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ABSTRACT

Maximum size t-cross-intersecting and intersecting families

with degree conditions

Yongbin Ou

We present four main results: (1) A solution to the problem of finding two set systems A and
B such that A is r1-intersecting, B is r2-intersecting, A,B are t-cross-intersecting and |A|+ |B|
is a maximum; (2) A solution to the problem of finding two set systems A and B such that A,B
are Sperner, t-cross-intersecting and |A| + |B| is a maximum; (3) A solution to the problem of
finding the maximum size of an intersecting set system F such that the complementary degree
c(F) = s for a specified value s; (4) An asymptotic result on the complementary degree of an
intersecting set system.
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Chapter 1

Introduction

Let X = {1, 2, · · · , n}, X(k) = {F ⊆ X : |F | = k} and let F be a subset of the power set
P(X) of X. Finding the maximum or minimum size of F where conditions are imposed on the
intersection and/or containment properties of sets in F is at the core of extremal set theory. The
Erdős-Ko-Rado theorem, the Kruskal-Katona theorem, and Sperner’s theorem are all concerned
with variations of this problem. The results in this dissertation are applications, generalizations,
and extensions of these three fundamental theorems.

A set system F ⊆ P(X) is intersecting if A∩B 6= ∅ for every A,B ∈ F . The Erdős-Ko-Rado
theorem gives the maximum size of an intersecting set system.

Theorem. (Erdős-Ko-Rado Theorem[3]) If 2k ≤ n and F ⊆ X(k) is intersecting then |F| ≤(
n−1
k−1

)
.

When 2k < n equality is achieved only by the so-called trivial set system, which is the collection
of all k-subsets of X containing a fixed element.

The intersecting concept can be generalized to t-intersecting. F is t-intersecting if |A∩B| ≥ t
for every A,B ∈ F . Another way to generalize intersecting is to look at two set systems A and
B. A and B are t-cross-intersecting if |A ∩B| ≥ t for every A ∈ A and B ∈ B.

If n + r is even we let F(n, r) = {F ⊆ X : |F | ≥ n+r
2 } (while if n + r is odd we let F(n, r)

be equal to F(n, r + 1) plus a few more sets, defined precisely in Chapter 2). Clearly F(n, r) is
r-intersecting. Katona showed that if A ⊆ P(X) is r-intersecting then |A| ≤ |F(n, r)|. Frankl
conjectured that if A,B ⊆ P(X) are t-cross-intersecting with |A| ≥ |B| then |B| ≤ |F(n, t)|.

1



2 CHAPTER 1. INTRODUCTION

In Chapter 2 we prove this conjecture is correct. The main result is Theorem 2.1.8 in which
we characterize all A,B ⊆ P(X) such that A is r1-intersecting, B is r2-intersecting, A,B are
t-cross-intersecting and |A| + |B| is a maximum. The proof of Theorem 2.1.8 uses Harper’s
theorem on the Hamming distance between subsets of P(X) and theorems of Frankl, Hilton,
and Katona on intersecting and cross-intersecting families, which are all based on the Kruskal-
Katona theorem on minimum shadow. In fact many proofs of intersection theorems make use
of minimum shadow theorems.

For F ⊆ X(k), the shadow of F is

∂F = {A : |A| = k − 1 and A ⊆ F for some F ∈ F}

The Kruskal-Katona theorem states that to choose m sets in X(k) such that the size of
the shadow is minimized, we pick the first m sets of X(k) in the so-called COLEX order. The
definition of the COLEX order will be given in Chapter 2.

A set system F ⊆ P(X) is Sperner if A 6⊆ B and B 6⊆ A for every A,B ∈ F . Milner found
the maximum size of a t-intersecting Sperner family of sets and Frankl proved a generalization
to t-cross-intersecting Sperner families.

In Chapter 3 we prove theorems that generalize both of these results. Let A1,A2, · · · ,Aq

be Sperner families of subsets of X which are pairwise t-cross-intersecting. We determine the
maximum values of

∑
|Ai| and

∏
|Ai| and find all optimal configurations.

We give two proofs for one of the main results (Theorem 3.1.4) of Chapter 3. One uses the
standard technique of modifying a Sperner set system by replacing a collection of sets by its
shadow, with the Kruskal-Katona theorem providing a bound on the relative sizes of these two
collections of sets. The other uses the LYM inequality (a generalization of Sperner’s theorem)
and convexity in an unusual way.

If F ⊆ P(X) is a family of sets and i ∈ X, the degree dF (i) of i in F is the number of sets
in F containing i, the maximum degree d(F) of F is the maximum over all i in X of dF (i), and
c(F) = |F| − d(F) is the minimum complementary degree of F . The optimal configuration in
the Erdős-Ko-Rado theorem, the so-called trivial set system, has d(F) = |F| (and c(F) = 0).
The Hilton-Milner theorem solves the problem of finding the maximum size of an intersecting
set system F ⊆ X(k) such that c(F) > 0. Frankl and Goldwasser proved generalizations of
the Hilton-Milner theorem for intersecting set systems F ⊆ X(k) with c(F) ≤ s for s ≤

(
n−3
k−2

)
.

This upper bound for s is significant because with this restriction the optimal configurations
have a particularly simple structure, which is lost for large value of s. In Chapter 4 we find

the largest intersecting family F ⊆ X(k) such that c(F) = s where s ∈
((

n−3
k−2

)
, 4

(
n−5
k−3

)
+

(
n−5
k−4

)]
.

The endpoints of this interval of values of s are determined by two intersecting families with
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a particularly simple structure. The proof of optimality for this range of values of s is quite
long and complicated. A key result needed in this proof is Theorem 4.2.1, a generalization of
the Kruskal-Katona theorem (which is likely to be useful in other contexts) which solves the
following problem:

Problem. Let A,B ⊆ X(k), |A| + |B| = r, |A| ≥ |B| ≥ t, 2t < r. Find the minimum of
|∂A|+ |∂B|.

The special case t = 0 is the Kruskal-Katona theorem.

Another way to impose a degree condition on an intersecting family F ⊆ X(k) is to require
d(F) ≤ e|F| for some real number e ∈ (0, 1). Let F(3,2) = {F ∈ X(k) : |F ∩ {1, 2, 3}| ≥

2} and F∗
(3,2) = {F ∈ X(k) : |F ∩ {1, 2, 3}| = 2}. In a well known but unpublished paper,

Erdős, Rothschild and Szemerédi showed that if e = 2
3 then |F| ≤ |F(3,2)| for fixed k and n

sufficiently large. With the additional assumption that F is maximal, Frankl showed the same
conclusion holds for any e ∈ (2

3 , 1) and that equality holds for e in this range if and only if F
is isomorphic to F(3,2). Of course equality can never hold if e = 2

3 because d(F(3,2)) > 2
3 |F|.

In Chapter 5 we sharpen the theorem of Erdős, Rothschild and Szemerédi by proving a t-
intersecting generalization where the special case t = 1 says that for fixed k if d(F) ≤ 2

3 |F| and
n is sufficiently large, then |F| ≤ |F∗

(3,2)| with equality if and only if F is isomorphic to F∗
(3,2).

The main result in Chapter 4 is a characterization of intersecting families F ⊆ X(k) where

c(F) = s ∈
((

n−3
k−2

)
, 4

(
n−5
k−3

)
+

(
n−5
k−4

)]
. It is easy to show that

(
n−3
k−2

)
≤ 4

(
n−5
k−3

)
+

(
n−5
k−4

)
if and only

if n ≤ 3k − 2, so the theorem is vacuous for n > 3k − 2. In Chapter 5 we show more. We show
a t-intersecting generalization where the case t = 1 says that for fixed k and sufficiently large n,
there does not exist an intersecting family F ⊆ X(k) with c(F) >

(
n−3
k−2

)
.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Intersecting and t-cross-intersecting

Set Systems

2.1 Introduction

Let X = {1, 2, · · · , n}, P(X) denote the set of all subsets of X and X(k) denote the set of all
subsets of X of size k. For 1 ≤ i ≤ j ≤ n we let [i, j] = {k ∈ X : i ≤ k ≤ j}. For A ⊆ P(X)
we let Ai = {A ∈ A : |A| = i}. For A ⊆ X we let Ac = X\A and for A ⊆ P(X) we let
Ac = {Ac : A ∈ A}, the set of complements of sets in A. If r and t are positive integers we
say a family of sets F ⊆ P(X) is r-intersecting if |A ∩ B| ≥ r for each A and B ∈ F and
F1,F2 ⊆ P(X) are t-cross-intersecting if |A1 ∩ A2| ≥ t for each A1 ∈ F1 and A2 ∈ F2. We
usually say intersecting and cross-intersecting instead of 1-intersecting and 1-cross-intersecting.
If n + r is even we let

F(n, r) =
{

F ⊆ X : |F | ≥ n + r

2

}

while if n + r is odd we let

F(n, r) =
{

F ⊆ X : |F | ≥ n + r + 1
2

or |F | = n + r − 1
2

and 1 /∈ F

}
.

5



6 CHAPTER 2. INTERSECTING AND T -CROSS-INTERSECTING SET SYSTEMS

The following theorem of Katona, with another proof by Kleitman [19], completely solves the
problem of finding the largest r-intersecting subset of P(X).

Theorem 2.1.1 ([13]). If A ⊆ P(X) is r-intersecting where r ≥ 2 then |A| ≤ |F(n, r)| with

equality holding if and only if A is isomorphic to F(n, r).

If A is 1-intersecting then obviously |A| ≤ |F(n, 1)| = 2n−1, but there are many set systems
for which equality holds.

A number of theorems about the maximum size of an intersecting family satisfying cer-
tain conditions have analogs or generalizations for cross-intersecting families. For example, the
fundamental Erdős-Ko-Rado theorem has such a generalization due to Kleitman:

Theorem 2.1.2 (Erdős-Ko-Rado Theorem[3]). If 2k ≤ n and F ⊆ X(k) is intersecting

then |F| ≤
(
n−1
k−1

)
.

Theorem 2.1.3 ([20]). If 2k ≤ n and F1,F2 ⊆ X(k) are cross-intersecting with |F1| ≤ |F2|

then |F1| ≤
(
n−1
k−1

)
.

For the proof of Theorem 2.1.6, one of our main results, we will need a characterization of
when |F1| =

(
n−1
k−1

)
in Theorem 2.1.3. Though this is only a slight strengthening of Theorem

2.1.3, we state the results as Theorem 2.1.4 and Corollary 2.1.5 because they do not seem to
have been stated before.

Theorem 2.1.4. Let A ⊆ X(a) and B ⊆ X(b) be cross-intersecting where a + b < n. If

|A| ≥
(
n−1
a−1

)
and |B| ≥

(
n−1
b−1

)
then A = {A ∈ X(a) : j ∈ A} and B = {B ∈ X(b) : j ∈ B} for

some j ∈ X.

A proof for Theorem 2.1.4 appears in Section 2.3. If we let a = b, we get the following
characterization of equality in Theorem 2.1.3.

Corollary 2.1.5. If 2k < n and F1,F2 ⊆ X(k) are cross-intersecting with
(
n−1
k−1

)
≤ |F1| ≤ |F2|,

then F1 = F2 = {F ∈ X(k) : j ∈ F} for some j ∈ X.

In this chapter we prove a cross-intersecting analog for Theorem 2.1.1:
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Theorem 2.1.6. Suppose A,B ⊆ P(X) are t-cross-intersecting where t ≥ 2. If |A| ≥ |B| ≥

|F(n, t)| then A = B and both are isomorphic to F(n, t).

The following corollary of Theorem 2.1.6 was conjectured by Frankl [4] (a footnote was added
in press in Frankl’s paper saying the conjecture had been proved by Ahlswede and Katona, but
Katona [17] says it was not published and perhaps was not ever done):

Corollary 2.1.7. If A,B ⊆ P(X) are t-cross-intersecting with |A| ≥ |B| then |B| ≤ |F(n, t)|.

Clearly Corollary 2.1.7 follows immediately from Theorem 2.1.6 if t ≥ 2. If t = 1 and A ∈ A
then Ac /∈ B, so clearly |B| ≤ 2n−1 = |F(n, 1)|.

The other main result of this chapter is the following theorem which solves the problem of
finding the maximum sum of the sizes of an r1-intersecting and an r2-intersecting family which
are t-cross-intersecting:

Theorem 2.1.8. Suppose A,B ⊆ P(X) are t-cross-intersecting set systems such that A is

r1-intersecting and B is r2-intersecting where 0 < r1 ≤ r2 and t ≥ 2. Then

(1) If t < r1+r2
2 then |A|+ |B| ≤ |F(n, r1)|+ |F(n, r2)|.

(2) If t ≥ r1+r2
2 then |A|+ |B| ≤ |F(n, r1)|+ |F(n, 2t− r1)|.

Equality holds in (1) if and only if A is isomorphic to F(n, r1) and B is isomorphic to

F(n, r2). Equality holds in (2) if and only if either

(a) A is isomorphic to F(n, r1), B is isomorphic to F(n, 2t− r1), and A∪B is isomorphic

to F(n, r1) ∪ F(n, 2t− r1) or

(b) n + r1 is odd, r1 ≤ r2 ≤ t = r1 + 1, and A = B = F(n, t).

The significance of the statement about A∪B in (a) is that if n+ r1 is odd then one symbol
does not appear in any of the sets of size n+r1−1

2 in A or in any of the sets of size n+2t−r1−1
2 in

B, and this must be the same symbol. The inequalities in the theorem hold for t = 1 as well,
but the statement characterizing equality in (2)(a) needs modification: if r1 = r2 = t = 1 or if
r1 = 1 and 2t− 1 > n (so that B = ∅) then there are many set systems for which equality holds,
because of the non-uniqueness of Theorem 2.1.1 for r = 1.
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The proof we give for Theorem 2.1.8 uses theorems of Frankl, Hilton and Katona on in-
tersecting and cross-intersecting families (all based on the Kruskal-Katona theorem), Harper’s
theorem on the Hamming distance between subsets of P(X), the Erdős-Ko-Rado Theorem, and
a special case of Theorem 2.1.6 from this paper. The proof we give for Theorem 2.1.6 uses the
shifting method Frankl and Füredi use to prove Harper’s theorem in [7]. In Section 2.2 we define
the orders LEX and COLEX, state the rest of the theorems we need, and discuss some of their
relationships. The proofs of the two main results of this chapter – Theorem 2.1.6 and Theorem
2.1.8 – along with proofs of Theorem 2.1.4 and two lemmas, are in Section 2.3.

2.2 Background

If A ⊆ X(k) we define the g-shadow ∂(g)(A) of A by ∂(g)(A) = {G ∈ X(g) : G ⊆ A for some A ∈
A}. We define the order COLEX on X(k) by A < B if and only if max{A\B} < max{B\A}
and the order LEX on X(k) by A < B if and only if min{A\B} < min{B\A}. So, for example,
the order COLEX on [1, 5](3) is 123,124,134,234,125,135,235,145,245,345, while the order LEX
is 123,124,125,134,135,145,234,235,245,345.

We denote the set of the first m sets in LEX and COLEX in X(k) by L(k, m) and C(k,m)
respectively. We refer to the first or last m sets in LEX or COLEX on X(k) for any m as an initial
or terminal segment. If we take the complements of the sets in the order LEX on [1, 5](3) above
we get 45,35,34,25,24,23,15,14,13,12, suggesting the following lemma, which follows immediately
from the definitions of LEX and COLEX.

Lemma 2.2.1. The complements of the sets in LEX order on X(k) are the sets in LEX in

X(n−k) in reverse order, and also are the sets in X(n−k) in the COLEX order with the order

n < n− 1 < · · · < 2 < 1 on X.

The order COLEX is particularly significant because of the following fundamental result.

Theorem 2.2.2 (Kruskal-Katona Theorem [21] [16]). If A ⊆ X(k) then |∂(g)(A)| ≥

|∂(g)(C(k, |A|))| for g = 1, 2, · · · , k − 1. If |A| =
(
m
k

)
for some integer m ∈ [k, n] then equality

holds if and only if A is isomorphic to [1,m](k).

The following theorem of Hilton is equivalent to the inequality statement in the Kruskal-
Katona theorem.
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Theorem 2.2.3 ([12]). If A ⊆ X(a) and B ⊆ X(b) are cross-intersecting then so are L(a, |A|)

and L(b, |B|).

We sketch the argument that Theorem 2.2.3 follows from the Kruskal-Katona theorem.
Note that A and B are cross-intersecting if and only if ∂(b)(Ac) ∩ B = ∅. So if A and B are
cross-intersecting then |∂(b)(Ac)| + |B| ≤

(
n
b

)
. By Lemma 2.2.1, L(a, |A|)c is an initial segment

in COLEX on X(n−a) with the reverse order on X. So ∂(b)(L(a, |A|)c) is an initial segment in
COLEX on X(b) with the reverse order on X, but is also a terminal segment in LEX on X(b)

(with the usual order on X). Obviously L(b, |B|) is an initial segment in LEX on X(b). By the
Kruskal-Katona theorem

|∂(b)(L(a, |A|)c)|+ |L(b, |B|)| ≤ |∂(b)(Ac)|+ |B| ≤
(

n

b

)
,

so ∂(b)(L(a, |A|)c) ∩ L(b, |B|) = ∅ and L(a, |A|) and L(b, |B|) are cross-intersecting.

The following lemma has appeared in various forms in many papers:

Lemma 2.2.4. Let ∅ 6= A ⊆ X(k) and g < k be a positive integer. Then |∂(g)(A)| ≥ (n
g)

(n
k)
|A| with

equality holding if and only if A = X(k).

Proof Consider the bipartite graph G with vertex bipartition A ∪ ∂(g)(A), with A ∈ A and
B ∈ ∂(g)(A) adjacent if and only if B ⊆ A. The degree in G of each set A in A is

(
k
g

)
, and is at

most
(
n−g
k−g

)
for each set B in ∂(g)(A). Hence

|∂(g)(A)| ≥
(
k
g

)(
n−g
k−g

) |A| = (
n
g

)(
n
k

) |A|
with equality holding if and only if each set A in X(k) which contains a set B in ∂(g)(A) is in
A. Since the similarly defined bipartite graph with vertex bipartition X(k) ∪X(g) is connected,
this happens if and only if A = X(k) (and ∂(g)(A) = X(g)).

We will need two lemmas of Frankl about cross-intersecting families. One (Lemma 2.2.5)
follows easily from Lemma 2.2.4, while the other (Lemma 2.2.7) follows from a theorem of
Katona (Theorem 2.2.6).
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Lemma 2.2.5 ([6], Proposition 1.3). Let A ⊆ X(a) and B ⊆ X(b) be cross-intersecting, where

a ≥ b and a + b < n. Then |A|+ |B| ≤
(
n
a

)
with equality holding if and only if either A = X(a)

and B = ∅ or a = b,A = ∅, and B = X(a).

Proof If A and B are an optimal pair of such families then

|A|+ |B| =
(

n

a

)
+ |B| − |∂(a)(Bc)|

because A ∩ ∂(a)(Bc) = ∅. Since a < n− b, by Lemma 2.2.4,

|∂(a)(Bc)| ≥
(
n
a

)(
n

n−b

) |Bc|

with equality holding if and only if Bc = ∅ or Bc = X(n−b). Since a < n− b and a + (n− b) ≥ n,

(n
a)

( n
n−b)

≥ 1 with equality if and only if a = b. Hence |∂(a)(Bc)| ≥ |Bc| with equality if and only if

B = ∅ (and A = X(a)) or a = b,B = X(b), and A = ∅.

The following theorem is a special case of a theorem of Katona which has been an essential
ingredient in the proofs of several results about intersecting families.

Theorem 2.2.6 ([13]). Suppose ∅ 6= A ⊆ X(k) is t-intersecting. Then |∂(k−t)(A)| ≥ |A| with

equality holding if and only if A = Y (k) for some Y ∈ X(2k−t).

Frankl used this theorem and techniques similar to those used to prove Theorem 2.2.3 from
the Kruskal-Katona theorem to prove the following lemma:

Lemma 2.2.7 ([6], Proposition 1.4). Let k and t be positive integers with 2k + t < n. If

A ⊆ X(k+t) and B ⊆ X(k) are cross-intersecting and A is t-intersecting then |A| + |B| ≤
(
n
k

)
with equality holding if and only if either

(1) A = ∅ and B = X(k) or

(2) A = {A ∈ X(k+t) : T ⊆ A} and B = {B ∈ X(k) : B ∩ T 6= ∅} for some T ∈ X(t).
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We will also need the following lemma, in the same spirit as Lemma 2.2.7:

Lemma 2.2.8. Let A ⊆ X(a) and B ⊆ X(b) be cross-intersecting where A is intersecting and

b < a ≤ n
2 . Then |A|+ |B| ≤

(
n−1
a−1

)
+

(
n−1
b−1

)
with equality holding if and only if either

(1) A = {A ∈ X(a) : k ∈ A} and B = {B ∈ X(b) : k ∈ B} for some k ∈ X or

(2) a = b + 1, A = ∅, and B = X(b).

A proof for Lemma 2.2.8 is in Section 2.3.

To characterize equality in Theorem 2.1.8 we will use the following lemma, which is a special
case of Theorem 2.1.6. We include it because it has an interesting proof given in Section 2.3,
using different ideas than our proof of Theorem 2.1.6.

Lemma 2.2.9. Suppose A,B ⊆ P(X) are both t − 1 intersecting and A and B are t-cross-

intersecting where t ≥ 2 and n + t is even. If |A| = |B| = |F(n, t)| then A = B = F(n, t).

Finally, we will need a result of Harper about Hamming distance between sets. If A and C
are subsets of X we define the distance d(A,C) to be |A4 C| where A4 C is the symmetric
difference of A and C, i.e., the set of elements appearing in precisely one of A and C. We define
the distance d(A, C) between families A, C ⊆ P(X) to be the minimum of d(A,C) such that
A ∈ A and C ∈ C. If G ⊆ X we define the sphere S(G, m) with center G and radius m by
S(G, m) = {A ⊆ X : d(A,G) ≤ m}. If H ⊆ P(X), we say H is a Hamming ball with center G
if S(G, m) ⊆ H ⊆ S(G, m + 1) for some nonnegative integer m.

Theorem 2.2.10 ([11]). If A,B ⊆ P(X) are non-empty families then there exists a Hamming

ball A0 with center X and a Hamming ball B0 with center ∅ such that |A| = |A0|, |B| = |B0| and

d(A0,B0) ≥ d(A,B).

For a proof of Theorem 2.2.10 see [11], [7] or [2].

Corollary 2.2.11. If A,B ⊆ P(X) are t-cross-intersecting families then there exist Hamming

balls A0 and B0 with center X such that |A0| = |A|, |B0| = |B|, and A0,B0 are t-cross-

intersecting.
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Proof Since d(Ac,B) ≥ t, by Theorem 2.2.10 there exist Hamming balls A1 centered at ∅ and
B0 centered at X such that |A1| = |A|, |B0| = |B| and d(A1,B0) ≥ t. Let A0 = Ac

1. We claim
A0,B0 are t-cross-intersecting. Let i be the smallest size of a set in A0 and j be the smallest
size of a set in B0. If i + j ≥ n + t then A0 and B0 are obviously t-cross-intersecting. Since A1

and B0 are Hamming balls with d(A1,B0) ≥ t, we must have j − (n − i) ≥ t − 1, so we need
only consider the possibility j − (n − i) = t − 1. In this case, if E ∈ (A1)n−i and D ∈ (B0)j

then D has at least t elements not in E (and E has at least one element not in D, so in fact
d(E,D) ≥ t + 1), so |Ec ∩D| ≥ t as required.

2.3 Proofs

Proof of Theorem 2.1.4 By Theorem 2.2.3 L(a, |A|) and L(b, |B|) are cross-intersecting. Since
|A| ≥

(
n−1
a−1

)
and |B| ≥

(
n−1
b−1

)
, L(a, |A|) and L(b, |B|) contain all subsets of X(a) and X(b) re-

spectively containing 1, so neither contains any sets not containing 1. Hence |A| =
(
n−1
a−1

)
and

|B| =
(
n−1
b−1

)
. As in the proof of Theorem 2.2.3, B ⊆ X(b)\∂(b)(Ac), so |∂(b)(C(n − a, |Ac|))| ≤

|∂(b)(Ac)| ≤
(
n
b

)
−

(
n−1
b−1

)
=

(
n−1

b

)
= |∂(b)(C(n− a, |Ac|))|. Since Ac ⊆ X(n−a) and |Ac| =

(
n−1
a−1

)
=(

n−1
n−a

)
, by the equality part of the Kruskal-Katona theorem, Ac is isomorphic to C(n − a, |A|).

Hence A is isomorphic to L(a, |A|) = {A ∈ X(a) : 1 ∈ A}, and clearly B has the required form
as well.

Proof of Lemma 2.2.8 Let A ⊆ X(a) and B ⊆ X(b) be cross-intersecting where A is inter-
secting, b < a ≤ n

2 , and |A| + |B| has maximum possible value. By Theorem 2.2.3, L(a, |A|)
and L(b, |B|) are cross-intersecting. Since A is intersecting, by the Erdős-Ko-Rado theorem,
|A| ≤

(
n−1
a−1

)
. Hence every set in L(a, |A|) contains 1. By the maximality of |A|+ |B|, every set

in X(b) containing 1 must be in L(b, |B|). Let G = {G ∈ L(b, |B|) : 1 /∈ G}. We think of G as a
subset of [2, n] and consider Gc ⊆ [2, n](n−1−b) and ∂(a−1)(Gc) ⊆ [2, n](a−1). We have

|A|+ |B| = |L(b, |B|)|+ |L(a, |A|)| =
(

n− 1
b− 1

)
+ |Gc|+

(
n− 1
a− 1

)
− |∂(a−1)(Gc)|,

since if F ∈ ∂(a−1)(Gc) then ({1} ∪ F ) /∈ L(a, |A|).
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By Lemma 2.2.4,

|∂(a−1)(Gc)| ≥
(
n−1
a−1

)(
n−1

n−b−1

) |Gc|.

Since (a− 1) + (n− b− 1) = (n− 1) + [a− (b + 1)] ≥ n− 1 and (a− 1) ≤ n
2 − 1 = n− 1− n

2 ≤

(n− 1)− (b + 1) < n− b− 1, it follows that |∂(a−1)(Gc)| ≥ |Gc| with equality holding if and only
if either Gc = ∅ or (a− 1) + (n− b− 1) = n− 1 and Gc = [2, n](n−1−b) (again using the fact that
the auxiliary bipartite graph is connected). The first of these gives us case (1) and the second
gives us case (2).

Proof of Lemma 2.2.9 For each i ∈
[
t− 1, n+t−2

2

]
we consider the set systems (Ac)n−i and

(Bc)i−t+1. Since Ai and Bn−i+t−1 are t-cross-intersecting and (n − i) + (i − t + 1) − n + t =
1, (Ac)n−i and (Bc)i−t+1 are cross-intersecting. Furthermore, since Ai is (t − 1)-intersecting
and 2(n − i) − n + (t − 1) = n − 2i + t − 1, (Ac)n−i is (n − 2i + t − 1)-intersecting. Since
(n− 2i + t− 1) + (i− t + 1) = n− i and 2(i− t + 1) + (n− 2i + t− 1) = n− t + 1 < n, the set
systems (Ac)n−i and (Bc)i−t+1 satisfy the hypotheses for Lemma 2.2.7 with i− t + 1 in place of
k and n− 2i + t− 1 in place of t. Hence

|Ai|+ |Bn−i+t−1| ≤
(

n

i− t + 1

)
(∗)

with equality if and only if either

(1) Ai = ∅ and Bn−i+t−1 = X(n−i+t−1) or

(2) Ai = {A ∈ X(i) : T ∩ A = ∅} and Bn−i+t−1 = {B ∈ X(n−i+t−1) : T 6⊆ B} for some
T ∈ X(n−2i+t−1).

Thus

n+t−2
2∑

i=t−1

|Ai|+
n∑

j=n+t
2

|Bj | ≤

n+t−2
2∑

i=t−1

(
n

i− t + 1

)
= |F(n, t)| with the exact same inequality

also holding with Bi in place of Ai and Aj in place of Bj .

Adding these two inequalities then gives

2|F(n, t)| =
n∑

i=t−1

(|Ai|+ |Bi|) ≤ 2|F(n, t)|
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So equality must hold in (*) for each i. By way of contradiction, suppose condition (2)
holds for some i ∈

[
t− 1, n+t−2

2

]
. Since n− i+ t− 1 ≥ n+t

2 , there is some set of size at least n+t
2

which is not in B. Since |B| = |F(n, t)|, for some j ∈
[
t− 1, n+t−2

2

]
there is a set of size j which

is in B. So by equality condition (2) (with A and B reversed), Bj = {B ∈ X(j) : R ∩B = ∅} for
some R ∈ X(n−2j+t−1), while Ai = {A ∈ X(i) : T ∩ A = ∅} for some T ∈ X(n−2i+t−1). Without
loss of generality suppose i ≤ j. Since |Rc| = 2j − t + 1 > i + j − t, for each A ∈ Ai there exists
B ∈ Bj such that |A ∩ B| < t, a contradiction. Since condition (2) cannot hold for any i, we
must have Ai = ∅ for all i ∈

[
t− 1, n+t−2

2

]
and A = F(n, t). So B = F(n, t) as well.

Proof of Theorem 2.1.8 Suppose t < r1+r2
2 . By Theorem 2.1.1, |A| ≤ |F(n, r1)| and |B| ≤

|F(n, r2)| with equality holding if and only if A is isomorphic to F(n, r1) and B is isomorphic
to F(n, r2). If A is isomorphic to F(n, r1) and B is isomorphic to F(n, r2) then the greatest
integer t′ for which A and B are t′-cross-intersecting is r1+r2−1

2 if r1 + r2 is odd and r1+r2
2 if r1

and r2 are even, so A and B are t-cross-intersecting. If r1 and r2 are odd and i is the element of
X missing from all n+r1−1

2 -sets in A and j is the element missing from all n+r2−1
2 -sets in B, then

A and B are r1+r2
2 -cross-intersecting if i = j and r1+r2−2

2 -cross-intersecting if i 6= j, verifying
the equality statement in the theorem if t < r1+r2

2 .

If t = r1+r2
2 the argument is exactly as above except that if n + r1 is odd (n + r2 will also

be odd) then we need the extra condition about A ∪ B in the statement about equality.

Now suppose that t > r1+r2
2 and that |A′|+ |B′| is maximal such that A′ is r1-intersecting,

B′ is r2-intersecting, and A′ and B′ are t-cross-intersecting. By Corollary 2.2.11 there exist
Hamming balls A and B with center X such that |A| = |A′|, |B| = |B′|, and A,B are t-cross-
intersecting. Let i be the smallest size of a set in A and j be smallest size of a set in B.

If i+ j > n+ t then, since t > r1+r2
2 , i+ j ≥ n+ t+1 > n+ r1+r2

2 +1 = n+r1+1
2 + n+r2+1

2 , so
either A is (r1 + 1)-intersecting or B is (r2 + 1)-intersecting, which means we can enlarge either
A or B and still satisfy all hypotheses, contradicting the maximality assumption on |A|+ |B|.

If i+j ≤ n+t−2 then A and B are not t-cross-intersecting. So i+j = n+t or i+j = n+t−1.
We can assume i ≤ j (since otherwise we could just switch A and B). If i ≤ n+r1−2

2 then, since

X(i+1) ⊆ A, A is not r1-intersecting. So we can assume n+r1−1
2 ≤ i ≤ j.

Case 1. n + r1 is even

Suppose i + j = n + t. Since |A| + |B| =
n∑

m=i+1

(
n

m

)
+

n∑
m=j+1

(
n

m

)
+ |Ai| + |Bj | and
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n+r1
2 ≤ i ≤ j, to maximize |A| + |B| we must have Ai = X(i), Bj = X(j), i = n+r1

2 , and
j = n+2t−r1

2 , so A = F(n, r1) and B = F(n, 2t−r1). Now suppose i+j = n+ t−1. Since Ai and
Bn+t−i−1 are t-cross-intersecting, and (n− i) + (i− t + 1)−n + t = 1, (Ac)n−i and (Bc)i−t+1 are
non-empty and cross-intersecting. Since (n− i)+(i− t+1) = n− t+1 < n and n− i ≥ i− t+1,
by Lemma 2.2.5 |(Ac)n−i|+ |(Bc)i−t+1| <

(
n

n−i

)
(since the conditions for equality in Lemma 2.2.5

do not hold), and |A|+ |B| is smaller than if i + j = n + t.

Case 2. n + r1 is odd

Precisely the same argument used in Case 1 shows that if i is the smallest size of a set in
A and if i ≥ n+r1+1

2 then |A| + |B| is maximized only when i = n+r1+1
2 , A = S

(
X, n−r1−1

2

)
=

F(n, r1 + 1), B = S
(
X, n−2t+r1+1

2

)
= F(n, 2t − r1 − 1). But we still have the possibility i =

n+r1−1
2 . For this value of i we again consider the cross-intersecting families (Ac)n−i and (Bc)i−t+1.

We now allow the possibility (Ac)n−i = ∅, because that includes the optimal configuration of
Case 2 given above (when i ≥ n+r1+1

2 ). Since Ai is r1-intersecting and 2(n − i) − n + r1 = 1,
(Ac)n−i is intersecting, so now we can use Lemma 2.2.8 (instead of Lemma 2.2.5 as before) once
we verify that the other hypotheses are satisfied. Since t > r1+r2

2 ≥ r1 we have (i− t + 1) + 1 ≤

(i− r1)+1 = n− i = n−r1+1
2 ≤ n

2 . So by Lemma 2.2.8, |A|+ |B| ≤
(

n−1
n−i−1

)
+

(
n−1
i−t

)
with equality

holding if and only if either

(i) Ai = {A ∈ X(i) : k /∈ A} and Bn−i+t−1 = {B ∈ X(n−i+t−1) : k /∈ B} for some k ∈ X or

(ii) n− i = (i− t + 1) + 1, Ai = ∅ and Bn−i+t−1 = X(n−i+t−1)

The first of these gives the optimal configuration of (2)(a), and the second of these gives
t = 2i− n + 2 = r1 + 1. Since t > r1+r2

2 we must have r1 ≤ r2 ≤ t = r1 + 1, so A = B = F(n, t),
the optimal configuration of (2)(b).

As in Case 1, by the uniqueness of the optimal configuration in Theorem 2.1.1, if A is
isomorphic to F(n, r1) then so is A′ (and hence B is isomorphic to B′ as well). But in the case
r1 ≤ r2 ≤ t = r1 + 1 and A = B = F(n, t), since A′ is only (t− 1)-intersecting, we need Lemma
2.2.9 to conclude that A′ = B′ = F(n, t).

Proof of Theorem 2.1.6 If A,B ⊆ P(X) are t-cross-intersecting with |A| ≥ |B| ≥ |F(n, t)|,
by Corollary 2.2.11 there exist t-cross-intersecting Hamming balls A0 and B0 with center X with
|A0| ≥ |B0| ≥ |F(n, t)|. If n + t is even then A0 and B0 both contain F(n, t), and since they are

t-cross-intersecting, they clearly must both be equal to F(n, t). If n+ t is odd, then
∣∣∣(A0)n+t−1

2

∣∣∣
and

∣∣∣(B0)n+t−1
2

∣∣∣ are both greater than or equal to
∣∣∣F(n, t)n+t−1

2

∣∣∣ =
( n−1

n+t−1
2

)
=

( n−1
n−t−1

2

)
. But
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[
(A0)n+t−1

2

]c
and

[
(B0)n+t−1

2

]c
are cross-intersecting families of subsets of X(n−t+1

2
). So by

Corollary 2.1.5 (with k = n−t+1
2 ),

∣∣∣(A0)n+t−1
2

∣∣∣ =
∣∣∣(B0)n+t−1

2

∣∣∣ =
( n−1

n+t−1
2

)
, and in fact A0 = B0 and

both are isomorphic to F(n, t).

(1) n + t is even.

Suppose A is not F(n, t). Then we can find A0 ∈ A with |A0| < n+t
2 and A′

0 /∈ A such that
|A0| < |A′

0|, and we choose A0 and A′
0 such that d(A0, A

′
0) is minimum. Set U = A0\A′

0, V =
A′

0\A0, so 0 ≤ |U | < |V |.

For each A ∈ A, we define TA(U, V ;A) by

TA(U, V ;A) =
{

A ∪ V \U, if U ⊆ A ⊆ X\V and A ∪ V \U /∈ A
A, otherwise

and let
T̃ (U, V ;A) = {TA(U, V ;A) : A ∈ A}.

It is not difficult to verify that T̃ preserves the cardinality of A.

Let T̃ (U, V ;A) = A′, T̃ (U, V ;B) = B′ and let A′ = TA(U, V ;A) and B′ = TB(U, V ;B)
where A ∈ A and B ∈ B. We claim that |A′ ∩ B′| ≥ t. If U = ∅ this is obvious, so we assume
0 < |U | < |V |.

If A′ ∈ A ∩A′ and B′ ∈ B ∩ B′ then the claim is trivially true.

If A′ ∈ A′\A and B′ ∈ B′\B, the claim is also obvious.

Without loss of generality, for the remaining possibility assume A′ ∈ A′\A and B′ ∈ B∩B′,
so that B = B′. If U ⊆ B ⊆ X\V then B ∪ V \U ∈ B and so |A′ ∩B′| = |A ∩ (B ∪ V \U)| ≥ t.

Suppose then that U ⊆ B ⊆ X\V does not hold. Then there are u ∈ U and v ∈ V such
that not both u ∈ B and v ∈ V \B hold. Set

A = A ∪ (V \{v})\(U\{u}) = A′ ∪ {u}\{v}.

Then |A| = |A′| > |A| and d(A, A) < |U | + |V | = d(A0, A
′
0) so the choice of A0 and A′

0 implies
that A ∈ A. So

|A′ ∩B′| = |(A ∪ {v}\{u}) ∩B| ≥ |A ∩B| ≥ t.

The first inequality is because of the fact that not both u ∈ B and v ∈ V \B hold. This proves
the claim.



2.3. PROOFS 17

Now apply T̃ to both A and B repeatedly with various choices of U and V . By the assump-
tion on the sizes of A and B, we will eventually obtain identical set systems, both isomorphic to
F(n, t). Let A∗ and B∗ be the set systems before the last step, that is, T̃ (U, V ;A∗) = F(n, t)
and T̃ (U, V ;B∗) = F(n, t). So there exists A ∈ A∗ with |A| < n+t

2 and A′ /∈ A∗ with |A′| > |A|.

Case 1. U 6= ∅

Let C = X\A. Let D be a subset of A of size t− 1 and D ∩ U 6= ∅, and let B = C ∪D. It
can be easily verified that B ∈ F(n, t). But |A ∩B| = t− 1, so B /∈ B∗. Since B ∩ U 6= ∅, B is
not produced by T̃ (U, V ;B∗). This is a contradiction.

Case 2. U = ∅

Let C = X\A. Let D be a subset of A of size t−1, and let B = C∪D. It can be easily verified
that B ∈ F(n, t). But |A ∩ B| = t − 1, so B /∈ B∗. So B must be produced by T̃ (U, V ;B∗).
Let B1 = B\V . By the above argument, B1 ∈ B∗, but then |A ∩ B1| ≤ |A ∩ B| = t − 1, a
contradiction.

(2) n + t is odd.

If A or B is not a Hamming ball then apply the same operation T̃ in (1) to both A and B.
If A and B are both Hamming balls, as shown at the beginning of the proof, they must both
be isomorphic to F(n, t). Without loss of generality, we can assume they are actually equal to
F(n, t). Again let A∗ and B∗ be the set systems before the last step, that is, T̃ (U, V ;A∗) =
F(n, t) and T̃ (U, V ;B∗) = F(n, t).

Let i and j be the smallest integers such that A∗
i 6= ∅ and B∗j 6= ∅ respectively. Without

loss of generality, assume i ≤ j. Let A be a set in A∗
i .

If j ≥ i ≥ n+t−1
2 then |A∗

n+t−1
2

| ≥
( n−1

n+t−1
2

)
and |B∗n+t−1

2

| ≥
( n−1

n+t−1
2

)
, with at least one of the

inequalities strict. That contradicts Corollary 2.1.5 (as explained in the beginning of this proof).

So we can assume i < n+t−1
2 . We let C = [2, n]\A, and construct D and B the same way

as in (1). By the same argument as in (1) (U = ∅ or U 6= ∅), we get a contradiction.
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Chapter 3

Sperner t-cross-intersecting Set

Systems

3.1 Introduction

We denote the set of all subsets of the set X = {1, 2, · · · , n} by P(X) and the set of all subsets
of X of size k by X(k). We say a set system F ⊆ P(X) is a Sperner family if A 6⊆ B and B 6⊆ A
for each A,B ∈ F , and we say F is t-intersecting if |A ∩B| ≥ t for each A,B ∈ F (and that F
is intersecting if it is 1-intersecting). If A,B ⊆ P(X) we say A and B are t-cross-intersecting if
|A ∩B| ≥ t for each A ∈ A and B ∈ B.

A natural generalization of an extremal theorem about t-intersecting set systems is a similar
theorem about t-cross-intersecting set systems A and B (where the special case A = B reduces
to the original theorem). For example, the Erdős-Ko-Rado theorem (Theorem 1A) has several
generalizations in this spirit.

Theorem 3.1.1A ([3]). If k ≤ n
2 and F ⊆ X(k) is intersecting then |F| ≤

(
n−1
k−1

)
.

Kleitman proved the following generalization:

Theorem 3.1.1B ([20]). If k ≤ n
2 and A,B ⊆ X(k) are cross-intersecting then |A| ≤

(
n−1
k−1

)
or

|B| ≤
(
n−1
k−1

)
.

19
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Matsumoto and Tokushige [23] strengthened a result of Pyber [27] to obtain the following
generalization of Theorem 1B:

Theorem 3.1.1C ([23]). If A ⊆ X(a) and B ⊆ X(b) are cross-intersecting where a ≤ n
2 and

b ≤ n
2 then |A||B| ≤

(
n−1
a−1

)(
n−1
b−1

)
.

It takes some finesse to obtain a generalization of Theorem 1B in terms of an upper bound
on |A| + |B|, because without extra conditions on A and B, one can be empty and the other
large, and they are still cross-intersecting. Frankl [6] obtained one such generalization.

Theorem 3.1.1D ([6]). If A,B ⊆ X(k) are cross-intersecting where k ≤ n
2 and |A| ≤ |B| ≤(

n−1
k−1

)
+

(
n−2
k−2

)
then |A|+ |B| ≤ 2

(
n−1
k−1

)
.

There are conditions about when equality holds in each of the four above theorems which
we have omitted. Frankl and Tokushige [8], Kisvölcsey [18] and Goldwasser and Ou [10] also
found near generalizations of Theorem 1B along the lines of Theorem 1D.

Loosely speaking we say that Theorem 1B is a “one or the other” cross-intersecting gener-
alization of Theorem 1A, and that Theorem 1C and Theorem 1D are “product of cardinalities”
and “sum of cardinalities” generalizations of Theorem 1B respectively.

Katona [13] found the maximum size of a t-intersecting family F ⊆ P(X). Goldwasser and
Ou [10] proved “one or the other” and “sum of cardinalities” t-cross-intersecting generalizations,
and Matsumoto and Tokushige [24] proved a “product of cardinalities” generalization.

The g-shadow ∂(g)(F) of a set system F ⊆ X(k) (g ≤ k) is ∂(g)(F) = {G ∈ X(g) : G ⊆
F for some F ∈ F}; instead of ∂(k−1)(F) we usually say the shadow of F , denoted ∂(F). The
relationship between the size of a set system and the size of its shadow is one of the fundamental
tools in working with intersecting set systems. If F ⊆ X(k) is nonempty then the inequality

|∂(F)|(
n

k−1

) ≥ |F|(
n
k

) (3.1)

follows easily from considering the bipartite graph with vertex partition ∂(F) ∪ F and edges
showing containment. Since this graph is connected, equality holds if and only if F = X(k).
It follows that if k > n

2 then |∂(F)| ≥ |F|. However ∂(F) could be smaller than F if k ≤ n
2

(for example if F = X(k)). Katona proved that the shadow cannot be smaller if you impose an
intersection condition on F :
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Theorem 3.1.2A ([13]). If 1 ≤ g < k, 1 ≤ t ≤ k, g + t ≥ k and F ⊆ X(k) is nonempty and

t-intersecting then
|∂(g)(F)|(

2k−t
g

) ≥ |F|(
2k−t

k

)
with equality if and only if g + t = k and F = Y (k) for some Y ∈ X(2k−t).

Since g < k and g + k ≥ 2k − t it follows that
(
2k−t

g

)
≥

(
2k−t

k

)
, so |∂(g)(F)| ≥ |F| with

equality holding if and only if g + t = k and F = Y (k) for some Y ∈ X(2k−t).

This theorem has turned out to be a key ingredient in the proofs of many extremal theorems,
including Katona’s first proof of the Erdős-Ko-Rado theorem and his proof of the maximum t-
intersecting set system theorem [13], Milner’s proof of the maximum size of a t-intersecting
Sperner family [26] (Theorem 3A in this chapter), and Frankl’s [6] and Goldwasser’s [9] proofs
of theorems on the maximum size of an intersecting set system with conditions on the degrees.

Frankl proved the following “one or the other” generalization of Theorem 2A:

Theorem 3.1.2B ([4]). Let g1, g2, k1, k2, t be integers satisfying 1 ≤ gi < ki, 1 ≤ t ≤ ki, t+gi ≥

ki for i = 1, 2. If F1 ⊆ X(k1) and F2 ⊆ X(k2) are nonempty and t-cross-intersecting then

|∂(gi)(Fi)|(
2ki−t

gi

) ≥ |Fi|(
2ki−t

ki

)
for either i = 1 or i = 2. Strict inequality holds for neither i = 1 nor i = 2 if and only if

k1 = k2 = k and F1 = F2 = Y (k) for some Y ∈ X(2k−t) (in which case equality holds for i = 1

and i = 2).

Again, since gi < ki and gi + ki ≥ 2ki− t it follows that |∂(gi)(Fi)| ≤ |F| for both i = 1 and
i = 2 if and only if k1 = k2 = k, g1 = g2 = k − t and F1 = F2 = Y (k) for some Y ∈ X(2k−t).

Milner found the maximum size of a Sperner t-intersecting set system:

Theorem 3.1.3A ([26]). If F ⊆ P(X) is Sperner and t-intersecting then |F| ≤
(

n
dn+t

2
e
)

with

equality if and only if either

(i) F = X(dn+t
2

e) or
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(ii) n + t is odd and F = {F ∈ X(n+t−1
2

) : A ⊆ F} ∪ {G ∈ X(n+t+1
2

) : A 6⊆ G} for some fixed

A ∈ X(t).

Milner’s proof of this theorem relied on Theorem 2A, while Katona [15] later found a short
proof for the special case t = 1 using a variation of the “cycle method” he used in his second
proof of the Erdős-Ko-Rado theorem [14].

Frankl used Theorem 2B (the “one or the other” generalization of Katona’s intersecting
shadow theorem) to prove a “one or the other” generalization of Theorem 3A:

Theorem 3.1.3B ([4]). If F1,F2 ⊆ P(X) are t-cross-intersecting Sperner families then

|Fi| ≤
(

n

dn+t
2 e

)
holds for either i = 1 or i = 2.

In this chapter we will prove sum and product of cardinality generalizations of Theorem 3B:

Theorem 3.1.4. Let X = {1, 2, · · · , n} and let t ≤ dn
2 e be a positive integer. We define the

function fn,t(r) for integers r in [n
2 , n+t

2 ] by

fn,t(r) =
(

n

r

)
+

(
n

n + t− r

)
and we let F (n, t) = max

r
{fn,t(r)}.

(a) If A,B ⊆ P(X) are t-cross-intersecting Sperner families with |A| ≥ |B| then |A|+ |B| ≤

F (n, t) with equality if and only if A = X(r) and B = X(n+t−r) where fn,t(r) = F (n, t).

(b) Let p be equal to the smallest value of r in [n
2 , n+t

2 ] such that

(
n+1
r+1

)(
n+1

r+1−t

) ≥ 2t− (2r − n + 1)
2r − n + 1

(3.2)

and be equal to n+t
2 if (3.2) is not satisfied for any such r. Then fn,t(p) = F (n, t).
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Theorem 3.1.5. Let X = {1, 2, · · · , n}. For positive integers t ≤ dn
2 e and q ≥ 2 we define the

function fn,t,q(r) for integers r in [n2 , n+t
2 ] by

fn,t,q(r) =
(

n

r

)
+ (q − 1)

(
n

n + t− r

)
and we let F (n, t, q) = max

r
{fn,t,q(r)}. If A1,A2, · · · ,Aq ⊆ P(X) are pairwise t-cross-intersecting

Sperner families with |A1| ≥ |Ai| for all i ∈ {2, 3, · · · , q} then

(i)
q∑

i=1

|Ai| ≤ F (n, t, q) with equality if and only if A1 = X(r) and A2 = A3 = · · · = Aq =

X(n+t−r) where fn,t,q(r) = F (n, t, q)

(ii)
q∏

i=1

|Ai| ≤
(

n

bn+t
2 c

)(
n

dn+t
2 e

)q−1

with equality if and only if A1 = X(bn+t
2

c) and A2 =

A3 = · · · = Aq = X(dn+t
2

e).

Since both sides of inequality (3.2) are equal to 1 if r = n+t−1
2 , if (3.2) is not satisfied for

any r then n+t
2 must be an integer.

Theorem 3.1.4(a) is obviously just a special case of statement (i) of Theorem 3.1.5, since
fn,t(r) = fn,t,2(r). We give a proof for Theorem 3.1.4(a) in Section 3.2 using the LYM inequality
and convexity. While this method could be adapted to prove the sum of cardinalities part
of Theorem 3.1.5, in Section 3.3 we use Theorem 2B to prove both the sum and product of
cardinalities parts of Theorem 3.1.5. Theorem 3.1.4(b) follows immediately from Proposition
3.4.1 (in Section 3.4), which is just a statement about maximizing the sum of two binomial
coefficients. Unfortunately our proof of this is rather long and complicated; we give a sketch of
it in Section 3.4.

3.2 LYM and t-cross-intersecting families

If F ⊆ P(X) we let Fk denote F ∩ X(k) for k ∈ {0, 1, · · · , n}. The following inequality was
proved in [22, 28, 25, 1] and is generally known as the LYM inequality (see [2] for a short proof).
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LYM inequality. Let F ⊆ P(X) be a Sperner family and set fk = |Fk|
(n

k)
for k ∈ {0, 1, · · · , n}.

Then
n∑

k=0

fk ≤ 1 with equality if and only if F = X(k) for some k.

If F ⊆ P(X) we let Fc denote the set of all complements in X of sets in F . If F ⊆ X(k)

we define the upper shadow of F to be ∂u(F) = {G ∈ X(k+1) : G ⊇ F for some F ∈ F}. It is
easy to see that ∂u(F) = (∂(Fc))c, so |∂u(F)| = |∂(Fc)|.

Lemma 3.2.1. Suppose A,B ⊆ P(X) are t-cross-intersecting Sperner families such that |A|+|B|

is as large as possible. Then Ai and Bi are both empty if i < n
2 or i > n

2 + t.

Proof Let i be the smallest positive integer such that Ai is not empty, and assume i < n
2 . Then

(Ai)c ⊆ X(n−i) where n− i > n
2 , so

|∂u(Ai)| = |∂((Ai)c)| ≥ |(Ai)c| = |Ai| (3.3)

where the inequality follows from inequality (3.1). If equality holds in (3.3) then by the conditions

for equality in (3.1) we must have Ai = X(n−1
2

). Since A is Sperner, A = X(n−1
2

) and since |A|+

|B| is a maximum, B = X(n+1
2

+t). But this cannot be, because A′ = X(n+1
2

) and B′ = X(n−1
2

+t)

are t-cross-intersecting and the sum of their cardinalities is larger. Hence |∂u(Ai)| > |Ai| and
if A′ = A\Ai ∪ ∂u(Ai) then |A′| > |A|, A′ is Sperner, and A′ and B are t-cross-intersecting, a
contradiction. Hence Ai = ∅, and by the same argument Bi = ∅, if i < n

2 .

Let j be the maximum integer such that Aj 6= ∅. If j > n
2 + t then we set A′ = (A\Aj) ∪

∂(Aj). Clearly A′ is Sperner and |A′| > |A|. Since Bi = ∅ for i < n
2 , A′ and B are t-cross-

intersecting, a contradiction. By the same argument, B = ∅ if j > n
2 + t.

Proof of Theorem 3.1.4(a) Assume A and B are Sperner t-cross-intersecting families with

|A| ≥ |B| and such that |A| + |B| is a maximum. Let Ai = A ∩ X(i) and ai = |Ai|
(n

i)
for

i = {0, 1, · · · , n} and similarly define Bi and bi. Set m = bn
2 c + t. Since A and Bc are each



3.2. LYM AND T -CROSS-INTERSECTING FAMILIES 25

Sperner and A and B are t-cross-intersecting, we claim the set system

 k⋃
i=dn

2
e

Ai

⋃ n+t−1−k⋃
j=dn

2
e

(Bj)c



is Sperner for each k ∈
[
dn

2 e,m− 1
]
. This is so because if A ∈ Ai and B ∈ Bj then Bc contains

at least n + t− i− j ≥ 1 elements not in A, and A contains at least t elements not in Bc. Since

|(Bj)
c|

( n
n−j)

= bj , by the LYM inequality,

k∑
i=dn

2
e

ai +
n+t−1−k∑

j=dn
2
e

bj ≤ 1 (3.4)

for each k ∈
[
dn

2 e − 1,m− 1
]
, where an empty sum is 0.

By Lemma 3.2.1 we may assume ai = bi = 0 if i < dn
2 e or i > m. We let a′i = ai for

i ∈
[
dn

2 e,m− 1
]

and a′m = 1−
m−1∑

i=dn
2
e

ai. Hence
m∑

i=dn
2
e

a′i = 1 and by (3.4):

0 ≤
m∑

i=dn
2
e

a′i −

 k∑
i=dn

2
e

a′i +
n+t−1−k∑

j=dn
2
e

bj



=
m∑

i=k+1

a′i −
n+t−1−k∑

j=dn
2
e

bj

=
n+t−1−k∑

j=dn
2
e

[a′n+t−j − bj ].

Thus
s∑

i=dn
2
e

(a′n+t−i − bi) ≥ 0 (3.5)
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for each s ∈
[
dn

2 e,m
]
. Now let wi =

(
n
i

)
for integers i ∈

[
dn

2 e,m
]

and let wm+1 = 0. Clearly
wdn

2
e, wdn

2
e+1, · · · , wm, wm+1 is a strictly decreasing sequence. Then

m∑
i=dn

2
e

(wia
′
i + wibi) =

m∑
i=dn

2
e

[
a′i(wi + wn+t−i)− wi(a′n+t−i − bi)

]

where

m∑
i=dn

2
e

wi(a′n+t−i − bi) =
m∑

i=dn
2
e

m∑
s=i

(ws − ws+1)(a′n+t−i − bi)

=
m∑

s=dn
2
e

(ws − ws+1)
s∑

i=dn
2
e

(a′n+t−i − bi)

≥ 0 (3.6)

the inequality following from (3.5). Hence

|A|+ |B| =
m∑

i=dn
2
e

(wiai + wibi)

≤
m∑

i=dn
2
e

(wia
′
i + wibi)

≤
m∑

i=dn
2
e

a′i(wi + wn+t−i)

=
m∑

i=dn
2
e

a′ifn,t(i)

the second inequality following from (3.6). We have shown that |A|+ |B| is equal to at most a
convex combination of fn,t(i) for various values of i. Hence |A|+ |B| ≤ F (n, t).

Equality can hold in the theorem only if it holds in (3.5) for each s and a′m = am. That
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means
m∑

i=dn
2
e

ai = 1, so by LYM ar = 1 for some r. With equality holding in (3.5), it follows that

bn+t−r = 1, so A = X(r) and B = X(n+t−r) where fn,t(r) = F (n, t).

We remark that monotonicity of the sequence {wi} (not the fact that they are binomial
coefficients) is the property needed to prove inequality (3.6), and hence the reason that |A|+|B| =

m∑
i=dn

2
e

(wiai + wibi) is maximized by a convex combination of {wi + wn+t−i}.

3.3 Proof of Theorem 3.1.5

Theorem 3.1.5 follows easily from the following proposition.

Proposition 3.3.1. Suppose A1 ⊆ X(p1) and A2 ⊆ X(p2) are nonempty and t-cross-intersecting

where p1 + p2 < n + t. Then |∂u(Ai)| > |Ai| for i = 1 or i = 2 or else p1 = p2 = p = n+t−1
2 and

A1 = A2 = {A ∈ X(p) : A ⊇ C} for some C ∈ X(t). In this last case, |A1| = |A2| = |∂u(A1)| =

|∂u(A2)| =
(
n−t
p−t

)
.

Proof We apply Theorem 2B to the set systems (A1)c ⊆ X(n−p1) and (A2)c ⊆ X(n−p2), which
are (n+t−p1−p2)-cross-intersecting. We still have ki = n−pi and gi = ki−1 for i = 1, 2, and it is
easy to check the hypotheses are satisfied. By the comment following Theorem 2B it follows that
|∂((Ai)c)| > |(Ai)c| for i = 1 or i = 2 or else k1 = k2 = k, g1 = g2 = k−(n+t−p1−p2) = n−k−t,
and (A1)c = (A2)c = Y (k) for some Y ∈ X(n−t). Since g1 = g2 = n − k − t = k − 1, we must
have k = n−t+1

2 . Hence p1 = p2 = p = n+t−1
2 and A1 = A2 = {A ∈ X(p) : A ⊇ Y c}. The last

statement in the proposition is easy to check.

Proof of Theorem 3.1.5 Suppose A1,A2, · · · ,Aq ⊆ P(X) are pairwise t-cross-intersecting
Sperner families with |A1| ≥ |Ai| for i ∈ {2, 3, · · · , q}. For i ∈ {1, 2, · · · , q} and j ∈ {0, 1, · · · , n}
we let Aij = Ai ∩ X(j). Let p be the smallest value of j such that Aij is nonempty for some
i ∈ {1, 2, · · · , q}, and let k ∈ {1, 2, · · · , q} be such that Akp 6= ∅. Let s be the smallest value of j
such that Amj is nonempty for some m 6= k and let h ∈ {1, 2, · · · , q}\{k} be such that Ahs 6= ∅.
So if Abc and Ade are nonempty with b 6= d then c + e ≥ p + s.
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We claim that if p+s < n+t then either Ak or Ah can be replaced by a larger Sperner family,
which along with the other original q− 1 families will still be pairwise t-cross-intersecting. This
is obviously the case if |∂u(Akp)| > |Akp| or |∂u(Ahs)| > |Ahs|. If neither of these inequalities
holds then, by Proposition 3.3.1, p = s = n+t−1

2 , Akp = Ahs = {A ∈ X(p) : A ⊇ C} for some

C ∈ X(t), and |Akp| = |Ahs| = |∂u(Akp)| = |∂u(Ahs)| =
(
n−t
p−t

)
. So we can replace Akp (or Ahs

or both) by its upper shadow, and we have the same size set system. But ∂u(Akp) is a proper
subset of X(p+1). Since (p + 1) + s = n + t and p + 1 ≥ n

2 , by the LYM inequality |Ak| <
(

n
p+1

)
,

so we can replace Ak with X(p+1) and still have q pairwise t-cross-intersecting Sperner families,
completing the proof of the claim.

So if
∑
|Ai| (or

∏
|Ai|) is a maximum then if Agw 6= ∅ for some g 6= k we must have

w ≥ n + t − p. Now let f be the largest integer j such that Agj 6= ∅ for some g 6= k and let

y ∈ {1, 2, · · · , q}\{k} be such that Ayf 6= ∅. Suppose f > n + t − p. Then f ≥ f+p
2 > n+t

2 ,
so |∂(Ayf )| > |Ayf |. That means we can replace Ayf with ∂(Ayf ) in Ay and get a bigger set,
which along with the other q − 1 families will still be t-cross-intersecting. Hence if

∑
|Ai| (or∏

|Ai|) is a maximum, then Ai = X(n+t−p) for all i 6= k. By the same reasoning used to prove
Lemma 3.2.1, p ≥ n

2 , and by LYM again, Ak = X(p). So our only candidates to maximize
∑
|Ai|

and
∏
|Ai| are A1 = X(r), A2 = A3 = · · · = Aq = X(n+t−r) for some r ∈

[
dn

2 e, b
n+t
2 c

]
. That

completes the proof of (i).

The statement in (ii) follows because if n
2 ≤ r ≤ d− 2 ≤ n− 1 then

(
n

r+1

)(
n

d−1

)(
n
r

)(
n
d

) =
n− r

n− (d− 1)
· d

r + 1
> 1

so the product is largest when r is as big as possible.

We remark that Theorem 3B and Theorem 3A only follow immediately from the sum and
product of cardinality generalizations in Theorem 3.1.5 if n+ t is even. When n+ t is odd, since
one of the families in an optimal configuration is bigger than the others, you need to impose
additional conditions. If you make the assumption that all families in an optimal configuration
have the same size, then you can modify the proof of Theorem 3.1.5 to get a theorem which
gives Theorem 3B and Theorem 3A as special cases. The third possibility in Proposition 3.3.1
is what leads to the different optimal configurations in Theorem 3A.
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3.4 Sums of binomial coefficients

To complete the proof of Theorem 3.1.4(b) it suffices to prove the following proposition about
binomial coefficients:

Proposition 3.4.1. For positive integers n and t such that t ≤ n−1 we let f(r) =
(
n
r

)
+

(
n

n+t−r

)
for integers r ∈ [n

2 , n+t
2 ]. Then f(r) is unimodal. That is, there is an integer m ∈ [n

2 , n+t
2 ] such

that f(r) is increasing for r ∈ [n
2 ,m] and decreasing for r ∈ [m, n+t

2 ]. The integer m is equal to

the smallest value of r such that

(
n+1
r+1

)(
n+1

r+1−t

) ≥ 2t− (2r − n + 1)
2r − n + 1

(3.7)

and is equal to bn+t
2 c if (3.7) is not satisfied for any r.

Proof For r ∈ [n
2 , n+t

2 − 1] we let 4f(r) = f(r + 1)− f(r). So

4f(r) =
[(

n

r − t + 1

)
−

(
n

r − t

)]
−

[(
n

r

)
−

(
n

r + 1

)]

=
2r − n + 1

n + 1

(
n + 1
r + 1

) [(
n+1

r+1−t

)(
n+1
r+1

) · 2t− (2r − n + 1)
2r − n + 1

− 1

]

and (3.7) is satisfied if and only if 4f(r) ≤ 0. If we show 4f(r + 1) ≥ 0 =⇒ 4f(r) ≥ 0 for
all r ∈ [n

2 , n+t
2 − 2], it follows that f(r) is unimodal, with f(r) taking on its maximum value at

r = m, where m is the smallest value of r such that 4f(r) ≤ 0, and m = dn+t
2 e if 4f(r) > 0

for all r.
We define the function G(r) by

G(r) =

(
n+1

r+1−t

)(
n+1
r+1

) · 2t− (2r − n + 1)
2r − n + 1
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for r ∈ [n
2 , n+t

2 − 1]. For r ∈ [n2 , n+2
2 − 2] we have

G(r)
G(r + 1)

=
n− r

n + t− r
· r + 2− t

r + 2
· 2r − n + 3
2r − n + 1

· 2t− 1 + n− 2r

2t− 3 + n− 2r

=
H(r) + 2n− nt

H(r) + 2n + 2t
· 4H(r)− (n− 1 + 2t)(n− 3)
4H(r)− (n− 1 + 2t)(n− 3)− 4t

where H(r) = −r2 + r(n+ t− 2). Now assume G(r)
G(r+1) ≥ 1 for some r in [n2 +1, n+t

2 − 2]. We will

show this implies that G(r−1)
G(r) > 1. Letting A = H(r) + 2n + 2t and B = H(r) − (n−1+2t)(n−3)

4
we have

G(r)
G(r + 1)

=
A− (n + 2)t

A
· B

B − t
(3.8)

and

H(r − 1) = −(r − 1)2 + (r − 1)(n + t− 2)
= H(r)− (n + t− 1− 2r)
= H(r)− w (3.9)

where w = n + t− 1− 2r. Now it follows from (3.8) and (3.9) that

G(r − 1)
G(r)

=
A− (n + 2)t− w

A− w
· B − w

B − t− w

=
(A− (n + 2)t)B − w(A + B − w) + (n + 2)tw

A(B − t)− w(A + B − w) + tw
> 1

the inequality following because G(r)
G(r+1) ≥ 1.

We have shown that G(r) > G(r + 1) =⇒ G(r − 1) > G(r). Hence there exists an integer
m′ such that G(r) is decreasing for r ≤ m′ and increasing for r ≥ m′. If G(r) is decreasing for
all r, there is nothing to prove (since then 4f(r) cannot switch from negative to positive as
r increases). If not, but if G

(
bn+t

2 c − 1
)
≤ 1, there is still nothing to prove (since 4f(r) still

cannot switch from negative to positive as r increases). So to finish the proof it suffices to show
that if G

(
bn+t

2 c − 1
)

> 1 then G
(
bn+t

2 c − 2
)

> G
(
bn+t

2 c − 1
)
.
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If n + t is even we have G(n+t
2 − 1) = n−t+2

n+t+2 ·
t+1
t−2 and

G

(
n + t

2
− 2

)

=G

(
n + t

2
− 1

)
·

n−t
2

(
n−t
2 + 2

)
n+t
2

(
n+t
2 + 2

) · t− 1
t + 1

· t + 3
t− 3

=G

(
n + t

2
− 1

)
· (n− t + 2)2 − 4
(n + t + 2)2 − 4

· (t + 1)2 − 4
(t− 1)2 − 4

=G

(
n + t

2
− 1

)
· [(n− t + 2)(t + 1)]2 − 4[(n + 2)2 − 3 + 2t2] + 8t(n + 1)
[(n + t + 2)(t− 1)]2 − 4[(n + 2)2 − 3 + 2t2]− 8t(n + 1)

>G

(
n + t

2
− 1

)

the inequality following because
[

(n−t+2)(t+1)
(n+t+2)(t−1)

]2
= G(n+t

2 − 1)2 > 1.

A similar (slightly more complicated) calculation when n+t is odd shows that if G(n+t−3
2 ) >

1 then G(n+t−5
2 ) > G(n+t−3

2 ).

It is undoubtedly possible to find a condition analogous to inequality (3.2) in Theorem 3.1.4
to determine which value of r maximizes fn,t,q(r). In view of the complications even when q = 2
we decided not to look into this.

For fixed t, for which values of n is fn,t(r) monotonic? The following proposition answers
that question.

Proposition 3.4.2. For each t ≥ 2 let m0(t) be the largest value of n such that f
(
dn

2 e
)

= F (n, t)

and let n0(t) be the smallest value of n such that f
(
bn+t

2 c
)

= F (n, t). Then

(a) there exists a positive integer t0 such that for all positive real numbers c1, c2, ε,

c1t
2−ε < m0(t) < c2t

2

for all t ≥ t0.



32 CHAPTER 3. SPERNER T -CROSS-INTERSECTING SET SYSTEMS

(b) n0(t) = t2 − 3.

The statement in (b) follows from the fact that G(n+t−3
2 ) = G(n+t−1

2 ) = 1 when n = t2− 3.
To prove (a) we used Riemann sums to show that for all positive integers p and q with q < p,

(p + q)p+q(p− q)p−q

p2p
<

(p + 1)(p + 2) · · · (p + q)
(p− 1)(p− 2) · · · (p− q)

<
(p + q)p+q(p− q)p−q

p2p
· p + q

p− q

Letting p = n
2 + 1 and q = t− 1 gives an estimate for G

(
dn

2 e
)
. We omit the details. In fact we

have shown that mo(t) = Θ( t2

log t).



Chapter 4

Intersecting Set Systems with

Degree Conditions

4.1 Notation and Background

In this chapter we use the following notation.

Let [n1, n2] = {n1, n1 + 1, n1 + 2, · · · , n2}, [n] = [1, n].

Let X be a finite set and P(X) be the power set of X. Define X(k) = {F ⊆ X : |F | = k}.

Let F ⊆ P(X) be a set system, i, j ∈ X. Define Fi = {F ∈ F : i ∈ F},Fī = {F ∈ F :
i /∈ F},F(i) = {F\{i} : i ∈ F}. Fi,j = Fi ∩ Fj . Define Fi,j̄ etc. similarly. The degree of i,
denoted by dF (i), is the number of subsets in F that contain i, i.e., dF (i) = |Fi| = |F(i)|. The
complementary degree of i, denoted by cF (i), is defined to be |F| − dF (i). Sometimes we omit
the subscript F if it is clear from the context. Define d(F) = max

i∈F
d(i), c(F) = min

i∈F
c(i).

Let F ⊆ X(k), l < k, the l-shadow of F , denoted by ∂(l)F , is defined to be {A ∈ X(l) : A ⊆
F for some F ∈ F}.

∂(l)(F , i) = {A ∈ ∂(l)F : i ∈ A}

33
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∂(l)(F , ī) = {A ∈ ∂(l)F : i /∈ A}

∂(l)(F , i ∧ j) = {A ∈ ∂(l)F : i ∈ A and j ∈ A}

∂(l)(F , i ∨ j) = {A ∈ ∂(l)F : i ∈ A or j ∈ A}

Similarly define ∂(l)(F , i ∧ j̄).

For S ⊆ X, define ∂(l)(F , S) = {A ∈ ∂(l)F : S ⊆ A}

Let F ⊆ X(k), A ∈ F ,“≤” be a linear order on F . Unless otherwise specified, take “≤” to
be the COLEX order, which is defined in previous chapters.

mem(≤,F ,m) = the m-th member of F with respect to the order “≤”.

ind(≤,F , A) = the index of A in F with respect to the order “≤”.

L(≤,F ,m) = {F ∈ F : ind(F ) ≤ m}.

L(≤,F , A) = {F ∈ F : F ≤ A}.

Sometimes we omit “≤” if it is clear from the context which order to use.

The following notation is taken from [2]. For 0 ≤ ms < ms+1 < · · · < mr let

B(k)(mk, · · · ,ms) = ∪r
j=s([mj ](j) + {mj+1 + 1, · · · ,mr + 1})

and

b(k)(mk, · · · ,ms) =
r∑

j=s

(
mj

j

)
.

It can be shown that |B(k)(mk, · · · ,ms)| = b(k)(mk, · · · ,ms).

Let t =
(
mk
k

)
+

(mk−1

k−1

)
+ · · · +

(
mh
h

)
be the cascade form of t. Define len(k, t) = k − h + 1,

the number of terms in the cascade form. Define len(k, A) = len(k, ind(≤,F , A)). Define
P (k, t, s) =

(
mk
k

)
+

(mk−1

k−1

)
+ · · · +

(
ms

s

)
, R(k, t, s) = t − P (k, t, s) for s ≥ h. As a convention, if

s < h, define P (k, t, s) = t, R(k, t, s) = 0; if s > k, define P (k, t, s) = 0, R(k, t, s) = t. Define
P (k, A, s) = P (k, ind(≤,F , A), s).

Define

C(k, t, s) =
{

P (k, t, s) +
(

ms

s−1

)
, if t > P (k, t, s)

P (k, t, s), otherwise



4.1. NOTATION AND BACKGROUND 35

Let x be a symbol not in any member of F , define F + {x} = {A ∪ {x} : A ∈ F}.

Let A,B be two set systems, A0 ⊆ A. Let a = |A|, b = |B|, a0 = |A0|.

Define a′ = min{a0 + b, a}, b′ = a0 + b − a′, and define R1(A,A0,B) = L(≤,A, a′),
R2(A,A0,B) = L(≤,B, b′).

Let A0,B ⊆ F , A0 ⊆ A, A∩ B = ∅. Define R(F ,A,A0,B) = F\(A0 ∪ B) ∪R1(A,A0,B) ∪
R2(A,A0,B).

Theorem 4.1.1. Let A = X(k1),B = X(k2) with k1 ≤ k2, A0 ⊆ A,B0 ⊆ B. Let A′ =

R1(A,A0,B), B′ = R2(A,A0,B). Then |∂(k1−d)A0|+ |∂(k2−d)B0| ≥ |∂(k1−d)A′|+ |∂(k2−d)B′| for

any d ∈ [1, k1].

Proof Assume X = [n]. Construct set systems F and G as follows:

F =[n + k2 − k1](k2+1)

∪ ([n + k2 − k1 − 1](k2) + {n + k2 − k1 + 1})

∪ ([n + k2 − k1 − 2](k2−1) + {n + k2 − k1, n + k2 − k1 + 1})
∪ · · ·

∪ ([n](k1+1) + {n + 2, · · · , n + k2 − k1 + 1})

∪ (L([n](k1), |A0|) + {n + 1, · · · , n + k2 − k1 + 1})

∪ (L([n](k2), |B0|) + {n + k2 − k1 + 2})
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G =[n + k2 − k1](k2+1)

∪ ([n + k2 − k1 − 1](k2) + {n + k2 − k1 + 1})

∪ ([n + k2 − k1 − 2](k2−1) + {n + k2 − k1, n + k2 − k1 + 1})
∪ · · ·

∪ ([n](k1+1) + {n + 2, · · · , n + k2 − k1 + 1})

∪ (L([n](k1), |A′|) + {n + 1, · · · , n + k2 − k1 + 1})

∪ (L([n](k2), |B′|) + {n + k2 − k1 + 2})

Then

|∂(k2+1−d)F| =
(
n+k2−k1

k2+1−d

)
+

(
n+k2−k1−1

k2−d

)
+

(
n+k2−k1−2

k2−1−d

)
+ · · ·+

(
n

k1−d

)
+ |∂(k1−d)A0|+ |∂(k2−d)B0|

|∂(k2+1−d)G| =
(
n+k2−k1

k2+1−d

)
+

(
n+k2−k1−1

k2−d

)
+

(
n+k2−k1−2

k2−1−d

)
+ · · ·+

(
n

k1−d

)
+ |∂(k1−d)A′|+ |∂(k2−d)B′|

Note that G is an initial segment in COLEX, so |∂(k2+1−d)F| ≥ |∂(k2+1−d)G|. After cancelling
some terms, we obtain the desired inequality.

Theorem 4.1.1 says that for each positive integer s, the last s sets in COLEX on X(k1) add
no more to the size of the shadow than any s additional sets in X(k2) add to the size of the
shadow, if k1 ≤ k2.

4.2 Shadows of two set systems

Problem. Let A,B ⊆ [n](k), |A| + |B| = r, |A| ≥ |B| ≥ t, 2t < r, 1 ≤ l < k, find min |∂(l)A| +
|∂(l)B|.

Solution. Let A∗ and B∗ be an optimal configuration. By the Kruskal-Katona theorem, we
can assume both A∗ and B∗ are the initial segments of [n](k) in COLEX order, so we only need
to decide |A∗| and |B∗|. The following theorem gives one optimal configuration.
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Theorem 4.2.1. Let A,B ⊆ [n](k), |A| + |B| = r, |A| ≥ |B| ≥ t, 2t < r, 1 ≤ l < k. Let

t = b(k)(mk,mk−1, · · · ,mh), r − t = b(k)(nk, nk−1, · · · , ng). Let p be the largest integer such

that np > mp (p exists since r − t > t). Let q be the largest integer such that q < p and

R(k, r − t, q + 1) ≤
(
mq+1

q

)
. Let A∗ and B∗ be initial segments of [n](k) in COLEX.

(1) If R(k, r − t, q + 1) + R(k, t, q + 1) ≤
(
mq+1

q

)
, let |A∗| = P (k, r − t, q + 1), |B∗| = r − |A∗|.

(2) If R(k, r− t, q + 1) + R(k, t, q + 1) >
(
mq+1

q

)
, let |B∗| = P (k, t, q + 1) +

(
mq+1

q

)
, |A| = r− |B∗|.

(3) If q does not exist, let |A∗| = r − t, |B∗| = t. For convenience, if q does not exist, we say

q = 0.

Then |∂(l)A|+ |∂(l)B| ≥ |∂(l)A∗|+ |∂(l)B∗|.

To prove this theorem, we need some lemmas.

Lemma 4.2.2. |∂(l)L(X(k), a)|+ |∂(l)L(X(k), b)| ≥ |∂(l)L(X(k), a + b)|.

Proof Choose a positive integer n with
(
n
k

)
≥ a + b. Let

F = L(X(k+1),
(

n
k+1

)
) ∪

[
L(X(k), a) + {n + 1}

]
∪

[
L(X(k), b) + {n + 2}

]
,

G = L(X(k+1),
(

n
k+1

)
) ∪

[
L(X(k), a + b) + {n + 1}

]
.

Then |∂(l+1)F| =
(

n
l+1

)
+ |∂(l)L(X(k), a)|+ |∂(l)L(X(k), b)|,

|∂(l+1)G| =
(

n
l+1

)
+ |∂(l)L(X(k), a + b)|.

Because G is the initial segment of the COLEX order, by the Kruskal-Katona Theorem,
|∂(l+1)F| ≥ |∂(l+1)G|. That is,(

n
l+1

)
+ |∂(l)L(X(k), a)|+ |∂(l)L(X(k), b)| ≥

(
n

l+1

)
+ |∂(l)L(X(k), a + b)|.

After cancelling
(

n
l+1

)
, we obtain the desired inequality.

Lemma 4.2.3. If a <
(
w
k

)
, b <

(
w
k

)
, and a + b >

(
w
k

)
, then |∂(l)L(X(k), a)| + |∂(l)L(X(k), b)| ≥

|∂(l)L(X(k),
(
w
k

)
)|+ |∂(l)L(X(k), a + b−

(
w
k

)
)|.
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Proof Let

F = L(X(k+1),
(

w
k+1

)
) ∪

[
L(X(k), a) + {w + 1}

]
∪

[
L(X(k), b) + {w + 2}

]
,

G = L(X(k+1),
(

w
k+1

)
) ∪

[
L(X(k),

(
w
k

)
) + {w + 1}

]
∪

[
L(X(k), a + b−

(
w
k

)
) + {w + 2}

]
.

By the same argument in Lemma 4.2.2, we obtain the desired inequality.

Lemma 4.2.4. If a ≥
(
w
k

)
,
(
w
k

)
< b ≤

(
w+1

k

)
, then

|∂(l)L(X(k), a)|+ |∂(l)L(X(k), b)| ≥ |∂(l)L(X(k), a + b−
(

w

k

)
)|+ |∂(l)L(X(k),

(
w

k

)
)|.

Proof Let b =
(
w
k

)
+ s, then |∂(l)L(X(k), b)| = |∂(l)L(X(k),

(
w
k

)
)| + |∂(l−1)L(X(k−1), s)|. So the

inequality is equivalent to

|∂(l)L(X(k), a)|+ |∂(l−1)L(X(k−1), s)| ≥ |∂(l)L(X(k), a + s)|.

Let F = L(X(k), a) ∪
[
L(X(k−1), s) + {x}

]
where x is a new symbol. Then |∂(l)F| =

|∂(l)L(X(k), a)| + |∂(l−1)L(X(k−1), s)|. By the Kruskal-Katona Theorem, we obtain the above
inequality.

Now we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1 By way of contradiction, assume A∗ and B∗ are not optimal. Choose
an optimal pair (A,B) such that ||B| − |B∗|| is minimum. Again, we can assume both A and B
are the initial segments of [n](k) in COLEX order.

Let u be the largest integer such that |B| > C(k, t, u).

(1) If u > p

Then |B| > P (k, t, u) +
(

mu

u−1

)
, so |A|+ |B| > 2|B| > 2

[
P (k, t, u) +

(
mu

u−1

)]
. But then
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r = t + (r − t)

< P (k, t, u) +
(

mu

u− 1

)
+ P (k, r − t, u) +

(
nu

u− 1

)

= P (k, t, u) +
(

mu

u− 1

)
+ P (k, t, u) +

(
mu

u− 1

)

= 2
[
P (k, t, u) +

(
mu

u− 1

)]

It’s a contradiction to |A|+ |B| = r.

(2) If u = p

By definition of p, we have P (k, |B|, u + 1) = P (k, |A|, u + 1). So R(k, |B|, u + 1) ≤
R(k, |A|, u + 1).

Let w be the largest integer such that R(k, |B|, u + 1) >
(
w
u

)
. So R(k, |B|, u + 1) ≤

(
w+1

u

)
and R(k, |A|, u + 1) ≥

(
w
u

)
.

Let A′ = L(X(k), |A|+ R(k, |B|, u + 1)−
(
w
u

)
)

B′ = L(X(k), P (k, |B|, u + 1) +
(
w
u

)
).

Because L(X(k), P (k, r− t, u+1)) is contained in both A and A′, and L(X(k), P (k, t, u+1))
is contained in both B and B′, we know that |∂(l)A|+ |∂(l)B| ≥ |∂(l)A′|+ |∂(l)B′| is equivalent to
|∂(u−k+l)L(X(u), R(k, |A|, u+1))|+ |∂(u−k+l)L(X(u), R(k, |B|, u+1))| ≥ |∂(u−k+l)L(X(u),

(
w
u

)
)|+

|∂(u−k+l)L(X(u), R(k, |A|, u + 1) + R(k, |B|, u + 1)−
(
w
u

)
)|. This follows from Lemma 4.2.4.

So (A′,B′) is a contradiction to the choice of A and B.

(3) If q < u < p

If R(k, |B|, u + 1) ≤ R(k, |A|, u + 1), By the same argument in (2), we again obtain a
contradiction to the choice of A and B. So assume R(k, |B|, u + 1) > R(k, |A|, u + 1). Let
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A′ = L(X(k), P (k, |A|, u + 1) + R(k, |B|, u + 1)),B′ = L(X(k), P (k, |B|, u + 1) + R(k, |A|, u + 1)).
It is easy to verify that |∂(l)A|+ |∂(l)B| = |∂(l)A′|+ |∂(l)B′| and |B′| < |B|.

By definition of q, R(k, r − t, u + 1) >
(
mu+1

u

)
. By definition of u, we know P (k, t, u + 1) =

P (k, |B|, u+1) and |B| ≤ P (k, t, u+1)+
(
mu+1

u

)
. Therefore R(k, |A|, u+1) > t−P (k, |B|, u+1).

It follows that |B′| > t. So (A′,B′) is a valid pair, contradicting the choice of A and B.

(4) If u ≤ q

Then |B| ≤ P (k, t, q + 1) +
(
mq+1

q

)
.

a. If R(k, r − t, q + 1) + R(k, t, q + 1) >
(
mq+1

q

)
.

Because L(X(k), P (k, r− t, q+1)) is contained in both A and A∗, and L(X(k), P (k, t, q+1))
is contained in both B and B∗, we know that |∂(l)A|+ |∂(l)B| ≥ |∂(l)A∗|+ |∂(l)B∗| is equivalent to
|∂(q−k+l)L(X(q), R(k, |A|, q+1))|+|∂(q−k+l)L(X(q), R(k, |B|, q+1))| ≥ |∂(q−k+l)L(X(q),

(
mq+1

q

)
)|+

|∂(q−k+l)L(X(q), R(k, |A|, q + 1) + R(k, |B|, q + 1)−
(
mq+1

q

)
)|. This follows from Lemma 4.2.3.

b. If R(k, r − t, q + 1) + R(k, t, q + 1) ≤
(
mq+1

q

)
.

b1. |A| ≥ P (k, r − t, q + 1)

By the same argument in a, it suffices to show that |∂(q−k+l)L(X(q), R(k, |A|, q + 1))| +
|∂(q−k+l)L(X(q), R(k, |B|, q + 1))| ≥ |∂(q−k+l)L(X(q), R(k, |A|, q + 1) + R(k, |B|, q + 1))|. This
follows from Lemma 4.2.2.

b2. |A| < P (k, r − t, q + 1)

By the same argument in (3), we have R(k, r−t, q+2) > R(k, t, q+2). So R(k, r−t, q+2) >(mq+1

q+1

)
. Now by the same argument in a, it suffices to show that

|∂(q−k+l)L(X(q), R(k, |A|, q + 1))|+ |∂(q−k+l)L(X(q), R(k, |B|, q + 1))|

≥|∂(q−k+l)L(X(q),

(
nq+1 − 1

q

)
)|+ |∂(q−k+l)L(X(q), R(k, |A|, q + 1)

+ R(k, |B|, q + 1)−
(

nq+1 − 1
q

)
)|
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It follows again from Lemma 4.2.3.

4.3 Minimum shadow with degree conditions

In this section, we will prove some results on minimum shadow problems with the restriction
that the degrees of the vertices cannot be too big. For simplicity, we state the theorems in terms
of the first order shadow, but they are true for l-shadow for general l.

Lemma 4.3.1. Let X = [n+2], F ⊆ X(k) be a left compressed set system. |F| =
(
n
k

)
+

(
n−1
k−1

)
+t,

0 < t ≤
(
n−1
k−1

)
. If ∀i ∈ X, c(i) ≤

(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where F∗ = L(X(k),

(
n
k

)
+(

n−1
k−1

)
) ∪

[
L(X(k−1), t) + {n + 2}

]
.

Proof Use induction on k and |F|.

When k = 2, |∂F| = number of symbols used in F . By the degree condition, we have
|∂F| = |∂F∗|.

Assume the theorem is true for smaller k and |F|. Let t = b(k−1)(mk−1, · · · ,ms), then

|∂F∗| =
(

n
k−1

)
+

(
n−1
k−2

)
+ b(k−2)(mk−1, · · · ,ms).

|F| =
(

n− 1
k − 1

)
+

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1) +

(
n− 1

k

)
+

(
n− 2
k − 1

)

+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

Since F is left compressed, we have ∂F1̄ ⊆ F(1).

Case 1. |F1̄| >
(
n−1

k

)
+

(
n−2
k−1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

1(a). ∃i ≥ 2 such that cF1̄
(i) >

(
n−1

k

)
+

(
n−2
k−1

)
.
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By Kruskal-Katona Theorem, |∂F1̄,̄i| ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
, thus

|F1,̄i| ≥ |∂F1̄,̄i| ≥
(

n− 1
k − 1

)
+

(
n− 2
k − 2

)
.

Therefore |∂F1,̄i| ≥
(
n−1
k−1

)
+

(
n−2
k−3

)
by Kruskal-Katona Theorem. Now

|∂(F , ī)| = |∂F1̄,̄i|+ |∂F1,̄i| ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
+

(
n−1
k−2

)
+

(
n−2
k−3

)
=

(
n

k−1

)
+

(
n−1
k−2

)
.

On the other hand, the degree condition yields |Fi| ≥ t, hence

|∂(F , i)| ≥ b(k−2)(mk−1, · · · ,ms).

Therefore

|∂F| = |∂(F , ī)|+ |∂(F , i)| ≥
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms) = |∂F∗|.

1(b). cF1̄
(i) ≤

(
n−1

k

)
+

(
n−2
k−1

)
∀i ≥ 2.

By inductive hypothesis, |∂F1̄| ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1).

So

|F| =|F1|+ |F1̄|
≥|∂F1̄|+ |F1̄|

>

(
n− 1
k − 1

)
+

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

+
(

n− 1
k

)
+

(
n− 2
k − 1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

=
(

n

k

)
+

(
n− 1
k − 1

)
+ b(k−1)(mk−1, · · · ,ms)
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It’s a contradiction to the assumption on |F|.

Case 2. |F1̄| ≤
(
n−1

k

)
+

(
n−2
k−1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

Then |F1| ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

2(a). ∃i ≥ 2 such that cF1(i) >
(
n−1
k−1

)
+

(
n−2
k−2

)
.

By a similar argument to 1(a), we can show |∂F| ≥ |∂F∗|.

2(b). cF1(i) ≤
(
n−1
k−1

)
+

(
n−2
k−2

)
∀i ≥ 2.

By inductive hypothesis, |∂F(1)| ≥
(
n−1
k−2

)
+

(
n−2
k−3

)
+ b(k−3)(mk−1 − 1, · · · ,ms − 1).

So

|∂F1| ≥|F1|+ |∂F(1)|

≥
(

n− 1
k − 1

)
+

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

+
(

n− 1
k − 2

)
+

(
n− 2
k − 3

)
+ b(k−3)(mk−1 − 1, · · · ,ms − 1)

=
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms) = |∂F∗|

Definition 4.3.2. Suppose t =
(mk−1

k−1

)
+

(mk−2

k−2

)
+ · · · +

(
ms+1

s+1

)
+

(
ms

s

)
+ · · · +

(
mr

r

)
is the

cascade form of t, where mi > i for s + 1 ≤ i ≤ k − 1 and mi = i for r ≤ i ≤ s. Define

α(t) =
(mk−1−1

k−1

)
+

(mk−2−1
k−2

)
+ · · · +

(
ms+1−1

s+1

)
+

(
ms

s

)
, β(t) =

(mk−1−1
k−2

)
+

(mk−2−1
k−3

)
+ · · · +(

ms+1−1
s

)
+

(
ms−1

s−1

)
+

(
ms−2

s−2

)
+ · · ·+

(
mr

r

)
, γ(t) =

(mk−1−2
k−2

)
+

(mk−2−2
k−3

)
+ · · ·+

(
ms+1−2

s

)
+

(
ms−1
s−1

)
.

The terms that involve mi for i ≤ s will be dropped if they do not exist in the cascade form of t.

Clearly, α(t) + β(t) = t.
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Lemma 4.3.3. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+

(
n−1
k−1

)
+ t where 0 < t ≤

(
n−1
k−1

)
.

If ∃i with α(t) ≤ d(i) ≤
(
n−1
k−1

)
+ β(t), then |∂F| ≥ |∂F∗| where F∗ = L(X(k),

(
n
k

)
+

(
n−1
k−1

)
) ∪[

L(X(k−1), t) + {n + 2}
]
.

Proof Without loss of generality, assume i = n + 2. By Kruskal-Katona Theorem, we may
further assume F = L(X(k), |F| − d(n + 2)) ∪

[
L(X(k−1), d(n + 2)) + {n + 2}

]
.

Note that |∂F∗| =
(

n
k−1

)
+

(
n−1
k−2

)
+ |∂L(X(k−1), t)|.

Case 1. α(t) ≤ d(n + 2) ≤ t.

Then c(n + 2) ≥
(
n
k

)
+

(
n−1
k−1

)
. Let a = c(n + 2)−

(
n
k

)
−

(
n−1
k−1

)
. So a + d(n + 2) = t, and

|∂F| =|∂(F , n̄ + 2)|+ |∂(F , n + 2)|

=
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ |∂L(X(k−1), a)|+ |∂L(X(k−1), d(n + 2))|

Therefore |∂F| ≥ |∂F∗| is equivalent to |∂L(X(k−1), a)|+|∂L(X(k−1), d(n+2))| ≥ |∂L(X(k−1), t)|.
Thus the problem reduces to the one in section 4.2. That is, find min |∂A| + |∂B| where
|A|+ |B| = t and |A| ≥ |B| ≥ α(t).

Let p, q be defined as in section 4.2. Clearly n− 1 > mk−1 − 1, so p = k − 1.

(1) q ≥ s + 1.

R(k − 1, a, q + 1) =
(
mq+1−1

q

)
+

(
mq−1
q−1

)
+ · · ·+

(
ms+1−1

s

)
+

(
ms−1

s−1

)
+

(
ms−2

s−2

)
+ · · ·+

(
mr

r

)
.

By definition of q, R(k − 1, a, q + 1) ≤
(
mq+1−1

q

)
. So R(k − 1, a, q + 1) =

(
mq+1−1

q

)
It follows that β(t) =

(mk−1−1
k−2

)
+

(mk−2−1
k−3

)
+ · · ·+

(
mq+1−1

q

)
,

α(t) =
(mk−1−1

k−1

)
+

(mk−2−1
k−2

)
+ · · ·+

(mq+1−1
q+1

)
.
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By the theorem in section 4.2, the optimal solution is

|A∗| =
(

mk−1 − 1
k − 2

)
+

(
mk−2 − 1

k − 3

)
+ · · ·+

(
mq+2 − 1

q + 1

)
,

|B∗| =
(

mk−1 − 1
k − 1

)
+

(
mk−2 − 1

k − 2

)
+ · · ·+

(
mq+1 − 1

q + 1

)
+

(
mq+1 − 1

q

)
.

It can be easily verified that |∂A∗|+ |∂B∗| = |∂L(X(k−1), t)|.

This completes the proof of |∂L(X(k−1), a)|+ |∂L(X(k−1), d(n + 2))| ≥ |∂L(X(k−1), t)|.

(2) 0 < q ≤ s.

By a similar argument to (1), we can show

|∂L(X(k−1), a)|+ |∂L(X(k−1), d(n + 2))| ≥ |∂L(X(k−1), t)|.

(3) q = 0.

By the theorem in section 4.2, the optimal solution is |A∗| = β(t), |B∗| = α(t), and again
it can be easily verified that |∂A∗|+ |∂B∗| = |∂L(X(k−1), t)|.

Case 2. t < d(n + 2) ≤
(
n−1
k−1

)
.

Then
(
n
k

)
≤ c(n + 2) <

(
n
k

)
+

(
n−1
k−1

)
. Let a = c(n + 2) −

(
n
k

)
. Then a <

(
n−1
k−1

)
and

a + d(n + 2) =
(
n−1
k−1

)
+ t.

By Lemma 4.2.3 in section 4.2,

|∂L(X(k−1), a)|+ |∂L(X(k−1), d(n + 2))| ≥
(

n− 1
k − 2

)
+ |∂L(X(k−1), t)|.
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Therefore

|∂F| =|∂(F , n + 2)|+ |∂(F , n + 2)|

=
(

n

k − 1

)
+ |∂L(X(k−1), a)|+ |∂L(X(k−1), d(n + 2))|

≥
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ |∂L(X(k−1), t)|

=|∂F∗|

Case 3.
(
n−1
k−1

)
< d(n + 2) ≤

(
n−1
k−1

)
+ β(t).

Then c(n + 2) ≥ α(t). Let b = d(n + 2) −
(
n−1
k−1

)
. Then b + c(n + 2) = t. It is the same

situation as Case 1.

Lemma 4.3.4. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+

(
n−1
k−1

)
+ t where 0 < t ≤

(
n−1
k−1

)
. If

∃i with d(i) < α(t) and ∃j with |Fi ∩ Fj | ≥ γ(t), then |∂F| ≥ |∂F∗| where F∗ = L(X(k),
(
n
k

)
+(

n−1
k−1

)
) ∪

[
L(X(k−1), t) + {n + 2}

]
.

Proof By Kruskal-Katona Theorem,

|∂(F , i ∧ j)| ≥
(

mk−1 − 2
k − 3

)
+

(
mk−2 − 3

k − 4

)
+ · · ·+

(
ms+1 − 2

s− 1

)
+

(
ms − 1
s− 2

)
,

|∂(F , i ∧ j̄)| ≥ |Fi ∩ Fj | ≥ γ(t).
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Therefore

|∂(F , i)| ≥|∂(F , i ∧ j)|+ |∂(F , i ∧ j̄)|

≥
[(

mk−1 − 2
k − 3

)
+

(
mk−2 − 3

k − 4

)
+ · · ·+

(
ms+1 − 2

s− 1

)
+

(
ms − 1
s− 2

)]

+
[(

mk−1 − 2
k − 2

)
+

(
mk−2 − 3

k − 3

)
+ · · ·+

(
ms+1 − 2

s

)
+

(
ms − 1
s− 1

)]

=
(

mk−1 − 1
k − 2

)
+

(
mk−2 − 2

k − 3

)
+ · · ·+

(
ms+1 − 1

s

)
+

(
ms

s− 1

)

=|∂L(X(k−1), α(t))|

On the other hand, |Fī| >
(
n
k

)
+

(
n−1
k−1

)
+ β(t). By the Kruskal-Katona Theorem again,

|∂(F , ī)| ≥
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ |∂L(X(k−2), β(t))|.

Therefore

|∂F| =|∂(F , i)|+ |∂(F , ī)|

≥|∂L(X(k−1), α(t))|+
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ |∂L(X(k−2), β(t))|

≥
(

n

k − 1

)
+

(
n− 1
k − 2

)
+ |∂L(X(k−1), t)|

=|∂F∗|

The last inequality follows from Lemma 4.3.3.

Theorem 4.3.5. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+

(
n−1
k−1

)
+ t, 0 < t ≤

(
n−1
k−1

)
. If ∀i ∈

X, c(i) ≤
(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where F∗ = L(X(k),

(
n
k

)
+

(
n−1
k−1

)
)∪

[
L(X(k−1), t) + {n + 2}

]
.
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Proof By Lemma 4.3.3, we may assume d(i) >
(
n−1
k−1

)
+ β(t) ∀i ∈ X.

Because shifting never decreases the size of the shadow, we can apply shifting on F . If at
some stage, the degree of some vertex drops between α(t) and

(
n−1
k−1

)
+ β(t), then by Lemma

4.3.3, we are done. If finally we obtain a left compressed set system that still satisfies the degree
condition, then by Lemma 4.3.1, we are done. So we may assume at some stage when we shift
n + 2 to n + 1, d(n + 2) drops from above

(
n−1
k−1

)
+ β(t) to below α(t). Denote the set system

before that step by F ′ and the one after that step by F ′′. So dF ′′(n + 2) < α(t).

By Lemma 4.3.4, we can further assume that |F ′′
n+1,n+2| < γ(t), thus |F ′

n+1,n+2| < γ(t).

Now let’s estimate the size of ∂F ′.

Let a0 = |{A ∈ F ′ : n + 1 /∈ A and n + 2 /∈ A}|,

a1 = |{A ∈ F ′ : n + 1 ∈ A and n + 2 /∈ A}|,

a2 = |{A ∈ F ′ : n + 1 /∈ A and n + 2 ∈ A}|,

a12 = |{A ∈ F ′ : n + 1 ∈ A and n + 2 ∈ A}|.

Let

G =L(X(k), a0) ∪
[
L(X(k−1), a1 + a2 −

(
n− 1
k − 1

)
) + {n + 1}

]

∪
[
L(X(k−1),

(
n− 1
k − 1

)
) + {n + 2}

]
∪

[
L(X(k−2), a12) + {n + 1, n + 2}

]

Then |G| = |F|, and a simple calculation shows that a1 + a2 −
(
n−1
k−1

)
>

(
n−1
k−1

)
.

Because dF ′′(n+2) < α(t), by the definition of shifting, we know |Fn+1 ∩Fn+2| < α(t). On
the other hand, |Gn+1 ∩ Gn+2| =

(
n−1
k−1

)
> α(t). Therefore

|∂(F ′, n + 1 ∧ n + 2)| ≥ |∂(G, n + 1 ∧ n + 2)|.

By the theorem in Section 4.2, |∂(F ′, n + 1 ∨ n + 2)| ≥ |∂(G, n + 1 ∨ n + 2)|.

Therefore |∂F ′| ≥ |∂G|.
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Now dG(n + 2) <
(
n−1
k−1

)
+ γ(t) <

(
n−1
k−1

)
+ β(t), and dG(n + 2) >

(
n−1
k−1

)
> α(t). By Lemma

4.3.3, |∂G| ≥ |∂F∗|.

It follows that |∂F ′| ≥ |∂F∗|.

Lemma 4.3.6. Let X = [n+2], F ⊆ X(k) be a left compressed set system. |F| =
(
n
k

)
+2

(
n−1
k−1

)
+t,

0 < t ≤
(
n−2
k−2

)
. If ∀i ∈ X, c(i) ≤

(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where F∗ = L(X(k),

(
n
k

)
+(

n−1
k−1

)
+ t) ∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
.

Proof The same argument as Lemma 4.3.1.

Lemma 4.3.7. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+ 2

(
n−1
k−1

)
+ t where 0 < t ≤

(
n−2
k−2

)
. If

∃i with
(
n−1
k−1

)
≤ d(i) ≤

(
n−1
k−1

)
+

(
n−2
k−2

)
, then |∂F| ≥ |∂F∗| where F∗ = L(X(k),

(
n
k

)
+

(
n−1
k−1

)
+ t)∪[

L(X(k−1),
(
n−1
k−1

)
) + {n + 2}

]
.

Proof By a similar argument to Lemma 4.3.3.

Lemma 4.3.8. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+ 2

(
n−1
k−1

)
+ t where 0 < t ≤(

n−2
k−2

)
. If ∃i with d(i) <

(
n−1
k−1

)
and ∃j with |Fi ∩ Fj | ≥

(
n−2
k−2

)
, then |∂F| ≥ |∂F∗| where

F∗ = L(X(k),
(
n
k

)
+

(
n−1
k−1

)
+ t) ∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
.

Proof The same argument as Lemma 4.3.4.

Theorem 4.3.9. Let X = [n + 2], F ⊆ X(k) with |F| =
(
n
k

)
+ 2

(
n−1
k−1

)
+ t, 0 < t ≤

(
n−2
k−2

)
.

If ∀i ∈ X, c(i) ≤
(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where F∗ = L(X(k),

(
n
k

)
+

(
n−1
k−1

)
+ t) ∪[

L(X(k−1),
(
n−1
k−1

)
) + {n + 2}

]
.

Proof By Lemma 4.3.7, we may assume d(i) >
(
n−1
k−1

)
+

(
n−2
k−2

)
∀i ∈ X.

Because shifting never decreases the size of the shadow, we can apply shifting on F . If at
some stage, the degree of some vertex drops between

(
n−1
k−1

)
and

(
n−1
k−1

)
+

(
n−2
k−2

)
, then by Lemma
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4.3.7, we are done. If finally we obtain a left compressed set system that still satisfies the degree
condition, then by Lemma 4.3.6, we are done. So we may assume at some stage when we shift
n + 2 to n + 1, d(n + 2) drops from above

(
n−1
k−1

)
+

(
n−2
k−2

)
to below

(
n−1
k−1

)
. Denote the set system

before that step by F ′ and the one after that step by F ′′. So dF ′′(n + 2) <
(
n−1
k−1

)
.

By Lemma 4.3.4, we can further assume that |F ′′
n+1,n+2| <

(
n−2
k−2

)
, thus |F ′

n+1,n+2| <
(
n−2
k−2

)
.

Now let’s estimate the size of ∂F ′.

Let a0 = |{A ∈ F ′ : n + 1 /∈ A and n + 2 /∈ A}|,

a1 = |{A ∈ F ′ : n + 1 ∈ A and n + 2 /∈ A}|,

a2 = |{A ∈ F ′ : n + 1 /∈ A and n + 2 ∈ A}|,

a12 = |{A ∈ F ′ : n + 1 ∈ A and n + 2 ∈ A}|.

Let

G =L(X(k), a0) ∪
[
L(X(k−1), a1 + a2 −

(
n− 1
k − 1

)
) + {n + 1}

]

∪
[
L(X(k−1),

(
n− 1
k − 1

)
) + {n + 2}

]
∪

[
L(X(k−2), a12) + {n + 1, n + 2}

]

Then |G| = |F|, and a simple calculation shows that a1 + a2 −
(
n−1
k−1

)
>

(
n−1
k−1

)
.

Because dF ′′(n + 2) <
(
n−2
k−2

)
, by the definition of shifting, we know |Fn+1 ∩ Fn+2| <

(
n−2
k−2

)
.

On the other hand, |Gn+1 ∩ Gn+2| =
(
n−1
k−1

)
>

(
n−2
k−2

)
. Therefore

|∂(F ′, n + 1 ∧ n + 2)| ≥ |∂(G, n + 1 ∧ n + 2)|.

By the theorem in Section 4.2,

|∂(F ′, n + 1 ∨ n + 2)| ≥ |∂(G, n + 1 ∨ n + 2)|.

Therefore |∂F ′| ≥ |∂G|.
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Now dG(n + 2) <
(
n−1
k−1

)
+

(
n−2
k−2

)
, and dG(n + 2) >

(
n−1
k−1

)
>

(
n−2
k−2

)
. By Lemma 4.3.7,

|∂G| ≥ |∂F∗|.

It follows that |∂F ′| ≥ |∂F∗|.

Theorem 4.3.10. Let X = [n + 3], F ⊆ X(k) be a left compressed set system. |F| =
(
n
k

)
+

2
(
n−1
k−1

)
+ t, 0 < t ≤

(
n−1
k−1

)
. If ∀i, j ∈ X with i 6= j, c(i) ≤

(
n
k

)
+ 2

(
n−1
k−1

)
, and c(i, j) ≤

(
n
k

)
+(

n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where F∗ = L(X(k),

(
n
k

)
+

(
n−1
k−1

)
) ∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
∪[

L(X(k−1), t) + {n + 3}
]
.

Proof Use induction on k and |F|.

When k = 2, |∂F| = number of symbols used in F . By the degree condition, we have
|∂F| = |∂F∗|.

Assume the theorem is true for smaller k and |F|. Let t = b(k−1)(mk−1, · · · ,ms), then

|∂F∗| =
(

n

k − 1

)
+ 2

(
n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms),

|F| =
(

n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

+
(

n− 1
k

)
+ 2

(
n− 2
k − 1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

Since F is left compressed, we have ∂F1̄ ⊆ F(1).

Case 1. |F1̄| >
(
n−1

k

)
+ 2

(
n−2
k−1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

1(a). ∃i and j with cFbar1
(i, j) >

(
n−1

k

)
+

(
n−2
k−1

)
.

By Kruskal-Katona Theorem, |∂F1̄,̄i,j̄ | ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
.

|F1,̄i,j̄ | ≥ |∂F1̄,̄i,j̄ | ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
.
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Thus |∂F1,̄i,j̄ | ≥
(
n−1
k−2

)
+

(
n−2
k−3

)
by Kruskal-Katona Theorem.

Therefore |∂Fī.j̄ | ≥
(
n−1
k−1

)
+

(
n−2
k−2

)
+

(
n−1
k−2

)
+

(
n−2
k−3

)
=

(
n

k−1

)
+

(
n−1
k−2

)
.

By the degree condition, we can prove that

|∂(F , i ∨ j)| ≥
(

n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms).

Therefore |∂F| ≥
(

n
k−1

)
+

(
n−1
k−2

)
+

(
n−1
k−2

)
+ b(k−2)(mk−1, · · · ,ms) = |∂F∗|.

1(b) ∃i with cF1̄
(i) >

(
n−1

k

)
+ 2

(
n−2
k−1

)
but don’t exist i and j in 1(a).

By Theorem 4.3.5, |∂(F1̄, ī)| ≥
(
n−1
k−1

)
+ 2

(
n−2
k−2

)
.

|F1,̄i| ≥ |∂(F1̄, ī)| ≥
(
n−1
k−1

)
+ 2

(
n−2
k−2

)
.

Therefore

cF (i) = cF1̄
(i) + |F1,̄i| >

(
n− 1

k

)
+ 2

(
n− 2
k − 1

)
+

(
n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
=

(
n

k

)
+ 2

(
n− 1
k − 1

)
.

It’s a contradiction to the degree condition.

1(c) ∀i, j ∈ X with i 6= j, cF1̄
(i) ≤

(
n−1

k

)
+ 2

(
n−2
k−1

)
, and cF1̄

(i, j) ≤
(
n−1

k

)
+

(
n−2
k−1

)
Then by inductive hypothesis,

|∂F1̄| ≥
(

n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1).
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Therefore

|F| =|F1|+ |F1̄|
≥|∂F1̄|+ |F1̄|

>

(
n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

+
(

n− 1
k

)
+ 2

(
n− 2
k − 1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

=
(

n

k

)
+ 2

(
n− 1
k − 1

)
+ b(k−1)(mk−1, · · · ,ms)

contradicting the assumption on |F|.

Case 2. |F1̄| ≤
(
n−1

k

)
+ 2

(
n−2
k−1

)
+ b(k−1)(mk−1 − 1, · · · ,ms − 1)

then |F1| ≥
(
n−1
k−1

)
+ 2

(
n−2
k−2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1).

2(a) ∃i and j with cF1(i, j) >
(
n−1
k−1

)
+

(
n−2
k−2

)
.

By a similar argument to 1(a), we can show |∂F| ≥ |∂F∗|.

2(b) ∃i with cF1(i) >
(
n−1
k−1

)
+ 2

(
n−2
k−2

)
but don’t exist i and j in 2(a).

Then by Theorem 4.3.5, |∂(F(1), ī)| ≥
(
n−1
k−2

)
+ 2

(
n−2
k−3

)
.

So

|∂F1,̄i| ≥|F1,̄i|+ |∂(F(1), ī)|

≥
(

n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
+

(
n− 1
k − 2

)
+ 2

(
n− 2
k − 3

)

=
(

n

k − 1

)
+ 2

(
n− 1
k − 2

)
.
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On the other hand, by the degree condition on i and Kruskal-Katona Theorem, we have

|∂(F , i)| ≥ b(k−2)(mk−1, · · · ,ms).

Therefore

|∂F| ≥ |∂F1,̄i|+ |∂(F , i)| ≥
(

n

k − 1

)
+ 2

(
n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms) = |∂F∗|.

2(c) ∀i, j ∈ X with i 6= j, cF1(i) ≤
(
n−1
k−1

)
+ 2

(
n−2
k−2

)
, and cF1(i, j) ≤

(
n−1
k−1

)
+

(
n−2
k−2

)
Then by inductive hypothesis,

|∂F(1)| ≥
(

n− 1
k − 2

)
+ 2

(
n− 2
k − 3

)
+ b(k−3)(mk−1 − 1, · · · ,ms − 1).

Thus

|∂F1| ≥|F1|+ |∂F(1)|

≥
(

n− 1
k − 1

)
+ 2

(
n− 2
k − 2

)
+ b(k−2)(mk−1 − 1, · · · ,ms − 1)

+
(

n− 1
k − 2

)
+ 2

(
n− 2
k − 3

)
+ b(k−3)(mk−1 − 1, · · · ,ms − 1)

=
(

n

k − 1

)
+ 2

(
n− 1
k − 2

)
+ b(k−2)(mk−1, · · · ,ms)

=|∂F∗|

Lemma 4.3.11. Let X = [n+3], F ⊆ X(k) with |F| =
(
n
k

)
+2

(
n−1
k−1

)
+ t where 0 < t ≤

(
n−1
k−1

)
. If

∃i with α(t) ≤ d(i) ≤
(
n−1
k−1

)
+ β(t), and ∀j1, j2 other than i, c(j1, j2) ≤

(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥

|∂F∗| where F∗ = L(X(k),
(
n
k

)
+

(
n−1
k−1

)
)∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
∪

[
L(X(k−1), t) + {n + 3}

]
.
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Proof Case 1. α(t) ≤ d(i) < t.

Then c(i) >
(
n
k

)
+ 2

(
n−1
k−1

)
. Let a = c(i)−

(
n
k

)
− 2

(
n−1
k−1

)
.

By Theorem 4.3.9, |∂(F , ī)| ≥
(

n
k−1

)
+ 2

(
n−1
k−2

)
+ |∂L(X(k−2), a)|.

On the other hand, |∂(F , i)) ≥ |∂L(X(k−1), d(i))|.

Thus, |∂F| ≥
(

n
k−1

)
+ 2

(
n−1
k−2

)
+ |∂L(X(k−2), a)|+ |∂L(X(k−1), d(i))|.

Therefore |∂F| ≥ |∂F∗| is equivalent to

(
n

k − 1

)
+2

(
n− 1
k − 2

)
+|∂L(X(k−2), a)|+|∂L(X(k−1), d(i))| ≥

(
n

k − 1

)
+

(
n− 1
k − 2

)
+|∂L(X(k−1), t)|.

This is what Lemma 4.3.3 says.

Case 2. t ≤ d(i) ≤
(
n−1
k−1

)
+ β(t).

Similar To Lemma 4.3.3.

Lemma 4.3.12. Let X = [n + 3], F ⊆ X(k) with |F| =
(
n
k

)
+ 2

(
n−1
k−1

)
+ t where 0 < t ≤

(
n−1
k−1

)
.

If ∃i with d(i) < α(t) and ∃j with |Fi ∩ Fj | ≥ γ(t), and c(j1, j2) ≤
(
n
k

)
+

(
n−1
k−1

)
∀j1, j2 other

than i, then |∂F| ≥ |∂F∗| where F∗ = L(X(k),
(
n
k

)
+

(
n−1
k−1

)
) ∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
∪[

L(X(k−1), t) + {n + 3}
]
.

Proof By the same argument as Lemma 4.3.4, we have |∂(F , i)| ≥ |∂L(X(k−1), α(t))|.

On the other hand, |Fī| >
(
n
k

)
+ 2

(
n−1
k−1

)
+ β(t).

By Theorem 4.3.9, |∂(F , ī)| ≥
(

n
k−1

)
+ 2

(
n−1
k−2

)
+ |∂L(X(k−2), β(t))|.

The rest of the proof is the same as Lemma 4.3.4.

Theorem 4.3.13. Let X = [n + 3], F ⊆ X(k) with |F| =
(
n
k

)
+ 2

(
n−1
k−1

)
+ t, 0 < t ≤

(
n−1
k−1

)
. If
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∀i, j ∈ X with i 6= j, c(i) ≤
(
n
k

)
+ 2

(
n−1
k−1

)
, and c(i, j) ≤

(
n
k

)
+

(
n−1
k−1

)
, then |∂F| ≥ |∂F∗|, where

F∗ = L(X(k),
(
n
k

)
+

(
n−1
k−1

)
) ∪

[
L(X(k−1),

(
n−1
k−1

)
) + {n + 2}

]
∪

[
L(X(k−1), t) + {n + 3}

]
.

Proof By Lemma 4.3.11, we may assume d(i) >
(
n−1
k−1

)
+ β(t) ∀i ∈ X.

Because shifting never decreases the size of the shadow, we can apply shifting on F . If at
some stage, the degree of some vertex i drops between α(t) and

(
n−1
k−1

)
+ β(t), obviously we still

have c(j1, j2) ≤
(
n
k

)
+

(
n−1
k−1

)
∀j1, j2 other than i, thus by Lemma 4.3.11, we are done. If finally

we obtain a left compressed set system that still satisfies the degree condition, then by Theorem
4.3.10, we are done. So we may assume at some stage when we shift n + 3 to n + 2, d(n + 3)
drops from above

(
n−1
k−1

)
+ β(t) to below α(t). Denote the set system before that step by F ′ and

the one after that step by F ′′. So dF ′′(n + 3) < α(t).

By the same argument as Theorem 4.3.5, we can show |∂F ′| ≥ |∂F∗|.

4.4 Intersecting set systems with degree conditions

In this section we will study the following problem:

Problem. Let n, k be two positive integers satisfying n > 2k and let X = [1, n]. Find max |F|
where F ⊆ X(k) is intersecting and c(F) = s for a specified value s.

Without loss of generality, we may assume the point 1 has the minimum complementary
degree. So |F1̄| = s. Let Y = [2, n], and let A = {Y \F : F ∈ F1̄}. Then |A| = s and the size of
a member of A is r = n− 1− k.

Pick F ∈ F1. Because F is intersecting, F\{1} /∈ ∂(k−1)A. On the other hand, F is
completely determined by A by the following operation:
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Definition 4.4.1. For A ⊆ Y (n−k−1), define

σ0(A) ={Y \F : F ∈ A},

σ1(A) ={F ∈ X(k) : 1 ∈ F}\(∂(k−1)A+ {1})

={F ∈ X(k) : 1 ∈ F and F ∩B 6= ∅ for each B ∈ σ0(A),

σ(A) =σ0(A) ∪ σ1(A)

We say that the set systems σ(A) ⊆ X(k) and A ⊆ Y (n−k−1) are associated. Thus the
problem becomes finding the minimum (k−1)-shadow ofA with |A| fixed and with the constraint
on the minimum complementary degree.

Because we are looking at the complement of F1̄ in Y , it’s convenient to use the reverse of
the natural order on 2, 3, · · · , n.

Definition 4.4.2. Define “�” on Y (r) to be the COLEX order with respect to the reverse of the

natural order on 2, 3, · · · , n.

Let F(3,2) = {F ∈ X(k) : |F ∩ {1, 2, 3}| ≥ 2}, and let c(3, 2) = c(F(3,2)) =
(
n−3
k−2

)
.

For s ≤ c(3, 2), by the Kruskal-Katona Theorem, it is easy to see that σ(L(�, Y (r), s) is an
optimal configuration to the above problem. In fact Goldwasser [9] proved a stronger theorem
considering c(F) ≥ s instead of c(F) = s for s ≤ c(3, 2). So we will study the case when
s > c(3, 2).

Let F(5,3) = {F ∈ X(k) : |F ∩{1, 2, 3, 4, 5}| ≥ 3}, and let c(5, 3) = c(F(5,3)) = 4
(
n−5
k−3

)
+

(
n−5
k−4

)
.

Simple calculation shows that c(3, 2) < c(5, 3) if and only if n < 3k − 2.

In this section we will study the case where n < 3k − 2 and c(3, 2) < s ≤ c(5, 3).

Let’s look at an example.

In order to describe a candidate configuration, we need to introduce some notation. The
notation [b1, bp] a1 a2 · · · aq where b1 > bp denotes a collection of subsets of Y . A set A ⊆ Y
belongs to this collection if and only if
(1) {a1, a2, · · · , aq} ⊆ A;
(2) A\{a1, a2 · · · , aq} ⊆ [bp, b1];
(3) |A| = r.
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Example n = 15, k = 6, r = 8, s = 525.

Now [15, 9] 8 6 3 means [9, 15](5) + {8, 6, 3}.

We are ready to state to describe two families A1,A2 ⊆ [2, 15](8) such that |A1| = |A2| = 525
and |∂(5)A1| = |∂(5)A2| = 1092. The associated set systems σ(A1), σ(A2) ⊆ [15](6) each have
size

|A1|+
[(

14
5

)
− |∂(5)A1|

]
= 525 +

(
14
5

)
− 1092 = 1435

and minimum complementary degree c(σ(A1)) = c(σ(A2)) = 525.

Example 1a. Let A1 be the union of:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 6] 3
[15, 6] 2

It is not hard to see that the associated set system F1 ⊆ [15](6) is equal to F(5,3).

Example 1b. Let A2 be the union of:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 7] 5 4
[15, 7] 3
[15, 7] 2
[15, 7] 3 2

Definition 4.4.3. Let A ⊆ Y (r). Define

V0(A) = {A ∈ A : 3 /∈ A and 2 /∈ A},

V3(A) = {A ∈ A : 3 ∈ A and 2 /∈ A},
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V2(A) = {A ∈ A : 3 /∈ A and 2 ∈ A},

V32(A) = {A ∈ A : 3 ∈ A and 2 ∈ A}.

The last set (in COLEX order with symbols in reverse order) in V0(A2) is
{12, 11, 10, 9, 8, 7, 5, 4}. It can be shown that if we add one more subset to V3(A2) or V2(A2)
or V32(A2), then the point 1 will no longer have minimum complementary degree in σ(A2).
Therefore the last member in V0(A2) completely determines the last members in V3(A2), V2(A2)
and V32(A2), something like conjugates.

To describe this conjugation, we need to introduce some definitions.

Definition 4.4.4. For A ∈ Y (r), a block of A is a maximal subset of consecutive numbers of A.

For example, {5, 4} is a block of {12, 11, 10, 9, 8, 7, 5, 4}.

Definition 4.4.5. A block of A is the last block if it contains the largest number of A (under

natural order of symbols). The last block of A is denoted by B(A).

For example, B({12, 11, 10, 9, 8, 7, 5, 4}) = {12, 11, 10, 9, 8, 7}.

Note: The last block corresponds to the last term of the cascade form: if minB(A) = n− j
and |B(A)| = t then the last term in the cascade representation of the index of A in COLEX is(
j+1

t

)
.

Definition 4.4.6. Let A ∈ Y (r). We say A is regular if

(1) {5, 4} ⊆ A, {3, 2} ∩A = ∅,

(2) |B(A)| ≥ 2r − n + 3.

Definition 4.4.7. Let A ∈ Y (r) be regular. Define

C = [4,minB(A)− 2]\(A\B(A)),

(Note that |C| = minB(A)− 5− |A|+ |B(A)|)

conj1(A) = C ∪ {minB(A),minB(A) + 1, · · · ,minB(A) + r − |C| − 2},

conj2(A) = C ∪ {minB(A),minB(A) + 1, · · · ,minB(A) + r − |C| − 3}.
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Note: Property (2) of regularity guarantees that conj1(A) and conj2(A) are well defined,
and that |conj1(A)| = |conj2(A)|+ 1 = r − 1.

For example, for n = 13, r = 8, A = {12, 11, 10, 9, 8, 7, 5, 4},
conj1(A) = {14, 13, 12, 10, 9, 8, 7}, conj2(A) = {13, 12, 10, 9, 8, 7}.

Clearly, for the above example, the last members in V3(A), V2(A) and V32(A) are conj1(A)∪
{3}, conj1(A) ∪ {2} and conj2(A) ∪ {3, 2} respectively, and this is true in general.

Now with the conjugation notation, the last member in V0(A) completely determines A.
Therefore we have the following definition:

Definition 4.4.8. Let A ∈ Y (r) be regular. Define

U0(A) = {F ∈ Y (r) : F � A}

U3(A) = {F ∈ Y (r−1) : F � conj1(A)}+ {3}

U2(A) = {F ∈ Y (r−1) : F � conj1(A)}+ {2}

U32(A) = {F ∈ Y (r−2) : F � conj2(A)}+ {3, 2}

U(A) = U0(A) ∪ U3(A) ∪ U2(A) ∪ U32(A).

In the above example, we have |A1| = |A2| = 525. If we want s = 456 we need to take out
69 sets. We will show later that the best way to do so is take out the last 69 sets in [15, 7] 3 2.
The resulting set system is:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 7] 5 4
[15, 7] 3
[15, 7] 2
[15, 9] 3 2
[15, 10] 8 3 2
[15, 12] 9 8 3 2
[15, 13] 11 9 8 3 2

The size of the 5-shadow of this set system is

(
10
5

)
+

(
10
4

)
+

(
10
4

)
+

(
9
3

)
+

(
9
4

)
+

(
9
4

)
+

(
7
3

)
+

(
6
2

)
+

(
4
1

)
+

(
3
0

)
= 1063
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Now let’s work out some rules on how to take out some sets from U(A).

Lemma 4.4.9. If A ∈ Y (r) is regular, then σ(U(A)) ⊆ X(k), and σ(U(A)) is intersecting.

Proof The first part is trivial. For the second part, let F1, F2 ∈ σ(U(A)).

Case 1. F1, F2 ∈ σ1(U(A))

Then {1} ⊆ F1 ∩ F2.

Case 2. F1 ∈ σ0(U(A)), F2 ∈ σ1(U(A))

If F1 ∩ F2 = ∅, then F2\{1} ∈ ∂(k−1)U(A), contradicting the definition of σ1(U(A)).

Case 3. F1, F2 ∈ σ0(U(A))

Let G1 = Y \F1, G2 = Y \F2. Then G1, G2 ∈ U(A) and F1 ∩ F2 6= ∅ is equivalent to
G1 ∪ G2 6= Y . If G1, G2 ∈ U0(A), then 2 /∈ G1, 2 /∈ G2. So G1 ∪ G2 6= Y . If G1 /∈ U0(A),
G2 /∈ U0(A), then 4 /∈ G1, 4 /∈ G2. If G1 ∈ U0(A), G2 /∈ U0(A), without loss of generality,
we may assume G2 ∈ U32(A). By the cross-intersecting property, we can further assume that
G1 = maxU0(A), G2 = maxU32(A) = conj2(A) + {3, 2}. But then minB(A) − 1 /∈ G1 and
minB(A)− 1 /∈ G2. This completes the proof of the lemma.

Lemma 4.4.10. Let A ∈ Y (r) be regular, then for σ(U(A)), d(1) = d(2) = d(3).

Proof By symmetry, we only need to show d(1) = d(2). Let H1 = {F ∈ σ(U(A)) : 1 ∈
F and 2 /∈ F}, H2 = {F ∈ σ(U(A)) : 1 /∈ F and 2 ∈ F}.

Claim. If F ∈ H2, then (F\{2}) ∪ {1} ∈ H.

Case 1. 3 /∈ F

Let G = Y \F , the G ∈ U3(A). If (F\{2}) ∪ {1} /∈ H1, then F\{2} ∈ ∂(k−1)U(A). It’s
easy to see that {5, 4} ⊆ F\{2} (because Y \F ∈ U3(A)), so F\{2} ∈ ∂(k−1)U0(A). Therefore
∃A0 ∈ U0(A) such that G∪A0 = [3, n], which is equivalent to (F\{2})∩ (Y \A0) = ∅. By cross-
intersecting property, A∪ (conj1(A) + {3}) = [3, n]. But minB(A)− 1 /∈ A and minB(A)− 1 /∈
conj1(A). It’s a contradiction.

Case 2. 3 ∈ F

Let G = Y \F , then G ∈ U0(A). If (F\{2})∪ {1} ∈ H1, then F\{2} ∈ ∂(k−1)U(A). Because
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2 /∈ F\{2}, 3 ∈ F\{2}, we know F\{2} ∈ ∂(k−1)U3(A). This will lead to the same contradiction
in Case 1.

This completes the proof of the claim.

Define a map τ : H → H1 as τ(F ) = (F\{2}) ∪ {1}. Clearly the map is 1-1. Therefore
|H2| ≤ |H1|.

By symmetry, we can show that |H1| ≤ |H2|. Thus |H1| = |H2|. It follows that d(1) =
d(2).

The next lemma says that if σ(A) satisfies the degree condition then the degrees of 2 and
3 in A cannot be too small.

Lemma 4.4.11 (degree principal). Let A ∈ Y (r) be regular and A = U(A). For s < |A| let

A∗ = L(A, s).

(1) If B ⊆ A then the element 1 has the maximum degree in σ(B).

(2) If |B3| ≥ |A∗
3| and |∂(k−1)B3̄| ≤ |∂(k−1)A∗

3̄
| then the element 1 has the maximum degree in

σ(B).

(3) If |B2| ≥ |A∗
2| and |∂(k−1)B2̄| ≤ |∂(k−1)A∗

2̄
| then the element 1 has the maximum degree in

σ(B).

(4) If |B3| ≤ |A∗
3| and |∂(k−1)B3̄| ≥ |∂(k−1)A∗

3̄
| and at least one of the inequalities is strict then

the element 1 has the maximum degree in σ(B).

(5) If |B2| ≤ |A∗
2| and |∂(k−1)B2̄| ≥ |∂(k−1)A∗

2̄
| and at least one of the inequalities is strict then

the element 1 has the maximum degree in σ(B).

Proof (1) Let F = σ(B). It suffices to show that |F2̄| ≥ |F1̄| and |F3̄| ≥ |F1̄|. By symmetry,
we need only show |F2̄| ≥ |F1̄|. First we observe that

F2̄ = {Y \B : B ∈ B2} ∪ (Y (k−1)\∂(k−1)B2̄ + {1})

Therefore

|F2̄| = |B2|+
(

n− 1
k − 1

)
− |∂(k−1)B2̄|

Let C = A\B. First we look at the case where C ⊆ A2. Let G = σ(A). By Lemma 4.4.10,
|G1̄| = |G2̄|. Clearly |F1̄| = |G1̄| − |C| and |B2| = |A2| − |C|. It follows that |F2̄| = |F1̄|.
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If C 6⊆ A2, this case can be obtained from the previous case by replacing some sets in C with
sets in A2̄. So |B2| will be increased and |∂(k−1)B2̄| will not decrease. It follows that |F2̄| ≥ |F1̄|.

(2), (3), (4) and (5) follow from the same argument in (1).

To describe the general procedure to take out some sets we need to introduce some defini-
tions.

Definition 4.4.12. For A ∈ Y (r) define N(A) as follows: let A′ be the set obtained from A by

changing every element x ∈ B(A) to x− 1. If A′ has only one block then define N(A) to be the

set obtained from A by changing minB(A) to minB(A)− 1, otherwise define N(A) = A′.

For example, N({14, 13, 12, 11, 7, 6, 5, 4}) = {13, 12, 11, 10, 7, 6, 5, 4},
N({12, 11, 10, 9, 8, 7, 5, 4}) = {12, 11, 10, 9, 8, 6, 5, 4}.

Definition 4.4.13. Let A ∈ Y (r) be regular. Define

W3(A) = {F ∈ U3(A) : F � conj1(N(A)) + {3}},

W2(A) = {F ∈ U2(A) : F � conj1(N(A)) + {2}},

W32(A) = {F ∈ U32(A) : F � conj1(N(A)) + {3, 2}},

W(A) = W3(A) ∪W2(A) ∪W32(A).

In the above example, A = {12, 11, 10, 9, 8, 7, 5, 4}, N(A) = {12, 11, 10, 9, 8, 6, 5, 4},
W3(A) = [15, 8] 7 3,
W2(A) = [15, 8] 7 2,
W32(A) = [15, 8] 7 3 2.

Definition 4.4.14. Let A ∈ Y (r) be regular, |U(A)\W(A)| < s < |U(A)|, define

γ(A, s) = U(A)\W(A) ∪ L(�,W(A), s− |U(A)\W(A)|)

Clearly, |γ(A, s)| = s. γ(A, s) gives a way to take out t sets from U(A): take out the last
t sets of W(A) in the order “�”. The next theorem states that this is the optimal way to take
out t sets in order to minimize the shadow.

Theorem 4.4.15. Let A ∈ Y (r) be regular, |U(A)\W(A)| < s < |U(A)|. Let B ⊆ U(A). If

U0(A) = V0(B) and |B| = s, then |∂(l)γ(A, s)| ≤ |∂(l)B|.
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Proof We can assume that V0(B), V3(B), V2(B) and V32(B) are all initial segments in “�”.
Suppose γ(A, s) 6= B, then without loss of generality we may assume B2 ⊃ (U2(A)\W2(A)),
B32 ⊂ (U32(A)\W32(A)). Let B′ = R(F ,U2(A),U2(A)\W2(A),U32(A). It can be verified that
|∂(l)B′| ≤ |∂(l)B| by Theorem 4.1.1. For other cases, we apply the same construction, and finally
will get γ(A.s).

Notice that V0(A) is an initial segment in COLEX. Intuitively if we take out some sets from
V3(A) ∪ V2(A) ∪ V32(A) and add the same number of sets in V0(A) we might reduce the size of
the shadow.

Example n = 15, k = 6, r = 8, s = 456.

Here is a candidate:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 7] 5 4
[15, 8] 6 5 4
[15, 8] 3
[15, 8] 2
[15, 8] 3 2

This candidate has size 469. We need to take out 13 sets. Again we will take out the last
13 sets in [15, 8] 3 2. The resulting set system is:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 7] 5 4
[15, 8] 6 5 4
[15, 8] 3
[15, 8] 2
[15, 9] 3 2
[15, 10] 8 3 2
[15, 12] 9 8 3 2
[15, 13] 11 9 8 3 2



4.4. INTERSECTING SET SYSTEMS WITH DEGREE CONDITIONS 65

The size of the 5-shadow of this set system is

(
10
5

)
+

(
10
4

)
+

(
10
4

)
+

(
9
3

)
+

(
8
2

)
+

(
8
4

)
+

(
8
4

)
+

(
7
3

)
+

(
6
2

)
+

(
4
1

)
+

(
3
0

)
= 979

This is a better candidate.

Denote the first candidate by D1, the second by D2. Comparing D1 with D2, we can see
that

[15, 8] 6 5 4 ⊆ D2\D1, [15, 9] 8 3 ⊆ D1\D2.

Intuitively if we remove [15, 9] 8 3 from D1 and add the same size of the initial segment of
[15, 8] 6 5 4 to it, then because |{6, 5, 4}| > |{8, 3}| and by Theorem 4.1.1, the size of the shadow
will go down or stay the same. This explains why D2 is better than D1.

We can go further and make V0(A) even larger. Here is a third candidate:

[15, 6]
[15, 6] 5
[15, 6] 4
[15, 7] 5 4
[15, 8] 6 5 4
[15, 12] 7 6 5 4
[15, 9] 3
[15, 10] 8 3
[15, 11] 9 8 3
[15, 12] 10 9 8 3
[15, 9] 2
[15, 10] 8 2
[15, 11] 9 8 2
[15, 12] 10 9 8 2
[15, 9] 3 2
[15, 10] 8 3 2
[15, 11] 9 8 3 2
[15, 12] 10 9 8 3 2

This candidate has size exactly 456. We denote this set system by D3. The size of the
5-shadow of this set system is 982. It is not as good as D2.
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Comparing D2 with D3, we can see that

[15, 12] 7 6 5 4 ⊆ D3\D2, [15, 12] 11 10 9 8 3 ⊆ D2\D1.

However, this time |{7, 6, 5, 4}| < |{11, 10, 9, 8, 3}|. It is wiser to remove [15, 12] 7 6 5 4 from D3

and add the same size of the initial segment of [15, 12] 11 10 9 8 3 to it.

From these candidates we can see that the structures of the last member in V0(A) and its
conjugate determines which candidate is better. So we have the following definition.

Definition 4.4.16. Let A ∈ Y (r) be regular. A is said to be normal if ∀x ∈ A with 6 ≤ x ≤

minB(A), we have |A ∩ [4, x− 1]| > |conj1(A) ∩ [4, x− 1]|+ 1.

In the above example, {12, 11, 10, 9, 8, 7, 5, 4} and {12, 11, 10, 9, 8, 6, 5, 4} are normal, while
{15, 14, 13, 12, 7, 6, 5, 4} is not.

Proposition 4.4.17. If A is normal, then so is N(A).

Definition 4.4.18. Let A ∈ Y (r). For i = 1, · · · , len(r, A), define Mi(A) = mem(P (r, A, i)).

Now we are ready to answer the question. We can take A∗ to be the maximum set in Y (r)

such that A∗ is normal and |U(A∗)| ≥ s, then take out some sets to make its size s by letting
A∗ = γ(A, s). Then A∗ has the minimum (k − 1)-shadow.

Lemma 4.4.19. Let n, k, s be such that n > 2k and c(3, 2) < s ≤ c(5, 3). Let r = n− k− 1 and

let A be the maximum (with respect to “�”) set in Y (r) such that A is normal and |U(A)| ≥ s.

Let i be an integer such that 2 ≤ i < len(A). Let A′ = U(Mi(A)), A′′ = U(Mi+1(A)). Let

A ⊆ Y (r) be a set system with |A| = s that satisfies:

(1) V0(A),V3(A)\{3},V2(A)\{2}and V32(A)\{3, 2} are all initial segments in “�”.

(2) V0(A′) ⊆ V0(A) ⊆ V0(A′′).

(3) V3(A) ⊆ V3(A′), V2(A) ⊆ V2(A′) and V32(A) ⊆ V32(A′).

(4) either the element 1 has the maximum degree in σ(A) or A′ ⊆ A.

Then there exists B ∈ Y (r) with |B| = s that satisfies:

(a) V0(B),V3(B)\{3},V2(B)\{2}and V32(B)\{3, 2} are all initial segments in “�”.

(b) V0(A) ⊆ V0(B).
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(c) V3(B) ⊆ V3(A′′), V2(B) ⊆ V2(A′′) and V32(B) ⊆ V32(A′′).

(d) either the element 1 has the maximum degree in σ(B) or A′′ ⊆ B.

(e) |∂(l)B| ≤ |∂(l)A|.

Proof We will construct B from A via a series of transformations:
(i) If V32(A) ⊃ V32(A′′) and V2(A) ⊂ V2(A′′) then let A(1) = R(A,V2(A),V2(A′′),V32(A)), else
let A(1) = A. In other words, we fill in the missing part of V2(A′′) with the extra sets in V32(A).
(ii) If V32(A(1)) ⊃ V32(A′′) and V3(A(1)) ⊂ V3(A′′) then let

A(2) = R(A(1),V3(A(1)),V3(A′′),V32(A(1)),

else let A(2) = A(1).
(iii) If V32(A(2)) 6⊆ V32(A′′) then let A(3) = (A(2)\(K ∪ V0(A(2)))) ∪ L(Y (k), |V0(A(2))| + |K|)
where K = V32(A(2))\V32(A′′), else let A(3) = A(2). In other words, we remove the extra part of
V32(A(2)) that exceeds V32(A′′) and add the same amount of sets to V0(A(2)).
(iv) If V2(A(3)) 6⊆ V2(A′′) then let A(4) = (A(3)\(K∪V0(A(3))))∪L(Y (k), |V0(A(3))|+ |K|) where
K = V2(A)\V2(A′′), else let A(4) = A(3). (For simplicity, we use the symbol K again.)
(v) If V3(A(4)) 6⊆ V3(A′′) then let B = (A(4)\(K ∪ V0(A(4)))) ∪ L(Y (k), |V0(A(4))| + |K|) where
K = V3(A)\V3(A′′), else let B = A(4).

Obviously |A| = |A(1)| = |A(2)| = |A(3)| = |A(4)| = |B|. It’s easy to see that |∂(l)A(2)| ≤
|∂(l)A(1)| ≤ |∂(l)A|. Since A is normal, by the same argument in Theorem 4.1.1, we have
|∂(l)B| ≤ |∂(l)A(4)| ≤ |∂(l)A(3)| ≤ |∂(l)A(2)|. It follows that |∂(l)B| ≤ |∂(l)A|.

(a), (b) and (c) are all trivial from the construction of B. It remains to verify (d). We
distinguish two cases.

Case 1. A′ ⊆ A.

It follows immediately that V3(A′) ⊆ V3(A). Because V3(A′′) ⊆ V3(A′), by the construction
of B, V3(A′′) ⊆ V3(B). By the same argument, V2(A′′) ⊆ V2(B) and V32(A′′) ⊆ V32(B). If
V0(A′′) ⊆ V0(B) then A′′ ⊆ B. If not, by the degree principal, the element 1 has the maximum
degree in σ(B).

Case 2. the element 1 has the maximum degree in σ(A).

If V3(A′′) ⊆ V3(B), V2(A′′) ⊆ V2(B) and V32(A′′) ⊆ V32(B) it becomes the situation in Case
1.

So we first assume V3(B) ⊂ V3(A′′). If V0(B) ⊆ V0(A′′) then by the degree principal, the
element 1 has the maximum degree in σ(B). If V0(A′′) ⊂ V0(B), then V0(A) ⊂ V0(B). Thus we
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know transformation (iii) was not performed because (ii) would be performed before (iii). By
the degree principal, the element 1 has the maximum degree in σ(B).

If V2(B) ⊂ V2(A′′), the above argument will still hold. So last we assume V32(B) ⊂ V32(A′′).
Clearly (i), (ii) and (iii) were not performed. Again, by the degree principal, the element 1 has
the maximum degree in σ(B).

Theorem 4.4.20. Let n, k, s be such that n > 2k and c(3, 2) < s ≤ c(5, 3). Let r = n−k−1 and

let A be the maximum (with respect to “�”) set in Y (r) such that A is normal and |U(A)| ≥ s. Let

A ⊆ Y (r) with |A| = s. If the element 1 has the maximum degree in σ(A), then |∂(l)γ(A, s)| ≤

|∂(l)A|.

Proof By Theorem 4.3.13 in section 4.3, we may assume that |V0(A)| ≥
(
n−5

r

)
+ 2

(
n−5
r−1

)
. We

can further assume that V0(A), V3(A), V2(A) and V32(A) are all initial segments in “�”.

Case 1. maxV0(A) � A.

Let i be the largest integer such that Mi(A) � maxV0(A). Let A′ = U(Mi(A)), A′′ =
U(Mi+1(A)). By degree principal, V3(A) ⊆ V3(A′), V2(A) ⊆ V2(A′) and V32(A) ⊆ V32(A′). So
by Lemma 4.4.19, there exists B that satisfies the conclusions of lemma 4.4.19. If |B| < |A′′|
then by Theorem 4.4.15 |∂(l)γ(A′′, s)| ≤ |∂(l)B|. In this case, for convenience let B = γ(A′′, s).
Now repeat this proof for Mi+1(A),Mi+2(A) and B, and finally this will lead to the desired
inequality.

Case 2. maxV0(A) � A.

Let A′ be the maximum member in Y (r) such that A′ � maxV0(A), len(A′) = len(maxV0(A))
and |U(A′)| ≥ s. Let A′′ = N(A′). By the maximality of A, A′ is not normal. Claim that
|U(A′′)| < s, otherwise it will contradict the maximality of A′. By a similar method in Theorem
4.4.15, we can find B ∈ Y (r) such that |∂(l)B| ≤ |∂(l)A| and (U(A′′)\U0(A′′)) ⊆ (B\V0(B)).
Since A′ is not normal, using the same method in the proof of Lemma 4.4.19, we can remove
V0(B)\U0(A) and add the same amount of sets to U3(A)\V3(B), U2(A)\V2(B) and U32(A)\V32(B).
Denote the new set system by B′. So |∂(l)B′| ≤ |∂(l)B|. Clearly B′ ⊆ U(A) since |U(A)| ≥ s.
Therefore |∂(l)γ(A, s)| ≤ |∂(l)B′| by Theorem 4.4.15, which completes the proof of this Case.

Theorem 4.4.21. Let n, k, s be such that n > 2k and c(3, 2) < s ≤ c(5, 3). Let r = n−k−1 and

let A∗ be the maximum (with respect to “�”) set in Y (r) such that A∗ is normal and |U(A∗)| ≥ s.

Let A∗ = γ(A∗, s), F∗ = σ(A∗). Let F ⊆ X(k) be an intersecting family with c(F) = s, then

|F| ≤ |F∗|.
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Proof Let A = F1̄. Since

F ⊆ {Y \A : A ∈ A} ∪ (Y (k−1)\∂(k−1)A+ {1}),

in view of Theorem 4.4.20, we have |F| ≤ |F∗|.



70 CHAPTER 4. INTERSECTING SET SYSTEMS WITH DEGREE CONDITIONS



Chapter 5

An Asymptotic Bound and

Non-existence Theorem

5.1 Introduction

In this chapter we will prove some asymptotic results on intersecting set systems. To be more
general, we will state and prove the theorems for t-intersecting set systems, which reduce to
intersecting set systems in the special case t = 1.

5.2 Intersecting set systems with a fractional degree condition

We first look at the problem of finding the maximum size of an intersecting set system F ⊆ X(k)

such d(F) ≤ e|F| for some real number e ∈ (0, 1). In a well known but unpublished paper,
Erdős, Rothschild and Szemerédi showed that if e = 2

3 then |F| ≤ |F(3,2)| for fixed k and n

sufficiently large, where F(3,2) = {F ∈ X(k) : |F ∩ {1, 2, 3}| ≥ 2}. In this section we will sharpen
this result.

We use the following definition from [5].

71
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Definition 5.2.1 ([5]). Let X = [n] and F ⊆ X(k) be a t-intersecting set system. Let F (t) =

{G ⊆ X : ∃F ∈ F with G ⊆ F and |G ∩ F | ≥ t ∀F ′ ∈ F}. Define the base B of F as:

B = {B ∈ F (t) :6 ∃F ∈ F (t), F ⊂ B}

For A ⊆ X, the restriction of F on A is defined as

F|A = {H ⊆ A : ∃F ∈ F such that F ∩A = H}

Lemma 5.2.2 ([5]). |B| ≤ φ(k) where φ is a function that depends only on k.

Lemma 5.2.3. Let F ⊆ X(k) be a maximal t-intersecting set system, X = [n]. If n > 2k then

the base B of F is t-intersecting.

Proof Assume to the contrary that there exist B1, B2 ∈ B with |B1∩B2| < t. Since |Bi| < k, i =
1, 2 and n > 2k, we have |X\B2| > k. So we can find F1 ∈ X(k) with B1 ⊆ F1 ⊆ (X\B2) ∪B1.
Because B1 ⊆ F1 and B1 ∈ B, by the definition of the base, |F ∩ F1| ≥ t, ∀F ∈ F . Since F is
maximal, F1 ∈ F . But |F1 ∩B2| = |B1 ∩B2| < t, a contradiction to B2 ∈ B.

Lemma 5.2.4. Let F ⊆ X(k) be a t-intersecting set system, X = [n]. Let Y ⊆ X be a minimum

size subset of X such that G = F|Y is t-intersecting. Then |G| ≤ f(k) where f is a function

that depends only on k.

Proof If n ≤ 2k the lemma is trivial because n is a function of k. So we may assume n > 2k.
Extend F to a maximal t-intersecting set system F∗. Let B∗ be the base of F∗. By Lemma 5.2.2,
|B∗| ≤ φ(k). If we let A = ∪B∈B∗B, then |A| ≤ ϕ(k) for some function ϕ that depends only on
k. By Lemma 5.2.3, B∗ is t-intersecting. Because every member F ∈ F∗ contains some member
B ∈ B∗, F∗|A is t-intersecting. Since F ⊆ F∗, F|A is also t-intersecting. By the minimality of
Y , |Y | ≤ |A|. It follows that |G| ≤ f(k).

Theorem 5.2.5. Let F ∈ X(k) be a t-intersecting set system, X = [n]. Suppose for c = t+1
t+2 ,

d(F) ≤ c|F|. Then for n > n0(k), |F| ≤ (t + 2)
(
n−t−2
k−t−1

)
with “=” if and only if there exists

D ∈ X, |D| = t + 2, and F = {F ∈ X(k) : |F ∩D| = t + 1}, denoted by F∗
t+2,t+1.

Proof By way of contradiction, suppose F is maximal and |F| > (t + 2)
(
n−t−2
k−t−1

)
. Let Y be

the minimum subset of X such that F|Y is t-intersecting. Let G = F|Y . By Lemma 5.2.4,
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|G| ≤ f(k). Clearly |G| ≥ t for every G ∈ G, and if |G| = t for some G then F is triv-
ial, contradicting the degree condition. So we may assume |G| ≥ t + 1 for each G ∈ G. Let

Gt+1 = {G ∈ G : |G| = t + 1}. For G ∈ G with |G| = l, there are
(n−|Y |

k−l

)
ways to complete G to

F ∈ F . So for large n, in order for |F| > (t + 2)
(
n−t−2
k−t−1

)
, we must have |Gt+1| ≥ t + 2.

Case 1. There exist distinct G1, G2, G3 ∈ Gt+1 with G1 ∩G2 = G1 ∩G3.
Let D1 = G1 ∩ G2, then |D1| = t, G1 = D1 ∪ {x1}, G2 = D1 ∪ {x2}, G3 = D1 ∪ {x3}, with
x1, x2, x3 all distinct. We claim that G ⊇ D1 for every G ∈ Gt+1. If not, |G ∩ D1| ≤ t − 1.
But G must t-intersect G1, G2, G3, so {x1, x2, x3} ⊆ G, and |G ∩ D1| ≥ t − 1. Therefore
|G| ≥ |D1| + |{x1, x2, x3}| = t − 1 + 3 = t + 2, a contradiction. This proves the claim. Now
Gt+1 is trivial. Pick i ∈ D1. Let H = {F ∈ F : i /∈ F}. Then |H| <

(
n−t−2
k−t−1

)
for large n. But

|F|−|H|
|F| < c. So |F| <

(
n−t−2
k−t−1

)
for n > n0(k), a contradiction.

Case 2. There do not exist 3 members in Gt+1 as described in Case 1.
Pick G1, G2 ∈ Gt+1. Let D1 = G1∩G2, D = G1∪G2. Then |D1| = t, |D| = t+2, G1 = D1∪{x1},
G2 = D1∪{x2}. For every G ∈ Gt+1, by assumption, |G∩D1| ≤ t−1. But G must t-intersect G1

and G2, so {x1, x2} ⊆ G, and |G ∩D1| = t− 1. Therefore |G ∩D| = t + 1. Since |Gt+1| ≥ t + 2,
all the t + 2 (t + 1)-subsets of D must be present in Gt+1. Now for every G ∈ G such that
|G∩D| ≤ t we can find G′ ∈ Gt+1 satisfying |G∩G′| ≤ t− 1, hence |G∩D| ≥ t+1, ∀G ∈ G. By
the minimality of Y , we have Y = D. We claim that D /∈ G. If not, let G = {G1, G2 · · · , Gt+2}.
So G = Gt+1 ∪ {D}. Let G0 = D. Let Fi = {F ∈ F : F ∩ D = Gi}, i = 0, 1, · · · , t + 2. So
F0,F1, · · · ,Ft+2 is a partition of F . Let fi = |Fi|, s = f1 + f2 + · · · + ft+2. By the struc-
ture of Gt+1, because every point appears in G0 = D, the sum of every t + 1 numbers out of
f1, f2, · · · , ft+2 is no more than t+1

t+2s. Therefore f1 = f2 = · · · = ft+2. If D ∈ G, the degree
condition will be violated. This proves the claim. Now G = {G ⊆ D : |G| = t + 1}. It follows
that |F| ≤ (t + 2)

(
n−t−2
k−t−1

)
. Clearly “=” holds if and only if F ∼= F∗

t+2,t+1.

The special case t = 1 is the following corollary.

Corollary 5.2.6. Let F ∈ X(k) be an intersecting set system. If d(F) ≤ 2
3 |F|, then for n >

n0(k), |F| ≤ |F(3,2)| with “=” if and only if F is isomorphic to F(3,2), where F∗
(3,2) = {F ∈

X(k) : |F ∩ {1, 2, 3}| = 2}.
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5.3 Minimum complementary degree of an intersecting set sys-

tem

In this section we turn to the minimum complementary degree of intersecting set systems.
We will look at the problem of how large can the minimum complementary degree be for an
intersecting set system and let c(i) = |F| − d(i), c(F) = min

i∈X
c(i).

Theorem 5.3.1. Let F ⊆ X(k) be a t-intersecting set system, |X| = n. Then for n > n0(k),

c(F) ≤
(
n−t−2
k−t−1

)
.

Proof Let G be defined as before.
(1) If Gt 6= ∅, then there exists G ∈ Gt, so by definition of G, every F ∈ F contains G, thus
c(F) = 0. So assume Gt = ∅.
(2) If Gt+1 = ∅, since there are

(
n−l
k−l

)
ways to extend an l-set to F ∈ F , c(F) ≤ |F| ≤

f(k)
(
n−t−2
k−t−2

)
≤

(
n−t−2
k−t−1

)
for some function f(k). The first inequality is obvious, the second

follows from Lemma 5.2.4, and the third holds for n > no(k).
(3) If |Gt+1| = 1, let G1 ∈ Gt+1. Pick i ∈ G1. Then every G ∈ G that does not contain i must
have cardinality at least t + 2. The same argument as in (2) works.
(4) Let G1, G2 ∈ Gt+1, then |G1∩G2| = t, |G1∪G2| = t+2. Pick i ∈ G1∩G2. Let F ∈ F . In or-
der for F to t-intersect both G1 and G2, F must contain G1∪G2\{i}. But |G1∪G2\{i}| = t+1.
By the same argument as in (2), c(i) ≤

(
n−t−2
k−t−1

)
for n > n0(k).

The special case t = 1 is the following corollary.

Corollary 5.3.2. Let F ∈ X(k) be an intersecting set system. Then when n > n0(k), c(F) ≤(
n−3
k−2

)
.
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