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ABSTRACT

IMPROVING THE SIMULATION OF A WATERFLOODING RECOVERY
PROCESS USING ARTIFICIAL NEURAL NETWORKS

Edison Gil

The waterflood performance of the dual five-spot pilot project in the Stringtown oil field,
situated in West Virginia, has been studied. A numerical simulator, called BOAST98,
was used for the simulation purposes, after developing a reservoir description.

The producing horizon in the field is the Upper Devonian Gordon sandstone, which is
characterized by severe heterogeneity due to the depositional environment. Using
available core and log data and geological analysis, a reservoir characterization study was
done. A preliminary reservoir description based on log porosity - core permeability
correlation was improved by developing Artificial Neural Networks (A.N.N.), which
incorporates geophysical well log information. These A.N.N.’s were utilized to predict
porosity and permeability for five wells in the pilot area.

A reservoir model for simulation purposes was constructed after identifying the principal
flow units within the formation. Results from the simulation were compared with five
years of actual field data. A close history matching for the cumulative oil and water
production in the pilot project was achieved after scheduling 10-15% of the total water
injection volume into the pilot area.
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NOMENCLATURE

A.N.N.: Artificial Neural Network

Bo: Oil Formation Volume Factor, RB/STB

BOPD: Barrels of oil per day

Bg: Gas Formation Volume Factor, RCF/SCF

DX: x-direction grid block dimension, ft.

DY: y-direction grid block dimension, ft.

GR: Gamma Ray

GRNN: General Regression Neural Network

h: Thickness, ft

K: Permeability, mD

Kr: Relative Permeability

Pc corr: Capillary pressure corrected for an oil-water system, psia.

Pc exp: Capillary pressure obtained for a water-air system, psia.

PID Flow index per layer, for rates in STB/D.

PNN: Probabilistic Neural Network

Rs: Gas-Oil ratio, SCF/STB

rw: Wellbore radius, ft

S: Layer skin factor

Sw: Water saturation, %

σw-o: Interfacial tension for water-oil, dyn/cm.

σw-a: Interfacial tension for air-water, dyn/cm.

ϕ: Porosity, %
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CHAPTER 1

INTRODUCTION

During the life of a water injection project, the field performance is evaluated

using past response data, primarily oil production and injection pressures. Different

techniques have been proposed and used for this purpose, ranging from empirical

correlation to analytical models.1 Numerical reservoir simulation models are widely used

to analyze the production history of an oil field and to forecast future performance under

different operation methods. Nevertheless, the success of any numerical simulation will

depend on an accurate reservoir description.

The objective of the reservoir characterization process is to define the main

petrophysical parameters needed to predict the flow of fluids within the porous

formation. Among these parameters, permeability is one of the most important, since it

influences the flow and sweep efficiency in any recovery process involving fluid

injection, especially when lateral and vertical variations are present. Connected paths of

high or low permeability values will condition the flow, therefore a reservoir description

must be focused on identifying these different units that can be used later in a numerical

simulation study.

The paths of different flow characteristics are called flow units. A flow unit is

defined as a volume of rock subdivided according to geological and petrophysical

properties that influence the flow of fluids through it.2  The integration of as many of



2

these properties as possible into a reservoir description enhance the understanding of the

reservoir and provide the best input to build a simulation model.

In order to define the flow units appropriately, permeability and porosity must be

predicted with accuracy. Since few wells are cored, these parameters are evaluated using

well log information, which is available for almost all the wells in a field. Porosity is

generally evaluated using density log data. Permeability is then evaluated developing

permeability-porosity correlations, but these do not provide good results in heterogeneous

reservoirs. In this case a different technique must be utilized to define the permeability

distribution throughout the field.  One way to accomplish this is using Artificial Neural

Networks, which have been used successfully in previous studies to obtain reliable

permeability values from geophysical log data.3

Inspired by the biological neural system, artificial neural network technology is

being used to solve a wide variety of complex scientific, engineering and business

problems. Neural networks are ideally suited for such problems because like the

biological neural system, an artificial neural network can learn, and therefore can be

trained to find solutions, recognize patterns, classify data, and forecast future events.  In

the present study, two back propagation networks were developed using the core analysis

information for six cored-wells, two of them injectors in the pilot project.

In this project, a numerical simulation study has been conducted to evaluate the

Waterflood performance of the dual five-spot pilot project in the Stringtown oil field,
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located in West Virginia. The producing formation in this field is the Upper Devonian

Gordon sandstone, which is characterized by severe heterogeneity due to a complex

interplay of stratigraphic, structural and diagenetic factors.
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CHAPTER 2.

BACKGROUND AND THEORY

2.1 Description of the field 4

The Stringtown Oil Field was discovered in 1895. It is located in the northwestern

part of West Virginia, in Tyler, Wetzel and Doddridge Counties (Fig. 2.1). The primary

producing formation is the Upper Devonian Gordon Sandstone. The pay thickness in the

field ranges from 4 to 15 ft. This variation is primarily a result of the topography of the

pre-Gordon depositional surface and secondarily by post-depositional erosion. A

secondary producing interval is the Mississippian Big Injun sand, approximately 800 feet

above the Gordon, but it was not completed for primary production in the Stringtown

field.

Figure 2.1. Stringtown Oil Field Location
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The 8500 acres field is roughly six miles long (north-south trend) and its width is

approximately 2.5 miles. The reservoir area shape is like an inverted cone, wider in the

north, narrower in the south. Encountered at an average depth of 3000 ft, the entire

Gordon section is approximately 50 ft. thick and is bound at top and bottom by a series of

interbedded sandstones and shales that have been proved to be correlative throughout the

field. This sand is interpreted as shallow marine, shoreline deposits, which trends in a

northeast-southwest direction. Analysis revealed that it is made up of 71% quartz, 13%

cementing material, 4% feldspar and 12% minor rock fragments. It is a lightly gray, fine

to very fine grain size, well sorted, massive to planar bedding with occasional shale

laminations. The pay zone lies beneath a low-porosity, conglomeratic zone.

Conglomerates are found to have generally unpredictable permeability, which can range

from 0 to 500 md. As a result, this conglomerate section may act as a permeability

barrier, as a reservoir, or even as a thief zone for injected fluids.

Over 500 wells were drilled in the field between 1897 and 1901, with most of

them being plugged by 1910. Average well spacing was 13 acres, and the average initial

production potential per well was 72 barrels of oil per day (BOPD), with a range of 0 to

300 BOPD.  The typical well was completed open hole and then stimulated with a

nitroglycerine shot. The primary production mechanisms were solution gas drive and

gravity drainage, which lasted until mid the 1920’s. A gas re-injection program was

initiated in 1936 and continued through the 1950’s, and accounted for about 10% of the

field cumulative production. The daily and cumulative oil productions from 1897 to 1991

are shown in Figures 2.2 and 2.3.
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Figure 2.2. Daily Oil Production in the Stringtown field. 1896-1991

Figure 2.3. Cumulative Oil Production in the Stringtown field. 1896-1991
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2.2 Reservoir Characterization. 5,6

Reservoir description is the key factor for designing, operating and evaluating the

performance of a waterflood as well as other enhanced recovery projects.  The main goal

is to find the variation of properties such us porosity, permeability, thickness and

saturations in the pore space between wells, and the vertical and lateral continuity of the

formation.

A team of engineers and geologists generally conducts the reservoir description

study. Four major steps have been defined in this process and are widely used as a guide.5

These are:

• Rock studies. The objective of this first step is to define lithology, depositional

environment and develop correlations of rock properties, such us porosity and

permeability. This is achieved by studying the cores. Since these are available for

a limited number of wells in the field, well logs must be used to estimate porosity

and saturations and later correlate other properties.

• Framework Studies. These are done to determine the distribution of reservoir and

non-reservoir zones, basically shales, and their areal and vertical continuity. The

correlation between wells is performed by the integration of the depositional

model with core description graphs and well logs.

• Reservoir Quality Studies. At this point, a qualitative description of the variation

of rock properties and fluid saturations throughout the reservoir is done. Contour

maps are constructed to define net pay sand thickness, porosity, permeability and
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fluid saturations. For the net pay thickness, a cut-off value for porosity or

permeability must be defined.

• Integration Studies. The main objective is to evaluate the consistency of the

reservoir description with known production performance. The results from

previous steps are integrated to build a 3D model for the reservoir, which is the

basis for the simulation study. During this stage, the reservoir model is validated

matching the pressure and/or production history with the results from the

simulator.

 Generally a small percentage of wells are cored, but electric well log records like

Gamma Ray, Density, SP or Induction are available for most of them. The correlation of

core data with log data becomes essential in order to gain a better understanding of the

reservoir.

In flow simulations, the single most important input reservoir parameter is the

permeability spatial distribution, which governs the fluid flow within the formation.  The

first attempt to define this distribution is done by finding a relationship between

permeability and porosity, another reservoir parameter commonly available. This process

starts by developing a correlation between log porosity and core porosity. To do this, the

porosities from both sources are compared foot by foot, and the values from cores may be

shifted a few feet to obtain a good correlation. The permeability is then correlated with

the log porosity in order to be used in other non-cored wells field-wide. This correlation

may be improved if different facies are recognized within the formation.
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Once the permeability distribution is determined for a reservoir, a further subdivision

for simulation purposes may be necessary, especially when there is considerable variation

in permeability and different lithological units are present. When variations in

permeability are found, both vertically and laterally, primarily connected paths of high or

low permeability values will condition the flow and thus the sweep efficiency and final

recovery. The reservoir description must be then focused on identifying these different

units that will be used later in the numerical simulator.

The paths of different flow characteristics are called Flow Units. These are regions in

the formation that are believed to control the movement of injected and produced fluids

within the reservoir. They are generally selected based on observed ranges of porosity,

permeability and general geological properties determined by core description. Thus, they

serve to separate contiguous regions of the reservoir by their capability to transmit fluids

laterally and vertically. The flow units are more complex than a depositional model, but

they are more realistic because incorporate a variety of geological and petrophysical

properties characteristics of the reservoir.2

2.3 Artificial Neural Networks.7-9

Artificial Neural Networks (A.N.N.) mimic the brain process to solve problems.

They are information-processing systems that have certain functional characteristics with

the biological neural system. Researchers have hypothesized that millions of neurons in

the biological brain work together in parallel, each trying to solve a tiny bit of a big

problem.  Just as humans apply knowledge gained from past experience to new problems
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or situations, an A.N.N. takes previously solved examples to build a system of "neurons"

that makes decisions, classifications, and forecasts.

The A.N.N. learns by examples.  Based on these examples, the net builds a model

for the problem. They look for patterns in training sets of data, learn these patterns, and

develop the ability to correctly classify new patterns or to make forecasts and predictions.

Neural networks excel at problem diagnosis, decision-making, prediction, and other

classifying problems where pattern recognition is important and precise computational

answers are not required. They have been used in different areas such us financial

markets, medical diagnosis and many more. In the oil industry, the A.N.N. can be applied

to deal with problems related to pressure-transient analysis, well-log interpretation, and

reservoir characterization and well stimulation, among others.

2.3.1 Types of Neural Networks.

The architecture of the neural network defines the connectivity pattern among

neurons and how much knowledge is stored in it. It also determines the algorithm to be

used in updating the weights of each connection. There are two basic types of neural

networks:  supervised and unsupervised:

2.3.1.1 Supervised networks.

These build models that classify patterns, make predictions, or make decisions

according to other patterns of inputs and outputs they have "learned."  They give the most

reasonable answer based upon the variety of learned patterns.  The supervised network
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makes predictions, classifications or decisions by giving it a large number of correct

classifications or predictions from which it can learn.  Backpropagation, PNN and GRNN

networks are supervised network types.

a. Backpropagation. In this model, the network output is compared with the desired

(known) output and the difference (error) is propagated backwards to the network and the

weights of the connections (links) between neurons are adjusted. The process is

continued until a small error between the outputs is attained.

These networks are known for their prediction capabilities and ability to

generalize well on a wide variety of problems. These models are trained with both inputs

and target outputs. Many variations of these nets are encountered in the literature. One of

these is the Ward network with multiple slabs in the middle layer. They are very powerful

when each hidden slab is given a different activation function from the other slabs

because they detect different features of the input vectors. This gives the output layer

different viewpoints of the data. This A.N.N. arquitecture is depicted in Figure 2.4

b. Probabilistic Neural Network (PNN). This network is known for its ability to train

quickly on sparse data sets.  PNN also separates data into a specified number of output

categories.

c. General Regression Neural Network (GRNN). Like PNN networks, GRNN also

trains quickly on sparse data sets but, rather than categorizing it, GRNN applications are
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Figure 2.4 Arquitecture of a Backpropagation Neural Network.

able to produce continuous valued outputs. GRNN can have multidimensional input, and

it will fit multidimensional surfaces through data. Because GRNN networks evaluate

each output independently of the other outputs, GRNN networks may be more accurate

than Backpropagation networks when there are multiple outputs. Its architecture is

similar to that of a standard network.

2.3.1.2 Unsupervised networks.

They can classify a set of training patterns into a specified number of categories

without being shown in advance how to categorize.  The network does this by clustering

patterns. The user tells the network the maximum number of categories and it usually

clusters the data into that number of categories. One of them is the Kohonen network.

The architecture is the simplest of all with only two layers: input and output. This

network has the ability to learn without being shown correct outputs in sample patterns.
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Neither type of network is guaranteed to always give an absolutely "correct"

answer, especially if patterns are in some way incomplete or conflicting.  Results should

be evaluated in terms of the percentage of correct answers that result from the model.

Some problems are well suited for the pattern recognition capabilities of a neural network

and others are better solved with more traditional methods.

2.3.2 Neural Network Structure.

The main components of a neural network are shown in Figure 2.5. The basic

building block of neural network technology is the simulated neuron (depicted as a

circle).  Independent neurons are of little use, however, unless they are interconnected in

a network of neurons.  The network processes a number of inputs from the outside world

to produce an output, the network's classifications or predictions.  The neurons are

connected by weights, (depicted as lines) which are applied to values passed from one

neuron to the next.

A group of neurons is called a slab.  Neurons are also grouped into layers by their

connection to the outside world.  For example, if a neuron receives data from outside of

the network, it is considered to be in the input layer.  If a neuron contains the network's

predictions or classifications, it is in the output layer.  Neurons in between the input and

output layers are in the hidden layer(s).  A layer may contain one or more slabs of

neurons.
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Figure 2.5 Structure of an A.N.N.

2.3.3 Learning Process.

A typical neural network is a Backpropagation network, which usually has three

layers of neurons.  Neurons in the input layer produce “intermediate” outputs by applying

an activation function to the sum of the weighted input values. The “intermediate”

outputs then become the inputs for the middle or hidden layer. The hidden layer passes

values to the output layer in the same fashion, and the output layer generates the desired

results (predictions or classifications) also by applying an activation function to the sum

of its weighted input neurons.

The network "learns" by adjusting the interconnection weights between layers.

The outputs the network is generating are repeatedly compared with the correct answers,

and each time the connecting weights are adjusted slightly in the direction of the correct

Input Layer Middle Layer Output Layer
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answers.  Eventually, if the problem can be learned, a stable set of weights is reached and

will produce good answers.  The real power of the A.N.N. is evident when the trained

network is able to produce good results for data that the network has never "seen" before.

The main objective when applying an A.N.N. is to achieve a balance between

correct responses to training patterns and good responses to new input patterns, in other

words the network must seek a balance between memorization and generalization. To

accomplish this goal, all the data are divided in two groups, the training and the test set.

The training set is used to develop the A.N.N. In this process, the known output is

used to help the A.N.N. adjust the weights between its neurons. So, training is

accomplished by modification of the weights until a small difference between “known”

and “predicted” outputs is reached.

The test set is a data pattern consisting of input variables (and correct output

variables for supervised networks) used to test the network.  The test patterns are used to

verify how well the network is working. A test set is important because it provides a set

of data not included in the training set.

Weight adjustments are based on the training set, however, at intervals during

training, the error is computed using the test set. As long as the error on the test set

decreases, training continues. The A.N.N. is saved based on the best performance on the

test set. When the error begins to increase, the A.N.N. starts to memorize the training data
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set too specifically and begins to lose its ability to generalize as well. At this point,

training should be concluded.

The most important feature to consider for building a successful neural network is

to know when to stop training.  If training is limited, the A.N.N. will not learn the

patterns.  On the contrary, if too much training is done, the A.N.N. will learn the noise or

memorize the training patterns and will not generalize well with new patterns.

The parameter used to tell the network when to stop training is called

Calibration .  It finds the optimum network for the data in the test set, which means that

the network is able to generalize well and give good results on new data.  Calibration

does this by computing the mean squared error between actual and predicted for all

outputs over all patterns.  The mean squared error is the standard statistical technique for

determining closeness of fit.  Calibration computes the squared error for each output in a

pattern, totals them and then computes the mean of that number over all patterns in the

test set. The Calibration interval decides the number of events after which the network

temporarily halts training and tests its performance on the test set.  If the error on the test

set reaches a new minimum, the weights are saved and training is resumed.

For Backpropagation models, the network is saved every time a new minimum

average error (or mean squared error) is reached.  For GRNN networks, Calibration

optimizes the smoothing factor based upon the values in the test set.  Calibration does this

by trying different smoothing factors and choosing the one that generates the least mean



17

squared error between the actual and predicted answers.  For PNN, Calibration also

optimizes the smoothing factor, but does so by minimizing the probabilistic error.

When training an A.N.N. by backpropagation, there are several parameters that

must be set before training actually begins. Two of the most important settings are the

Learning Rate and Momentum. These two parameters work together and help to define

how fast and how stable the learning process is.

Each time a pattern is presented to the network, the weights leading to an output

node are modified slightly during learning in the direction required to produce a smaller

error the next time the same pattern is presented.  The amount of weight modification is

the learning rate times the error.  For example, if the learning rate is .5, the weight change

is one half the error.  The larger the learning rate, the larger the weight changes, and the

faster the learning will proceed.  Oscillation or no convergence can occur if the learning

rate is too large.

Large learning rates often lead to oscillation of weight changes and learning never

completes, or the model converges to a solution that is not optimum.  One way to allow

faster learning without oscillation is to make the weight change a function of the previous

weight change to provide a smoothing effect.  The momentum factor determines the

proportion of the last weight change that is added into the new weight change.
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2.3.4 Activation Functions.

For the input layer, this function is the linear or identity function. Generally, the

same activation function is used for all neurons in any particular slab. In order to obtain

the benefits of parallel-distributed processing system that ANN’s offer a non-linear

activation function is generally used.

Activation functions may be divided into four categories: linear, binary, sigmoid

and probabilistic. The most common functions are: 9,10

a. Linear Functions:

• Identity: xxf =)(

• Linear Scaled: bmxxf +=)(

These functions are used primarily in the input layer so that the input pattern data

set is passed just as is to the middle layer.

b. Binary Functions:

• Step: =)(xf 1 if x ≥ b or =)(xf 0 if x < b

This function is utilized to convert continuo data into a binary unit. This feature is

very helpful when building net to establish classes or categories

c. Sigmoid Functions:

• Logistic: ( )xe
xf σ−+

=
1

1
)(

• Hyperbolic Tangent: )tanh()( xxf =

• Hyperbolic Tangent 1.5: )5.1tanh()( xxf =
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• Symmetric Logistic: ( ) 1
1

2
)( −

+
= − xe

xf σ

d. Probabilistic Functions:

• Gaussian: 
2

)( xexf −=

• Gaussian Complement: 
2

1)( xexf −−=

The probabilistic functions are unique in A.N.N.’s applications, because unlike

the others, they are not increasing functions. The Gaussian function is the classic bell

shaped curve, which maps high values into low ones, and maps mid-range values into

high ones. The Gaussian Complement function tends to reveal meaningful characteristics

in the extremes of the data. Both functions are very useful in Ward networks.

2.4 Numerical Simulation.10-12

Reservoir simulators are complex programs that simulate multiphase

displacement process in two or three dimensions. They are widely used to study reservoir

performance and to determine methods for enhancing the ultimate recovery of

hydrocarbons. Numerical simulation is based on material balance principles, considering

reservoir heterogeneity and direction of flow. Calculations are carried out using material

balance and fluid flow equations to estimate saturation distribution, pressure and flow of

gas, oil and water for each cell at discrete time steps. Other techniques developed to

model the waterflood performance have limitations, especially when there are important

changes in rock properties, in saturations across the reservoir or when cross-flow and

gravity segregation are important mechanisms of fluid flow. Another important
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advantage of the simulator is that it takes into account the location of injection and

producing wells and their operating conditions, such us changes in flow rates, injection

pressures and formation damage.

The simulation process consists basically of three phases: collection of input data,

history matching and performance prediction. The input data comprises rock and fluid

data, geological data and production/injection and well completion data. The reservoir is

divided into small cells or blocks to account for heterogeneity. When this first step is

over, a simulation model is built.

History matching of past production and pressure performance consists of

adjusting the reservoir parameters in the model until the simulated performance matches

the observed behavior. After a satisfactory matching is achieved, the model can be

utilized to predict future performance of the reservoir under existing operating conditions

or some alternative development plan.

2.4.1 Types of Simulators.  Depending upon fluid flow, mass and heat transfer, these are

classified as:

• Black Oil. These are frequently used to simulate isothermal, simultaneous flow of

oil, gas and water as a result of viscous, gravitational and capillary forces. Black

oil means that the phase composition is constant.
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• Compositional Simulators. In this case, the variation of phase composition with

pressure is considered in the calculations. These are mainly used when dealing

with volatile-oil and gas-condensate reservoirs.

• Thermal Simulators. This type accounts for both fluid flow, heat transfer and

chemical reactions. They are used to study enhance recovery processes such us in-

situ combustion.

• Chemical Simulators. These group accounts for fluid flow and mass transfer due

to dispersion, absorption and complex phase behavior. They are useful for

surfactant, polymer and alkaline flooding evaluation.

Simulators are also characterized by the:

• Number of phases flowing in the system. So, the simulator is categorized as single

phase, two-phase or three-phase.

• Number of directions of flow. It may be a 1-dimensional linear or radial, 2-

dimensional areal or cross-sectional, or 3-dimensional simulator.

• Type of solution used for the finite difference equations. The simulator is called

implicit, impes or fully implicit.

2.4.2 BOAST98 Simulator Overview.12

In this study, a black-oil, three-phase, 3-D simulator called BOAST98  was used.

This program was developed by the U.S. Department of Energy, and is available to the

public via the Internet. (www.npto.doe.gov)
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The BOAST98 program simulates isothermal, darcy flow in three dimensions.  It

assumes reservoir fluids can be described by three fluid phases (oil, gas, and water) of

constant composition with physical properties that depend on pressure only. Some of the

typical field production problems that can be handled by BOAST98 include: primary

depletion studies, pressure maintenance by water and/or gas injection, and evaluation of

secondary recovery waterflooding operations.

BOAST98 is a finite-difference, implicit pressure/explicit saturation (IMPES)

numerical simulator.  It contains both direct and iterative solution techniques for solving

systems of algebraic equations. The well model allows specification of rate or pressure

constraints on well performance, and wells can be added or recompleted during the

simulation.  Multiple rock and PVT regions may be defined, and three aquifer models are

available as options.  BOAST98 contains flexible initialization capabilities, a bubble

point tracking scheme, an automatic time step control method, and a material balance

check on solution stability.

The data input section is divided into two parts: an initialization data section and a

recurrent data section.  The initialization data include reservoir model grid dimensions

and geometry, the distribution of porosity and permeability within the reservoir, fluid

PVT data, rock relative permeability and capillary pressure data, initial pressure and

saturation distributions within the reservoir, specification of solution method, and various

run control parameters.  The recurrent data include the location and initial specifications

of wells in the model, time step control information for advancing the simulation through
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time, a schedule of individual well rate and/or pressure performance, changes in well

completions and operations over time, and controls on the type and frequency of printout

information provided by the simulator.

Some of the simulator features handled by Boast98 are listed below.

Reservoir features:

• Optional three-phase relative permeability algorithm.

• Multiple rock and PVT regions allowed.

• Bubble point pressure can vary with depth and PVT region.

• Several different analytic aquifer models.

• Direct input of noncontiguous layers.

• Net and gross thickness allowed.

Well Model Features:

• Individual well gas/oil ratio (GOR) and water/oil ratio (WOR) constraints.

• Minimum oil production and maximum liquid withdrawal well constraints.

• Multiple wells per grid block.

• Gas well model using a laminar-inertial-turbulent analysis.

• Maximum water/gas injection rates.

Numerical Features:

• Two new iterative matrix solution methods:  y and z direction line successive over-

relaxation (LSOR) methods.
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• Zero pore volume (inactive) grid blocks allowed.

• Optional two-point upstream weighting for reducing numerical dispersion.

Some of the Boast98 limitations are:

• A large grid size of x-direction blocks, y-direction blocks, and z-direction blocks

or layers will force the use of virtual memory and drastically slow down the array

iteration processes.

• Maximum well blocks of 200.

• Maximum time steps of  8000.

• Maximum data sets of 200.

• Maximum wells of 150.

• Maximum nodes per well of 10.

• Maximum modifications to permeability, porosity, and transmissibility of 55

each.

• Maximum rock regions and PVT regions of 5.

• Maximum table entries for relative permeability curves and for capillary pressure

curves of 25.

This simulator consists of two basic components, Edboast, used to edit the input data,

and Boast98, used to make the calculations. A simulation run can be started from either

the Edboast or the Boast98 application.  However, beginning with the Edboast program,

the user will be able to review the input data file first and locate any mistakes that apply
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to the BOAST98 application. More information about these applications is presented in

Appendix E.
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CHAPTER 3.

METHODOLOGY

The main objective of the study was to use a reservoir simulator to determine if

the production behavior in the pilot area could be duplicated using the reservoir

description obtained from core and log data analysis and the results of predicted porosity

and permeability from the neural network models. This chapter presents a description of

the main steps followed throughout the project. These steps included: data collection and

analysis, prediction of petrophysical parameters (permeability and porosity), definition of

flow units and development of the simulation model.

3.1 Data Collection and Analysis.

3.1.1 Description of the Gordon Sandstone.

The reservoir description for the Gordon Sandstone was based on the available

core data for six wells. The location of the cored wells in the field is illustrated in

Figure 3.1, as wells as the units I, II and III in which the company divided the field

for the implementation of the waterflooding operations. These three zones were

selected according to average porosity-permeability-thickness values in a given area:

• Unit I: good porosity and permeability, this area was first developed and is

located in the middle of the field.

• Unit II: porosity and permeability values are less than those of Unit I, but

was still considered a good productive area. It is located from the middle

toward the north of the field.
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Figure 3.1. Location of the cored wells in the Stringtown field.

• Unit III: values for porosity and permeability are poor. This unit is the most

southerly area and is of less interest.  It is the last area where Waterflood

operations were implemented.

Some basic information about these six wells and the average petrophysical properties is

presented in Table 3.1. Two of these wells, H-11 and H-9, were injectors in the pilot
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waterflood. The plots showing porosity and permeability versus depth are presented in

Appendix 1. 

Table 3.1 Core Analysis, Stringtown Oilfield.

Permeability averages mDWell Cored

Interval, ft

Avg. porosity,

% Arithmetic Geometric

B-18 2988.5 – 3014 14.7 52 2.7

B-19 3086 – 3115 14.9 41 6.2

H-9 2980 – 2908 18.2 106 57

H-11 3083.4 – 3093.4 18.8 72 19

T-8 2781 – 2797 12.4 6.5 0.75

L-13 3032.4 – 3061.5 8.4 2.5 0.2

The well R-13 was not used in this study because a detailed core analysis core

showed that it was core in a zone above the sandstone, showing very low permeabilities.

The core data for the well D-14 was missing, and the other well, L-17, was not

considered because the log records were not available.

      A detailed geologic interpretation of the Gordon strata was carried out by the West

Virginia Geologic and Economic Survey, based on three approaches: core description;

log analysis and measurement of permeability with a Minipermeameter.4

The TEMCO MP-401 minipermeameter was used in the study. Based on log

interpretations, three stratigraphic units were observed in the Gordon formation, defined
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as A, B and C. Then, based on core descriptions and permeability values from the

minipermeameter, a sedimentary sequence was defined.

The lithology sequence showed 3 zones: conglomerate, sandstone and shale. The

conglomeratic zone was found only in Unit A, formed by well-rounded pebbles ranging

from 1 to 4 cm in diameter. It was generally found on the top of the sandstone and

exhibiting permeabilities varying from 0 to 500 mD. This means that this section may act

like a barrier to flow in some areas of the reservoir or even as a “thief” zone in other

sections. This thief zone is the most critical when studying the Waterflood performance

in any field, since some wells might be completed in this zone and the water injected may

be moving outside the pattern.

The pay zone generally lies beneath the conglomerate zone, and shows high

porosity. This section was further classified as “pay” sandstone for minipermeameter

values ranging from 10 to 200 md, and as “nonpay” sandstone for minipermeameter

values ranging from 0 (below the level of instrumental detection) to less than 5 md. The

lithology groups identified with the cores were correlated with the Gamma Ray and

Density logs to identify these zones in the rest of the field and have a better picture of the

reservoir.

3.1.2 Waterflood Pilot Area.

Waterflood operations began in a dual five-spot pilot located in the center of the

field, from 1981 to mid 1985. Seven new wells were drilled during 1980, six injectors
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and one producer. The other producer was an existing well drilled in 1897. The new wells

were completed with a 4.5 OD casing and subjected to acid fracturing to remove damage.

Some features about these wells are presented in Table 3.2. The distribution of the wells

in the pilot is shown in Figure 3.2.

Table 3.2 Well data for pilot area.

Well

Type

Gordon Formation

Gross Thickness

Perforated

Interval, ft

Elevation (G.L.),

ft.

P-7 15 2840 - 2846 963.22

L-9 75 2794 - 2798 927.52

H-11 85 3084 – 3092 1189.9

H-10 84 2954 – 2962 1050.54

A-5 100 2870 – 2878 976.89

H-9 18 2896 – 2904 1008.94

M-1 13 3023 – 3027 1142.47

H-12 84 2944 – 2948 1063.95

The producers and some injectors experienced a number of problems during the

pilot operation. The producers were affected by paraffin deposition, and some injectors

by perforation and/or formation plugging caused by iron deposits and bacteria growth.

The daily water injection rates and injection pressures varied throughout the life of the

project. Water injection rates were higher for the wells located in the eastern part of the

pattern, where the permeability was higher. Likewise, injection pressures were lower for

the same wells. The history of water injection rates and pressures are shown in Figures

3.3 and 3.4. Also, the average pressure and injection rates are presented in Table 3.3.
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Figure 3.2. Distribution of the Wells in the Pilot Area.

Table 3.3. Average pressure and water injection rates in the pilot.

Year Avg. Injection Rate

(STB/well)

Avg. pressure (psia)

1 119 515

2 70 608

3 73 636

4 75 975

5  (5 months) 51 953
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Figure 3.3. Total water injection rates in the pilot.

Figure 3.4. Wellhead injection pressures in the pilot.
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As can be seen in the previous plots, some wells showed a steeply decreasing

injection rate after injection commenced. This was caused by plugging of the perforations

and the formation near the wellbore. To solve this, the wells were treated using acid

fracturing with HCl. Some problems related with bacteria growth were also reported for

the injection wells.

Three injectors were treated with acid to removed plugging caused by iron

deposits, caused by interaction of injected water and the formation; and carbonate

deposits originated by mixing fresh with produced water and use it as injection water. A

fluid sensitivity analysis revealed that it was necessary to de-oxygenate the water and

increase its pH to avoid these problems.

Paraffin deposition also presented problems in the producers, due basically to

paraffin deposition. Well H-12 presented a sharp drop in production during the second

year of operations. It was hydraulically fractured after an ineffective paraffin treatment.

The other producer, M-1, showed a decrease in production at the third year, but the

treatment failed.

The cumulative oil and water production in both wells are compared in Figures

3.5 and 3.6. As can be observed, the production was very different in each well, perhaps

caused by the distribution of formation properties within the pilot.
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Figure 3.5. Cumulative oil production in the pilot wells.

Figure 3.6. Cumulative water production in the pilot wells.
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3.2 Prediction of Petrophysical Parameters.

3.2.1 Conventional Permeability Prediction.

The first attempt utilized to determine the permeability distribution in the

reservoir consisted of establishing a mathematical relationship between the measured

porosity and permeability from the cores, in order to find out if a good correlation existed

between these two parameters. Then, the procedure was repeated using porosity

calculated from bulk density logs since the previous correlation cannot be used for other

wells in the field where core porosity data are not available. Results are shown in chapter

4.

3.2.2 Porosity prediction with A.N.N.s

An A.N.N. was used to improve the low R2 coefficient obtained when correlating

core porosity with log-derived porosity. A backpropagation network, with three slabs in

the middle layer, was trained to predict porosity using 11 inputs from logs and well

information, such us depth and location (X, Y coordinates). Table 3.1 shows the inputs

selected and the activation functions used in each slab.  The inputs included Gamma Ray

and Density Logs (digitized values, first and second derivatives, base lines), depth and

well coordinates.

Table 3.1. Activation functions used in the A.N.N. for porosity prediction.

Activation functions

Middle LayerInput Layer

Slab1 Slab 2 Slab 3

Output Layer

Linear Gaussian Tanh Gaussian compl. Logistic



36

Core porosity and well log data from the six cored wells were used to develop the

A.N.N. A test set, randomly chosen from the input file, was used for calibration and stop

criteria. In order to prove the accuracy of the model and its ability to generalize and

predict porosity from data not seen in training, the A.N.N. was trained using data from 5

wells and one of them was used as the verification set. So, the network was trained six

times.

3.2.3 Permeability Prediction using Artificial Neural Networks.

In order to improve the correlation developed for permeability based on log

porosity, an artificial neural network (A.N.N.) was modeled to refine the prediction of the

permeability. An A.N.N. can identify the complex relationships between permeability

and well log data without any assumption or predefined model.

Several A.N.N.’s were trained using data from the six previously described cored

wells to predict permeability. A three-layer backpropagation A.N.N. with three slabs in

the middle layer, each slab with a different activation function, was used.

The A.N.N.’s were tested varying the input selection. Finally, the chosen input

group that gave the best results consisted of formation depth, location of the well (X and

Y coordinates), GR and bulk density logs, first derivatives of these logs with depth and

the log baselines. The output was the core permeability. Only GR and bulk density logs

were selected because they are available for most of the wells in the field. This A.N.N.

was utilized to predict the permeability for the pilot wells not cored.
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The accuracy of the A.N.N. was verified in a similar manner as explained for the

porosity network, using each of the wells separately as verification set.

3.3 Definition of Flow Units.

The simulation was started with a one-layer model, built based on the average

predicted porosities and permeabilities, but poor results were achieved. Then, a model

with two layers corresponding to the main flow units was prepared.

The formation was divided in two flow units to account for permeability, porosity

and lithology variations in the vertical direction. The first criterion to choose the flow

units was lithology, taking conglomerate as one layer and sandstone as the second layer,

even though conglomerate was not present in some wells, but the simulation did not give

satisfactory results. Again, the sandstone zone was characterized by important

permeability and porosity variations that may impact the flow behavior. Therefore, the

criteria followed to select the flow units were permeability and porosity breaks.

3.4 Simulation Model.

In order to run the simulator, it was necessary to collect information regarding

reservoir and fluid properties, well completion and treatments and production and

injection history.  The A.N.N.’s developed for porosity and permeability were applied to

the pilot wells to predict these properties. After that, an early model was constructed

using one layer, but this did not provided a good match with the cumulative oil
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production. The formation was then divided into two layers, corresponding to the flow

units. The process to collect the necessary input data for the simulator is explained below.

3.4.1 Input Data for the Simulator.

3.4.1.1 Reservoir Parameters.

The porosity and permeability for each block were assigned averaging the

predicted values in the injectors and the producer H-12, as indicated in chapter 4, Results.

The program code, listed in Appendix F, contains all the input data used in the

simulation. Other parameters for the reservoir model were:

• Initial reservoir pressure = 120 psia

• Initial oil saturation = 0.69

• Irreducible water saturation = 0.15

• Irreducible gas saturation = 0.08

• Vertical permeability = 1 mD in layer 1, 5 mD in layer two. (See program list)

The depth to the top of the first layer in each well was taken as the total depth

minus the elevation, read from logs, to show the actual inclination of the formation and

evaluate the impact of gravity drainage on the recovery process. These values, presented

in the program list, range from 1877 ft. in the well P-7 to 1904 in well H-10, which

means that the formation is practically horizontal in this part of the field. The known

depths were averaged to assign depths for the rest of the blocks. Figure 3.7 shows the

resulting shape of the reservoir in the pilot area.
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Figure 3.7. Shape of the Pay Sand in the Pilot.
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Table 3.2  Crude Oil Analysis.

Property

Crude Gravity, º API 45.3

IBF, º F 96

Viscosity at 85 ºF 3.5 cp

Density at 85 ºF 0.7903 g/ml

% Tar 1

Table 3.3.  Gas Analysis.

Property

Specific Gravity 0.628

BTU/cu. Ft. at 14.73 psia

    Dry basis

    Wet basis

989.8

972.6

Molecular weight 18.2

Compressibility factor 0.998

                    Table 3.4.  Produced Water Analysis.

Property M-1 H-12

Specific Gravity @ 75 °F 1.089 1.002

PH 4.3 7.46

Total Dissolved solids, mg/l 129116 7006

Relative Permeabilities.  Relative permeability data were available for one injector in

the pilot, H-9. Table 3.5 summarizes the report. Other important relevant information for

the core is:

• Core depth: 2905 ft.

• Core description: sandstone, fine grain.
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• Initial water saturation: 19%

• Porosity: 25.3%

• Oil permeability at initial water saturation: 34 mD.

Table 3.5.  Relative permeabilities from well H-9

Sw Krw Kro Kro/Krw

19 0 1

32.7 0.0077 0.51 66.234

37.7 0.012 0.436 36.333

41.6 0.016 0.37 23.125

46.2 0.024 0.283 11.792

48.5 0.029 0.235 8.103

50.8 0.037 0.19 5.135

52.7 0.045 0.148 3.289

54.1 0.052 0.114 2.192

55 0.06 0.098 1.633

55.6 0.066 0.089 1.348

56.2 0.074 0.076 1.027

57.3 0.08 0.05 0.625

58.2 0.096 0.033 0.344

59.5 0.107 0.0086 0.080

60.1 0.119 0.0039 0.033

60.8 0.135 0 0.000

These values were changed in the simulation during the history matching. Figure

3.8 compares the relative permeability from the well H-9 with those used in the program.

Capillary pressures. Air-brine capillary pressure test were made in the well L-13. The

reported values are listed in Table 3.6. Core data are:
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Figure 3.8. Comparison of relative permeabilities.

Table 3.6. Capillary pressure air-brine from well L-13

Water Saturation Capillary pressure, psi
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99.53 1
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71.43 4
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55.21 17

52.58 30

47.94 70
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• Grain density: 2.67 g/cc.

These experimental values of capillary pressure were adjusted to account for the

presence of oil instead of air, using the following expression:13

Pccorr =  Pcexp x (σw-o/σw-a) (1)

Where:

Pccorr = Capillary pressure corrected for an oil-water system, psia.

Pcexp =  Capillary pressure obtained for a water-air system, psia.

σw-o = Interfacial tension for water-oil, dyn/cm

σw-a = Interfacial tension for air-water, dyn/cm

In the program, σw-a was taken equal to 72 dyn/cm, and σw-o equal to 20 dyn/cm.6

The capillary pressure values used in the simulator are presented in Appendix F.

PVT Data. Since no PVT data were available for the field, these were computed using

correlations.13 The known quantities for the field were the oil API gravity and viscosity,

the formation temperature, the water viscosity. The PVT properties used in the program

are summarized in tables 3.7 through 3.9 for oil, water and gas.

3.4.2 Recurrent data for the simulator.

The recurrent data include information about location and initial specifications of

wells in the model such us, number of layers completed and a schedule of individual well
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rate and/or pressure performance, changes in well completions and stimulation or damage

that occurred over time.

  Table 3.7. Oil PVT properties.

Pressure, psia Viscosity, cp Bo, RB/STB Rs, SCF,

STB

14.7 3.600 1.0000 0.0

80.0 3.229 1.0254 14.5

100.0 3.132 1.0275 18.9

120.0 3.038 1.0296 23.5

2500.0 0.6100 1.4234 862.5

Slope (P>Pb) 0.125E-02

cp/psia

-0.800E-06

RB/STB/psia

0.0

Table 3.8. Water PVT properties.

Pressure Viscosity, cp Bo, RB/STB

14.7 1.4527 0.9911

120.0 1.4585 0.9909

2500.0 1.465 0.9880

Table 3. 9. Gas PVT properties.

Pressure,

Psia

Viscosity,

cp

Bg, RCF/SCF Pseudo PRS,

psia2/cp

Rock Comp.

1/psia

14.7 0.0112 0.1048E+01 0.00E+00 0.380E-05

120. 0.0114 0.7446E-01 0.3592E+07 0.380E-05

2500. 0.0196 0.4800E-02 0.4800E+09 0.380E-05

Productivity Index (PID).  This function is used to account for changes in the well

condition, basically changes in the skin factor, S, after damage or any stimulation is

performed in the well. The layer flow index can be estimated as follows:
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Where:

PID: Flow index per layer, for rates in STB/D.

K = layer absolute permeability, mD.

h = layer thickness, ft.

DX = x-direction grid block dimension, ft.

DY = y-direction grid block dimension, ft.

rw = wellbore radius, ft.

S = layer skin factor.

Several wells had treatments throughout the project’s life. This information was

used to assign different skin factor values at different times. Table 3.10 summarizes the

different treatments reported for the pilot wells, as well as the time elapsed since the

beginning of the flooding project.

Table 3.10. Well treatments in pilot wells.

Well  Treatment Elapsed days

P-7 Acid fracturing, 3 times 147, 387, 660

H-11 Acid fracturing 662

H-10 Acid fracturing 965

M-1 Chemical injection to

remove paraffin deposit

1200

H-12 Acid fracturing to remove

paraffin deposit

845
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At some stage during the pilot life, produced water was mixed with fresh water to

be injected. Analysis showed that these waters were incompatible and should not be

mixed because carbonate precipitation was likely to occur. This mixing could have been

the cause of plugging in some wells.

Injection rates. The water injection rates assigned to the injectors were chosen between

10 and 15% of the total rate, as shown in Table 3.11. Only with those low percentages an

acceptable match between actual and simulated water production was achieved.

Table 3.11. Average water injection rates per well.

Injection well  Average water injection

rate, % of total

P-7 11.7

L-9 14.0

H-11 15.5

H-10 12.0

A-5 15.0

H-9 15.2
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CHAPTER 4.

RESULTS AND DISCUSSION

4.1 Permeability Prediction using Conventional Approach.

Core data from six wells were used to find the core porosity - core permeability

correlation, which is depicted in Figure 4.1. The correlation between core porosity and

permeability is good for permeability prediction; nevertheless it cannot be used for other

wells in the field where core porosity data are not available. For this reason, the

procedure was repeated using porosity calculated from bulk density logs. A correlation

for log porosity and core was developed, presented in Figure 4.2, after adjusting the core

data for depth with the logs. The results for the correlation between this log porosity and

core permeability is shown in Figure 4.3. As can be seen, the R2 coefficient was lower

than that obtained using core porosity.

Figure 4.1. Correlation between core porosity and core permeability.

R2 = 0.85

0

1

10

100

1000

0 5 10 15 20 25 30

Core Porosity, %

C
or

e 
pe

rm
ea

bi
lit

y,
 m

d



48

Figure 4.2. Correlation between core porosity and log-derived porosity.

Figure 4.3. Correlation between Log-derived porosity and core permeability.
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4.2 Porosity Predicted with A.N.N.

A backpropagation network, with three slabs in the middle layer, was trained to

predict porosity using 11 inputs from logs and well information. The R2 values for both

training and test and for the verification well are shown in Table 4.1.

     Table 4.1. R2 values for porosity prediction

Verification Well R 2 for training +

test

R2 for verification

B-18 0.92 0.90

B-19 0.94 0.82

H-9 0.91 0.96

H-11 0.92 0.89

T-8 0.94 0.83

L-13 0.95 0.82

The correlations for core porosity-A.N.N. porosity and A.N.N. porosity–

permeability are depicted in Figures 4.4 and 4.5. Both correlations present an

improvement compared with the ones developed from logs.

4.3 Effect of Lithology on Permeability.

The lithology groups identified with the cores were correlated with the Gamma

Ray and Density logs to identify these zones in the rest of the field. Then, the porosity

and permeability values from the core analysis were grouped according to conglomerate

and sandstone in order to evaluate the impact of lithology on the correlation and the

reservoir quality.
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Figure 4.4. Correlation between core porosity and porosity from A.N.N.

Figure 4.5. Correlation between Log-derived porosity and core permeability.
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The development of such correlations allowed the recognition of the different behavior of

permeability between these zones and an improvement in the correlation for the

sandstone. As is illustrated in Figure 4.6, the correlation coefficient for the conglomerate

is low, 0.60, whereas for sandstone is high, 0.93 (Figure 4.7). This confirms the

heterogeneity of the formation and also shows the need to develop a better method for

permeability prediction.

The different lithologies found in the cores are shown in Appendix 1, as well as

the porosity and the permeability.

Figure 4.6. Correlation between core porosity and core permeability for

conglomerate.
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Figure 4.7. Correlation between core porosity and core permeability for sandstone.

4.4 Permeability Predicted with A.N.N.

 A three-layer backpropagation A.N.N. with three slabs in the middle layer, each

slab with a different activation function, was used. Input data included formation depth,

location of the well (X and Y coordinates), GR and bulk density logs, first derivatives of

these logs with depth and the log baselines. The corresponding correlation coefficients

for both training and test sets and for the verification well are shown in Table 4.2. The

comparison between core and predicted permeabilities for each well are presented in

Appendix B.
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  Table 4.2. R2 values for permeability prediction.

Verification Well R 2 for training + test R2 for verification

B-18 0.97 0.96

B-19 0.99 0.75

H-9 0.80 0.91

H-11 0.95 0.30

T-8 0.90 0.80

L-13 0.95 0.83

4.5 Petrophysical Parameters for the Pilot Wells.

The A.N.N. models developed for porosity and permeability were applied to the

pilot area. The results are summarized in Table 4.3.  These properties are plotted against

depth from Figures D.1 to D.5, Appendix D. The lithological zones, as described by the

geologic correlation developed between core interpretation and well logs, are also shown.

The properties for two of the injectors, that were cored, were summarized in Table 2.1.

  Table 4.3. Average reservoir properties for the pilot wells.

Permeability from A.N.N., avg. mDWell Avg. porosity

from A.N.N., % Arithmetic Geometric

P-7 19.2 112.3 102.6

L-9 19.7 66.6 41.9

H-10 20.1 67.5 48.8

A-5 19.5 177.0 161.9

H-12 17.4 29.4 25.3

The contribution factors for the inputs in both A.N.N. for porosity and permeability when

applied to the pilot wells are presented in tables 4.4 and 4.5. In order to build the most
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successful A.N.N., several inputs variables were tried. For instance, using only log data

as input for the model, the A.N.N. did not give good predictions. The first and second

derivatives were used in the input file to help the model recognize the changes in the

shape of the log responses and reduce the inherent noise.

Table 4.4. Contribution factors for porosity prediction in pilot wells.

Inputs Contribution Factors

Density 0.203

Gamma Ray slope 0.111

Gamma Ray 0.108

Density 2nd slope 0.092

Gamma Ray 2nd slope 0.091

Gamma Ray Baseline 0.080

Density slope 0.075

Depth 0.069

X coordinate 0.060

Density Baseline 0.059

Y coordinate 0.052

Table 4.5. Contribution factors for permeability prediction in pilot wells.

Inputs Contribution Factors

Density 0.158

Gamma Ray slope 0.132

Density slope 0.126

X coordinate 0.116

Depth 0.109

Density Baseline 0.104

Gamma Ray 0.095

Gamma Ray Baseline 0.81

Y coordinate 0.08
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4.6 Definition of Flow Units in Pilot Area.

The formation was divided in two flow units to account for permeability, porosity

and lithology variations in the vertical direction. The first criterion to choose the flow

units was lithology, taking conglomerate as one layer and sandstone as the second layer,

even though conglomerate was not present in some wells, but the simulation did not give

satisfactory results. Again, the sandstone zone was characterized by important

permeability and porosity variations that may impact the flow behavior. The history

matching for this case is presented in appendix F.

The final criteria followed to select the flow units were permeability and porosity

breaks. The average properties of the selected flow units are displayed in Table 4.6. As

shown, the first layer is generally of low porosity and permeability, while in the second

one these values are higher.

4.7 History Matching.

The cumulative production from the simulator, using one and two layers, was

plotted in conjunction with the actual production and shown in Figures 4.8 through 4.13

for both oil and water. Figures 4.8 and 4.9 depict the cumulative production of oil and

water from both producing wells. As can be seen, the cumulative production is the same

when using one or two layers in the model. These results can be misleading when

interpreting the difference between one or two layers, because the real effect of these two

models is best understood when the production is plotted for each producing well

separately.
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Table 4.6. Average properties in the pilot wells per layer.

Average properties

Layer 1 Layer 2

Well Thickness φ K, geom.. Thickness φ K, geom..

P–7 3.0 17.7 81.2 4.0 19.2 119.8

L-9 3.0 18.4 24.9 3.0 19.7 84.1

H-11 4.5 16.2 9.1 5 21.3 117.4

H-10 5.5 21.5 83.2 3.5 20.1 35.5

A-5 6.0 12.5 94.8 12.0 19.5 215.1

H-9 4 15.7 67.1 9 22.8 144.9

H-12 3.5 18.0 33.8 2.0 17.4 16.1

Figure 4.10 and 4.11 show the cumulative oil and water production for the well

M-1. Now the effect of using one and two layers is more noticeable, especially for the

water production. The cumulative production for the well H-12 is illustrated in Figures

4.12 and 4.13. Again the difference between using one or two layers in the model is

important. For this well, the production shows a flat zone at approximately 750 days.

This was caused by damaged (paraffin deposition) and consequently low production.

Even though this was incorporated in the recurrent file assigning a low skin factor value,

the program might not represent this problem very accurately.
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Figure 4.8. Comparison of cumulative oil production from the pilot. Both producers

Figure 4.9. Comparison of cumulative water production from the pilot. Both

producers
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Figure 4.10. Comparison of cumulative oil production. Well M-1

Figure 4.11. Comparison of cumulative water production.  Well M-1
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Figure 4.12. Comparison of cumulative oil production. Well H-12

Figure 4.13. Comparison of cumulative water production. Well H-12
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CHAPTER 5.

CONCLUSIONS.

1. Two Artificial Neural Networks were successfully developed for prediction of

porosity and permeability in a heterogeneous reservoir.

2. The prediction of porosity and permeability with A.N.N.s improved the

description of the reservoir and helped to identify the main flow units for the

formation in the pilot area.

3. Lithology was not a critical factor in the definition of the flow units for the pilot

area. Flow units were selected based on porosity and permeability distribution.

4. The flow units identified in the pilot area enhanced the simulation of the

waterflooding performance.

5. After attempting different architectures, the Backpropagation network, with three

slabs in the middle layer and different activation functions, gave better results for

prediction of porosity and permeability.

6. The use of derivatives in the training and test sets helped in the development of

the A.N.N.s, reducing the inherent noise in the inputs.
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7. Density and Gamma Ray slope were the input parameters with higher

contribution factors in the A.N.N.s developed in this study.

8. The numerical simulator used, Boast98, proved to be very user-friendly. The

graphical interface allows for quick evaluation of the reservoir performance at

run-time. Nevertheless, there is a problem with the cumulative material-balance

calculation. Every time a new case is run, the previous cumulative material

balance value is added to the new one.
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CHAPTER 6.

RECOMMENDATIONS

1. Three stratigraphic units were observed in the Gordon formation, defined as units

A, B and C. In the pilot area, core and log analysis showed that only unit A was

present. In other wells like B-18, L-13 and B-19, outside the pilot area, both units

A and B were present. As a result, in order to define the flow units with more

accuracy for the entire field, a similar study should be conducted in those areas

where more than one unit is observed.

2. Further research is recommended in order to predict the flow units within the

formation using A.N.N. In this case, input parameters such us stratigraphic units

could be included to have a more accurate reservoir description.
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APPENDIX A.

Porosity, permeability and lithology distribution in cored wells.
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Figure A.1 Porosity, permeability and lithology distribution from core data.

Well H-11.

Figure A.2 Porosity, permeability and lithology distribution from core data.
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Figure A.3 Porosity, permeability and lithology distribution from core data.

Well B-19

Figure A.4 Porosity, permeability and lithology distribution from core data.
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Figure A.5 Porosity, permeability and lithology distribution from core data.

Well L-13

Figure A.6 Porosity, permeability and lithology distribution from core data.
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APPENDIX B.

Porosity predictions in cored wells.
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Figure B.1. Porosity Prediction with A.N.N. Well H-11

Figure B.2 Porosity Prediction with A.N.N. Well H-9
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Figure B.3 Porosity Prediction with A.N.N. Well B-19

Figure B.4 Porosity Prediction with A.N.N. Well T-8
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Figure B.5 Porosity Prediction with A.N.N. Well L-13

Figure B.6 Porosity Prediction with A.N.N. Well B-18
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APPENDIX C.

Permeability predictions in cored wells.
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Figure C.1 Permeability Prediction with A.N.N. Well H-11

Figure C.2 Porosity Prediction with A.N.N. Well H-9
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Figure C.3 Porosity Prediction with A.N.N. Well B-19

Figure C.4 Porosity Prediction with A.N.N. Well T- 8
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Figure C.5 Porosity Prediction with A.N.N. Well L-13

Figure C.6 Porosity Prediction with A.N.N. Well B-18
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APPENDIX D.

Porosity and permeability predictions with A.N.N. for wells in pilot

area.
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Figure D.1 Porosity and permeability distribution from A.N.N.

Well P-7

Figure D.2 Porosity and permeability distribution from A.N.N.
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Figure D.3 Porosity and permeability distribution from A.N.N.

Well H-10

Figure D.4 Porosity and permeability distribution from A.N.N.
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Figure D.5 Porosity and permeability distribution from A.N.N.

Well H-12
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APPENDIX E.

Description of Edboast and Boast98 simulator
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1. EDBOAST.

This is an editor used for data input. The main window, shown in Figure C.1,

presents seven horizontal menu items. These items are File Name, Directory, Extension,

Options, Help, Quit, and  About. The reservoir, fluid, solution method and other pertinent

information are edited in “Options”.

Figure E.1.  EDBOAST Main Menu Window.

Selecting “Edit” under the “Options” item of the main menu brings up this

EdBoast Home Page dialog window.  The EdBoast Home Page consists of 14 home page
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buttons. These 14 buttons are Begin, Grid, Porperm, Transm, Table, Initial, Codes, Aqui,

Wells, Recurr, Default, Next, Accept, and Abort. This window is depicted in Figure E.2

Button 1. BEGIN. This first button introduces the dialog frame, which contains five

lines of reservoir description called “Header”.  The first line of the “Header” will be the

title card.  The other four lines are run identification records.   The next two boxes in the

frame contain two integers representing switches for restart initialization or restart run,

and another for writing a post-run Table.

Figure E.2.  Main input data menu in EdBoast.
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Button 2. GRID. This button brings up five or more dialogs or spreadsheets for entering

reservoir model grid dimensions (I, J, and K) and geometry data (grid size).  Before each

spreadsheet of values is presented, a page of instructions is shown which describes the

invisible commands or various key shortcuts, which can be used to command the

spreadsheet.

Button 3. PORPERM.  PORPERM button brings up five or more dialogs or

spreadsheets for entering reservoir porosity and permeability data.  Also a special dialog

box is presented for each region modified for porosity or permeability.

Button 4. TRANSM. Presents options for transmissibility modifications.

Button 5. TABLE.  Requests information for Rock and PVT regions and their respective

relative permeability and capillary pressure tables. The first dialog from this button,

allows entry for the number of distinct rock regions is to be changed and the number of

regions where the PVT default region value of one is to be changed.  The rock region is a

saturation dependent data set for relative permeability.  The PVT region is a pressure

dependent data set, including oil, water, and gas PVT tables.  At least one rock region and

one saturation region is required.

Button 6. INITIAL. This button introduces a set of two dialogs plus one more dialogs

for each layer and rock region of data containing the pressure and saturation

initializations.
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Button 7. CODES. This button introduces debug and diagnostic controls options and

solution method specifications.  The data can be entered in a series of two dialogs

Button 8. AQUI.  This button introduces the installation of the aquifer data.

Button 9. WELLS.  This button introduces well data, such us total number of wells that

will be used in the entire simulation, well number, the number of well nodes, and the well

name for each well are entered.  This is followed by X, Y, Z locations of each well node

being entered.

Button 10. RECURR.  This button introduces a set of six dialogs for each data set for

entering recurrent data.  The total number of data sets entered (up to 200) is displayed in

the first window(s) presented.  Up to 21 data sets with associated information are allowed

in the first page and 22 data sets on each succeeding page.  This allows a preview of the

number of elapsed times days and also a break down on the number of NEW and OLD

(modified) wells are in each data set.

Button 11. DEFAULT.  This button will initiate a set of pre-selected input data, which

will allow the beginner a quick step forward.
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Button 12. NEXT. This button will advance to the next button in the line up.  This is

the same as the Tab plus the Enter key being hit.  The Up and Down arrow keys will

advance or reverse the highlighted button selections.

Button 13. ACCEPT.  This button will allow the saving of the edited input data under

the same or a different file name.

Button 14. ABORT. Returns to the original main menu.  The same file name is in the

buffer and another command such as Preview or Boast98 can apply to file name

previously selected.

2. BOAST98.

Boast98 evaluates reservoir performance based on finite-difference, implicit

pressure, and explicit saturation, with options for both direct and iterative methods of

solution.  The reservoir is described by three dimensional grid blocks and by three fluid

phases.  Other options include steeply dipping structures, multiple rock and PVT regions,

bubble point tracking, automatic time step control, material balance checking for solution

stability, multiple wells per grid block, and rate or pressure constraints on well

performance.

The Boast98 application will have been started indirectly by the selecting

“Transfer” or “Boast98” under the “Options” menu of the EdBoast application, or
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directly by typing the name under a DOS prompt, or by clicking on the icon in a directory

window of the computer operating system.

The primary items in the main menu bar are File Name, Directory, Extension,

Option, Help, Quit, and About.  These menu items have essentially the same function as

in the EdBoast application described earlier. Figure E.3 presents a normal view of the

Menu items before the run is started.

Figure E.3.  Primary Menu Display of BOAST98.
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View.  View the input data file contents chosen under the menu item File Name.  This is

a read only choice and the data cannot be altered under this view.

Simulate. This selection will begin the Boast98 run with live time graphics in effect.

Plot. Plot the results of the last time step of the last simulation run.

Edit. The current file name selection is handed over to the EDBOAST application.  If

EDBOAST is in the current directory, the Home Page Button dialog will be presented

containing the input data from the current file selection of BOAST98.  If EDBOAST is

not in the current directory, the program, BOAST98, will ask for help in finding the file.

In that case, use the Directory and File Name menu items alternately, together.

Transfer.  Transfer to any executable application by selecting the proper directory-using

Directory and the Transfer will show a list of executables.

Graphs.  Default is turned on.  The selection of live graphics will slow the total

simulation time down somewhat, especially for larger grid sizes.

Histry.  Default for history matching is turned off.  Turning on Histry will allow the

matching of historical production information with the simulated performance values.

This switch can be turned on either before or after simulation begins.  The switch is
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found under the Option menu or under the Explore menu.  This comparison is only seen

under the Explore selection during suspension of the run.

Debug.  Used to debug the flowing well pressure (PWFC) calculations.  This turns on

special dialog boxes, which point out excess pressures building up around wells.

In order to take control from the Boast98 simulation, all simulation activity may

be stopped clicking on the right hand mouse button. The original menu at the top of the

window will disappear and a secondary 7-item menu will be displayed.  The secondary

items are Grid map, Layer, Flow, Explore, Capture, Resume, and Abort.  Figure E.4 show

the Menu displayed after run suspension using the right mouse button.

Choosing secondary items “Grid map”, “Layer”, and “Flow” allow changes to the

graphic presentations during the active simulation run. When “Explore” is chosen, a

series of graphic probes is permitted in order to inspect the various reservoir simulation

categories. “Capture” produces a captured image of the desktop, including the graphic

windows of Boast98, shown at the time.  The menu item “Resume” will allow the

reservoir simulation run to continue from the time step where it was when suspension

was called with the right mouse button. By choosing “Abort”, the Run Complete notice

box with come up containing the elapsed time, including any suspension time.
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Figure E.4.  Boast98 Secondary Menu shown during simulation.
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APPENDIX F.

History matching using lithologic zones as flow units.
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Figure F.1. Cumulative oil production for both producers.
   Lithologic zones taken as flow units.

Figure F.2.  Cumulative water production for both producers.
Lithologic zones taken as flow units.
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Figure F.3.  Cumulative oil production, well M-1.
                  Lithologic zones taken as flow units.

Figure F.4.  Cumulative water production, well M-1.
              Lithologic zones taken as flow units.

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800

Days

C
um

ul
at

iv
e 

O
il,

 M
S

T
B

Simulated Actual

0

2

4

6

8

10

12

0 200 400 600 800 1000 1200 1400 1600 1800

Days

C
um

ul
at

iv
e 

W
at

er
, M

S
T

B

Simulated Actual



94

Figure F.5.  Cumulative oil production, well H-12.
                  Lithologic zones taken as flow units.

Figure F.6.  Comparison of cumulative water production. Well H-12.
Lithologic zones taken as flow units.
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