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ABSTRACT 

Stability Analysis of Bleeder Entries in Underground Coal Mines Using 

the Displacement-Discontinuity and the Finite-Difference Programs 

Xu Tang 

The stability of bleeder entries is essential for both mine ventilation and personnel 

travelling through the entries. Therefore, it is imperative that bleeder pillars remain stable 

and bleeder entries safe during their service life.  Surprisingly, there are few published 

investigations on ground control issues in the bleeder entries. This thesis is an attempt to 

analyze the ground control problems in bleeder entries especially, the structural integrity 

of the bleeder entry. Two numerical programs (a) displacement discontinuity program-

LaModel and (b) the finite difference program-FLAC were used to investigate these 

problems. Modeling results from the LaModel program indicated that the vertical stresses 

in bleeder pillars would first increase and then remain unchanged during retreat mining. 

The active longwall did not influence the stress concentrations and safety factors in the 

bleeder pillars of the adjacent mined-out panel in multiple longwall panels. The vertical 

stress concentration on bleeder pillars increased with depth. For detailed analysis of roof, 

pillar and floor of the mine entry simulation was performed in the finite difference 

program-FLAC. For realistic analysis, coal was assigned as strain-softening material and 

the gob was simulated with double yielding material. Results showed that the roof 

displacement in bleeder entries increased during second mining. The stability of the 

bleeder entry was affected by the behavior of the gob and active mining zone.  
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Chapter 1 Introduction 

1.1 Background  

Coal mining has always been a hazardous occupation all over the world, even though 

highly modern mechanized methods have been employed. Accidents in underground coal 

mine consist of gas, flooding, roof fall, fire and haulage (Peng, 2008). Gas accidents 

usually include coal and gas outburst and methane explosion. The high concentration of 

methane in the coal seam is one of the triggers inducing gas accidents. The emission of 

methane and its accumulation in worked-out areas always plagues the safety production 

in the coal mining industry, which may be caused by improperly installed sensors, 

improper local ventilation, and other mine ventilation issues.  

In order to avert methane accumulation and provide a safe working environment for 

miners, the underground coal mine ventilation system must provide enough fresh air to 

underground coal mines and ensure that all pillared areas are ventilated, including the 

mined-out area (Stefanko, 1972). At the far end of gob, there are a set of roadways 

connecting the tailgate and headgate of the panel; these are called bleeders, and are used 

to dilute and exhaust the return air from mining face and mined-out area. Generally, 

bleeders include the pillared area (including internal airflow paths), bleeder entries, 

bleeder connections, and all associated ventilation control devices that control the air 

passing through the pillared area (Tisdale, 1996; Urosek, 2002). Bleeders usually serve a 

twofold purposes: 1) they continuously drain air-methane mixtures from the gob area 

away from active pillared areas into the mine return; 2) they relieve expansion of gob 

contamination such as blackdamp due to atmospheric pressure drop, directing it into the 

return (Krickovic, 1973). Because of the complexity of mined-out areas, bleeder areas 

have always been one of the most challenging and uncertain areas in mine ventilation 

systems.  

1.2 Statement of problem 

Effective bleeder systems control the air passing through the bleeder, dilute any methane-

air mixtures and other gases, dusts, and fumes from active workings and the worked-out 

area. These noxious gases are routed to the surface of the mine through a return airway. 
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Because of its effectiveness, both state and federal mine regulations recommended the 

usage of bleeder system. Furthermore, the federal mine regulations are specific 

concerning the implementation of bleeder systems in underground coal mines. CFR 

(Code of Federal Regulation) 75.334 address situations where the bleeder system can be 

implemented during a retreat mining operation. CFR 75.323(e) limits the methane in the 

bleeder split of air to 2.0% immediately before it enters another split of air. The weekly 

examination requirements can be found in CFR 75.364 (a-2) that, a certified person shall 

evaluate the effectiveness of bleeder systems under given conditions, and at least one 

entry of each set of bleeder entries used as part of the bleeder system shall be traveled in 

its entirety every 7 days. There are also other clauses established for the requirement of 

air quality and ventilation management in the bleeders. 

One of the key questions, which the regulators have often asked, is how to ensure the 

safety of working or traveling in bleeder entries where only one travelable entry in and 

out of the area exists? 

Bleeders located at the far end of gob area show edge and roof failure posing hazards for 

mine personnel travelling in these entries. Furthermore, caving of rock stratum associated 

with retreat mining results in the stress concentration on the pillars in bleeders, which 

will reduce the stability of bleeder pillars. One practical and straightforward technique is 

to implement additional roof supports or other measures to ensure bleeder entries and 

pillars are as safe as multiple travelable entries in and out of the areas. The forefront and 

key thing for this method is to evaluate whether the bleeder pillars and bleeder entries are 

stable or not. However, there are no published researches about the evaluation of bleeder 

area from design to maintenance. Prior research focused on improving ventilation and 

removal of dust (Krickovic, 1973; Tisdale, 1996; Mucho, 2000; Urosek and Francart, 

2002; Oswald and Prosser, 2006). Therefore, this thesis will focus on the stability 

analysis of the bleeder pillars and roof condition of bleeder entries from the point of 

ground control.   

1.3 Objectives and methodology  

The main goal of this study is to 1) evaluate the stability of bleeder pillars, and 2) 

evaluate the roof condition in bleeder entries. The methodology used for this thesis is 
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shown in Figure 1-1. 

In the first part, the displacement-discontinuity laminated model, LaModel, was used to 

evaluate the stability of bleeder pillars. The development of vertical stress on bleeder 

pillar is discussed during the longwall retreat mining operation. The safety factor of 

bleeder pillars will also be discussed with regard to engineering application. The effect of 

overburden thickness and the adjacent mining face on the vertical stress development of 

bleeder pillars will be studied. Then the size effect on the design of bleeder pillars in the 

bleeder area will be investigated.  

In the second part, the finite difference FLAC was used to model the roof deformation of 

bleeder entries during retreat mining process. The strain-softening coal material was 

calibrated and applied in the model. The double yielding model in FLAC was used to 

model gob behavior in the mined-out area. Finally, the deformation of roof in bleeder 

entry was studied during retreat mining process.  

 

Figure 1-1 Study methodology 
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Chapter 2 Literature review 

2.1 Introduction of bleeders 

2.1.1 Bleeder pillar 

A coal pillar is a block of coal left in its natural state to support the weight of overburden 

and to protect the integrity of the entries and crosscuts adjacent to it, thereby allowing 

miners to extract coal between pillars and to travel safely (Peng, 2008). Coal pillars are 

fundamental and very important structures in U.S. underground coal mines.  

With respect to a pillar design objective, coal pillar can be classified into two groups: 

chain pillar and barrier pillar (Peng, 2008). Chain pillars are the most common support 

pillars, which are composed of pillar rows aligned at different locations such as the main, 

submain, panel, gateroads and bleeder entries, as shown in Figure 2-1. Barrier pillar are 

usually large coal blocks left to protect surface or subsurface structures from being 

damaged or affected by mining activity. Barrier pillars are left to ensure that the travel 

ways, beltlines, ventilation, and power traversing these entries are not adversely affected 

by mining activities. These pillars are also left at the far inby end of an extracted longwall 

panel to protect bleeder entries and setup room before the longwall face retreats.  

 

Figure 2-1 Two typical longwall mining layouts 

By their mechanism, coal pillars can be divided into two types: stiff pillars and yield 

pillars (Peng, 2008). Stiff pillars are designed to support the expected load that the pillars 
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will experience through their lives, while yield pillars are designed to yield at the proper 

time and rate, and transfer a proper amount of load to adjacent support blocks of coal. 

Because of the long servicing time of pillars in bleeders, these pillars should be designed 

as stiff pillars. Yield pillars are exclusively used in deep mines to avert pillar bump or 

floor heave. In other words, the main purpose of yield pillars is to relieve the highly 

concentrated stress by yielding to prevent sudden and violent pillar failure. 

By the working time of pillars, coal pillars can also be classified into two other types: the 

long- time stability pillar and short-time stability pillar.  Generally, the long-time pillar 

usually serves the coalmine for the life of the mine; these include pillars in main and 

submain entries and bleeder entries. The short-time pillar usually serves for the recovery 

of panels, including pillars in tailgates and headgates. 

 

Figure 2-2 Coal pillar classification in underground coal mines 
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2.1.2 Bleeder pillar design 

The bleeder system is an important part of the underground mine ventilation system 

providing ventilation to areas of retreat mining. It plays a significant role in reducing 

methane accumulation and eliminating containments from the mine environment. Once 

the bleeder system is determined to implement for underground mining, design of the 

bleeder system is very critical. The bleeder is normally a three-entry system (Peng, 2008) 

and bleeder pillars are usually of same size in U.S. coal mines(Figure 2-3).  

 

Figure 2-3 Three-entry system in bleeder area 

For chain pillar design, three questions are critical (Peng and Chiang, 1984), and these 

questions are of equal importance for the design of bleeder pillars:  

1) Should an equal-size or unequal-size pillar system be adopted?  

2) What are the optimum arrangements of the unequal-size pillars if they are used 

in a three- or four-entry system?  

3) What is the optimum size of chain pillars? 

However, it is not enough to answer these questions; the ventilation capacity of the 

bleeder system cannot be neglected in the bleeder design stage. The minimum number of 

entries and minimum width of bleeder entries should be determined by the amount of 

fresh air needed to reach the last open crosscut of the farthest section to be mined. In the 

U.S., entry height is equal to seam thickness, and the lower seam usually requires more or 
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wider entries. The optimum size of bleeder pillars depends on geological condition, 

ground control, and operational experience. Critical things to deliberate include how to 

make bleeder pillars undergo less damage during their service life, minimizing the cost of 

maintenance, while maintaining the planed intake air quantity. In addition, it is important 

to consider the design and arrangement of barrier pillars, which also affect the stability of 

bleeder pillars.  

2.1.3 Roof support in bleeder entries 

In bleeder design, pillar and roof supports often determine a bleeder system’s efficiency 

during its life of service in the underground mining environment. Roof supports in 

bleeders are generally long-term supports (5 years or more), which means the support 

should be able to control the time-dependent deformation of the immediate roof (Barczak, 

2008). In addition, a careful design and plan for bleeder pillars and entries will surely 

reduce the cost of maintenance for bleeders.  

Supports in bleeder entries are mainly roof bolts, which are now widely used in 

underground coal mines all over the world. Introduced in 1940’s, roof bolts have been the 

predominant support in mines, which includes coal and non-coal operations. Significant 

research in the past has tremendously improved the performance of the roof bolts. After 

years of development, there are various types of roof bolts on the market, which can be 

used for different roof and geological conditions (Table 2-1). 

The secondary support in bleeder entries is evolving along with the advance of roof 

support technology. There are more than fifty standing-support products for the longwall 

tailgate and bleeder application (Barczak, 2008). All these products can be classified into 

two types, active support and passive support (Hoek, 2000), shown in Figure 2-4. The 

passive supports are external to the roof rock and respond to the downward movement of 

the rock stratum in the roof. Each support system usually has a unique installation 

procedure that varies from the traditional wood post to crib installations.  
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Table 2-1 Type of roof bolts in the U.S. coal mines (Peng, 2008) 
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Figure 2-4 Secondary support in bleeder area 

Historically, timber cribs and posts were the dominant forms of secondary support 

(Barczak, 2006). Timber support was always used in the first three decades in 

underground coal mines, until being substituted with roof bolts in the late 1940s (Mark, 

2002). Even though roof bolting has become the dominant roof support technology in the 

field of ground control since the 1950s, timber cribs and posts remain a supplemental 

support technology in tailgate and bleeder applications, and are also still essential in 

mining extrication operations (Barczak, 1995). Timber cribs, which depend on the ratio 
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of width to height, involve multiple piece of standard timber being laid on the slide and 

crossed, which spreads the load well and transfers it to many surfaces with lateral 

stability (Leach, 2012). To take full advantage of timber support, two alternative supports, 

Propsetter supports and Cluster props, were also introduced (Barczak, 2006). Propsetter 

props combine the stiffness of a prop with a built-in yield zone for mining heights of up 

to 10 feet and can be yielded up to 16-18 inches in a controlled manner. Comparing with 

timber cribs, Propsetter props use up to 72% less material and can reduce ventilation 

resistance by 76% (Propsetter, 2014). Cluster props are based on the Propsetter support, 

which is bound together with three strong, pre-tensioned metal straps at the top, middle, 

and bottom section of the props (Cluster prop, 2014). This makes three props provide a 

unified and stable, yielding support system. 

 

Figure 2-5 Wood cribs in bleeder area (C. Mark, 2002) 

 

Figure 2-6 Prosetter and Cluster support in underground mine (Strata web, 2014) 

Due to ground reaction and special ground control features in western U.S. mines and the 
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increasing cost of mine timber, the Can support, one alternative method of support, was 

developed to meet market demand (Barczak, 2006). Because of its high stability and 

yield performance, the Can support is now the most widely used standing support system 

in the U.S. for longwall tailgate application. The significant drawback for this support is 

that it has to be topped off by wood crib blocks to establish roof contact or that you have 

to buy a machine to install Cans. The stiffness of the Can-wood system is greatly reduced 

compared to single Can support. The NIOSH Support Technology Optimization Program 

(STOP) software developed a new module to estimate the yield capacity of the wood 

structure compared to the Can (Barczak, 2000).  

 

Figure 2-7 Can support and the Prestressing Units (T.M. Barczak, 2006) 

Recently, a new prestressing technology was introduced and the prestressing unit (PSU) 

was developed to strengthen roof support power (Barczak, 2004). This new product can 

eliminate the stiffness reduction of wood cribs and allow the full capacity of the Can 

when installing it to the mine roof and floor. Further, the PSU can also be designed in 

different shapes and sizes to accommodate different sized Can supports.   

In 1993, the first modern pumpable roof support was installed in the U.S. in the Southern 

Ohio Coal Company’s Meigs No.2 mine; this was mainly used for the support of bleeder 

entries. This technology takes full advantage of pumpable supports being installed in 

inaccessible areas. This is very helpful for support in the bleeder because the bleeder is 

generally restricted due to power constraints, unpredictable ventilation problems, and 

other ground control problems. Despite the success of this application, the high material 

cost limits the use of this technology (Barczak, 2005 & 2008). 
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Figure 2-8 Pumpable support in longwall tailgate (T. M. Barczak, 2008) 

Due to mining disturbances in bleeders, secondary support in bleeders is necessary and 

critical. However, secondary support has the potential to increase air resistance for 

ventilation, which is adverse for ventilation in bleeders (Grossbach, 2011). Thus, 

choosing reasonable secondary support is one of the critical factors for maintaining 

bleeders. 

2.2 Introduction of LaModel and FLAC  

2.2.1 Numerical modeling in mining 

Stresses occurring in underground structures are due to the disturbance caused by mining. 

Knowing underground stress states is one of the fundamentally important for 

underground structure design (Rocscience, 2014). Recently numerical methods have 

gained widespread popularity as a tool for stress analysis (Jing, 2002 & 2003; Starfield, 

1998). This predictive capability comes from a variety of modeling methods, and the 

most commonly applied methods for rock mechanics is as follows as shown in Figure 2-9.  

In mathematics, the FDM (Finite difference method)  is the simplest and one of the oldest 

methods of solving differential equations. It is a direct approximation of the governing 

PDEs (Partial Differential Equations) by replacing partial derivatives with differences at 

regular or irregular grids imposed over problem domains, thus transferring the original 

PDEs into a system of algebraic equations in terms of unknowns at grid points. The 

solution of the system can be obtained by the necessary initial and boundary conditions 

(Jing, 2003). The FEM is also a numerical technique to find approximate solutions to 



13 
 

boundary value problems. The FEM, instead of solving the problems for the entire body 

in one operation, encompasses all the methods for connecting many simple element 

equations over many small sub-domains (elements) to approximate a more complex 

equation over a larger domain (Dhatt, 2012). After imposing the properly defined initial 

and boundary conditions, the global system of algebraic equations will be solved 

producing the required information for the larger domain (Zienkiewicz, 1977). The FEM 

is now the most widely applied numerical method in engineering. The disadvantage of 

the FDM/FEM is its interior discretization, and thus it cannot simulate infinitely large 

domains (Jing, 2003). As for large tabular deposits in mining activity, it would be time 

consuming and decrease computing efficiency.  

 

Figure 2-9 Numerical method for modeling 

On the other hand, the boundary integral equations are classical tools for the analysis of 

boundary value problems for PDEs (Mukherjee, 2013). By using the BEM, the 

approximation of the boundary value problem is an exact solution of the differential 

equation in the domain and is parametrized by a finite set of parameters living on the 
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boundary (Jing, 2003). So it enjoys greater accuracy over the EDM and FEM at the same 

level of discretization. It is also well suited for stress concentration and infinite domain 

problem, for only the boundary of the domain needs to be discretized. Compared to 

FEM/FDM, the BEM modeling is more efficient due to the reduction of dimensions.  

The DEM is used to deal with large displacements caused by rigid body motion of 

individual blocks, including block rotation, fracture opening, and complete detachments; 

this is impossible with FDM, FEM or BEM (Jing, 2003). The DFN method is often used 

to simulate fluid flow in fractured rocks and is widely used in ground water flow in civil 

engineering reservoir simulation in coalbed methane and petroleum engineering (Jing, 

2003; Dershowitz, 1995; Cacas, 1990).  

2.2.2 Development of displacement-discontinuity LaModel code 

As for the extraction of large tabular deposits including coal, potash, and other thin vein-

type deposits, the displacement-discontinuity (DD) method of the boundary element is a 

better choice due to its shorter data preparation time in calculation, high resolution of 

stress, and easy applicability to incompressible materials (A.A. Becker, 1992). Based on 

the homogeneous, elastic overburden model in the DD method of the boundary element, 

the MULSIM was initially created by Sinha (Sinha, 1979), and then the U.S. Bureau of 

Mines developed and optimized this program (Beckett and Madrid, 1988). After years of 

application, Dr. Heasley, in his doctoral thesis, pointed out several limitations of this 

program due to its inborn limitation (Heasley, 1998): 

 It cannot accurately describe states of the gob area as observed in practice;  

 The stress abutments obtained at the edge of these areas are much more 

extensive than field measurements or empirically tested formulas; 

 The magnitude of the stress and displacement interaction in multi-seam is 

universally less than field test value.  

Because of the successful applications of the frictionless laminated model of the 

overburden in predicting surface subsidence, the same model was implemented in a full-

featured DD program in order to overcome above program and accurately calculate the 

stress and displacements at the seam (along with surface subsidence) (Heasley,1998 & 
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2008). The initial LaModel was written in DOS-based C in 1994 (Heasley, 2014). In 1999, 

the LaModel was implemented in Visual C++. In 2000, the coal and gob wizard was 

added to LaModel and the 400×400 grid was created at the same time. In 2001, the 

automatic mine grid generation and topographic grid generation was added. In 2002, the 

history and fishnet plots were added and units also being carried by the calculation. In 

2003, the LaModel 2D was developed to analyze multi-seam interaction more easily. In 

2004, the grid generation was coded directly into AutoCAD and the 1000×1000 grid was 

created. Further, the pillar safety factor calculation and intro-seam subsidence was added. 

In 2006, the stability mapping program was created, incorporating LaModel with geology 

and structural features into a comprehensive stability mapping system. In 2007, LaModel 

2D was coded into the AMSS program and LaModel 2D was used to add a multiple seam 

capability to ALPS and ARMPS (Akinkugbe, 2004). In 2013, the LaModel program for 

the shallow cover multiple-seam mines was calibrated (Sears, 2013). In 2014, a computer 

code (ARMPS-LAM) was developed to effectively integrate the LaModel and ARMPS 

programs (Zhang, 2014), which allows an ARMPS-type LaModel analysis to be 

developed and run in just a few minutes. Now LaModel 3.0 is being developed, and new 

wizards are being developed and these will be improved in the coming years, with the 

goal of making the program function more effectively. 

2.2.3 Introduction of finite-difference FLAC program 

FLAC Version 7.0 (Fast Lagrangian Analysis of Continua) is a two-dimensional explicit 

finite-difference program for modeling geotechnical problems in the fields of mining, 

underground engineering, and rock mechanics (Itasca, 2011). In FLAC, the user can fit 

the shape of the object by grid, which is formed by elements or zones. These elements or 

zones also represent the materials of the object. These elements behave according to 

defined stress-strain laws in response to applied boundary conditions. FLAC also 

contains the powerful built-in programming language FISH, which can be used to extend 

FLAC’s usefulness, implement your own constitutive models, and tailor analyses for 

specific needs.  In addition, FLAC can also be operated in two modes: menu-driven and 

command-driven. All these features make FLAC an indispensable analysis-and-design 

tool in a variety of fields in civil, mining, and mechanical engineering.  
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The general solution procedure represents the sequence of processes in FLAC (Figure 2-

10). In FLAC, the explicit time-marching method is used to solve the algebraic equations 

and the solution is reached after a series of computational steps. Thus the number of steps 

required to reach a solution can be controlled automatically by code or manually by the 

user. The user ultimately must determine whether the number of steps is sufficient to 

reach the solved state.  

 

Figure 2-10 General solution procedure of FLAC (Itasca, 2011) 
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Chapter 3 Stability analysis of bleeder pillars by LaModel 

3.1 Effects of overburden thickness and adjacent longwall faces  

This chapter aims to investigate the development of vertical stress and safety factor (SF) 

in bleeder pillars by LaModel during the retreat mining process. A hypothetical longwall 

panel was developed in LaModel followed by the retreat mining process. Two types of 

modeling were conducted. The first one is to investigate how the vertical stress and safety 

factor (SF) in bleeder pillars retreat during retreat mining process in a single panel. The 

effect of varying topography has also been taken into consideration. The second is to 

investigate whether the vertical stress and SF in bleeder pillars will be affected by the 

adjacent active longwall face during second mining. 

3.1.1 The displacement-discontinuity program-LaModel 

Combining the analytical approach and the empirical field data, the LaModel program is 

perhaps the most realistic approach for stability analysis of pillars in underground 

coalmines, especially in the United States (Mark, 1999 & 2001). This displacement-

discontinuity program simulates the geological overburden as a stack of frictionless 

interface layers (Figure 3-1). It takes the overburden as a stack of homogeneous isotropic 

layers with frictionless interfaces, and each layer has the identical elastic modulus, 

Poisson’s ratio, and thickness. This assumption does not require specific input material 

parameters for each layer, but it could provide reasonable strata response for modeling 

with the empirical theory obtained from previous research (Heasley, 1996, 1998 & 2012). 

For example, when the laminated thickness is 157ft, the modeling results fit the empirical 

abutment stress very well, as shown in Figure 3-2. The empirical abutment stress 

distribution shows the extension and magnitude of abutment stress around the panel 

based on extensive field measurements of abutment load in underground mining practice 

(Mark, 1990). Details of the field studies can be found in Reference (Mark, 1990). This 

means that the fundamental behavior of the laminated model for the abutment stress 

distribution agrees with the empirical abutment stress, which will be provided by a 

variation lamination thickness of the model.  
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The mine geometry is either created or input into a grid generator, which converts the 

map into number of cells or elements. The CAD files of the mine map can be directly 

implemented into the grid generator. Additionally, surface topography can also be easily 

accounted for in the numerical model. Material properties are then assigned to each 

element and regions in the pillar and mine areas. The model is then run in different stages, 

simulating retreat-mining states before and after mining. Additional steps can be added to 

simulate the complete recovery of the pillars. Numerical simulation of any rock structure 

is a difficult task that is further aggravated with rock mass input properties. To meet this 

challenge, LaModel was especially tailored to calibrate the results with a database of 

successful and unsuccessful mine case histories that were tabulated from various coal 

producing states in the U.S. (Heasley, 2012). 

 

Figure 3-1 Schematic of laminated overburden (Heasley, 1998) 

 

Figure 3-2 The laminated abutment stress fitted the empirical formula (Heasley, 1998) 
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The SF (Safety Factor) for each element of the coal pillar is calculated as the ratio 

between the predefined peak stress and the applied vertical stress. Then the SF of the coal 

pillar is obtained by totaling and averaging each element for the entire area of the coal 

pillar (Hardy and Heasley, 2006).  

                                    
app

p
SF




                                             (3-1) 

where SF is the stress safety factor for each element of pillar, 
p  is the predefined peak 

stress, and 
app  is the applied vertical stress. In LaModel, the predefined peak stress for 

coal is 900psi, which is strongly recommended and has been tested as the valid coal 

strength value in U.S. coal fields (Mark, 1999). A safety factor of 1.4 is recommended as 

a design objective in LaModel, which means there would be only an 8.5% (4 out of 47) 

chance of misclassifying a potential pillar failure as a successful design when the SF is 

1.4 (Heasley, 2012).  

For numerical modeling in mining, reasonable parameters will provide accurate modeling 

results, which will be consistent with field measurement. The key input parameters of 

LaModel are rock mass stiffness, gob stiffness, and coal strength, which determine the 

accuracy of the LaModel analysis (Heasley, 2008).   

Rock mass stiffness. The rock mass stiffness largely determines the abutment load 

distribution of the overburden. For a stiffer overburden, the extent of abutment pressure 

will increase and the convergence over the gob areas will decrease. Rock mass stiffness 

mainly depends on two parameters: rock mass modulus (E) and rock mass lamination 

thickness (t); increasing one of the two parameters independently can increase rock mass 

stiffness. Both the two parameters have a major influence on the stress and displacement 

distribution at the seam and throughout the overburden. According to years of LaModel 

usage experience, the most practical and effective way to calibrate rock mass stiffness is 

to set the rock mass modulus first and then solely adjust the lamination thickness to 

obtain a reasonable abutment stress distribution. The rock mass modulus can be 

calculated (Heasley, 1998 & 2008),  
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where t is the lamination thickness in the rock mass, Es is the elastic modulus of the seam, 

E is the elastic modulus of the rock mass, v is the Poisson’s ratio of the rock mass, h is 

the seam thickness, H is the seam depth, and d is the width of the yield zone.  

Gob stiffness.  In LaModel, the interaction between overburden stiffness and gob 

stiffness determines the distribution of the overburden load above the gob areas from the 

gob to the adjacent pillar. Through calibrating the overburden rock mass stiffness, a 

reasonable extent of abutment stress will be obtained. The gob modulus then becomes the 

main parameter used to determine the overburden load distribution above the gob. For a 

specific gob material, five parameters are needed to define the material: the initial 

modulus (100 psi), the final modulus (3002281psi), the ultimate vertical stress (4003psi), 

the gob height factor, and the gob Poisson’s ratio (0.25). Gob height factor is the ratio of 

gob thickness to seam thickness, accounting for the difference in height between the gob 

and the coal seam; gob height factor is one in LaModel, as the gob and coal seam 

thickness are identical in mining practice. It is also preferable to modify the final 

modulus to adjust the functional stiffness of the gob material while keep all other four 

parameters as the above defaults (Heasley, 2008). Based on historical field experience, 

gob stiffness is calibrated in LaModel by adjusting the final modulus to match the 

empirical gob load derived from the abutment angle (21°) concept (Figure 7) in the two 

ALPS (Analysis of Longwall Pillar Stability) and ARMPS (Analysis of Retreat Mining 

Pillar Stability), two empirical-based software programs that are widely used in the U.S. 

(Mark, 1992 & 1997). The abutment angle determines how much load is carried by the 

gob area, which is calibrated from the measurement of longwall abutment stress. These 

stress measurements indicated that an abutment angle of 21° is appropriate for normal 

caving conditions in U.S. underground coal mines (Mark, 1997). It should be noted that 

the abutment angle should not be considered a physical reality, but an approximation 

defining the magnitude of the side abutment loading (Mark, 1987). 

Coal strength. In-situ coal strength should be obtained for each specific coal field. 

However, it is difficult to obtain a representative in-situ coal strength value based on 
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laboratory test of coal specimens. In LaModel, the default coal strength is 6.0MPa 

(900psi), which is strongly recommended and has been tested as the valid coal strength 

value in U.S. coal fields (Mark, 1999). Coal pillar strength is based on the Mark-

Bieniawski pillar strength formula, 

))/(18.0/54.064.0( 2

0 lhwhwssp 
                          (3-3) 

where sp is pillar strength, s0 is in-situ coal strength (s0=900psi), w is pillar width, h is 

pillar height, and l is pillar length.  

3.1.2 Model Development 

As with any numerical simulation, the geometry of the object is created in the numerical 

model. For the LaModel program, mine geometry can be directly imported into the 

program from a map created in AutoCAD. Additionally, surface topography can be easily 

accounted for in the numerical model. In the present study, the mine geometry for a 

longwall panel was created using the grid editor, the tool in LaModel creating the mining 

model layout. Two mine layouts were prepared for the current study; one layout 

represents a single longwall panel (Figure 3-3(a)), and the other layout represents 

multiple panels (Figure 3-3(b)). In each of the layouts the named bleeder pillars represent 

pillars of interest; in mining scenario 1 (Figure 3-3 (a)), the selected pillars for the current 

study are 4a and 4b, and in mining scenario 2 (Figure 3-3 (b)), the selected pillars are 1a, 

1b, 1c, 1d, 2a, 2b, 2c, and 2d.  The overburden over these layouts is 500 ft, 1,000 ft, 1500 

ft and 2000 ft for each mining scenario, respectively. A typical cross section for the 500 ft 

overburden is provided in Figure 3-3 (c). 

In addition to the above geometric conditions, the numerical model also includes the 

following details: The thickness of coal seam is 5 feet (Figure 3-3 (c)). The plan of the 

panel is 800×640 feet. The barrier pillar is 640×100 feet. The tailgate and headgate have 

three entries, each 20 feet wide, and includes 60×40 feet pillars. The bleeders are a three-

entry system, and each entry is 20 feet wide, including 60×40 feet pillars.  In mining 

scenario 2, there are three neighboring panels, which include two mined panels and one 

panel in the development stage. The geometry of bleeder pillar, bleeder entry, panel 

width, and length for each panel is the same in mining scenario 1. The general input 
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parameters are the default and recommended values of LaModel program. The 

simulations are performed in ten steps in LaModel and in each step the longwall face is 

advanced by the following distances: 50, 50, 50, 100, 100, 100, 100, and 200 feet, 

respectively. The step here means the mining sequence of the longwall panel; the first 

step means the longwall faces start moving from the setup room, where the retreat mining 

of longwall panel starts. 

 

 

 

Figure 3-3 Two modeling layouts by LaModel 
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Table 3-1 Input material properties in the LaModel program 

Grid generation 

parameters 

Element width (ft) 10 

Seam boundary Symmetric 

Seam thickness (ft) 5 

Mining steps 10 

Rock mass stiffness 

parameter 

Elastic modulus (psi) 3,000,000 

Poisson’s ratio 0.25 

Coal modulus (psi) 3,000,000 

Width of gob (ft) 800 

Initial gob modulus (psi) 100 

Gob height factor 1 

Upper limit stress for gob (psi) 4,000 

In-situ coal strength Coal strength 900 

 

 

Table 3-2 Input values for rock mass properties produced by LaModel Wizards Results 

Input parameters for mining scenario 1 and 2 

Overburden cover (ft) Lamination thickness (ft) Final modulus for gob (psi) 

500 261 2,777,942 

1000 536.3 841,891 

1500 759.6 508,131 

2000 983.2 391,072 

 

Simulation results are presented in the following sections. The analysis investigates the 

stability of the bleeder pillars during a longwall retreat operation that includes single and 

multiple panels. Additionally, the effect of stress development on bleeder pillar stability 

caused by the moving longwall face was also analyzed.   

3.1.3 Stress development and safety factors for bleeder pillars in mining scenario 1 

The creation of an excavation disturbs the original state of stress equilibrium in the earth 

material. Due to this change, stresses are concentrated around the entry and induce 
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deformation in the rock. In underground coal mines, coal pillars are left behind as natural 

support, and additional supports are provided in the entry to prevent a roof fall. It is 

imperative that pillars are designed to withstand the weight of the overburden as well as 

the stress regime imposed due to the opening of the entry.  The development of vertical 

stress in bleeder pillars under 500 feet depth of cover is discussed. The vertical stresses 

on bleeder pillar 4a and 4b after each mining step are presented in Figure 3-5. The 

vertical stresses in bleeder pillars 4a and 4b are over 950 psi, which is much higher than 

the in-situ stress (566 psi). The vertical stress in both pillars increases when the longwall 

face advances by 300 feet from the setup room, and then stress remains constant for the 

rest of the longwall advancement. The vertical stress in bleeder pillar 4b is higher than 

pillar 4a at each mining step (Figure 3-5). Additionally, it is seen that as the longwall face 

moves forward, the SF of bleeder pillar also changes. From Figure 3-5, the SF is above 

3.4, which means the bleeder pillar will have greater than a 91.5% (when the SF is 1.4) 

chance of being stable during mining process, which satisfies the requirements of 

underground coal mining application. The SF of bleeder pillars decreases as the longwall 

face moves forward, and then remains constant during the retreat mining process. 

 

(a) The 1
st
 mining step 
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(b) The 3
rd

 mining step 

 

(c) The 7
th

 mining step 

Figure 3-4 The vertical stress (1, 3, 7 steps) and pillar stress SF (1, 3, 7 steps) in bleeder 

pillars under 500ft overburden during retreat mining process 
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Figure 3-5 Development of the vertical stress and SF with advancing longwall face 

3.1.4 Stress development and safety factors for bleeder pillars in mining scenario 2 

In the second mining scenario, multiple mining panels are analyzed, and it is found that 

the bleeder pillars are still stable when stresses are overlapping due to the multiple panels. 

Figure 3-6 shows the total vertical stress acting on the bleeder pillars in multiple panels at 

1st, 3
rd

, and 7th steps under 500 feet depth of cover. The vertical stress development and 

SF on the bleeder pillars 1a, 1b, 1c, 1d, 2a, 2b, 2c, and 2d at each mining step are 

presented in Figure 3-7; the SF in bleeder pillar 1c, ld, 2c, and 2d  remain constant while 

SF in pillar 1a, 1b, 2a, and 2d  are similar to the results with single panel in mining 

scenario 1. 

The vertical stress in pillar 1c and 1d, and 2c and 2d shows the same pattern as discussed 

in mining scenario 1. Further,  vertical stress in the bleeder pillars behind the mined-out 

panel (1a, 1b, 2a, and 2b) are higher than that in bleeder pillars at the same location 

behind the active mining panel (1c, 1d, 2c, and 2d) during the initial retreat mining 

process. After the compacted gob area was formed in panel 3, vertical stress in pillars 2a 

and 2c, 2b and 2d, 1a and 1c, and 1d and 1c are in same state. These results indicate that 

the longwall face rarely influences the adjacent panel in bleeders. 
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(a) The 1
st
 mining step 
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(b) The 3
rd

 mining step 
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(c) The 7
th

 mining step 

Figure 3-6 The vertical stress (1, 3, 7 steps) and pillar stress SF (1, 3, 7 steps) on bleeder area 

for multiple panels under 152.5 m overburden during retreat mining process 
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Figure 3-7 Vertical stress and SF plots in bleeder pillars of multiple panels with advancing 

longwall face 

3.1.5 Discussion 

Numerical analysis of the pillars in bleeders due to longwall movement has yielded some 

interesting results. To help understand the loading process on the bleeder pillar, see 

Figure 3-8, which shows the caving of the strata from the seam to the surface. The 

maximum stress applied on bleeder pillars is due to abutment loading. Loading is applied 

to the pillars when the longwall face advances in the first periodic weighting stage. In this 

stage, the entire stratum behaves as a beam that, due to its weight, moves toward the 

empty space. In this process, pillars adjacent to the setup room experience the most stress, 

followed by the bleeder pillars. 
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Figure 3-8 Abutment loading development process during retreat mining  (modified after 

Peng, 2008) 

Once the longwall advances beyond the first periodic weighting stage, the stratum fails 

under its own weight and fills up the empty space.  The first weighting phase refers to the 

distance from the setup room entry to the final stage of an interval with a large-area 

caving of the immediate roof, until the complete breakage of the upper strata in the main 

roof (Peng, 1984). After the first phase, periodic weighting will follow with cyclical 

breakage of the immediate roof or the main roof, or both; periodic weighting distance is 

the distance between two consecutive roof weightings. The immediate roof (Figure 3-8(a)) 

will fall on the mine floor and be broken into irregular but platy shapes of various sizes, 

also called caving zone. At this time, the gob area is composed of caved-in and loose rock 

fragments; these will continue to be consolidated under the load of the stratum. During 

this sequence of gob compaction, excessive stress produced due to beam effect will be 

transferred onto the gob. Once the gob is completely compacted, it is able to take the load 
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of the overburden. The gob pressure decreases from the compacted center of the gob area 

to the gob boundary once the center of gob area is compacted enough to provide support 

for the overburden weight (Figure 3-9). This also means the bleeder loading will be 

supported by the compacted gob area and the bleeder pillars simultaneously, once the 

compacted gob is formed.  Therefore, it is seen that once the face advances a certain 

distance, the stresses in bleeder pillars remain constant and do not change.  

 

Figure 3-9 Vertical stress concentration in gob area  (Peng 2007) 

The vertical stresses in bleeder pillars 4a and 4b under different overburden covers (500 

ft, 1000 ft, 1500 ft, and 2000 ft) after each mining step are presented in Figures 3-10. The 

increase in vertical stress on bleeder pillars under deep cover is greater than that under 

shallow cover, primarily due to overburden stress. Although the change in overburden 

contributes to the development of vertical stress in bleeder pillars 4a and 4b, the pattern 

of increase in stress is similar to the patterns described earlier for shallow cover (500 ft).   

Coal mines have reached new depths, and it is imperative that the pillar design methods 

be reevaluated. This study focuses on bleeder pillar stability under various depths of 

cover and multiple panels in the same seam. Bleeder pillars usually serve for the entire 

life of a coal mine and therefore, the effect of long-term stability of the pillars also needs 

to be assessed.  
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Figure 3-10 Vertical stress and SF plots in bleeder pillars under different overburden with 

advancing longwall face 

3.1.6 Conclusion 

Two models were developed for the purpose of examining vertical stress development in 

bleeder pillars as well as analyzing their safety factors during retreat longwall mining. 

For this purpose, the displacement-discontinuity LaModel program was used to simulate 

mining conditions. 

In the first model, a single panel under different overburden covers was studied. The 

simulations show that vertical stress acting on bleeder pillars increases with the advance 

of the longwall face and then attains a constant stress state. The three stages of abutment 

development in the bleeders were shown to explain the development of vertical stress in 

bleeder pillars. The reason for the vertical stress behavior is due to the stress regime in 
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the panel being affected by the creation of an empty space to the compacted gob, 

resulting in the vertical stresses increasing and then attaining a constant state.  The safety 

factors for this mining scenario show that the pillars will be stable under different depths 

of cover. 

In the second model, three panels were considered; panel 1 and 2 represented mined 

panels and panel 3 was an active panel. From the simulations, it was found that the 

bleeder pillars behind the mined-out panels are subjected to higher vertical stress than the 

pillars in the active mining panel. However, it was also found that the advancing longwall 

face did not influence vertical stress development in bleeder pillars of the adjacent panel. 

Additionally, through safety factor, it was found that the bleeder pillars will remain stable 

for the current geometry and mining conditions. 
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3.2 The size effect of bleeder pillars  

This section aims to investigate the size effect on bleeder pillars during the retreat mining 

process in a single coal seam. Two types of models were developed for this section. The 

first model is aimed at investigating the arrangement effect of pillars in bleeders. For 

rectangular pillars, if the length of the pillar is parallel (or perpendicular) to the longwall 

face, we say that the pillar is parallel (or perpendicular) to the longwall face. The 

arrangement effect refers to the stress (SF) variation in pillars resulting from different 

arrangements of rectangular pillars (Figure 3-11). The second model is aimed at 

investigating the development of vertical stress and SF in bleeder pillars when the same 

bleeder loading is supported by difference sizes of bleeder pillars (Figure 3-12).  In this 

scenario, the same bleeder loading means the area of bleeder and its overburden is the 

same.  

3.2.1 Model Development 

The arrangement effect of bleeder pillar on the development of vertical stress and SF in 

bleeder pillars will be discussed relative to varying pillar sizes and pillar arrangements 

during retreat mining period in the single coal seam under 500 ft cover. The two mining 

scenarios are created as follows: For mining scenario 1, the bleeder areas are supported 

by 60×40 ft and 90×60 ft bleeder pillars in different arrangements, respectively. For 

mining scenario 2, the same bleeder loading is supported by different sizes of bleeder 

pillars, 100×60ft, 60×60ft, 60×40ft, and 60×30ft.  

 

Figure 3-11 Layouts of bleeder pillars in mining scenario 1 
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Figure 3-12 Layouts of bleeder pillars in mining scenario 2 

The overburden cover is 500 ft, and the thickness of the coal seam is 5 ft. The panel is 

800×780 ft, and no barrier pillars are left for bleeder pillars. The tailgate and headgate 

have three entries, each 20 ft wide with 60×40ft pillars. The bleeder has entries, each 20 

ft wide with different sizes of bleeder pillars. For mining scenario 1, the same size of 

bleeder pillars (60×40 ft or 90×60 ft) are used to support the bleeder area, but the 

arrangement of pillars is different; the longer cross-section is parallel or vertical to the 

longwall face. Compared with scenario 1, mining scenario 2 only has two differences: the 

pillar size and the arrangement of bleeder pillars. 

Table 3-3 Input material properties in the LaModel program  

Grid generation 

parameters 

Element width (ft) 10 

Seam boundary Symmetric 

Seam thickness (ft) 5 

Mining steps 10 

Rock mass stiffness 

parameter 

Elastic modulus (psi) 3,000,000 

Poisson’s ratio 0.25 

Coal modulus (psi) 3,000,000 

Width of gob (ft) 800 

Initial gob modulus (psi) 100 

Gob height factor 1 

Upper limit stress for gob (psi) 4,000 

In-situ coal strength Coal strength 900 
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The general input parameters are the default values of LaModel program. The input 

values and panel layout are typed in by LamPre, which is the pre-processing section of 

LaModel. In this process, all retreat-mining processes are finished within 10 mining steps. 

The step here means the mining sequence of the longwall panel; the first step means the 

longwall faces start moving from the setup room, where the retreat mining process of the 

longwall panel starts. The distance of longwall face in each step is 0 ft, 50 ft, 50 ft, 50 ft, 

50 ft, 50 ft, 50 ft, 50 ft, 100 ft, and 100 ft, respectively. After each step, induced vertical 

stresses and safety factor (SF) in bleeder pillars are obtained by running LaModel.  

3.2.2 Stress distribution and safety factor in bleeder pillars in mining scenario 1 

The size of the pillar plays an important role in maintaining the stability of bleeder entries, 

and is also one of the key factors for pillar design. From Section 3.1.2 we know the 

vertical stress in bleeder pillars will first increase and then remain constant when the 

longwall face moves forward. In this section, the size effect of bleeder pillars caused by 

pillar arrangement was discussed. Two arrangements of rectangular pillars were studied; 

the length side of rectangular pillar was parallel or perpendicular to the longwall face.  

Two different sizes of pillar, 90×60 ft (A and a) and 60×40 ft (B and b) bleeder pillars 

under different arrangements will be discussed. Two sizes of pillars are used to confirm 

whether the arrangement of pillars is independent of pillar size. For pillar arrangement, 

pillar A (B) is vertical to the longwall face while the pillar a (b) is parallel to the longwall 

face (Figure 3-13, 14). The first left column of bleeder pillars will be used as an example 

to discuss the modeling results (Figure 3-13, 14). 
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Figure 3-13 Layout of bleeder area with 60×90ft pillars 

 

Figure 3-14 Layout of bleeder area with 60×40ft pillars 

Modeling results show that bleeder pillars nearer to the longwall face (a-3, A-3) are 

subject to higher induced vertical stress (above 1300psi), while other bleeder pillars (a-1, 

a-2,A-1, A-2) remain around 900 psi, which is still higher than the in-situ stress (562.5 

psi). The vertical stress on pillars a-1, a-2, and a-3, is higher than on the corresponding 

pillar A-1, A-2, A-3 (Figure 3-15); the vertical tress in pillar a-3 is much higher than that 

in pillar A-3. The difference of a-3 and A-3 are more striking than that of a-1 and A-1.  

From the previous discussion, it can be concluded that the arrangement of bleeder pillars 
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does cause different induced vertical stress in the bleeder pillar during the retreat mining 

process. Induced vertical stress in bleeder pillars perpendicular to the longwall face is 

usually higher than that in bleeder pillars parallel to the longwall face. Furthermore, the 

arrangement effect of bleeder pillars will expand when the pillar is close to the gob area 

or the pillar is under higher vertical stress.  

The safety factor in pillar A-1, A-2, and A-3 is higher than in the pillar a-1, a-2, and a-3, 

respectively; the safety factor (SF) in bleeder pillars first decreases with increasing 

mining distance and then remains unchanged later (Figure 3-16), which is similar to the 

development of vertical stress on bleeder pillars. The safety factors of bleeder pillars are 

all above 3.5 during the retreat mining process, which means these pillars will be stable 

during their lifetime. The development of SF in bleeder pillars shows a similar pattern as  

that of induced stress in bleeder pillars. 

 

Figure 3-15 Development of vertical stress in bleeder pillars (a-1 to a-3 and A-1 to A-3) 

during retreat mining process 
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Figure 3-16 Development of SF in bleeder pillars (a-1 to a-3 and A-1 to A-3) during retreat 

mining process 

 

 

Figure 3-17 The development of total vertical stress in bleeder pillars (A-1, A-2, A-3) at 1, 

2,5,10 steps during retreat mining process 
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Figure 3-18 The development of stress SF in bleeder pillars (A-1, A-2, A-3) at 1, 2, 5, 10 steps 

during retreat mining process 
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Figure 3-19 The development of total vertical stress in bleeder pillars (a-1, a-2, a-3) at 1, 

2,5,10 steps during retreat mining process 

 

 

Figure 3-20 The development of stress SF in bleeder pillars (a-1, a-2, a-3) at 1, 2, 5, 10 steps 

during retreat mining process 

Different arrangements of pillars influence vertical stress in bleeder pillars, which is 

confirmed by the modeling results. The vertical stress in pillar B and b shows the similar 

pattern with pillar A and a (Figure 3-21, 22). However, there are small deviations for the 

SF in pillar B and b even though pillar size is the same: SF in bleeder pillar b (b-1, b-2, 

and b-3) is much lower than corresponding pillar B (B-1, B-2, and B-3). This means the 
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bleeder pillar in panel B (B-1, B-2, and B-3) is more stable than that in panel b (b-1, b-2, 

and b-3).  

It is clear that the stress and SF development in bleeder pillars B (B-1, B-2, and B-3) and 

b (b-1, b-2, and b-3) are similar to that in bleeder pillar A (A-1, A-2, and A-3) and a (a-1, 

a-2, and a-3). This also indicates that the arrangement effect on stress and SF in bleeder 

pillar is independent of pillar size. 

 

Figure 3-21 Development of vertical stress in bleeder pillar (b-s and B-s) during retreat 

mining process 

 

Figure 3-22 Development of vertical stress in bleeder pillar (b-s and B-s) during retreat 

mining process 



44 
 

3.2.3 Stress distribution and safety factor in bleeder pillars in mining scenario 2 

In this section, different sizes of bleeder pillar will be employed to support the same 

bleeder area. In other words, the bleeder loading in the bleeders is the same for different 

panel (C, B, E, F, and G, H), while the size of bleeder pillar is different (Figure 3-23). 

Panel C, D, E, F have bleeder pillars in 100×60ft, 60×60ft, 60×40ft, 60×30ft, respectively. 

The pillar G1 is 100×60ft, and pillar G2 and G3 are 60×40ft in panel G. The pillar H1 is 

60×90ft, and pillar H2 and H3 are 60×60ft in panel H. The first left column of bleeder 

pillars will be used as an example to discuss the modeling results (Figure 3-23). 

 

Figure 3-23 Bleeder area supported by different sizes of bleeder pillars 

Figure 3-24 shows that the vertical stress in pillars D-3 and D-2 in step 10 increased by 

54% and 12% more than that in step 1, and the vertical stress in pillars F-1, F-2, F-3, F-4, 

and F-5 in step 10 increased by 68%, 28%, 12%, 0.06% and 0.03%, respectively. Figure 

3-25 and 26 show the development of vertical stress in bleeder pillars (F-1, F-2, F-3, F-4, 

F-5) and (D-1, D-2, D-3) at 1, 2, 5, and 10 steps during retreat mining process. From both 

two cases, it is clear that the increase of vertical stress in bleeder pillars closest to the 

longwall face is the maximum among all the pillars. These pillars are also subject to the 

highest stress during the retreating mining process later. Bleeder pillars from panel C and 

E also show a similar pattern. Since these pillars, which are closest to the gob, are 

sbujected to high vertical stress and have the potential to fail first, we need to focus on 

the change of vertcial stress in these pillars. 
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Figure 3-24 Development of vertical stress in bleeder pillar for 1, 2 and 10 steps 

 

 

Figure 3-25 The development of vertical stress in bleeder pillars (F-1, F-2, F-3, F-4, F-5) at 1, 

2,5,10 steps during retreat mining process 



46 
 

 

 

Figure 3-26 The development of vertical stress in bleeder pillars (D-1, D-2, D-3) at 1, 2,5,10 

steps during retreat mining process 

 

Figure 3-27 Development of vertical stress in bleeder pillars (C-1, D-1,E-1,F-1,G-1,H-1) 

during retreat mining process 
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The vertcial stress in bleeder pillars F-1, E-1, D-1, H-1, G-1, and C-1 decreases in the 

following order: F-1, E-1, D-1, H-1, G-1, and C-1 in each step during the retreat mining 

process, obviously higher than in-situ stress (562.5psi) (Figure 3-27). The pillar sizes of 

F-1 (60×30 ft) and E-1 (60×40 ft) are smaller than the other four pillars, which results in 

higher vertical stress in bleeder pillars (F-1 and E-1). Panels D, H and G have four 

bleeder entries and the vertical stress in D-1 (60×60 ft) is higher than H-1 (60×120 ft) and 

G-1 (120×60 ft), which can also be attributed to the pillar size of bleeder pillars. The 

vertical stress in pillar H-1 is higher than G-1 even though the pillar sizes are the same, 

which is caused by arrangment of bleeder pillars (already disscussed in Section 3.2.2). It 

is obvious that the vertical stress in C-1 pillar is the lowest because of its greatest size 

among all the pillars.  

 

Figure 3-28 Development of stress SF in bleeder pillar (C-1, D-1, E-1, F-1, G-1, and H-1) 

during retreat mining process 

As shown in Figure 3-28, the safety factor of bleeder pillars C-1, G-1, H-1, D-1, E-1, and 

F-1 decreases in the following order: C-1, G-1, H-1, D-1, E-1, and F-1. The change in 

safety factor follows the same pattern as vertical stress in these pillars. It should also be 

pointed out that vertical stress in bleeder pillars D-1 and H-1 are very close, but the safety 

factor is different,which was attributed to the size effect of bleeder pillar.  
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3.2.4 Discussion 

In mining practice, induced vertical stress decreases with distance from gob behind the 

longwall face (Figure 3-29). The distribution of vertical stress determines induced 

vertical stress in bleeder pillars, which finally results in stress variation in bleeder pillars 

of different arrangements. It should be noted that the extent of the abutment zone is 

H3.9  and 90% of abutment loads are within H5 in the abutment zone in the 

LaModel program (Heasley, 2008).  

 

Figure 3-29 Distribution of induced vertical stress behind gob 

In LaModel program the Mark-Bieniawaski formula (Mark, 1997) is employed by taking 

the shape of pillar into consideration (Eqution 3-3).  

 )(18.0)(54.064.0 2 lhwhwss ip                         

where sp is pillar strength, si is in-situ coal strength, w is pillar width, l is pillar length, 

and h is pillar height.  

The safety factor, defined as the ratio of pillar strength to pillar loading (induced vertical 

stress), is the most important parameter to assess the stability of bleeder pillar. In 

LaModel, the safety factor accounts for both the extent of induced vertical stress (Figure 

3-29) and the size and shape of bleeder pillar (Equation 3-3). The extent of induced 

vertical stress determines the stress state of bleeder pillar, while the size and shape of 
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pillar dertermines whether the bleeder pillar can support the bleeder loading and remain 

stable during its service life. 

3.2.5 Conclusion 

Two types of models were developed to evaluate the size effect on bleeder pillars for the 

stability of bleeders during the retreat longwall mining process. 

At first, the size effect caused by pillar arrangement was discussed. Bleeder pillars suffer 

different induced vertical stresses during the retreat mining process because of the 

arrangement of bleeder pillars; induced vertical stress in bleeder pillars perpendicular to 

the longwall face is usually higher than that in bleeder pillar parallel to the longwall face. 

The reason is that induced vertical stress decreases with distance from the gob area 

behind longwall face, and the extension of induced vertical stress in the bleeder area 

determines the stress state of bleeder pillar. The SF of pillars parallel to the longwall face 

is lower than the SF of pillars perpendicular to the longwall face for the same size of 

bleeder pillar. 

Then the size effect of bleeder pillars was studied; different sizes of bleeder pillars are 

employed in the same bleeder area to support same bleeder loading. Bleeder pilllars 

nearest to the longwall face are the most prone to fail because of higher induced vertical 

stress. Small pillars suffer from higher induced vertical stress than do larger pillars. The 

safety factor of bleeder pillars is determined by both induced vertical stress and pillar size 

in LaModel; the development of SF for different sizes of bleeder pillar has deviation 

compared with that of vertical stress in bleeder pillars.   
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Chapter 4 Roof stability analysis of bleeder entries by FLAC 

4.1 Model development in FLAC  

In this section, our attention is focused on roof deformation and stress distribution around 

bleeder entries during the retreat mining process. FLAC is used to evaluate roof stability 

in bleeder entries in one of the coal mines operated in the Upper Freeport coal seam area. 

The mechanics of FLAC is followed and the steps are: 

(1) Simplification of the real problem, 

(2) Geology and geometry of the problem, 

(3) The constitutive behavior and material properties in the model, 

(4) In-situ state or boundary condition of model, and 

(5) Run the model and obtain results. 

4.1.1 Simplification of the real problem 

The following assumptions are made to simplify the real problem: 

(a) The geo-materials are homogenous and isotropic. This assumption reduces the 

complexity of the problem. The calculated in-situ vertical stress was equal to, 

HgHz               (4-1) 

where   is density of geo-material, g is gravity accelerate and H is overburden depth. 

(b) Measured in-situ horizontal stress for each underground coalmine is different and may 

depend on the tectonic, folding, faulting or historical events. Although high horizontal 

stress are attributed to  cause roof falls, there are also many cases where roof falls are not 

caused by horizontal stress (Peng 2006).  

4.1.2 Geology and geometry of the problem 

The stratigraphic column for the coal mine is shown in Table 4-1. The overburden cover 

of the Upper Freeport coal seam is 1046.32 ft. The thickness of coal seam is 6.56 ft. The 

bleeders are a three-entry system; the bleeder entry is 20 ft and bleeder pillar is 60 ft wide 

(Figure 4-1).  
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Table 4-1 The simplified stratigraphic column of overburden strata 
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Figure 4-1 The geometry of longwall face 

4.1.3 Constitutive models  

There are 14 basic constitutive models provided in FLAC. Three plastic models are used 

and introduced in detail: Mohr-Coulomb model, strain-softening model, and double 

yielding model. These three models are used for different material properties in the model.  

 (a) Mohr-Coulomb model 

The Mohr-Coulomb failure criterion is the best known and the most frequently used 

model in mining application for its simplicity. However, the shortcoming is that it does 

not consider the effect of intermediate principal stress. The required properties for the 

Mohr-Coulomb model are: density, bulk modulus, shear modulus, friction angle, 

cohesion, dilation angel, and tensile strength. The bulk modulus-K and shear modulus-G 

can be obtained by Young’s modulus, E, and Poisson’s ratio v, 

)1(2
,

)21(3 v

E
G

v

E
K





              (4-2) 

In FLAC, the principle stresses σ1，σ2，σ3，are used, and the out-of-plane stress, σzz, 

are being used for one of these. The principal stresses and principal directions are 

evaluated from the stress tensor components, shown in following order (the compressive 

stresses are negative),  

σ1 ≤ σ2 ≤ σ3 
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The failure criterion for the M-C model is shown in the plane as illustrated in Figure 4-2. 

The failure envelope is defined from point A to point B by the Mohr-Coulomb yield 

function, 

 NcNf s 231              (4-3) 

From B to C by a tension yield function of the form, 

3  ttf             (4-4) 

 

Figure 4-2 The Mohr-Coulomb failure criterion in FLAC (Itasca, 2011) 

where Ф is friction angle, c is cohesion , σt is tensile strength, and  






sin1

sin1




N              (4-5) 

For a material with friction, Ф >0 and the tensile strength of the material cannot exceed 

the value σ
t
max given by  




tan
max

ct               (4-6) 

(b) The strain-softening model 

The strain-softening model represents the nonlinear softening behavior of material based 

on user defined relations, which prescribe the variations of the Mohr-Coulomb model 

properties (cohesion, friction angle, and dilation angle) as functions of the deviatoric 

plastic strain.  
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Plastic shear strain is measured by the shear hardening parameter e
ps

, and its incremental 

form is defined (Vermeer and deBorst, 1984),   
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where )(
3

1
31

pspsps

m eee  , 3,1,  je ps

j  are the principal plastic shear strain 

increments. Figure 4-3 shows a stress-strain curve for the strain-softening material 

indicating that the softening part is upon yield and the left residual strength. Before the 

peak strength, the curve is linear, only showing the elastic property of material. After 

yield, the total strain is composed of elastic and plastic part. In the softening/hardening 

model, the post-failure part behaves along with the proposed piecewise-linear relation of 

softening properties. 

 

Figure 4-3 The stress-strain curve of strain-softening model in FLAC (Itasca, 2011) 

(c) Double-yield model 

The double-yield model represents material with the ability to be in high irreversible 

compacted state in addiction to shear yielding. The backfill material or cemented granular 

material is this kind of material. The gob material is strain hardening material, which 

means the modulus of the deformation increases with increasing compaction. This strain-

hardening property can be simulated by the double yielding model in FLAC (Pappas and 

Mark, 1993).  
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The double yielding model takes the permanent volume changes due to isotropic pressure 

into consideration by “cap pressure,” in addition to the shear and tensile failure envelopes 

in the strain-softening model. The hardening behavior of the double yielding model is 

activated by volumetric plastic strain following a piecewise-linear defined table. Any 

laboratory-determined hardening behavior may be modeled by the double yielding model. 

 

Figure 4-4 The relation between pressure and volumetric strain of double yielding model in 

FLAC (Itasca, 2011) 

4.1.4 Define the boundary condition 

As mentioned in Section 4.1.1(b), the geostatic state is modeled as a hydrostatic state in 

this model. The overburden pressure is caused by gravity within the defined strata. The 

left and right side of the model will be fixed in X direction (Y direction is free). The 

bottom of the model is fixed in Y direction (X direction is free).  
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4.2 Development of strain-softening coal material 

In this model, the strain-softening material is used to simulate the real behavior of coal 

pillars in bleeder entries. This property will be representative of full-scale coal pillars 

even under excessive loads. The determination of the strain-softening parameters is based 

on the tested pillars subjected to increasing loads while monitoring their stress-strain 

response. The response of tested pillars will also be compared to lab-tested data for the 

standard coal specimens.  

Based on the previous studies (Su & Hasenfus, 1999), the confirmation of empirical 

formulas results is up to w/h ratio of 4. Thus, four width-to-height ratios of pillars are 

tested and the peak strength of each pillar is obtained. Then Bieniawski’s empirical pillar 

strength equation was used to compare the peak strength of the tested pillars in the model. 

The large scale coal strength used in Bieniawski’s equation was set as the typical coal 

strength in U.S. coal mines, 900 psi. 

 

Figure 4-5 Typical stress-strain curves for coal under different width-to-height ratios 

The test procedure in FLAC for different W/H ratio of pillar is shown in Figure 4-5. The 

pillars are loaded by gradual compression from the top surface of the model in vertical 
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direction. The rate of compression is controlled by velocity. As stress in the model 

increases, deformation and failure of tested pillar is monitored and recorded. The coal 

pillars of the model are tested up to limited working steps so the post failure behavior of 

pillars is clearly shown. Pillar behavior is monitored by FISH functions; the average of 

vertical stress at the middle of the pillar is calculated, which can be presented as the stress 

of the whole pillar. Pillar strain is obtained by averaging the displacement values between 

the top and bottom of the pillar, dividing the original length.   

Table 4-2 The relation between strain and cohesion 

Strain Cohesion (lb/ft
2
) 

0 34000 

0.006 20000 

0.010 10000 

0.100 2700 

0.500 2700 

For the strain-softening model, the post-failure behavior is defined in the following way; 

the cohesion, friction angle, and dilation angle are piecewise-linear functions of plastic 

shear strain. The piecewise-linear relation is defined in the form of tables in command. 

Each table contains pairs of values: one for the parameter and one for the corresponding 

property value.  In this case, the cohesion decreases from its peak value to the residual 

value of 8% of peak strength, shown in Table 4-2, and the other two parameters remain 

original values. The tensile strength remains constant during the whole process. The 

dilation angle is zero in this modeling. In order to obtain reasonable input parameters for 

strain-softening coal, investigations were conducted and the published strain-softening 

coal parameters are shown in Table 4-3.  

All these data in Table 4-3 are tested by trial and error to obtain reasonable input values 

with peak strength of tested pillar, which should be in satisfactory agreement with the 

empirical equation. Finally, the reasonable input parameters are obtained (Table 4-3) and 

the comparison of FLAC results and the empirical equation are shown in Figure 4-6.  It is 
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obvious that FLAC results range from the result of Bieniawski’s equation to that of 

Salamon’s formula, and these three results show similar patterns in which peak strength 

increases with increasing width-to-height ratio. This also demonstrates that the pillar with 

higher width-to-height ratio will obtain higher bearing capacity. The stress-strain curves 

for the tested pillars are shown in Figure 4-7.  

Table 4-3 The mechanical properties of strain-softening coal 

 
Case 1 & 2 

(Essi, 2011; 

Li, 2004) 

Case 3 

(Badr,2003) 

Case 4 

(Mahadi, 

2012) 

Case 5 

(Esterhuizen, 

2005) 

Model in this 

thesis 

Density (slugs/ft
3
) 2.55 -- 2.55 2.91 2.55 

Shear modulus (lbf/ft
2
) 1.93E+07 1.99E+07 2.51E+07 1.34E+07 1.80E+07 

Bulk modulus (lbf/ft
2
) 5.40E+07 4.32E+07 4.18E+07 2.23E+07 4.20E+07 

Young’s modulus -- 5.18E+07 6.27E+07 3.34E+07 4.7E+07 

Poison’s ration -- 0.30 0.25 0.25 0.31 

Friction angle (degree) 35 28 20 30 35 

Cohesion (lbf/ft
2
) 33840 27360 10445 66848 34000 

Tensile strength (lbf/ft
2
) 3.17E+03 2.09E+04 -- -- 2.90E+04 

UCS (lbf/ft
2
) 1.30E+05 3.47E+05 1.59E+05 -- -- 

 

Figure 4-6 Comparison between the peak strength of pillar under various W/H ratios with 

the results obtained by Bieniawski’s equation and Salamon’s equation 
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Figure 4-7 The stress-strain curves of pillars modeled by FLAC with various W/H ratios 
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4.3 Modeling gob behavior 

Longwall mining is one of the most widely used underground coal mining methods, 

valued for its high productivity and safety. During the longwall mining retreat process, 

the development of gob area and overburden movement determines the loading on the 

adjacent coal pillar around the gob area. The behavior of the gob is critical to understand 

the load transferred to the longwall face, pillars, and tailgate sections. When numerical 

modeling is employed to investigate the stress distribution of the longwall face, the 

behavior of gob material is very critical, which has great influence on the induced stress 

around gob area.   

To properly model gob behavior in underground coal mines, the first step is to find the 

best constitutive equation for gob material. Salamon (1966) reported the relationship 

between porosity and pressure, which is the equivalent function with the mathematical 

proved relation between bulking factor and pressure (Salamon, 1990). Ryder and Wagner 

(1978) presented the similar reasonable stress-strain relation, describing the compaction 

characteristic of backfill materials independently. Terzaghi (Pappas and Mark, 1993) 

used the theoretical exponential stress-strain relation to describe the compaction process 

of soil, which can be used for gob material response.  

Based on these constitutive relations, many researchers have tried different approaches to 

model gob behavior. Sandler and Rubin (1979) used the double-yielding model or “cap 

model” to describe the strain-hardening behavior of gob material. Peng (1980) performed 

three-dimensional finite element analyses to study gob behavior by isotropic, 

homogeneous, and elastic property of gob material, and divided the gob area into three 

zones towards into the gob center: loosely packed zone, packed zone, and well-packed 

zone. R. Trueman (1989) derived a parabolic stress-strain relation of gob material for 

longwall coal mining and then implemented this model to investigate the vertical stress 

development of the gob area. Xie (1999) presented gob material parameters (density, 

Young’s modulus, and Poisson’s ratio), varying with time to describe the progressively 

compressed behavior of the gob area. Morsy and Peng (2002) studied the gob loading 

mechanism using the Terzaghi’s model of gob material based on the ABAQUS finite 

element code, and found that the result of the model showed the same loading behavior 
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with in-situ measurements. H. Yavuz (2003) provided an estimation method for cover 

pressure reestablishment distance and pressure distribution in the gob of longwall coal 

mines. Jeromel (2010) analyzed the development of geo-mechanical process in the 

hanging wall and the footwall during sub-level coal excavation for thickness coal seam 

mining by FLAC, and confirmed that the caving process is reasonable and reliable by the 

equation derived by H. Yavuz.   

Pappas and Mark (1993) evaluated the behavior of gob material by laboratory 

compaction tests using caving rock obtained from the mined-out area in underground coal 

mines. Based on their test results, they found that the nonlinear stress-strain relation was 

more reasonable to describe the strain-hardening behavior of gob material. Salamon’s 

model was found to better represent the gob stress-strain constitutive relation than 

Terzaghi’s model. Furthermore, Salamon’s model was proved in a mathematical way 

based on the relation between porosity and pressure; each parameter in the model also has 

physical meaning. Thus, the Salamon’s model is currently the most widely used one in 

gob modeling. 

When FLAC is employed to analyze stress distribution during the retreat mining process, 

the double yielding model is one of the options to model the strain-hardening gob 

material. Since the double yielding model in FLAC is controlled by two group parameters, 

material properties and cap pressure, the Salamon’s model needs to be converted to 

double yielding model. However, the final confirmed parameters of gob material in 

Salamon’s model were quite different (S. Badr, 2003; Esterhuizen, 2005; Essie, 2011; 

Mahdi, 2012; Li, 2014), which makes it difficult to evaluate these published data. 

Furthermore, the convert approach for Salamon’s model to double yielding model is not 

very clear, and to some extent it is time consuming to obtain reasonable input parameters 

for the double yielding model in FLAC.  

This paper first discusses the physical meaning of each parameter in Salamon’s model. 

Then the effective boundary of the equation is provided under current mining technology 

in U.S. The obtained boundary of the model is also tested by the published data. Finally, 

the process to calibrate the double yielding model is recommended. 
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4.3.1 The Ryder and Salamon’s equation 

Ryder and Wagner (1978) reported the stress-strain relation to describe the compaction 

characteristic of backfill material, 

 

    (4-8) 

 

where   is vertical stress,  is vertical strain, E0 is the initial tangent modulus and m is 

the maximum possible strain. Salamon (1990) proved this equation mathematically and 

showed the maximum possible strain is 
b

b
m

1
 , b is the bulking factor. But Salamon 

did not show how to obtain the initial tangent modulus E0, which plays a significant role 

in determining the stress-strain behavior of gob material. In the following paragraphs, the 

determination of parameters in equation (1) is discussed.  

Initial tangent modulus estimation. Pappas and Mark (1993) conducted twenty uniaxial 

compression tests to determine the material properties of the gob in a laboratory scale. 

They found that the modulus of gob material was the only function of vertical stress 

during the compaction test for gob material; this is seen in the approximately linear 

second modulus-stress relation and the second-order polynomial tangent modulus-stress 

relation. Even though this relation is reasonable and fits the data well, the gob modulus 

should be affected by another parameter, the bulking factor of gob material; the stiffness 

of gob material should be higher for strong rocks than for weak rocks. From this point of 

view, H. Yavuz (2003) built a new function to calculate the initial tangent modulus, 

taking both compressive strength of rock piece and bulking factor into consideration, 

according to the published data by Pappas and Mark(1993), 

7.7

042.1

0

39.10

b
E c            (4-9) 

where c -compressive strength of rock pieces, psi, E0-initial gob modulus, psi, b-bulking 

factor. This relation clearly shows that the initial tangent modulus, E0, depends largely on 

m

E







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
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the bulking factor and strength of rock fragments. The bulking factor of the stronger and 

harder rocks will be smaller because they will result in larger fragments; conversely, the 

weaker and softer rocks will result in smaller fragments and consequently a larger 

bulking factor (H. Yavuz, 2003). This relation shows the property of strain-hardening gob 

material; the material will be stiffer and the modulus will increase when the load is 

increased. However, Su (2013) reported that there is no relation between bulking factor 

and rock strength, but they did find that the bulking factor increased with the increase of 

particle size by the logarithmic relation. The bulking factor of rock varies with rock type, 

shape, and size of the caved rock fragments, and the way in which the caved rock 

fragments are piled up (Peng, 2007).  

 

Figure 4-8 Variation of initial tangent modulus with rock strength and bulking factor (H. 

Yavuz, 2003) 

Bulking factor estimation in practice. In mining practice, the bulking factor can be 

obtained by the equation,  

cav

cav

h

Hh
b


                   (4-10) 

where, hcav is the height of caving zone (the immediate roof), and H is the mining height. 

To confirm the range of bulking factor, published data were intensively investigated and 

the minimum is 1.1 and the maximum is 1.8 (Table 4-4). Generally, the bulking factor 

estimated in mining practice is within this range from 1.1 to 1.8. 
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Table 4-4 Bulking factor of broken rock 

 

 

 

 

 

 

4.3.2 Discussion on the confidential interval of Salamon’s equation 

Since the theoretical constitutive relation for the compaction process of gob material was 

obtained, the next step is to obtain the reasonable intervals of each parameter, show the 

effective boundary of the equation, and confirm the situations in which it can be properly 

employed.  

 

Figure 4-9 The relation between initial tangent modulus and vertical stress for different 

bulking factor (b) 

 

Case 
Peng 

(1980a) 

Khair 

(1987a) 

Listak 

(1986) 
Qian (2010) 

Bulking 

factor 
1.25-1.3 1.1-.1.16 1.23-1.72 

Clay: <1.2 

Crushed coal:<1.2 

Clay shale:1.4 

Sandy shale: 1.6-1.8 

Sandstone: 1.5-1.8 

Note 
Shale roof; 

field data 
field data field data ----- 
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In order to confirm the initial tangent modulus (E0) of equation (2), the vertical stress due 

to overburden is estimated by, 

hV 2.1                    (4-11) 

where V is vertical stress due to overburden, psi and h is overburden cover, in ft. Under 

current mining technology, most underground coal mine are deeper than 400 feet, and 

some mines reach depths beyond 1900 ft in the U.S. Thus the relation between gob 

modulus and stress was investigated when vertical stress ranges from 480 psi to 2280 psi. 

Table 4-5 Reasonable coefficient for Ryder and Salamon’s equation 

 

Based on the equation of initial tangent modulus and the range of gob material bulking 

factor, the boundary condition of Salamon’s equation can be estimated. The ranges of 

each parameter in equation (1) are listed (Table 4-5). Based on these obtained values, the 

confidence interval of Salamon’s equation is obtained (Figure 4-10). The confidence 

interval is actually the boundary condition of Salamon’s model, which means the 

parameters within the confidence interval are effective and reliable. This also implies that 

when Salamon’s equation is applied for the calibration of gob material, the bulking factor 

should vary between 1.1 and 1.8 and the initial tangent modulus should range from 68.96 

psi to 15734.75 psi (Figure 4-9). The obtained Salamon’s curve should be within the area 

between curve 2 and curve 3 ; the other six curves included are in this range. It should 
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be pointed out that the stress-strain relation is dependent on two parameters ( m  and b, or 

m and n), which means the two parameters have numerically innumerable combinations 

mathematically. Even though one or two of the parameters may beyond the ranges in 

practice, the final curve of Salamon’s model must within the confidence interval or 

effective boundary. 

 

Figure 4-10 The confidence interval or boundary of Salamon’s equation 

4.3.3 Confirmation of the confidence interval of Salamon’s equation 

For the calibration process of the double yielding model in FLAC, two steps should be 

applied, as shown in Figure 4-11. The first step is theoretical calibration; the Salamon’s 

equation or laboratory compaction tests will be used to determine input parameters of 

double yielding material in FLAC. The next step is field calibration, which means field 

monitoring data such as subsidence profile data or the distribution of vertical stress in the 

gob area will be used to test whether the outputs of the model are reasonable. If the 

double yielding models satisfy both two steps, the outputs of double yielding model 

should be reasonable and reliable.  
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Figure 4-11 The calibration process of double yielding model in FLAC 

In order to test whether the theoretical boundary of Salamon’s equation is reasonable, the 

gob behavior modeled by double yielding model in FLAC were investigated intensively, 

using five cases (Table 4-6). In the first case, the authors showed a very clear and logical 

way to do numerical modeling by FLAC code. For gob calibration, the author employed 

two steps to calibrate the double yielding model and showed four kinds of double 

yielding material depending on the type of rock. For the second and fifth cases, the author 

also implied two steps to calibrate the double yielding model; Salamon’s calibration and 

gob stress distribution calibration. In the third and fourth cases, the authors showed gob 

stress distribution during the mining process to reconfirm the gob behavior modeled by 

the double yielding model.   

It is obvious that most of the calibration results are within the confidence interval of 

Salamon’s equation except case-3 (Figure 4-12). The reason why case-3 is so different is 

that geological condition, panel plan, and pillar state are totally different. The final input 

parameters of the double yielding model contain both the theoretical and field calibration 
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process case by case. These calibrated results are compatible with the theoretical 

boundary, which also means that the theoretical boundary of Salamon’s model is 

reasonable.  

Table 4-6 Five cases for calibrated double yielding model by FLAC 

 

 

Figure 4-12 The conformation process of double yielding model in FLAC 

4.3.4 Case study  

The coal mine is located in the Upper Freeport coal seam area. The overburden of the 

coal seam is 1046 ft. The immediate roof is 3.28 ft of gray clayshale and the immediate 
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floor is also 3.28 ft of gray clayshale. The 62.32 ft thick rock layer (including 52.48 thick 

sandstone rock, 6.56 ft thick siltshale and 3.28 ft thick immediate roof layer) lying above 

the coal seam is assumed to be the height of caving in the gob area. 

The first step is to obtain the maximum strain value, 

11.1
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56.634.62
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

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Hh
b  
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The next step is to obtain the vertical stress, 

psihV 58.125532.10462.12.1   

So the initial tangent modulus can be obtained, 

psi
b

E v 81.7881
39.10

7.7

042.1

0 


 

The constitutive model for gob material will be obtained by Salamon’s model, 

 

 

Since the Salamon’s model is obtained, the next step is to convert Salamon’s model to 

double yielding model in FLAC. The trial and error technique is used to match the stress-

strain relation of Salamon’s model to that of the double yielding model.  

Table 4-7 Physical-mechanical parameter of double yielding model in FLAC 

Property 
Density 

(lb/ft3) 

Shear Modulus  

(psi) 

Bulk Modulus 

(psi) 

Friction angle 

(deg.) 

Dilation angle 

(deg.) 

Value 100 5.25+E5 3.15+E5 40 5 

The converted stress-strain behavior of the double yielding model for the gob material is 

tested by 1 ft cubic model in FLAC. The unit gob model is loaded by gradual 

compression from the top surface of the model in vertical direction. The rate of 

compression is controlled by velocity. As the stress in the model increases, deformation 

of the tested pillar is monitored and recorded. The pillar behavior is monitored by FISH 

099.0
1

81.7881










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functions; the average of vertical stress at the middle of the pillar is calculated, which can 

be presented as the stress of the whole model. The pillar strain is obtained by averaging 

the displacement values between the top and bottom of the pillar, dividing the original 

length.   

Model results are shown in Figure 4-13. It is obvious that modeling result fits the 

Salamon’s model very well, which is within the confirmed confidential interval of the 

Salamon’s model in the previous section. So the converted double yielding model is valid 

and can be used in the numerical model to model the gob behavior in underground coal 

mines. 

Table 4-8 Relation between plastic volumetric strain and cap pressure of double 

yielding model in FLAC 

Plastic Volumetric 

Strain 
Cap pressure (psi) 

0.01 8.77E+01 

0.02 1.98E+02 

0.03 3.39E+02 

0.04 5.29E+02 

0.05 7.96E+02 

0.06 1.20E+03 

0.07 1.88E+03 

0.08 3.29E+03 

 

Figure 4-13 Comparison between model results and Salamon’s model for gob material 
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4.4 Roof deformation analysis in bleeder entries 

4.4.1 Model development 

In Chapter 3, the stability of bleeder pillars is evaluated, and it is clear that the bleeder 

pillar of 60×40 ft remains stable during the retreat mining stage when the overburden 

ranges from 500 ft to 1500 ft. However, because of the limitation of the LaModel 

program, the roof deformation of the bleeder entry cannot be monitored. Thus the FLAC 

model is used to study the roof deformation during the retreat mining process. Based on 

the input parameters obtained from Sections 4.1 and 4.4, the model is created with the 

strain-softening coal material and double-yielding gob material. In this section, the roof 

and floor displacement analysis of bleeder entries will be further studied.  

 

Figure 4-14 Modeling procedures 

The model follows three steps (Figure 4-14), which is similar to longwall mining practice. 

In the first step, the global model will be generated based on the simplified geological 

condition and representative physico-mechanical properties of the overburden rock strata. 

The horizontal sides of model are fixed only in X direction and the bottom side is fixed in 

both X and Y directions. In the second step, the geostatic state is obtained, simulating the 

stress state of the virgin coal seam without mining disturbance. Next, three bleeder 

entries and set-up room are developed. In the last step, the retreat longwall process is 
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modeled by ten mining steps (Figure 4-15); the longwall face is advanced by 16.4 ft in 

each step. During the retreat mining process, the displacement of roof and floor will be 

monitored; the monitor points are shown in Figure 4-16. 

 

Figure 4-15 First four steps in mining scenario two 

 

Figure 4-16 Displacement monitoring point of bleeder roof during retreat mining process 

4.4.2 Modeling steps 

According to the modeling procedure, the model is first generated (Figure 4-18) and then 

run to initial equilibrium state, also called geostatic state (Figure 4-19).  Then the bleeder 

entries and setup room are excavated and the coal seam is modeled by strain-softening 

material. This is done instantly and the model is subsequently run to equilibrium state 

(Figure 4-20). Finally, the excavation process begins by simulating longwall mining in 

practice (Figure 4-21). The caving area or gob behavior is simulated by double-yielding 
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gob materials. The displacements of these monitoring points (Figure 4-17) are measured 

and recorded to evaluate the roof deformation during mining process. 

 

Figure 4-17 The physico-mechanical properties of the overburden rock strata 

 

Figure 4-18 The geostatic state of model-YY stress contour 
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Figure 4-19 The YY stress contour after creating bleeder entries and setup room 

 

Figure 4-20 The YY stress contour in tenth mining steps 
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4.4.3 Roof and floor displacement analysis of bleeder entries  

In this model, the retreat mining process is completed within ten steps. In the first six 

steps, the mining distance of each step is 16.4 and then 32.8 ft for the following four steps; 

in each step, the previous caving area is modeled by double-yielding material and the 

longwall face is created as a 16.4  ft width entry. In each mining step, the model is run to 

reach equilibrium state, and roof displacements of monitoring points are monitored and 

recorded. The displacements of roof and floor in each step are shown in Figure 4-21 and 

Figure 4-22. The displacement vectors around the three bleeder entries are shown in 

Figure 4-23. It is clear that roof displacement increases when the longwall face moves 

forward, and maximum roof displacement appears at MP3 (monitor point 3), MP6, and 

MP9, instead of the middle point MP2, MP5, and MP8. Roof displacement in the bleeder 

entry nearer the gob area is the greatest compared to roof displacement in the other two 

entries.  

 

Figure 4-21 Y displacement of each monitor point in the roof in bleeder entries during the 

retreat mining process 
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Figure 4-22 Y displacement of each monitor point in the floor in bleeder entries during the 

retreat mining process 

 

Figure 4-23 Displacement vectors around three bleeder entries 

4.4.4 Discussion 

In a typical longwall panel, bleeder entries connect the far end of gateroads. The setup 

room at the most outby side of the bleeder entries is used for installing the longwall face 

equipment. After the panel is prepared, including tailgates, headgates, bleeder entries and 

setup room, the longwall face equipment is installed and then the retreat mining process 

starts. Consequently, bleeder entries are frequently disturbed during the underground 

mining process. At first, the excavation of bleeder entries will disturb the initial geostatic 

state of the virgin area. After the bleeder entries are excavated, the induced stress around 

the bleeder entries will reach a new equilibrium state. Then when the longwall face 

moves forward, the new equilibrium will be disturbed because of the creation of the gob 

area and overburden movement; in this stage the stress around bleeder entries will be 
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dynamic because of the moving longwall face. Finally, the induced stress around the 

bleeder entries will reach a second equilibrium state after the longwall moves a certain 

distance and the compacted gob area has the ability to support the overburden, which 

means the movement of longwall does not affect the stress state in the bleeder entries.  

The maximum principal stress distribution around bleeder entries and setup room is 

shown in Figure 8(a). The surrounding rock mass of bleeder entries are in a stress relief 

state. The bleeder pillar rib is at yield in shear state (Figure 8(b)), which means that the 

potential failure zone. Because of the close distance of bleeder entries, the induced 

stresses around each entry interact with each other.  

 

(a) Maximum principal stress around the bleeder entries and setup room 

 

(b) The zone status around the bleeder entries and setup room 

Figure 4-24 Stress state around bleeder entries and setup room during panel 

preparation 

The roof and floor displacement with time steps in FLAC are shown in Figure 4-25 and 

4-26. It is clear that roof and floor displacement increases with the increase of time steps 

in FLAC. It should be noted that time step in FLAC is not the real time, but one 

parameter for mathematical calculation. The inclined curve means the model is processed 

to equilibrium while the horizontal curve means the model has already reached 
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equilibrium state. These also confirm that the final displacement in section 4.4.3 is 

reasonable.  

 

Figure 4-25 Y displacement of each monitor point of the roof in bleeder entries with FLAC 

steps during the retreat mining process 

 

Figure 4-26 Y displacement of each monitor point of the roof in bleeder entries with FLAC 

steps during the retreat mining process 
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(a) Maximum principal stress around the bleeder entries and setup room 

 

(b) The zone stress status around the bleeder entries and setup room. 

Figure 4-27 Stress state around bleeder entries in retreat mining step 10 

Figure 4-27(a) and 4-27(b) shows the stress state around bleeder entries in retreat mining 

step 10. Comparing Figures 4-27(b) and 4-24(b), it is found that there is no major 

difference in zone state around the bleeder area except in the case of the longwall face 

area. In Figure 4-27(b), the roof of mining face is in tension, which has potential for 

failure. The edges of the bleeder pillar are in shear state, implying the appearance of rib 

spalling. 

4.4.5 Conclusion 

In this section, one global model is created using the double-yielding gob material and 

strain-softening coal material to study the disturbance of the active longwall face on the 

roof and floor deformation in bleeder entries.  

For underground coal mines operated in the Upper Freeport coal seam, the longwall face 

moves forward with an immediately unstable roof over the mine-out area, which means 

the immediate roof will fall, fill up the gob area, and finally support the overburden 

during the retreat mining process. In this model the gob and coal behavior are modeled by 

double-yielding material and strain-softening material. Based on the modeling results, it 

is found that roof displacement increases with mining distance. A similar pattern is 
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followed in relation to floor displacement. For the three monitor points in the bleeder roof, 

the maximum displacement occurs at the right-side entry nearer the gob area instead of 

the middle of the entry. This is contradicted by common sense. There are no potential 

floor heave problems in this mining scenario. Rib spall failure may occur as a result of 

the high stress state of pillars in bleeder entries. 
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5 Conclusion and recommendation 

In this research, the stability of bleeder entries in underground coal mines was studied by 

the displacement-discontinuity LaModel code and finite-difference-based FLAC program. 

Using LaModel, the stability of bleeder pillars was evaluated, which emphasizes the 

effects of overburden thickness, multi-panel, and the size effect of bleeder pillars. Then 

the roof stability of bleeder entries was investigated by FLAC, using strain-softening coal 

material and double-yielding gob material. 

5.1 Conclusion 

Numerical modeling results obtained from LaModel and FLAC models show the 

following conclusions: 

(1) The vertical stresses in bleeder pillars first increase and then remain unchanged 

during the retreat longwall process. The increase of vertical stress in bleeder pillars under 

deep cover is higher than that under shallow cover when the longwall face moves forward. 

(2) Safety factors of bleeder pillars are determined for each case, and it is found that 

pillars in bleeder areas are stable. 

(3) The active longwall face did not influence the stress and safety factors in the bleeder 

pillars in the adjacent mined-out panel. 

(4) Bleeder pillars suffer different stress states during the retreat mining process because 

of the arrangement of bleeder pillars; induced vertical stress in bleeder pillars 

perpendicular to the longwall face is usually higher than that in bleeder pillars parallel to 

the longwall face. 

(5) When different sizes of bleeder pillars are employed in the same bleeder area, the 

bleeder pillar nearest the longwall face is the most prone to fail because of the higher 

induced vertical stress upon it. 

(6) The procedure using double-yielding material to model gob rock behavior was 

presented, and gob behavior was modeled by Salamon’s constitutive equation. The 
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confidence interval of Salamon’s model was given; most of the known published data 

using Salamon’s model are within this interval.  

(7) Roof displacement in bleeder entries increases during the retreat mining process. The 

bleeder entry closest to the gob area is the most easily disturbed one. Rather than the 

middle point of the entry, maximum roof displacement occurs in the roof area nearer to 

the gob area. 

5.2 Future research recommendation 

Based on the investigations conducted in this research, the following work need to be 

updated: 

(1) Up until now, there have been no published filed data monitoring the stress of bleeder 

pillars and roof deformation in bleeder entries. Even though the numerical models can 

give us some heuristic results, these results need to be confirmed by field test data. 

(2) The time effect on the stability of bleeder pillars and bleeder roofs requires extensive 

research, including both field monitoring data and laboratory tests of coal measure rocks. 
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