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ABSTRACT 

 

Trunk Biomechanical Responses during Sudden Loading 

 

Jie Zhou 

 
Back injury caused by sudden loading is a significant risk among workers who perform 

manual material handling tasks (MMH). Therefore, it is critical to understand the effects of 

influential factors on back injury risks during sudden loading, and to develop load handling 

strategies that can reduce the biomechanical impacts to the spine caused by sudden loading. In 

this study we explored the effects of foot placement, load handling position as well as uneven 

ground conditions on trunk biomechanical responses under sudden loading event. 

In the first experiment we investigated the effects of different foot placements and load 

asymmetry on trunk biomechanics during sudden loading. Fifteen subjects experienced sudden 

release of a 6.8 kg external load from symmetric or asymmetric directions while maintaining 

four different foot placements. The results showed that subjects experienced on average 4.1 

degrees less trunk flexion, 6.6 Nm less L5/S1 joint moment and 32.0 N less shear force when 

using staggered stance with right foot forward (the most preferred placement) in comparison to 

wide stance (the least preferred placement). Asymmetric load releasing position consistently 

resulted in smaller trunk biomechanical impact than symmetric position. The findings suggest 

that staggered stance and asymmetric load holding position can be used as a protective load 

handling posture against low back pain caused by sudden loading. 

In the second experiment we investigated the effects of load handling position on trunk 

biomechanics during sudden loading. Eleven male subjects were exposed to a 6.8 kg sudden 

loading while standing upright and holding the load at three different vertical heights in the 

sagittal plane or 45
o
 asymmetric to the sagittal plane. Results showed that subjects experienced 

smaller spinal compression with the decrease of load holding height; more specifically, at the 

‘Low (umbilicus level)’ height condition, the peak L5/S1 joint compression force was 10.1% and 

15.1% less than the ‘Middle (shoulder level)’ and ‘High (eyebrow level)’ conditions, 

respectively. Further, asymmetric posture resulted in 3.9% less compression force than 

symmetric posture. These findings suggest that handling loads in a lower position could work as 

a protective strategy when experiencing sudden loading. 

In the third experiment we investigated the effects of uneven ground conditions on trunk 

biomechanical responses during sudden loading. Thirteen subjects experienced sudden loading 

with two different weights (3.4 kg and 6.8 kg) while standing on flat or laterally slanted ground 

conditions (0°, 15° and 30°). Our results showed that subjects experienced larger peak L5/S1 

joint compression force with the increase of ground slanted angle. On average, the peak L5/S1 

joint compression force generated in the 30° condition was 6% and 8% larger than 15° and 0° 

conditions, respectively. Furthermore, greater trunk biomechanical impact was constantly 

observed in the 3.4 kg weight condition compared with the 6.8 kg condition. Findings of this 

study suggest that standing on laterally slanted ground surface increases the risk of low back 

injury when experiencing sudden loading.  
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CHAPTER 1. INTRODUCTION 

1.1 Low back injury  

Work-related back injury is a worldwide health problem (Hoy et al. 2012). Each year in 

the United States, more than 10 million people will experience low back pain (LBP) (Marras 

2000). According to national data, back injury accounts for 42% of all reported occupational 

musculoskeletal disorders with even higher rates reported for occupations that involve manual 

material handling tasks such as nurses (53%), nursing aides (55%), and labourers (44%) (BLS 

2013). 

In addition to causing personal suffering, low back injury also resulted in significant 

financial cost. According to previous data, more than 30% of the total workers’ compensation 

cost is related to low back injury (Webster and Snook 1994). Each year in the United States, 

work-related back injury causes over one hundred million lost work days (Guo et al. 1999) and 

billions of dollars of direct (e.g. medical treatment and workers’ compensation) and indirect cost 

(e.g. lost productivity and the cost to hire temporary workers) (Frymoyer and Cats-Baril 1991; 

Maetzel and Li 2002; Stewart et al. 2003; Yelin and Callahan 1995).  

 

1.2 Low Back Pain Caused by Sudden loading  

During the performance of manual material handling tasks, sudden loading due to loss of 

control or external impact has been identified as a major contributing factor to back injury 

(Manning et al. 1984; Omino and Hayashi 1992). Manning and colleagues analyzed 1153 

accident records that reported back injury in Ford Motor Company’s Halewood Estate in 1980. 

Of all the 1153 back injuries, 401 workers had to require lost working days or restricted work; 

and 122 (30.4%) of the 401 injuries involved sudden loading or loss of postural balance 
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(Manning et al. 1984). Later, Omino and Hayashi investigated dynamic postures of airline 

attendants and its association with low back pain occurrence. From 98 low back pain reports, 

they identified six typical tasks that were closely related to LBP. It has been found that almost 

half of the cases involved sudden loading, including lifting light objects that looked apparently 

heavy, supporting unstable items, and sudden falling of objects. The author believed that 

appropriate preparatory strategy could prevent the risk of LBP (Omino and Hayashi 1992). 

When human trunk experiences sudden impact, both reflexive and voluntary muscle 

contractions are initiated to increase stability and regain balance (Cholewicki et al. 1997). 

Reflexive contraction refers to an instinctive muscle response to external stimulus, and is 

initiated automatically without consciousness; on the other hand, voluntary contraction is 

purposely performed by a person, and is consciously initiated (Zedka et al. 1999). Such 

instantaneous muscle reaction elevates spinal loading, due to the fact that the spine, acting like a 

fulcrum, must withstand not only the external moment derived from gravity of the external load 

and body segments, but also the internal moment generated by muscle force to counterbalance 

the external load. And muscle force contributes a far greater portion of the total spinal loading 

compared with external load since muscles have a much shorter moment arm than an external 

load. (Granata and Marras 2000; Marras et al. 1987). As discussed below, such spinal loading is 

even larger when the load is unexpected (Marras et al. 1987) due to the overreaction of 

musculoskeletal system (Greenwood et al. 1976).  

Previous studies have reported that the magnitude of spinal biomechanical loading (such 

as spinal compression and shear forces) is directly associated with the risk of back injury 

(Norman et al. 1998; Bakker et al. 2007). Norman and colleagues conducted a large scale case-

control study on automotive workers, 130 randomly selected controls and 104 LBP cases were 
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examined. Findings of this study showed that significantly higher spinal biomechanical loading 

was found in LBP cases than controls. And four most important risk factors were identified: peak 

shear force at the L4/L5 joint, peak trunk velocity, hand force and integrated lumbar moment (or 

compression) over a shift (Norman et al. 1998). Bakker et al (2007) also conducted a case-

control study to evaluate daily spinal loading as a risk factor for acute LBP.  The 24-Hour 

Schedule (24 HS) questionnaire (developed to quantify spinal loading) was completed by 100 

cases with acute LBP and 100 controls. It has been discovered that significantly higher 

(p<0.0001) 24 HS score was found in those who have acute LBP than control group, indicating 

that intensive spinal loading is strongly associated with acute LBP (Bakker et al. 2007).  

 

1.3 Previously investigated factors  

Several factors that affect people’s trunk biomechanical responses during sudden external 

loading have been explored. It has been shown that expectation and the presence of waning 

signals prior to the sudden impact significantly reduced muscle activation level and spinal 

compression force (Marras et al. 1987; Lavender and Marras, 1995). Marras et al. (1987) 

explored the effect of expectation on trunk muscle response. Twelve subjects experienced 

sudden drop of weights (5, 10, 15, and 20 lb) under expected and unexpected conditions, while 

holding a box statically. Subjects were allowed to watch the load drop in expected condition, and 

were deprived of visual and auditory cues indicating when the weight was dropped. Muscle 

activities were collected from three pairs (left and right) of trunk muscles: latissimus dorsi, 

erector spinae and rectus abdominus. The muscle activities recorded in the corresponding static 

load holding task served as a baseline. It has been revealed that in expected condition, peak 

muscle activity across the six trunk muscles was 35% larger than static load holding condition; 
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while under unexpected condition, peak muscle activity was 1.2 to 3 times larger than expected 

condition (p<0.05). In addition, longer duration of force exertion as well as more rapid increase 

in trunk force generation was observed in unexpected condition compared with expected 

condition. Later, Lavender and Marras (Lavender and Marras, 1995) examined the effect of 

warning signal on trunk muscle response. Four subjects held a canvas bucket and arrested a 53.4 

N dropping weight with and without prior temporal warning. Force plate, Lumbar Motion 

Monitor and surface electromyography (EMG) were used to record biomechanical responses of 

subjects. Results of this study showed that with the presence of warning signal, by stiffening 

trunk muscle prior to sudden loading, three of the four subjects were able to decrease spinal 

compression force.     

The effects of experience and training have also been investigated. Lavender and 

colleagues studies the influence of experience on trunk biomechanical responses during sudden 

loading (Lavender et al. 1993). Four subjects experienced 53.4 N dropping weight for thirty 

times while holding a canvas bucket. Each subject performed the thirty experimental trials five 

times on separate days. EMG data, force plate data, lumbar kinematics data and Intra-Abdominal 

Pressure (IAP) data were collected. It has been demonstrated that compared with the first 

experimental session, flexion angle and peak compression force decreased by 22% and 18%, 

respectively in the final session. This result indicated that subjects were able to adopt better 

strategies to cope with sudden loading. Lawrence et al (2005) developed an adaptive system 

identification model to evaluate the effect of training during sudden loading tasks. Trunk 

kinematics and muscle EMG data collected from six subjects served as inputs of the model. In 

each sudden loading trial, subjects first maintained a 20° trunk forward flexion posture, while 

they were able to keep trunk muscles relaxed since trunk weight was counterbalanced by an 
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energized electromagnetic coupling. By de-energizing the electromagnetic coupling, an external 

impact caused by the subjects’ trunk weight was suddenly applied. The results of this study 

demonstrated that after three days training, peak lumbosacral joint torque was significantly 

reduced by 25% (Lawrence et al. 2005).           

Fatigue is an important influential factor as well (Granata et al. 2004). Granata and 

colleagues developed a biomechanical model to evaluate the effect of fatigue on trunk muscle 

response and spinal stability. According to the model, fatigue resulted in reduced muscle 

stiffness, which necessitated increased co-contraction of trunk antagonistic muscles to maintain 

stability, and as a result of this co-contraction, increased spinal compression force was generated. 

In additional to the aforementioned theoretical modelling, empirical data (trunk muscle EMG 

and trunk kinematics data) were collected from twenty one subjects to examine the accuracy of 

the model. Subjects performed sudden loading tasks prior and after fatigue protocol, which 

required subjects to repeatedly lift a 12.7 kg load from the floor to an upright posture at a rate of 

60 lifts/minutes for 2 minutes. In each sudden loading trial, subjects first maintained an upright 

standing posture against a 110 N horizontal preload (applied to their chest through harness), a 

2.27 kg load was then suddenly dropped from 0.5 or 1.0 m. Results of the empirical data 

supported model prediction, demonstrating significantly increased antagonistic muscle co-

contraction and spinal compression force in fatigued conditions. 

Stokes et al. (2000) investigated the effects of trunk muscle pre-activation level on 

muscle response during sudden loading (Stokes et al. 2000).  Thirteen subjects maintained an 

upright standing posture with the pelvis restricted, preload and sudden load were provided 

through a chest harness. Subjects performed trunk muscle exertion of 20% or 40% of maximum 

voluntary extension contraction, while sudden loading was applied. EMG data from 12 trunk 
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muscles were collected. It has been found that lower preload level (20%) resulted in increased 

muscle response, and increasing spinal pre-activation could help stabilize the spine and reduce 

the risk of back injury during sudden external loading. 

In summary, previous studies have demonstrated how expectation (warning signal), 

training, fatigue and trunk muscle pre-activation level could affect trunk biomechanics and the 

associated risk of low back pain during sudden loading. Findings of these studies could help 

develop strategies for handling sudden loading in an occupational setting, e.g. provide warning 

signal and training, avoid muscle fatigue. To mitigate the risk of back injury during manual 

material handling, it is critical to understand the effect of other influential variables, so as to 

develop load coping strategies that can reduce the biomechanical impacts to the spine caused by 

sudden loading. 

 

1.4 Other possible influential factors  

1.4.1 Foot placement 

The influence of foot placements on stability has been investigated previously. Kirby and 

colleagues explored the association between foot placements and standing balance (Kirby et al. 

1987). By using force plate, displacement of center of pressure (COP) when performing static 

standing tasks was examined from 10 subjects. Four variations of medial-lateral (ML) foot 

placements (feet together, feet 15, 30 and 45 cm apart), five variations of anterior-posterior (AP) 

foot placements (feet even, right foot ahead 10 and 30 cm, left foot ahead 10 and 30 cm), and 

five variations of foot angle (feet straight, toe-in 25 and 45°, toe-out 25 and 45°) were tested. In 

each trial, subject stood barefoot looking forward at a fixed point, and postural sway data of 20 

second was collected. The results showed that the enlargement of foot placement in either 
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medial-lateral or anterior-posterior direction increased displacement of COP in that direction; in 

addition, COP displacement in both ML and AP directions were smallest in the toe-out 25° 

condition, and greatest in the tow-in 45° condition.  

 

1.4.2 Load handling position 

Granata and Orishimo examined the influence of load holding height on trunk muscle 

activation level during static load hold task (Granata and Orishimo, 2001). A two-dimensional 

biomechanical model was developed to predict trunk muscle co-contraction when holding load at 

different height levels. The model showed that co-contraction of trunk antagonistic muscles must 

increase when holding load at a higher vertical level due to decreased stability. Empirical data 

(trunk muscle EMG and lumbar kinematics data) were collected from twenty subjects (ten male 

and ten female) to validate the model prediction. Subjects were asked to hold barbell of 4.5 or 

9.0 kg at five different height levels (0, 20, 40, 60 and 80 cm above L5/S1 joint), and two guide-

bars were used to assure that the horizontal moment arm of barbell was constant at 30 cm for all 

height conditions. Results of the experimental data supported model prediction, EMG activity of 

flexor muscle increased significantly (P<0.001 and p<0.009, respectively) with height of the load 

and magnitude of the load. Additionally, a significant (p<0.037) gender difference was observed, 

flexor muscle activity was 32% higher in female subjects than male subjects. The author pointed 

out that different load holding heights affected spinal stability, which changed trunk muscle 

activity.  

In a follow up study, Granata and Wilson investigated the effect of trunk posture on 

spinal stability (Granata and Wilson, 2001). By building a three-dimensional model, and 

collecting empirical data from 10 subjects (5 male and 5 female), they demonstrated that spinal 
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loading increased when holding load statically at an asymmetric trunk posture, compared with 

sagittally symmetric trunk posture. Additionally, a more flexed trunk posture helped increasing 

spinal stability, while it also resulted in larger spinal loading.     

 

1.4.3 Ground condition 

The effects of uneven ground condition on the trunk biomechanical responses have been 

investigated before. Jiang and colleagues investigated the effect of laterally slanted ground on 

trunk biomechanics during static load holding and dynamic lifting tasks (Jiang et al. 2005). Ten 

subjects performed static load holding task and dynamic load lifting task when standing on 

ground surfaces with lateral slant angle of 0°, 10°, 20° and 30°. EMG data from three pairs (left 

and right) of trunk and low extremity muscles (longissimus, multifidus and vastus medialis) and 

kinematics data from five body segments (left and right arms, left and right legs and trunk) and 

external load were collected. Results of this study demonstrated that in static load holding task, 

trunk muscle activity increased with a larger slant angle, and substantial different EMG 

activation pattern was observed between contralateral (right) side and ipsilateral (left) side of 

muscles. In dynamic load lifting task, peak L5/S1 joint moment decreased with a larger slant 

angle, due to slower lifting motion.  

Ning and Mirka explored the effect of ground surface motion on trunk biomechanics 

during lifting, lowering and static load holding tasks (Ning and Mirka 2010). Two levels of 

weight (5 and 10 kg) and five ground moving conditions (specified by ground angular 

displacement and vertical acceleration) were tested to simulate ship motion. It has been shown 

that peak sagittal plane angular deceleration during lowering was significantly higher in moving 

conditions than in the stationary condition. Also, EMG activity of external oblique muscles was 
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significantly higher in moving condition than static condition, which indicated an important role 

in stabilizing the trunk. In addition, the author suggested that even though the tasks were 

performed in sagittal plane, angular displacement of ground surface and vertical acceleration 

changed them to asymmetric tasks, therefore muscle activity patterns were found different 

between contralateral and ipsilateral sides.  

A recent study examined the effect of laterally slanted ground on the onset of Flexion 

Relaxation Phenomenon (FRP) of trunk extensor muscles (Hu et al. 2013). Fourteen subjects 

performed sagittal trunk flexion/extension motion on three laterally slanted ground surfaces (0°, 

15° and 30°), while lumbar muscle activities and trunk kinematics were recorded. Results of this 

study demonstrated that with an increase in slant angle, flexion-relaxation phenomenon of trunk 

extensor muscles occurred up to 6.2° earlier on ipsilateral (left) side, whereas the contralateral 

(right) side was not affected. Furthermore, the onset of muscle flexion-relaxation on ipsilateral 

side was earlier than contralateral side, and this angular difference increased with a larger slant 

angle.    
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CHAPTER 2: RATIONALE AND OBJECTIVE 

As discussed in the previous chapter, foot placement, load handling position and ground 

condition were found to significantly influenced people’s biomechanical responses (e.g. kinetics 

and muscle activity) when performing other related biomechanical tasks (static standing, static 

load holding, dynamic load lifting etc.). It is believed that these factors would also significantly 

affect trunk biomechanical responses during sudden loading tasks through similar mechanisms 

(e.g. postural stability, muscle co-contraction).   

As a result, the purpose of the current study is to investigate the effects of foot placement, 

load handling position and uneven ground surface on trunk biomechanical responses when 

experiencing sudden external loading, such that we can have a better idea about the influences of 

these factors and how to develop protective strategies to protect against back injury caused by 

the sudden loading. According to the findings of previous studies, it is hypothesized that: 

1. The enlargement of foot placement would reduce the impact of sudden external 

loading and result in smaller trunk biomechanical responses.  

2. One will experience greater spinal compression force, but smaller postural perturbation 

when a load is handled at a higher position and released suddenly.  

3. The increase of slanted ground angle will increase trunk muscle activation level and 

thereby generate higher L5/S1 joint compression force when experience sudden drop of load. 
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CHAPTER 3. STUDY OF THE EFFECT OF FOOT PLACEMENT 

3.1 Objective  

As described above, previous studies have demonstrated that foot placement has 

significant influence on stability (Holbein‐Jenny et al. 2007, Kirby et al. 1987). Therefore, it is 

believed that foot placement also significantly affects trunk biomechanical responses during 

sudden external loading. The purpose of this experiment is to investigate the effect of foot 

placements on the trunk biomechanics when experiencing sudden loading, such that the most 

preferred foot placement that would reduce the risk of low back injury can be identified. 

According to the previous findings, we hypothesize that the enlargement of foot placement 

would reduce the impact of external loading and result in smaller trunk biomechanical responses 

due to the elevated standing stability.  

 

3.2 Method  

3.2.1 Subjects  

Fifteen male subjects with average age, body height and body weight of 25.9 years (SD 

1.75), 176 cm (SD 4.4) and 70.9 kg (SD 6.9), respectively were recruited from the student 

population of West Virginia University. All subjects were in good physical condition without 

previous history of LBP or upper extremity injuries. Informed consent was obtained from 

subjects prior to their participation. The experiment procedure was approved by the office of 

research integrity and compliance of West Virginia University. 

 

3.2.2 Experimental design 

The design of experiment involved two independent variables: foot placements 
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(POSTURE) and releasing position of the load (ASYMMETRY). Four different foot placements 

were tested; they were referred to as  narrow stance (NS), wide stance (WS), staggered stance 

with left foot forward (SL) and staggered stance with right foot forward (SR). In the NS 

condition subjects stand with both feet together with 5 cm lateral clearance between the medial 

sides of their ankles. In the WS condition subjects were required to stand with 30 cm medio-

lateral clearance between the medial sides of their ankles.  The SL and SR conditions required 

subjects to place left or right foot forward respectively with 30 cm medio-lateral and 40 cm 

anterior-posterior clearance between the medial sides of their ankles. A 6.8 kg (15 lbs) weight 

was used as the load in this experiment. The load was released from two different positions with 

respect to subjects: symmetry (with subject facing the load) and asymmetry 45 degree. The 

combination of the two independent variables created 8 conditions (demonstrated in Figure 1), 

and each condition was tested for 3 times (a total of 24 trials) in a completely randomized order. 

In all 8 testing conditions, the midpoint between the medial sides of ankles superimposed on the 

same location; the distance between this point and the projected center of mass of the external 

load was kept constant for all conditions. Therefore, a constant initial moment arm for external 

loading can be ensured (Waters et al. 1993). 

The dependent variables were: 1. Increase in trunk flexion angle, which was defined as 

the difference between the peak trunk flexion angle during the impact of sudden loading and 

initial trunk angle; 2. Increase in lumbosacral (referred to as L5/S1) joint moment, which was 

defined as the difference between the maximum L5/S1 joint moment during the impact of sudden 

loading and initial L5/S1 joint moment; 3. Peak L5/S1 joint compression force; 4. Peak 

L5/S1joint shear force. The peak compression and shear forces were defined as the maximum 

forces observed during sudden loading.  
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Figure 1. A diagram that demonstrates all eight experiment conditions. 

 

3.2.3 Apparatus and equipment 

A wood structure was created to hang the load at different height levels. The load itself 

was made from standard disc weights with a polyvinyl chloride (PVC) pipe used to secure the 

weights together through the central hole in the middle of the weights and to also serve as a 

handle for subjects to hold when performing the designated tasks (Figure 2 (a)). 

A surface electromyography (EMG) system (Model: Bagnoli, Delsys Inc, Boston, MA, 

USA) was used to record EMG signals at 1000 Hz from eight trunk muscles: left and right rectus 

abdominis (electrodes placed 2 cm above the umbilicus and 3 cm to the midline of the abdomen); 

left and right external obliques (10 cm to the midline of the abdomen and 4 cm above the ilium 

with an angle of 45° to the midline of the abdomen); left and right erector spinae (4 cm from the 

midline of L3 vertebra); left and right multifidus (2 cm from the midline of L4 vertebra).  

NS & Symmetry WS & Symmetry SL & Symmetry SR & Symmetry

NS & Asymmetry WS & Asymmetry SL & Asymmetry SR & Asymmetry
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An eight camera (MX-13 series) 3D optical motion tracking system (Vicon, Nexus, 

Oxford, UK) was used to capture trunk and upper extremity kinematics at a sampling frequency 

of 100 Hz. Seventeen reflective markers were placed over right and left shoulders: on the most 

dorsal points of acromioclavicular joints of both sides; along the spine: over C7, T12 and L5 

vertebrae; right and left pelvises: over right and left sides of the anterior superior iliac spine; 

right and left elbows: on most caudal point on lateral epicondyle of both elbows; right and left 

hands: on the middle of the third metacarpal; right and left outsides of knees: on the lateral 

epicondyle of both knees; right and left outsides of ankles: on the lateral malleolus along an 

imaginary line that passes through the transmalleolar axis of both ankles; right and left toes: over 

the first metatarsal head, on the mid-foot side of the equinus break between forefoot and mid-

foot. 

 The placements of EMG electrodes and reflective markers are shown in Figure 2(b). 

Nexus 10.7 software (Vicon, Nexus, Oxford, UK) was used to record and synchronize both EMG 

and kinematics data.  

During the trunk muscle maximum voluntary contraction (MVC) trials, a lumbar 

dynamometer (Humac Norm, CSMi, MA, USA) and the attached back flexion-extension module 

were used to restrict subjects’ pelvis and lower extremity and provide static resistance against 

trunk muscle maximum exertions. 

 

3.2.4 Procedure 

Upon arrival of the subjects, experiment procedure was explained in detail and informed 

consents were obtained. Before the start of the experiment subjects’ basic anthropometric data 

including body weight, height, trunk length, width and depth were measured. Next, a five minute 
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warm-up routine was conducted to stretch and warm up trunk and upper extremity muscles. 

Subjects were then fitted with eight bi-polar EMG surface electrodes to the above mentioned 

sites and performed MVC trials in the back flexion-extension module. During the MVC, subjects 

were secured in a 20 degree trunk forward flexion posture and performed three repetitions of 

static trunk maximum extension/flexion exertions. Each MVC trial lasted five seconds and ample 

rest was given between trials in order to avoid muscle fatigue. The EMG activities of all sampled 

trunk muscles were recorded and used later as input to the biomechanical model (described in 

section 3.2.5).  

 

Figure 2. (a) The hand load used in the experiment. (b) The placements of EMG electrodes and 

reflective markers. (c) A side view of the experiment setup (prior to the load releasing 

event). 

(a)

(b) (c)
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After completing the MVC trials, nineteen reflective markers were secured to the 

designated locations and subjects performed all of the 24 experimental trials in a completely 

randomized order. In each trial, subjects first maintained the assigned foot placements, and then 

held the load steadily (without supporting the load) with both eyes closed. The experimenter who 

controlled the load would then release the load without notice (Figure 2(c)). Subjects were 

trained to respond to the sudden impact by carrying the load back to approximately their 

shoulder level (the original load height) as quickly as possible, and holding the load stably for 

three seconds. Ample rest was given between trials to avoid the accumulation of muscle fatigue.  

 

3.2.5 Biomechanical model 

The external moment about L5/S1 joint was estimated using a multi-segment dynamic 

motion model which consists of seven body segments (including trunk, upper arms, forearms and 

hands) and the load. Mass and the center of mass of each body segment were estimated 

according to previous studies (Drillis et al. 1964, Pheasant 1986). A previously established 

biomechanical model (Marras and Granata 1997) was used in the current study to estimate 

muscle forces, internal moment about L5/S1 joint and spinal compression and shear forces. In 

this model, the instantaneous tensile force generated by trunk muscle i was estimated using 

equation (1) where “NEMG”, “G” and “A” represent the normalized EMG (with regard to the 

MVC EMG), muscle gain and cross sectional area respectively; “f(li)” and “f(vi)” are the muscle 

force-length and force-velocity modulation factors (Marras and Granata, 1997). The internal 

moment about L5/S1 joint was calculated using equation (2) where “F” and “r” are the force and 

moment arm vectors of muscle i respectively. The L5/S1 joint compression and shear forces 
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were then estimated based on trunk muscle forces, geometry (e.g. line of action) and trunk 

kinematics. Parameters such as moment arms and the cross sectional areas of all trunk muscles 

were estimated using regression equations summarized from early studies (Jorgensen et al. 2001; 

Marras et al. 2001). The muscle gain was obtained by matching the external and internal moment 

at the static load holding phase (the last three seconds) of all tasks. A best fit gain value was 

selected and applied to all muscles and trials for each subject.  

 

                                                                (1) 

             
 
                                                          (2) 

 

3.2.6 Data processing and analysis 

EMG signals and reflective markers data were simultaneously recorded using Nexus 10.7 

software. Trunk flexion angle was defined as the angle between the line connecting C7 and L5 

marker and the transverse plane. External moment with respect to L5/S1 joint was calculated 

using the trunk and upper extremity kinematics data as well as anthropometric measurements as 

inputs to the multi-segment model.  EMG data were filtered using 500Hz low pass filter and 

10Hz high pass filter, signals were then notch filtered at 60 Hz (ambient electrical noise) and 

their aliases. After that the filtered EMG signals were rectified and smoothed with a 200 data 

points (0.2 second) sliding window. EMG signals from experimental trials were then normalized 

with respect to maximal EMG (collected from MVC trials) for each muscle. Finally normalized 

EMG profiles were used as inputs to the biomechanical model to estimate muscle forces, internal 

moment and spinal compression and shear forces. 
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3.2.7 Statistical analysis 

As demonstrated below, a general linear model was used to perform the statistical 

analysis. 

 

                             

   

Where Yijk, μ, τi, βj, γk, τβij and εijkl represent biomechanical responses (dependent variables), 

overall mean, main effect of POSTURE, main effect of ASYMMETRY, block effect, interaction 

effect between POSTURE and ASYMMETRY, and random error. Total sum of squares was 

calculated as below:  

 

             
 

 

   

 
   

 

    

 

   

 

   

 

   

 

 

Sums of squares for the main effects and block effects were found as follows: 
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The interaction sum of squares was demonstrated as below: 

                                                           

     
 

  
       

 

 

   

 
   

 

    
        

 

   

 

The assumptions of the ANOVA model (normality of residuals, non-correlation of 

residuals, and constant variance of residuals) were first tested (Montgomery 2005). Dependent 

variables that violated one or more assumptions were transformed such that all assumptions were 

satisfied. Multivariate analyses of variance (MANOVAs) were then conducted on all variables of 

interest. Independent variables that were significant in the MANOVA were further analyzed in 

the univariate ANOVA. Tukey‐Kramer post-hoc tests were performed on the main effect with 

more than two levels (i.e. POSTURE) to further investigate significance of difference between 

levels. The α-value of 0.05 was used in all statistical tests as the level of significance. 

 

3.3 Result  

Result of MANOVA revealed significant main effect of both independent variables: 

POSTURE and ASYMMETRY; however their interactive effect was not significant therefore 

was not further tested. Univariate ANOVA demonstrated that both POSTURE and 

ASYMMETRY significantly affected the increase of trunk flexion angle, L5/S1 joint moment 

and the peak L5/S1 joint shear force (Table 1).  

The results of post-hoc analysis revealed that the unexpected sudden external loading 

generated the largest increase of trunk flexion angle, increase of L5/S1 joint moment and shear 

force under WS condition, whereas the smallest impact was observed under the SR condition 

(Figure 3 to Figure 5, Different letters denote values that are statistically different from one 
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another. Bars indicate the corresponding 95% confidence interval). However the peak L5/S1 

joint compression force was not affected by foot placements (Figure 6). 

 

 

 

Table 1. The results of MANOVA and univariate ANOVA. 

Independent Variables MANOVA 

ANOVA 

Trunk 

angle 

L5/S1 

moment 

L5/S1 

compression  

L5/S1 

shear 

POSTURE p <0.001 p<0.001 p<0.001 p=0.41 p<0.001 

ASYMMETRY p=0.039 p<0.001 p=0.002 p=0.85 p<0.001 

POSTURE*ASYMMETRY p=0.65 N/A N/A N/A N/A 

 

 

 

Figure 3. Peak increase in trunk flexion angle caused by sudden external loading under the four 

different foot placement conditions. 
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Figure 4. Peak increase in L5/S1 joint moment caused by sudden external loading under the four 

different foot placement conditions. 

 

 

 

Figure 5. Peak L5/S1 joint shear force caused by sudden external loading under the four different 

foot placement conditions.  
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Figure 6. Peak L5/S1 joint compression force caused by sudden external loading under the four 

different foot placement conditions. Bars indicate the corresponding 95% confidence 

interval. 

 

When comparing between the symmetric (0 degree) and asymmetric (45 degree) 

conditions, smaller increases in trunk flexion angle, L5/S1 joint moment and shear force were 

constantly observed in the asymmetric condition (Table 2). However the peak L5/S1 joint 

compression force was not affected by ASYMMETRY either. 

 

Table 2. The results of dependent variables at different ASYMMETRY conditions 

ASYMMETRY 
Trunk angle 

(degrees) 

L5/S1 moment 

(Nm) 

L5/S1 compression 

(N) 

L5/S1 shear 

(N) 

Symmetry 8.4 85.5 2515.2 65.4 

Asymmetry 7.0 82.6 2525.1 52.3 

Notes: Bolded numbers indicate that results are significantly different between symmetry and 

asymmetry conditions, p-values are reported in Table 1. 
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After having the results, a power test was performed to see if the sample size is enough. 

Operating characteristics curves (OC curve) were used to determine the power of the test. The 

parameter Φ was calculated using the below equation. 

 

   
     

  
   

   
                                                                              (3) 

 

Where n, a, b, τ, and σ represents the number of observations, levels of treatment a, level of 

treatment b, the difference between treatment i  and treatment mean, and standard deviation in 

responses, respectively.  It has been shown that the smallest power of test was 0.60, when 

investigating the main effect of ASYMMETRY on peak L5/S1 joint compression force. 

According to this result, a larger sample size is necessary to obtain a design having a high 

probability of detecting the difference in peak L5/S1 joint compression force between two 

different ASYMMETRY conditions. 

  

3.4 Discussion 

Results of this study showed that foot placement had significant impact on trunk 

biomechanics during unexpected sudden loading which confirmed our initial hypothesis. Overall, 

the SR was the most desired foot placement, as it posted the smallest increase in trunk flexion 

angle, L5/S1 joint moment and peak L5/S1 joint shear force during sudden loading. The SL 

placement was the second most preferable placement followed by NS and WS which posted the 

largest trunk flexion and spinal loading. These results were likely generated by different lower 

extremity structures associated with different foot placements. In the two staggered foot 

placements, subjects placed one foot forward and one foot backward to form a geometrically 
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stable triangular structure along the line of external load and L5/S1 joint. The ground reaction 

force (perpendicular up from the ground) acting on the frontal foot provided additional moment 

(about L5/S1 joint) that could help counterbalance the rotational moment created by the external 

load. Under the SR asymmetric load releasing condition subject’s frontal foot has a larger 

moment arm (along the direction from L5/S1 joint to the external load) than any other 

conditions. This mechanism could explain why subjects experienced the smallest increase in 

trunk flexion, L5/S1 joint moment and shear force under this condition.  

From the stability point of view, Kirby and his colleagues demonstrated that with the 

increase of feet separation distance in either anterior-posterior or medial-lateral direction, the 

envelope of COP sway also increased along that direction (Kirby et al. 1987). According to a 

recent study, the increased COP envelop caused by larger foot separation could indicate elevated 

postural stability (Holbein‐Jenny et al. 2007). In the current study, the two staggered foot 

placements had the largest foot displacement which may result in the highest level of standing 

stability among all four foot placements. This could explain the smaller trunk biomechanical 

responses observed under SL and SR conditions. 

Based on the results of this study, it was interesting to find that unexpected sudden 

loading generated lower trunk biomechanical impact when participant maintained NS than WS 

foot placement. Wide foot stance is commonly considered as a more stable and preferred 

placement when performing manual material handling tasks (Cholewicki et al. 1991, Sorensen et 

al. 2011). Like staggered foot placement, WS also creates a triangle between both legs and the 

ground, however, this triangular structure in the WS posture is medio-laterally oriented, therefore 

provides little resistance to the external loading along the anterior-posterior direction. 

Furthermore, previous studies have discovered significant forward shift of COP when subjects 
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maintain wide foot stance compare with narrow stance (Kirby et al. 1987). This forward 

movement of COP may have resulted from the forward leaning of trunk which could potentially 

increase the magnitude of trunk flexion when subjects experience unexpected sudden impact in 

the anterior direction. It was also suspected that the increase of stance width may alter hip joints 

stiffness, which in turn could influence trunk biomechanical responses during sudden loading. 

However, such effect has not been investigated previously. Therefore, it warrants future research 

efforts. 

Regarding load releasing position, our results demonstrated that asymmetric position 

generated significantly less increase in trunk flexion angle, L5/S1 joint moment and smaller peak 

L5/S1 joint shear force compared with symmetric position. Under symmetric load condition the 

direction of external moment is perpendicular to the rotating axis of pelvis (imaginary line that 

connects two hip joints) whereas, in asymmetric condition a 45
o
 angle was formed; it means that 

the moment arm between external load and the axis of pelvis rotation is larger in symmetric 

conditions. Therefore, the same external loading would generate larger pelvis rotational moment 

and angular displacement and consequently, larger increase of L5/S1 joint moment and peak 

L5/S1 shear force, under symmetric load conditions.  

Although most dependent variables were significantly affected by both independent 

variables, the peak L5/S1 compression was an exception. Results of this study showed that 

neither POSTURE nor ASYMMETRY significantly affected the peak L5/S1 compression force 

due to the high variance observed in the estimated spinal compression force. But, we can still 

observe that, in general, WS and NS foot placements generated some higher peak L5/S1 

compression force than the two staggered foot placements. These results are in line with the 

results of other dependent variables. Spinal compression is affected by both trunk kinematics and 
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trunk muscle co-contraction (Granata and Wilson, 2001). Given a constant level of external 

moment, infinite number of possible agonist and antagonist trunk muscle contraction 

combinations could exist. In such, for a given trunk posture and external moment, spinal 

compression force could change significantly. Previous studies have suggested that, trunk muscle 

co-contraction elevated with decreased perceived stability (Granata and Wilson, 2001). In the 

current study, it is possible that variance in subjects’ perceived stability changed their trunk 

muscle co-contraction levels which resulted in higher variance in spinal compression.  

The effect of ASYMMETRY on spinal compression was also found to be insignificant 

despite the fact that clear differences were observed among other dependent variables (Table 2). 

According to trunk biomechanical model (Marras and Granata, 1997) the increase in trunk 

flexion angle elevates the magnitude of external moment about L5/S1 joint therefore should 

increase back extensor muscle force exertion. Based on this assertion, higher compression force 

should be observed in the symmetric load condition. However, another study also reported that 

subjects maintained higher trunk muscle co-contraction when holding load in asymmetric 

posture (Granata and Wilson. 2001). It is our belief that in the current study, the effect of larger 

trunk flexion in symmetric condition and higher muscle co-contraction in asymmetric condition 

counterbalanced each other and resulted in similar levels of trunk muscle activity, and 

consequently, similar spinal compression force.  

Several limitations of the current study should be noted. First, the expectation of the load 

releasing event was controlled by having subjects close their eyes and keep muscles “relaxed” 

before the load drops. However, during the experiment, subjects may still try to anticipate the 

weight dropping thereby unintentionally elevate trunk muscle co-contraction. This could also 

explain the higher variance in spinal compression force that we have observed. Second, a 
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relatively light (i.e. 6.8 kg) load was selected for testing in order to avoid the accumulation of 

lumbar muscle fatigue and reduce the risk of injury. Due to the size of the load, trunk 

biomechanical differences between experimental conditions were often statistically significant 

but relatively small. In real occupational settings, much heavier loads may be experienced and 

larger differences could be revealed. Third, 45° was the only asymmetry condition tested in the 

current study; other asymmetric angles were not studied. Finally, relatively small sample size (15 

subjects) was used in the current study, future studies may use larger sample sizes to reveal the 

differences in spinal compression force between different foot placement conditions. 
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CHAPTER 4. STUDY OF THE EFFECT OF LOAD HANDLING POSITION 

4.1 Objective 

The second study was designed to understand whether load handling position can be used 

in the design of a protective strategy against back injury caused by sudden loading. More 

specifically, the objective of the second experiment is to investigate the effect of load handling 

height and load asymmetry (created by arm rotation but not trunk rotation) on trunk 

biomechanics when experiencing sudden external loading. Based on the findings of previous 

studies, it is hypothesized that one will experience greater spinal compression force, but smaller 

postural perturbation when a load is handled at a higher position and released suddenly. Also as 

suggested by previous research (Zhou et al. 2013
a
), we expect to observe smaller trunk flexion 

when the load is handled and suddenly released from an asymmetrical position than in a 

symmetrical position.  

 

4.2 Method 

4.2.1 Subjects 

Eleven male subjects with mean (SD) height, weight, and age of 176.6 (3.4) cm, 71.2 

(6.5) kg, and 26.7 (2.0) years, respectively, volunteered to participate in this study. Subjects with 

no previous training or working experience in manual material handling were recruited from the 

student population of West Virginia University, and none reported a previous history of low back 

pain or upper/lower limb injuries. The experimental procedure was approved by the university’s 

Research Integrity and Compliance Committee. 
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4.2.2 Experimental design 

Two independent variables were involved in the current experimental design: vertical 

load handling position (HEIGHT, three levels) and transverse load handling position (ASYM, 

two levels). These two independent variables collectively describe the location of both hands and 

the load (the load was always in the hands (Figure 7) before the sudden releasing event). In all 

testing conditions, trunk remained forward facing. The three HEIGHT levels were defined with 

respect to participants’ anthropometry: ‘High’ (eyebrow level: the initial holding height of the 

load aligns with the height of eyebrows), ‘Middle’ (shoulder level: the initial holding height of 

the load aligns with the height of clavicle bone), and ‘Low’ (umbilicus level: the initial holding 

height of the load aligns with the height of umbilicus). The two ASYM load positions were: 

‘Symmetry’ (in the midsagittal plane) and ‘Asymmetry’ (45
o
 leftward to the midsagittal plane). 

The effect of transverse load handling location has been previously investigated (Zhou et al. 

2013
a
). In the current study the interaction between HEIGHT and ASYM was explored. The 

combination of the two independent variables created six different load handling positions 

(Figure 7). To control the effect of the distance of the load on spinal loading, the straight line 

distance between the projected location of the load centre of mass and the centre of the subjects’ 

ankles were kept constant at 45 cm across all conditions. Each subject performed a total of 24 

trials (four repetitions for each of the 6 conditions) with the sequence completely randomized.  

Three dependent variables were considered in the current study: 1. Increase in trunk 

flexion angle: the magnitude of increase in trunk flexion from initial trunk posture to the peak 

trunk flexion during the sudden impact; 2. Increase in L5/S1 joint moment: the difference 

between the initial joint moment and the maximum joint moment during the sudden impact; 3. 
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Peak L5/S1 joint compression force: the maximum spinal compressive force during the sudden 

loading event. 

 

 

Figure 7. A side view of the experiment setup (left panel) and a demonstration of different load 

handling positions (right panel).  

 

4.2.3 Apparatus and Equipment 

A wood structure was built to hang the load at different height levels. The load was made 

from standard disc weights and secured through their centre holes using a polyvinyl chloride 

(PVC) pipe which also served as a handle for subjects to hold (Zhou et al. 2013
a
). The total 

weight of the load was 6.8 kg (15 lbs). 

A surface electromyography (EMG) system (Model: Bagnoli, Delsys Inc, Boston, MA, 

USA) was used to record EMG signals at 1000 Hz from eight trunk muscles: left and right rectus 

abdominis (electrodes placed 2 cm above the umbilicus and 3 cm from the midline of the 
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abdomen); left and right external obliques (10 cm from the midline of the abdomen and 4 cm 

above the ilium with an angle of 45° to the midline of the abdomen); left and right erector spinae 

(4 cm from the midline of L3 vertebra); left and right multifidus (2 cm from the midline of L4 

vertebra). An eight camera (MX-13 series) 3D optical motion tracking system (Vicon, Nexus, 

Oxford, UK) was used to capture trunk and upper extremity kinematics at a sampling frequency 

of 100 Hz. Eleven reflective markers were placed over the following positions: C7, T12, and L5 

vertebrae; the most dorsal point of the acromioclavicular joint of the left and right shoulders; the 

most caudal point of the lateral epicondyle of the left and right elbows; the ulnar sides of the left 

and right wrists; the middle of the third metacarpal bone on both hands. Nexus 10.7 software 

(Vicon, Nexus, Oxford, UK) was used to record and synchronize both EMG and kinematics data. 

During the trunk muscle maximum voluntary contraction (MVC) trials, a lumbar dynamometer 

(Humac Norm, CSMi, MA, USA) and the attached back flexion-extension module were used to 

restrict subjects’ pelvis and lower extremity and provide static resistance against trunk muscle 

maximum exertions. 

 

4.2.4 Procedure 

The experimental procedure was first explained to the subjects and the signed informed 

consent was obtained. A brief warm-up session was provided after the measurement of subjects’ 

basic anthropometric data (body stature, mass, trunk length (from L5/S1 joint to the top of head), 

width (at iliac and xiphiod process levels) and depth (at iliac and xiphiod process levels)) to 

warm up muscles and have subjects practice the sudden loading tasks and familiarize with the 

experiment protocol. Then eight bi-polar EMG surface electrodes were attached over the skin of 

muscles of interest. When data collection started subjects first performed three repetitions of 
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isometric maximum trunk extension/flexion exertions at 20 degree trunk flexion posture against 

a static resistance provided by the dynamometer while maintaining. Each MVC exertion lasted 

for 5 seconds and at least 2 minute of rest was provided to prevent muscle fatigue. EMG signals 

recorded during the MVC trials were later used to normalize the experimental EMG data.  

Following the MVC trials, eleven reflective markers were fitted to the designated areas 

described above and subjects then performed all 24 experimental trials in a completely 

randomized order. During data collection subjects were instructed to stand straight and hold the 

load such that the distance between the projected location of the center of the load and the 

midpoint of the subjects’ ankles remained constant (45 cm) among all conditions and trials 

(controlled by markers on the ground and assistance from experimenters). In the current study, 

elbow joint angles were not controlled in order to achieve designed postures. In the asymmetrical 

load position conditions, subjects rotated their arms leftward, kept their torso forward and 

maintained the same horizontal load distance as in the symmetrical conditions. In each trial, 

subjects stood with eyes closed, feet shoulder width apart. They were required to hold the load 

firmly, but without supporting the weight of the load; the load was then suddenly released by an 

experimenter without notice (Figure 7). Subjects were instructed to immediately arrest the falling 

load and carry it back to approximately its original position and hold it stably at this position for 

three seconds. At least 2 minutes of rest was provided between trials to prevent muscle fatigue. 

 

4.2.5 Data processing and analysis 

EMG signals were first filtered (band-pass filtered between 10 and 500Hz and notch 

filtered at 60 Hz and its aliases) and rectified, then smoothed with a 200 data point (0.2 second) 

sliding window. EMG signals from all experimental trials were then normalized with respect to 
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the maximum EMG activities collected during MVC trials for each muscle. The exported three 

dimensional coordinate data of the reflective markers were used to calculate trunk and upper 

extremity kinematics. The trunk flexion angle was defined as the angle formed by the line 

connecting the C7 and L5 reflective markers and the transverse plane (Ning et al. 2011).  

 

4.2.6 Biomechanical model 

In the present study, the external moment at the L5/S1 joint was estimated using a multi-

segment dynamic model in which seven body segments (trunk, left and right upper arm, forearm, 

and hand) and the external load were included. The mass and center of mass of all body 

segments were estimated according to previous work (Pheasant, 1986). A previously established 

and validated EMG-assisted biomechanical model (Marras and Granata, 1997) was used to 

calculate the muscle forces and the corresponding internal moment and spinal compression force 

at the L5/S1 joint. In this model, L5/S1 joint internal moment was estimated using equation (4), 

in which “Gaini”, “NEMGi” and “Ai” represent muscle gain value, the normalized EMG and 

muscle cross-sectional area of trunk muscle i respectively; “f(li)” and “f(vi)” are the muscle force-

length and force-velocity modulation factors of muscle i respectively (Davis et al. 1998; Marras 

and Granata, 1997), these five factors can be used to estimate force generated by muscle i. The 

additional factor “ri” is the moment arm vector of the trunk muscle i. The L5/S1 joint 

compression forces were estimated according to trunk muscle forces, trunk kinematics and 

geometry (e.g. line of action). The subject-specified moment arms (r) and cross sectional areas 

(A) of the trunk muscles considered in the model were estimated using the predictive equations 

from earlier studies (Jorgensen et al. 2001; Marras et al. 2001). The maximum muscle stress 
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(gain) value was then determined by matching the internal and external moments at the static 

load holding period (the last three seconds) of all trials.   

 

          
 
                                                                  (4) 

  

4.2.7 Statistical analysis 

A general linear model (as demonstrated below) was used to perform the statistical 

analysis. 

 

                             

   

Where Yijk, μ, τi, βj, γk, τβij and εijkl represent biomechanical responses (dependent variables), 

overall mean, main effect of HEIGHT, main effect of ASYM, block effect, interaction effect 

between HEIGHT and ASYM, and random error. Total sum of squares was calculated as below:  

 

             
 

 

   

 
   

 

    

 

   

 

   

 

   

 

 

Sums of squares for the main effects and block effects were found as follows: 
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Two factor interaction sum of squares was demonstrated as below: 

                                                           

     
 

  
       

 

 

   

 
   

 

    
        

 

   

 

 

Minitab statistical software (Minitab v.15. Inc., Pennsylvania, USA) was used for all 

statistical analyses. The assumptions of the ANOVA were first tested (Montgomery, 2005), and 

no violation of the assumptions was observed. Multivariate analyses of variance (MANOVAs) 

were performed to reveal the statistical significance of independent variables HEIGHT and 

ASYM as well as their interaction effect on all dependent variables. Variables with significant 

effects were then analyzed using repeated measures ANOVA with ‘subject’ considered as a 

blocking factor. Finally, Tukey‐Kramer post-hoc tests were conducted on dependent variables 

that were significantly affected by HEIGHT to further investigate the differences between the 

two HEIGHT levels. The significant level of α was set as 0.05 for all statistical tests. 

 

4.3 Results 

Results of MANOVA revealed significant effects of HEIGHT, ASYM, and their 

interaction. Univariate ANOVA results demonstrated that both HEIGHT and ASYM 
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significantly affected all three dependent variables. Only the increase of trunk flexion angle and 

L5/S1 joint moment were significantly influenced by the interactive effects of HEIGHT and 

ASYM (Table 3).  

 

Table 3: The results of MANOVA and univariate ANOVA. 

Independent Variables MANOVA 

ANOVA 

Trunk 

angle 

L5/S1 

moment 

L5/S1 

compression  

HEIGHT P<0.001 P<0.001 P<0.001 P<0.001 

ASYM P<0.001 P<0.001 P=0.004 P=0.009 

HEIGHT*ASYM P<0.001 P<0.001 P=0.002 P=0.25 

 

The effects of HEIGHT on all dependent variables are demonstrated in Figure 8 to 10. A 

Significant increase of the peak L5/S1 joint compression force (on average from 2111N to 

2486N) was observed with an increase of load height (Figure 8, Different letters denote forces 

that are statistically different from one another. Bars indicate the corresponding 95% confidence 

interval). Reduced trunk flexion was also observed (on average from 6.5 degree to 3.8 degree) 

with an increase in load height (Figure 9, Different letters denote angles that are statistically 

different from one another. Bars indicate the corresponding 95% confidence interval). Finally, 

significantly greater L5/S1 joint moment (83.5Nm) was observed at the ‘Middle’ height 

condition, while the difference between ‘Low’ and ‘High’ conditions was not statistically 

significant (Figure 10, Different letters denote moments that are statistically different from one 

another. Bars indicate the corresponding 95% confidence interval). 
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Figure 8. Peak L5/S1 compression force caused by sudden loading under the three different load 

height levels.  

 

Figure 9. Increase of trunk flexion angle caused by sudden loading under the three different load 

height levels. 
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Figure 10. Increase of L5/S1 joint moment caused by sudden loading under the three different 

load height levels. 

 

The effects of ASYM on all dependent variables are shown in Table 4. Significantly 

smaller increase of trunk flexion angle, L5/S1 moment, and peak L5/S1 joint compression force 

were found under the ‘Asymmetry’ condition. Furthermore, significant interaction effects 

between HEIGHT and ASYM for increase of trunk flexion angle and L5/S1 joint moment were 

observed (Figure 11 and Figure 12, Bars indicate the corresponding 95% confidence interval). In 

the ‘Symmetry’ condition, the increase of load height resulted in smaller increase of trunk 

flexion. However, in the ‘Asymmetry’ condition the largest increase of trunk flexion was found 

in the ‘Middle’ condition. As showing in Figure 12, the largest L5/S1 joint moment was 

observed in the ‘Middle’ height condition in both ASYM conditions. However, the smallest 

L5/S1 joint moment were found in the ‘High’ and ‘Low’ levels in symmetric and asymmetric 

postures, respectively. These data also further indicated that the main effect of ASYM is 

primarily caused by the differences in the ‘High’ and ‘Low’ levels, but less by the variation in 

the ‘Middle’ level. 
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Table 4. The mean (SD) values of dependent variables at different ASYM conditions, p-values 

are reported in Table 3. 

ASYM 

Trunk angle 

(degrees) 

L5/S1 moment 

(Nm) 

L5/S1 

compression (N) 

Symmetry 6.2 (0.2) 78.4 (1.2) 2360 (56) 

Asymmetry 5.0 (0.2) 76.0 (1.2) 2269 (49) 

 

 

 

Figure 11. Interaction between ‘HEIGHT’ and ‘ASYM’ for increase of trunk flexion angle. 
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Figure 12. Interaction between ‘HEIGHT’ and ‘ASYM’ for increase of L5/S1 joint moment. 
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Table 5. The results of statistical analyses for related kinematics variables; mean (SD) values are 

shown in the table. 

Height 
Arm rotation 

(degrees) 

Initial trunk 

posture (degree) 

Initial moment arm 

(mm) 

Change of moment 

arm (mm) 

Low 8.3 (0.4) 
A
 91.7 (0.4) 

A
 515.0 (3.0) 

B
 -33.3 (2.8) 

A
 

Middle 13.0 (0.6) 
B
 95.0 (0.3) 

B
 518.7 (3.5) 

B
 20.4 (1.9) 

B
 

High 12.4 (0.8) 
B
 94.8 (0.3) 

B
 487.5 (2.9) 

A
 60.6 (2.0) 

C
 

p-value p<0.001 p<0.001 p<0.001 p<0.001 

 

To explain our results, muscle EMG activity data were also examined. Normalized EMG 

(NEMG with respect to MVC) data prior to the sudden loading event was first examined, and it 

was found that the average (SD) activities for erector spinae and multifidus are 4.8% (0.2%) and 

4.1% (0.2%), respectively, which indicated that the back extensor muscles are relatively relaxed 

before the sudden loading event (Jin et al. 2012). In addition, the effect of HEIGHT on the trunk 

muscle peak MEMG during sudden loading was also investigated. Results demonstrated 

significantly elevated muscle activities among back extensor muscles and external oblique with 

the increase of HEIGHT (Figure 13, Different letters denote values that are statistically different 

from one another. Bars indicate the corresponding 95% confidence interval, ES, MU, RA and 

EO refer to erector spinae, multifidus, rectus abdominis and external obliques, respectively).   

 

 



42 
 

 

Figure 13. Peak normalized EMG value (average from both sides) of trunk muscles caused by 

sudden loading under the three different load height levels (two ASYM levels combined).  

 

4.4 Discussion 

In agreement with our initial hypotheses, results of the present study demonstrated 

increased spinal compression force and reduced trunk flexion at higher load handling position. 

These results can be explained by the stability and muscle co-contraction levels associated with 

different load handling height conditions. An earlier study demonstrated that the increase of load 

height elevated trunk muscle co-contraction during static weight holding due to reduced trunk 

stability (Granata and Orishimo, 2001); this increased trunk muscle activity would consequently 

increase spinal compression (Granata and Marras, 2000). Results of the current study supported 

the previous findings. Because of the strong positive association between spinal compression and 

the occurrence of low back injury (Kerr et al. 2001); our results indicated that handling load at 

lower height (i.e. the umbilicus level) helps reduce the risk of back injury when experiencing 

sudden loading during material handling. 
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The increase of load handling height also resulted in smaller trunk flexion. As we have 

discussed above, the increase of load handling height may elevate the trunk muscle co-

contraction (Granata and Orishimo, 2001), which results in higher global trunk stiffness, and 

smaller trunk bending under external impact (Granata and Marras, 2000). On the other hand, the 

magnitude of sagittal arm rotation may have also influenced trunk motion during sudden loading. 

As is shown in Table 5, significantly larger arm rotations were observed in the ‘High’ and 

‘Middle’ height levels; such an increase in arm rotation may compensate for trunk motion and 

result in reduced trunk flexion. 

In the current study the largest increase of L5/S1 joint moment was observed at the 

‘Middle’ height level. According to the multi-segment model, the external moment on the L5/S1 

joint is affected by the magnitude of external loads and their corresponding moment arms. In-

depth analysis of kinematics data revealed that even though the horizontal distance between the 

load and the centre of ankles was controlled, subjects maintained slightly extended initial trunk 

postures when grasping load in the ‘High’ condition. This posture increased lumbar lordosis and 

decreased the initial moment arm between the L5/S1 joint and the load. Such reduction in 

moment arm could result in a smaller moment during sudden loading. In addition, although the 

initial moment arms of the external load were similar between ‘Low’ and ‘Middle’ levels, when 

releasing the load from the ‘Low’ position, the natural arm rotation brought the load closer to the 

human body which decreases the moment arm (an average decrease of 33.3 mm from the initial 

posture to the point that peak moment was observed) of the external load. In contrast, moment 

arms increased during sudden loading in both ‘Middle’ and ‘High’ levels (on average 60.6 mm 

and 20.4 mm increases from the initial posture to the point of peak moment respectively, as 
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shown in Table 5). Consequently, the changes of moment arms in different conditions largely 

determined the results of the L5/S1 joint moment.  

Results of this study demonstrated a significantly smaller increase of trunk flexion angle, 

L5/S1 joint moment, and peak L5/S1 joint compression force in the ‘Asymmetry’ load releasing 

position than the ‘Symmetry’ position (Table 4). These results were in agreement with the 

findings of a previous study (Zhou et al. 2013
a
). It has been suggested that asymmetric trunk 

posture increases torsional and lateral moment during lifting, therefore elevate the risk of back 

injury (Hooper et al. 1998). However, the asymmetric load handling posture tested in the current 

study did not involve trunk twisting motion (subjects were instructed to always face forward). 

Therefore, minor changes in spinal shear loading (both anterior-posterior and lateral shear 

forces) were generated due to the relatively small magnitude of posture perturbations (e.g. on 

average 5.0 degrees of trunk flexion). It should be noted that the current results only stand when 

handling relatively light load (e.g. 6.8 kg) with the forward facing trunk postures. It is very likely 

that when handling a heavier load in flexed and/or rotated trunk postures, the sudden impact 

from an asymmetric direction could generate much higher torsional and shear spinal loading 

thereby elevates the risk of back injury.  

Interestingly, a significant interaction effect between HEIGHT and ASYM was observed. 

In the ‘Symmetry’ condition, the increase of load height consistently reduced the magnitude of 

trunk flexion. However in the ‘Asymmetry’ condition the largest trunk flexion was found in the 

‘Middle’ condition instead of in ‘Low’ condition. In addition, the largest L5/S1 joint moment 

was consistently found in the ‘Middle’ height condition in both ASYM conditions. However, the 

smallest L5/S1 joint moments were found in the ‘Low’ and ‘High’ conditions when holding the 

load in asymmetric and symmetric postures, respectively. In asymmetric load positions, the 
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direction of external load and the sagittal plane formed a 45
o
 angle, which resulted in shorter 

moment arms to the rotation axis of sagittal trunk flexion than in symmetric conditions; therefore 

sudden loading in asymmetric conditions could generate less trunk flexion which was supported 

by the previous study (Zhou et al. 2013
a
). In the current study this effect was more pronounced 

when holding the load at the ‘Low’ condition with lower trunk flexion angle and the resultant 

L5/S1 moment observed.   

There are several noteworthy limitations of the present study. First, due to the relatively 

small trunk flexion during sudden loading, only spinal compression force was evaluated. More 

comprehensive spinal loading (compression force, shear force and torsional force etc.) should be 

assessed in future studies especially when experiencing larger trunk posture perturbations. 

Second, in the current study, the horizontal distance between the external load and the mid-point 

of the ankles was controlled to help maintain constant initial moment arm from the centre of the 

load to the L5/S1 joint. However this purpose was not attained due to the slight trunk 

hyperextension postures subjects maintained in higher load handling positions. Although our 

results are very unlikely to be caused by these changes (despite having the greatest spinal 

compression, the load moment arm in ‘High’ condition (487.5 mm) was even smaller than the 

‘Middle’ and ‘Low’ conditions (518.7 and 515.0 mm respectively), but we observed the greatest 

spinal compression in the ‘High’ condition (Table 5)). Third, this study was conducted in a 

controlled lab environment with all subjects recruited from the student population, and a 

comparatively light load (6.8 kg) was used. The response of experienced workers to a much 

heavier load in a real work environment warrants future investigation. Forth, in the current study 

the asymmetric load position was created by rotating arms toward the left side of the body, yet 

the impact of handedness was not considered. 
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CHAPTER 5. THE STUDY OF THE EFFECT OF UNEVEN GROUND CONDITION 

5.1 Objective 

In many occupational settings, workers have to perform manual material handling 

activities while standing on uneven ground surfaces, such as construction workers installing 

shingles on the roof, fisherman handling cables and cages on a rocking boat and farmers 

harvesting fruit and vegetable in an agricultural field. The purpose of the current experiment was 

to investigate the effects of laterally slanted ground on trunk biomechanical responses when 

experiencing sudden external loading. It is hypothesized that the increase of slanted ground angle 

will increase trunk muscle activation level and thereby generate higher L5/S1 joint compression 

force when experience sudden drop of load. Results of this study will facilitate the future 

development of guidelines and protective strategies to reduce occupational back injuries 

especially among workers in out-door occupations. 

 

5.2 Pilot study 

In the pilot study, two male subjects with mean (SD) height, weight, and age of 175.5 

(3.5) cm, 72.5 (3.5) kg, and 27.0 (1.4) years volunteered to participate. Both of them were 

recruited from the student population of West Virginia University and were free from low back 

pain and upper/lower extremity injuries.  

The design of experiment involved two independent variables: laterally slanted angle 

(ANGLE) and weight of load (WEIGHT). Three different laterally slanted angles were tested: 0 

degree (flat ground), 15 degree and 30 degree (demonstrated in Figure 14). Two different 

weights (6.8 kg and 3.4 kg) were used to investigate the interaction effect between slanted angle 

and the magnitude of the load. The combination of the two independent variables created 6 
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conditions, and each condition was tested for 4 times (a total of 24 trials) in a completely 

randomized sequence. In all 6 testing conditions, the midpoint between the medial sides of 

ankles was superimposed onto the same location; the distance between this point and the 

projected center of mass of the external load was kept consistent for all conditions (Waters et al. 

1993). 

 

 

Figure 14. Three different ANGLE conditions (A: 0 degree; B: 15 degree; C: 30 degree). 

 

In the pilot study, only one dependent variable was considered: Peak L5/S1 joint 

compression: the maximum spinal compressive force during the sudden impact.  

This experiment used the same wood structure and load (6.8 kg) as the ones in previous 

experiments, and another load (3.4 kg) also made from standard disc weights and a polyvinyl 

chloride (PVC) pipe was included in the experiment to provide the other level of weight. Two 

customized wood slanted surfaces (15 degree and 30 degree) were built to provide the laterally 

A B C
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slanted ground. Anti-skid strips were attached to the wood surfaces so as to have a higher 

coefficient of friction, and avoid the risk of falling. 

The same electromyography (EMG) system, 3D optical motion tracking system (Vicon) 

and lumbar dynamometer were also used in this experiment to measure the activities of the major 

trunk muscles, capture trunk and upper extremity kinematics, and restrict subjects’ pelvis and 

lower extremity and provide static resistance, respectively. The placements of EMG electrodes 

and Vicon reflective markers were the same as experiment 2.  

Experiment procedure was first explained to the subjects and informed consents were 

obtained. Before the experiment, subjects’ basic anthropometric data including body weight, 

height; trunk length, width and depth were measured, and a five minute warm-up routine was 

conducted to stretch and warm up trunk and upper extremity muscles. Subjects were then fitted 

with eight bi-polar EMG surface electrodes to the above mentioned sites and performed MVC 

trials in the back flexion-extension module. During the MVC, subjects were secured in a 20 

degree trunk forward flexion posture and performed three repetitions of static trunk maximum 

extension/flexion exertions. Each MVC trial lasted five seconds and ample rest was given 

between trials in order to avoid muscle fatigue. The EMG activities of all sampled trunk muscles 

were recorded and used later as input to the biomechanical model. 

Upon finishing the MVC trials, eleven reflective markers were secured to the designated 

locations and subjects performed all of the 24 experimental trials. In each trial, subjects first 

stood on the assigned slanted surface with feet shoulder width apart, and then held the load 

steadily (without supporting the load) with their eyes closed (Figure 15). The experimenter who 

controlled the load would suddenly release the load without notice. Subjects were trained to 

respond to the sudden loading by carrying the load back to approximately their shoulder level 
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(the original load height) as quickly as possible, and holding the load stably for three seconds. 

Two minutes rest was given between trials to avoid the accumulation of muscle fatigue.  

 

 

Figure 15.  A side view of a sudden loading experimental trial: a subject is standing on slanted 

ground surface and holding the load before sudden loading event. 

 

The EMG-assisted model, multi-segment dynamic model and their input parameters used 

in the previous experiments were also adopted in the current experiment to calculate the internal 

moment, spinal force and external moment at the L5/S1 joint.  

Kinematics data captured by Vicon system and trunk muscle EMG activities recorded by 

EMG system were processed in the same manner as in the previous experiment. Trunk flexion 

angle, internal moment and spinal force at the L5/S1 joint were estimated in the same way as 

well. 
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The results of the pilot study showed that peak L5/S1 joint compression force increased 

with a larger slanted angle (Figure 16), which is in line with our hypothesis. Also a heavier load 

resulted in larger peak L5/S1 compression force (Figure 17). 

 

Figure 16. Peak L5/S1 compression force under three different slanted angle conditions. 

 

 

 

Figure 17. Peak L5/S1 compression force under three different weight conditions. 
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5.3 Method 

5.3.1 Sample size 

The number of subjects was determined by the desired power of test and the results of 

pilot study, as demonstrated in the below equation (Dean and Voss. 1999): 

 

                                                  
      

                                                                     (5) 

 

Where r, υ, σ, φ and Δ is the desired number of observations, the number of levels of the 

treatment, the standard deviation of the response, the noncentrality parameter and the minimum 

difference in response beyond which the effects of the two treatments are considered 

significantly different from each other, respectively. And the procedure to find the required 

sample size is as follows (Dean and Voss):  

1. Find the numerator degrees of freedom v1= υ-1, and specify α (usually α-0.01 or 0.05) 

2. Specify the first iteration of the denominator degrees of freedom, and then calculate it 

using v2= υ (r-1) in the following iterations 

3. According to the desired power, use table (Power of F test table, see appendix 1) to 

determine φ with v1 and v2 as inputs. 

4. Calculate r=          , rounding to the nearest integer. 

5. Repeat the above steps until r is unchanged.    

In the current study, υ is 3; the desired test power is 0.9 and α is 0.05, respectively; and 

based on the result of the pilot study, σ is 169.4 and 206.6 for 6.8 kg and 3.4 kg condition, 

respectively; Δ is 150 N. According to Equation (5) and the aforementioned procedure, r=27 for 
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6.8 kg condition and r=40 for 3.4 kg condition, respectively. It was indicated that 10 subjects 

needed to be recruited, in order to detect a significant difference at the desired test power of 0.9. 

However, 13 subjects were finally recruited, such that a larger sample size could ensure an even 

higher test power and compensate for the possible overestimate of Δ.  

 

5.3.2 Subjects 

In the current experiment, thirteen subjects from the student population of West Virginia 

University volunteered to participate in this study. All subjects were in good physical condition 

with average age, body height and body mass of 26.1 years (SD 2.3), 177 cm (SD 3.2) and 70.8 

kg (SD 6.3), respectively, none had previous history of LBP or upper extremity injuries. The 

protocol of the experiment was approved by Research Integrity and Compliance Committee of 

West Virginia University. 

 

5.3.3 Experimental design 

The experimental design included two independent variables: laterally slanted angle 

(ANGLE) and weight of load (WEIGHT). ANGLE included three levels: 0 degree (flat ground), 

15 degree and 30 degree (Figure 14). The effect of WEIGHT has already been investigated by a 

previous study (Zhou et al. 2013
b
), while in the current study, two different levels (6.8 kg and 3.4 

kg) of WEIGHT were also included to examine the interaction between ANGLE and WEIGHT. 

The two independent variables created 6 conditions (3×2), and each condition was repeated for 4 

times, which formed a total of 24 trials. Across all experimental conditions, the distance between 

the midpoint of ankles and the projected center of mass of the external loads was kept at constant 

(subject specific arm length) (Waters et al. 1993). 
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There were three dependent variables: 1. Increase in trunk flexion angle: the difference 

between the peak trunk flexion angle and initial trunk angle; 2. Increase in L5/S1 joint moment: 

the difference between the maximum L5/S1 joint moment during the sudden loading and initial 

L5/S1 joint moment; and 3. Peak L5/S1 joint compression force: the maximum L5/S1 joint 

compression forces during sudden loading.  

 

5.3.4 Apparatus and Equipment 

A wood structure was built to hang the loads at the shoulder level of subjects. The two 

loads were made from standard disc weights; a polyvinyl chloride (PVC) pipe was used to secure 

the weights together through the central holes, and to also serve as a handle for subjects to hold 

when performing the designated tasks. Two customized wood slanted surfaces (15 degree and 30 

degree) were built to provide the laterally slanted ground. Anti-slip strips were attached to the 

wood surfaces so as to increase the coefficient of friction, and avoid the risk of falling.  

A surface electromyography (EMG) system (Model: Bagnoli, Delsys Inc, Boston, MA, 

USA) was used to record EMG activities of four pairs of interested trunk muscles: left and right 

erector spinae (electrodes placed 4 cm to the midline at L3 vertebra); left and right multifidus 

(electrodes placed 2 cm to the midline at L4 vertebra); left and right rectus abdominis (3 cm to 

the midline of the abdomen and 2 cm above the umbilicus); left and right external obliques (10 

cm to the midline of the abdomen and 4 cm above the ilium with a 45° angle to the midline of 

the abdomen). 

An eight camera 3D optical motion tracking system (Model: MX-13 series, Vicon, 

Nexus, Oxford, UK) was used to capture the kinematics data of trunk and upper extremity. 

Reflective markers were attached on eleven landmarks of body segment: C7, T12, and L5 of 
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vertebral column; left and right shoulders: the most dorsal point of the acromioclavicular; left 

and right elbows: the most caudal point of the lateral epicondyle; left and right wrists: the ulnar 

side of wrists; left and right hands: the middle of the third metacarpal bone on hands.  

Besides, a lumbar dynamometer (Humac Norm, CSMi, MA, USA) and its attached back 

flexion-extension module were used in the maximum voluntary contraction (MVC) trials, so as 

to provide resistance to exert against and secure subjects’ pelvis and lower limbs. 

 

5.3.5 Procedure 

At first, an experimenter explained the experimental procedure to the subjects, and then 

informed consents were signed. Subjects’ basic anthropometric data (arm length, body mass, 

height, trunk length, width and depth) was measured prior to a five minute muscle warm-up 

session. Eight bi-polar EMG surface electrodes were placed over the skin of the above 

mentioned muscles and subjects then performed three repetitions of trunk MVC trials while 

maintain a 20 degree trunk forward flexion posture on the lumbar dynamometer (Ning et al. 

2012). Each MVC exertion lasted for five seconds and two minutes rest was provided between 

trials to avoid muscle fatigue. The recorded EMG activities data during MVC was later used to 

normalize experimental EMG signals, and then served as input to the biomechanical model. 

After completing the MVC trials, eleven reflective markers were fitted onto the above 

described locations of body segments, subjects then performed all 24 experimental trials. In each 

trial, subjects first stood on the assigned slanted surface with feet shoulder width apart, and then 

held the handle of the load steadily at their shoulder level without supporting the weight of the 

load. After subjects closed their eyes, an experimenter who controlled the load suddenly released 

the load without prior notice (Figure 15). Subjects were asked to hold the load and carry it back 
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to approximately their shoulder level (the initial load height) as soon as possible, and hold it 

stably for three seconds. Two minutes of rest was given between sudden loading trials to prevent 

muscle fatigue.  

 

5.3.6 Biomechanical model 

The L5/S1 joint external moment was estimated by using a multi-segment dynamic 

motion model, in which the external loads and seven body segments (including trunk, upper 

arms, forearms and hands) were included. Trunk and upper extremities kinematics recorded by 

Vicon reflective markers as well as anthropometric data were used as inputs of this model, 

information about normalized mass (with respect to body mass) and the center of mass of the 

seven body segments was obtained from a previous study (Pheasant 1986). L5/S1 joint internal 

moment and spinal compression force were estimated using a previously established 

biomechanical model (Marras and Granata 1997). Input parameters (moment arms and the cross 

sectional areas of the trunk muscles) were estimated using regression equations established in 

previous studies (Jorgensen et al. 2001; Marras et al. 2001). The maximum muscle stress (gain) 

was determined by matching the external and internal L5/S1 joint moment during the static load 

holding phase (the last three seconds) of all experimental trials. 

 

5.3.7 Data processing and analysis 

Nexus 10.7 software was used to record and synchronize both EMG and kinematics data. 

Trunk flexion angle was defined as the angle between the transverse plane and the line 

connecting C7 and L5 reflective marker. EMG data were first filtered (500Hz low pass and 10Hz 

high pass filter, notch filter of 60 Hz its aliases), rectified and smoothed (with a 200 data points 
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sliding window). Then EMG signals of experimental trials were normalized (with respect to 

EMG data of MVC trials for each muscle) to provide NEMG data, which would be used later as 

inputs to the aforementioned biomechanical model to estimate L5/S1 joint internal moment and 

spinal compression force. 

 

5.3.8 Statistical analysis 

A general linear model was used to perform the statistical analysis (demonstrated below). 

 

                             

   

Where Yijk, μ, τi, βj, γk, τβij and εijkl represent biomechanical responses (dependent variables), 

overall mean, main effect of ANGLE, main effect of WEIGHT, block effect, interaction effect 

between ANGLE and WEIGHT, and random error. Total sum of squares was calculated as 

below:  

 

             
 

 

   

 
   

 

    

 

   

 

   

 

   

 

 

Sums of squares for the main effects and block effects were found as follows: 
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Two factor interaction sum of squares was demonstrated as below: 

                                                           

     
 

  
       

 

 

   

 
   

 

    
        

 

   

 

 

The assumptions of the ANOVA (normality of residuals, non-correlation of residuals, 

and constant variance of residuals) were examined before analyses (Montgomery 2005), and no 

violation of the assumptions was observed. Multivariate analyses of variance (MANOVAs) were 

then performed to test the main and interaction effects. Variables that were found significant in 

the MANOVA were further analyzed using univariate ANOVA. Tukey‐Kramer post-hoc tests 

were performed on the dependent variables that were significantly affected by ANGLE to further 

investigate the differences between levels. The α-value of 0.05 was set in all statistical tests as 

the demand level of significance. 

 

5.4 Results 

Significant main effects of ANGLE and WEIGHT were found according to the results of 

MANOVA, while the interaction effect was not significant, and in thus was not further analysed. 

The follow up univariate ANOVA test revealed that ANGLE significantly affected the increase 
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in L5/S1 joint moment and the peak L5/S1 joint compression force, and WEIGHT significantly 

affected all three dependent variables (Table 6).  

 

Table 6. The results of MANOVA and univariate ANOVA. 

Independent Variables MANOVA 

ANOVA 

Trunk 

angle 

L5/S1 

moment 

L5/S1 

compression  

ANGLE P<0.001 P=0.263 P<0.001 P<0.001 

WEIGHT P<0.001 P<0.001 P<0.001 P<0.001 

ANGLE*WEIGHT P=0.129 N/A N/A N/A 

 

The effects of ANGLE on the three dependent variables are demonstrated in Figure 18 to 

20. Greater increase of trunk flexion angle was caused by an increased slanted angle, while the 

effect was not significant (Figure 18).Significantly larger increase of L5/S1 joint moment and 

peak L5/S1 joint compression force (on average from 75.25 Nm to 81.67 Nm and from 2213 N 

to 2396 N, respectively) were observed with the increase of slanted angle (Figure 19 and Figure 

20, Different letters denote values that are statistically different from one another. Bars indicate 

the corresponding 95% confidence interval.).  
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Figure 18. Increase of trunk flexion angle caused by sudden loading under the three different 

slanted angles.  

 

 

Figure 19. Increase of L5/S1 joint moment caused by sudden loading under the three different 

slanted angles.  
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Figure 20. Peak L5/S1 compression force caused by sudden loading under the three different 

slanted angles.  

 

The effects of WEIGHT on all three dependent variables are demonstrated in Table 7. 

Significantly smaller increase of trunk flexion angle, L5/S1 joint moment and peak L5/S1 joint 

compression force were found in the 3.4 kg weight condition.  

 

Table 7. The mean (SD) values of dependent variables at different WEIGHT conditions, p-values 

are presented in Table 6. 

WEIGHT 

Trunk angle 

(degrees) 

L5/S1 moment 

(Nm) 

L5/S1 

compression (N) 

6.8 kg 8.9 (0.4) 97.3 (1.5) 2675 (32) 

3.4 kg 4.1 (0.2) 59.1 (1.0) 1911 (24) 

 

In addition, normalized EMG (NEMG) data (with respect to the MVC) of the eight trunk 

muscles were also examined. It was found that even though the differences of rectus abdominis 

muscles were not significant, with the increase of ANGLE, greater peak NEMG were generally 

observed from the antagonistic muscles (i.e. rectus abdominis and external obliques), which 
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indicated higher co-contraction level of trunk muscles (Figure 21, RA and EO refer to rectus 

abdominis and external obliques, respectively. Different letters denote values that are statistically 

different from one another. Bars indicate the corresponding 95% confidence interval). On the 

other hand, the NEMG of agonist muscles (i.e. erector spinae, multifidus) showed different 

pattern between left and right sides: the NEMG of the right (contralateral) side of both muscles 

increased with larger ANGLE; while for the left (ipsilateral) side, the smallest peak NEMG was 

constantly observed in 15 degree condition, while no significant difference was found between 0 

and 30 degree conditions (Figure 22, ESl, ESr, MUl and MUr refer to left erector spinae, right 

erector spinae, left multifidus and right multifidus, respectively. Different letters denote values 

that are statistically different from one another. Bars indicate the corresponding 95% confidence 

interval).  

 

 

Figure 21. Averaged normalized EMG value (average of left and right sides with respect to 

MVC) of trunk antagonistic muscles. 
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Figure 22. Normalized EMG pattern (with respect to MVC) of left and right sides of trunk 

agonist muscles. 

 

5.5 Discussion 

Results of the current study showed significant main effect of ANGLE on peak L5/S1 

joint compression force, and post-hoc test revealed that an increase in ANGLE resulted in greater 

peak L5/S1 joint compression force, which confirmed our initial hypothesis. According to 

previous studies, an increase of slanted ground angle leads to reduced trunk stability, which in 

turn, elevates trunk muscles co-contraction (Granata and Orishimo, 2001) (supported by our 

NEMG data) and result in higher spinal compression force (Granata and Marras, 2000). Because 

spinal loading is directly associated with the risk of low back pain, to reduce such injury risk, 

slanted and uneven ground surfaces should be avoided in the work place especially when manual 

material handling tasks are performed on these surfaces. In the situation when uneven ground 

surface is inevitable, it is suggested that countermeasures that could compensate for the 

decreased postural stability should be taken. For example, roof workers should wear footwear 

that provides greater grip and friction.   
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Attention should also be paid to the different NEMG patterns between the ipsilateral 

(left) and contralateral (right) sides of the agonist muscles. Due to the laterally unbalanced 

ground surface, the ipsilateral and contralateral sides of back muscles could generate 

substantially different biomechanical responses when performing different tasks. Such 

discrepancy has also been reported by previous studies. One study discovered different FRP 

onset patterns between left and right sides of trunk extensor muscles when performing trunk 

flexion/extension tasks while standing on laterally slanted ground (Hu et al.2013). It was also 

found that when performing static load holding tasks on laterally slanted ground, the left and 

right sides of back muscles demonstrated considerably different EMG activities (Jiang et al. 

2005). Consistent with these previous findings, in the current study different NEMG levels 

between left and right sides of trunk agonist muscles were observed during sudden loading trials 

when standing on laterally slanted ground surfaces. Because of the laterally slanted ground, 

subjects had their left leg straight while the knee of the right side flexed when performing sudden 

loading tasks. The flexion of knee could result in a forward pelvic rotation (Murray et al. 2002), 

which necessitate larger trunk muscle force to keep standing balance. Therefore, in the current 

study, with an increase in slanted ground angle, greater EMG activity was generally observed in 

contralateral side of trunk agonist muscles. On the other hand, the ipsilateral side did not show 

this pattern, with the increase of slanted ground angle (from 0 to 30 degree), EMG activity 

decreased first (from 0 to 15 degree), then significantly increased (from 15 to 30 degree).  

Similar result was reported in a previous study (Jiang et al. 2005), the activity of ipsilateral trunk 

extensor muscles reduced from 0 to 10 degree, while increased from 10 to 30 degree, the author 

presumed that this was due to a co-contraction strategy, which helped maintain torso stability. In 
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the currently study, the reason why ipsilateral side of trunk extensor muscles showed this pattern 

is not clear, and warrants further analysis.   

Even though the effect of ANGLE on the increase of trunk flexion angle was not 

significant, slightly larger increase of trunk flexion angle was observed in more slanted ground 

conditions. The increase of slanted angle reduced standing stability (Jiang et al. 2005), and 

therefore may result in greater trunk perturbation when subjects experience sudden loading.  

The increase of slanged angle also significantly elevated the increase of L5/S1 joint 

moment during sudden loading. According to the multi-segments model, L5/S1 joint moment 

was highly influenced by trunk flexion angle as well as load moment arm. In the current study, 

as discussed above, even though the differences were not significant, greater increase of trunk 

flexion angle was still observed with the increase of ANGLE. This increase of trunk flexion 

angle partially contributed to the increase of L5/S1 joint moment. In addition, it was found in the 

present study that when standing on a more slanted ground surface, subjects tended to adopt a 

more flexed initial trunk posture. Such phenomenon supported the conclusions of a previous 

study that maintaining a more flexed trunk posture could compensate for the reduced stability 

(Granata and Wilson, 2001). While a more flexed trunk posture also resulted in larger moment 

arm between L5/S1 joint and the center of the load, which substantially increased the 

contribution of external load to the L5/S1 joint moment.  

The results of the current study also showed a significant main effect of WEIGHT on all 

three dependent variables. Compared with 3.4 kg condition, greater trunk biomechanical 

responses were consistently generated in 6.8 kg condition, which was within our expectation and 

supported by a recent study (Zhou et al. 2013
b
). 
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Several limitations of the current study need to be mentioned. First, participants of the 

current study were mostly college students with little experience in performing manual material 

handling tasks. More experienced workers may perform differently therefore warrant further 

investigation. Second, for safety reasons, only laterally slanted surfaces were tested and the 

largest slanted ground angle tested was 30 degrees, the biomechanical responses maybe different 

when standing on anterior posteriorly slanted surfaces and/or with larger slanted angles.  
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CHAPTER 6. CONCLUSION 

Findings of the current study provide important information regarding the influence of 

foot placement, load handling position and laterally slanted ground on trunk biomechanical 

responses during sudden external loading.  

According to the results, it is suggested that adopting staggered stance could be a 

protective foot placement against low back injury for those who may experience sudden loading 

in their work environment. 

In addition, handling load at a lower height (e.g. umbilicus) could help reduce the risk of 

low back injury as well; asymmetric load handling position generated by arm rotation resulted in 

smaller spinal compression force, while its impact on torsional and shear force need further 

investigation. 

Finally, compared with flat ground, standing on laterally slanted ground surface will lead 

to increased spinal compression force, which indicates a higher risk of low back injury. 

Therefore, uneven ground condition, especially laterally slanted ground surface should be 

avoided in a workplace. Also, reducing the magnitude of impact load would reduce the risk of 

low back injury during sudden external loading.  

As a primary contributing factor to low back injury, sudden loading warrants further 

investigations and more in depth understanding, such that more protective strategies can be 

developed. Future studies may investigate the effect of other work-related factors on people’s 

biomechanical response during sudden loading, such as load coupling condition, flooring, upper 

extremities fatigue and restricted postures. Additionally, in the current study the sudden external 

loading was imposed on upper extremities, sudden loading of other types (applied on thoracic, 

pelvis and low extremities etc.) warrants future investigation. Last but not least, in the present 
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study subjects experienced sudden loading while maintaining an upright standing posture, other 

postures (stoop, squat and kneeling, etc.) may generate a different response pattern, and should 

be studied in the future.   
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Appendix A: CONSENT AND INFORMATION FORM 
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