEGO) sensor, but with an underprediction in

the absolute values of the A/F ratio.

Crucial to the previous modeling projects is the correct identification of the volumetric efficiency

of an engine.  De Nicolao et al. [1996] set out to do just that, comparing different techniques of producing

the volumetric efficiency including neural networks and polynomial fitting.  The authors used speed and

manifold pressure as the input variables for prediction purposes.  They determined that the various models

used, including a multilayer back-propagation neural network, were quite useful in accurately modeling

volumetric efficiency.  A caveat offered by the authors concerning the back-propagation network detailed

that the final results of the volumetric efficiency map were sensitive in one area to the initial conditions

used to train the network.  In other words, the network could get trapped in local minima if the initial

neuron weights were chosen incorrectly.  They suggest training the network with a variety of initial

weights to avoid such a problem and ensure higher accuracy.
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Ramli and Morris [1993] applied a back-propagation network to the problem of non-linearities in

fuel injector and throttle characteristics.  They also noted that a more complicated network could treat the

entire engine as a black box function provided that all pertinent information was supplied (which was not

the case for their study.  Their main thesis was that complex modeling of nonlinear dynamics suffered

from the need for great accuracy and that only slight misrepresentations could alter the effectiveness

negatively.  They showed that a simple three-layer network could provide acceptable accuracy for fuel

injector throttle dynamics without extensive analytical techniques, provided enough training was

performed.  Additionally, they pointed out that neural controllers have great robustness and high fault

tolerance in case of minor internal failure by virtue of the spreading out of information through the

interconnectedness of the neurons.

Idle engine speed control presents another problem potentially solvable through the application of

neural networks.  Salam and Gharbi [1996] attempted to do so by developing a static neural network to

determine throttle and spark advance settings, and then feeding those signals into a recurrent, or time

dependent, network to produce targeted settings of engine speed and manifold pressure.  To ensure stable

control environments, the recurrent network was augmented with basic filters, producing large degree of

success.  Idle engine speed control was also an indirect goal of work by Feldkamp and Puskorius [1994].

Their research focused on increasing the performance of neural controllers through a process they call

multi-streaming.  Essentially, they trained the controller on different data streams provided by separate

source plants while keeping the trained weights.  As each data stream came to an end, the weights were

remembered and the data stream was restarted from a different source.  In this manner, the controller can

be trained on different plants exhibiting different operational states, thus avoiding an overly plant-specific

trained network.

The spark-ignition engine is not the only platform that can benefit from neural network

application.  Diesel engine injection and the compression-ignition engine also can benefit from the

application of nonlinear control.  Kao and Moskwa [1995] applied nonlinear observers to estimate

cylinder pressure values from speed signals taken from the crankshaft.  Their method involved utilizing a

cylinder pressure dynamic equation to provide the basis for the observer.  Obtaining this, the authors were
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able to reproduce the pressure profile within acceptable limits from which they then could infer fuel

burning rates.

In an effort to eliminate thermal drift within piezoelectric pressure sensors, Leonhardt et al.

[1995] used what they call the “difference pressure”, defined as the resultant pressure differential when

the compression pressure is subtracted from the measured pressure inside a combusting cylinder.  They

used variables derived from this pressure along with the engine speed as inputs to a neural network in

order to predict mass of fuel injected and the crank angle for start of injection for a direct-injection diesel

engine.  They found that both CMAC and RBF networks were comparable in performance with a usual

divergence from the test signal of no more than 10%, although in a later work the RBF was chosen as

superior [Leonhardt et al., 1995].  They also used this information to determine misfire and to identify the

associated cylinder.  Their work is the closest that could be found during the literature review to the work

done in this study.  In another study designed to identify faults in diesel engine turbochargers, Ludwig and

Ayoubi [1995] employed a multi-layer network with engine speed and fuel injection mass as inputs to

predict the loading pressure of the turbocharger.  The network performed with enough accuracy that

deviations from the estimated pressure could be further classified to denote turbocharger faults.  At the

time of printing such classifications had not been available for inclusion in their findings.

In a paper on general misfire in automotive engines, Ribbens et al. [1994] used a three-layer

back-propagation network to predict a Fourier component of the crankshaft angular speed.  By computing

certain statistical components from this and also defining a threshold level, misfiring cylinders could be

identified.  The network was set up with nine inputs, one output, and 25 neurons in the hidden layer.  The

authors claim error rates (i.e. misdiagnosed misfiring cylinders) of 0.006%, potentially qualifying the

method of identifying misfire for stringent OBDII requirements.

Recently published research shows that neural networks are becoming increasingly useful tools

for many and varied applications.  Their strength lies in greatly simplifying complex non-linear dynamic

relationships fairly quickly.  The only drawback appears to be the typically lengthy time required for

adequate training.  With the performance of high speed digital computers increasing constantly, there is
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reason to believe that neural networks will and should find a place in high speed engine control,

emissions, and performance prediction and diagnostics.

Furthermore, a review of the available literature indicates that there are no examples of in-

cylinder pressure-based emissions prediction neural networks.  The only publications that exist on the

topic of emissions prediction have been written by members of NeuroDyne, Inc. and West Virginia

University [Atkinson, et al., 1998; Hanzevack, et al., 1997].

3.3 Combustion Modeling

There are two basic types of numerical modeling techniques for the diesel engine: simple

thermodynamic and multidimensional [Ramos, 1989].  The thermodynamic techniques can be further split

into single-zone and multi-zone models.  Both rely on simple thermodynamic assumptions and equations

and treat the contents inside the cylinder as one or several separate control volumes.  The

multidimensional models are based on intensive numerical calculations in both the spatial and temporal

dimensions.

The benefits of the simple thermodynamic models are the relatively quick solution times involved

and the straightforward nature of the equations.  Unfortunately, these models aren't quite as accurate as

the more involved multidimensional models.  Increased accuracy comes at a price, however, as these

models are computationally intensive.

In a comparison of numerical techniques applied to a Saturn SI engine, Yang et al. [1994]

demonstrated that a multidimensional model (KIVA-II) could successfully calculate levels of gaseous

emissions for an engine operating at steady state within reasonable limits of accuracy.  A zero-

dimensional model, however, didn't fare as well, as it erratically predicted gaseous emissions for four

different steady-state conditions.  Additionally, both techniques were dependent upon the successful

approximation of unknown quantities such as the cylinder wall temperature.

Similarly, Tauzia, et al. [1997] applied a two-zone model to data from a direct injection diesel

engine.  They found that the model could predict values for NOX within 20% or so of the experimentally

obtained data for a series of steady-state conditions as well as a few transient conditions.



25

However, Muller and Zillmer [1998] evaluated in-cylinder data from a diesel engine to adjust the

parameters in a two-zone model to achieve realistic combustion temperatures and consequently predict

nitric oxide and soot formation rates at different points in the combustion cycle.

Rutland, et al. [1995] detailed efforts to apply multi-dimensional modeling code (KIVA-II and

KIVA-III) to achieve more accurate modeling of the diesel combustion process.  They admitted that true

modeling would not be obtained in the foreseeable future due to the vast amount of computing power

required (grids with 1012 points would suffice, but current supercomputer technology can only practically

compute 105 points).  Consequently, they used a wide range of sub-models to achieve good results

comparing their predictions of NOX and soot levels with those obtained experimentally.

Overall, numerical modeling of the combustion process in the diesel engine produces excellent

results for multi-dimensional simulation code.  Thermodynamic techniques also produce good results,

although not as accurately as the more computationally intense multi-dimensional models.  Both rely on

approximations and experimental data to fine-tune the equations and methods involved.  No mention has

been made in the literature as to the amount of time needed for these calculations.  It is quite possible that

computer power and the modeling techniques have not advanced to a stage that permits real-time

prediction of gaseous emissions.  However, the usefulness of numerical modeling for engine development

and other off-line applications cannot be understated.

3.4 Virtual Emissions Sensing at West Virginia University

NeuroDyne, Inc. has developed a virtual emissions sensing system, a software-based neural

network that has the ability to predict levels of emissions generated by a spark-ignition engine.  The

efficacy of this system in predicting engine-out emissions has been demonstrated by West Virginia

University during work conducted at the Engine Research Center on a Saturn automobile engine.

Additionally, there has been previous work performed on a Lycoming aircraft engine [Hanzevack et al.,

1997].  The network employed a three layer recurrent EBP scheme with nine inputs, fifteen neurons in the

hidden layer and four outputs.  The outputs consisted of the levels of emission of four gases: hydrocarbons,

carbon monoxide, carbon dioxide, and oxides of nitrogen (both nitric oxide and nitrogen dioxide).  The
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nine inputs consisted of a range of widely monitored parameters such as the manifold air pressure and

temperature and specially instrumented parameters like the exhaust temperature.  After training of several

hours was performed off-line by Dr. Theresa Long, the network was capable of accurately predicting the

levels of emissions (Figures 5-8).  The speed and load that the engine was taken through to generate the

data for Figures 5-8 are presented in Figure 9.  A schematic of the system is provided in Figure 10.

Testing was accomplished with a 1992 Saturn 4-cylinder in-line 4-stroke spark-ignition 16 valve

DOHC engine of 1.9 liter displacement.  Load was applied with a water brake dynamometer (Superflow

SF-901) and measured with a load cell mounted on the dynamometer housing. The dynamometer load cell

was calibrated using a lever arm and a standard weight. The cooling of the engine was accomplished with

a radiator and a fan controlled to operate at temperatures above 103 °C.  The stock thermostat was

employed, and the cooling system was pressurized to 16 psig (110 kPa gauge).  A list of engine

parameters recorded and the instruments used are provided in Table 1.  Table 2 lists the stock

specifications for the test engine.

The laboratory facility at West Virginia University was used for the study and many hands were

involved in the construction and setup.  A general overview of the equipment used follows.

The stock exhaust system was employed without the catalytic converter.  The exhaust was routed

to a dilution tunnel where the exhaust gases were diluted with air from the room and emissions of HC,

CO2, CO, and NOX were measured (Table 3).  The exhaust gas and dilution air were pulled by blowers

through a 400 scfm metering venturi operating at a "choked" condition.  Ambient temperature and

pressure were monitored continuously at the venturi inlet to allow calculation of the true mass flowrate of

the gases in the tunnel.  Background data were taken to subtract the amount of measured gases already in

the dilution air from the total measured amount, yielding the true quantity of emissions in the exhaust.

The air to the engine and the dilution air were not conditioned, but measurements of ambient temperature,

pressure, and relative humidity were taken before each test.
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Figure 5: HC emissions, predicted vs. actual, Saturn 1.9L engine operating on gasoline [Hanzevack,
et al. 1997].
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Figure 6: CO emissions, predicted vs. actual, Saturn 1.9L engine operating on gasoline [Hanzevack,
et al. 1997].
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Figure 7: CO2 emissions, predicted vs. actual, Saturn 1.9L engine operating on gasoline [Hanzevack,
et al. 1997].

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 100 200 300 400 500 600 700

Time (sec)

(g
/s

) NOx(p)

NOx

Figure 8: NOX emissions, predicted vs. actual, Saturn 1.9L engine operating on gasoline [Hanzevack,
et al. 1997].
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Table 1 : Saturn Engine Instrumentation [Tennant, et al. 1994]

Instrument Model
Exhaust Thermocouples Omega K-Type, ungrounded

#TJ36-CASS-18(U)-12
Manifold Air Pressure Sensor GM Part # 21020103
Manifold Air Temperature Sensor GM Part # 21020104
Universal Exhaust Gas Oxygen
Sensor

NTK:NGK Spark Plug Co. Part
# TL-7113-A1

Throttle Position Sensor GM Part # 21020101
Coolant Temperature Sensor GM Part # 21020104
Opticoder (Ignition Advance) Sumtak Opticoder LEI-292-1024
Tachometer Superflow Magnetic Pickup
Fuel Injectors AC Rochester

Table 2 : Stock Specifications for 1992 Saturn (Serial # 12NILE337976) [Tennant, et al. 1994]

Type: Water cooled-4 cycle
Cylinder Arrangement: 4 cylinder Inline, Transverse
Bore and Stroke: 82.0 mm x 90.0 mm (3.2 in x 3.5in)
Compression Ratio 9.5:1
Displacement 1.9 liter  (116 cu. in.)
Valve Train 4  Valves per cylinder - DOHC
Lubrication System Pressure Feed
Fuel Chevron Unleaded Gasoline, 89 Octane (R+M)/2
Engine Wet Weight (No Accessories) 99.8 kg      (220 lb)

Table 3 : Emissions Bench Instrumentation [Tennant, et al. 1994]

Instrument Model
HC Analyzer Rosemount Analytical  402 FID
NOX Analyzer Rosemount Analytical 955

Chemiluminescent
CO Analyzer Beckman Industrial 868 NDIR
CO2 Analyzer Beckman Industrial 868 NDIR

A data acquisition system, incorporating a Keithley DAS-16 data acquisition board with a 12 bit

A/D converter, was used to record the emission values, engine speed, manifold air temperature (MAT),

throttle position (TPS), coolant temperature (CLT), exhaust temperature, fuel injection pulsewidth

(FIPW), and λ (the fuel to air ratio normalized to stoichiometric conditions) via a universal exhaust gas

oxygen (UEGO) sensor.  The UEGO was necessary because it has a much wider authority range than the

conventional exhaust gas oxygen (EGO) sensor used by the stock controller.  Engine speed, ignition



31

advance and fuel ignition pulse width were acquired by a Keithley Metrabyte CTM-10 10-channel 16-bit

counter-timer board.  All values were acquired at the rate of 20 Hz.  The data were acquired and stored

with an IBM-compatible 133MHz Pentium computer.

Prior work for unrelated projects had already produced working data acquisition code in

the BASIC language, written by Richard J. Atkinson and Remco J. deJong.  For compatibility reasons this

code had to be altered and rewritten in C++.  Additionally, major portions of the data acquisition program

had to be added, including a direct unit conversion section to provide real unit data and a buffer section to

account for delays in the emission analyzers.  Because the analyzers do not have instantaneous response

and because of the presence of approximately 50 feet of exhaust piping and dilution tunnel between them

and the engine, the emissions values reported have to be adjusted in time to correspond to relevant engine

behavior.  This adjustment was made by feeding all other engine parameters into a large memory matrix

that effectively buffered the data by varying amounts.  The only variable that the neural code encounters in

real time is NOX since it has the longest analyzer delay time (Table 4).  A flowchart demonstrating the

buffer is shown in Figure 11.

Table 4 : Emission Delays

Hydrocarbons  9.25 seconds
Carbon Monoxide 11.75 seconds
Carbon Dioxide 11.75 seconds
Oxides of Nitrogen 14.00 seconds

Unfortunately, the main code for the virtual sensing system had been written in C on a Unix

workstation and a direct port to the PC was not possible. NeuroDyne, Inc. had the main code converted

into a MS-DOS compatible format.  This code was then combined with the C++ version of the acquisition

code.  Although the results of the NeuroDyne study were very good, there were some problems with the

method selected.  During training of the network, the inputs are weighted, summed, sent through an

activation function, and then compared against the actual values that are to be predicted.  In the case of

the measured emissions, the actual value was somewhat compromised because of the exhaust

system/dilution tunnel lag.  This was particularly evident during transient operation of the engine.

Consequently, for
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training purposes, the data had to be time-shifted backwards in order for the input variables to match the

output variables.  This shift was determined by gauging the "lift-off" point for torque or manifold air

pressure and then comparing that point to the corresponding "lift-off" of the gaseous emission in question.

There was no guarantee that this constant shift was accurate over the entire data set.  The impact of the

dilution tunnel system is that the networks ultimately treat the engine, exhaust system, dilution tunnel,

and analyzers as one large "black box".  The recurrent nature of the networks and the fact that they use

trends in time to aid prediction tempered this problem somewhat, but the time shift issue persists.

The choice of typical engine controller related parameters as the primary inputs was a logical

one, but also suffered from a time-related problem.  Basically, extra-cylinder parameters that involve

temperatures will themselves have a small time constant effect due to the heat transfer characteristics of

the engine materials.  These parameters will still be related to the gaseous emissions produced, but not in

a direct manner.  The combustion in the cylinder will govern the emissions levels, while the extra-cylinder

parameters will simply reflect the combustion inside the cylinder.

The end result is that the predictions will only be as good as the input parameters' relationship to

emissions formation and the analyzer/tunnel system response to emissions production.  This may be

adequate for overall prediction of a dilution tunnel system, but may fall just short of on-board diagnostic

capability to determine misfire, for instance.  For these reasons, for this work an in-cylinder based

pressure-measurement system employing a steady-state test matrix was proposed as a better method of

predicting engine emissions.

4. In-Cylinder Pressure Sensing

4.1 General Overview

Generally speaking and in this author's opinion, the most informative signal readily available

from an internal combustion engine comes from the in-cylinder pressure profile.  Since this signal reflects

the actual conditions of the engine while it is running, it can potentially provide a plethora of pertinent

information concerning the characteristics, behavior, and overall health of an engine.  The main
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drawbacks to gathering this information are the invasive nature of the required sensor and the relative

lack of robustness of most such sensors.  Therefore widespread adoption of the in-cylinder pressure

transducer for engine control and diagnostics has not yet occurred.  As a research tool, however, these

drawbacks are secondary and negligible compared to the usefulness of the information provided.

The most common method of measuring the pressure inside the cylinder utilizes a piezoelectric

crystal-based pressure transducer.  These devices generate a signal depending upon the pressure force

imposed upon the crystal in a relative sense.  In other words, the signal will not be in absolute terms, so a

baseline pressure must be established in order to attain engineering units.  Transducer installation

typically involves drilling a hole through the head of the engine and placing the transducer with its

sensing tip flush with the surrounding combustion chamber surface.  Non-intrusive devices are available

that take advantage of the spark plug position in spark-ignited engines, but because of the sampling tube

that extends down the side of the plug these devices suffer from adverse pressure wave effects due to their

distance between the pressure source and the sensing element.  For some applications where magnitude is

of minor importance but phasing is critical, such as in peak pressure timing control, a force washer

positioned under the spark plug provides adequate information.  For the application considered for this

research, however, an in-cylinder transducer is the ideal solution.

One of the problems with these transducers is thermal drift: a tendency for the sensor signal to

slowly drift upwards or downwards with changes in temperature.  It can cause trouble if the pressure

signal is “pegged” to a constant offset for the purpose of translating it into absolute pressure units.

Methods for accounting for thermal drift have been outlined by Brunt and Pond [1997], who concluded

that referencing the pressure signals to the inlet manifold pressure was adequate, although it did suffer

some drawbacks.  Their other alternative used a polytropic index based upon the compression

characteristics, but suffered from sensitivity to signal noise.  Due to the testing conditions, which inject a

moderate amount of noise into the signal, and the need for low computational load (a subject which shall

be discussed later in this work), the inlet manifold referencing was used here.  Other considerations for

working with pressure transducers include the resolution of the digitized signal and proper phasing
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between the cylinder volume and pressure signal to ensure the proper location of top dead center of the

piston.

For the current study, the pressure transducers were flush mounted in cylinders 3 and 5 in the

spaces formerly occupied by the glow plugs.  The work of physically installing the transducers was

performed by Talus Park.  The TDC position of cylinder 1 was then determined using standard methods

with motoring traces recorded for closer analysis.  The optical encoder mounted on the front of the

crankshaft was then adjusted until top dead center had been found to within 1 degree of crank angle.  The

motoring curves were analyzed for phasing problems and mechanical deficiencies; when none were found,

work proceeded.  The diagnostic capabilities of the motoring P-V curve can be found in the paper of

Lancaster et al. [1975] and in a previous work by this author using a Saturn 1.9 L engine [Traver, 1994].

4.2 In-Cylinder Pressure Signal Derived Parameters

By far the most direct and convenient variables available from an in-cylinder pressure profile are

the in-cylinder peak pressure and its location.  Studies have shown the relation between the location of the

peak pressure and engine efficiency [Tennant et al., 1994], and controllers have been developed to take

advantage of this fact as well as to reduce the amount of emissions produced [Atkinson et al., 1994;

Pestana, 1989; Watanabe et al., 1996].  Algorithms for finding these parameters from a digitized pressure

signal are quite straightforward with a simple comparative if-then statement.

The indicated mean effective pressure (IMEP) is a measure of the work done inside the cylinder

normalized to the cylinder volume.  The amount of work that the piston cylinder assembly actually

undergoes is the same as a similar system would undergo at a constant pressure (the IMEP).  IMEP is

calculated by integrating the work performed on the piston numerically and dividing by the displacement

volume.  Because the exhaust cycle is omitted, the subscript “g” is often placed onto IMEP to indicate the

gross amount of work done.  This is the designation that shall be used in this paper.  The main drawback

to calculating IMEP is that the instantaneous volume must be known throughout a complete cycle and

inaccurate geometric measurements can create problems.
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Two parameters that are calculated similarly to one another are the combustion duration and

ignition delay.  Ignition delay provides a measure of the time between the fuel injection into the cylinder

and the time at which discernible combustion starts within the cylinder.  Discernible combustion has been

defined in a number of ways (varying from the point at which the pressure history deviates from a

theoretical motoring curve to the point at which either 1% or 10% of the mass fraction has burned)

depending upon researcher preference.  Algorithms for this determination rely upon the First Law of

Thermodynamics or a polytropic compression-and-expansion process to calculate the instantaneous heat

release rate at each crank angle [Traver, 1994; Brunt and Emtage, 1997].  For this study, the

determination of the ignition delay period was chosen as approximately the time from start of injection to

the 1% mass fraction burned point.  The value is not actually 1% as the computer algorithm searches for a

significant summation of positive heat release from the following First Law derivation and treats the first

digital point of that summation as the end of the delay.  Additionally, recommendations for adequate

statistical burn-rate analysis include resolutions of at least 1 degree and populations of at least 150

combustion events [Brunt and Emtage, 1997].  For this study, combustion event populations numbered

128 due to hardware limits and the crank angle resolution was approximately 1/3 of a degree.

The combustion duration measures the time, usually in crank angle degrees, during which

combustion is taking place within the cylinder.  Generally, and due to measurement and accuracy

constraints, the combustion duration is defined between two set values of the percentage of the mass

fraction burned.  For the purposes of this study, the range shall be between 10% and 90% of the mass

fraction burned.  The algorithm used for this parameter is also based on the First Law of

Thermodynamics, and is the same as that used for determining the ignition delay.  In practice, the

incremental heat added is summed over a range of data points to provide an overall energy quantity and

then looped through again to determine the points at which 10% and 90% of combustion have occurred.

The basic algorithm to determine heat release assumes a quasi-static condition within the

combustion chamber, or that the combustion occurs at a uniform temperature and pressure.

Unfortunately, the diesel direct-injection process presents problems with this assumption and consequently

any method of analysis based on it can only give approximate answers.  Problems in applying the
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assumption include the presence of crevice volumes that do not behave quasi-statically, the burned gas

composition (which is unknown), non-uniform air-fuel ratios during combustion, and inaccuracies

involved in the prediction of heat transfer to the walls of the cylinder [Heywood, 1988].

The First Law of Thermodynamics can be written as:

∑ =+−
i

ii dt

dU
hm

dt

dV
p

dt

dQ
&      (Eq. 4.1)

where Q is the heat transfer parameter, p is the in-cylinder pressure, V is the volume, mi is the mass of

fuel injected, h is the enthalpy, and U is the internal energy.  During the compression and expansion

phases of the cycle the only mass crossing the system boundary is the fuel injected and so the mass-

enthalpy term reduces to a "mass of fuel" enthalpy term.  Assuming that the enthalpy and internal energy

are sensible terms (using a baseline of 298 kelvin; denoted as e) and that the net heat released is defined

as the difference between the energy released through combustion and the energy lost to heat transfer from

the system (denoted as n), the equation can be rewritten as:
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The heat loss through the system boundary presents a problem only at the end of combustion  where

temperatures have risen significantly.  Studies have shown that the energy lost due to wall heat transfer

does not affect the ignition delay parameter significantly under normal operating conditions [Brunt and

Emtage, 1997; Heywood, 1988].  The fuel enthalpy difference is sufficiently small so as to be negligible

due to the small mass of fuel compared to the working fluid and the small temperature difference between

the fuel and the baseline 298 kelvin.  Next, the system is assumed to behave as an ideal gas, giving:
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n +=      (Eq. 4.3)

 where cv is the specific heat at constant volume.  Differentiation of the perfect gas law with R, the

universal gas constant, provides a means of eliminating the temperature term which is generally

unavailable in pressure analysis:
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Substituting the specific heat ratio, γ, provides the final equation used in the present analysis with the

result being equally valid when substituting the independent variable θ, or crank angle, to represent time,

t:
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Another method for determining the combustion duration and the ignition delay through analysis

of the incremental heat addition was introduced by Rassweiler and Withrow [1938] and examined by

Brunt and Emtage[1997].  Brunt and Emtage compared several algorithms for producing these parameters

and concluded that the Rassweiler and Withrow model, which used estimations for the expected end of

combustion and polytropic indices to more accurately determine the mass fraction burned, was the most

effective for producing accurate results when used on a spark ignition engine.  However, due to processing

power constraints associated with calculating the heat-release parameters on a cycle-by-cycle basis and the

limited increase in accuracy, the basic algorithm described above was used to generate the data for this

study.  Overall accuracy, although important, is not as crucial for the training of the neural network as

consistency, given that the network trains on repeatable results and employs what has been learned for

future predictions.  In other words, absolute and complete description of the combustion dynamics

involved is not necessary for a successful predictive neural network.

Additionally, several other parameters were calculated from the pressure histories.  The location

of 50% of the mass fraction burned of fuel, or LMFB50, was based on the same algorithm as the

combustion duration.

The maximum burning rate was calculated through a five-point central difference differentiation

algorithm.  For each point, the estimated compression pressure was first subtracted from the total pressure

to provide the pressure rise due only to combustion.  The compression pressure was estimated through the

polytropic relation based on the conditions during the closing of the intake valve.  Similarly, the

maximum instantaneous torque generated and its location are determined for each combustion cycle.  The
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instantaneous torque value is calculated from the geometric parameters of the engine that provide a

moment arm which is then multiplied by the total downward force impinging on the piston determined

from the pressure recorded at that point.

Finally, the incremental heat-addition calculations provide three additional parameters:

the mixing burn, defined as the time in crank angle degrees for the mass fraction burned to increase from

50% to 99%; the maximum heat added, defined as the highest calculated incremental heat value that

occurs in the cycle; and the location of the maximum heat added.  These are all byproducts of the

combustion duration calculations already being performed.  In a typical diesel combustion process, there

are two distinct burning phases that can be seen in the heat release information: the initial heat release

spike and the longer oxidation time.  The mixing burn length attempts to approximate the oxidation

burning sequence.  Figures 12 and 13 and Table 8 detail the in-cylinder pressure parameters that were

taken during the study.

Geometric features of the pressure signal can also be used to define combustion characteristics.

Leonhardt et al. [1995] used the center of gravity and secant lengths to characterize pressure signals for

the purpose of neural network supervision of the fuel-injection process.  Gassenfelt and Powell [1989] also

used geometric descriptors such as moments and centroids to generate algorithms for determining A/F

ratio from pressure signals.  Consequently, effective descriptors for combustion characteristics and their

effects upon engine performance and behavior are not limited to hard engineering variables, but extend to

geometric parameters as well.  However, it was decided that the combustion based variables would offer

adequate information for neural network training.
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5. Experimental Setup

A 1994-specification Navistar direct-injection diesel engine (Tables 5 and 6) fueled by D2-

specification diesel provided the data for this study.  An initial power map provided the information

needed to develop a representative test matrix.  The engine map was divided into 64 test points with

increments of approximately 300 RPM and 50 lb-ft. (Figure 12).  For each data set point, the engine was

brought to the appropriate speed and load and allowed to reach steady-state in order to prevent transience

in operating conditions and to provide steady emissions production.  Once all parameters of interest had

achieved a steady-state condition, data acquisition was initiated.  Every revolution of the engine generated

a trigger signal for the acquisition of the designated “slow-speed” variables such as manifold air pressure

(MAP), intake air temperature (IAT), engine coolant temperature (ECT), start of injection (SOI), engine

speed, emissions (Table 7), etc.   After a set number of revolutions another trigger initiated the “high-

speed” acquisition using a DAS-58 high speed sample-and-hold ADC board.  With the pressure signals

from two cylinders and the top dead center (TDC) phasing signal being recorded, the DAS-58 was capable

of acquiring complete pressure histories for 128 combustion events.  Consequently, 130 megabytes of data

were eventually acquired on April 16, 1998 for network training purposes.
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Figure 14: Speed and load map for Navistar T444 operating on diesel #2 (O indicates training point,
X indicates test point).

Table 5 : Navistar Engine Instrumentation

Instrument Model
Exhaust Thermocouples Omega K-Type, ungrounded

#TJ36-CASS-18(U)-12
Manifold Air Pressure Sensor Motorola Part # 1807249C1
Manifold Air Temperature Sensor Motorcraft Part # F2VY-

12A648-A
Oil Temperature Sensor Motorcraft Part # F2VY-

12A648-A
Coolant Temperature Sensor Motorcraft Part # F2VY-

12A648-A
Injection Control Pressure Motorcraft Part # 1607J29
Opticoder (Event Timing) Sumtak Opticoder LEI-292-1024

Table 6 : Navistar T444E Engine Specifications

Type: Water Cooled Turbocharged Direct Injection Diesel
Cylinder Arrangement: 8 Cylinder V-type
Bore and Stroke: 104.39 mm x 106.20 mm (4.11 in x 4.18 in)
Compression Ratio 17.5:1
Displacement 7.3 liter  (444 cu. in.)
Horsepower 175HP @ 2600 RPM
Fuel BP Diesel #2 Specification
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Table 7 : Emissions Analyzers

Instrument Model
HC Analyzer Rosemount Analytical 402 FID
NOX Analyzer Rosemount Analytical 955

Chemiluminescent
CO Analyzer Rosemount Analytical 880A

NDIR
CO2 Analyzer Beckman Industrial 868 NDIR

6. Neural Network Selection and Training

6.1 Training Data Pre-Processing

The data were processed using a custom reduction program that incorporated both slow- and

high-speed data streams into one comprehensive summary file.  Each combustion event was analyzed and

after TDC was confirmed using the phasing signal, various combustion related parameters were derived

from the pressure curves.  Each test point provided 128 combustion events and 270 revolutions of slow-

speed data.  All parameters were averaged for each test point and the result used to represent that point on

the test matrix.

Once the comprehensive data file had been generated and converted to spreadsheet format, the

NeuroShell software [Ward Systems Group, 1996] was able to read the information.   Once imported, the

minimum and maximum values for all data columns were calculated.  These were used to scale the inputs

and outputs from –1 to +1 to ensure that there were no unequal and unwanted contributions from any one

data column.  For instance, without scaling, the relative importance of engine speed could be overinflated

during network training if the other inputs' values were an order of magnitude lower (e.g. engine speed of

1500 RPM vs. a manifold air pressure of 100 kPa vs. a combustion duration of 10°).

Ideally, the data gathered would represent the entire range of data that the engine is expected to

encounter.  After scaling, the opportunity was given to extract a representative set of data from the

training set to be used as a testing or calibrating reference set.  The software provided a means of

generating the test set through a random extraction method, but it was decided that a better method would

be to manually choose 12 test points covering a wide range of conditions to ensure that at least one full
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power set point
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Table 8 : Combustion-Derived Parameters

Shorthand Abbreviation Explanation Definition
Peak Peak Pressure Value Maximum pressure encountered

in an individual cycle (kPa).
LPP Location of Peak Pressure Location of the maximum

pressure encountered (CA°).
IMEPg Indicated Mean Effective

Pressure (gross)
Integrated work for the
compression and expansion
cycles, divided by the
displacement of a single cylinder
(kPa)

IgnDel Ignition Delay Time in crank angle degrees
from fuel injected to the
discernable start of the mass
fraction burned  (CA°).

CombDur Combustion Duration Time in crank angle degrees
from 10% to 90% of the mass
fraction burned (CA°).

LMFB50 Location of Mass Fraction
Burned - 50%

Location of 50% of the integrated
mass fraction burned curve
(CA°).

MaxBurn Maximum Burn Rate Maximum rate of pressure rise
calculated from a 5-pt. central
difference (kPa/microsecond).

MaxBurnLoc Maximum Burn Rate Location Location of the maximum burn
rate (CA°).

MaxTorque Maximum Torque Maximum instantaneous torque
based on geometric calculation of
moment arm and pressure (Nm).

MaxTorqueAngle Maximum Torque Angle Location of the maximum torque
(CA°).

MixingBurn* Mixing Burn Measure in crank angle degrees
of the time from 50% to 99% of
the mass fraction burned (CA°).

MaxQ Maximum Heat Release (Q) Maximum value of the
instantaneous heat release used to
calculate the mass fraction
burned (kJ/CA°).

MaxQLoc Maximum Heat Release (Q)
Location

Location of the maximum heat
release (CA°).

                                                       
* During verification of the data generated by the DSP-based acquisition system, an error was discovered
in the off-line reduction software that effectively added the start-of-burn value to the Mixing Burn
parameter.  Unfortunately, the neural networks had already been trained using these values, but since the
networks are capable of successful prediction so long as the data are consistent, it was decided to continue
regardless.  Consequently, the values from the DSP-based system were adjusted by the start-of-burn for
consistency.
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was represented (as shown in Figure 12).  The purpose of the test data was to provide the neural network

with a data set that the network had not previously "seen" and which was therefore valuable as a gauge to

test for accuracy.  After extraction, the number of training data points was fixed at 52, covering a wide

range of engine conditions.

Before training commenced, the data were analyzed to determine the best candidates for each of

the recorded emissions.  Linear data correlation techniques provided an indication of the predictive

capabilities of the candidate variables with scatter plot charts providing further insight (Appendix A).

The data correlation was done through Microsoft's Excel spreadsheet program and is used to measure the

relationship between two sets of data points.  Specifically, the "population correlation calculation returns

the covariance of two data sets divided by the product of their standard deviations."[Microsoft, 1996]

These correlations offered a first step towards choosing the appropriate input variables.  Obviously,

relationships that were not close to linear would not have high correlations and so further investigation

was necessary to ensure equally important variables were not left out.  To this end, the scatter plot charts

were particularly informative for ignition delay and MaxBurn.  As can be seen in the charts in Appendix

A, the ignition delay shows a definite effect on NOX production, but that relationship appears to be split

into separate engine-speed bands, leaving a statistical correlation number of 0.126 across the whole speed

and load range.  This corresponds well with the evidence gathered in the past concerning the speed

scaling of the ignition delay and the long history of timing advance devices that take advantage of it.

Further, MaxBurn, and to an extent LPP, show a slight bifurcation effect that the correlation numbers do

not explain.  These somewhat non-linear relationships are well suited for neural network training as they

can still be determined with adequate training while combination with other variables may describe a

more straightforward relation with the gaseous emissions.  More intricate multi-dimensional relationships

between these variables and the gaseous emissions were not possible since at the time the data were

acquired, control of independent variables such as fueling and start of ignition was not available.

Nonetheless, the relationships that could be determined were adequate for choosing a set of potential input

variables for successful predictive networks.
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Correlation values between the emissions and all data variables are supplied in Table 9 (values

above 0.5 and below –0.5 have been boldfaced) where each value is the average for each engine set point.

Negative values represent an inverse relationship.  From these sources and biasing the selection in favor of

theoretically strong indicators, seven variables were selected for each emission gas to serve as inputs.  The

number of variables, seven, was chosen due to the rather large amount of network processing required for

all combinations of inputs.  The rationale will be explained below.

Table 9 : Linear Correlation Values for the Data Matrix (Cylinder 3 Only)

HC CO CO2 NOx

HC HydroCarbons 1
CO Carbon Monoxide -0.21306 1
CO2 Carbon Dioxide -0.31780 -0.01426 1
NOx Oxides of Nitrogen -0.40886 0.01986 0.96890 1
Speed Engine Speed 0.43751 -0.21311 0.61527 0.50003
FIPW Fuel Injector Pulse Width -0.77224 0.31948 0.47451 0.57593
SOI Start of Injection 0.70669 0.06152 0.16552 0.08341
ExTemp Exhaust Temperature -0.51188 0.22817 0.89532 0.93233
IAT Intake Air Temperature 0.12988 -0.35696 0.74043 0.62214
MAP Manifold Air Pressure -0.17083 -0.10780 0.97094 0.89665
ECT Engine Coolant Temperature -0.11371 0.19725 0.69235 0.69743
APS Accelerator Pedal Position 0.151934 0.25141 0.69803 0.64697
Torque Engine Torque -0.68372 0.23919 0.79250 0.86961
EOT Engine Oil Temperature 0.22454 -0.11398 0.78579 0.72506
ICP Injection Control Pressure -0.39150 0.20646 0.94363 0.94182
Smoke Bosch Smoke Meter -0.00721 0.17513 0.61855 0.58751
Peak Peak Pressure -0.50044 0.45322 0.84224 0.87798
COV(Peak) Coefficient of Variation of Peak Pressure 0.77690 -0.13656 -0.55399 -0.59470
LPP Location of Peak Pressure -0.28463 -0.13806 0.33880 0.47287
COV(LPP) COV of LPP -0.05834 -0.05060 0.39979 0.27505
IMEPg Indicated Mean Effective Pressure (gross) -0.47408 0.12468 0.95383 0.97816
COV(IMEPg) COV of IMEPg 0.10285 -0.05545 -0.35835 -0.37824
IgnDel Ignition Delay 0.73036 -0.25122 0.23863 0.12634
CombDur Combustion Duration -0.36937 -0.03626 0.95619 0.95842
LMFB50 Location of Mass Fraction Burned 50% -0.20946 -0.37399 0.89292 0.83780
MaxBurn Maximum Burn Rate 0.02063 0.37815 -0.20617 -0.12689
MaxBurnLoc Location of Maximum Burn Rate -0.14946 0.69667 -0.30248 -0.21578
MaxTorque Maximum Instantaneous Torque -0.44461 0.12026 0.96696 0.98130
COV(Torq) COV of Maximum Inst. Torque 0.81725 -0.12123 -0.38685 -0.44670
MaxTAngle Location of Maximum Inst. Torque -0.25686 -0.19218 0.95591 0.89339
MixingBurn Mixing Burn Length -0.56789 0.37016 0.65451 0.75617
MaxQ Maximum Instantaneous Heat Addition -0.53731 0.41577 -0.35195 -0.27452
MaxQLoc Location of Max. Inst. Heat Addition -0.15513 -0.39886 0.80901 0.70906
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Finally, theoretical considerations were given to the selection of the inputs that were to be used

for training.  Some inputs were chosen for their representation as direct measures of the formation rates of

the gaseous emissions while others, although possessing a linear relationship with the emissions, were

only loosely related to the formation rates.  For instance, the peak pressure is a more or less direct measure

of the in-cylinder temperatures and thus the NOX formation rate, while the IMEPg, because it reflects the

amount of work being done, indicates the amount of fuel being combusted and gives a more general

indication of the NOX formed.

Hydrocarbon formation in the diesel engine is heavily influenced by the amount of oxygen

available and the rate of combustion of the fuel injected.  For the latter reason, MaxQ, combustion

duration, and the peak pressure were chosen as inputs to the training networks.  A misfire condition or a

delayed start of combustion could be measured by a low value for the maximum heat release rate as

compared to more normally high values associated with good combustion.  Similarly, a very long or

abnormally short combustion duration could indicate poor performance, especially in combination with

the peak pressure.  In either case, complete combustion is questionable and the hydrocarbon emissions

should show the effect accordingly.  Along those lines, the phasing of the pressure and volume of the

cylinder can have an effect on combustion and so the location of peak pressure, the location of 50% of the

mass fraction burned, and the ignition delay may give an indication of combustion quality.  Finally, the

direct measures of possible hydrocarbon formation were considered.  Since post oxidation of the fuel

heavily influences the amount of hydrocarbons escaping down the exhaust pipe, the mixing burn variable

was chosen to help account for it.

The processes behind carbon monoxide formation are similar to the processes that produce

hydrocarbons.  As a result, the choices for inputs are similar.  Once again, the post-oxidation phase of

combustion late in the cycle has a notable effect on the final amount of CO found in the exhaust gas. For

that reason the mixing burn parameter was chosen in the hopes of producing a highly relevant network

input.

Carbon dioxide is one of the two major molecular products of hydrocarbon combustion (water is

the other).  The amount of fuel and how well that fuel is converted to energy determine the overall
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quantity of CO2 that leaves the cylinder in the exhaust gas.  Consequently, the geometric qualities of the

pressure trace offer considerable information for potential network inputs.  Foremost among them is the

IMEPg, which provides a numerical value for the work produced per unit volume.  The work produced is

very much dependent upon the pressure in the cylinder and the time in the cycle that that pressure occurs.

For this reason, the peak pressure contributes valuable information as well.  Other variables describing

pressure-volume and combustion phasing such as the combustion duration, location of mass fraction

burned-50%, the ignition delay, and the location of the maximum burn rate can also be quite useful as

inputs.  Finally, the maximum burn rate, which describes the derivative of the combustion pressure, infers

the qualities of the fuel and in conjunction with other variables could offer information on the combustion

efficiency, which has a high correlation to carbon dioxide production.

NOX formation is accelerated by three major factors: the availability of nitrogen and oxygen and

the temperature of the combusting mixture.  Since there are no direct measurements of the in-cylinder gas

temperature available, other means of establishing those influences had to be substituted.  For a perfect

gas, pressure and temperature rise together (for the current application) and so the choice of peak pressure

as an input is obvious.  The higher the pressure reached inside the cylinder, the higher the spatially and

temporally averaged temperature of combustion.  Along those same lines, the maximum heat release rate,

MaxQ, and the maximum rate of change of the combustion pressure, MaxBurn, were chosen as useful

input variables.  Theoretically, a large heat addition will raise the temperature inside the cylinder

accordingly and the maximum combustion pressure change will reflect that also.  Consequently, three of

the inputs are qualitative records of high-temperature behavior.  The phasing of the pressure and volume

can also have an influence on the eventual in-cylinder temperature and so the ignition delay and LMFB50

were chosen to account for that potential.  If the location of mass fraction burned-50% occurs at a very late

stage in the cycle, the volume of the cylinder will be steadily growing and temperature effects due to

combustion will be reduced.  Similarly, the ignition delay will indicate how relatively late or early in the

cycle combustion is occurring and give a measure of the volatility of the fuel.  The final two variables

chosen for the NOX prediction networks were IMEPg and the combustion duration.  The IMEPg is a

simple measure of the amount of work being done and will thus have a strong overall correlation to NOX
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while combustion duration can indicate the total amount of fuel combusted.  Table 10 shows the variables

chosen for each respective emission level.

Table 10 : Variable Combinations for Network Inputs

Emission Gas Input Variables
HC Peak, LPP, CombDur, LMFB50, IgnDel, MixBurn, MaxQ
CO Peak, LPP, LMFB50, MaxBurn, MaxBurnLoc, MixBurn, MaxQ
CO2 Peak, CombDur, IMEPg, LMFB50, IgnDel, MaxBurn, MaxBurnLoc
NOX Peak, CombDur, IMEPg, LMFB50, IgnDel, MaxBurn, MaxQ

Finally, to ensure that the networks train properly, uniqueness within the data set should be

confirmed.  If two speed and load conditions could produce the same pressure-derived variable set, then

the network would have trouble distinguishing between the two, leading to a reduced ability to predict

successfully unseen data.  To this end, the data from the 64 point steady state test matrix were plotted in

three dimensions to aid in the determination of uniqueness (Appendix B) .  Even a quick glance will

confirm that some variables experience no repetition within the data set (e.g., peak pressure, IMEPg,

ignition delay).  Others, however, do show small constant sections and areas where the same variable

displays the same value, but when combined with other inputs, the effect of this problem is reduced

considerably.  Neural networks use the combined effects of many variables to determine the relationships

and a simple multiplicative function would eliminate the problem of a repetitive value in a single variable.

Consequently, the data matrix used to train the networks has unique variables for each point in the grid.

6.2 Applied Neural Network Architectures

NeuroShell 2 [Ward Systems Group, Inc., 1996] provided a variety of network architectures

suited to the problem at hand.  Additionally, a batch processor supplied with the software enabled the user

to train a number of different networks sequentially.  This proved useful as the number of hidden layer

neurons cannot be predicted for the best network and must be determined heuristically since there is no

accepted theory in neural network literature as to a satisfactory method of selecting the number.  Three

architectures were chosen based on their use of 3-layer error back-propagation.  As discussed previously,

the EBP network is quite good at interpolation and this feature fits the data matrix assembled.  The first

architecture was a straight 3 layer EBP with a hyperbolic tangent activation function in the hidden layer
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and a linear activation function for the output layer.  The number of hidden layer neurons ranged from 5

to 20 within the NeuroShell 2 batch processor.  The second architecture employed a second hidden layer

in parallel to the first.  This second layer uses a different activation function in an attempt to find patterns

in the data not uncovered by the first.  The activation functions for these hidden layers in the second

architecture were the Gaussian and Gaussian complement while the output activation function remained

linear.  Finally, the last architecture added a third hidden layer.  This setup was basically the same as the

second with the third hidden layer using a hyperbolic tangent activation function.  Both architectures used

a range of hidden neurons from 4 to 19*.  Architectures 2 and 3 are referred to by the names Ward #1 and

Ward #2 (Ward Systems Group, Inc. is the publisher of NeuroShell 2) and architecture 1 is known as the

3-Layer (Figure 15).
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Figure 15: The three different NeuroShell network architectures.

                                                       
*The Ward #1 and Ward #2 networks employed secondary and tertiary hidden layers in the architecture,
effectively adjusting the number of hidden nodes by 2x and 3x, respectively.  All future notations of the
number of neurons in the hidden layer refer to each layer, and not the aggregate.
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The batch processor was then set up to train networks continuously.  Each of the gaseous emissions

predictions (NOX, HC, CO, CO2 ) was trained with the three networks over a range of the number of

hidden layer neurons for each combination of inputs possible from the initial seven.  Combinations of 3, 4,

5, 6 and 7 inputs resulted in a total of 99 different architectures.  Considering that there are 4 emissions, 3

network architectures and 16 hidden neuron levels, the amount of training time required to train all

19,000 networks has the potential to be quite large.  This was the primary factor in limiting the selection

of potential input variables to seven.  An 8 variable pool would have resulted in 219 combinations of

inputs (56 for 3 and 5 inputs, 70 for 4, 28 for 6, 8 for 7 and 1 for 8 and 42,000 total networks).  With four

Pentium class computers operating whenever possible, the seven-input combination took two months to

complete.  A similar process with an eight-input pool would have taken twice as long.

6.3 Training Results

After each batch processing session, the results for each hidden node sweep for each architecture

were tabulated.  NeuroShell supplies the option of applying a multiple regression analysis to a data set in

order to return the statistical indicator R2, defined as:

   12

YYSS

SSE
R −=      (Eq. 6.1)

where

( ) ( )∑∑ −=−== 22   and  ˆ  Errors of Squares of Sum yySSyySSE YY

and where y is the actual value, ŷ is the predicted value of y and y is the mean of all the y values [Ward

Systems Group, 1996,  p. 194].  An R2 value was determined for both the training set and the test set data.

A good network should give high results (approaching 1.0) for both sets.  These results were analyzed for

the best R2 value averaged between the test set and training set; the corresponding inputs, number of

hidden-layer nodes, and architecture were recorded.  Typically, the R2 values reached a relative maximum

for a given number of nodes in the hidden layer.  The reason for the hidden node sweep is that there is no

general theory governing the correct number of nodes necessary for good neural network prediction.

Figure 16 demonstrates this by showing the local maxima within the hidden node sweep.  The end result
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was a table for each gaseous emission showing the best networks with the highest potential for correctly

predicting transient emissions data (Appendix C).

Hidden Layer Node Sweep
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Figure 16: Typical hidden layer node sweep results (4 inputs and 1 output).

The tables of data generated by the extensive network training offer a small amount of useful

information about the relative importance of certain inputs over others.  Because of the heuristic nature of

the training and because of the difficulty of extracting the influence of one variable from the combined

influence of several, the information is not decisive.  Examining the lists of the best 20 networks

(Appendix B) for each gaseous emission does allow for some interpretation.  If one eliminates from the

lists those networks containing the same inputs but different architectures and then tabulates the relative

occurrences of the individual input variables, one can get an idea of the influence of those variables.

Examination of the weighting factors was considered, but the values are not particularly informative and

the Ward Systems Group warns against using them for anything but the most general application,

especially as the number of inputs rises.  Table 11 shows the percentage of the total number of input
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combinations of which each input variable is a member.  For instance, ignition delay occurs in 70.6% of

the unique networks in the top 20 networks for hydrocarbon prediction.  The conclusion that can be made

from this table is that certain inputs seem to be far more important than others for improved predictive

abilities.  NOX appears to be heavily affected by IMEPg, LMFB50, and ignition delay as these appear in

all of the top 20 networks.  Indeed, one of the top 20 predictive neural networks for NOX has the three-

input architecture containing just those variables.

Table 11 : Percentage of Variables Occurring in the Top 20 Networks Trained to Predict Each
Gaseous Emission (Total is the number of unique input combinations in the top 20)

HC
Total IgnDel CombDur MaxQ LMFB50 LPP MixBurn Peak

17 70.6 52.9 76.5 70.6 58.8 35.3 88.2

CO
Total Peak MaxQ LMFB50 MixBurn MaxBurn LPP MaxBLoc

15 100 100 80 40 53.3 46.6 60

CO2
Total Peak CombDur LMFB50 MaxBLoc IgnDel IMEPg MaxBurn

11 100 54.5 63.6 72.7 100 45.5 72.7

NOx
Total CombDur IMEPg LMFB50 IgnDel MaxQ Peak MaxBurn

9 55.5 100 100 100 55.5 11.1 44.4

Once the networks had been trained, they were converted to C++ source code files and prepared

for integration into a data analysis program.  The final step involved the acquisition of high speed in-

cylinder pressure data and emissions analyzer signals over the entire FTP cycle.

As a final test of the network variables chosen, periodically sampled pressure points from the

digital pressure traces were used as inputs, in order to demonstrate whether engineering-based variables

derived from pressure profiles were more or less efficient for use in a neural network.  Sixty-four, thirty-

two, sixteen, eight, and four pressure points taken from set intervals from the average pressure trace from

each speed and load were used as inputs (Figure 17), with results given in table 12.  HC and CO clearly do

not benefit from a sampled pressure-based network scheme.  The average R2 values are below those

obtainable from the engineering variable-based networks.  CO2 and NOX, however, seem to respond well
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to the sampling method.  This is probably due to the heavy dependence of their formation rates on

geometrically influenced parameters.  They both have high correlation to both IMEPg and peak pressure,

which are geometrically based parameters.  Also, they both seem to be affected by such variables as the

ignition delay and the MaxBurn, which can be discerned from a raw pressure signal. When the number of
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Figure 17: Representation of a typical in-cylinder pressure cycle reduced to a network input matrix
(64 inputs).

inputs is a factor, though, the engineering-based variables show an advantage.  The pressure-sampled data

do not produce very high R2 values until 16 or more inputs are used.  This is in direct contrast to the

engineering variables, which have high R2 values for as few as three inputs.  The conclusion that can be

drawn from this is that real-world engineering-based variables are more efficient for prediction purposes

than periodically sampled pressure curves, despite the fact that enough samples can in fact produce good

results for NOX and CO2.  The reason being that the engineering variables are derived from the larger

1024 data point set with a considerable amount of post-processing.  The lower numbers of points used as

direct inputs are simply lower resolution images of the full 1024 point set.
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Table 12 : Network Results from Sets of Pressure Points from Sampled Average Pressure Traces for
Each Speed and Load Set-Point with Comparison to Four-Engineering-Variable Networks

Sampled Pressure Trace In-Cylinder Pressure Variables
Number
of Inputs

Hidden
Neurons

R2

Test Set
R2

Train Set
R2

Average
Hidden
Neurons

R2

Test Set
R2

Train Set
R2

Average

HC
64 40 0.785850 0.933887 0.859868
32 24 0.735079 0.965853 0.850466
16 16 0.779130 0.868464 0.823797
8 12 0.575277 0.831664 0.703471
4 10 0.680254 0.888052 0.784153 15 0.916069 0.986431 0.951250

CO
64 40 0.608614 0.895498 0.752056
32 24 0.723613 0.924028 0.823820
16 16 0.578273 0.859865 0.719069
8 12 0.618232 0.864459 0.741346
4 10 0.629076 0.863229 0.746153 6 0.997674 0.998376 0.998025

CO2

64 40 0.996524 0.999005 0.997764
32 24 0.997050 0.998041 0.997545
16 16 0.997938 0.998911 0.998424
8 12 0.997082 0.998434 0.997758
4 10 0.997541 0.996863 0.997202 9 0.997932 0.998829 0.998380

NOX

64 40 0.989771 0.997465 0.993618
32 24 0.993306 0.997218 0.995262
16 16 0.979816 0.973019 0.976417
8 12 0.980584 0.974955 0.977770
4 10 0.972753 0.960654 0.966703 20 0.998166 0.997204 0.997685

7. Digital Signal Processing

7.1 General Overview

Recent advances in microprocessor design and manufacture have enabled greater and greater

power to be harnessed for high-speed data analysis.  The Digital Signal Processor (DSP) is a

microprocessor specifically designed for high efficiency performance during repetitive looping

calculations encountered in signal processing.  Many algorithms used for traditional pressure variable
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calculations utilize software loops to a high degree, such as those used for determining IMEPg and

combustion duration. Because of this, the DSP is highly suited for application in combustion pressure

analysis.  Additionally, advances in DSP design now enable extremely high-speed processing capabilities,

well in excess of those required for real time analysis.

Combustion analysis using a DSP has been used in previous research endeavors largely for

control purposes.  Lee et al. [1995] constructed a DSP analysis system, wrote accompanying software for

ease of use, and drew on the setup to provide information on engine variables in real time for the purpose

of modifying engine control.  Leisenring, et al. [1995] used a DSP to calculate the heat-release rate inside

the cylinder and correlated that information to the A/F ratio in a SI engine.  The information was then

applied to better control the engine during cold-start operation before the EGO sensor was warm enough

to provide feedback control.

7.2 DSP Application Development at WVU

A Texas Instruments TMS320C30 Evaluation Module was installed in a 133-MHz Pentium-

based IBM-compatible personal computer for the purpose of analyzing pressure profiles on a cycle-by-

cycle basis in real time.  The Evaluation Module (EVM) consists of an 8-bit PC-compatible half-length

card containing a 33-MFLOP (million floating point operations per second) DSP with 64k words of on-

board memory.  In addition, the half-length card features a bidirectional host interface capable of

approximately 200 kbytes-per-second throughput.

For preliminary development purposes, a small electronic engine simulator was constructed by

Richard Atkinson to deliver previously recorded and stored pressure profiles to the DSP Evaluation

Module.  The pressure-like profiles were first scaled and converted to hexadecimal before being

programmed onto an EPROM chip.  A 10-channel switch was then wired to the chip in order to send out

2048 distinguishable digital samples depending upon operator choice.  These signals were converted to

analog to effectively represent an equivalent electronic signal from an in-cylinder pressure transducer.

The conversion was performed by a Harris 8-bit digital-to-analog converter (DAC) with a 20 ns settling

time for a very effective high-speed rate.
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The analog signals from the simulator were then sampled and converted by a Maxim MAX121

analog-to-digital converter (ADC) at 14-bit resolution and with a maximum throughput rate of 308 kilo-

samples per second.  The MAX121 was specially designed to work with various DSP chips, including the

TMS320.  Software included in the literature received with the MAX121 was modified for the specific

task of sampling engine data (Appendix A).  The converted 14-bit samples were then grabbed by the

TMS320 through a 16-bit serial port after two trailing zeros had been added.  The resulting sample then

had to be right-shifted two bits to return to the original value converted by the MAX121.

The simulator was designed to operate between speeds equivalent to idle and full throttle on the

SI engine testbed, a 1992 Saturn DOHC 1.9L spark-ignited gasoline engine.  Consequently, equivalent

signal updates simulated 800 to 4000 revolutions per minute with an additional signal simulating an

engine pulse occurring at top dead center of cylinder #1.   The end result of this is a square wave with an

effective wavelength of two engine revolutions.  To simulate the opticoder found on the engine driveshaft,

a third signal had to be generated.  The opticoder has 1024 teeth and serves as the sampling clock for the

high speed ADC boards connected to it.  A Harris CD4040BE 12-stage binary counter chip performed this

function and clocked the sampled pressure data from the MAX121 to the TMS320.

The simulated pressure traces were successfully supplied to the EVM and the DSP was tested for

computational ability and throughput for simulated speeds of 800 to 4000 rpm.  The EVM proved capable

of analyzing 6 combustion parameters per cycle at 4000 rpm and supplying them to the host computer

running a port communication program.  Although the simulation proved the basic concept, it needed

significant modification for its real-world application.

7.3 DSP Installation

Once proof of concept had been obtained with the simulator, the EVM and PC host were moved

to the engine control room for real-world application.  The MAX121 circuit system was assembled and

mounted in the data acquisition box, where easy access to power and the required signals was readily

available.  A negative 12-volt supply line had to be constructed by Richard Atkinson in order for the

circuit to behave properly and this was accomplished through the use of a MAX765 circuit.



59

The operating signals were then hardwired into the circuit.  The pressure signal from the

transducer in cylinder 3 was carried from the engine through a charge amplifier and then through a power

supply with an amplification of 1X (both units supplied by PCB, Piezotronics, Inc.).  From there, the

signal was sent into the MAX121 circuit for digitizing and synchronization with the DSP-based EVM.  At

the same time a signal indicating the power stroke of cylinder #3 was generated by a custom engine-

control system designed and built by Richard Atkinson and Talus Park for an unrelated project.  The

optical encoder signal was also used to pace the digital conversion of the MAX121 and to ensure that the

pressure signal was sampled at 1024 per revolution (Figure 18), once every second engine revolution.
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Amplifier
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1024
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Figure 18: Schematic showing in-cylinder pressure signal progression.

The reason for this was the way in which the DSP sampled and reduced the pressure signal.  The DSP

sampled the data during the power stroke and performed a simple pressure peak search during that time,

but the time allowed between sampling points was insufficient to provide the other variables.

Consequently, the rest of the in-cylinder parameters were calculated during the pumping stroke.  Due to

the processing-power constraints of the DSP chip itself, the algorithms had to be tailored to perform
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during only the more crucial periods in the cycle.  The mass-fraction-burned algorithms, for instance,

were only calculated from -25° to 45° after top dead center.  This allowed the DSP to calculate the

variables in the required amount of time and still leave enough time to transfer the data to the host PC for

permanent storage on the hard disk drive.  Because the host PC and the DSP evaluation module card

required confirmation of reads and writes to the communications port, there was no effective way to place

the in-cylinder variables into a readable-at-any-time memory buffer, resulting in one sample per every

second revolution.  Although this complicated the results verification phase of the study, it had to suffice.

The MAX121 circuit introduced a voltage divider which had to be accounted for during the

pressure conversion, and later test results indicated that there was significant high-frequency noise on the

signal, leading to the addition of a 224 pico-farad capacitor between the signal and ground to act as a

filter.

The EVM had to be programmed correctly in the C language in order to operate properly.  For

the most part, the code for the pressure reduction algorithms was converted from the BASIC code used in

the off-line program.  This had to be integrated into the register level programming code that instructs the

EVM to communicate with the PC host and acquire the data synchronously from the MAX121 chip.

After some debugging, the program was brought to an acceptable operational level.  The code can be

found in Appendix D.

8. Network Validation

8.1 Data Acquisition and Processing

In order to validate the theory that a neural network trained on non-transient steady data with in-

cylinder pressure variables could adequately predict gaseous emissions over a transient cycle, the

corresponding transient in-cylinder pressure variables had to be acquired in real time.  This was

accomplished through the use of the DSP board (described previously) acquiring data at a rate of every

other engine revolution over the complete FTP cycle.
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Once the data had been assembled into one large file, a couple of preliminary steps needed to be

taken in order to improve the results.  First, each pressure variable was sent through a 7-point central

point average to smooth out the continuous pressure "signals" (Figure 19).  Seven points were chosen for

the moving average based on examination of the smoothing effects of the filter.  Moving averages with

fewer points cleaned the signal to a certain extent, but in the author's judgement, seven points performed

the best without adversely affecting the natural trends of the data.
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Figure 19: Comparison of measured peak pressure values vs. 7-pt. central point average smoothing.

Next, some of the variables were filtered to remove physically impossible results, caused by the

reduction algorithms which could not adequately cope with engine idle conditions.  When there is very

little combustion occurring in the engine or when the engine is being motored by the dynamometer, the

algorithms cannot successfully determine whether or not there is a mass-fraction-burned curve.

Consequently, values for the location of maximum burn and the start of injection could occur,

inaccurately, at 25° before top dead center.  Obviously, the algorithm was defaulting to the first value

calculated.  A simple band-pass filter was applied in Microsoft's Excel spreadsheet program to eliminate

these physical impossibilities.
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As a result of the sampling system, the emissions data have slight anomalies.  Primarily, the

speed at which they were acquired varies over the cycle.  The effective sampling rate varies from 6 to 22

Hz depending upon the point in the cycle at which it was taken.  Unfortunately, the delays in the exhaust

system, the dilution tunnel, and the analyzers themselves conspire to shift this information in time.  The

delays mean that when the engine changes speeds, the emissions are not sampled at the same rate that the

in-cylinder pressure parameters are sampled.  However, the neural networks predict emissions values

based on the in-cylinder pressure data for a specific time step that do not match the emissions taken at the

same time step.  This effectively introduces a varying lag in both the time and data sample domains.

Additionally, the dispersive effects of the dilution tunnel complicate matters as emissions generated by the

engine do not behave as solid blocks on the journey to the sampling probes.  Changing volumetric

flowrates from the changes in engine speed enhance these dispersive effects.  For these reasons, the results

presented have not been shifted in time.

The networks for each emission were selected from its top 20 trained networks and NeuroShell

converted the weight and summation calculations into C++ source code.  This source code was called

from a simple file reading program (Appendix F) and the results were written to a separate file.

The length of the FTP cycle is 20 minutes, but due to the changing data-acquisition sampling

rate, the final tally was 13000+ data points.  Each data point had 10 pressure-related parameters

associated with it as well as the emissions data.  The networks attempted to predict the values of the

emissions data with the instantaneous-mass-flow-rate value.  Interestingly, the best network found in the

top 20 trained networks did not necessarily produce the best results.

8.2 NOX Prediction Results

Results for the network with the top training results are shown in Figures 20 through 22.

Contrast these with the results shown for the best network the author could find after trial and error and

with some insight into the best combination of inputs (Figures 23 through 25).  Note:  The R2 values

mentioned in the captions refer to the training-set values and not to the predicted vs. actual values.
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Figure 20: NOX prediction comparison, top network, first 5000 points of FTP (CombDur, IMEPg,
LMFB50, IgnDel, MaxQ; 3 Layer; 18 HN; .998 avg. R2).
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Figure 21: NOX prediction comparison, top network, second 5000 points of FTP (CombDur, IMEPg,
LMFB50, IgnDel, MaxQ; 3 Layer; 18 HN; .998 avg. R2).
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Figure 22: NOX prediction comparison, top network, final 5000 points of FTP (CombDur, IMEPg,
LMFB50, IgnDel, MaxQ; 3 Layer; 18 HN; .998 avg. R2).

0

0.1

0.2

0.3

0 1000 2000 3000 4000 5000

Engine Revolution (x2)

g/
s

NOx(Act)

0

0.1

0.2

0.3

0 1000 2000 3000 4000 5000

g/
s

NOx(Pred)

Figure 23: NOX prediction comparison, best result, first 5000 points of FTP (Peak, CombDur,
IMEPg, LMFB50, IgnDel; Ward 1; 10 HN; .996 avg. R2).
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Figure 24: NOX prediction comparison, best result, second 5000 points of FTP (Peak, CombDur,
IMEPg, LMFB50, IgnDel; Ward 1; 10 HN; .996 avg. R2).
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Figure 25: NOX prediction comparison, best result, final 5000 points of FTP (Peak, CombDur,
IMEPg, LMFB50, IgnDel; Ward 1; 10 HN; .996 avg. R2).
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Obviously, the results indicate that the best network results from the training regimen do not

accurately reflect the best results for this particular application.  As can be seen from the charts, the top-

rated trained network grossly overestimated the actual values during the middle section of the FTP.  The

only major difference between that network and the one with more accurate results is the replacement of

the maximum heat release with the peak pressure.  This comes as little surprise as the maximum-heat-

release value was the only one of the parameters that did not translate well into the new acquisition

system.  The DSP-based system sampled a signal slightly smaller than one volt with a 14-bit ADC chip.

Consequently, noise in the high-frequency range would show up well in the least significant bits of the

digitized values.  The DAS-58 system, in contrast, used a signal that was amplified 6 times and which was

sampled with a 12-bit conversion.  Furthermore, the DAS-58 has a high-frequency filter built into the

board to avoid such errors, while the DSP-based system had a small 224 picofarad capacitor hardwired in

to try to alleviate the problem.  Analysis of the data showed that the noise was still significant.  For these

reasons, the DSP-based system suffered from noise problems not found in the training data but readily

apparent in the testing data.  Parameters derived from the maximum heat release rate did not suffer,

however.  This is due to the integral value of the mass-fraction-burned amount.  Oscillations due to the

high frequency noise would cause maximum values to be significantly higher for any given instant, but

the cumulative effect of both high and low values caused the integrated value to conform quite well to the

values found in the DAS-58 setup.  This is why only the MaxQ variable seems to be at fault.

Unfortunately, a large number of the trained networks relied upon the MaxQ variable as an important

input.  An improved data acquisition system that takes into account these high-frequency noise issues

might produce better results.  Smoothing of the MaxQ data would alter the information too drastically as

the resolution is small enough that the peak values would be reduced by a significant amount.  At any rate,

the network trained without MaxQ performed quite well despite the migration to a different acquisition

system.  This demonstrates the robustness of the prediction technique.

The results produced by the better NOX network (5 inputs, 10 hidden nodes, and a Ward 1

architecture) follow the actual values very closely despite the viewable time delay involved.  There is no

good way to tell if the high instantaneous spikes predicted are accurate or not since the analyzers, tunnel,
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and exhaust system all work to damp out and disperse (or "smear") them in the actual values.  This

network also avoids the MaxQ problem as it is not one of the inputs used.  Several networks were applied

to the data and the networks that did not incorporate MaxQ performed better on a consistent basis.  For

the most part, those networks that used MaxQ overpredicted the values of NOX.  One can see this effect in

the top network example, while the best network found, has a prediction level in line with the actual

values.  These overpredictions are more than likely linked to the high frequency noise problem in the

MaxQ calculations that consistently overstated the MaxQ value compared to the training data.

To get a better representation of how the predicted and actual emissions values follow each other,

the data files were translated into the time domain.  The engine speed had been recorded and since

sampling was performed at every other revolution, an equivalent time series could be calculated.  The

actual emissions data series was then shifted backwards in time to approximate the delays involved.

Because the sampling rate is dependent upon the engine speed, the shift was not constant for the entire

test period.  However, there is a period during the middle of the FTP where engine speed does not vary so

widely that a reasonable time shift couldn't be done.  Still, a sharp eye can catch the slight distortions due

to the sampling rate variation in the data.  Figures 26 and 27 show the results for NOX from 300 to 900

seconds into the test.
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Figure 26: NOX prediction comparison, time series-based, best result, 300 to 600 seconds in FTP
(Peak, CombDur, IMEPg, LMFB50, IgnDel; Ward 1; 10 HN; .996 avg. R2).
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Figure 27: NOX prediction comparison, time series-based, best result, 600 to 900 seconds in FTP
(Peak, CombDur, IMEPg, LMFB50, IgnDel; Ward 1; 10 HN; .996 avg. R2).
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8.3 CO2 Prediction Results
Results for the CO2 networks are presented in Figures 28 through 33.  The top trained network is

presented first, while a network that produced better results is second.  Again, the R2 values refer to the

training data and not the actual-vs.-predicted results.

As the charts indicate, there is not a large difference between the top trained network and the best

network found.  This is largely due to the lack of dependence on the variable MaxQ for the CO2 networks.

Consequently, the CO2 networks gave more or less the same predictions at the same level of relative

accuracy.

The success of the NOX and CO2 predictive networks can be attributed to the strong relationship

between the geometrically-related variables such as peak pressure and IMEPg and the formation of both of

these gaseous emissions.  It shows that the emissions with a strong dependency on readily measurable in-

cylinder parameters can be quite successfully predicted given the right architecture and combination of

inputs.  HC and CO present a more challenging problem as the formation of these gases are not strongly

related to the measured variables selected.

The CO2 predictive network was also shifted in time for the section of the FTP covering 300 to

900 seconds.  The same technique was used as the NOX predictive networks and the results for CO2 are

shown in Figures 34 and 35.
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Figure 28: CO2 prediction comparison, top network, first 5000 points of FTP (Peak, CombDur,
LMFB50, MaxBurnLoc, IgnDel; 3 Layer; 16 HN; .999 avg. R2).
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Figure 29: CO2 prediction comparison, top network, second 5000 points of FTP (Peak, CombDur,
LMFB50, MaxBurnLoc, IgnDel; 3 Layer; 16 HN; .999 avg. R2).
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Figure 30: CO2 prediction comparison, top network, final 5000 points of FTP (Peak, CombDur,
LMFB50, MaxBurnLoc, IgnDel; 3 Layer; 16 HN; .999 avg. R2).
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Figure 31: CO2 prediction comparison, best network, first 5000 points of FTP (Peak, IMEPg,
MaxBurn, IgnDel; Ward 1; 9 HN; .998 avg. R2).
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Figure 32: CO2 prediction comparison, best network, second 5000 points of FTP (Peak, IMEPg,
MaxBurn, IgnDel; Ward 1; 9 HN; .998 avg. R2).
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Figure 33: CO2 prediction comparison, best network, final 5000 points of FTP (Peak, IMEPg,
MaxBurn, IgnDel; Ward 1; 9 HN; .998 avg. R2).
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Figure 34: CO2 prediction comparison, time series-based, best network, 300 to 600 seconds in FTP
(Peak, IMEPg, MaxBurn, IgnDel; Ward 1; 9 HN; .998 avg. R2).
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Figure 35: CO2 prediction comparison, time series-based, best network, 600 to 900 seconds in FTP
(Peak, IMEPg, MaxBurn, IgnDel; Ward 1; 9 HN; .998 avg. R2).
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8.4 CO and HC Prediction Results

Despite promising results from the training sessions, successful predictive networks for

hydrocarbons and carbon monoxide proved difficult to achieve.  Although only the first row networks

from the top 20 are presented (Figures 36 and 37), they are typical of several different network

input/architecture combinations that were tried.  Furthermore, only the first 5000 points of the FTP are

shown, as the rest of the run is similar.

As the charts demonstrate, the HC and CO nets were not at all good at predicting the actual

gaseous emissions.  In fact, the predicted values look only slightly less chaotic than a signal devoted only

to noise.  There are potentially several reasons for this, primarily the prevalence of MaxQ as an input

value to many of the networks for HC and CO.   MaxQ seems to have a large correlation to these

emissions as it appears in all of the top 20 trained networks for CO, and 16 of the 20 for HC.  Trials with

other networks that had been trained without MaxQ as an input did not fare any better in their predictive

capabilities, although the average R2 values were generally lower as well.  On the positive side, the

problem means that a very helpful variable has been found for predictive networks to use based on in-

cylinder pressure.  On the negative side, however, the switch between acquisition systems has sabotaged

any hope of finding a good predictive network.

Furthermore, both HC and CO are not produced in large absolute quantities by the engine in

question.  Therefore, there is not a large variation in the amounts generated leading to more difficulty in

determining the relationships between inputs and the actual values of the emissions.  In the case of CO2

and NOX, the engine produces a wide range of gaseous emissions levels depending upon the engine load

and speed setting.  This makes the connections in a network easier to determine than would a small

variation in a data set.  The absolute values of the various emissions gases also vary by several orders of

magnitude, making the assumption that several in-cylinder pressure parameters would serve as successful

predictors for all emissions gases somewhat suspect.  Macro-predictors such as IMEPg may have a high

correlation to the large amount of CO2 produced, but the connection to the very much smaller amounts of

CO may not be sufficient for successful predictive capabilities.
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Additionally, the transient sections of the FTP produce levels of HC that lie outside of the

training matrix.  Since the steady-state matrix couldn't supply such high values, the network could not

effectively train for them and so the predictive capabilities were insufficient.  The neural networks are

quite good at interpolation between the steady-state data points, but the transient data introduced values

that would have to be extrapolated to.  The formation mechanics of HC may also play a role in the

difficulty of prediction as they may be dominated by non-in-cylinder-pressure related phenomena such as

crevice volume influences and desorption from the lubricating oil layer.  Background values for the gases

were not a concern as they were recorded to be very near zero.

Analyzer error does not appear to be a huge factor for HC predictive network accuracy, but

results for CO indicate that it could have been a primary factor in the poor performance of the predictive

network.  Figures 38 and 39 show the analyzer error ranges for both HC and CO for a highly transient

section of the FTP.  The average percentage error for the HC results was 26.9% while for CO it was

62.9%.  This indicates that the CO analyzer span gas range was too high for most of the test.  The high

concentration gas was necessary for some sections of the FTP, but for the majority of time, it resulted in

very coarse resolution on the low end.  This could partially explain the difficulties that were met when

trying to predict the CO emissions.

In the end, the dependence of CO and HC on the one variable that did not survive the

acquisition-system shift, the failure of the training matrix to cover all conditions for HC, the small

variance in emissions levels over the engine operating range, analyzer error, and quite possibly the failure

to choose appropriate in-cylinder pressure parameters led to the failure of the HC and CO networks.



76

0

0.0025

0.005

0.0075

0.01

0 1000 2000 3000 4000 5000

Engine Revolution (x2)

g/
s

HC(Act)

0

0.0025

0.005

0.0075

0.01

0 1000 2000 3000 4000 5000

g/
s

HC(Pred)

Figure 36: HC prediction comparison, top network, first 5000 points of FTP (IgnDel, CombDur,
MaxQ, LMFB50, LPP;3 Layer ; 13 HN; .975 avg. R2).
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Figure 37: CO prediction comparison, top network, first 5000 points of FTP (Peak, MaxQ,
LMFB50; Ward 1 ; 13 HN; .999 avg. R2).
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Figure 38 : Actual HC measured with analyzer error range.
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9. Conclusions and Recommendations

The success of the NOX and CO2 predictive networks demonstrates the validity of the theory

proposed at the beginning of this study:  that in-cylinder pressure information taken during quasi-steady-

state operation of a running engine could be used successfully in a neural network to predict transient

gaseous emissions data over a long cycle.  Since emissions formation is largely a function of the in-

cylinder combustion processes and since these processes can be interpreted through the judicious use of in-

cylinder pressure, variables calculated from in-cylinder pressure have a high correlation to the gaseous

emissions levels generated.  Consequently, these variables are well-suited to neural network applications

that predict emissions levels produced by an engine.  The alternative to the use of predictive neural

networks is computationally intensive physical models that attempt to solve for every potential kinetic rate

reaction that a molecule of fuel may encounter during oxidation [Moses, et al., 1996].  From a theoretical

standpoint, the modeling will be superior, but from a practical standpoint, the application of these models

do not lend themselves well to real world studies until mobile computing sources are significantly faster,

cheaper, and lighter.

Errors introduced by the exhaust system, dilution tunnel, and analyzers were reduced in the

training phase of the study due to the steady-state nature of the measurements, but emerged again during

the test-analysis phase.  The use of a steady-state matrix of engine operating points proved effective in

training a predictive network for a  transient emissions response, but only to the extent that the results

could be compared by the human eye.  A quantitative interpretation of the results was not possible due to

the methodology employed; a time-based measurement vs. an engine speed-based prediction.  Future

studies should employ a data-transfer method that allows for a steady clock sampling speed.  The current

system was based on engine speed because the DSP technology required it to provide meaningful in-

cylinder pressure information.  If the in-cylinder pressure parameters could be stored in a memory buffer

between the DSP module and the PC host, software running at a higher sampling speed could read the

information constantly, only changing after the power stroke of the engine.  This might produce repeated

values when the sampling rate and the engine speed diverge, but the ability to compare results against the

real values generated by the analyzers would more than compensate for this drawback.
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The study has shown that variables based on in-cylinder pressure are adequate for use in

predicting the emissions levels of some gases.  Specifically, NOX and CO2 are prime candidates for

predictive neural networks owing to their close correlation between formation rates and variables available

from the in-cylinder pressure.  Although the study failed to produce networks capable of predicting HC

and CO, the high R2 values found during training suggest that there may be hope for finding them.  The

failure of the HC and CO networks points out the fallibility of migrating to a separate data acquisition

system between the training and testing phases and the necessity to train networks on the widest possible

extremes of data from typical operation.  The difference in the analog-to-digital conversion between the

DAS-58 and the DSP combined with the pressure signal resolution to produce results that did not lend

themselves well to the neural networks.  A more robust scheme involving both training and testing on the

DSP-based system may produce the HC and CO predictive networks sought after.  Additionally, the ability

to adjust the pertinent engine control parameters might aid in producing steady-state conditions that

mimic transient conditions.  For example, a set point that used higher than usual amounts of fuel might

successfully imitate a transient condition where the engine speed is increasing rapidly.  The inability to do

so led to the inadequate training matrix for CO and HC.  The tendency of the engine to produce low levels

of these gaseous emissions also contributed to the difficulties involved in prediction.

Furthermore, the study showed the feasibility of using a DSP-based system to quickly sample and

display results from in-cylinder combustion in real time.  The possibilities for real-time control of a diesel

engine using that information, as well as the potential for real world emissions prediction, promise a

bright future for the use of this technology.

In order to achieve better results, future projects might employ the use of fast-reponse emissions

analysis equipment located as near as possible to the exhaust manifold to train and validate networks.

This would eliminate the dispersive effects of the dilution tunnel and remove the majority of the delay

time involved.  Further, the samples of gaseous emissions could be directly related to the in-cylinder

pressure variables occurring in the cycle previously.  This would cut down significantly on the amount of

data required to train the network as well as eliminate the necessity of averaging the pressure variables
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and the emissions values.  Cycle-to-cycle variations of emissions would also be eliminated in such a setup

leading to an increase in system accuracy.

Particulate matter is of primary concern and every effort should be made to include this in the list

of predicted output variables.  Predictive capabilities of a particulate matter neural network would

probably be on the same order as HC and CO.  The same difficulties in training the network as those

found with HC and CO would also probably be found.  Consequently, if the problems associated with HC

and CO can be overcome, particulate matter prediction should also be possible.

This study has only proven the feasibility of using in-cylinder pressure based variables as inputs

to a predictive neural network.  There is much work to be done to refine the methodology, but it does hold

out hope that relevant emissions levels can be found from a real-world driving cycle by installing the

necessary hardware into a typical in-use diesel-powered vehicle.  Also, the future potential for use in

engine management and possibly engine control merit serious consideration.
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Appendix A: Emissions and In-Cylinder Variable Relationships Charts for Selected

Network Inputs with Statistical Correlation
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HC - Peak Pressure (Statistical Correlation = -0.498)
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HC - CombDur (Statistical Correlation = -0.366)
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HC - IgnDel (Statistical Correlation = 0.731)
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HC - MaxQ (Statistical Correlation = -0.541)
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CO-LPP (Statistical Correlation = -0.138)
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CO-MaxBurn (Statistical Correlation = 0.315)
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CO-MixBurn (Statistical Correlation = 0.357)
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CO2-Peak Pressure (Statistical Correlation = 0.846)
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CO2-IMEPg (Statistical Correlation = 0.954)
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CO2-IgnDel (Statistical Correlation = 0.237)
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CO2-MaxBurnLoc (Statistical Correlation = -0.461)
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NOx-CombDur (Statistical Correlation = 0.959)
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NOx-LMFB50 (Statistical Correlation = 0.839)
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NOx-MaxBurn (Statistical Correlation =0.012)
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Appendix B: 3-D Charts Showing Uniqueness of the 64 Point Data Grid
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Appendix C: Neural Network Training Results: Best 20 for Each Gaseous Emission
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HC
Avg Variables Net Type In HN* Tst R^2 Trn R^2

0.9746 IgnDel, CombDur, MaxQ, LMFB50, LPP 3Layer 5 13 0.9599 0.9892
0.9644 Peak, IgnDel, MixBurn, MaxQ, LPP 3Layer 5 16 0.9493 0.9795
0.9553 Peak, IgnDel, CombDur, MaxQ, LMFB50, LPP 3Layer 6 17 0.9766 0.9341
0.9513 Peak, MixBurn, CombDur, MaxQ 3Layer 4 15 0.9161 0.9864
0.9485 Peak, CombDur, MaxQ, LMFB50 3Layer 4 8 0.9311 0.966
0.9422 Peak, IgnDel, CombDur, LMFB50, LPP 3Layer 5 16 0.976 0.9084
0.9414 Peak, MixBurn, MaxQ, LMFB50 Ward1 4 7 0.9281 0.9546
0.9411 Peak, MixBurn, CombDur, MaxQ Ward1 4 7 0.9166 0.9657
0.9404 Peak, IgnDel, CombDur, MaxQ, LPP 3Layer 5 15 0.9246 0.9562

0.938 Peak, IgnDel, MixBurn, CombDur, LMFB50, LPP 3Layer 6 10 0.9118 0.9642
0.9379 Peak, MaxQ, LMFB50, LPP Ward2 4 4 0.9395 0.9364
0.9294 Peak, IgnDel, MaxQ, LMFB50, LPP 3Layer 5 5 0.9192 0.9395

0.927 Peak, IgnDel, MixBurn, CombDur, MaxQ, LPP 3Layer 6 11 0.8906 0.9634
0.925 Peak, IgnDel, MixBurn, MaxQ, LMFB50, LPP Ward2 6 5 0.9223 0.9278

0.9243 IgnDel, CombDur, LMFB50 Ward1 3 4 0.9149 0.9337
0.9243 Peak, IgnDel, MaxQ Ward1 3 9 0.947 0.9016
0.9175 Peak, IgnDel, CombDur, MaxQ, LMFB50, LPP Ward2 6 6 0.9124 0.9225
0.9144 Peak, IgnDel, MaxQ 3Layer 3 5 0.9416 0.8871
0.9123 Peak, IgnDel, LMFB50 3Layer 3 17 0.9341 0.8904
0.9079 Peak, MaxQ, LMFB50 Ward1 3 4 0.923 0.8928

                                                       
* Please see footnote on page 59.
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CO
Avg Variables Net Type In HN Tst R^2 Trn R^2

0.9988 Peak, MaxQ, LMFB50 Ward1 3 13 0.9992 0.9984
0.9985 Peak, MaxQ, LMFB50, MixBurn, MaxBurn, LPP Ward1 6 13 0.9989 0.998
0.9983 Peak, MaxBurnLoc, MaxQ, LMFB50, MaxBurn, LPP Ward1 6 12 0.9984 0.9982
0.9982 Peak, MaxBurnLoc, MaxQ, LMFB50, MaxBurn, LPP Ward2 6 8 0.998 0.9984
0.9982 Peak, MaxBurnLoc, MaxQ, LMFB50, MixBurn, MaxBurn Ward1 6 4 0.9981 0.9982

0.998 Peak, MaxBurnLoc, MaxQ, LMFB50 Ward2 4 6 0.9977 0.9984
0.998 Peak, MaxBurnLoc, MaxQ Ward1 3 8 0.9981 0.9979
0.998 Peak, MaxQ, LMFB50 Ward2 3 5 0.9981 0.9979
0.998 Peak, MaxQ, LMFB50, MaxBurn, LPP Ward1 5 14 0.9988 0.9972

0.9979 Peak, MaxBurnLoc, MaxQ, LMFB50, MixBurn, LPP Ward2 6 4 0.9982 0.9977
0.9979 Peak, MaxBurnLoc, MaxQ, LMFB50 Ward1 4 13 0.9974 0.9984
0.9978 Peak, MaxQ, LMFB50, MaxBurn, LPP Ward2 5 6 0.9981 0.9975
0.9976 Peak, MaxBurnLoc, MaxQ, LMFB50, LPP Ward1 5 7 0.9971 0.9981
0.9976 Peak, MaxBurnLoc, MaxQ, MaxBurn, LPP Ward1 5 5 0.9989 0.9963
0.9976 Peak, MaxQ, LMFB50, MaxBurn Ward1 4 7 0.9989 0.9963
0.9976 Peak, MaxQ, LMFB50, MixBurn Ward2 4 5 0.9981 0.9971
0.9976 Peak, MaxBurnLoc, MaxQ, MixBurn, LPP Ward1 5 11 0.9965 0.9986
0.9975 Peak, MaxBurnLoc, MaxQ, LMFB50, MaxBurn Ward1 5 10 0.9977 0.9972
0.9974 Peak, MaxQ, LMFB50, MixBurn, MaxBurn Ward2 5 9 0.9972 0.9976
0.9971 Peak, MaxQ, LMFB50, MixBurn Ward1 4 7 0.9959 0.9983
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CO2
Avg Variables Net Type In HN Tst R^2 Trn R^2

0.9988 Peak, CombDur, LMFB50, MaxBurnLoc, IgnDel 3Layer 5 16 0.9991 0.9986
0.9988 Peak, CombDur, IMEP, MaxBurnLoc, IgnDel 3Layer 5 9 0.9991 0.9985
0.9986 Peak, CombDur, MaxBurn, MaxBurnLoc, IgnDel Ward2 5 11 0.9988 0.9984
0.9986 Peak, CombDur, LMFB50, MaxBurn, MaxBurnLoc, IgnDel 3Layer 6 9 0.9982 0.999
0.9986 Peak, LMFB50, MaxBurn, MaxBurnLoc, IgnDel 3Layer 5 6 0.9982 0.999
0.9986 Peak, IMEP, LMFB50, MaxBurn, MaxBurnLoc, IgnDel Ward2 6 5 0.9981 0.999
0.9985 Peak, CombDur, MaxBurn, MaxBurnLoc, IgnDel Ward1 5 14 0.9986 0.9985
0.9985 Peak, CombDur, LMFB50, MaxBurn, MaxBurnLoc, IgnDel Ward2 6 11 0.9985 0.9986
0.9984 Peak, IMEP, LMFB50, MaxBurn, MaxBurnLoc, IgnDel Ward1 6 14 0.9979 0.9989
0.9984 Peak, IMEP, LMFB50, MaxBurn, IgnDel Ward2 5 9 0.9981 0.9987
0.9984 All Seven Ward1 7 6 0.9981 0.9986
0.9984 Peak, IMEP, LMFB50, MaxBurn, IgnDel 3Layer 5 9 0.9981 0.9987
0.9984 Peak, IMEP, MaxBurn, IgnDel Ward1 4 9 0.9979 0.9988
0.9983 Peak, IMEP, LMFB50, MaxBurn, IgnDel Ward1 5 9 0.9977 0.9989
0.9983 Peak, CombDur, MaxBurn, IgnDel 3Layer 4 10 0.9987 0.9978
0.9982 Peak, LMFB50, MaxBurn, MaxBurnLoc, IgnDel Ward1 5 14 0.9979 0.9986
0.9982 Peak, IMEP, LMFB50, MaxBurn, MaxBurnLoc, IgnDel 3Layer 6 19 0.9977 0.9987
0.9982 Peak, IMEP, MaxBurn, IgnDel Ward2 4 4 0.9977 0.9986
0.9982 Peak, LMFB50, MaxBurn, MaxBurnLoc, IgnDel Ward2 5 5 0.9976 0.9988
0.9982 Peak, LMFB50, MaxBurnLoc, IgnDel 3Layer 4 19 0.998 0.9983
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NOx
Avg Variables Net Type In HN Tst R^2 Trn

R^2
0.998 CombDur, IMEP, LMFB50, IgnDel, MaxQ 3Layer 5 18 0.9983 0.9976

0.9978 Peak, CombDur, IMEP, LMFB50, IgnDel, MaxQ Ward2 6 4 0.9988 0.9968
0.9978 Peak, CombDur, IMEP, LMFB50, IgnDel, MaxQ 3Layer 6 11 0.9982 0.9974
0.9978 IMEP, LMFB50, IgnDel, MaxBurn, MaxQ Ward2 5 10 0.9989 0.9966
0.9977 IMEP, LMFB50, IgnDel, MaxQ 3Layer 4 20 0.9982 0.9972
0.9977 CombDur, IMEP, LMFB50, IgnDel, MaxBurn, MaxQ 3Layer 6 15 0.9981 0.9973
0.9977 IMEP, LMFB50, IgnDel, MaxBurn, MaxQ 3Layer 5 20 0.9988 0.9965
0.9976 IMEP, LMFB50, IgnDel Ward1 3 8 0.9981 0.9971
0.9976 CombDur, IMEP, LMFB50, IgnDel, MaxQ Ward2 5 4 0.9985 0.9967
0.9976 Peak, CombDur, IMEP, LMFB50, IgnDel, MaxQ Ward1 6 4 0.9977 0.9974
0.9975 IMEP, LMFB50, IgnDel, MaxBurn, MaxQ Ward1 5 4 0.9986 0.9964
0.9975 IMEP, LMFB50, IgnDel, MaxBurn Ward1 4 4 0.9988 0.9962
0.9975 CombDur, IMEP, LMFB50, IgnDel, MaxQ Ward1 5 7 0.9979 0.9971
0.9975 CombDur, IMEP, LMFB50, IgnDel, MaxBurn, MaxQ Ward1 6 5 0.9986 0.9963
0.9975 IMEP, LMFB50, IgnDel 3Layer 3 16 0.9984 0.9966
0.9974 IMEP, LMFB50, IgnDel, MaxQ Ward2 4 4 0.9976 0.9971
0.9973 IMEP, LMFB50, IgnDel, MaxBurn Ward2 4 7 0.9981 0.9965
0.9973 CombDur, IMEP, LMFB50, IgnDel, MaxBurn Ward1 5 6 0.9978 0.9968
0.9973 IMEP, LMFB50, IgnDel, MaxBurn 3Layer 4 17 0.9979 0.9966
0.9972 CombDur, IMEP, LMFB50, IgnDel Ward2 4 5 0.9977 0.9968
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Appendix D: Texas Instruments DSP Evaluation Module Source Code
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#include "stdlib.h"
#include "math.h"
#include "c30_1wvu.h"
#include "trav_c30.h"

/**********  Register and serial port constants
**************************/

long IOF_AMASK = 0x000000E;
long IOF_SET_XF1 = 0x0000060;
long IOF_RESET_XF1 = 0x0000020;
long CTRL = 0x0808000;
long SERGLOB1 = 0x8100080;  /*8120280 for continuous mode, 810 for fixed
burst mode*/
long SERPRTX1 = 0x0000020;
long BDX1_0 = 0x0000020;    /* Set DX1 to 0  */
long BDX1_1 = 0x0000060;    /* Set DX1 to 1  */
long SERPRTR1 = 0x0000111;
long SERTIM1 = 0x00003C0;
long SERTIM1VAL = 0x00020000;
long HOST_DATA = 0x00804000;

/**********  Program variables
**********************************************/

int ioftemp;
int iftemp;
static float pressure[1026];
static float volume[1026];
static float delQ[770];
static float pressmooth[1026];
static float Pr[6];

void init_ser_port(void);
float calc_volume( int i);
extern unsigned int ieeeflt();

void main(void)
{

/** transduc_const is derived from the transducer, charge amplifier
pair.
0.145 = psi to kPa conversion, .897 = pC/psi, .997 = mV/pC (Ch. Amp.),
1000 = mV/V
1.0 = PCB Box Gain, 0.8408 = Voltage Divider in DSP Circuit, 16383 = 14
bit ADC, 10 = EVM range) */

float transduc_const = (.145 * 0.897 * 0.997 / 1000.0 * 1.0 * 0.8408 *
16383 / 10.0);

int index;
float max;
int maxloc;
int i,j;
int looplength;
int input_temp;
int LDPISumTotal;
int LDPISum;
int LDPI50;
unsigned int *dump;
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unsigned int junkhigh, junklow, junktemp;
int mapval;
unsigned int mapxfer;
long int mapsum;
float map;
float imepg,intarea,PolyConst;
int MaxMassBurnLoc, counter;
float MassBurn,MaxMassBurn, VolumeChange;
float PVolume;
float gamma = 1.25;
int Flag10, Flag50, Flag90, Flag99;
int Start10, Start50, End90, End99;
int Start, MFBStart, MFBLength;
int CombDur, MixBurn, MFBCounter;
float MaxQ, MFBMax;
float MFBSum;

init_evm();
init_host();
init_ser_port();

/* Initialize map and mapval.  Note: first calculation will be
inaccurate due to this*/
map = 101.325;
mapval = 7200;

for (i=0; i<=1024; i++){
 volume[i] = calc_volume(i);

       pressure[i] = 0.0;
}

ioftemp = 0x80;
looplength=1024;

asm(" LDI       IOF,R1");    /* Set XF1 as input pin */
asm(" AND       0Fh,R1");
asm(" LDI       R1,IOF");

do{
  index = 0;
  max = 0.0;
  maxloc = 0;
  mapsum = 0;

 /************ Wait until signal is high
*******************************/

  do{
  serial_port[1][X_PORT] = BDX1_0;

  asm(" LDI      IOF,R1");
  asm(" STI      R1,@_ioftemp");

ioftemp = ioftemp & 0x80;

 }while(ioftemp==0);

  /*********** Wait for signal to be low
********************************/

 do{
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  serial_port[1][X_PORT] = BDX1_1;
  asm(" LDI      IOF,R1");
  asm(" STI      R1,@_ioftemp");

 }while((ioftemp & 0x80));

 /********** Toggle DX1 *************/

 serial_port[1][X_PORT] = BDX1_1;
 serial_port[1][X_PORT] = BDX1_0;

  do{

  do{
  }while(!(serial_port[1][GLOBAL] & 0x1));

  input_temp = serial_port[1][R_DATA] & 0xFFFF;
  input_temp = (input_temp ^ 0x8000) >> 2;

  pressure[index] = map + (input_temp -
mapval)/transduc_const;

  if ( pressure[index] > max) {
  max = pressure[index];
  maxloc=index;

  }
  if (index <= 20){

mapsum+=input_temp;
  }
  index++;

  }while(index <= looplength);  /********* End of acquisition loop
***/

  /**********  Now process data
******************************************/

  mapval = mapsum/21;

  intarea = 0.0;
  for(i=1;i<=1024;i++){

intarea += pressure[i] * (volume[i]-volume[i-1]);
  }
  imepg = intarea*1000.0/0.9125;

  pressmooth[439] = (pressure[437] + pressure[438] + pressure[439]
+ pressure[440] + pressure[441])/5.0;

  PolyConst = map * 1.206488e-4;   /**** MAP *  (Displacement +
Clearance Vol. ^ gamma) ***/

  MaxMassBurn = 0;
  MaxMassBurnLoc = 0;
  counter = 0;
  MFBMax = 0;
  MaxQ = 0;
  MFBSum = 0;
  MFBCounter = 0;
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  for(j=0;j<=4;j++){
Pr[j] = 0.0;

  }

  for(i=440;i<=640;i++){
pressmooth[i] = (pressure[i-2] + pressure[i-1] +

pressure[i] + pressure[i+1] + pressure[i+2])/5.0;
delQ[i] = (pressmooth[i]+(pressmooth[i]/(gamma -

1.0)))*(volume[i]-volume[i-1])+(volume[i]/(gamma-1.0))*(pressmooth[i]-
pressmooth[i-1]);

if (delQ[i] > MaxQ) {
MaxQ = delQ[i];

}
if(delQ[i] < 0){

MFBSum = 0;
Start = i;
MFBCounter = 0;

}
MFBSum += delQ[i];
MFBCounter++;
if (MFBSum > MFBMax){

MFBMax = MFBSum;
MFBStart = Start;
MFBLength = MFBCounter;

}
VolumeChange = pow((volume[i-1]/volume[i]),gamma)-1;
PVolume = PolyConst / pow(volume[i-1], gamma);
counter++;

switch (counter){
case 1 : Pr[0] = pressmooth[i] - PVolume;

  goto xxxx;
case 2 : Pr[1] = pressmooth[i] - PVolume;

  goto xxxx;
case 3 : Pr[2] = pressmooth[i] - PVolume;

  goto xxxx;
case 4 : Pr[3] = pressmooth[i] - PVolume;

}
Pr[4] = pressmooth[i] - PVolume;

MassBurn = ((-Pr[4] + 8*Pr[3] - 8*Pr[1] + Pr[0])/12.0)
* (2.8444);

if (MassBurn > MaxMassBurn) {
MaxMassBurn = MassBurn;
MaxMassBurnLoc = i;    /*  This is a relic

mistake from Offline program.  Should be i-2  */
}
Pr[0] = Pr[1];
Pr[1] = Pr[2];
Pr[2] = Pr[3];
Pr[3] = Pr[4];

xxxx:;

  }
  MFBSum = 0;
  Flag10 = 0;
  Flag50 = 0;
  Flag90 = 0;
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  Flag99 = 0;
  for (j=MFBStart+1; j<=MFBStart+MFBLength;j++){

MFBSum += delQ[j];
if ((MFBSum >= (0.1*MFBMax)) && (Flag10 == 0)){
  Start10 = j;
  Flag10 = 1;
}
if ((MFBSum >= (0.5*MFBMax)) && (Flag50 == 0)){
  Start50 = j;
  Flag50 = 1;
}
if ((MFBSum >= (0.9*MFBMax)) && (Flag90 == 0)){
  End90 = j;
  Flag90 = 1;
}
if ((MFBSum >= (0.99*MFBMax)) && (Flag99 == 0)){
  End99 = j;
  Flag99 = 1;
}

  }

  CombDur = End90 - Start10;
  MixBurn = End99 - Start50;

  LDPISumTotal = 0;
/*          for(i=512; i<=1023; i++){

  LDPISumTotal += pressure[i] - pressure[1023-i];
  }
  LDPISum = 0;
  i=511;
  do{

  i++;
  LDPISum += pressure[i] - pressure[1023-i];
  LDPI50 = i;

 }while(LDPISum <= (LDPISumTotal/2));*/

  *host = MixBurn;   /*  MixBurn  */

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = CombDur;   /*CombDur */

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = MaxMassBurnLoc;

  do{
  asm(" LDI      IF,R1");



119

  asm(" STI      R1,@_iftemp");
  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = maxloc;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = MFBStart;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = Start50;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

/*******   Pass peak pressure to Host
**************************************/

  junktemp = ieeeflt(max);
  junklow = junktemp & 0xFFFF;
  junkhigh = junktemp >> 16;

  *host = junkhigh;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = junklow;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

/******* Pass IMEPg to Host
**********************************************/

  junktemp = ieeeflt(imepg);
  junklow = junktemp & 0xFFFF;
  junkhigh = junktemp >> 16;
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  *host = junkhigh;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = junklow;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  /******* Pass MaxQ to Host
**********************************************/

  junktemp = ieeeflt(MaxQ);
  junklow = junktemp & 0xFFFF;
  junkhigh = junktemp >> 16;

  *host = junkhigh;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = junklow;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  /******* Pass MaxMassBurn to Host
**********************************************/

  junktemp = ieeeflt(MaxMassBurn);
  junklow = junktemp & 0xFFFF;
  junkhigh = junktemp >> 16;

  *host = junkhigh;

  do{
  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

  *host = junklow;

  do{
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  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x4)==0 );
  asm(" LDI     0h,IF");

/****  Read MAP Integer Value from the Host  ****/
  do{

  asm(" LDI      IF,R1");
  asm(" STI      R1,@_iftemp");

  }while((iftemp & 0x2)==0 );
  mapxfer = *host;
  mapxfer &= 0xFFFF;

  map = (mapxfer*300.0/65535)+90.0;

  asm(" LDI     0h,IF");

}while(1);    /************ End of endless loop, hahaha
*******************/

}

void init_ser_port(void)
{

serial_port[1][R_TPER] = SERTIM1VAL;
serial_port[1][GLOBAL] = SERGLOB1;
serial_port[1][X_PORT] = SERPRTX1;
serial_port[1][R_PORT] = SERPRTR1;
serial_port[1][R_TCON] = SERTIM1;

}

float calc_volume(int j)
{
float crankangle;
float pistonpos;
float pi;
float answer;

pi = 4.0 * atan(1.0);
crankangle = -180.0 + j*360.0/1024;
pistonpos = 0.0531* cos(crankangle * pi /180.0) + sqrt(3.279721E-2 -
2.81961E-3 * pow(sin(crankangle * pi /180.0), 2));
answer = 5.530303e-5 + (pi*2.724318e-3)*(0.2342-pistonpos);
return answer;

}
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Appendix E: Data Acquisition Source Code
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/*  DSP Based Acquisition program for the Navistar 444 diesel engine.
 1st Iteration - Ground up construction 11/13/97 - MLT

 First adjustments made.  CTM-10 and DAS-16 information
 changed to reflect new acquisition setup for Navistar engine - 3/13/98

 Convert updated, several modules updated and imported and general
 housecleaning to represent Navistar setup - 4/9/98

 General programming improvements added and some corrections made - 7/9/98

 Eliminated the variable Statadd as it was superfluous.  7/14/98

 Completed update, finished Menu logic and added MAP conversion.  7/16/98

 Adjusted DSP Reading module and eliminated unnecessary sections.  10/5/98

*/

#include<stdio.h>
#include<graphics.h>
#include <dos.h>
#include <conio.h>
#include <ctype.h>
#include <string.h>
#include <math.h>

void setupadc(int datadd, int cmdadd);
void screen(char **ChannelTitle, double *ChannelValue, float *PressureInfo);
void conditns(float *AmbCond);
void backgrnd(char **ChannelTitle, int datadd, int cmdadd);
void filename(float *AmbCond, float *AnalyzerBackground, char *inffilename);
void getcoeff(float *AnalyzerBackground, char **ChannelTitle);
void getadc(long int *ChannelADC);
void convert(float *AnalyzerBackground, long int *ChannelADC, double *ChannelValue, float
*AmbCond);
void readdsp(float *PressureInfo, float MAP);
void savedisk(double *ChannelValue, float *PressureInfo, char *inffilename);

double AnalyzCoeff[4][4];
int gdriver = VGA;
int gmode = VGAHI;

main (void)
{
 int i;
 int datadd=0x364;
 int cmdadd=0x365;
 long int ChannelADC[24];
 float AmbCond[3];
 float AnalyzerBackground[4];
 double ChannelValue[36];
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 char inffilename[8];
 float PressureInfo[12];
 float MAP, oldMAP;
 char choice, choicedummy;
 int writeflag, synchroflag, choiceflag;
 char tempstring[25] = "C:\\DATA\\" ;
 char dirstring[25];
 FILE *dsp_file;
 char *ChannelTitle[]={

"MAP", "Adv", "FIPW", "Speed", "n/a", "HC", "lCO", "CO2", "NOx", "VnT",
"VnP", "TRQ", "ECT", "EOT", "ExT", "IAT", "n/a", "APS", "ICP", "n/a", "n/a" };

 /* initialize graphics and local variables */
/* initgraph(&gdriver, &gmode, "D:\\bc45\\bgi");
 setcolor(1);*/
 oldMAP = 101.325;
 writeflag = 0;
 synchroflag = 0;
 conditns(AmbCond);
 backgrnd(ChannelTitle, datadd, cmdadd);
 getcoeff(AnalyzerBackground, ChannelTitle);
 setupadc(datadd, cmdadd);

 do{
 filename(AmbCond, AnalyzerBackground, inffilename);
 strcpy(dirstring, tempstring);
 strcat(dirstring, inffilename);
 strcat(dirstring, ".dsp");

 dsp_file = fopen( dirstring, "a+");

 do{
if (synchroflag == 1){

  printf("Press Button to Start\n");
do{

  }while(!inp(0x2FE));
  printf("Data capture initiated.\n");
  synchroflag = 0;

}
outp(0x328, 0);
outp(0x329,2);    /*Start Das-16 on Trigger, Pin 25 */

while (!(inp(0x328) & 0x10)){
};

getadc(ChannelADC);

MAP = -.0046*pow((1e6/ChannelADC[0]),2)+3.2644*(1e6/ChannelADC[0])-
203.29;

if ((MAP < 75) || (MAP > (1.25*oldMAP))){
 MAP = oldMAP;

}
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oldMAP = MAP;
readdsp(PressureInfo, MAP);

if (writeflag == 0){
convert(AnalyzerBackground, ChannelADC, ChannelValue,

AmbCond);
screen(ChannelTitle, ChannelValue, PressureInfo);
printf("\nMAP = %3.1f", MAP);

}
if (writeflag == 1){

  for (i=0;i<=20;i++){
  fprintf(dsp_file, "%d ,", ChannelADC[i]);

  }
  for (i=0;i<=8;i++){

  fprintf(dsp_file, "%5.5f ,", PressureInfo[i]);
  }
  fprintf(dsp_file, "%5.5f \n", PressureInfo[9]);

}
/*outp(cmdadd, 0xB8);  /* Hold counters 4 and 5 */

 }while(!kbhit());

 choicedummy = toupper(getch());
 sleep(1);
 choiceflag = 0;
 fclose(dsp_file);

 do{
printf("Enter Choice of Operation: <M>onitor, <S>ynchronize,\n");
printf("<W>rite to Disk, E<X>it.\n");
printf("To synchronize, install COM port y-connector switch.\n");
choice = toupper(getch());

if (choice == 'M')
  choiceflag = 1;

else if (choice == 'S'){
  choiceflag = 1;
  printf("Synchronizing Switch Set, Press Button to Take Data");

}
else if (choice == 'W'){

  choiceflag = 1;
  printf("Writing Data to File, Press a Key to Interrupt");

}
else if (choice == 'X')

  choiceflag = 1;
else choiceflag = 0;

 }while(choiceflag == 0);

 switch (choice){
 case 'M': writeflag = 0;
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synchroflag = 0;
break;

 case 'S': writeflag = 1;
synchroflag = 1;
break;

 case 'W': writeflag = 1;
synchroflag = 0;
break;

 case 'X': break;
 }

 sleep(1);

 }while(choice != 'X');

 closegraph();

 return 0;
}

#include <stdio.h>
#include <dos.h>
#include <stdlib.h>
#include <string.h>

void savedisk(double *ChannelValue, float *PressureInfo, char *inffilename)
{
 char tempstring[25] = "C:\\DATA\\" ;
 char dirstring[25];
 int i;
 FILE *dsp_file;

 strcpy(dirstring, tempstring);
 strcat(dirstring, inffilename);
 strcat(dirstring, ".dsp");

 dsp_file = fopen( dirstring, "a+");

 for (i=0;i<=20;i++){
fprintf(dsp_file, "%5.5f ,", ChannelValue[i]);

 }
 for (i=0;i<=9;i++){

fprintf(dsp_file, "%5.5f ,", PressureInfo[i]);
 }
 fprintf(dsp_file, "%5.5f \n", PressureInfo[10]);

 fclose(dsp_file);

}

/* This subprogram reads the values from backgrnd.dat and creates an information
file for reduction purposes.  */

#include <stdio.h>
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#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <conio.h>

extern double AnalyzCoeff[4][4];
getcoeff(float *AnalyzerBackground, char **ChannelTitle)
{
  int AnalyzADC[4];
  int i;
  int j;
  int jj;
  int p;
  int k;
  char trash[25];
  char coeffstring[80];
  char tempstring[25] = "C:\\DATA\\CAL\\";
  char dirstring[25];
  FILE *file_ptr;
  FILE *coefffile;

  for (i=5;i<=8;i++){
strcpy(dirstring, tempstring);
strcat(dirstring, ChannelTitle[i]);
strcat(dirstring, ".cal");
coefffile = fopen(dirstring, "r");

for (j=1;j<=2;j++){
fgets(trash, 25, coefffile);
/*printf("%d  %s",j, trash);*/

}

for (jj=0;jj<=3;jj++){
fgets(coeffstring, 40, coefffile);
p = strlen(coeffstring);

for (k=1;k<=p;k++){
if (coeffstring[k] == 'D') {

 coeffstring[k] = 'E';
}

}

AnalyzCoeff[i-5][jj] = atof(coeffstring);
  /* printf("%d %e %d %s\n",jj,AnalyzCoeff[i-7][jj],p, coeffstring);*/

}

/*printf("\n File source is : %s \n", dirstring);*/
fclose(coefffile);

  }
  file_ptr = fopen( "C:\\DATA\\CAL\\Backgrnd.dat", "r");
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  for (i=0;i<=3;i++){
 fscanf(file_ptr, "%d", &AnalyzADC[i]);
 AnalyzerBackground[i]=

AnalyzCoeff[i][0]+AnalyzCoeff[i][1]*AnalyzADC[i]+AnalyzCoeff[i][2]*pow(AnalyzADC[i],2)+AnalyzC
oeff[i][3]*pow(AnalyzADC[i],3);

  }
  fclose(file_ptr);

  return 0;
}

/* This Subprogram will gather the data from the boards  */
#include <dos.h>
#include <stdio.h>
#include <conio.h>

getadc(long int *ChannelADC)
{

int i;
long int hibyte;
long int lobyte;
int datadd = 0x364;
int cmdadd = 0x365;

/* This section sets up the CTM-10 board for various important parameters */
outp(cmdadd, 0x11);    /* Read Counter 1 Hold : MAP */
lobyte = inp(datadd);
hibyte = inp(datadd);
ChannelADC[0] = lobyte+256*hibyte;
if (ChannelADC[0] == 0){

 ChannelADC[0] = 8500;
}

/* printf("cmdadd = %x,   datadd = %x \n", cmdadd, datadd);*/
/* printf("ChannelADC[0] = %d\n", ChannelADC[0]);*/

outp(cmdadd, 0x12); /* Read Counter 2 Hold : Timing */
lobyte = inp(datadd);
hibyte = inp(datadd);
ChannelADC[1] = lobyte+256*hibyte;

/* printf("ChannelADC[1] = %d\n", ChannelADC[1]);*/

outp(cmdadd, 0x13); /* Read Counter 3 Hold : FIPW */
lobyte = inp(datadd);
hibyte = inp(datadd);
ChannelADC[2] = lobyte+256*hibyte;

/* printf("ChannelADC[2] = %d\n", ChannelADC[2]);*/

outp(cmdadd, 0x14); /* Read Counter 4 Hold: Speed */
lobyte = inp(datadd);
hibyte = inp(datadd);
ChannelADC[3] = lobyte+256*hibyte;

/* printf("ChannelADC[3] = %d\n", ChannelADC[3]);*/
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outp(cmdadd, 0x15); /* Read Counter 5 Hold : n/a */
lobyte = inp(datadd);
hibyte = inp(datadd);
ChannelADC[4] = lobyte+256*hibyte;

outp(0x322, 0xF0);  /*Read DAS-16 from channels 0 to 15(F) */
for (i=5; i<=20;i++) {

 outp(0x320, 0);
 while (inp(0x328) & 0x80){

 }
 ChannelADC[i] = inp(0x320)/16 + inp(0x321)*16;

}

outp(0x328, 0);

return 0;
}

#include <time.h>
#include <stdio.h>
#include <dos.h>
#include <stdlib.h>
#include <string.h>

extern double AnalyzCoeff[4][4];

void filename(float *AmbCond, float *AnalyzerBackground, char *inffilename)
{

struct  time t;
time_t tj;
char tempstring[25] = "C:\\DATA\\" ;
char dirstring[25];
char timestring[8];
char secondhalf[6];
char firsthalf[6];
char datebuf[9];
int p;
int i, j;
FILE *inf_file;

tj = time(NULL);
ltoa(tj, timestring, 10);
p=strlen(timestring);

for (i=0;i<=4;i++){
secondhalf[i] = timestring[p-4+i];

}

  _strdate(datebuf);
for(i=0;i<=4;i++){

if (i==0 || i==1){
firsthalf[i]=datebuf[i];

}
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if (i==3 || i==4){
firsthalf[i-1]=datebuf[i];

}
}

firsthalf[4] = 0;

strcpy(inffilename, firsthalf);
strcat(inffilename, secondhalf);

printf("Date is %s \n", datebuf);
printf("Filename is : %s \n", inffilename);

gettime(&t);
strcpy(dirstring, tempstring);
strcat(dirstring, inffilename);
strcat(dirstring, ".inf");

inf_file = fopen( dirstring, "w");
fprintf(inf_file, "%s \n", datebuf);
fprintf(inf_file, "%2d:%02d:%02d \n",t.ti_hour, t.ti_min, t.ti_sec);
fprintf(inf_file, "Ambient Temp : %2.1f \n", AmbCond[0]);
fprintf(inf_file, "Ambient RH   : %2.1f \n", AmbCond[1]);
fprintf(inf_file, "Ambient Pres : %3.1f \n", AmbCond[2]);
for (i=0;i<=3;i++){

fprintf(inf_file, "Analyzer[%d] background is \n %5.1f \n", i, AnalyzerBackground[i]);
fprintf(inf_file, "Coefficients are:\n");
for (j=0;j<=3;j++){

 fprintf(inf_file,"%.15e \n", AnalyzCoeff[i][j]);
}

}
fclose(inf_file);

}

/*  This subprogram converts the ADC code data into real engineering unit
data */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conio.h>

extern double AnalyzCoeff[4][4];

convert(float *AnalyzerBackground, long int *ChannelADC, double *ChannelValue, float *AmbCond)
{
  int i;
  float TempConvert;
  float rhoHC = 0.5746;        /* Densities are based on Diesel #2 Specs.  */
  float rhoNOx = 1.913;
  float rhoCO = 1.164;
  float rhoCO2 = 1.83;
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  float H, Kh, Qeng;
  float Q, Prespsf, TempRank;
  float SatVapPres;

  for (i=0;i<=20;i++){

switch(i)
{

/*  Case 0 is the MAP taken from the CTM-10 board  (kPa)*/
case 0: if(ChannelADC[i] != 0)

ChannelValue[i] = -
.0046*pow((1e6/ChannelADC[i]),2)+3.2644*(1e6/ChannelADC[i])-203.29;

  else
ChannelValue[i] = 0;

  break;

/*  Case 1 is the Ignition timing, in microseconds, CTM-10 board */
case 1: ChannelValue[i] = ChannelADC[i];

  break;

/*  Case 2 is the fuel ignition pulse width in microseconds */
case 2: ChannelValue[i] = ChannelADC[i];

  break;

/*  Case 3 is the engine speed taken from the CTM-10 board */
case 3: if (ChannelADC[3] != 0)

  ChannelValue[i] = 60.0
/(ChannelADC[i]*0.00001);

  else {ChannelValue[i] = 1;
 ChannelADC[3] = 1;

  }
                 ChannelValue[1] = ((float) ChannelADC[1]/ ChannelADC[3]*36.0);

  break;

/*  Case 4 is not used */
case 4: ChannelValue[i] = ChannelADC[i];

  break;

/* Case 5 is HC, 6:CO, 7:CO2, 8:NOx  */
case 5: TempConvert = ChannelADC[i];

ChannelValue[i] = (AnalyzCoeff[0][0] +
AnalyzCoeff[0][1]*TempConvert+AnalyzCoeff[0][2]*pow(TempConvert,2)+AnalyzCoeff[0][3]*pow(Te
mpConvert,3))-AnalyzerBackground[0];

break;

case 6: TempConvert = ChannelADC[i];
ChannelValue[i] = (AnalyzCoeff[1][0] +

AnalyzCoeff[1][1]*TempConvert+AnalyzCoeff[1][2]*pow(TempConvert,2)+AnalyzCoeff[1][3]*pow(Te
mpConvert,3))-AnalyzerBackground[1];

break;

case 7: TempConvert = ChannelADC[i];
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ChannelValue[i] = (AnalyzCoeff[2][0] +
AnalyzCoeff[2][1]*TempConvert+AnalyzCoeff[2][2]*pow(TempConvert,2)+AnalyzCoeff[2][3]*pow(Te
mpConvert,3))-AnalyzerBackground[2];

break;

case 8: TempConvert = ChannelADC[i];
ChannelValue[i] = (AnalyzCoeff[3][0] +

AnalyzCoeff[3][1]*TempConvert+AnalyzCoeff[3][2]*pow(TempConvert,2)+AnalyzCoeff[3][3]*pow(Te
mpConvert,3))-AnalyzerBackground[3];

break;

/* Case 9 is the Venturi Temperature K */
case 9: ChannelValue[i] = (ChannelADC[i]-819.2) * 0.8 * 0.292969 + 273;

  break;

/* Case 10 is the Venturi Pressure kPa */

case 10: ChannelValue[i] = (ChannelADC[i]-819.2) * 0.8 * 1.054688 / 144 /
0.145;

  break;

/* Case 11 is Engine Brake Torque  Nm */
case 11: ChannelValue[i] = (ChannelADC[i] * 0.5568 - 585.05) / 0.7376;

  break;

/* Case 12 is the Engine Coolant Temperature in deg. C */
case 12: ChannelValue[i] = pow((ChannelADC[i]/819.2),3) * -2.5206

+ pow((ChannelADC[i]/819.2),2) * 20.535 +
ChannelADC[i]/819.2 * -73.587 + 131.29;

  break;

/* Case 13 is the Engine Oil Temperature in deg. C */
case 13: ChannelValue[i] = pow((ChannelADC[i]/819.2),3) * -1.9667

+ pow((ChannelADC[i]/819.2),2) * 16.497 +
ChannelADC[i]/819.2 * -66.835 + 148.29;

  break;

/* Case 14 is Exhaust Temperature in deg. C */
case 14: ChannelValue[i] = ChannelADC[i] * 0.2436 - .7545;

  break;

/* Case 15 Intake Air Temperature */
case 15: ChannelValue[i] = ChannelADC[i] * 0.1231 - 4.592;

break;
/*  Channel 16 is unused  */
case 16:

ChannelValue[i] = ChannelADC[i] /819.2;
break;

/* Case 17 is the Accelerator Pedal Sensor (%)  */
case 17: ChannelValue[i] = (ChannelADC[i] - 503) / (3620.0-503.0) * 100;

break;

/* case 18 is the fuel rail pressure (ICD) */
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case 18: ChannelValue[i] = ChannelADC[i];
break;

case 19: ChannelValue[i] = ChannelADC[i];
break;

case 20: ChannelValue[i] = ChannelADC[i];
break;

 }  /* end switch */
}   /* end "for" loop */

/* Calculate Intake conditions for emissions adjustment Kh is NOx humidity
ajdustment  */

SatVapPres = (1.084627e-6 * pow(AmbCond[0],3) - 0.0000300890207*pow(AmbCond[0],2) +
0.00121605333*AmbCond[0] + 0.00295389169)*100;
H = 6.211 * AmbCond[1] * SatVapPres / (AmbCond[2]*0.1333224 - (SatVapPres* AmbCond[1]/100));
Kh = 1/(1-0.0182*(H-10.71));

/* Determine Tunnel Flowrate  10.791 in Qeng calculation is the calibrated
coefficient for the stationary lab venturi #1.  Ventury #2 is 10.766. */

TempRank = ChannelValue[9] * 9/5;           /* K to Rankine*/
Prespsf = ChannelValue[10]/ 0.04788026;     /* kPa to lbs/ft^2 conversion */
Qeng = 10.791 * Prespsf/(sqrt(TempRank));   /* ft^3/min */
Q = Qeng * 0.00047195;                      /* m^3/sec */

/* Convert ppm values for emissions into g/s */

  ChannelValue[5] = ChannelValue[5] / 1E6 * Q * rhoHC * 1000.0;   /*1000 is for kg to g */
  ChannelValue[6] = ChannelValue[6] / 1E6 * Q * rhoCO * 1000.0;
  ChannelValue[7] = ChannelValue[7] / 1E6 * Q * rhoCO2 * 1000.0;
  ChannelValue[8] = Kh * ChannelValue[8] / 1E6 * Q * rhoNOx * 1000.0;

  return 0;
}

/* Subprogram to input ambient conditions before a test */

#include <stdlib.h>
#include <stdio.h>
#include <conio.h>
#include <ctype.h>

/* extern int NOXDelay, CODelay, HCDelay;*/

void conditns(float *AmbCond)
{
 char choice;
 do{

clrscr();

puts("\r\n");
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puts("Emissions and Engine Data Acquisitions\r\n");

printf("Enter the ambient temperature (C) : ");
scanf("%f", &AmbCond[0]);
printf("Enter the relative humidity (%) : ");
scanf("%f", &AmbCond[1]);
printf("Enter the ambient pressure (mm Hg) : ");
scanf("%f", &AmbCond[2]);
printf("\n\n\n");
printf("Ambient Temperature: %2.1f \n", AmbCond[0]);
printf("Relative Humidity  : %2.1f \n", AmbCond[1]);
printf("Ambient Pressure   : %3.1f \n", AmbCond[2]);
printf("\n Are these values correct? <Y> or <N> ");
choice = toupper(getch());

  }while(choice != 'Y');
}

/* This subprogram acquires the background data from the tunnel before the
engine is started */

#include <stdlib.h>
#include <conio.h>
#include <stdio.h>
#include <ctype.h>

void setupadc(int datadd, int cmdadd);

backgrnd(char **ChannelTitle, int datadd, int cmdadd)
{

 char choice;
 int Channum;
 int counter;
 int chan;
 int DataPoint;
 int i;
 long int total;
 long int AnalyzerADC[8];
 FILE *file_ptr;

 choice = 'x';
 printf("\n\n\n\n\r");
 printf("To take Background Emission level data, enter <Y> now.\n\r");
 printf("\n\r");
 puts("Press any other key to continue...");
 choice = toupper(getch());
 if (choice == 'Y') {

  setupadc(datadd, cmdadd);
  do{

  clrscr();
  printf("Press SpaceBar After Steady State");

  }while(!kbhit());
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  clrscr();
  printf("\n\r Taking background data...");
  counter = 0;

  /* DAS-16 MUX reads one channel at a time.  Reads HEX00 through HEX33*/
  for (chan = 0; chan <= 51; chan += 17){

outport(0x322, chan);
Channum=chan/17;
printf("\nChannel %d, %s", Channum, ChannelTitle[Channum+5]);
total=0;

for (i=1; i<=100; i++){
 outp(0x320, 0);
 while(inp(0x328) & 0x80){

 }
 DataPoint= inp(0x320)/16 + inp(0x321)*16;
 total = total + DataPoint;

}

AnalyzerADC[counter] = total/100;
printf("  :  %d",AnalyzerADC[counter]);
counter++;

  }
  file_ptr = fopen("C:\\DATA\\CAL\\Backgrnd.dat", "w");
  for (i=0; i<=3; i++){

fprintf(file_ptr, "%d \r\n",AnalyzerADC[i]);
  }
  fclose(file_ptr);

 }
 return 0;

}

/* This subprogram sets up the boards for acquisition */
#include <dos.h>

setupadc(int datadd, int cmdadd)
{

outp(0x329, 0);  /*Sets DAS-1602 to internal software trigger. */
outp(0x32B, 1);  /*Sets DAS-1602 to -5 to +5 Volts */

/* reset STC and set to 8-bit bus */

outp(cmdadd, 0xFF);
outp(cmdadd, 0xE7);

/* set MM register to decade */

outp(cmdadd, 0x17);
outp(datadd, 0xB0);
outp(datadd, 0x8A);
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/* counter 1 measures MAP pulse period */

outp(cmdadd, 0x1);  /*set counter 1 to mode Q*/
outp(datadd, 0xA8);
outp(datadd, 0xCB);

/* counter 2 measures Advance */

outp(cmdadd, 0x2); /*set counter 2 to mode Q */
outp(datadd, 0xA8);
outp(datadd, 0x8B); /* set gate to 1 microsecond intervals */

/* counter 3 measures FIPW via the IDM Feedback signal */

outp(cmdadd,0x3);   /*set counter 3 to mode Q*/
outp(datadd,0xA8);
outp(datadd,0x8B);  /*Sourced from F1, gated with Gate3, 1 microsecond intervals */

/* counter 4 measures engine speed via the CYL ID signal*/

outp(cmdadd, 0x4);  /* set counter 4 to mode D */
outp(datadd, 0xA8);
outp(datadd, 0x8C);  /* set gate to 10 microsecond intervals */

/* counter 5 - NOT USED */

outp(cmdadd, 0x5);  /*set counter 5 to mode D */
outp(datadd, 0xA8);
outp(datadd, 0xCB); /* sourced from SRC3 */

/* set all load registers to zero */

outp(cmdadd, 0x9);
outp(datadd, 0x0);
outp(datadd, 0x0);

outp(cmdadd, 0xA);
outp(datadd, 0x0);
outp(datadd, 0x0);

outp(cmdadd, 0xB);
outp(datadd, 0x0);
outp(datadd, 0x0);

outp(cmdadd, 0xC);
outp(datadd, 0x0);
outp(datadd, 0x0);

outp(cmdadd, 0xD);
outp(datadd, 0x0);
outp(datadd, 0x0);

/* Load and arm counters */
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outp(cmdadd, 0x7F);

return 0;
}

/*  This subprogram prints the text values of each channel to the screen. */
#include <conio.h>
#include <stdio.h>

screen(char **ChannelTitle, double *ChannelValue, float *PressureInfo)
{

 clrscr();

 printf("%s   = %3.1f  kPa\n", ChannelTitle[0],ChannelValue[0]);
 printf("%s   = %2.1f  BTDC\n", ChannelTitle[1],ChannelValue[1]);
 printf("%s   = %4.0f  ms\n", ChannelTitle[2],ChannelValue[2]);
 printf("%s   = %4.1f  RPM\n", ChannelTitle[3],ChannelValue[3]);
 printf("%s   = %4.4f  g/s\n", ChannelTitle[5],ChannelValue[5]);
 printf("%s   = %4.4f  g/s\n", ChannelTitle[6],ChannelValue[6]);
 printf("%s   = %4.4f  g/s\n", ChannelTitle[7],ChannelValue[7]);
 printf("%s   = %4.4f  g/s\n", ChannelTitle[8],ChannelValue[8]);
 printf("%s   = %3.1f  K\n", ChannelTitle[9],ChannelValue[9]);
 printf("%s   = %3.1f  kPa\n", ChannelTitle[10],ChannelValue[10]);
 printf("%s   = %3.1f  Nm\n", ChannelTitle[11],ChannelValue[11]);
 printf("%s   = %3.1f  C\n", ChannelTitle[12],ChannelValue[12]);
 printf("%s   = %3.1f  C\n", ChannelTitle[13],ChannelValue[13]);
 printf("%s   = %4.1f  C\n", ChannelTitle[14],ChannelValue[14]);
 printf("%s   = %3.1f  C\n", ChannelTitle[15],ChannelValue[15]);
 printf("%s   = %2.2f  n/a\n", ChannelTitle[16],ChannelValue[16]);
 printf("%s   = %2.2f  %\n", ChannelTitle[17],ChannelValue[17]);
 printf("%s   = %4.0f  ADC\n", ChannelTitle[18],ChannelValue[18]);
 printf("%s   = %4.0f  ADC\n", ChannelTitle[19],ChannelValue[19]);
 printf("%s   = %4.0f  ADC\n", ChannelTitle[20],ChannelValue[20]);
 printf("\nPeak Pressure = %5.2f   kPa\n", PressureInfo[6]);
 printf("IMEPg = %4.2f   kPa\r\n", PressureInfo[7]);

return 0;
}

#include <stdio.h>
#include <conio.h>

void readdsp(float *PressureInfo, float MAP)
{

unsigned int value;
unsigned long totaljunk;
float *realjunk;
unsigned int mapint;

/* outport(0x240+0x0014, 0x0002);  /*Initialize host Read/Write registers*/
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/* outport(0x0240+0x0014, 0x0004);*/

mapint = (MAP - 90)*65535/300;

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[0] = ((int) value ) *(360.0/1024.0);

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[1] = ((int) value )*(360.0/1024.0);

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[2] = ((int) value - 512)*(360.0/1024.0);

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[3] = ((int) value - 512 )*(360.0/1024.0);

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[4] = ((int) value - 512 )*(360.0/1024.0);

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
PressureInfo[5] = ((int) value - 512 )*(360.0/1024.0);

/*  Read and display a floating point number  */
do{

outport(0x0240+0x0014, 0x6044);
}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
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totaljunk = value;
totaljunk <<= 16;
totaljunk &= 0xFFFF0000;

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk += value;
realjunk = (float * ) &totaljunk;
PressureInfo[6] = *realjunk;

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk = value;
totaljunk <<= 16;
totaljunk &= 0xFFFF0000;
do{

outport(0x0240+0x0014, 0x6044);
}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk += value;
realjunk = (float * ) &totaljunk;
PressureInfo[7] = *realjunk;

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk = value;
totaljunk <<= 16;
totaljunk &= 0xFFFF0000;
do{

outport(0x0240+0x0014, 0x6044);
}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk += value;
realjunk = (float * ) &totaljunk;
PressureInfo[8] = *realjunk;

do{
outport(0x0240+0x0014, 0x6044);

}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
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value = inport(0x0240+0x0808);
totaljunk = value;
totaljunk <<= 16;
totaljunk &= 0xFFFF0000;
do{

outport(0x0240+0x0014, 0x6044);
}while((inport(0x0240+0x0400)& 0x2)==0);
outport(0x240+0x0014, 0x0002);
value = inport(0x0240+0x0808);
totaljunk += value;
realjunk = (float * ) &totaljunk;
PressureInfo[9] = *realjunk;

/*  The following 5 lines ensure a synchronized write to the COM_DATA port */
outport(0x0240+0x0014, 0x0004);
outport(0x240+0x0808, mapint);
do{

outport(0x0240+0x0014, 0x6044);
}while((inport(0x0240+0x0400) & 0x0004) == 0);

return;
}
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Appendix F: Network Application Program Source Code
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#include <stdio.h>
#include <dos.h>
#include <string.h>
#include <math.h>
#include <io.h>
#include <conio.h>

void fire_hc(double *Net_Pass, double *HC);
void fire_nox(double *Net_Pass, double *NOx);
void fire_co(double *Net_Pass, double *CO);
void fire_co2(double *Net_Pass, double *CO2);

void main(void){

  struct dsp_struct {
  char inf[14], rel[14];

  } dsp_file[8];

  int i, j,total_files;
  int k, m;
  struct find_t ffblk;
  double HC[1], NOx[1];
  double CO[1], CO2[1];
  int done;
  char savestring[8];
  char trash[80];
  char dirstring[25] = "D:\\dspdata\\1106_dsp\\";
  float ChannelValue[21];
  float Press_Data[10];
  double Net_Pass[8];

  FILE *data_file;
  FILE *save_file;

  i=0;
  done = _dos_findfirst("d:\\dspdata\\1106_dsp\\*.rel",_A_NORMAL,&ffblk);
  strcpy(dsp_file[i].rel, ffblk.name);

  while (!done) {
  i++;
  done = _dos_findnext(&ffblk);
  strcpy(dsp_file[i].rel, ffblk.name);

  }

  total_files = i;

  for(i=0;i<total_files;i++){

  strcpy(dirstring,"D:\\dspdata\\1106_dsp\\");
  strcat(dirstring, dsp_file[i].rel);
  data_file = fopen(dirstring, "r");
  printf("Data_File = %s\n", dirstring);
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  strncpy(savestring, dsp_file[i].rel, 8);
  savestring[8] = '\0';
  strcpy(dirstring,"D:\\dspdata\\1106_dsp\\");
  strcat(dirstring,savestring);
  strcat(dirstring,".net");
  save_file = fopen(dirstring, "w");
  printf("Applying nets to  : %s\n", dirstring);
  fprintf(save_file, "HC(Pred), HC(Act), CO(Pred), CO(Act), CO2(Pred), CO2(Act), NOx(Pred),

NOx(Act)\n");
  for(k=0;k<=1;k++){

for (m=0;m<=30;m++){
  fscanf(data_file, "%s", &trash);

}
  }

  do{

  for (j=0;j<=20;j++){
fscanf(data_file,"%f",&ChannelValue[j]);
fscanf(data_file,"%1s",&trash);

  }
  for (j=0;j<=8;j++){

fscanf(data_file,"%f",&Press_Data[j]);
fscanf(data_file,"%1s",&trash);

  }
  fscanf(data_file,"%f",&Press_Data[9]);

if (Press_Data[7] >= -75){

 /* outarray[0] is HC */
/* inarray[0] is Peak-1 */
/* inarray[1] is IgnDel-1 */
/* inarray[2] is LMFB50-1 */

  Net_Pass[0] = (double) Press_Data[6];
  Net_Pass[1] = (double) Press_Data[4];
  Net_Pass[2] = (double) Press_Data[5];

/*   Net_Pass[3] = (double) Press_Data[5];
/*   Net_Pass[4] = (double) Press_Data[5];

  Net_Pass[5] = (double) Press_Data[0];*/
  fire_hc(Net_Pass, HC);

 /* outarray[0] is NOx */
/* inarray[0] is Peak-1 */
/* inarray[1] is IMEPg-1 */
/* inarray[2] is IgnDel-1 */
/* inarray[3] is CombDur-1 */
/* inarray[4] is LMFB50-1 */

  Net_Pass[0] = (double) Press_Data[6];
  Net_Pass[1] = (double) Press_Data[7];
  Net_Pass[2] = (double) Press_Data[4];
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  Net_Pass[3] = (double) Press_Data[1];
  Net_Pass[4] = (double) Press_Data[5];

/*   Net_Pass[5] = (double) Press_Data[8];*/
  fire_nox(Net_Pass, NOx);

/* outarray[0] is CO */
/* inarray[0] is Peak-1 */
/* inarray[1] is LMFB50-1 */
/* inarray[2] is MaxBurnLoc-1 */

  Net_Pass[0] = (double) Press_Data[6];
  Net_Pass[1] = (double) Press_Data[5];
  Net_Pass[2] = (double) Press_Data[2];

/*   Net_Pass[3] = (double) Press_Data[2];
/*   Net_Pass[4] = (double) Press_Data[0];

  Net_Pass[5] = (double) Press_Data[8];*/
  fire_co(Net_Pass, CO);

/* outarray[0] is CO2 */
/* inarray[0] is Peak-1 */
/* inarray[1] is IMEPg-1 */
/* inarray[2] is IgnDel-1 */
/* inarray[3] is MaxBurn-1 */

  Net_Pass[0] = (double) Press_Data[6];
  Net_Pass[1] = (double) Press_Data[7];
  Net_Pass[2] = (double) Press_Data[4];
  Net_Pass[3] = (double) Press_Data[9];

/*   Net_Pass[4] = (double) Press_Data[9];
/*   Net_Pass[5] = (double) Press_Data[2];*/

  fire_co2(Net_Pass, CO2);
}
else {

HC[0] = 0.0;
CO[0] = 0.0;
CO2[0] = 0.5;
NOx[0] = 0.007;

}
fprintf(save_file, "%5.5f , %5.5f, %5.5f, %5.5f, %5.5f, %5.5f, %5.5f, %5.5f\n", HC[0], ChannelValue[5],
CO[0], ChannelValue[6], CO2[0], ChannelValue[7], NOx[0], ChannelValue[8]  );

  } while (!feof(data_file));

  fclose(data_file);
  fclose(save_file);

  }

xxxx:
}
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