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ABSTRACT 

 

Effect of Dilution Method on Diesel Particulate Matter Concentrations and Size 

Distributions 

Karthikeyan C. Venkatasubramaniam 

 

The objective of this study was to evaluate the effect of different dilution 

methodologies on diesel exhaust particle size distributions and concentrations. A two-stage 

ejector based dilution system was used to dilute the raw exhaust at total dilution ratios of 240 

and 504. A naturally aspirated, mechanically controlled, 3-cylinder inline, 0.953 liter Daihatsu 

Model DM950DTH engine was employed and tests were conducted with and without a wire 

mesh Diesel Oxidation Catalyst (DOC). Federal Diesel #2 with a sulfur content of 350 ppm 

was used as the testing fuel. The first dilution method (hot dilution) comprised of hot air 

dilution in stage 1 and cold air dilution in stage 2. The second method (cold dilution) 

comprised of cold air dilution in both the stages. A Scanning Mobility Particle Sizer (SMPS), 

Model 3936 was used for measuring the particle size distributions and concentrations. The 

engine was operated at four steady state set points, which were selected for a mix of both the 

volatile and solid particulate matter (PM) fractions in the exhaust stream. At a dilution ratio of 

240, the influence of the volatile fraction on the PM size distribution and concentration was 

comparatively lower in the hot dilution method than the cold dilution method. The cold 

dilution method resulted in a count median diameter (CMD) of 44.5nm compared to 53.3nm 

with the hot dilution method when the engine was operating at an intermediate speed and 50% 

load. A similar trend was observed for the remaining engine set points. The effect of dilution 

method on PM size distribution and concentrations was not noticeable for a dilution ratio of 

504, which indicated that very high dilution ratios have minimal impact. PM concentrations 

downstream of the DOC showed a reduction in the concentration of nuclei and accumulation 

mode particles for both the dilution methods. This is possibly indicating the oxidation of PM 

in the oxidation catalyst.   
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AIM Aerosol Instrument Manager 
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1. INTRODUCTION 

Mass emissions of particulate matter (PM) from diesel engines have been regulated by 

the United States Environmental Protection Agency (USEPA) and California Air Resources 

Board (CARB) due to their inherent toxic effects. Stringent regulations have been imposed 

from time to time reflected by 0.01 g/bhp-hr for 2007 against 0.6 g/bhp-hr in 1988 for heavy 

duty diesel engines. Changes in engine technology and retrofitting engines with diesel 

particulate traps have helped the engine manufacturers meet these emission demands. 

However, a reduced mass concentration does not directly imply a reduction in particulate 

matter number concentration as indicated by a few studies [1].  

Diesel particulate matter (DPM) is a complex mixture of elemental carbon, 

hydrocarbons, sulfur compounds and other species. DPM can be broadly classified into solid 

particles and volatile fraction. Solid particles include elemental carbon and engine wear. The 

volatile fraction includes hydrocarbons and sulfur compounds.  This classification is 

dependent on temperature, dilution, measurement techniques, sampling methodology and 

other parameters. The number concentration measurements made not only include particles 

formed during the combustion process, but also particles formed during transfer of exhaust for 

measurement, subsequent cooling and dilution conditions. Solid particles can further be 

classified into 3 modes-nuclei mode, accumulation mode and coarse mode. Nuclei mode 

mainly comprises of volatile organic material and sulfur compounds. Particles in this mode 

can either be solid particles or droplets and are up to 50nm in size. Since measurements in this 

mode are very sensitive to temperature, repeatability in PM size measurements could be 

challenging. Particles in the accumulation mode are typically in the size range of 50-300nm 

and include elemental carbon, ash and measurements are repeatable. Coarse mode includes re-
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entrained material in the engine exhaust line and is not repeatable. Particles in the nuclei 

mode can contribute to about 90% of the number but significantly less to the total mass [13].   

Diesel Particulate Filters (DPFs) have reduced diesel exhaust by as much as 99%, but 

have, in turn increased the number concentration in the nuclei mode [1, 22]. This can be 

attributed to the high operating temperatures inside the DPF’s (close to engine exhaust 

temperature), sampling methodology and dilution conditions. The volatile fraction escapes the 

trap and subsequently forms particles in the nuclei mode range by homogeneous nucleation.  

Health effects studies of PM have shown that solid particles in the ultra-fine mode can 

cause chronic lung diseases and have genotoxic and mutagenic effects [7, 8, 9]. These 

conclusions provide enough evidence and reason to treat the solid and volatile fraction of a 

diesel engine PM separately, either by eliminating the volatile fraction before measurement or 

by preventing nucleation. The volatile fraction can be avoided in the measurements by two 

techniques. One method is by using thermodesorbers, where the engine exhaust is heated to a 

specified temperature and then removing it by using an adsorber agent. The second method 

involves heating the exhaust to a temperature at which the volatile fraction evaporates, and 

subsequently diluting it to prevent supersaturation. This method ensures that the volatile 

fraction does not affect the particle measurement of an exhaust since the volatile fraction 

remains in the gas phase.  

The objective of this thesis was to compare the influence of (i) two dilution methods - 

cold air dilution and hot air dilution, (ii) high dilution ratios, and, (iii) an aftertreatment device 

(oxidation catalyst) on the diesel engine particulate matter size distributions and 

concentrations. A 2005 model, 0.954 liter, 3 cylinder (inline) Daihatsu diesel engine has been 

used in this study. The engine was operated on steady state modes with set points chosen to 
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enable a study of both, the volatile and solid fractions of PM. The objective of this 

comparative exercise was to recommend an exhaust dilution method which will be most 

suitable for measuring PM concentrations and size distributions with an SMPS with minimal 

sampling artifacts. High dilution ratios, namely 240 and 504, were selected for this work, in 

order to study particle size distributions and concentrations which will be representative of 

real world or highway dilutions, or even dilution conditions in mines where dilution ratios 

have been observed to be high. All particle size and concentration measurements were made 

with an SMPS Model 3936 manufactured by TSI Inc. Subsequent chapters discuss work done 

prior to this and results and conclusions for this study.   
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2. LITERATURE REVIEW 

2.1. Introduction 

Particulate matter (PM) emissions from diesel engines have been under continuous 

scrutiny by United States Environmental Protection Agency (USEPA) and California Air 

Resources Boar (CARB), and this is evident in the stringent regulations enforced year after 

year. But regulations so far have been mass based and studies have indicated that a decrease 

in PM mass has in turn reflected in an increase in number concentrations of PM, which are 

considered harmful to human health [9]. This initiated extensive research in the field of 

measuring diesel engine PM size distributions and number concentrations and development of 

accurately measurement technologies to control the same. The work done in this thesis is an 

attempt to compare two different exhaust dilution methods, which will enable accurate size 

distribution and concentration measurements, and examine the effect of dilution ratios and an 

oxidation catalyst on the PM size distribution. The following sections brief the reader on work 

done so far in this research area.  

2.2. Health Effects of Particulate Matter 

Epidemiological studies have shown a relationship between PM (from all sources 

including diesel engine) concentrations and death rates [7, 8]. Recent research has linked 

environmental exposure to fine particles less than 2.5µm in size [PM2.5] to adverse health 

effects and suggests that particulate matter concentration might be a better indicator of the 

health effects involved rather than the mass PM2.5 or PM10 mass concentrations [9]. These 

hazardous effects of PM have kindled research in particulate matter number concentration and 

distribution of a diesel engine exhaust. Extensive research was and is currently being 
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conducted in an attempt to measure and depict PM concentration and advocate changes to 

reduce the same. 

2.3. Diesel Engine Particulate Matter  

Air intake in a diesel cycle occurs during the intake stroke, and fuel is injected during 

the compression stroke. After a short ignition delay (of the order of milliseconds), fuel auto 

ignites resulting in combustion associated with a high rate of heat release. The controlled 

combustion phase starts after the premixed air-fuel mixture is completely consumed, during 

which the burning rate is controlled by the rate at which fuel is injected. Researchers say that 

most of the particles emitted by a diesel engine are formed during the process of controlled 

combustion since the particles formed during the uncontrolled combustion process are later 

oxidized in the combustion process [1]. 

2.4. Composition of Diesel Engine Particulate Matter 

Particles are described by their size, number, surface, mass concentration and/or their 

chemical composition. Diesel exhaust particles mainly consist of agglomerates of carbon 

particles and a percentage of semi-volatile components, such as H2SO4 and organic species 

that might condense on the surface of the carbon particles or might even nucleate to form 

ultra-fine nanometer-sized particles during the dilution and cooling process [2]. Figure 2-1 

shows the mechanism described.  
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Figure 2-1. Simplified schematic mechanism of the condensation and nucleation process during 

diesel exhaust dilution and cooling. Blue: Volatile (H2SO4); Red: Semi-volatile organics (unburned fuel); 

Green: Low-volatile organics (lube oil) [2] 

Combustion aerosol is said to follow a lognormal, trimodal size distribution as shown 

in Figure 2-2. Both mass and number distributions are shown with the concentration in any 

size range being proportional to the area under the corresponding curve in that range. Figure 

2-2 also provides information on size range definitions for atmospheric particles (PM10, 

PM2.5, ultra-fine particles and nanoparticles).  Based on the size particles may be classified 

into 3 modes, namely nuclei mode, accumulation mode and coarse mode.  

Nuclei mode particles are in the size range of 5-50nm, and consist of metallic ash, 

elemental carbon, and semi-volatile organic and sulfur compounds that form particles during 

dilution and cooling. Particles in the nuclei mode contribute to less than 20% of the total mass 

but more than 90% to the total particle concentration. The accumulation mode particles are in 

the size range of 50-1000nm, primarily consisting of carbonaceous agglomerates and 

adsorbed materials. Accumulation mode particles contribute between 60-70% to the total 
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mass. The coarse mode includes all particles greater than 1000nm in size, and contribution of 

this mode to the total mass is about 5-20% [3, 4]. Figure 2-2 also gives relationships between 

idealized diesel particulate matter number and mass weighted size distributions and the 

alveolar deposition curve [5, 6].  

 

Figure 2-2. Typical engine exhaust mass and number weighted size distributions shown with 

alveolar deposition fraction [3, 4, 5, 6] 

2.5. Factors Influencing Measurement of PM Size Distribution and 

Concentrations 

Published literature has indicated that a large number of factors affect the particle 

growth, and hence, measured particle concentrations and size distributions might not be a 

reflection of the way PM behaves in atmospheric conditions[10, 11, 12 13, 14]. These factors 

include, but not limited to, sampling systems, dilution method, dilution ratio, dilution 

temperature, residence time and transfer lines. This effort was limited to mainly studying the 

influence of dilution ratio, dilution method and an oxidation catalyst. 
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2.5.1.  Dilution Ratio 

Experiments have consistently shown that the accumulation mode is largely 

unaffected by any change in dilution ratio. However, an increase in concentration of particles 

in the nuclei mode has been reported with decreasing dilution ratios and vice-versa [10]. It has 

also been observed that the number mean diameter of the particle size distributions decreased 

with increasing dilution ratios but the total number concentration particles did not change with 

change in dilution ratio [11]. Khalek et al. [14] reasoned that an increasing dilution ratio 

reduces the vapor phase concentration of all exhaust species in an isothermal process. This 

weakens both the nucleation of new particles as well as the driving force which aids it.  

Based on this fact it can be confirmed that dilution ratio has a significant effect only 

on the nucleation of particles during dilution (to produce particles less than 50nm in size), but 

not on accumulation mode particles.  

2.5.2. Dilution Rate 

Particles in the nuclei mode primarily consist of volatile and semi-volatile materials, 

and formation of particles is dependent on the saturation conditions which have an influence 

on the condensation or evaporation. Experiments suggest that a tendency to produce nuclei 

mode particles during dilution is maximized at an intermediate rate of dilution. If the dilution 

rate was faster than the characteristic times for adsorption, higher saturation ratios were 

produced which aided nucleation. The study concluded that the strongest driving force for 

condensation, adsorption and nucleation occurred at a dilution range of 5:1 to 50:1 [10]. 

These results agreed with the experimental results of Kittelson et al. [12].  

 

8



 

2.5.3. Dilution Air Temperature 

As discussed in the section above, nucleation of particles is dependent on the 

saturation ratio, which is in turn dependent on the temperature. So, a lesser dilution air 

temperature will result in a higher saturation ratio which will increase the nucleation rate. 

Studies performed as part of the CRC E-43 program, support this theory and results showed 

that a larger number of nanoparticles were formed during the dilution of engine exhaust in the 

atmosphere at an ambient temperature of 10 ºC than at 20 ºC. Quang Wei et al. [13] 

conducted experiments with a 1995 model Perkins T 4.40 diesel engine. A single stage 

dilution tunnel was used to dilute the raw engine exhaust and results indicated formation of 

larger concentrations of nuclei mode particles at lower dilution air temperatures. The 

accumulation mode remained unaffected by the dilution air temperature. This result was 

profound for fuels with higher sulfur content and agreed with results produced by Khalek et 

al. [14]. Particle number concentration measurements were made on a 1995 turbocharged, 

direct injection, medium duty diesel engine by Khalek et al. [14], to study the influence of 

dilution conditions (dilution temperature, residence time and dilution ratio). Conclusions 

drawn based on this study show that the dilution temperature influenced the nucleation 

process and hence its growth. Under the same dilution ratio and residence time, more 

nucleation mode particles were formed at a temperature of 48 ºC than at 25 ºC.  

2.6. Separation of Solid and Volatile Fraction 

PM from diesel engines consists of 3 fractions - solid fraction, soluble organic fraction 

and a sulfate Fraction. A main challenge for researchers is to be able to come up with a valid 

sampling methodology to sample the total (solid and volatile) particle number and size 

 

9



 

representative of the atmospheric dilution process. Solid particle size and number 

measurements can be done to a high degree of accuracy if the sampling system is designed 

keeping in mind the particle physics and if the volatile fraction can be stripped from the 

sampling stream prior to measurements. Volatile fraction, by itself is dependent on the factors 

discussed in the previous sections.  

Two methods used by consistently researchers to remove the volatile and semi-volatile 

fraction are thermo denuders and hot air dilution. These methods are used due to the high 

temperatures involved which keep the saturation ratios sufficiently low to prevent nucleation.  

In a thermo denuder or thermodesorber, the diluted engine exhaust is heated to a 

temperature (~200 ºC - 300 ºC) and then passed to a cooled section which contains an 

adsorbing agent (usually activated charcoal). The volatile material in the gas phase is 

adsorbed in this stage and measurements made reflect only the solid fraction of PM. A variety 

of thermodesorbers are commercially available, For example, TSI Inc. and Dekati Ltd. 

Research studies conducted with a thermodesorber, by Burscher et al., Kittelson et al., 

Coutant et al., Fierz et al. [15, 16, 17, 18] among other researchers report efficient removal of 

the volatile fraction after the diluted exhaust is passed through the thermodesorber.  

Terunao Kao et al. [19] conducted experiments on an 8 liter direct injection diesel 

engine to the influence of cooling and dilution process of nano-particles. Particle number and 

size distribution were measured using a SMPS in conjunction with a rotary disk type diluter 

and a full dilution tunnel. Based on the experimental results, it was concluded that hot dilution 

is preferable compared to cold dilution since the possibility of production of nano-particles 

with the latter method is highly likely.  
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2.7. Oxidation Catalysts 

Stringent regulations in diesel exhaust emissions have prompted engine manufacturers 

to modify/change existing engine technology or retrofit engines with aftertreatment devices 

like oxidation catalysts and diesel particulate filters. 

While non-oxidized diesel PM filters primarily keep the PM mass emissions within 

limitations, oxidation catalysts and catalyzed PM filters have the capability to alter the 

physical, chemical and biological characteristics of diesel particulate emissions [1, 20]. The 

prime purpose of using an oxidation catalyst is to reduce the gaseous and heavy hydrocarbons 

in the raw exhaust which would in turn reduce the soluble organic fraction (responsible for 

nuclei mode particles) in the diluted exhaust.  

Warner et al. [21] conducted experiments on a Cummins 1988 L10-300 heavy-duty 

diesel engine retro-fitted with a flow through metallic substrate that used a platinum catalyst 

of 10 grams/ft3. Engine set points were based on the EPA 13 mode cycle and SMPS 

measurements made before and after the oxidation catalytic converter, showed that the nuclei 

mode particle number and volume concentration decreased at idle and Mode 11, and 

increased at Mode 9. The accumulation mode particle number and volume was found to 

decrease at idle but increase at Mode 11 and Mode 9.  

Baumgard et al. [22] used an oxidation catalytic converter fitted to a 1991 Cummins 

10 liter diesel engine and collected data before and after the catalyst to study its effect on 

diesel emissions. It is concluded in their report that the oxidation catalyst had no effect on the 

number concentrations and nuclei mode was unaffected since the H2SO4 vapor pressure was 

below the threshold for H2SO4–H2O particle formation.  
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3. EXPERIMENTAL SETUP AND TESTING PROCEDURE 

3.1. Introduction 

The purpose of this study/thesis was to compare the effects of two different dilution 

methods, high dilution ratios and an aftertreatment device - oxidation catalyst. The entire 

testing procedure was carried out at West Virginia University’s Engine and Emissions 

Research Laboratory (EERL). The following chapters gives an overview on the engine 

specifications, dilution methods used, testing procedure, and instruments used to measure 

particle size distributions and concentrations.  

3.2. Engine Specifications 

The engine used for this study was a 2005 model Daihatsu diesel engine. It was a 

0.953 liter, 3 cylinder (inline) engine with a rated power of 27 hp at 3500 rpm. Federal # 2 

diesel was used as fuel for this study and the engine was fitted with a wire mesh oxidation 

catalyst to study its influence on particle size distributions and concentrations.  

3.3. Dilution System 

The dilution tunnel used for this study was a two-stage mini dilution tunnel setup. The 

setup consisted of two ejector diluters, one used at each stage with a critical orifice at its inlet 

(vacuum side). The intention to use a two stage dilution was to achieve high dilution ratios of 

the order of 500-600.  

The ejector diluter used in this study is Model TD-110H vacuum pump, manufactured 

by Air-Vac Engineering, USA, and commercially sold as a vacuum pump. Figure 3-1 below 

explains the working principle of an ejector diluter.   
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Figure 3-1. Working principle of an Ejector Diluter [23] 

 

Compressed air (dilution air) was passed through the air supply passage (P+) resulting 

in a vacuum created at Vacuum (P-) due to rapid expansion. This pressure drop was used to 

draw the raw exhaust from the engine exhaust stack and dilute it as required. Specifications 

for the vacuum pump show that vacuum levels up to 25.4”Hg and vacuum flow rates up to 

128 scfm are possible [23].  

A range of dilution ratios was achieved by using a combination of critical orifices (2-

24 lpm) and a combination of air pressure (30-80 psi). An orifice was used at the inlet to 

maintain a constant raw exhaust flow rate which would result in a constant dilution ratio 

throughout the sampling period. Compressed air was processed through a High Efficiency 

Particulate Air (HEPA) filter prior to the ejector. A check with the SMPS on HEPA filtered 

air confirmed that no particles were entrained in the dilution air.  

The dilution ratio was calculated based on raw and diluted CO2 measurements which 

were made before and after dilution of raw exhaust. A California Analytical Model 300 CO2 

analyzer was used for this purpose. Measurements with the analyzer were possible only for 
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lower dilution ratios since higher dilution ratios resulted in a very low concentration of CO2 in 

the diluted exhaust which was very close to the lower range of the analyzer. Dilution ratios 

based on CO2 concentrations were complimented well by calculations based on flow rates. 

Dilution ratio calculations were calculated as follows: 

Dilution Ratio (DR) = Raw CO2 Concentration / Dilute CO2 Concentration  

Dilution Ratio (DR) = Total Exhaust Flow Rate / Raw Exhaust Flow Rate 

            Calculations of dilution ratio based on flow rates were made using the manufacturer 

specifications provided for the TD 110 H ejector diluter [23]. The pressure of compressed air 

corresponded to a flow rate through the ejector diluter, and raw exhaust flow rate was simply 

the flow rating of the orifice being used. Due to the observed agreement between the dilution 

ratios which were determined by the two different methods mentioned above, the flow based 

method was used throughout the study. Table 3-1 gives the dilution ratios for each stage, and 

the corresponding orifice flow rate and air pressure used to achieve the dilution ratios.  

Table 3-1. Dilution Ratios for Two Stage Mini-Dilution Tunnel 

Stage 1 Stage 2  
Orifice    
(lpm) 

Air pressure   
(psi) 

Dilution 
Ratio 

Orifice        
(lpm) 

Air pressure   
(psi) 

Dilution 
Ratio 

Total 
DR 

11 60 12 5 40 20 240 
11 60 12 2 30 42 504 

 

The raw exhaust was sampled from the engine exhaust stack using a J type probe. The 

sample was transferred to the mini-dilution system using a heated line which was maintained 

at 175 °C to prevent condensation of hydrocarbons and sampling artifacts associated with the 

transfer line. . The two dilution methods were cold air dilution and hot air dilution. The cold 

dilution method comprised of diluting the raw exhaust with cold HEPA filtered dry 

 

14



 

compressed air. Hot dilution method involved heating and maintaining the HEPA filtered dry 

compressed air within a temperature range of 135 ºC and 145 ºC prior to diluting the raw 

exhaust. Heating of the dilution air was done using a heated line similar to the one used for 

transfer of the raw exhaust. Particle size and concentration measurements were conducted on 

the heated air to ensure zero contamination. The latter method was used to prevent 

condensation and nucleation of the volatile fraction, thereby, allowing measurements of only 

the solid fraction of PM.  

The dilution ratios used in the study were 240 and 504 as indicated in the table above. 

The decision to select these dilution ratios was based on extensive preliminary testing 

performed for a range of dilution ratios from 96-840. SMPS measurements were taken over a 

range of dilution ratios with the engine operating at intermediate speed and 50 % load (2377 

rpm and 24.2 ft-lb). The engine exhaust was diluted using the cold dilution method and passed 

through a thermodesorber, and then sampled with an SMPS. SMPS measurements for the 

same range of dilution ratios with the engine exhaust diluted using the hot dilution method 

and comparisons were made with measurements after the thermodesorber. The same is shown 

in the Figure 3-2. Measurements downstream of the thermodesorber for all the dilution ratios, 

indicated a large concentration of nuclei mode particles, which was unusually high. The 

possible reason for this was that the adsorbing agent (activated charcoal) was desorbing 

previously trapped organics into the dilute exhaust stream which were forming nuclei mode 

particles. The hot dilution method did not show any nuclei mode particles except at dilution 

ratios of 774 and 840. This observation was instrumental in the selection of dilution ratios, 

240 and 504, for tests conducted in this study, beyond which dilution ratio had no effect on 

PM size distributions or concentrations. The lower dilution ratio, 240, allowed for a 
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comparison of PM size distribution and concentrations against a higher dilution ratio of 504. 

The first stage dilution ratio was fixed at 12 since it is in the dilution range of 5:1 to 50:1 

which is most favorable to produce nuclei mode particles [10]. 
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Figure 3-2. DR comparison cold dilution method after thermodesorber at 300 °C and hot dilution 

method with engine operating at 2377 rpm and 24.2 ft-lb. 

3.4. PM Sampling Instruments 

The Scanning Mobility Particle Sizer (SMPS) 3936 by TSI Inc. was used to measure 

the particle size distribution and concentration. The SMPS 3936 is a combination of 

Electrostatic Classifier 3080 and CPC 3025 A Condensation Particle Counter (CPC) 

manufactured by TSI Inc. The SMPS was calibrated using a Model 3480 Aerosol Generator 

by TSI Inc.  
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3.4.1. Scanning Mobility Particle Sizer (SMPS) 

The SMPS 3936 includes an electrostatic classifier used in conjunction with a 

condensation particle counter. The electrostatic classifier is used to impart a positive charge to 

the particles and then the CPC is used to count the concentration of the particles exiting the 

classifier. The operating specifications of the SMPS 3936 are given in Appendix A of this 

report.  

 

Figure 3-3. SMPS 3936 (Model 3080 Classifier and Model 3025 A CPC) by TSI Inc [24] 

The SMPS has been designed for use in basic aerosol research, nanoparticles research, 

and atmospheric aerosol studies.  

The exhaust to be sampled enters the impactor fitted to the inlet of the classifier. The 

function of an impactor is to remove particles above and below a known particle size by 

inertial impaction. The sample aerosol is accelerated through a nozzle in the impactor and 

directed at a flat plate which directs the sample flow to form a 90º bend in the stream lines.  

Particles with sufficient inertia are unable to make the 90º bend and impact on the plate. 

These particles have sizes above the higher cut point of the impactor. Smaller particles avoid 
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impaction and follow the streamlines and the 90º bend. Figure 3-5 illustrates the inertial 

impaction theory.  

 

Figure 3-4. Electrostatic Classifier fitted with impactor at inlet [24] 

 

 

Figure 3-5. Impaction Theory [24] 

  

The purpose of the electrostatic classifier is to extract a known size fraction from the 

polydisperse sample. After the impactor, the polydisperse aerosol enters a Kr-85 bipolar 
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charger or neutralizer which exposes the polydisperse aerosol to high concentrations of 

bipolar ions. This stage imparts a positive charge to all the particles in the polydisperse 

aerosol. The basic principle of the electrostatic classifier is that the velocity of a charged 

particle in an electric field is directly related to the size of the particle. The charged aerosol 

now enters the Differential Mobility Analyzer (DMA) which consists of two concentric metal 

cylinders. The inner cylinder is the collector rod which is maintained at a negative potential 

and the outer cylinder is grounded. This creates an electric field which causes the positively 

charged particles to be attracted towards the negative potential collector rod. The location of 

the precipitating particles along the length of the rod depends on the classifier flow rate, 

particle mobility in an electric field, and classifier geometry. Particles with a higher electric 

mobility are collected on the upper portion and particles with a lower electric mobility are 

collected at the lower portion. Particles which have a narrow range of electric mobility exit 

the DMA as a monodisperse aerosol to the CPC. Figure 3-6 provides a schematic explanation 

to the working principle of the electrostatic classifier [24].  
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Figure 3-6. Schematic of TSI Inc Model 3480 Electrostatic Classifier with Nano-DMA [24] 

 

The monodisperse aerosol exiting the classifier enters the second unit in the SMPS - 

condensation particle counter. The aerosol is saturated with alcohol vapor as it passes over a 

heated pool of alcohol (butanol in the case of CPC 3025A). The vapor saturated particles then 

flow through a condenser where the alcohol condenses onto the particles making them large 

enough to be optically detectable and counted. The particles now pass through a light beam 

and scatter light onto a photo-detector which is later translated into a number concentration. 

Figure 3-7 illustrates the working of a CPC schematically [27].  
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Figure 3-7. Schematic of TSI Inc Model 3025 A Condensation Particle Counter [27] 

 

SMPS 3936 can be used only for steady state operations where the particle 

concentrations remain constant. Calibration of both the classifier and the CPC was performed 

according to the manufacturer specifications. If required, the trouble shooting guides were 

used to solve any problems interfering with the operation of instrument. The operating 

specifications of the UCPC 3025 A are given Appendix B of this document [27].  

 

3.4.2. Model 3480 Electrospray Aerosol Generator  

The TSI Inc. Model 3480 Aerosol Generator was used to calibrate the SMPS 3936. 

Monodisperse aerosols of three sizes-15nm, 30 nm, and 70 nm were produced using sucrose 

solutions and used for the purpose of calibration.  
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Figure 3-8. TSI Inc. Model 3480 Electrospray Aerosol Generator [25] 

 

The sample sucrose solution is stored in a sample vial (container) and enclosed in a 

cylindrical pressure chamber. A capillary and high voltage platinum wire is kept immersed in 

the sample solution. A pressure differential causes the sample solution to flow through the 

capillary and then the voltage is adjusted until a cone jet is seen in the viewing mode. This is 

the most ideal formation of aerosol for sampling or for calibration according to the 

manufacturer specifications. The exiting aerosol droplets are then mixed with HEPA filtered 

air and CO2 and transported to the electrospray chamber. The charged droplets are now 

neutralized by a Polonium-210 source and the liquid is evaporated before the aerosol exits the 

instrument. These single sized charged aerosols can be used for calibrating the SMPS. Figure 

3-9 shows a schematic representation of the working of the electrospray aerosol generator 

[25].  
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Figure 3-9. Schematic of TSI Inc Model 3480 Electrospray Aerosol Generator [25] 

 

3.5. Engine Testing and PM Measurement 

A naturally aspirated, mechanically controlled, 3-cylinder inline, 0.953 liter Daihatsu 

model DM950DTH engine coupled to a eddy current dynamometer was used for testing. 

Federal diesel #2 was used for testing and the engine was mapped until 3 repeatable maps 

were available. The map was used to select a range of engine steady state point which would 

provide exhaust with different proportions/mixtures of solid and volatile fractions. While 

choosing the steady state set points the windage losses due to the dynamometer have been 

accounted for. The engine intake temperature and humidity were kept within a range of 75-80 

ºF and 48-54%, respectively. The engine was allowed to stabilize for a minimum of 15 
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minutes at each set point so as to achieve the optimum raw exhaust and engine oil temperature 

before sampling.  

Raw exhaust sampling was sampled from the transfer tube and transferred to the mini 

dilution system using a heated line, as described in previous sections. The exhaust was diluted 

in two stages, with the primary dilution ratio kept constant at 12 and the secondary dilution 

ratio varied to achieve a combination of total dilution ratios.  The difference in the two 

dilution methods lay in the temperature of air in the primary dilution stage. In the cold 

dilution method both the stages were involved dilution with cold air, while in the hot dilution 

method the primary stage dilution was achieved with hot air, and secondary stage dilution was 

achieved with cold air. At each engine steady state condition, measurements were made for 

two dilution ratios - 240 and 504, two dilution methods - cold dilution and hot dilution, and 

before and after the oxidation catalyst. The sample to the SMPS was transferred using tygon 

tubing in order to eliminate particle losses to the tube wall. A 150 second scan time was 

selected to measure the entire distribution and this included a 120 second up scan and 30 

second down scan. Three repeat scans were conducted for each condition with a gap of 30 

seconds between scans. This ensured that the DMA voltage dropped to the minimum, and the 

instrument was ready to sample.   

The particle size distribution given by the TSI Inc. Aerosol Instrument Manager 

(AIM) software corrects the SMPS raw count data for multiple charges on the particles [26]. 

The AIM data were corrected for the respective dilution ratio using the reduction program 

written in MathCAD software. All the particle concentrations reported in this thesis are log 

normal distributions (dN/dlogDp) of the normalized concentrations (particles/cm3). The 

program used for dilution ratio correction is given in Appendix C.  
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Table 3-2 below gives information about the engine operating set points for which PM 

size distribution measurements were made. A schematic of the experimental setup is shown in 

Figure 3-10.  

 

Table 3-2. Engine Steady State Set Points 

Engine Set 

Point 

Torque      

(ft-lb) 

Speed    

(rpm) 

I 50 24.20 2377 

I 100 48.41 2377 

R 50 22.00 3343 

R 100 44.00 3343 

 

 

Figure 3-10. Schematic of Experimental Setup. 

 

25



 

4. RESULTS AND DISCUSSIONS 

4.1. Introduction 

Particle concentration and size distribution measurements were made at all the set 

points described in the previous section at two dilution ratios - 240 and 504, with and without 

an aftertreatment device-oxidation catalyst. This chapter discusses in detail the results 

obtained and the conclusions drawn from them.  

4.2. Steady State Testing 

The influence of the dilution method, dilution ratio and the oxidation catalyst was 

studied at all the engine set points chosen for this study. The table below gives the test matrix 

adopted in this study.  

Table 4-1. Steady State Test Matrix 

Dilution Method Dilution Ratio Oxidation Catalyst 
Engine Set Pont 

Cold Hot 240 504 Before  After 

I 50                 
24.20 ft-lb, 2377 rpm × × × × × × 

I 100                
48.41 ft-lb, 2377 rpm × × × × × × 

R 50                
22.00 ft-lb, 3343 rpm × × × × × × 

R 100               
44.00 ft-lb, 3343 rpm × × × × × × 
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4.3. Influence of Dilution Method 

The comparison of the cold dilution and the hot dilution method was studied by taking 

measurements before the oxidation catalyst (BOC). Set points and dilution ratios chosen are 

as per Table 4-1. H+C indicates the hot dilution method (first stage hot dilution and second 

stage cold dilution) and C+C (cold dilution in both stages) indicates the cold dilution method.  

4.3.1. Dilution Ratio 240 

The primary dilution stage was set at a dilution ratio of 12, which is in the dilution 

range most preferable to achieve high saturation ratios and thus nucleation mode particles, 

and the secondary dilution stage was set at 20, so as to dilute the exhaust quickly to a high 

dilution ratio to stop nucleation and slow coagulation, to achieve an overall dilution ratio of 

240.  

Figure 4-1 shows the results for an engine set point of I 50 (24.2 ft-lb @ 2377 rpm) for 

both the dilution methods at the same dilution ratio of 240.  

The size distribution for the hot dilution method has a Count Median Diameter (CMD) 

of 53.3 nm with a total concentration of 8.24x107 #/cm3 compared to a CMD of 44.5 nm and 

total concentration of 8.56x107 #/cm3 for the cold dilution method. The hot dilution method 

shows a lower concentration of nucleation mode particles than the cold dilution method. 

Although there is a small shift in the distribution in the accumulation mode, the change in 

concentrations is not significant. The reduced nucleation mode particles in the hot dilution 

method are due to the high dilution temperature compared to the cold dilution method. This is 

due to the fact that the high dilution air temperature prevents the saturation ratio from 

achieving a maximum and thus preventing nucleation of particles.  
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Figure 4-1. Particle Size Distribution at I 50 engine set point, DR 240,                                                     

Cold Vs Hot Dilution Method 

Figure 4-1 also shows the standard deviations (1σ) calculated from the concentrations 

of 3 SMPS scans. The observed errors are significant in the nucleation mode due to the very 

high sensitivity of this mode thus hampering repeatable scans. The standard deviation 

observed for particles in the accumulation mode are within a 1% error, which is acceptable.  

Figure 4-2 shows the results for an engine set point of I 100 (48.41 ft-lb @ 2377 rpm) 

for both the dilution methods at the same dilution ratio of 240.  

The size distributions for both the cold and hot dilutions are similar with the CMD of 

49.6 nm and the total particle concentration for both the methods almost the same. Compared 

to the size distribution in Fig 4-1, the possible reason for the similarity in the distributions is 

due to lesser volatile species at this engine set point.  
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Figure 4-2. Particle Size Distribution at I 100 engine set point, DR 240,                                           

Cold Vs Hot Dilution Method 

Figure 4-3 shows the particle size distributions with the concentrations for an engine 

operating point R50 (22 ft-lb @ 3343 rpm) for both the dilution methods at a dilution ratio of 

240. The CMD in the accumulation mode for both the methods are very much similar at 55.2 

nm considering that this engine operating point is known to produce more particles in this 

mode and less of organics although there is a difference in the total concentration with 

1.55x108 #/cm3 for the cold dilution method and 1.03x108 #/cm3 for the hot dilution method. 

The effect of dilution temperature can be seen in this graph where the volatile organics have 

not been allowed to settle on the existing solid particles and prevention of formation of 

nucleation mode particles.  
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Figure 4-3. Particle Size Distribution at R 50 engine set point, DR 240,                                           

Cold Vs Hot Dilution Method 

Figure 4-4 shows the results for the particle size distributions measured at an engine 

set point of R100 (44 ft-lb @ 3343 rpm) for both dilution methods at the same dilution ratio 

of 240.  

Size distributions show that results are similar to those shown in Fig 4-3 although the 

total concentrations have been reduced negligibly.  

The errors or deviations from the average observed for all the compared data were 

large in the nucleation mode compared to the accumulation mode where the errors are within 

acceptable range.  
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Figure 4-4. Particle Size Distribution at R 100 engine set point, DR 240,                                           

Cold Vs Hot Dilution Method 

4.3.2. Dilution Ratio 504 

The primary dilution stage was set at a dilution ratio of 12 and the secondary dilution 

stage was set at 42 to achieve an overall dilution ratio of 504.  

Fig 4-5 shows the particle size distributions for an engine operating point of I 50 (24.2 

ft-lb @ 2377 rpm) for both the dilution methods at a similar dilution ratio of 504.  

Results are consistent with what has been discussed in Section 2.5.1 of this thesis 

where the dilution ratio does not have any pronounced effect on the accumulation mode 

particles and concentration of nucleation mode particles is less with increasing dilution ratio. 

The dilution method does not make a difference as can be seen from the graph below.  
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Figure 4-5. Particle Size Distribution at I 50 engine set point, DR 504,                                           

Cold Vs Hot Dilution Method 

Figure 4-6 shows the particle size distributions for an engine operating set point of      

I 100 ( 48.41 ft-lb @ 2377 rpm) for both the dilution methods at a dilution ratio of 504.  

The influence of the dilution method has no effect in the PM distribution measurement 

for the same reason cited above for results shown in Figure 4-5.  
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Figure 4-6. Particle Size Distribution at I 100 engine set point, DR 504,                                           

Cold Vs Hot Dilution Method 

Figure 4-7 shows the measurements taken at an engine operating point of R 50 (22 ft-

lb @ 3343 rpm).  

Size distributions are similar to what has been obtained in Fig 4-5 for an I 50 mode. 

The influence of the dilution method on the particle size distribution and concentrations is not 

pronounced although a very small negligible change in concentration can be noticed.  

Figure 4-8 compares the particle size distributions at an engine operating point of                   

R 100 (44.1 ft-lb @ 3373 rpm).  
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Size distribution profiles for both the methods are almost identical, indicating that 

there was a minimal amount of volatile material in this mode for the dilution method to have 

an influence.  

The errors observed for all the data for a dilution ratio of 504 and all the engine 

operating points are similar to that observed for a dilution ratio of 240. Errors, as discussed 

previously, were comparatively large only in the nucleation mode and not in the accumulation 

mode.  
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Figure 4-7. Particle Size Distribution at R 50 engine set point, DR 504,                                           

Cold Vs Hot Dilution Method 
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Figure 4-8. Particle Size Distribution at R 100 engine set point, DR 504,                                           

Cold Vs Hot Dilution Method 

4.4. Influence of Dilution Ratio 

The influence of dilution ratio on particle size distributions and concentrations was 

studied. SMPS measurements were made before the oxidation catalyst (BOC) for both the 

dilution methods, hot and cold, for dilution ratios 240 and 504. The engine set points were 

chosen as shown in Table 4-1.  

4.4.1. Engine Set Point I 50 

Fig 4-9 shows the particle size distributions for dilution ratios 240 and 504 with the 

engine operating in I 50 mode (24.2 ft-lb @ 2377 rpm).  
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Figure 4-9. Particle Size Distribution at I 50 engine set point, Cold Dilution Method,                     

DR 240 Vs DR 504 

Fig 4-9 shows that the influence of dilution ratio on the size distribution or the 

concentration is minimal. Dilution ratio (high or low), as discussed in previous chapters, does 

not affect the accumulation mode. However there is an observed shift in the size distribution 

and change in concentration between the two dilution methods. This has been discussed in the 

previous section.  

4.4.2. Engine Set Point I 100 

Figure 4-10 shows the particle size distribution comparison for dilution ratios 240 and 

504 with the engine operating in I 100 mode (48.41 ft-lb @ 2377 rpm).  
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Figure 4-10. Particle Size Distribution at I 100 engine set point, Cold Dilution Method,                     

DR 240 Vs DR 504 

The errors have been plotted only for the cold dilution method so as to be able to 

analyze the graph legibly. Observed errors are large only in the particle diameter range of   

4.65 nm to 20 nm. Dilution ratio based on a particular dilution method has no noticeable 

effect on the distribution and concentration.  

4.4.3. Engine Set Point R 50 

Figure 4-11 compares particle size distribution and concentrations for the engine 

operating in the R 50 mode.  

A slightly higher concentration is seen in the accumulation mode as expected but there 

is hardly any noticeable influence of the dilution ratio on the measurements obtained.  
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Figure 4-11. Particle Size Distribution at R 50 engine set point, Cold Dilution Method,                     

DR 240 Vs DR 504 

4.4.4. Engine Set Point R 100 

Figure 4-12 compares the particle size distributions and concentrations with the engine 

operating in the R 100 mode.  

The distributions for the two dilution ratios are almost similar to confirm that there is 

hardly any noticeable influence of high dilution ratios on the measured data.  
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Figure 4-12. Particle Size Distribution at R 100 engine set point, Cold Dilution Method,                     

DR 240 Vs DR 504 

4.5. Influence of Oxidation Catalyst  

An aftertreatment device (oxidation catalyst) was fitted to the engine exhaust and 

SMPS measurements were made before (BOC) and after the oxidation catalyst (AOC) to 

study the influence of the catalyst on the particle size measurements and concentrations. Data 

reported below are for dilution ratios 240 and 504 and both dilution methods for the engine 

operating points laid out in Table 4-1.  
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4.5.1. Dilution Ratio 240 

Figure 4-13 shows the particle size distributions before and after the oxidation catalyst 

for a dilution ratio of 240 for both the dilution methods. The engine was operated at I 50 

mode.  

As can be seen from the data shown, for both the dilution methods there is no change 

in the size distribution, but there is a drop in the total concentration of particles. CMD for the 

cold dilution method before the catalyst was 46.1 nm with a concentration of 8.7x107 #/cm3, 

but the concentration dropped to 5.08x107 #/cm3 after the catalyst. The difference in 

concentration of particles before and after the catalyst for the hot dilution method is lesser 

when compared to the cold dilution method, but this can be attributed to the influence of 

dilution temperature on the particle growth. The reduction in concentration was noticed in the 

nuclei and accumulation mode indicating oxidation of particles in the oxidation catalyst.  
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Figure 4-13. Particle Size Distribution at I 50 engine set point, Cold & Hot Dilution Method,        

DR 240, before and after Oxidation Catalyst 

Figure 4-14, 4-15 and 4-16 gives a comparison of SMPS data for the engine operating 

at I 100, R 50 and R 100 modes respectively for both dilution methods at a constant dilution 

ratio of 240.  
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Figure 4-14. Particle Size Distribution at I 100 engine set point, Cold & Hot Dilution Method,    

DR 240, Before and After Oxidation Catalyst 
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Figure 4-15. Particle Size Distribution at R 50 engine set point, Cold & Hot Dilution Method,    

DR 240, Before and After Oxidation Catalyst 
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Figure 4-16. Particle Size Distribution at R 100 engine set point, Cold & Hot Dilution Method,  

DR 240, Before and After Oxidation Catalyst 

Results represented in Figures 4-14, 4-15 and 4-16 are similar to the results shown in 

Figure 4-13. Irrespective of the operating engine point, a drop in concentration of particles is 

noticed although the size distribution remains the same. Again the accumulation and nuclei 

mode particle concentration after the catalyst is reduced indicating oxidation of particles in 

the oxidation catalyst.  

4.5.2. Dilution Ratio 504 

SMPS data measured before and after the oxidation catalyst for a dilution ratio of 504 

are discussed in this section.  
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Figure 4-17. Particle Size Distribution at I 50 engine set point, Cold & Hot Dilution Method,     

DR 504, Before and After Oxidation Catalyst 
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Figure 4-18. Particle Size Distribution at I 100 engine set point, Cold & Hot Dilution Method,    

DR 504, Before and After Oxidation Catalyst 
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Figure 4-19. Particle Size Distribution at R 50 engine set point, Cold & Hot Dilution Method,    

DR 504, Before and After Oxidation Catalyst 
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Figure 4-20. Particle Size Distribution at R 100 engine set point, Cold & Hot Dilution Method,                   

DR 504, Before and After Oxidation Catalyst 
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Figures 4-17 to 4-20 represent SMPS particle size distributions and concentrations for 

engine operating points I 50, I 100, R 50 and R 100 respectively. Influence of the oxidation 

catalyst is similar to that observed for a dilution ratio for 240. There is no change in the size 

distribution although a drop in concentration of particles after the oxidation catalyst for both 

the dilution methods is observed.  
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

A two stage ejector based mini-dilution system was used to dilute the raw diesel 

exhaust and a 2005 model Daihatsu engine was used as the source. The Scanning Mobility 

Particle Sizer (SMPS 3936) was used to measure particle size distributions and 

concentrations. The observed results discussed in the previous chapter have given enough 

evidence to base the conclusions drawn below.  

1) The influence of dilution method, hot air dilution and cold air dilution, although not 

pronounced at the high dilution ratios chosen, certainly is a factor in the measurement of PM 

size distributions and concentrations. Results obtained from the data obtained for hot air 

dilution method and compared with the data from cold air dilution method, show that the 

influence of the volatile fraction on the PM size distribution is reduced in the case of the 

former. The hot dilution method could be used as an alternative to thermodesorbers if the 

intention is to eliminate the effect of volatile fraction on the measurements made. 

2) The dilution ratios chosen for this study, namely 240 and 504, did not significantly 

affect the distribution or concentrations. Results of this study are in agreement with prior 

studies. It may be concluded that accumulation mode particles are not affected by high 

dilution ratios. Nucleation mode particles might be affected at lower dilution ratios but can be 

eliminated by using hot air to dilute the raw exhaust.  

3) SMPS measurements made after the oxidation catalyst indicated a decrease in 

concentration of particles in the accumulation mode and the nuclei mode. Prior studies have 

indicated that removal of the carbonaceous or solid particles enhances the chances of 

formation of nucleation mode particles but this was not observed from the results obtained in 

 

47



 

this study. It can be safely concluded that the reason for the decrease in concentration is due 

to oxidation of PM in the oxidation catalyst.  

5.2. Recommendations 

1. A thermodesorber should be used in the same setup to evaluate both the 

methods available currently to eliminate the influence of the volatile fraction 

on the PM size distribution and concentration.  

2. DOC’s of different coating materials should be compared to study the 

oxidizing effect of these materials.  
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APPENDIX A 

Scanning Mobility Particle Sizer (SMPS), Model 3936 Specifications 
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APPENDIX B 

Model 3025 A Ultrafine Condensation Particle Counter Specifications 
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APPENDIX C 

MathCAD Reduction Program for SMPS Data 

Input Dilution Ratio 

 

DR 40:=  

Select Raw data File 

Raw

C:\..\I 50-Stage 1-DR 40 Hot-S5.txt
:=  

Rowsize rows Raw( ):=  

N Rowsize 26−:=  

Raw1 submatrix Raw 1, N, 1, 2,( ):=  

Rawcount Raw1 2〈 〉:=  

Size Raw1 1〈 〉:=  

C RawcountDR⋅:=  

Reduced augment Size C,( ):=  

Select output reduced data file 

REDUCED

C:\..\I 50-Stage 1-DR 40 Hot-S5.txt
Reduced

:=  
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