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ABSTRACT 

Design and Implementation of Web-based GIS for Forest Fragmentation Analysis 

Fei Wang 

 
The advantages and limitations of current web GIS software for forest 

fragmentation information and analysis functionality were investigated using Landsat 
Thematic Mapper data of 1987 to 1999 for a test site in northern West Virginia.  ESRI's 
ArcIMS technology was used to build a Web-based forest fragmentation analysis system 
to query, represent, and analyze the status of forest fragmentation using landscape 
metrics.  Both ArcIMS HTML and Java fragmentation analysis tools were constructed.  
The web GIS was evaluated with respect to accessibility, navigation, interactive 
cartographic functionality, and spatial analysis functionality.  The current ArcIMS 
approach was found to offer only limited support for the spatial analysis functions 
required for fragmentation analysis.  A variety of enhancements to the current web GIS 
software are recommended, including support for polygon-based spatial 
query, interactive representation and operation for raster data, and the integration of user-
side and server-side data for spatial analysis. 
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Chapter 1: Introduction 

Introduction 
 

Forest fragmentation has complex effects on the local environment and economy 

of many areas in the eastern United States (Saunders et al. 1991, Hill et al. 1998, 

Weakland 2000). Changes in social and economic factors drive general land use change 

and forest fragmentation.  Improving the understanding of forest fragmentation is 

becoming an increasing concern to Federal and State agencies and non-governmental 

organizations which are involved in natural resource management and associated policy-

making. 

West Virginia has more than 4.78 million hectares (11.8 million acres) of forested 

land (USDA Forest Service Northeastern Station 2000). Forest resources are central to 

the West Virginia economy, environment, recreation, and for ecological diversity. 

However, human activities, including introduced forest fires, timber harvesting, road 

construction, and home and service-sector development (particularly, recreational 

development and logging on private lands) are placing an ever-increasing strain on the 

West Virginia regional forest ecosystem (DeMeo1999). Since at least 1988, the U.S. 

Department of Agriculture (USDA) Forest Service has been interested in potential forest 

fragmentation stress in this area (DeGraaf and Williams 1988).  A survey between 1982 

and 1997 found that forested land in West Virginia increased by 68,351 hectares 

(168,900 acres). However, the total area of conversions was much larger. It was found 

that 128,810 hectares (318,300 acres) of forest was converted to other uses, including 

72,160 hectares (178,300 acres) lost to urban development, and there was an increase of 

nearly 242,810 hectares (600,000 acres) of forest land from conversions of crop and 

pasture land (USDA Natural Resources Conservation Service, 1997). These conversions 

have had implications for forest fragmentation in this region and raise important 

questions such as how to monitor forest fragmentation dynamics at the landscape scale, 

what is the relationship between social and economic factors and forest fragmentation, 

and what are the possible effects on local wildlife habitat and biodiversity? Related to 

these questions is the interest in improving the understanding of the problem of forest 
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fragmentation in West Virginia. In addition, in West Virginia, more than 90 percent of 

forestland is privately owned (USDA Forest Service Northeastern Station, 2000). The 

parcelization of land ownership may increase the complexity of forest management at the 

landscape scale (Riemann and Tillman 1999). Significant efforts are being made to help 

private landowners apply environmental and economic resource management principles 

to benefit themselves, future landowners, and the public. For example, the USDA 

sponsors the Forest Stewardship Program (USDA Forest Service, 2001c). Most of these 

programs have a geographic context. Therefore, studying ways to improve pubic access 

to this kind of spatial information and knowledge is necessary. 

In order to understand better the problem of forest fragmentation in West Virginia 

and find potential Internet-based spatial information solutions to improve the forest 

fragmentation analysis and knowledge delivery, a case study was chosen. The study site 

is in northern West Virginia, and covers Central and Eastern Monongalia County and 

Western Preston County (Figure1.1). 

 

Figure 1.1   Study Area. 
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What is forest fragmentation? 
Fragmentation is the process of dissecting large and contiguous areas of similar 

native vegetation types into smaller units separated by different vegetation types and/or 

areas of intensive human activity (Saunders et al. 1991). As such, forest fragmentation is 

a process by which large expanses of forest are increasingly divided into smaller, 

discontinuous units.  With the progress of fragmentation, a naturally patchy forest is 

transformed into a fragmented forest, then to a number of forest fragments, and finally a 

single insular forest patch (Harris and Silva-Lopez 1992) (Figure 1.2). 

 
Figure 1.2   Progression of forest fragmentation (from Harris and Silva-Lopez 1992).  
 

The causes of forest fragmentation are varied and complex. Fragmentation may 

result from natural events such as forest pests, forest fires, or may occur from dynamic 

interactions between the natural landscape and society's ever-increasing demands on the 

land, creating a mosaic of the natural and human-modified environments (Gardner et al. 

1999, Tyrrell and Dunning 2000). Forest fragmentation may result from permanent land 

use conversion, such as from forest to agricultural fields, or result from temporary land 

cover change, such as the disruption of mature forests by timber harvesting (Weakland 

2000).  

In addition, forest fragmentation is sensitive to the spatial scale (Lord 1990). For 

example, fragmentation apparent at a large spatial scale may sometimes be considered as 

non-fragmented at a smaller scale. Forest fragmentation is also sensitive to, and 

influenced by, the land cover classification system employed. Different classifications 

will give a different picture of the same region’s fragmentation.  
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What are the potential impacts of forest fragmentation? 
 

Even though some research has shown forest fragmentation has had little impact 

on specific species in high density forest areas or even positive effects on some edge-

sensitive species in West Virginia (Demeo 1999, Weakland 2000), most research has 

shown that forest fragmentation can have negative, and even irreversible effects on 

biodiversity and forest health. In particular, forest fragmentation associated with 

development may reduce the sustainability of the regional ecosystem. Habitat for certain 

wide-ranging species, such as large mammals and migrant birds, can be destroyed 

permanently.  Edge environments create pathways for invasive nuisance species, 

domestic predators, and disease vectors, making forests much more difficult to manage 

(Tyrrell and Dunning 2000). 

Forest fragmentation may also be detrimental to human health, recreational 

opportunities, and economic well-being. Forest fragmentation may change the 

distribution of market and nonmarket benefits and costs from the landscape. Continued 

fragmentation can lead to a loss of aesthetic values, recreation, forest-based employment, 

and harvested forest products (Hill et al.1998).  

Forest management and public participation 
 

Many conservationists believe that reserves of public lands do not constitute 

sufficient habitat to conserve biodiversity effectively and that private landowners need to 

be included in conservation efforts (Hansen et al. 1991, 1000 Friends of Wisconsin and 

The Land Use Institute 2001). Not only are foresters required to consider the ecological, 

socioeconomic and institutional policy dimensions of forested landscapes when 

developing management plans, ideally, private landowners will also participate in 

planning the future of the larger forested landscape, of which they own a small part (1000 

Friends of Wisconsin and The Land Use Institute 2001). 

The dispersal of forest ownership may cause forest parcelization, or a trend 

toward dividing land up into smaller acreage parcels. When previously large forest tracts 

are divided into smaller ones, it is rare that the various new landowners will have the 

same forest management goals. Therefore, the chances for management and protection of 

 

http://www.1000friendsofwisconsin.com/landuse/forestfrag_what.shtml
http://www.1000friendsofwisconsin.com/landuse/forestfrag_what.shtml
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this forest tract decrease. It has been shown that forest management practices on private 

lands can influnce the dynamics of forest fragmentation, and then have an impact on 

specific species (Weakland 2000). However, a vast majority of society has a limited 

understanding of forest fragmentation as a sustainable forest development issue. It will be 

necessary to take steps to increase public awareness and education, as well as provide 

access to information detailing considerations associated with forest fragmentation. 

West Virginia loggers in recent years have cut about twice as much timber as they 

did 10 years ago according to a state Division of Forestry study (The Charleston Gazette 

Online 2001). This increase in forest harvesting is expected to continue. The attitudes and 

actions of private forestland owners will likely guide the future of logging in West 

Virginia (Weakland 2000). The relationships between such forest harvesting activities 

and the future of West Virginia forests is not being addressed because of “the lack of 

public involvement” and “the lack of an open-ended and broad-based planning process 

that will address it”, according to the Charleston Gazette Online (2001).  

The new needs for geographic information technologies to 
improve the understanding of forest fragmentation and 
delivering related knowledge. 
 

Geographic information sciences and technologies, such as remote sensing and 

Geographic Information System (GIS), have been widely applied for forest fragmentation 

analysis (Johnsson 1995, Jorge and Garcia 1997, Roberts et al. 2000). However, most of 

these applications focused on integrating spatial data, establishing spatial information 

models and representing the spatial knowledge based on stand-alone platforms or a Local 

Area Network (LAN) based architecture. These traditional approaches have limited 

capabilities to provide public access to geographic knowledge and to represent 

geographic phenomena with distributed spatial data.   

These limitations could constrain the value of GIS and remote sensing for 

fragmentation research. The causes and effects of forest fragmentation are varied and 

complex. Collaborative research on many levels of both public and private sectors may 

provide creative solutions to help us understand forest fragmentation (Tyrrell and 

Dunning 2000). Moreover, researchers studying forest fragmentation need spatial data 
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from many different disciplines, sources, media, and institutions. Combining data from 

such diverse sources will require new approaches to integrate distributed spatial data for 

representation, analysis and query. 

Different management practices of private forest owners may have direct effects 

on forest fragmentation. It is therefore necessary to take steps to increase public 

awareness of forest fragmentation. This will require public access to collect and 

synthesize various forest data, such as the existing status of forest cover, ownership, 

spatial requirements for maintaining species habitat, the potential effects of individual 

actions, landscape scale patterns and so on. The powerful spatial data representation and 

analysis abilities supported by GIS have increased people’s understanding of spatial 

phenomena. However, the public still has limited access to GIS functionality. Therefore, 

there is a need to find potential methods to enhance the public’s access to these 

functionalities. 

Web GIS and IMS 
 

Internet technology can improve the accessibility and utility of spatial information 

through its potential to deliver GIS data efficiently, and to manage and operate distributed 

spatial databases.  A GIS running on Internet protocols is called an Internet GIS. The 

Internet GISs which run on the World Wide Web (WWW) environment are called Web 

GISs.  

 A Web GIS has two parts. The first part is the client side interface which runs in 

a web browser, and sends the user’s requests to a server. The second part is a Web GIS 

server, or Internet mapping server (IMS), which serves mapping and spatial analysis 

functions. These server-side functions are always called map services (ESRI 2001).  

Building a GIS based on the Web provides a potential approach for establishing spatial 

models with distributed spatial data and services, and for adding new forms of data such 

as hyperlinks and multimedia into geographic information representation. A Web GIS 

can also provide multiple views for the same geographic phenomena. 

Compared with a traditional stand-alone GIS, Web GIS has many advantages. 

First, a Web GIS provides access to spatial information and data without burdening end 
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users with complicated and expensive software. Second, Web GIS is particularly 

powerful for a distributed, multi-site organization. Third, it is particularly powerful for 

communicating with the public. Fourth, people can specify their unique areas of interest 

and then see the information described in a map. In addition, users also can click on a 

map feature or area and see selected database information about that particular map item. 

They thus have access to an easy way to navigate through large quantities of information. 

Fifth, using very simple user interfaces, users can view dynamically-constructed maps 

that reflect the current state of the information (Intergraph 2001). These advantages may 

enhance community participation in geographic-related planning and policy-making.   

Statement of problem 
 

This study has two main objectives: (1) to develop an understanding of the current 

status of forest fragmentation and its changes from 1987 to 1999 in a study area in 

northern West Virginia, and (2) to assess Internet Mapping Server (IMS) and Web GIS as 

new approaches to improve forest fragmentation information analysis, representation and 

delivery through a case study.  

For the first objective, the main approach will draw upon a classified recent 

Landsat Thematic Mapper image combined with previously classified Gap Analysis 

Program (GAP) data to identify changes of landscape-scale forest fragmentation in the 

study area. The regional perspective of fragmentation gained from satellite imagery will 

aid policy makers, managers, and researchers. 

For the second objective, the basic question is methodological. Specially, I will 

investigate whether ArcIMS can be used for delivering forest fragmentation information 

and to support selected essential forest fragmentation analysis functions such as a user-

defined region metrics calculation and disturbance analysis. In addition, the limitations of 

existing ArcIMS HTML and Java approaches for supporting forest fragmentation 

information delivery and analysis will be investigated.  
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Organization of the thesis 
This thesis consists of six chapters. Following the Introduction, the Literature 

Review summarizes previous work on forest fragmentation analysis and Internet GIS 

technologies. The third chapter gives a detailed introduction to the study area as it relates 

to the general topography, drainage, climate, soil, forests and forestry, land cover and 

land use change. The fourth chapter, Methods, outlines the specific procedures that were 

developed for forest fragmentation analysis with Landsat TM data on a stand-alone 

platform and in a Web-based environment.  After that, in Chapter Five, Results and 

Analysis, the spatial pattern of forest fragmentation of the study area is presented, and the 

Web GIS HTML and Java approaches for delivering the above information and analysis 

capabilities are compared. Finally, in Chapter Six, the Summary and Conclusion are 

presented. The capabilities and limitations of current ArcIMS approaches for supporting 

forest fragmentation analysis are identified and potential future research suggested. 
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Chapter 2. Literature review 
 
“The natural world is interconnected, therefore, interdependent.” 

--1000 Friends of Wisconsin & The Land Use Institute 
 

This literature review focuses on three topics: forest fragmentation, Web-based 

spatial information delivery, and Web-based forest information delivery.  In the first 

section, the current status of landscape-scale forest fragmentation studies and methods for 

measuring changes of forest fragmentation at landscape scale will be reviewed. Where 

possible, examples will be given of forest fragmentation studies in West Virginia. The 

limitations of stand-alone forest fragmentation analysis and representation approaches 

will be critiqued. In the second section, Web–based spatial information delivery 

approaches will be introduced. In the third section, approaches to the delivery of forest 

information and analysis tools in a Web environment will be reviewed. The concepts and 

methods of Web-based GIS will be introduced as a powerful new approach, which may 

improve interactivity and accessibility of forest information and associated analysis tools.  

1. Studying Forest fragmentation  
 

Traditionally, forest management has focused on forest stands ranging in scale 

from individual trees to a few hectares or even a few square kilometers. It has become 

increasingly apparent that stands cannot be managed wisely and efficiently in isolation. 

Forest management must take into account the small scale (Sachs et al. 1998). More and 

more research is addressing the spatial modeling of forests at the landscape scale 

(Mladenoff and Baker 1999). Forest fragmentation is one of the main concerns in 

landscape level forest management.  

Lord (1990) presents a detailed review of scale and the spatial concept of 

fragmentation. He states that fragmentation could occur at different scale, with varying 

impacts on organisms. In his opinion, (1) at a finer scale of fragmentation, “ecosystem 

functioning is more likely to be disrupted”; (2) at a given scale, more complex systems 

are more likely to be disrupted by fragmentation than simpler systems; (3) “The finer the 

scale of fragmentation, the smaller the organism that is adversely affected”; and, (4) a 
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finer scale fragmentation analysis may be used for studying organisms with a limited 

range of mobility, whereas coarser scales are more suitable for very mobile organisms.  

1) The origin and development of landscape scale forest 
fragmentation studies 
 

The study of forest fragmentation at landscape scale originates from forest 

research in landscape ecology and conservation biology. Studies in those two fields had 

discovered two important principles. First, habitat fragmentation in forests may lead to 

the loss of species and result in an impact on the biodiversity (Verboom and Van 

Apeldoorn 1990, Kruess and Tscharntke 1994, Donovan et al. 1995). Kozakiewicz 

(1993) in his study on the effects of habitat isolation on small mammal populations and 

communities, found that movements of individuals between habitat patches are critical to 

support the existence of species in patchy, heterogeneous landscapes and "Key habitats” 

play a crucial role for population existence in the dynamics of species needs and resource 

supply. Kozakiewicz (1993) second finding was that edge habitats could be considered to 

be a distinct community. “Create as much ‘edge’ as possible” had been included in 

standard habitat management (Harris 1984) because “wildlife is a product of the place 

where two habitats meets” (Yoakum and Dasmann 1971). Recent research has supported 

the concept of the special role of edges. Berry (2001) in his study on edge effects on 

forest birds, found that there was a significantly higher number of species and individuals 

in forest edges than in nearby forest interior sites. 

Increasing the amount of habitat fragmentation and edge habitats are two direct 

consequences of forest fragmentation (Rolstad 1991, Esseen and Renhorn 1998).  

Researchers have focused on forest fragmentation and its consequences, including 

impacts on biodiversity, and the productivity and sustainability of forests. 

Previous forest fragmentation studies have five main areas of focus: (1) assessing 

the status of forest fragmentation and identifying the extent and location of forest 

fragmentation (O'Neill et al. 1988, Turner 1990, Turner and Gardner 1991, Ripple 1994, 

Johnsson 1995, Wickham et al. 1997, Tinker et al. 1998, Roberts et al. 2000, Saura and 

Martinez-Millan 2001, Mid-Atlantic Regional Earth Science Application Center 2001); 

(2) modeling changes of forest fragmentation, predicting the fragmentation trend 
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(Burnham 1973, Muller and Middleton 1994, Sachs et al. 1998, Hsu 2000); (3) 

identifying the impacts of forest fragmentation on specific species (Lynch and Whigham 

1984, Rolstad 1991, Matthysen 1995, Rudis 1995, Russ 2000, Hewison et al. 2001); (4) 

exploring the causes of forest fragmentation (Reed 1996); and (5) developing forest 

fragmentation analysis and representation tools (Vogelmann 1995, Theobald 1998, 

Lefsky et al. 2001). 

2) Impacts of forest fragmentation  
 

Saura and Martinez-Millan (2001), in their research on the sensitivity of 

landscape pattern metrics to map spatial extent, state that landscape spatial configuration 

influences ecological processes such as biodiversity and animal population dispersal and 

abundance. Landscape spatial configuration of forest fragmentation usually refers to two 

aspects: the absolute quantity of fragmented patches and the dispersion pattern of these 

patches.  A great deal of research on landscape level forest fragmentation has investigated 

the consequences of forest fragmentation for biodiversity, species population, forest 

health, and forest productivity, and especially the impacts on specific birds or animals. It 

has been found that increased fragmentation may, in the long run, decrease species 

richness. For example, for birds and mammals that depend on habitats in interior forest or 

late-successional stands, clear-cuts and roads can result in a quantitative and qualitative 

reduction in suitable habitat (Andren 1994, Vogelmann 1995). However, this result 

conflicts with the result of Berry (2001)’s study. The potential reason may come from the 

different reaction of different species to forest fragmentation. 

It is very difficult to identify all the species that are affected by forest 

fragmentation. There are three main reasons for this. First, different species prefer 

different landscape patterns, and it is unlikely that any single measure of fragmentation is 

relevant in all situations (USGS Biological Resources Division 1999). The species that 

prefer edge habitats may benefit from an increase of forest fragmentation, but other 

species may decrease as a consequence of a more fragmented forest. Second, to predict 

the effects of landscape modification, models of species reproduction need to incorporate 

variation in the animal-landscape relationship due to behavioral plasticity (Hewison et al. 

2001). Third, forest species’ biological characteristics such as populations and 
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biodiversity are affected by many other social or biological factors besides forest 

fragmentation. For example, through studying the complex and species-specific impacts 

of forest fragmentation on bird populations, Lynch and Whigham (1984) found that 

although forest fragmentation adversely affects some bird species, structural and floristic 

characteristics of the forest can be more significant than patch size and isolation for some 

bird species. Distinguishing forest fragmentation impacts from other factors is very 

complex, and until now has not received much attention.  

Recent research has addressed the relationship between species diversity and 

productivity in the Appalachian forest, as well as the relationship between harvesting and 

regeneration strategies and maintaining species diversity (Miller and Smith 1991, Miller 

and Kochenderfer 1998). It has been shown that choosing suitable harvesting and 

regeneration strategies has direct consequences for species diversity. Maintaining species 

diversity is the key to sustaining production of desired benefits in central Appalachian 

forests.  

At present, the impacts of forest fragmentation in West Virginia have not been 

widely studied. Two exceptions are DeMeo (1999) and Weakland (2000). Weakland 

(2000) found that forest fragmentation caused by timber harvesting is not having short-

term deleterious impacts on most songbirds. DeMeo’s (1999) study found that 

fragmentation effects in West Virginia forest were evident but only up to 25 m from 

edges. Beyond this distance, DeMeo found only an ambiguous relationship of nest 

survival to distance from the edge.  

Even though within the scientific community there is no strong consensus on 

understanding the specific mechanisms by which fragmentation changes forests and 

reduces their habitat value, it is relatively well established that decreases in forest cover 

and increases in fragmentation will result in negative ecosystem effects (Mid-Atlantic 

Regional Earth Science Application Center, 2001). It has been suggested that the 

landscape can be managed under the assumption that if a landscape is maintained within 

the limits of natural variability, then most native species will be managed adequately 

(Tinker et al. 1998).        
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3) Measuring landscape-scale forest fragmentation 

In order to maintain the integrity of forest ecosystems while continuing to provide 

for sustainable forest development, an essential requirement is to assess quantitatively the 

forest fragmentation status at the landscape scale and to identify its extent, location, 

amounts and spatial pattern. 

There are many different ways to measure forest fragmentation, because there are 

a variety of features that can be interpreted as subdividing a forest, and different scales at 

which the various definitions can be applied (McGarigal and Marks 1994, Riiters et al 

1995, Mertens and Lambin 1997, Nielsen and Paracchini 2000). Nielsen and Paracchini 

(2000) in their study on remote sensing-based estimates of structural diversity and 

sustainability for forest ecology assert that there cannot be a single measure that 

quantifies fragmentation, because fragmentation is so complex and may have many 

manifestations. Thus it is necessary to use various combinations of measures. USGS 

Biological Resources Division (1999) in their Nation’s Ecosystem research point out that 

calculating the effects of a road or a power line in fragmenting a forest is related with 

whether the edges of these features are considered as patch boundaries. Even more 

complex is whether to regard patches of different age classes as boundaries.  

In most studies, forest fragmentation is usually measured in one of three ways: the 

absolute amounts of fragmented patches, the spatial disperse pattern of those patches, and 

the associated changes (Turner 1990, Hsu 2000). The first two approaches can usually be 

implemented with various landscape metrics, the last approach requests a linking of 

landscape metrics models such as regression and logit models (Alig 1986, Dale et al. 

1993, Hsu 2000) for spatial trend prediction. 

The spatial units for fragmentation analysis are commonly user-defined 

independent study units such as terrain facets, watersheds or management units (Johnsson 

1995). Alternatively, continuous units such as a 3x3 pixel window are sometimes used in 

raster data. 

Mathematical graphics have also been used as a framework for exploring the 

spatial structure and configuration of ecosystem components (Cantwell and Forman 

1993, Anderson and Danielson 1997). Analysis of forest fragmentation using spatial 

 

http://www.nbs.gov/


Chapter 2 14

autocorrelation, graphs and GIS can help us understand the connectedness or 

disconnectedness of forests, and assess the extent of fragmentation of forests introduced 

by natural and man-made features and disturbance (Roberts et al. 2000).  

Forest fragmentation analyses require information on land cover and land use. 

The information could be stored in vector or raster structures. Most landscape-scale forest 

fragmentation studies have been raster-based, because of the importance of classified 

remotely sensed data in providing land cover information (Wickham et al, 1997, Saura 

and Martinez-Millan 2001).  

Nevertheless, these remain a significant need for increased work on the 

integration of RS, GIS and landscape ecology metrics for modeling, monitoring and 

assessment of ecosystems space (Ripple et al. 1991, Vogelmann 1995, Frohn 1998). 

Remote Sensing and forest fragmentation 
In landscape-scale forest fragmentation analysis, capturing consistent and 

complete land-cover and land use data in a large area is an essential requirement. 

“Consistent” means that there must be no spatial pattern to the random and systematic 

error. “Complete” means that the data cover the entire area rather than provide a 

sampling of it (Sachs et al. 1998). Satellite imagery is an excellent tool for gathering 

consistent and complete spatial data for large areas for the purpose of measuring 

landscape patterns (Saura and Martinez-Millan 2001). 

The special advantages of satellite imaging for landscape pattern analysis has 

been widely discussed in many studies. Johnston et al. (1997) found satellite remote 

sensing to be “an inexpensive tool” for forest management. Scott et al. (1993) and 

Sharma and Palni (2000) demonstrated that satellite remote sensing could be used 

successfully to identify the frequency, boundaries, and sizes and shapes of various 

landscape components.  

Digital imagery obtained from multi-temporal satellite remote sensors including 

NOAA-9, SPOT (Rasch 1994), Landsat MSS (Vogelmann 1995, Sachs et al. 1998) 

Landsat TM (Ripple 1994), and IRS (Sharma and Palni 2000) have been successfully 

used to map land-cover and associate changes for forest fragmentation analysis at 

different spatial resolution (Fang 1990, Chavez and MacKinnon 1994).  
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The most popular sensor in the United States for regional or local landscape-scale 

forest fragmentation analysis, as well general forest studies is Landsat TM (Chalifoux et 

al. 1998). For example, Stenback and Congalton(1990) used Landsat TM for mapping 

forest understory. Sader (1995) investigated the spatial characteristics of forest clearing 

and vegetation regrowth with multi-date Landsat TM imagery.  Tinker et al. (1998) used 

TM in an analysis of forest fragmentation by clearcuts and roads in a Wyoming forest.  

Most current national land cover and land use databases are also derived from 

Landsat TM data. For example, the Multi-Resolution Land Characteristics (MRLC) maps 

are derived from 1992 era Thematic Mapper (TM) images, and portray about 20 land 

cover classes nationwide at 30 meter resolution in a consistent way (USGS Biological 

Resources Division 1992), USGS national GAP database (USGS Biological Resources 

Division  2000) used Landsat TM images, MRLC datasets, and National Land Cover 

Data (NLCD). Those data have become important data sources for forest fragmentation 

analysis (West Virginia GIS technical Center 2001, Mid-Atlantic Regional Earth Science 

Application Center 2001). In West Virginia, a GAP land cover database and West 

Virginia Forest Fragmentation maps are available at three brand scales at 7 hectare, 66 

hectare and 590 hectare (West Virginia GIS technical Center 2001).  

Landsat TM can be used to understand complex forest fragmentation phenomena. 

Lefsky et al.(2001) in their recent study asserted that multitemporal TM is a cheaper and 

less complex alternative to either hyperspatial or hyperspectral sensors.  

There are, however, some drawbacks to use Landsat TM data for forest mapping. 

Tinker et al. (1998) raise a concern that Landsat data can provide only limited 

differentiation of successional stage. In addition, Tinker et al. (1998) point out that 

classified Landsat data are typically ‘noisy’, with many single-pixel patches that may 

represent important landscape components. That is usually ignored in fragmentation 

analyses. 

 

Forest fragmentation metrics 
Landscape metrics have been defined as quantitative indices to describe structures 

and patterns of a landscape (O'Neill et al. 1988) that are assumed to be related to the 

suitability of that landscape as habitat for plants and animals (Nielsen and Paracchini 
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2000). Research has indicated that forest fragmentation metrics have three basic 

characteristics: sensitivity, diversity and correlativity. 

Sensitivity means that the values of landscape metrics are sensitive to the changes 

of spatial elements such as spatial scale, land classification, and spatial data processing 

methods. Different metrics have varying sensitivity to different spatial elements. In 

ecology, spatial scale is associated with both extent and grain (Forman and Godron 1986, 

Turner 1989, Wiens 1989, O’Neill et al. 1998). Grain is the size of the individual units of 

observation, and is often described as the spatial resolution of the data. In a raster based 

forest fragmentation analysis, the grain is limited by the pixel size. Spatial extent is the 

total area of an investigation or the area included within the landscape boundary (Saura 

and Martinez-Millan 2001). The extent and grain are important parameters for a 

particular study, and should be chosen to represent the scale of the ecological 

phenomenon or organism under study. The spatial grain has been shown to greatly 

influence the derived values of the metrics (Wickham and Riitters 1995, Frohn 1998). 

Saura and Martinez-Millan’s (2001) study have shown that Edge Density is the most 

robust metric in the presence of variations in map spatial extent. In contrast, Mean Shape 

Index and Perimeter Area Fractal Dimension were found to be by far the most sensitive 

metrics to spatial extent. Wickham et al. (1997) show that fragmentation metrics are also 

sensitive to differences in land-cover composition and land-cover misclassification. 

Tinker et al. (1998) found that fragmentation metrics are sensitive to spatial resolution, 

the way spatial data are filtered or otherwise processed, and the classification schema. 

Therefore, he argued that comparison of absolute landscape values of metrics is 

appropriate only within a single study area. Unless the same data sources and data 

processing are used, it is unlikely that index values can be compared directly (Tinker et 

al. 1998). 

Diversity means that there are many landscape metrics used for describing 

landscape structure and pattern of forest fragmentation. For example, the forest 

fragmentation index (FI) (Johnsson 1995) was developed as one of several objective 

measures of pattern complexity for thematic maps. When using the FI as a measure of 

landscape complexity, it must be kept in mind that the choice of classes, the degree of 

detail and accuracy of the land classification is of great importance for how well the 
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results will correspond to the actual landscape complexity on the ground (Johnsson 

1995).  The Matheron index, a commonly used index for studies that focus on forest/non-

forest interfaces, measures the ‘openness’ of the land cover type of interest as a function 

of the length of the edges of the landscape elements (Nielsen and Paracchini 2000). It has 

been used as a metric (Mayaux and Lambin, 1995 and 1997) to describe the 

fragmentation of forest covers observed in Landsat TM and NOAA AVHRR images 

(Nielsen and Paracchini 2000). Additional metrics commonly used include measures of 

size, shape, spatial distribution, density of patches, patch abundance, dominance, 

contagion, and fractal dimensions (USGS Biological Resources Division 1999). In recent 

years, new metrics have been promoted. For example, Frohn (1998) has shown that the 

number of patches per unit area (PPU) and the square of the patches (SqP) describe 

landscape structure and transformation better than contagion and fractal dimension 

metrics, because the formers are less sensitive to the scale of observation.  PPU measures 

the degree of fragmentation of patches on a landscape and SqP measures the shape 

complexity of patches on a landscape  

Correlativity means that many metrics of landscape structure are highly 

correlated. Tinker et al. (1998) used principal component analysis to show that many 

metrics of landscape structure are highly correlated. It is possible to monitor landscape 

conditions by focusing on a few key metrics such as patch core area, patch size and 

number, edge density, and patch shape (Vogelmann 1995, Tinker et al. 1998). Sachs et 

al. (1998) found through factor analysis that most variation in 85 maps of land use and 

cover could be explained by five univariate metrics of average perimeter/area ratio, 

contagion, standardized patch shape, patch perimeter-area scaling, and number of 

attribute classes.  

Due to the above three characteristics (sensitivity, diversity and correlativity), no 

single index could define or describe directly all pattern or structures of a forest 

fragmentation at landscape scale. Instead various combinations of measures are being 

used (Riiters et al 1995, Mertens and Lambin 1997; Nielsen and Paracchini 2000). In this 

study, the metrics of the landscape structure used to qualify fragmentation were those 

suggested by Jorge et al. (1997): (1) Patch size (calculated from the average patch area 

and average patch perimeter);(2) Patch abundance (patch density and percentage of 
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landscape area occupied by patches); (3) Patch shape (measured in three ways: perimeter-

area ratio, fractal dimension (D), shape diversity index (SI)) and, (4) Edge effect (patch 

edge-centre distance).  

In general, accurate quantitative comparisons of forest fragmentation among large 

areas or among different temporal periods require that the data and analysis be uniform. 

This means that the data must be derived from the same sources, have the same 

resolution, be filtered or otherwise processed in the same way, and that the patches be 

defined using the same level of classification of cover types, successional stage/age 

classes or other criteria (Tinker et al. 1998). Therefore, comparison of absolute landscape 

values of metrics is appropriate only when the same data sources and data processing 

used on a specific spatial and temporal domain (Tinker et al. 1998). 

Tools for Measuring forest fragmentation  
There is a wide range of software tools available for quantifying fragmentation. 

Specialized software is required for specific, complex metrics, or for exploratory data 

analysis (Theobald 1998). The tools for measuring forest fragmentation always link 

directly or indirectly with GIS. Two common tools used in the United States are 

FRAGSTATS (McGarigal and Marks 1995) Patch Analyst (Rempel et al. 1999, Rempel 

2000). FRAGSTATS, which was used to quantify the landscape pattern in this project, 

calculates a set of pattern metrics for each patch within a landscape, each cover class 

within a landscape, and the entire landscape (Tinker et al. 1998). Patch Analyst also uses 

FRAGSTATS as the base for calculating fragmentation metrics, but it runs on ArcView 

Spatial Analyst extension. 

The main challenges to utilizing existing forest fragmentation measurement tools 

include: (1) refining the approaches that use these landscape metrics to reflect a 

biological basis (Theobald 1998); and (2) improving the access to forest fragmentation 

measurements tools. 
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2. Web-based delivery of spatial information 
 

Spatial information and technologies have been applied widely in natural resource 

management, environment assessment, land use planning and other many fields 

(Mallawaarachchi et al. 1996 Peters and Nichols 1998; Ranta et.al. 1998; He et. al., 2000; 

Fournier et. al. 2000). The diverse range of spatial information and GIS applications has 

shown that spatial information and GIS functionalities are potentially useful to almost 

everyone. However, traditionally, spatial information was published through hardcopy 

such as paper maps. Even with the advent of digital data, information is normally limited 

to single computer or network. Consequently, the improvement of accessibility of 

geographic information and functionalities is a basic research question in GIS (Mark 

1999). Two aspects of accessibility that need to be addressed are how to access 

distributed, multi-format, multi-theme spatial data effectively, and how to access related 

processing, modeling and analysis tools. 

The appearance of the Internet and World Wide Web (most often called the Web) 

technology has changed the way many institutions provide spatial information. The 

Internet is a vast collection of open standards supporting data communication and 

representation. The Web is a subset of Internet protocols. It is mainly based on a handful 

of technical interoperability standards such as the Hypertext Transfer Protocol (HTTP) 

and the Hypertext Markup Language (HTML) (W3Schools, 2001). Standard web 

browsers such as Microsoft Internet Explorer and Netscape Navigator can be used easily 

to access information published on the Web, and distributed around the world. 

 

Basic architecture and components of Web-based information 
delivery 
 

Information on the Web is delivered through a Client/Server architecture (Figure 2.1), 

with documents called Web pages. Web pages are stored on Web server computers. 

Computers reading the Web pages are called Web clients. A Web client may consist of a 

Web browser and other optional client side components such as cookies and plug-ins. A 

Web browser fetches a Web page from a server by a request. A request is a standard 

HTTP request containing a page address. When the request is accepted by the Web 
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server, the Web services on the Web server may response with the requested Web pages 

directly, or call a server-side scripting program to create dynamic Web pages and send 

them back the client. All Web pages contain instructions on how they should be 

displayed, which are interpreted by the browser. The display instructions are usually 

specified by Web protocols. 

 

Figure 2.1   Basic architecture of web application 

Web browsers can support many data types including text strings, URL, and 

images in formats such as JPEG and TIFF. These kinds of data types that may be 

supported depend on the protocol and client side components of end users. The basic data 

formats supported by Web browsers are defined in the HTML specification, which is the 

most common display protocol (World Wide Web Consortium 2001). HTML stands for 

Hyper Text Markup Language. An HTML file is a text file containing predefined markup 

tags. The markup tags tell the Web browser how to display the page. Web browsers with 

support for different versions of HTML specifications have different sets of data formats. 

There are three approaches to implementing new specific data types for display and 

manipulation on the Web: (1) add new data type processing protocols; (2) add a Web 

browser Plug-in, which is a smaller "add-on" computer program working in conjunction 

with the Web browser; and (3) add middleware to convert the new data type to a basic 

Web data type.  

Due to the weakness of HTML on supporting diverse data, XML was created. 

XML stands for Extensible Markup Language. XML is a markup language much like 

HTML, but XML tags are not predefined. The user of XML can create new tags. XML 

 



Chapter 2 21

uses a Document Type Definition (DTD) to describe the data. XML with a DTD is 

designed to be self-descriptive.  XML is used to both describe and carry the data. 

There are many Web programming languages such as Java, Perl, JavaScript and 

VBScript.  Common Gate Interface (CGI), ActiveX Server Page (ASP) and Java Server 

Page(JSP) are server side programming approaches, which use Web programming 

languages to create Web application logics, carry out calculations and data processing, 

and also create dynamic Web pages.  

The integration of HTML, Web Programming languages and Server side 

programming, provides essential tools for building a Web-based application Graphic 

User Interface (GUI) and logics, which are important for enhancing the interactivity of 

Web applications. 

Limitations of Web on delivering spatial Information 
 Even though the Web has been used widely for delivering information, there still 

are technical limitations that have to be overcome in order to utilize the Web to deliver 

spatial information.  

 (1) Limitations due to hardware and speed of the Internet. 

The size of spatial data sets is almost always large, and spatial data processing 

almost always takes a long time, even when the application is running on a local 

computer. Therefore, delivering spatial data requires high-performance hardware and 

Network communication. However, the current speed of Web servers and the Internet 

bandwidth are still not satisfactory for integrating, processing, displaying and 

transporting large size spatial data sets. Data compression technology and wideband 

technologies may have potential to overcome these limitations. 

(2) Limitations associated with Web-supported spatial data formats 

Two basic data structures for spatial data are vector and raster format. On the 

Web, raster data generally are modeled with JPEG, TIFF, GIF or other web image 

formats. However these web images have no “projection” and “layer” concepts, so we 

cannot use them directly to represent geo-referenced multi-band remote sensing imagery.  

Moreover, vector data have not been supported in the existing standard commercial web 
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browsers. Therefore, in order to deliver vector data, it is necessary to convert information 

to web supported raster images.  

(3) Limitations on Web-supported spatial data operation 

The delivery of spatial information requires that end users not only access spatial 

data, but also carry out basic operations such as spatial query, spatial processing and 

analysis. However, existing Web browsers have no direct support for such operations. 

Instead, the end users have to utilize other Web-embedded programs such as JavaApplets 

and DHTML, or user-defined XML to input spatial requests. 

 Web-based delivery methods of spatial information 
 

Currently, spatial information on the Web is always delivered in one of four 

approaches: static maps, FTP integrated with a spatial data search engine, interactive 

mapping and Web-based GIS (usually called Web GIS). 

Static maps use Web supported images such as JPEG and TIFF to represent maps. 

FTP refers to File Transportation Protocol, which is a protocol supporting downloading 

and uploading files on the Internet. The FTP approach can be combined with spatial data 

search engines to help spatial data users find and retrieve specific data. In order to display 

or analyze the downloaded files, the user must have the appropriate specialized software.    

Compared with the former two approaches, Web-based interactive and Web GIS 

are more flexible and powerful for spatial information delivery. Even though the terms 

interactive mapping and Web GIS have been used widely, they still do not have a 

common accepted definition. Generally, however, it is understood that interactive Web 

Mapping is an essential part of Web GIS, and Web GIS is a way to implement Web 

mapping.   

 Besides the Web GIS approach, interactive Web mapping can also be 

implemented with image maps, Web-based animation, and HTML Form-based 

interactive mapping.  

Image maps are images in Web pages that include hot regions or hotspots. An 

image map in a Web page has three components, an image, a set of map, and an HTML 

host entry. The image is a normal Web image, typically stored in the GIF or JPEG 
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format. The map is a graphic boundary description of the mapped regions within the 

image. The host entry is HTML code that positions the image within the Web page and 

designates the image as having map functionality (Automata 2001). The end user can 

read the map in browser directly. However, the end user cannot navigate the map or 

query any information. There is no interactivity between maps and end users. For 

example, the Pennsylvania Spatial data Access web site (Pennsylvania spatial data access 

2001) allows users to select a county on a map, and access the county’s spatial 

information (Figure 2.2).  

Animation-based Web mapping uses Web page author tools to create maps. For 

example, Macromedia Flash allows users to zoom in out of a map, to link maps with 

other multimedia information, or create hyperlinks, and even query information from 

specific geographic feature. For example, the web site http://www.hotel-

abbazia.com/mapofgrado.htm allows users to zoom in out the map used to help users 

locate a hotel (Figure 2.3). 

 

 

Figure 2.2   Example of an image maps: Pennsylvania Spatial data Access web site. 
(http://www.pasda.psu.edu/access/county.shtml) 
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Figure 2.3   Example of animation-based Web mapping: using Macromedia Flash for interactive web 
mapping (http://www.hotel-abbazia.com/mapofgrado.htm) 

HTML Form-based interactive mapping uses HTML forms as the interface 

entering mapping parameters such as boundary coordinates, projection, geographic area 

and features, which are then interpreted by the Mapping server  to draw the final maps. 

GIS based on Internet protocols is called Internet GIS. An Internet GIS running 

on standard World Wide Web (WWW) browsers is referred to as Web GIS. Web GIS is 

an implementation of GIS on the Web. Typically, a Web GIS application uses a Graphic 

User Interface (GUI) as the application interface. Spatial data can be displayed, queried, 

navigated, manipulated and output in a Web GIS. For example, with ESRI ArcIMS, 

Delaware 2000 Census Mapper provides the public with comprehensive web based 

dynamic mapping services (Figure 2.4). An ideal Web GIS would provide all the 
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functionalities that are included in a traditional GIS. 

 
Figure 2.4   Web GIS example: Delaware 2000 Census Mapper. 
[http://128.175.8.149/census/censusmapper] 
 

Internet GIS is a rapidly evolving field. There are general trends from static maps 

to dynamic and real-time interactive mapping, from data delivery to function delivery, 

from central spatial data service to distributed service, from simple data format to multi-

format data integration, and from 2D to 3D visualization.  
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3. Web-based delivery of forest information and analysis tools  
 

In the United States, forest information systems have been developed for over 20 

years by federal and state forest managing agencies, academic research groups, and forest 

product companies (Fried 2000). In these systems, spatial features are important 

information components. However, the limited technical support for delivering spatial 

information to potential users, and for integration of spatial data among distributed 

agencies, has constrained efforts to build a consistent and accessible forest information 

system. Web technologies offer the potential to overcome these constraints, and 

consequently a great deal of spatial forest information has recently been published on the 

Web.  

As discussed in the previous section, there are four approaches for delivering 

spatial information. Examples of these approaches applied to forest spatial information 

will be discussed in more detail below.  

Static map approach 
The static maps approach is a relatively simple way to deliver forest related maps, 

and consequently is mainly used for illustration purposes. The EPA Mid-Atlantic 

Integrated Assessment (MAIA) environmental atlas (Figure 2.5) is an example that 

combines a forest fragmentation index map, charts, and textual explanation to describe 

the status of forest fragmentation status in the mid-Atlantic region (US Environmental 

Protection Agency 2000). Another example of the static map approach is the College of 

Agriculture & Natural Resources, University of Connecticut forest fragmentation 

research web site (Figure 2.6) which demonstrates a comparison of land cover maps, 

satellite images, and forest fragmentation maps (University of Connecticut, College of 

Agriculture & Natural Resources 2001).  
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Figure 2.5   Web-based Static maps approach example 1: EPA Mid-Atlantic Integrated Assessment 
(MAIA) environmental Atlas. (http://resac.uconn.edu/research/forest_frag/index.html) 

 

Figure 2.6   Web-based Static maps approach example 2: forest fragmentation research web site. 
(http://resac.uconn.edu/research/forest_frag/index.html) 

File Transfer Protocol (FTP)-based forest data service 
With the FTP-based data service, users can click on hyperlinks of the data sets 

listed in a Web browser in order to download data. The FTP services can be integrated 

with spatial data search engines to support end user queries for spatial data sets. For 
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example, on the web site of the West Virginia GIS Technical Center (Figure 2.7), the user 

can use a “search” function to query spatial data, view the metadata of the associated 

dataset, and then use FTP services to download the data. 

 

 

Figure 2.7   FTP based Forest Service land cover data service created by West Virginia GIS 
Technical Center (wvgis.wvu.edu). 

The Static map approach and FTP based spatial data services have been widely 

utilized for delivering spatial forest information. For example, the web site of Global-

Scale Patterns of Forest Fragmentation (Figure 2.8), which includes a summary global 

forest Fragmentation Index Map, allows users to download a large size TIFF file via FTP 

(Riitters et al. 2000). 
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Figure 2.8   Web site of Global-Scale Patterns of Forest Fragmentation (http://139.142.203.66/pub/ 
www/Journal/vol4/iss2/art3). 

 

Web-based Interactive Mapping  
Neither the Static Map nor the FTP approach give end users are interactive or 

allow the ability to navigate, query, and analyze forest spatial data on the Web. The FTP 

approach requires the end users to install GIS software on their local computers to read 

and process data.  In order to provide web-based interactivity and reduce the cost of using 

spatial forest information, Web-based mapping technologies have been introduced into 

spatial forest information delivery.  

The main approaches used in interactive forest mapping are HTML form-based 

interactive mapping and Web-based GIS. The HTML form-based interactive mapping 

approach was used in implementing the USDA forest Service Forest Inventory 

Mapmaker (Figure 2.9) (USDA Forest Service 2001d). End users were asked to input 

their query parameters or add local forest data in HTML forms, and then the system 

creates a static map (Figure 2.10).   
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Figure 2.9   USDA forest Service Forest Inventory Mapmaker (http://www.ncrs.fs.fed.us/4801 
/FIADB/index.htm). 
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Figure 2.10   Sample results from the USDA forest Service Forest Inventory Mapmaker 
(http://www.ncrs.fs.fed.us/4801/FIADB/index.htm). 

Compared with other web-based spatial information delivery approaches, a Web 

GIS gives the end user maximum interactive ability and the potential for integrating an 

interoperable distributed spatial data set. Web GIS is becoming a key way to deliver 

spatial forest information.  

Forest information has been delivered using different Web GIS approaches 

including open source approaches and commercial Web GIS approaches. The Fornet 

Showcase project (http://www.ra.dnr.state.mn.us) developed by the Minnesota 

Department of Natural Resources (2001) used open source technology based Mapserver 

(http://mapserver.gis.umn.edu) to provide many of the advantages of Web GIS user 

options to create forest thematic map dynamically (Figure 2.11 and Figure 2.12). This 

Web site illustrates multiple layers of vector data and raster data that can be integrated in 

the Web browser. End users can change the scale, and pan across the map. The map 

legend is created automatically based on the current layers. 
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Figure 2.11   The Forest View project (Minnesota Department of Natural Resources 2001) 

 

Figure 2.12   The Change View project (Minnesota Department of Natural Resources 2001)  
 
 

Using an open source approach can provide flexibility to the Web GIS developer 

for customizing the Web GIS application, however this is at the cost of extensive 
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development time. The alternative way is to use a commercial Web GIS server such as 

ArcView IMS, Map Object IMS, Autodesk MapGuide, which work in conjunction with 

Web development technologies such as HTML, ASP and JavaScript, to develop a Web-

based forest GIS.  An example of a web site built on the ESRI ArcIMS commercial 

Internet Mapping server is that of Global Forest Conservation Mapping (Figure 2.13) 

(Forests.org Inc. 2001).  

 

Figure 2.13   Global Forest Conservation Mapping web site (http://forests.org/maps/makemap.htm). 

The commercial Web GIS server based websites usually support similar map 

navigation functions. The main differences between commercial Web GIS approaches are 

the efficiency of delivering spatial data, requirements for the client browser, the ability to 

integrate spatial data, support for interactive cartography, and the ability to implement 

spatial query and analysis.  

Compared with other spatial forest information delivery approaches, most existing 

forest Web GIS system are clearly superior with regards to map navigation, data 

integration and spatial information query, but web sites with spatial analysis ability and 

distributed data integration are still rare. 
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Web based information delivery for forest fragmentation  
Even though there are more researchers addressing forest fragmentation 

(University of Connecticut, College of Agriculture & Natural Resources 2001, Reed et al. 

1996), and some forest fragmentation web sites have been built, forest fragmentation 

information is always delivered in static text, graph, tables and images or FTP 

approaches. No comprehensive literature has been found addressing web-based forest 

fragmentation analysis. 

The main source of forest fragmentation data for the state of West Virginia found 

on the Web is the West Virginia Forest Fragmentation Grid Map at a 30 meter resolution 

and 7, 66, and 590 hectare scales. These datasets are accessible on the web site of West 

Virginia GIS Technical Center (http://wvgis.wvu.edu) via FTP approaches. 
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Chapter 3. Study Area 
The study site for this research is located in northern West Virginia. The total area 

is 32646 ha (80670 acres).  There are three main forest management groups in the study 

area (Figure 3.1): the West Virginia University Forest, 762 ha (1883 acres); Coopers 

Rock State Forest, 5516 ha (13631 acres); and Snake Hill Wildlife Management Area 

(WMA), 738 ha (1823 acres). 

    
Figure 3.1   Three main forest management groups in the study area (data source: wvgis.wvu.edu). 

In order to understand the context for this research, this chapter provides 

background related to the study area’s general topography, drainage, climate, soils, 

vegetation, forest industry and harvesting activities, as well as some main forest 

landscape disturbance factors such as forest pests and forest fires.  

1. Topography and Drainage 

The Allegheny Plateau is the main topographic element in West Virginia, rising 

slowly from about 250 m (800 feet) above sea level in the west, and reaching dramatic 

relief along the Allegheny Front.  The northern and western slopes of the Allegheny 

Plateau drain into the Ohio and the Gulf of Mexico, while the Ridge and Valley generally 

drains ultimately into Chesakeake Bay (West Virginia Network 2001).  The study area is 

part of the Eastern Allegheny region (USDA Soil Conservation Service 1982, USADA 

Soil Conservation Service 1959), near the Pennsylvania state border. The study site 
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covers parts of eastern and central Monongalia County, and the western end of Preston 

County, West Virginia. Monongalia County encompasses approximately 956 square 

kilometers (369 square miles) (West Virginia Association of Counties 2001a), and is 

characterized by mountain ranges oriented in a northeast-south-west direction, and by 

steep hillsides and narrow valleys. The study site in eastern Monongalia County is 

slightly more rugged than the rest of the county. The floodplain along the Monongahela 

River is generally narrow. Most of the remaining areas have rounded ridgetops and steep 

hillsides (USDA Soil Conservation Service 1982). Preston County is the eastern neighbor 

of Monongalia County, and has an area of 1694 square kilometers (654 square miles) 

(West Virginia Association of Counties 2001b). The overall topography of Preston 

County is that of a high, but strongly dissected, plateau sharply cut by the Cheat River 

gorge. Chestnut Ridge rises above the plateau level along the western boundary of the 

study area (U. S. Departments of Agriculture Soil Conservation Service 1959).  

This study area is drained by the Cheat and Monongahela Rivers, Decker’s Creek, 

and Dunkard Creek. All drainage from this area ultimately flows through the 

Monongahela River into the Ohio River. In the mountainous areas, only limited alluvial 

deposits occur along the larger streams. The Cheat River and most of its larger tributaries 

flow in deep, steep-sided gorges with a rapid fall (USDA Soil Conservation Service 

1959). 

2. Climate 
In the study area of northern West Virginia, winters are long, and the growing 

season is comparatively short for the latitude. Differences in elevation and in exposure 

cause marked variations in temperature and precipitation. Winters are cold and snowy at 

high elevations, but in valleys long-lasting snow cover is not common (USDA Soil 

Conservation Service 1959, USDA Soil Conservation Service 1982). Summers are fairly 

warm on mountain slopes and very warm with occasional very hot days in the valleys. 

Annual precipitation usually falls in April through September, which covers the growing 

season for most crops (USDA Soil Conservation Service 1982). 
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 3. Soils 
Soil types affect the potential productivity and suitability for supporting various 

forest species.  Trees on the good soil sites grow more rapidly and require less 

management investment than on the poorer soil sites. The soils in most parts of this study 

area have developed under a cool, moist climate. Abundant rainfall, supplemented by 

heavy dew and fog during summer nights provides readily available moisture for plant 

growth. An excess of precipitation over evaporation has generally resulted in leaching 

and podzolic soil formation. The snow cover in higher elevation reduces the amount of 

freezing and the depth of the frost penetration (USDA Soil Conservation Service 1959). 

Most of the soils in this region are formed from weathered bedrock (USDA Soil 

Conservation Service 1982).  The Conemaugh and Monongahela Groups are carbonate 

rich, and produce deeper, more productive soils than the soils of the resistant sandstones 

of Chestnut ridge. Alfisols, typical Forest soils of the deciduous forests of the eastern 

United States, are common through much of the upland region across the study site.  

 

4. Vegetation 

Appalachian hardwood forests dominate the vegetation types in this study area. 

The forest is deciduous, and is comprised of mixed oaks and mixed mesophytic types 

(Nellis et al. 2001). The main forest species include oaks, hickories, beech, maple, 

chestnut, and other hardwoods, as well as minor white pine and hemlock. Oak/hickory is 

the dominant forest-type group occupying about 77 percent of the timberland (USDA 

Forest Service 2001a, Table 3.1). The major commercial timber species include black 

cherry, sugar maple, red maple, black walnuts, oaks and pine (Raschka 1998). Several of 

these species have very high economic value (Nellis et al. 2001). 
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Table 3.1   Area of timberland and forest types in Monongalia and Preston Counties in 1989 (in 
thousands of acres) (USDA Forest Service 2001a) 

 Forest type group (1,000’s acres) 

County Total White-red  
jack pine 

Oak-hickory Maple/ beech 
/birch 

Monongalia 151.3 0.0       128.9 22.4 

Preston 299.8      6.6 219.5 73.7 

Total  451.1 6.6 348.4 96.1 

 

The forests of West Virginia provide habitat for many animals such as the hare, 

red squirrel, the endangered Virginia northern flying squirrel, and the threatened Cheat 

Mountain salamander. White-tailed deer, wild turkey, bobcat, and black bear are also 

among the wildlife found in the area.  

5. Forestry and forest harvesting  
 Forest products have historically been an important industry in West Virginia. 

Before 1860, 80 percent of West Virginia was still covered by virgin forest. Between 

1880 and 1925 most of the timber in West Virginia was harvested (Raschka 1998). The 

forests of West Virginia have now regenerated and once again support billions of board 

feet of mature hardwood timber. The latest statewide periodic forest inventory, which 

started in the year of 2000 is still not published (USDA Forest Service Northeastern 

Station, 2001). However, between 1975 and 1989 inventories of the area in forestland 

indicate an increase by 500,000 acres (Raschka 1998).  The total volume increased by 37 

percent over the 1975 inventory, and the saw timber volume increased by 60 percent to 

57.8 billion board feet, an average of 4,847 board feet per acre, in 1989 (DiGiovanni 

1990).  The predominant species in terms of timber volume is yellow poplar. With three 

billion cubic feet (85 million cubic meters), yellow poplar accounts for over 16 percent of 

the growing-stock volume. Virginia pine is the top softwood species with 411 million 

cubic feet (11.64 million cubic meters), or two percent of growing-stock volume. 

Sawtimber stands contain 76 percent of the growing-stock volume. Volume in hardwood 

sawtimber qualifying as log grade two or better represents more than 25 percent of the 

total hardwood sawtimber inventory in West Virginia (DiGiovanni 1990).  

 



Chapter 3    39

With the regeneration of West Virginia forests, the forest industry has obviously 

increased. During the 1980s, and again during the period from 1990 to 1995, wood 

products created more new jobs than any other manufacturing industry in West Virginia 

(Greenstreet and Cardwell 1997). Not only has West Virginia’s wood products industry 

grown, it also has become one of the larger industries in the state, has good prospects for 

continued growth, and has extensive links to the rest of the States’ economy. Sawlogs are 

by far the most important logging product in West Virginia. The highest proportion of the 

state’s production is in hardwoods, constituting constituted 91 percent of the total 

production, and nearly 99 percent of sawlog production (Greenstreet and Cardwell 1997). 

The most important species are red oak, yellow-poplar, white oak, chestnut oak, sugar 

maple, red maple, and black cherry.  

Over the period from 1989 to 1995, average removal of hardwood sawtimber was 

75 percent of net growth in volume (Greenstreet and Cardwell 1997). For some important 

species, including red oak, sawtimber removals exceeded net growth. Non-industrial 

private forests comprise 83 percent of the timberland in West Virginia. Even though the 

specific forest harvesting data for the study area is not available, the Timber Product 

Output (TPO) Database Retrieval System, developed in support of the 1997 Resources 

Planning Act (RPA) Assessment, suggests there are at least some harvesting activities in 

Monongalia County and Preston County (USDA Forest Service 2001b). These harvesting 

activities have the potential to change the forest landscape structure in the study area. 

6. Forest pests, diseases, and fires 
Gypsy moth fungus has spread rapidly since 1992 through areas previously 

severely impacted by the invasive moth. Since 1995 in particular, this fungus has 

dramatically reduced gypsy moth populations (USDA Forest Service Northeastern Forest 

Experiment Station 2000). Other main forest pests and diseases occurred in this area 

include periodical cicadas, hemlock woolly adelgid, dogwood Anthracnose, elm yellows, 

and chestnut blight.  These forest pests and disease can stress and increase mortality of 

different forest species (USDA Forest Service Northeastern Forest Experiment Station 

2000). For example, branch mortality from female cicada egg-laying mostly damages 

small shade and ornamental hardwood trees. Some diseases have a higher threat to the 

forest species in higher elevations, such as dogwood anthracnose epidemics which 
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primarily affect dogwood above 2000 feet above sea level. The mortality caused by 

dogwood anthracnose has increased in recent years (USDA Forest Service Northeastern 

Forest Experiment Station 2000).  The chestnut blight was an introduced fungal pathogen 

that kills chestnut trees. It moved rapidly through West Virginia in the 1930s, and 

resulted in a marked change in forest composition in many places (Nellis et al. 2001). 

According to the Climate Prediction Center of National Oceanic and Atmospheric 

Administration, West Virginia fell into two drought categories on the Palmer Drought 

Index in 1999: severe drought and extreme drought (USDA Forest Service Northeastern 

Forest Experiment Station 2000). The majority of the severe drought occurred in the 

western part of the State, whereas the extreme drought occurred in the eastern part of the 

State. The drought encompassing West Virginia created increased levels of severe forest 

fires. Consequently, in 1999, there were 1,875 forest fires in West Virginia, nearly double 

that of the previous year, and fires burned 34169 ha (84,434 acres), four times the area 

burnt the previous year. Damage estimates totaled $25,330,200 compared with 

$6,147,660 the previous year. Suppression costs were estimated at $196,723, more than 

double the estimated $99,884 spent in 1998. The number one cause of wildfires in West 

Virginia continues to be arson, with debris burning a distant second. 

7. Land Use Change 
As discussed in chapter1, the total area of forested land in West Virginia 

increased between 1982 and 1997 (USDA Natural Resources Conservation Service 

1997). In 1982, 4,213,830 ha (10,412,600 acres) were classified as forest, while in 1997, 

this number increased to 4,282,181 ha (10,581,500 acres).  However, despite this net gain 

of about 68,351 ha (168,900 acres), 72,155 ha (178,300 acres) were lost to urban 

development. The increase of nearly 242,811 ha (600,000 acres) of forestland converted 

from crop and pastureland was offset by a total loss of 128,811 ha (318,300 acres) of 

forest converted to other uses. Table3.2 shows the rates of land use conversion from or to 

forestland.  
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Table 3.2   West Virginia forest land conversion from 1982 to 1997 (in thousands of acres) (Source: 
USDA Natural Resources Conservation Service 1997). 

 Converted to Forest 
(1,000’s acres) 

Converted From Forest 
(1,000’s acres) 

Net Gain or Loss 
(1,000’s acres) 

Cultivated Cropland 25.80 0.00 25.80 

Non-cultivated Cropland 50.10 13.40 36.70 

Pastureland 523.70 146.80 376.90 

Minor land 81.80 81.90 -0.10 

Urban 0.00 178.30 -178.30 

Rural Transportation 6.00 11.90 -5.90 

Small Water 1.50 5.30 -3.80 

Large Water 0.00 0.30 -0.30 

Federal land 3.20 85.30 -82.10 

Total 692.1 523.2 168.90 

Urban and built-up lands showed a marked increase of 287,200 acres (116,225.72 

ha.) from 1982 - 1997. Conversion of non-federal rural land to urban land between 1992 

and 1997 outpaced the growth of the previous ten years. In 1997, urban lands amounted 

to 653,400 acres (264,421.60 ha.), an increase of 174,400 acres (70,577.18 ha.) from 

1992. In the prior ten years, approximately 112,800 acres (45,648.54 ha.) were converted 

to urban uses. The following table illustrates trends in land conversion to urban uses 

(Table3.3).  
Table 3.3   West Virginia urban land conversion from 1982 to 1997 (in thousands of acres) (Source: 
USDA Natural Resources Conservation Service 1997). 
 Converted to Urban Converted From Urban Net Gain or Loss 

Cultivated Cropland 21.80 0.00 21.80 

Non-cultivated Cropland 31.30 0.00 31.30 

Forest 46.60 0.00 46.60 

Pastureland 178.30 0.00 178.30 

Minor land 5.50 0.00 5.50 

Rural Transportation 3.80 0.00 3.80 

Small Water 0.00 0.00 0.00 

Large Water 0.00 0.00 0.00 

Federal land 0.00 0.10 -0.10 

Total 287.3 0.10 287.20 
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In the study area, forest is the main land cover type. According to the latest 

published 1989 forest inventory (DiGiovanni 1990), the total area of forest in 

Monongalia County and Preston County has stayed rather stable, with only a slight 

decrease. However, changes in the area size of average farm in the two counties from 

1987 to 1997 suggested potential impacts on forest fragmentation caused by land use 

changes (Oregon State University 2001). Morgantown, on the east bank of the 

Monongahela River, is the main city and population area in the study site. It is growing 

rapidly, especially to the northeast towards Cheat Lake (Nellis et al. 2001). Even though 

the total population in this area has limited change, second home development and 

increasing human pressure from surrounding developed areas are effecting the land use 

change (Nellis et al. 2001). 

Summary 
Forest fragmentation is becoming a increasing concern throughout the state of 

West Virginia (The Charleston Gazette Online 2001). This chapter discussed natural 

events and human activities that are placing an ever-increasing strain on the West 

Virginia regional forest ecosystem, especially, through fragmentation of forest cover.  

The formation of forest patches and edges may reduce the sustainability of the regional 

ecosystem and be adverse for biodiversity.  
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Chapter 4 Methods 

 
 

As discussed in chapter 1, this study has two main objectives. The first objective 

of studying forest fragmentation changes between 1987 and 1999 in the study area was 

addressed with Landsat Thermal Mapping (TM) data, Gap data and Patch Analysis 

extension for ArcView. A demonstration project was implemented with a stand-alone 

GIS platform and Patch analysis tools. The second objective is to assess Internet mapping 

server and Web GIS for delivering forest fragmentation analysis functions and for 

supporting public participation in spatial decision making, collaborative forest 

fragmentation modeling, and representation from distributed spatial database. This latter 

objective therefore addresses potential solutions to the weaknesses of traditional stand-

alone GIS.  

1. Analyzing forest fragmentation in a stand-alone computing 
environment 
 

The first objective of this thesis was addressed in four stages: (1) data acquisition, 

(2) data preprocessing, (3) land cover analysis, and, (4) land use classification and patch 

analysis for the study area in northern West Virginia.  

Data acquisition 
In general, Landsat TM data have proven to be very effective for land cover and 

land use detection (Stefanov et al. 2001, Yang et al. 2001, Steele 2000, Finder et al. 

1999, Salajanu 2001, Franklin 1986). The nation-wide Gap Project, for example, which 

aimed to map land cover at a regional level, used Landsat TM data for landscape change 

analysis. In this study, two scenes of Landsat TM data were used as the main data source 

(Table 4.1). The first scene is a Landsat 5 TM image acquired in 1987. The second image 

is a Landsat 7 ETM image acquired in 1999. These two images were selected based on 

four criteria: (1) they were cloud free; (2) they were acquired in approximately the same 

time of the year; (3) they covered the study area; vi) and, they provided good spectral 

discrimination of forest cover.  
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Table 4.1   Parameters of TM Images used in this study. 
Scene# Sensor Path#/Row# Acquisition Data 
1 Landsat 5 

TM 
17/32 10/05/1987 

2 Landsat 7 
ETM+ 

17/32 09/12/1999 

 

Landsat 5 is a U.S. satellite launched in March 1984 and is still operational. The 

satellite carries the Thematic Mapper (TM) sensor, on which has six optical bands with 

30 m IFOV and a thermal band with a 120 m IFOV (Table 4.2). 

Table 4.2   Landsat5 TM Spectral and Spatial Resolution (from www.nasa.gov). 

Band Spectral Resolution (µm) Spatial Resolution (m) 
1 0.45-0.52 30 
2 0.52-0.60 30 
3 0.63-0.69 30 
4 0.76-0.90 30 
5 1.55-1.75 30 
6 10.4-12.4 120 
7 2.09-2.35 30 

Landsat 7 was launched on April 15, 1999. Thermal Mapper (ETM) sensor (Table 

4.3), the ETM+ instrument is similar to the Tm instrument except the thermal band has a 

60 m IFOV, and it also images in an eighth, panchromatic band, with a 15 m IFOV 

Table 4.3   Landsat7 Spectral and Spatial Resolution (from www.nasa.gov). 

Band Spectral Resolution (µm) Spatial Resolution (m) 
1 0.45-0.515 30 
2 0.525-0.605 30 
3 0.630-0.690 30 
4 0.75-0.90 30 
5 1.55-1.75 30 
6 10.40-12.5 60 
7 2.09-2.35 30 

Pan 0.520-0.90 15 
 

To evaluate the combination of TM data and other data for detecting forest 

fragmentation changes, the West Virginia Gap data was downloaded from the West 

Virginia GIS Technical Center (http://wvgis.wvu.edu/data/land_cover.html). The Gap 

data was used to add land cover and land use data for 1994 as an intermediate temporal 

period.   
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The West Virginia Gap land cover data was produced as part of the West Virginia 

Gap Analysis Project, and was released in 2000. The source data were acquired from 

multiple 30-meter Landsat images obtained between 1992-1994. The results have not yet 

been subjected to accuracy assessment or testing. The land cover classification schema 

includes 26 classes as shown in the Table 4.4. West Virginia Gap Land Cover data was 

saved in a standard GRID format, with a UTM Zone 17 projection, on the North 

American Datum of 1927 (NAD27). 

Other reference data used in this study include the West Virginia County 

boundary from the 1: 24000 digital line graph (DLG) of USGS, 1997 natural color 

photography of Monongalia County, West Virginia (with an original scale of 1:12,000 

and spatial resolution 1.0 meter per pixel); and, the West Virginia Digital Orthophoto 

Quarter Quads (DOQQ) (part of the statewide color infrared (CIR) aerial ortho-

photography derived from 1996-99 color infrared NAPP photography), all of which were 

downloaded from the West Virginia GIS Technical Center (http://wvgis.wvu.edu). 

2. Data preprocessing: 
 

The data pre-processing was conducted in three steps: re-projection, clipping the 

study area, and, for the 1999 ETM+ images, geometric correction. 

The 1987 TM data had a pixel size of 28x28 meter, and after visually confirming 

the accuracy of the geocoding by overlaying the DLG data for the same area, the 1987 

TM data were chosen as the base image. The 1999 TM data were systematically 

corrected. 
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Table 4.4   West Virginia Gap Land Cover Classification Schema (wvgis.wvu.edu). 
Class 
Code 

Class Name 

1 Shrubland 
2 Woodland 
3 Surface water 
4 Major highways 
5 Major powerlines 
6 Populated area – mixed land cover 
7 Low intensity urban 
8 Moderate intensity urban 
9 Intensive urban 
10 Row crop agriculture 
11 Pasture/grassland 
12 Barren land – mining, construction 
13 Planted grassland 
14 Conifer plantation 
15 Floodplain forest 
16 Forested wetland 
17 Shrub wetland 
18 Herbaceous wetland 
19 Surface water (combine with class #3) 
20 Cove hardwood forest 
21 Diverse/mesophytic hardwood forest 
22 Hardwood/conifer forest 
23 Oak dominant forest 
24 Mountain hardwood forest 
25 Mountain hardwood/conifer forest 
26 Mountain conifer forest 
  

 

1) Re-projection 
The standard projection for this project was chosen to be the UTM, zone 17, with 

the 1997 North American Datum (NAD27) and 30 m pixel. Because the original 

projection of the 1987 TM image was 28m pixels, the image was reprojected to a NAD 

27 datum and 30 m pixels. The reproject model in ERDAS Geometric model (Figure 4.1) 

was used for carrying out reprojection. 
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Figure 4.1  Interface of ERDAS Imagine® Geometric Model 

Since the grid of pixels in the source image rarely matches the grid for the 

reference image, the pixels needed to be resampled to a new data file. In Imagine there 

are three kinds of resampling methods: nearest neighbor, bilinear interpolation, and cubic 

convolution (ERDAS, Inc. 1999). The nearest neighbor approach assigns the DN value of 

original pixel closest to the location of the center of the new pixel for the output pixel 

value. Bilinear interpolation uses the data file values of four pixels in a 2 x 2 window to 

calculate an output value with a bilinear function. Cubic convolution uses the data file 

values of sixteen pixels in a 4 x 4 window to calculate an output value with a cubic 

function. The nearest neighbor was chosen for this study because this method does no 

change the DN values.  

2) Study area clipping  

The ERDAS Subset Image function was used to clip the study area. First, a layer 

of ‘area-of-interest’ (AOL) was created as the study site boundary (Table 4.5). Then, the 

AOL boundary layer was used to clip Landsat TM image data and Gap data. 

Table 4.5   Study sites boundaries 

 X (UTM) Y (UTM) 

UL 586091 meters 4396389 meters 

LR 609835 meters 4382669 meters 
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3) Geometric correction. 

The 1999 ETM+ data were systematically corrected by the EROS data center 

(EDC) and required more precise rectification. The rectification involved three steps: 

locating Ground Control Points (GCPs), computing and testing a transformation, and 

creating an output image file with resampled pixel values. GCPs are specific pixels in an 

image for which the output coordinates are known. GCPs consist of two X, Y pairs of 

coordinates, a source and reference. Source coordinates refer to data file coordinates in 

the image being rectified. Reference coordinates were obtained from the 1987 image to 

the coordinates of the map or reference image to which the source image is being 

registered.  

In this study, the ERDAS imagine ® image Raster |Geometric Correction function 

was used for rectification operations. First, the polynomial model was selected. The 

polynomial order was set as 1, because the clipped image covers a relative small area. 

Then 18 GCPs were selected from both the 1987 TM image and 1999 ETM+ image. The 

final Transformation root mean square (RMS) was less than 0.5. Nearest neighbor 

resampling was used. 

3. Land Cover/ Land Use Classification  
The GAP data were recoded to a smaller number of more general classes, more 

appropriate for this study (Table 4.6). Because this research focused on a general forest 

class, all forest areas in the GAP classification were recoded as a single forest class. 

The seven classes of the recoded Gap data were used in the classification of the 

TM and ETM+ data. Classification is the process of sorting pixels into a finite number of 

individual classes, or categories of data which are also called classification schema, based 

on their data file values (ERDAS, 1999). In order to classify the different land categories, 

the algorithm must be trained to recognize patterns in the data. Training is the process of 

defining the criteria by which these patterns are recognized (Hord 1982). The result of 

training is a set of signatures that defines a training sample or cluster. Each signature 

corresponds to a class, and is used with a decision rule to assign the pixels in the image 

file to a class (ERDAS, 1999). 
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Table 4.6   The recoded Classification schema for TM image classification 
Original Gap 
Class Code 

 
Class Name 

New 
Class Code 

New 
Class Name 

1 Shrubland 4 Grassland / 
Shrubland 

2 Woodland 2 Forest 
3 Surface water 1 Water 
4 Major highways 5 Road 
5 Major powerlines 6 Powerline 
6 Populated area – mixed 

land cover 
3 Developed area 

7 Low intensity urban 3 Developed area 
8 Moderate intensity urban 3 Developed area 
9 Intensive urban 3 Developed area 
10 Row crop agriculture 4 Grassland / 

Shrubland 
11 Pasture/grassland 4 Grassland / 

Shrubland 
12 Barren land – mining, 

construction 
7 Barren land 

13 Planted grassland 4 Grassland / 
Shrubland  

14 Conifer plantation 2 Forest 
15 Floodplain forest 2 Forest 
16 Forested wetland 2 Forest 
17 Shrub wetland 4 Grassland / 

Shrubland 
18 Herbaceous wetland 4 Grassland / 

Shrubland 
19 Surface water (combine 

with class #3) 
1 Water 

20 Cove hardwood forest 2 Forest 
21 Diverse/mesophytic 

hardwood forest 
2 Forest 

22 Hardwood/conifer forest 2 Forest 
23 Oak dominant forest 2 Forest 
24 Mountain hardwood forest 2 Forest 

There are two ways to train the pattern: one is unsupervised, and the other one is 

supervised (ERDAS, 1999). In the unsupervised classification, training is carried out 

through computer-automation. It enables us to uncover statistical patterns that are 

inherent in the data. Supervised training is closely controlled by an image analyst. In this 

process, the analyst select pixels that represent patterns or land cover features with help 

from other sources, such as aerial photos, ground truth data, or maps. Knowledge of the 
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data, and of the classes desired, is required before such kind of classification. Supervised 

classification is usually appropriate to identify relatively few classes, or where selected 

training sites that can be verified with ground truth data, or to identify distinct, 

homogeneous regions that represent each class. Therefore, in this study, supervised 

classification was applied to identify the land cover and land use classes.  

In this study, the reference data used for creating signatures includes natural color 

photography and color infrared DOQQs. The ERDAS IMAGINE Classifer|Signature 

Editor was used. First, the AOI tool was used to collect signatures. In order to identify 

more reliable signatures, several bands combination of TM data were used in defining the 

signature polygons.  

a) Band 1(B), band 2 (G) and band 3 (R)   

This is the "natural color" band combination (Jensen, 1996). While the visible 

bands are used in this combination, ground features appear in colors similar to their 

appearance to the eyes. Rivers, roads and powerlines are very easy to distinguish from 

forests and grasses.  

b) Band 2(B), band 3(G) and band 4(R)   

This is the standard "false color" composite (Jensen, 1996). Vegetation appears in 

shades of red, developed areas such as urban areas or roads are cyan blue, and soils vary 

from dark to light browns.  Coniferous trees will appear darker red than hardwoods.  This 

is a very popular band combination and is useful for vegetation studies, monitoring 

drainage and soil patterns and various stages of crop growth.  Generally, deep red hues 

indicate broad leaf vegetation, while lighter reds signify grasslands or sparsely vegetated 

areas.  Densely populated urban areas are shown in light blue. 

c) Band 1(B), band 5(G) and band 4(R)   

With this combination, healthy vegetation appears in shades of reds, browns, 

oranges and yellows (Jensen, 1996).  Urban features are white, cyan and gray, bright blue 

areas represent recently clearcut areas, and reddish areas show new vegetation growth, 

probably sparse grasslands.  Clear, deep water will be very dark in this combination. If 

the water is shallow, or contains sediments, it would appear as shades of lighter blue.  

 
 



Chapter 4      51

This is not a good band combination for studying cultural features such as roads and 

runways. 

d) Band 3(B), band 5(G) and band 4(R)   

This combination of near-IR (Band 4), mid-IR (Band 5) and red (Band 3) offers 

added definition of land-water boundaries and highlights subtle details not readily 

apparent in the visible bands alone.  Inland lakes and streams can be located with greater 

precision when more infrared bands are used.  This band combination is good for 

discriminating vegetation type and condition, in a variety of tones (brown, green and 

orange hues) (Jensen, 1995). 

A total of 66 training signatures were identified for water, forest, developed areas, 

Grassland / Shrubland and Barren land (Figure 4.2). At this phase, the road and power-

line features were classified as developed areas. 

 

Figure 4.2   Selected supervised classification signatures from the imagine signature editor.  
 

After the signatures were defined, the pixels of the image were sorted into classes 

based on the signatures using a classification decision rule. The decision rule is a 

mathematical algorithm that, using data contained in the signature, performs the actual 

sorting of pixels into distinct class values. A maximum likelihood decision rule was used 

for the classification. In a maximum likelihood classification, signatures are defined by 

the mean vector and covariance matrix of each class.  
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After classification, the classified images that were derived from Landsat imagery 

were twice filtered with a 3x3 majority filter respectively. Then, an ERDAS spatial 

model (Figure 4.3) was employed to overlay roads and power lines from the GAP 

classification on the classified images.  

Finally, this produces three classified land cover maps for 1987, 1994 (GAP), and 

1999. 

  
Figure 4.3   Spatial model for adding roads and power lines to the TM classification images 
 
3. Patch Analysis 
 

In this study, PATCH (GRID) ANALYST 2.0 (Rempel 2000) was used for the 

fragmentation metrics calculation and analysis. PATCH (GRID) ANALYST is an 

extension to the ArcView® GIS spatial analyst extension. PATCH (GRID) ANALYST 

calculates 28 patch metrics, including mean and median patch size, patch size coefficient 

of variance, edge density, mean shape index, fractal dimension, interspersion and 

juxtaposition, Shannon's diversity index, and the core area index. The program can also 

create a new shape with patch metric attributes attached. Summary statistics are reported 

at either the patch or landscape scale. The various patch metrics follow the definitions in 

FRAGSTATS ( McGarigal and Marks 1995). 

For this study a selected number of landscape metrics was used: 1) Patch-per-Unit 

area (PPU), which measures the degree of fragmentation of patches on a landscape 
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(Formula 4.1); 2) Square Pixel (SqP), which measures the shape complexity of patches 

on a landscape (Formula 4.2); 3) average forest patch area and average forest patch 

perimeter which are usually used for measuring the forest patch size change; 4) forest 

patch number; 5) percentage of landscape area occupied by forest patches which measure 

the forest patch abundance, 6) edge density, and 7) forest Patch core area. 

 

     Formula 4.1   Formula of PPU  

 
PPU=m/(n*λ) 

M is the total number of patches 

N is the total number of pixels 

λ is a scaling constant equal to the area of a pixel. 

Low PPU means less fragmentation 

Formula 4.2   Formula of SqP 

 

Sqp= 1-(4*A1/2/P) 

A is the total area of all pixels 

P is the total perimeter of all pixels in the study area. 

 It is unitless. 

Low SqP means less complexity 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

In order to calculate these metrics, ArcView3.2 ® was first opened with Imagine 

extension, spatial analyst extension and Patch (Grid) analysis 2.0 extension. Then the 

1987 TM and 1999 TM classification images were converted to GRID files. After that, 

PatchGrid|Add Area/Perimeter was used to calculate the total area and perimeter for 

every land cover class. The PatchGrid|Spatial statistic (FragStats) were used to calculate 

 
 



Chapter 4      54

total landscape area, number of patches, mean patch size edge density and other metrics 

(Figure 4.4). 

In order to calculate PPU and SqP, the two new fields were added, and then the 

ArcView calculation function was used to get their values. Results were then 

summarized. 

 
 
Figure 4.4   Interface of PATCH (GIRD). 
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2. The design and implementation of Forest Fragmentation Analysis 
Web site with ArcIMS 

The second objective of this study focused on assessing IMS and Web GIS as 

approaches to improve forest fragmentation information representation and delivery for 

the case study. First, four essential functions for web-based forest fragmentation analysis 

were identified. From those functions, some indicators were derived to assess the ability 

of different Web-GIS approaches for supporting data integration, spatial analysis, query 

and information representation. Then, ArcIMS HTML Viewer and JAVA viewer was 

used to explore the implementation of those proposed functions as it relates to forest 

fragmentation. 

Why ArcIMS? 
There are several ways to implement a Web-based GIS. The choice depends on 

application goals, time and cost requirements. For example, Internet application 

development languages and components such as Java, JavaScript, Perl, Vbscript and 

HTML could be used directly to design GIS servers. This approach is very flexible but 

time-consuming. A second approach would be to establish a Common Gateway Interface 

(CGI) by integrating common programming languages such as VisualBasic with 

commercial GIS component libraries such as MapObject or ArcObjects for processing 

web client-side requests. This approach has still higher requirements as to the developer’s 

computer programming ability, and requires spending a significant amount of time on 

system design. The third approach would use a commercial Internet mapping server 

(IMS) package, such as ESRI’s ArcView IMS, ArcIMS or Intergraph’s GeoMedia Web 

Enterprise, to customize the application. Commercial IMS approaches allow developers 

to build web-based GIS in a quick and convenient way. In this research, ESRI’s ArcIMS 

integrated environment was used.  

ArcIMS provides a framework for distributing GIS services on the Internet. It is a 

toolset for authoring, designing, and administering Internet GIS sites. Compared with 

other commercial IMS solutions, ArcIMS has various special features for delivering 

Internet mapping services and GIS functionalities. For example, ArcIMS makes it 

possible to integrate data from multiple sources (ESRI 2001) including any number of 

ArcIMS Websites. It also enables the integration of local GIS data with ArcIMS layers. 
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ArcIMS has a wide range of functionality. With the exception of editing tools, nearly all 

ArcMap™ tools that can be used with shapefiles, coverages, and geodatabases can also 

be used with ArcIMS feature layers. Users can potentially access and analyze data to the 

extent of an ArcGIS Desktop user. ArcIMS also provides access to GIS data and services. 

Web GIS service providers can determine how, and to whom, GIS data and services are 

delivered. ArcIMS provides a scalable system that can be configured to serve up to 

10,000 map requests an hour.  

ArcIMS includes a set of HTML and Java viewers that provides access to basic 

GIS services and tools. These viewers can provide options such as labeling features, 

creating map tips, selecting attributes spatially, determining distances, and even 

incorporating the user’s own data with the feature service for further analysis. Users also 

can build new queries or run predefined queries to derive specific information about the 

distributed database (ESRI, 2001).  

 ArcIMS allows direct customization at both client and server levels. At the client 

level, custom HTML and JavaScript can be used to modify the look and feel of the 

viewer. At the server level, ArcIMS’s XML language, ArcXML, can be used to modify 

map configuration files, for example, to project data and change the appearance of map 

features. It is also possible to incorporate custom and advanced services and tools (ESRI, 

2001). 

These features supported by ArcIMS provide the potential to develop a highly 

interactive Web GIS application for forest fragmentation information delivery and 

analysis. 

 
Components of ArcIMS  

ArcIMS consists of client-side components, server-side components and a data 

storage tier (Figure 4.5).   
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Figure 4.5   Components of ArcIMS (ESRI, 2001). 

(1) The server-side components 
The server-side components consist of a Web server, ArcIMS application Server 

Connectors, an ArcIMS Application Server, an ArcIMS Spatial Server, and an ArcIMS 

Manager. These components are used to process ArcIMS client-side requests, to create 

and run MapServices, and to manage the site (ESRI 2001). 

A Web server provides standard web services, and communicates with one of the 

ArcIMS Application Server Connectors. The ArcIMS Application Server Connectors are 

used to connect the Web server to the ArcIMS Application Server.The ArcIMS 

Application Server handles the load balancing of incoming requests and tracks what 

MapServices are running on ArcIMS Spatial Servers. The ArcIMS Application Server 

passes a request to the appropriate spatial server. 

The ArcIMS Spatial Server is the core component for processing requests for 

maps and related information. When a client request is received, the ArcIMS Spatial 

Server performs functions such as creating cartographic map image files, streaming map 

features, searching to query the database, geocoding for address matching operations, or 

"clipping" data to create a subset that can be sent back in shapefile format.  

MapServices are major processes running on the ArcIMS Spatial Server. A 

MapService provides instructions to a spatial server on how to draw a map when a 
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request is received. The input to a MapService is an ArcXML MapService configuration 

file (MCF). The same MCF file can be used as input to more than one MapService. 

ArcIMS supports two types of MapServices: Image and Feature. An Image MapService 

provides the client with a snapshot of the view of authored map by using the image 

rendering capabilities of the spatial server. When a request is received, a map is generated 

on the server, and the response is returned as a JPEG, PNG, or GIF image. A new map 

image is generated each time a client requests more information. Rather than rendering a 

map on the server, a Feature MapService uses the spatial server's feature streaming 

capabilities to bundle data and send the request to the client. Feature streams, in specially 

optimized compressed format, are processed by Java Applets embedded in the client-side 

Web browser. In this way, the communication traffic on Internet is reduced significantly. 

Therefore, the Feature MapService can potentially higher speed Web GIS application 

services. 

The ArcIMS Manager is a suite of Web pages that provides access to all ArcIMS 

server-side functions and tools. Through the ArcIMS Manager, it is possible to author, 

design, and publish MapServices. 

(2) Client-side components: ArcIMS Viewers  
The client-side components refer to the ArcIMS Viewers (ESRI, 2001), which are 

the interfaces for the users of ArcIMS applications. The main functions of ArcIMS 

viewers include supporting the viewing of maps and data, as well as sending users' 

requests to the ArcIMS server. Different types of ArcIMS viewers support different 

functionality sets and web site graphic displays. There are three kinds of viewers: 

HTML/DHTML Viewers, Java Viewers and ArcXML clients. The former two are most 

common viewers. The ArcXML client could be any client viewer which can send 

ArcXML requests and explain ArcXML responses (ESRI, 2001). 

The HTML/DHTML Viewer is written using HTML, DHTML, and JavaScript. 

When a user clicks on a map or tool, a request is generated by the viewer and sent to an 

ArcIMS Spatial Server using the servlet connector. When a response is returned, the 

client processes the response for display instructions. In this environment only one Image 

MapService can be displayed at a time. The HTML/DHTML Viewer requires that 
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browsers must be version 4.0 of Internet Explorer or higher to handle the 

communications for requests and responses (ESRI 2001). 

Compared to HTML/DHTML Viewers, Java Viewers are thicker clients because 

they have higher requirements for the client environment for running this viewer. Java 

Run-time Environment and ArcIMS Java Viewer components must be installed on the 

client browser. Java Viewers support both Image and Feature MapServices. There are 

two types of Java Viewers: ArcIMS Java Custom Viewer and ArcIMS Java Standard 

Viewer. The Java Custom Viewer uses JavaScript to communicate with the applets. This 

viewer can be customized using methods in a Viewer Object Model application 

programming interface (API). The Java Standard Viewer does not use JavaScript. The 

tools and functions are predefined and cannot be customized using the Viewer Object 

Model (ESRI 2001).  

In this study, only HTML viewers and Java Custom Viewers were used. 

Communications between ArcIMS components via ArcXML 
The basic relationships among ArcIMS components is that when an ArcIMS 

client makes a request for a map or data, the request travels first to the Web server, passes 

through one of ArcIMS Connectors, and then is handed to the ArcIMS application server. 

The application server hands the request to an ArcIMS Spatial Server. The responses 

follow the same path in reverse order. All requests and responses are written using 

ArcXML (ESRI 2001). 

ArcXML is a kind of Extensible Markup Language designed by ESRI for 

describing and operating geographic features.  ArcXML defines content for MapServices 

and is used for building requests and responses between clients, middleware, and the 

server. ArcXML files are similar to HTML pages. However, the difference is that HTML 

describes the page structure for display, while ArcXML provides the structure for 

describing the content. ArcXML tags and attributes provide the structure for the 

following: (1) MapService configuration files that describe how a map should be 

rendered, which including a list of layers used and how each layer should be symbolized; 

(2) requests to sets a filter on an existing MapService configuration file that specifies 

which part of a map and associated data will be acted upon; or (3) responses to send the 

information back to the client. 
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General steps for designing and implementing a Web-GIS website with 
ArcIMS  
 

ArcIMS not only provides internet mapping services, but also provides an 

integrated development environment (IDE) for designing and implementing a Web-GIS 

website. Usually, it takes four steps to develop a Web GIS application with ArcIMS: 

designing the maps, authoring the Map Services, creating a prototype of web site, and 

customizing the Web Site (ESRI 2000a, ESRI 2000b, ESRI 2000c). 

(1) Designing Maps  
A map can consist of several layers. In the map design phase, the designer should 

decide the map contents needed by the application. In general, it is need to consider 

which layers should be published, the spatial extent for which those layers should be 

displayed, the source of the data, the format of the data, color and symbols used for 

rendering, the scale of rendering and so on. The main tool for map design is ArcIMS 

Author that creates a MapService Configuration File(MCF) for each map. This 

MapService Configuration File is built in ArcXML format. MCF can also be edited 

directly in any text editor by following ArcXML syntax.  

(2) Authoring Map Services 
In ArcIMS, in order to publish a map, one needs to create a MapService that 

provides instructions to a Spatial Server on how to draw a map when a request is 

received.  The tool used for creating Map Services is ArcIMS Manager/Author 

MapService. The input to a MapService is a MapService Configuration File.  

An HTML approach is used when Image MapService is chosen. The available 

functionality based on Image MapService is limited to simple view and query, and data 

layers are used mainly for reference. Feature MapService provides a larger range of 

functionality, and therefore is an appropriate choice when extensive user interaction and 

analysis is required (ESRI, 2000a). Feature Mapservice is based on a client-side Java 

solution. 
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 (3) Creating the Prototype Application Web Site  
After creating a MapService, a prototype web site was designed and built with 

ArcIMS web design templates by choosing suitable ArcIMS Viewer and function sets. 

The main tool used for the web site design is ArcIMS Designer. 

a) Choosing A Viewer 

The ArcIMS Viewers determines the functionality, graphic look of the site, and 

client browser burden. ArcIMS provides two kinds of Viewers: an HTML Viewer and a 

Java Viewer. The HTML viewer can be opened in any Internet Browser such as 

Microsoft IE and Netscape. The HTML Viewer employs JavaScript and Dynamic HTML 

(DHTML) to enhance its capabilities. Java Viewers are only compatible with web 

browsers that support Java plug-in functionalities, and require a onetime web download 

to a user’s computer (ESRI, 2000b).  

The HTML viewer is approprite when the application is viewed with a variety of 

browsers, when the plug-ins are not allowed, when less client-side processing is 

preferred, and when only view and query functionalities are needed. If these requirements 

are not met, Java Viewers are an effective alternative (ESRI, 2000b). 

b) Defining the GIS functions 

The functionality in a Web GIS system is driven by the goals and requirements of 

the application. Applications can range from the most simple, requiring only viewing 

functions, to more sophisticated applications, requiring extensive user expertise and 

analytical processing.  A suite of pre-defined functions has been provided in ArcIMS, 

including: zooming and panning the map, identifying and finding features, searching 

spatial features, querying data, displaying Maptips, selecting and buffering features, 

working with measures and scales, adding MapNotes, using EditNotes, operating layer 

properties, integrate data locally or from the internet, printing web maps, and so on.  

Different Web GIS approaches support different function sets (ESRI, 2000b). During the 

creation of the prototype of Application Web Site, predefined functions are specified 

after the viewer is chosen. Complex functions needed in the application can be added by 

later customization. 
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(4) Customization  
The prototype of the web site is not always ideal for the final application. For 

example, a specific application may need a special style of interface for the web site with 

special logo, help files and other interface elements. In addition, special functions may be 

needed. Therefore, after building the prototype of the web site, customization is usually 

required. HTML and JavaScript is used customizing interface and functionalities, and 

ArcXML is used for customizing spatial query and map contents (ESRI, 2000b; ESRI, 

2000c). 

Proposed Functions in Forest Fragmentation Analysis Web Site 
 

The first step of the web site creation was to identify the essential functions for 

delivering forest fragmentation information.  

From the literature review, it was determined that land cover data input and 

display, as well as forest fragmentation metrics calculation are the basic operations for 

forest fragmentation analysis. An additional important issue is the quantification of 

changes of forest fragmentation over time. A function to query a specific patch is needed 

to assess the forest fragmentation impacts on different species, because individual species 

tend to have different requirements for forest habitat extents. In addition, it may be 

necessary to assess impacts caused by individual disturbances such as new roads, forest 

harvesting, or fire. Based on these requirements, five essential functions for delivering 

forest fragmentation information and interactive analysis features were identified: (1) 

forest fragmentation metrics calculation; (2) a forest fragmentation viewer (3) a forest 

fragmentation change viewer; (4) patch query; and (5) disturbance assessment. 

(1) The forest fragmentation metrics calculation function 

The metrics calculation function allows users to choose a classified data set on the 

Web, and then to define a spatial extent for forest fragmentation calculations. Finally, the 

results of the metrics calculations, including those for area of forest, the total area of Area 

of Interest (AOI) specified, Pixel-Per-Unit, Square Pixel, number of patches, and Mean 

Patch Size are displayed. 
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(2) Forest fragmentation viewer 

 The viewer displays distributed spatial data such as Landsat TM, and classified 

data, as well as the associated fragmentation metrics. Multi-temporal Landsat TM data 

and classification data should be organized as separate map layers. The forest 

fragmentation metrics should be shown as tabular data. 

(3) Patch query 

The patch query function allows users to identify forest patch as of specified size 

and type which may be suitable for specific species.  

(4) Disturbance assessment 

This function would allow users to add a disturbance polygon or line, for example 

a logging polygon, or a propose road corridor, and then associated changes of the forest 

fragmentation metrics should be reported. 

Steps for implementing the forest fragmentation web site 
The first step of the web site construction was to design the web site structure. 

The first page of the web site was designed as the entrance of the whole application. 

ArcIMS IDE was used to design the maps, create the associated map services, and build 

the prototypes of the application web pages. Finally, HTML, JavaScript and ArcXML 

were used to customize the application interfaces and functions.  

(1) Web Site Structure Design 
Generally, a web site has an introduction page which plays the role of 

introduction, and overall link to the web site functions. The more detailed content is 

linked with this page through the hyperlinks. Following this approach, one introduction 

web page, and nine independent functional web sites, representing five different forest 

fragmentation representation and analysis functions, were deployed with HTML or Java 

approach (Figure 4.6). The functional web sites are:  

a) Forest fragmentation metrics calculation in an HTML Viewer;  

b) Forest fragmentation metrics calculation in a JAVA Viewer with Image 

Service; 

c) Forest fragmentation viewer in an HTML Viewer; 
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d) Forest fragmentation viewer in a JAVA Viewer with Image Service; 

e) Forest fragmentation viewer in a JAVA Viewer with Feature Service; 

f) Forest fragmentation change viewer in an HTML Viewer;  

g) Patch query using HTML; 

h) Patch query using JAVA; and, 

i) Disturbance assessment using JAVA. 

 

 

Figure 4.6   WFFA system Web Site Structure (I= image service, F = feature service). 

(2) First Page Design 

The first page is the entrance to the whole application. It lists the system 

functionality, and contain project background information. The main method employed to 

create the first page was the HTML frame. With frames, multiple HTML document can 

be displayed in the same browser window. Each HTML document is called a frame, and 

each frame is independent of the others but can communicate with others. The first page 

consists of five HTML frames: TopFrame, TopicFrame, MainFrame, ModeFrame and 

BottomFrame.  

In the TopFrame, the web page title, help link, and home link are shown in figure 

4.7. In the TopicFrame, forest fragmentation analysis functions and related data, 
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documents, other forest-fragmentation associated hyperlinks are listed. The MainFrame 

shows project introduction information, functionality description and associated web 

pages.   

 

Figure 4.7   Interface of WFFA  first page of the forest fragmentation Analysis web site. 

(3) Map Design and Data preparation 
 The web site was designed with the case study data, including one Landsat 5 1987 

TM image, and one Landsat 7 1999 ETM+ image. West Virginia county boundary data 

and GAP land cover and land use data were incorporated additional layers for enhancing 

the forest fragmentation representation. 

The basis of serving the above data is to create maps which consist of one or more 

layers. In order to serve maps on the Web, ArcIMS requires a map configuration file 

(MCF) in ArcXML format for each map. MCFs are used to create different MapServices 

for different forest fragmentation functions. In this study, an aim was to test ArcIMS’s 

capability of supporting integration of different format vector data and raster data. The 

proposed the functions require that main maps, overview maps and distributed maps are 

shown separately. Therefore, three main MCFs for the three maps were created. The first 

MCF is for map that consists of West Virginia county boundary layer, 1987 and 1999 
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Landsat TM images layers, 1987 and 1999 land cover/land use classification data with 

unique symbols for each class, and 1987 and 1999 land cover/land use classification data 

with transparent symbols. The reason for using transparent symbols in the classification 

polygon file is to provide an alternative approach to link land classes with TM images. 

The second map is an overview map which only consists of a West Virginia county 

boundary layer. This map would be used for creating an overview mapservice for all 

forest fragmentation analysis ArcIMS web sites. The third map is a Landsat imagery map 

which consists of all Landsat TM images. It is used to create a specific map service for 

assessing the ArcIMS ability for supporting integrating multiple web data and multiple 

map services.   

The following is an example of the MCF for the overview map file:

“
<?xml version="1.0" encoding="Cp1252"?>

<ARCXML version="1.0.1">
<CONFIG>
<MAP>
<PROPERTIES>
<ENVELOPE minx="355916.689882" miny="4117439.290219"

maxx="782847.011226" maxy="4498773.113936" name="Initial_Extent" />
<MAPUNITS units="DECIMAL_DEGREES" />
</PROPERTIES>
<WORKSPACES>
<SHAPEWORKSPACE name="shp_ws-0"

directory="D:\ArcIMSProjects\forest_frag\Data\shp" />
</WORKSPACES>
<LAYER type="featureclass" name="County Boundary" visible="true"

id="0">
<DATASET name="county_tiger_utm83" type="polygon"

workspace="shp_ws-0" />
<SIMPLERENDERER>
<SIMPLEPOLYGONSYMBOL fillinterval="6"

boundarytransparency="1.0" filltransparency="0.0" fillcolor="0,200,0"
filltype="solid" boundarytype="solid" boundarywidth="1"
boundarycaptype="round" boundaryjointype="round"
boundarycolor="0,51,102" />

</SIMPLERENDERER>
</LAYER>

</MAP>
</CONFIG>

</ARCXML> ” 

 In ArcIMS author, image files cannot be shown (Figure 4.8), although they are 

displayed in the final web page (Figure 4.9). 
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Figure 4.8   The result of adding image file with ArcIMS Author.  

 
 

 

 

 

 

 

Figure 4.9   The result of displaying image file in the client side web browser. 

(4) Map Services Design 
In this study, map services design considered the needs of users interactively 

operating local data and server data in a standard web browser. The extent and content of 

MapServices were determined by the proposed functions in the forest fragmentation 

analysis web site. Two kinds of MapService, functions, Image MapService and Feature 

Mapservice, were used to define six application map services. These MapServices are a) 

Image MapService of main map for HTML Viewer and Java Viewer; b) Feature 

Mapservice of main map for Java Viewer; c) Image MapService for Overview map; d) 

Feature Mapservice and Image MapService for GAP map services; and e) Image 

MapService for the TM image. The tool used for creating these application Map Services 
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was ArcIMS Manager/Author MapServics. Any MapService link with a Map 

Configuration File builds during the phase of map design (Figure 4.10 and Table 4.7). 

 

 

 

 

 

 

 
Figure 4.10   The interface of a summary of a Mapservice. 
 
Table 4.7 MapServices in the Forest Fragmentation Analysis web sites. 
Map Service Type Map Configuration File 
mpsi_fraghviewer Image MapService map_fragviewer.axl 
mpsf_fragjviewer Feature MapService map_fragviewer.axl 
mpsi_wvcounties Image MapService map_wvcounties.axl 
mpsi_gap Image MapService Map_gap.axl 
mpsf_gap Feature MapService Map_gap.axl 
mpsi_tmimages Image MapService Map_TMimages.axl 

 

 (5) The Design of Web site Prototypes 
 

Creating a web site prototype is carried out with ArcIMS web site templates and 

associated Mapservices. The nine prototypes of functional web sites in this study were 

built with ArcIMS Designer following similar procedures.  

First, a name of web site entry directory and a title for the web site is specified 

(Figure 4.11). 

 
Figure 4.11   The interface for setting up the entry directory and title for the web site with ArcIMS 
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Then, the MapServices used in the MapFrame is chosen (Figure 4.12). The 

MapFrame is the specific frame for displaying map data in an ArcIMS viewer.  

 

 
Figure 4.12   The interface for setting up MapService for the Web GIS application 
 

After defining MapServices, an ArcIMS viewer, HTML viewer, or Java viewer, is 

selected. If an HTML viewer is selected, then the HTML web site template is used to 

create the web site prototype (Figure 4.13). If a Java viewer is selected, either Java 

custom or Java standard web site templates can be used. In this study, all Java web site 

templates used Java custom web site templates to facilitate further customization.  

 

Figure 4.13   The interface for setting up the web site template 
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The corresponding relationships among nine functional web sites, viewers and 

associate MapServices are listed in Table 4.8. 

Table 4.8   Web sites and their associated Viewer types and MapServices in WFFA system. 
Web sites Functions & Viewer MapServices 
FragCalculator_i_HTML forest fragmentation metrics 

calculation in HTML Viewer 
mpsi_fraghviewer 
mpsi_wvcounties 

FragCalculator_f_JAVA forest fragmentation metrics 
calculation in JAVA Viewer 

mpsf_fragjviewer 
mpsi_tmimages 

FragViewer_i_HTML forest fragmentation viewer in 
HTML Viewer 

mpsi_fraghviewer 
mpsi_wvcounties 

FragViewer_i_JAVA forest fragmentation viewer in 
JAVA Viewer with Image 
Service 

mpsi_fraghviewer 
mpsi_wvcounties 
mpsi_gap 

FragViewer_f_JAVA forest fragmentation viewer in 
JAVA Viewer with Feature 
Service 

mpsf_fragjviewer 
mpsi_wvcounties 
mpsf_gap 
mpsi_tmimages 

FragPatch_i_HTML patch query in HTML mpsi_fraghviewer 
mpsi_wvcounties 

FragPatch_f_JAVA Patch query in JAVA with 
Feature Service 

mpsf_fragjviewer 
mpsi_wvcounties 

FragDisturb_f_JAVA Disturbance assessment in 
JAVA 

mpsf_fragjviewer 
mpsi_wvcounties 
mpsi_tmimages 

 
In the HTML web site template, map extents are defined. The initial extent is the 

area that the user first sees in the browser, and the extent limit is the area the user cannot 

view beyond (ESRI, 2000b). In this study, the extent of MapService of mpsi_fraghviewer 

was used as the initial extent, and extent of all MapServices was used as the extent limit 

in all HTML viewers (Figure 4.14). 

 

Figure 4.14   The interface of setting up initial Map Extent with ArcIMS. 
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MapSevice, mpsi_wvcounties, was set up as the overview map. After that, meters 

were set up as the data source units and miles as the scale bar units. The next step is to 

select pre-defined toolbar functions from the list of functions supported by ArcIMS 

HTML viewers (Figure 4.15).  

 
 

Figure 4.15   The interface for setting up pre-defined interactive mapping functions.  
 

Finally, the web site location is defined. In this study, the system web site 

directory that had been established at the time of web server installation was used. After 

all the above steps, a web site with HTML viewer is built automatically. 

The procedures for setting up a web prototype with a Java custom web site 

template are broadly similar those establishing HTML viewer web site, except that they 

are more complex because Java Viewer provided web GIS designers and users more 

feature to interact with spatial data and mapping elements. 

At first, the Java custom web site template asks the designer to choose the look of 

mapping elements such as the colors for background, foreground and outline of maps, 

legend, scale and the overview map (Figure 4.16). In this study, the default values were 

used. 
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Figure 4.16   The interface for setting up the look of mapping elements, including the colors of the 
background, foreground and outlines of maps. 
 

In the same manner as the HTML template setup, the map extent is defined. Then 

the visible layers in corresponding MapServices and content of overview map are set up. 

Predefined functions are chosen via the interface of Toolbar functions. Almost all 

layer control and project control functions are used in Java Viewers. These new functions 

provide a unique potential to operate local and server spatial data on the Web. For 

example, the function tool of EditNotes( ) allows simple editing of features. The 

MapNotes function ( ) allows Web GIS users to add descriptive text and graphics to 

the map. Add New Layer function ( ) allows the user to open a local map layer or 

layers in a MapService on the Web. The only difference between setting up an Image 

MapService-based Java viewer and a Feature MapService-based Java viewer is that the 

EditNotes tool can only be used in the former.  

Two features unique to the Java Viewer, MapTips and Identify Results, were then 

set up (Figure 4.17).  MapTips displays a field of information about features on a map 

layer, and Identify Results displays fields when the tool is used on a map layer.  
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Figure 4.17   Interface of setting up MapTips and Identify results 

The final step is to set up folders where new features added by MapNotes tool or 

EditNotes are saved and to specify the web site location directory. In this study, the setup 

employed the system default values. Finally, the introductory web site and the eight 

ArcIMS functional web sites prototypes were established with six MapServices. 

(6) Customization of interfaces and functionalities 
After establishing the application prototypes, the next step is to customize the 

interfaces and the applications functions. By customizing the interfaces, a web GIS 

system can provide users with a more understandable guide to the system, and provide 

spaces to show application results for example from a customized query or a special 

analysis. This modification of the pre-defined functions and addition do new functions 

allows the development of more specific or complicate functions. In this study, eight 

functional web sites were customized respectively.  
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Customization of the forest fragmentation viewer web site in HTML Viewer 

(FragViewer_i_HTML) 

The main interface changes are a newly designed legend, which was inserted in a 

Layer Frame and a FragMetrics Title Frame, which was added between the Map Frame 

and the FragMetrics Frame (Figure 4.18).  

Figure 4.18   Forest fragmentation viewer HTML Viewer interface 
 

 The legend icons were created in Microsoft Paint and were added into the Layer 

Frame by editing the toc.htm file.  In the Layer Frame, the legend was constructed with a 

HTML table that defined the legend frame, a set of images of symbols representing the 

geographic features on the map, and text labels that specify the meaning of each symbol. 
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The FragMetrics Title Frame was designed using HTML (Figure 4.19). This 

frame used a HTML form with one text field to show the year of current active layer.  

 

Figure 4.19   FragMetrics Title Frame 

The form is named Form_FragMetricsYear.  In a Web page, a form is an area that can 

contain form elements that allow users to enter or show information such as text fields, 

textarea fields, drop-down menus, radio buttons, and checkboxes. A form can be operated 

by related functions or action programs such as a CGI program. The text field in  form of 

Form_FragMetricsYear was controlled by a segment of a JavaScript program, 

SetFragMetricsYear. Each time the current active layer is changed, the year of the newly 

displayed data will be shown. 

An additional new function was added in the prototype for showing the 

fragmentation metrics of the current active layer. The values of these metrics are derived 

from the implementation of the fragmentation analysis, as described under the first 

objective of the research. Therefore, the links between the fragmentation metrics and the 

corresponding layer are static links. The values of the metrics will change when a new 

active map layer is chosen in the Layer Frame. In order to show the forest fragmentation 

metrics, the original Text Frame in the Web site prototype was converted to the 

FragMetrics Frame. 

 The FragMetrics Frame contained a HTML Form which consists of ten read-only 

text fields for displaying the values of the calculated metrics including area of forest, total 

landscape area, Patch-per-Unit Area of forest patches, Square Pixel of forest, total 

number of patches, mean forest patch size, mean shape index, mean patch fractal 

dimension, total edge of forest patches, and edge density of forest patches (Figure 4.20).  

 

 

 

 

 

 
 



Chapter 4      76

 

 

Figure 4.20   FragMetrics Frame 
 

The operation functions for this form were included in the same HTML file as the 

FragMetrics Frame. When a new active layer in Layer Frame is specified, a JavaScript 

program will call the processing function in FragMetrics Frame to change the values of 

the forest fragmentation metrics. 

Customization of the Forest fragmentation metrics calculation function web site in 

HTML—(FragCalculator_i_HTML) 

This web site used the same methods as the former web site to customize the 

application interface. FragMetrics Title Frame and FragMetrics Frame were also created 

in the same way as that in former web site but in FragMetrics frame, only eight metrics 

were used. The mean shape index and mean patch fractal dimension metrics were not 

used because they required more complex calculations that are not supported by 

JavaScript Math object. 

A function for dynamic calculation of forest fragmentation was added to this web 

site. Users can define a region with selection tools such as select by rectangle ( ) or 

select by line/polygon ( ) tool, over which forest fragmentation metrics are calculated 

(Figure 4.21). 
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Figure 4.21   forest fragmentation index results from a defined polygon. 

In order to implement this function, the identify tool program named 

aimsIdentify.js was customized to run the following processes: (1) count the total number 

of selected features; (2) to count the total area and perimeter in the selected area; (3) 

calculate the forest fragmentation metrics.  

For counting the total number of selected features, an ArcIMS pre-defined 

function named justGetFeatureCount()was used (Figure 4.22).  

 

 

 

 

 

 

JustGetFeatureCount is used for returning the number of features returned in 

ArcXML query response. 

Syntax: 
justGetFeatureCount(theReply) 

Arguments: 
theReply String containing returned ArcXML response. 

Returned Value: 
Numeric Number of features returned. 

 

Figure 4.22  ArcIMS justGetFeatureCount function 

The next step is to get the values of area and perimeter of the selected features by 

using an ArcIMS pre-defined  function named getAllFieldValues(), and save those 
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values to two javaScript defined arrays separately. The syntax of getAllFieldValues() is 

shown in figure 4.23.  

 

 

 

 

 

 

 

GetAllFieldValues  is used for parsing out the values of one field from an 

ArcXML query response. 

Syntax: 
getAllFieldValues(theReply,theField,recCount) 

Arguments: 
theReply String containing ArcXML query response to be parsed. 

theField String containing name of field to be used. 

recCount Numeric representing number of records to be parsed. 

Returned Value: 
Array List of values parsed. 

Figure 4.23   ArcIMS getAllFieldValues function. 

JavaScript objects and associate methods were used to calculate forest 

fragmentation metrics. The main JavaScript objects, the related properties and the 

methods used for the metrics calculation are listed in Table 4.9. 

After calculating forest fragmentation metrics, a series of form updating 

statements were used to update the values in FragMetrics Frame. The forest 

fragmentation viewer web site established with a Java Viewer with Image Service, the 

Java Viewer with Feature Service and the Java based metrics calculation web sites, all 

used similar procedures to develop forest fragmentation viewers. However, the ArcIMS 

Java approaches used Java Viewer Object Model combined with JavaScript, to create an 

application interface. 
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Table 4.9   JavaScript objects, related properties and methods for calculating forest fragmentation 
metrics (www.w3c.org)  

JavaScript 

Object 

Properties/Method Function 

 An Array object is used to store a set of 
values in a single variable name. Each value 
is an element of the array and has an 
associated index number.  

Array 

Length This property returns the number of elements 
in an array. 

 The Math object includes mathematical 
constants and functions. It is used for 
mathematic calculation. 

Math 

Sqrt(a) Returns the square root of a. 
 The Number object is an object wrapper for 

primitive numeric values, allowing for their 
manipulation. 

Number 

ToString() To convert a value to a string. 
 The String object is used to work with text. 
ValueOf() Returns the primitive value of a String object 
Split(separator)  Splits a string into substrings based on the 

separator character. The substrings are saved 
into an array. 

String 

Substring(start, end) Returns the string starting at the "start" index 
of the string and ending at "end" index 
location, less one. 

 
 
Customization of patch query web site in HTML Viewer (FragPatch_i_HTML) 

The patch query web site allows users to define the minimum size of forest 

patches that are to e shown and then calculates the associated forest fragmentation 

metrics using these patches within the region. 

This web site used forest fragmentation metrics calculation web site as a template. 

All files in the web site of forest fragmentation metrics calculation function were copied 

to patch query HTML Viewer web site. Then five steps were taken to customize the 

interfaces and functionality. 

First, a new variable named usePatch was added to ArcIMSparam.js. 

ArcIMSparam.js is the main parameter file for initializing an ArcIMS-based web site. 
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The usePatch variable controls the display of the toolbar named PatchQuery, which is 

represented by .  

Second, the toolbar frame was customized by turning off selected pre-defined 

tools, and adding two new tool icons ( and ) (Figure 4.24). The PatchQuery tool 

icon and the call to the related event-processing programs were added in the Toolbar.htm 

file by adding HTML and JavaScript statements. The tools deleted were the selection, 

query and print tools, because these functions were not needed, or conflict with the 

implementation of the patch query function.  

 

  
Figure 4.24   Toolbar of Patch Query Web site 

 
 The third step was to edit the function clickFunction() in the aimsClick.js file by 

adding a processing program segment (Figure 4.25) to call the patch query process 

function queryPatchForm() which in turn was defined in a new file named 

CustomizedQuery.js. 

//added by designer
case "patchquery":

...
queryPatchForm();

...
break

//endof designer 
 
 
 
 
Figure 4.25   Program segment of calling the function queryPatchForm(). 

CustomizedQuery.js consists of a set of new functions implemented with HTML, 

JavaScript and ArcXML. An interface(Figure 4.26) was created to allow the user to enter 

the minimum size of forest patch, to generate the related ArcXML requests, and to send 

the ArcXML requests to the ArcIMS server. 
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Figure 4.26   Interface for specifying the minimum patch size.  

 

The new functions include queryPatchForm(), writeForestPatchSizeQueryForm(), 

writePatchQueryXML(queryString), and sendPatchQueryString(newString).  

QueryPatchForm() was designed with JavaScript. It begins patch processing by 

initializing system variables and calling the function writeForestPatchSizeQueryForm() 

to open a new window, and show the interface for entering the minimum forest patch 

size. The function writeForestPatchSizeQueryForm() was written with JavaScript and 

HTML.    

After the user enters the patch size and clicks the ‘GO’ button, the function 

writePatchQueryXML() writes an ArcXML request, which is sent out by the function 

sendPatchQueryString(). 

The fourth step was to modify the functions for calculating the forest 

fragmentation metric in aimsIdentify.js. The total landscape area is based on the spatial 

extend of whole image. The area of forest class metrics is calculated from the total areas 

of queried patches. 

 The final step was to make the patch query tool work, employed HTML 

<SCRIPT> tags for adding CustomizedQuery.js to the mapframe file (MapFrame.htm), 

so that functions in CustomizedQuery.js  could be integrated into the whole system. 

<SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript"
SRC="javascript/CustomizedQuery.js">

</SCRIPT>

After customization, a test was run by entering an area of 4,000,000 square meters 

as the minimum forest patch area (Figure 4.27, Figure 4.28). Ten patches were found, and 

a set of new forest fragmentation metrics was calculated from these patches.  
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Figure 4.27   Patch list for patches >4,000,000 sq. meters in size.  

 

 
Figure4.28 Patches > 4,000,000 sq. meters shown in grayish yellow color. 
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Chapter 5 Results and Discussion 
 

In this Chapter, results from the two research objectives are presented. The main 

results from the forest fragmentation analysis include the outcomes of land cover and 

land use classification, patch statistic results, and forest fragmentation metrics changes 

from 1987 to 1999. For the second research objective, the main results focus on the forest 

fragmentation analysis Web pages, including the serving of the maps, the user interfaces, 

and system functionalities. The HTML and Java approaches in ArcIMS were assessed in 

accessibility, navigation ability, interactive digital cartography ability, data integration 

ability, and implementation of proposed functionalities for supporting forest patch query, 

forest fragmentation metrics calculations, and disturbance analysis. 

Land cover and land use maps 
As mentioned in Chapter 4, the land cover/land use categories were grouped into 

seven classes: water, forest, developed areas, Grassland/Shrubland, road, powerline and 

Barren land. The 1987 maps (Figure 5.1) and 1999 maps (Figure 5.2) were classified 

directly from the TM and ETM+ data, respectively. The 1994 map (Figure 5.3) was 

obtained by recoding the GAP data, originally produced by classification of TM data. 
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    Figure 5.1   1987 Land Cover/Land Use 
 
 
 

 
Figure 5.2   1999 Land Cover/Land Use 
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        Figure 5.3   Gap Land Cover/Land Use 
 

Results of Forest fragmentation metrics from Patch analysis 
 

 Patch Analysis (GRID) was used for calculating the forest fragmentation metrics 

for the three dates data(Table 5.1). The results show that GAP data give different spatial 

patterns compared to the direct classification of the TM data. After overlaying the 

Landsat TM 1999 image, Landsat TM 1999 classification data, and GAP recoded data, 

obvious differences can be found. For example, from the Figure5.4, 5.5, 5.6, 5.7, some 

areas which are classified as forest land in 1987 and 1999 is classified as other kinds of 

land use. Therefore, in the discussion of trends, the GAP data will not be discussed 

simultaneously with the 1987 and 1999 data, exempt to point out that the Square Pixel 

Metric (SqP) is the only measure that appears to be consistent between the two data sets. 
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Table 5.1   Forest fragmentation metrics results derived from 1987 TM, 1999 ETM+ data and the 
Gap data. 
 
 
 
 

1987 1999 
 

1994 (Gap) 
 

Average forest patch area 
(area/NUMP)  [m2] 

569,454 401,907 896,059 

Number of Forest Patches  366 515 240 

Forest Area [m2] 208,420,192 206,982,000 215,054,096 

Forest Perimeter [m] 1,318,740 1,480,380 1,492,560 

Patch-per-Unit area (PPU) 0.112 0.158 0.074 
 

Square Pixel (SqP) 
 

0.956 0.961 0.961 

Edge density 40.39 45.35 45.72 

Year
Metrics

 

Table 5.1 shows that the total forest area of the study site has only slightly 

changed, with a 0.7 percent decrease from 1987 to 1999. The average forest patch area 

has decreased by almost one third, associated with a large increase in the number of 

forest patches. The edge density increased by approximately 12 percent. These changes 

imply increasing forest fragmentation, which is confirmed by the 41 percent increase in 

PPU.  

The increased forest fragmentation may have an impact on the habitats of local 

species. The increase in the edge density may be particularly important in influencing 

species diversity and the distribution of species. Certain butterflies and birds prefer edges 

habitat, as do white-tailed deer. Other birds and mammals may decrease because 

fragmentation may segment their traditional habitats, allow increase predation, and cause 

an increase in mortality from crossing the human-made barriers.  

The observed increase in forest fragmentation in the study area may be associated 

with changes in the local agricultural economy, the increase in population and numbers of 

households. USDA national agricultural statistics (USDA National Agricultural Statistics 

Service 2000) indicate that, during the ten years from 1987 to 1997, the number of farms 
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in Monongalia County and Preston County increased by 17.4 percent, from 1,104 to 

1,296. The total area of land in farms has increased by 11.5 percent from 76,127 ha 

(188,113 acres) to 84,891ha (209,771 acres). The average size of farms was relatively 

stable. These new farms may occupy former forestlands, and fragment large forests. 

The 1990 and 2000 Census results (Table 5.2) (US Census Bureau 2000) show 

that the total households in eastern Monongalia County and Western Preston County has 

increased by 20.3 percent and 65.1 percent respectively. The total population has 

increased by about 12.6 percent and 49.1 percent, respectively. This increase in local 

population and number of households has likely fueled construction growth relatively 

undevelop areas, which in turn probably increased fragmentation. 

Table 5.2   Household and population statistics for the eastern portion of Monongalia County and 
western Preston County for 1990 and 2000 (from http://factfinder.census.gov) 
 
District Index 1990 2000 changes 

Total 
households 

9,588 10,782 12.45% Morgantown 
city 

Population 25,879 26,809 3.6% 
Total 
households 

1,489 2,511 68.64% Cheat Lake 
CDP 

Population 3,992 6,396 60.22% 
Total 
households 

1,506 1,838 21.85% Brookhaven 
CDP 

Population 3,836 4,734 23.40% 
Total 
households 

1,439 2,375 65.05% First district, 
Preston County 

Population 3,943 5,879 49.1% 
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Web design results 
The Web based forest fragmentation information and analysis web site (WFFA)  

consists of an introduction page, and nine independent functional web sites. All 

functional web sites use the same map sets which consist of West Virginia county 

boundary layer, 1987 and 1999 Landsat TM images layers, 1987 and 1999 land 

cover/land use classification data with unique symbols for each class, and 1987 and 1999 

land cover/land use classification data with transparent symbols.  

In order to compare the efficiency of delivering forest fragmentation data and 

analysis functionalities with ArcIMS HTML and Java approaches, the accessibility, 

navigation, interactive digital cartography, data integration, and the success of the 

implementation of the proposed functionalities were assessed.  

Accessibility  
The main difference between a stand-alone GIS system and a Web GIS is that the 

web GIS provides GIS users a higher level of accessibility.  A web GIS is usually 

accessed by a standard web browser such as Netscape Navigator or Microsoft Internet 

Explorer. ArcIMS (Version 3.0) supports the developments of Web GIS application on 

standard Web browsers. ArcIMS Java viewers require users to download Java applets and 

install plug-ins on the users’ browser. Therefore, the user who tries to access the Forest 

Fragmentation Analysis web site through a public computer that does not allow download 

privileges, may not get all the forest fragmentation analysis functions which were 

implemented with Java approaches. 

The target users of the forest fragmentation Web GIS include forest researchers, 

owners, managers and the public. Many people access the Internet through a specific 

Internet browser system such as DELL online and AOL online. Therefore, the 

accessibility of the forest fragmentation web site through DELL online and AOL online 

was tested. The results showed that both the HTML and Java viewers could not be 

supported in these two browsers. 

The accessibility of the WFFA web site is influenced not only by the limitation of 

the ArcIMS HTML and Java approaches themselves, but also by the customization 

strategies employed. The main tool used in this study was JavaScript. Because the 
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different Web browsers have no standardized support for JavaScript syntax, different 

implementations for different Web browsers should be developed. In this study, the patch 

query function will only run in the Microsoft Internet Explorer. The process fails in 

Netscape Navigator. 

Navigation  
The navigation ability of a Web GIS application can be assessed in two main 

aspects: Web page navigation ability and Map navigation ability. 

For the WFFA web site, Web page navigation was implemented mainly by 

HTML and JavaScript functions. HTML provides navigation at a number of levels from 

page to page and from site to site. The mechanisms used to implement this navigation can 

be hypertext links and buttons. JavaScript can provide a greater range of navigation 

commands. With the ArcIMS web site design template, most web page navigation 

functions can be created automatically. However, after implementation of the forest 

fragmentation web site, it was found that the BACK button in Internet Explorer would 

not work. This constrains the system’s navigation ability, and also reduces system 

efficiency because it may require the system to run the duplicate mapping processing that 

are time consuming for the Web GIS server. 

With ArcIMS HTML and Java approaches, the map navigation ability is clearly 

enhanced.  End users can pan the map in any direction with a simple mouse movement.  

They can change the zoom to get a better perspective of the area of interest. The 

overview map gives end users a larger spatial extent so that end users can get a better 

understanding of the spatial relationship of the current map to the entire region. When 

end users pan the map, the location of the area covered in map window will be shown as 

a red rectangle in the overview map window. In WFFA web site, a West Virginia county 

map was used for the overview map.  

Interactive digital cartography 

The essential part of a Web GIS application is digital cartography which consists 

of digital map organization and display, map rendering, labeling, symbolization, and 

other elements such as a scale bar, north arrow and legend. 
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In an ArcIMS application, the digital map was organized by one or several themes 

which represent thematic information layers. For example, in WFFA, the map consists of 

five themes that are West Virginia County, 1987 Landsat TM image, 1987 land cover, 

1999 Landsat TM image and 1999 land cover. End users can turn on or off the display of 

each theme, and can specify a vector theme as an active layer. These controls for themes 

allow end users to analyze selected themes and geographic features. However, there is no 

support for selecting a group of themes at one time.  This function would be especially 

helpful in displaying multi-temporal forest fragmentation information, because it would 

allow end users to switch from one temporal window  (for example, 1987 data) to another 

(for example, 1999 data) more conveniently. 

ArcIMS supports scale-based map display and symbolization. When the scale of 

map changes, themes can be hidden or increased in visibility. The symbols of a 

geographic feature can also be changed when the scale changes. This provides the 

potential to represent multi-resolution forest fragmentation information. However, in the 

WFFA system, the scale based map display and symbolization was not tested, because 

the scale changes of the main data sets have no direct association with data symbols. 

Both ArcIMS HTML and Java approaches support the creation of cartographic 

elements such as a scale bar, north arrow, and legend on the web page map, and support 

digital map rendering and symbolization. In particular, ArcIMS supports the building of 

dynamic legend that is updated when the displayed themes change, or new spatial 

operations such as selection or identify are run. In the WFFA project, when the current 

themes change, the dynamic legend automatically removes the appropriate elements. A 

dynamic legend makes the digital map looks more intuitive, and also saves the limited 

map representation space of the screen.   

In the WFFA project, the data sets are mainly of two types: vector land use and 

land cover classification polygons, and raster Landsat Images. The vector data are used 

for patch selection and forest fragmentation metric calculation, and the raster data are 

used as a background. Therefore, the requirements for map rendering and symbolization 

are relatively simple. There are four main requirements: rendering the land cover 

polygons, rendering selected polygons, creating user-defined Landsat TM Image color 
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composites, and creating a transparent overlay of vector classification polygons on the 

raster Landsat Image. In the WFFA system, the first three requirements were 

implemented successfully. The fourth requirement, that of an overlay, failed because 

there is no direct indirect data structure that supports the representation of multi-band 

remote sensing images on the Web. The rendering result also looks vaguely in Web 

browser. The transparent overlay was implemented by rendering polygons in a semi-

transparent color.  Rendering polygons in a semi-transparent or transparent fashion could 

help forest fragmentation analyst in linking land cover classification results with remote 

sensing images for verification. In addition, the transparent rendering of polygon features 

can be supported directly in ArcIMS Map Author, but semi-transparent rendering 

requires ArcXML to integrate transparent rendering and other rendering symbols (Figure 

5.8). 

 

  

Figure 5.8   Semi-transparent rendering land use/cover classes on the Landsat image 

Comparing the ArcIMS HTML and Java approaches, the latter provides more 

support for interactive map rendering and symbolization.  With the Java approach, users 

can change color and symbols used to render land covers. This makes it possible for a 

user to build a preferred rendering schema.  With the HTML approach, all themes are 
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displayed according to a schema defined by the system itself at the time of the 

development of the web site. 

Data integration  

The construction of the WFFA web site showed that ArcIMS provides wide 

support for integrating spatial data with a variety of formats, including shapefiles, 

images, and ArcSDE data (ESRI 2000a, ESRI 2000b). In this study, Landsat TM data in 

ERDAS IMG format land cover/land use classification data in Shape File format were 

integrated in the system successfully. However, when IMG data were added with ArcIMS 

Map Author, the IMG data could not be shown in the map design phase. Therefore, 

ArcView had to be used to check whether the Landsat TM data and the classification data 

matched. 

Delivery of the forest fragmentation analysis tool also required support for the 

integration of local user data for metrics calculation. The ArcIMS HTML approach only 

supports server side land cover data for forest fragmentation analysis; The ArcIMS Java 

approach allows users to include their own land cover/land use themes for the forest 

fragmentation metrics calculation. In the WFFA system, with Forest Fragmentation 

Metrics Calculator Java Viewer, user can calculate indices on local data sets. 

This flexibility of the ArcIMS Java approach extends to the delivery of distributed 

spatial data on the Web. In the WFFA system, end users can draw on distributed land 

cover data, remote sensing images, and other remote ArcIMS web map services, for 

forest fragmentation spatial analysis.  

 

Functionalities 

In WFFA system, four proposed functions were implemented with ArcIMS 

(Table 5.3). Only the fifth proposed function, forest fragmentation disturbance 

assessment, could not be supported directly with the ArcIMS existing modeling language 

and approaches.  In order to develop a web-based forest fragmentation disturbance 

assessment tool, there are three essential requirements. The first requirement is to allow 

users input disturbance geographic features in the web browser. The geographic feature 

could be a buffered line of a new road or a polygon representing a proposed logging 
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ooperation. The second requirement is that the added geographic features can be 

uploaded to the server. The third requirement is that the server can automatically combine 

the uploaded geographic features with existing geographic data sets for spatial analysis. 

In the ArcIMS Java approach, with Edit Note, users can add polygon features in Web 

browser. The polygon features then can be uploaded to the server side. However, the 

ArcIMS mapping server cannot combine uploaded data with server side data. ArcIMS 

HTML is even more limited because it has no support to add new features on the client 

side. Therefore forest fragmentation disturbance assessment cannot be implemented 

successfully using existing ArcIMS approaches. 

Table 5.3   The implementation of forest fragmentation analysis functionalities 

 HTML JAVA 

Forest fragmentation viewer     X X 

Forest fragmentation 

metrics calculation 

   X Unimplemented 

Forest fragmentation 

change viewer 

   X Unimplemented 

Patch query    X X 

Disturbance assessment Unimplemented Unimplemented 

X: implemented  successfully     Unimplemented: not be implemented  

The first step in calculating forest fragmentation metrics is to define a spatial 

extent of the study area on a land cover vector theme. Theoretically, it should be possible 

to implement this function with the ArcIMS rectangle selection tool or polygon selection 

tool. However, in ArcIMS, there is no support for allowing a user to define a spatial 

extent on a polygon theme. For example, when the rectangle selection tool was used with 

the land cover layer for defining a rectangle region filter (the red rectangle in Figure 5.9), 

the tool selects all polygons that intersect with the defined rectangle (the yellow area in 

Figure 5.10). This unexpected result comes from an existing limitation in the ArcXML 
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spatial filter. A spatial filter defines the envelope for a spatial query in ArcXML. A 

spatial filter has just two options: area_intersection and envelop_intersection. If the 

area_intersection option is used, all features whose areas overlap the area of the polygon 

filter are identified. When the envelope_intersection option is used, all features whose 

bounding box overlap with the bounding box of the polygon filter are selected (ESRI, 

2000d). Obviously, there is no support for clipping polygons with a rectangle filter. This 

means some forest fragmentation analysis cannot be implemented correctly.  

 

Figure 5.9   Define a study area with a rectangle. 
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Figure 5.10   the result of defining a study area with the rectangle selection tool. 
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Chapter 6 Summary and Conclusion 
 

In the earlier chapters, research on forest fragmentation, web-based spatial 

information delivery and forest information delivery was reviewed. In addition, the forest 

fragmentation status and changes in the study site of northern West Virginia was 

analyzed. A Web-based forest fragmentation analysis system was developed with ESRI 

ArcIMS for assessing delivery elements of the same area’s forest fragmentation 

information, as well as analysis tools for the public. 

The literature review of forest fragmentation showed that current landscape-scale 

forest fragmentation studies focus on assessing the status of forest fragmentation, 

identifying the extent and location of forest fragmentation, modeling changes of forest 

fragmentation, identifying the cause of forest fragmentation and predicting fragmentation 

trends, identifying the impacts of forest fragmentation on specific species, and 

developing forest fragmentation analysis and representation tools. The base data for 

measuring the status and changes of forest fragmentation at landscape scale is land cover 

and land use data.  In most of studies, the status of forest fragmentation usually was 

measured by calculating the absolute amount of fragmented patches. Assessing the  

pattern of those patches is usually done with various landscape metrics. In order to 

identify the extent or location of forest fragmentation, a common method is to calculate 

landscape metrics in user-defined independent study units (such as terrain facets, 

watersheds or management units, or continuous units) and then to compare or rank the 

values in those units. Forest fragmentation metrics have three basic characteristics: 

sensitivity, diversity and correlativity. No single index can define or describe directly all 

pattern or structures of forest fragmentation at the landscape scale. As an alternative, 

various combinations of measures are used.  

At present, the impacts of forest fragmentation in West Virginia have not been 

widely studied. This study used land cover classification data derived from Landsat TM 

and ETM+ image captured in 1987 and 1999 for analysis of forest fragmentation. Forest 

fragmentation metrics in the northern West Virginia were calculated with Patch Analyst. 

The results show that even though the total forest area in study area has only slightly 
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changed, with a 0.7 percent decrease from 1987 to 1999, the average forest patch area has 

clearly decreased, and the number of forest patches has increased by approximately 40 

percent. This implies an increase in forest fragmentation, which may have impacts on the 

habitat of local species. The 41 percent increasing in PPU values mirror this change. The 

recoded GAP data were found to show a different spatial pattern regarding the number 

and average size of patches. However, the SqP metrics was very similar for the recoded 

GAP and directly classified imagery. This suggests the SqP metric is less sensitive to 

classification accuracy than other metrics. Similar land classification methods and image 

processing procedures are essential for integrating multi-temporal remote sensing data for 

forest fragmentation analysis. 

 The Web-based forest fragmentation analysis tools used in this study were 

developed with ESRI ArcIMS HTML and Java approaches. The results show that Web 

GIS could improve the public’s interaction with, and accessibility to, forest fragmentation 

information. The current HTML approach can be used to deliver forest fragmentation 

information more widely, with fewer requirements for the client-side computing 

environment. The Java approach supports the integration of distributed spatial data, and 

the addition of local data into system by users. The main drawback in the current Web 

GIS is weak support for spatial query, especially query based on polygon boundaries. 
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