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Abstract

Mathematical Modeling and Analysis of

Epidemiological and Chemical Systems

Calistus N. Ngonghala

This dissertation focuses on three interdisciplinary areas of applied mathematics, mathe-

matical biology/epidemiology, economic epidemiology and mathematical physics, intercon-

nected by the concepts and applications of dynamical systems.

In mathematical biology/epidemiology, a new deterministic SIS modeling framework for

the dynamics of malaria transmission in which the malaria vector population is accounted

for at each of its developmental stages is proposed. Rigorous qualitative and quantitative

techniques are applied to acquire insights into the dynamics of the model and to identify and

study two epidemiological threshold parameters R∗ and R0 that characterize disease trans-

mission and prevalence, and that can be used for disease control. It is shown that nontrivial

disease-free and endemic equilibrium solutions, which can become unstable via a Hopf bifur-

cation exist. By incorporating vector demography; that is, by interpreting an aspect of the

life cycle of the malaria vector, natural fluctuations known to exist in malaria prevalence are

captured without recourse to external seasonal forcing and delays. Hence, an understanding

of vector demography is necessary to explain the observed patterns in malaria prevalence.

Additionally, the model exhibits a backward bifurcation. This implies that simply reducing

R0 below unity may not be enough to eradicate the malaria disease. Since, only the female

adult mosquitoes involved in disease transmission are identified and fully accounted for, the

basic reproduction number (R0) for this model is smaller than that for previous SIS models

for malaria. This, and the occurrence of both oscillatory dynamics and a backward bifur-

cation provide a novel and plausible framework for developing and implementing optimal

malaria control strategies, especially those strategies that are associated with vector control.

In economic epidemiology, a deterministic and a stochastic model are used to investigate

the effects of determinism, stochasticity, and safety nets on disease-driven poverty traps;



that is, traps of low per capita income and high infectious disease prevalence. It is shown

that economic development in deterministic models require significant external changes to

the initial economic and health care conditions or a change in the parametric structure of

the system. Therefore, poverty traps arising from deterministic models lead to more limited

policy options. In contrast, there is always some probability that a population will escape or

fall into a poverty trap in stochastic models. It is demonstrated that in stochastic models, a

safety net can guarantee ultimate escape from the poverty trap, even when it is set within

the basin of attraction of the poverty trap or when it is implemented only as an economic

or health care intervention. It is also shown that the benefits of safety nets for populations

that are close to the poverty trap equilibrium are highest for the stochastic model and lowest

for the deterministic model. Based on the analysis of the stochastic model, the following

optimal economic development and public health intervention questions are answered:

(i) Is it preferable to provide health care, income/income generating resources, or both

health care and income/income generating resources to enable populations to break cycles

of poverty and disease; that is, escape from poverty traps? (ii) How long will it take a

population that is caught in a poverty trap to attain economic development when the initial

health and economic conditions are reinforced by safety nets?

In mathematical physics, an unusual form of multistability involving the coexistence of

an infinite number of attractors that is exhibited by specially coupled chaotic systems is

explored. It is shown that this behavior is associated with generalized synchronization and

the emergence of a conserved quantity. The robustness of the phenomenon in relation to a

mismatch of parameters of the coupled systems is studied, and it is shown that the special

coupling scheme yields a new class of dynamical systems that manifests characteristics of

dissipative and conservative systems.
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Chapter 1

Introduction and General Review of Dynamical

System Concepts

1.1 Introduction

This dissertation focuses on three interdisciplinary areas of applied mathematics, mathe-

matical biology/epidemiology, economic epidemiology and mathematical physics, intercon-

nected by the notions and applications of dynamical systems. In mathematical biology, we

shall study the dynamics of malaria transmission through a new modeling framework in

which the malaria vector population is accounted for at each of its developmental stages.

In economic epidemiology, we shall explore the interplay between per capita income and

infectious disease prevalence, and propose intervention strategies that can enable societies

to escape from traps of disease and poverty. In mathematical physics we shall investigate an

unusual form of multistability involving the coexistence of an infinite number of attractors

that arises from a new class of dynamical systems obtained by coupling chaotic systems in

a special way. We organize the dissertation as follows:

In Part I, we propose and study a new deterministic SIS (Susceptible-Infectious-Susceptible)

model for the dynamics of malaria transmission that explicitly integrates mosquito demogra-

phy together with its interaction with the human population and the disease dynamics. This

model differs from standard SIS models in that the mosquito population is further subdivided

into unfed and resting mosquitoes present at mosquito breeding sites, unfed and fertilized

mosquitoes questing for human blood meals in human habitats, and fed and reproducing
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mosquitoes returning from human habitats to mosquito breeding sites. The mosquitoes in-

volved and accounted for in disease transmission are only the female mosquitoes that are

questing for human blood. Our main goals are to capture the natural oscillations that are

known to exist in the prevalence of malaria without recourse to external seasonal forcing,

compute a new basic reproduction number for malaria and compare it with that for the

classical Ross’ model [1], expose possible reasons why malaria eradication is difficult, and

propose possible areas of malaria control based on our analysis.

The interplay between income and infectious disease prevalence is examined in Part ??.

Here, we use standard SIS deterministic and stochastic models in which the contact and

recovery rates depend on income and an additional equation that models income to pro-

vide a theoretical structure for understanding general feedback between income and disease

prevalence. We show that both models possess three equilibrium solutions, a stable high

income-low disease prevalence equilibrium (also called development equilibrium), a stable

low income-high disease burden equilibrium (poverty trap), and an unstable intermediate

income–intermediate disease equilibrium. We also illustrate that with stochasticity, the sys-

tem approaches the development equilibrium for some simulations and the poverty trap for

others for the same set of parameters and initial data. Hence, the stable equilibrium point

to which the system relaxes in the long-term is not fully determined by the initial conditions

as is the case with determinism. Furthermore, we demonstrate that deterministic models

can result in poverty traps that can be broken only by substantial external changes to the

initial epidemiological and economic conditions, whereas in stochastic models there is always

some probability that a population will leave or enter a poverty trap. Finally, we use the

stochastic model to show that a safety net, defined as an externally enforced minimum level

of health care or economic condition below which a population is not allowed to fall, can

guarantee ultimate escape from the poverty trap even if the safety net is set within the basin

of attraction of the poverty trap or if the safety net is imposed only in the form of a public

health or economic measure. We conclude this part with some policy interpretations, one of

which answers the question, “which is the most effective method to enable populations escape

from disease-driven poverty traps: provide the populations with money/money generating

resources, health care, or both money/money generating resources and health care?”
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In Part III, we investigate two coupled chemical systems possessing an infinite number of

coexisting attractors. We show how four different coupling schemes for the same dynamical

system yield the dynamics of extreme multistability. In all four cases, this phenomenon is

related to generalized synchronization of the two coupled systems as well as the emergence of

a conserved quantity. Using the first coupling scheme, we show that the conserved quantity is

connected with a conservation law in which all intermediate chemical reactants are weighted

by their reaction time constants and is therefore given by the initial concentrations of the

intermediates. This is also true for the fourth coupling scheme. For the second and third

coupling schemes, this conserved quantity appears dynamically only in the long-term limit as

time approaches infinity. Hence, the dependence on the initial conditions is more complex.

We show that due to the emergence of this conserved quantity the state space is divided

into submanifolds, each of them characterized by a certain value of the conserved quantity

as well as a particular attractor. Since the conserved quantity can take any real value we

obtain infinitely many attractors of different periods.

We now present a brief overview of some basic concepts of dynamical systems.

1.2 General Review of Dynamical System Concepts

Here, we briefly review some basic concepts of dynamical systems that will be essential in

our studies. These include the notions of equilibria, attractors, multistability, bifurcations,

chaos, dissipative systems, conservative systems and synchronization.

1.2.1 Dynamical Systems

Living and most physical systems interact with other systems and evolve with time. These

are examples of dynamical systems. Dynamical systems are generally concerned with the

time evolution of processes in response to specified rules. Such systems can either be discrete,

evolving in discrete time, or continuous, evolving in continuous time [2]. Discrete dynamical

systems are defined over the set of integers and they usually assume the form

xn+1 = f(xn) (1.1)
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where f = (f1, f2, f3, ..., fn), xi =
(

x
(1)
i , x

(2)
i , x

(3)
i , ..., x

(N)
i

)

, (i = n, n + 1), n is the current

time and n + 1 is the future time. Notice that time here is measured in terms of discrete

intervals such as days, years, generations, etc. and that equation (1.1) represents a system of

N difference equations. On the other hand, continuous dynamical systems are defined over

the set of real numbers and they are usually described by differential equations of the form

ẋ = f(x(t)) (1.2)

where x, f ∈ Rn and the dot on the variables indicates differentiation with respect to time

[3]. This is an n−dimensional system of ordinary differential equations. Continuous dy-

namical systems also include systems that change with both time and space. In fact, many

interesting physical phenomena change with both time and space. For example, to model

the transmission of a vector-borne disease, we might not be interested only at the evolution

of the number or proportion of the vector or host with time but, more importantly, the

evolution in time and distribution in space of the vector and/or host. This gives the system

both a temporal and spatial structure.

In both equations (1.1) and (1.2), x ∈ Rn represent the state variables of the system

while f ∈ Rn measure how fast the state variables change. Our studies shall be based

entirely on continuous dynamical systems. The variables in the right-hand-side functions

for each equation in (1.2) may depend on each other in a linear or nonlinear fashion. The

nonlinear case is more interesting and leads to the theory of nonlinear dynamics, which has

far reaching applications to real-world phenomena. With the passage of time, the theory of

dynamical systems has gained strength in enhancing the understanding of many phenomena

in disciplines such as engineering and the physical, biological, medical and social sciences.

Examples of dynamical systems include population models such as the food chain and epi-

demiological models, chemical systems such as the Belousov–Zhabotinsky (BZ) reaction,

motion of planets under gravitational forces, market prices, interest on bank loans, etc. [4].

See Refs. [3–6] for more information on dynamical systems.

Unfortunately, most dynamical systems that describe real-world phenomena are strongly

nonlinear and analytical solutions can not easily be found in order to access their time evolu-

tion. Consequently, researchers resort to qualitative methods in order to acquire insights into
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the dynamical behaviors of such systems. Numerical techniques are also employed to access

the different qualitative and quantitative behaviors of nonlinear dynamical systems. Gen-

eral qualitative methods in the theory of nonlinear dynamics include the determination and

classification of equilibrium points, the study of the stability, appearance and disappearance

of these equilibria, and the transitions between them as a system parameter is varied.

1.2.2 Equilibria, Stability, Attractors and Bifurcations

Due to nonlinearities, many dynamical systems cannot be solved analytically. To acquire

insight into the long-term behavior of such systems, it is essential to begin by determining

rudimentary solutions that can enable us to examine the behavior of all other solutions.

Definition 1.2.1 (Equilibrium Solution). Let x∗, f ∈ Rn, then x∗ is an equilibrium or

steady-state solution of the dynamical system defined by the autonomous system of first order

ordinary differential equations (1.2) if f(x∗) = 0 [7].

That is, an equilibrium solution or point of a dynamical system is a solution or point that

does not evolve with time. Equilibrium solutions are also called fixed, steady-state, or

stationary solutions. Dynamical systems can possess one or more equilibria. An equilibrium

point is called hyperbolic if none of the eigenvalues of the corresponding linear system has

a zero real part. Nodes, saddles and spirals are hyperbolic equilibria while centers are non-

hyperbolic equilibria. For more on equilibria, see [8, 9]. Trajectories that originate close to

an equilibrium solution of a dynamical system can either stay close to the solution forever,

stay close to the solution and eventually converge to it in the long run or, move away from

the solution. This leads us to the concept of stability of solutions to dynamical systems. The

concept of stability plays a crucial role in characterizing the long-term behavior of solutions

to dynamical systems without necessarily solving the systems.

Definition 1.2.2 (Stable Solution). A solution x∗(t) ∈ Rn of the dynamical system (1.2)

is said to be stable if given ǫ > 0, ∃ δ(ǫ, t0) > 0 such that for t ≥ t0 and for any neighboring

solution x(t) ∈ Rn,

‖x(t)− x∗(t)‖ < ǫ whenever ‖x(t0)− x∗(t0)‖ < δ [7].
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The solution x∗(t) ∈ Rn of a dynamical system is said to be locally stable if neighboring

trajectories or solutions that originate close to x∗(t) stay close it over time. The solution

x∗(t) ∈ Rn is locally asymptotically stable if it is locally stable and slight or infinitesimal

small perturbations from it decay to zero over time. Additionally, the solution x∗(t) ∈ Rn

is globally asymptotically stable if it is stable and any perturbations from the solution decay

to zero or if trajectories originating from any initial data eventually relax to the solution.

The stability of hyperbolic equilibria of both linear and nonlinear dynamical systems can be

completely determined from the eigenvalues of the corresponding linearized system. Such

equilibria are asymptotically stable if the real components of all eigenvalues of the linearized

system are negative and unstable if at least one of the eigenvalues of the linearized system

has a negative real part. The process of investigating the stability of equilibria of a nonlinear

dynamical system through the corresponding linear system is termed linear stability analysis.

See Appendix A for the principle of linearized stability. This process turns out not to be

very useful in the case of non-hyperbolic equilibria. Lyapunov functions are more useful

in accessing the stability of non-hyperbolic equilibria. It is worth noting that Lyapunov

functions can also be used for the case of hyperbolic equilibria. Moreover, when Lyapunov

functions be found, they can easily be used to establish global stability of equilibria as

opposed to linear stability analysis that deals more with local stability.

Definition 1.2.3 (Lyapunov Function). A positive definite scalar-valued function V is a

Lyapunov function for the dynamical system (1.2), if V̇ is negative semi-definite or negative

definite with respect to the dynamical system (1.2) [7].

Lyapunov functions provide a sufficient but not necessary condition for assessing the stability

of equilibria without necessarily solving the system explicitly. As mentioned above, Lyapunov

functions are also used for establishing global stability. Even though Lyapunov functions play

a crucial role in establishing the stability of equilibria, there is, however, no general approach

for constructing them [10]. Generally, one has to approach this through trial-an-error.

Definition 1.2.4 (Attractor). An attractor is defined as the smallest invariant1 closed set

1A set is invariant if solution curves that originate from the set remain in it [11]. Common examples of

invariant sets include periodic orbits.
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A ⊆ Rn contained in an open set U such that ∀x0 ∈ U, d(A, x∗(t)) → 0 as t → ∞ where

x∗(t) is the solution of the initial value value problem

ẋ = f(x(t)), x(0) = x0.

From the above definition, it is clear that an attractor is a set in a dynamical system’s phase

space2 where trajectories or points that get close to the set eventually approach it asymp-

totically in the long run irrespective of the initial conditions. Hence, equilibria that are

asymptotically stable are attractors. An attractor can be a single point, for instance a single

fixed point in one-dimensional space, a stable node or focus, a limit cycle3, a combination of

two or more of the above or even a strange attractor (see Sec. 1.2.3). Some dynamical sys-

tems, especially coupled systems and systems in neuroscience, biology and physics may have

two or more coexisting attractors [12, 13]. Dynamical systems with two or more co-existing

attractors for a specified set of parameters are said to exhibit multistability. The special case

in which we have two co-existing attractors is referred to as bistability. Multistability can

arise as a result of the coexistence of two or more stable fixed points, stable fixed points and

a limit cycles, etc. Attractors cannot be discussed in isolation without invoking the notion

of basin of attraction. By a basin of attraction or domain of attraction we are referring

to the collection of all possible initial conditions of a dynamical system that converge to a

particular attractor of the system over time. Basins of attraction become more complex for

the case of multistable systems. In such systems, the basins of attraction may be riddled or

even intermingled in extreme cases [14–16].

One other important aspect of dynamical systems that is worth mentioning is the notion

of bifurcations. A variation in the value of a parameter in a dynamical system can trigger a

change in the stability of an equilibrium point or a change in the number of equilibria. That

is, as a system’s parameter is varied, a dynamical system can witness a change in which a

stable solution becomes unstable, an unstable solution becomes stable, previous solutions

disappear or solutions with new qualitative properties emerge. Parameters that give rise to

2By phase space of a system, we are referring to the space of all possible state variables of the system.
3A limit cycle is an isolated closed orbit (or curve) in phase space that is not a member of a family of

continuous curves. Many practical systems in chemistry and population dynamics exhibit periodic behavior.

Note that the orbits of periodic solutions constitute limit cycles.
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changes in the qualitative behaviors of dynamical systems are called bifurcation parameters.

Definition 1.2.5 (Bifurcation). A bifurcation refers to a change in the qualitative properties

of a dynamical system in response to changes in specific system parameters [17].

Generally, bifurcations can be classified as local or global. A local bifurcation refers to

a change in the stability properties of equilibrium solutions of a dynamical system as the

threshold value of a parameter in the system is traversed. A gain or loss of stability of

equilibrium solutions of dynamical systems usually occurs at the same time at which equi-

librium solutions either emerge or disappear. Hence, the above definition ties with the more

general use of the word bifurcation to denote the emergence and departure of equilibria

to dynamical systems. Many types of local bifurcations have been identified and explored.

These include, transcritical bifurcations, period-doubling bifurcations, pitchfork bifurcations,

saddle-node bifurcations, Hopf bifurcations, etc.

Definition 1.2.6 (Transcritical Bifurcation). A transcritical bifurcation occurs when an

equilibrium solution of a dynamical system switches stability (from stable to unstable or vice

versa) as the threshold value of a parameter in the system is traversed.

It is worth mentioning that at any point in time, there is always a stable and an unstable

equilibrium point on either side of the threshold parameter mentioned in Definition 1.2.6.

Definition 1.2.7 (Saddle-node Bifurcation). A saddle-node bifurcation occurs when a stable

node and an unstable saddle come together and annihilate one another.

For example, the one-dimensional equation ẋ = r + x2 exhibits a saddle-node bifurcation.

Unlike a transcritical bifurcation, a saddle-node bifurcation witnesses a disappearance of

equilibria. The single species logistic growth equation ẋ = rx−x2 is a simple example of an

equation that can be used to demonstrate the occurrence of a transcritical bifurcation.

Definition 1.2.8 (Period-doubling Bifurcation). A period-doubling bifurcation is one that

result in the creation of new orbits of periodic solutions whose periods are two times those of

the previous limit cycles from each bifurcation point.
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Period-1 oscillations have a single and regular maximum, period-2 oscillations have two

alternating high and low or low and high maxima and so forth.

Another type of bifurcation that is witnessed mostly in symmetric systems is a pitchfork

bifurcation. A consequence of pitchfork bifurcations is the emergence and disappearance

of pairs of equilibria. Pitchfork bifurcations can be either supercritical or subcritical. In

a supercritical pitchfork bifurcation, a stable equilibrium solution gives birth to two stable

branches of equilibrium solutions that are symmetrical about the original equilibrium solution

which is now unstable. In a subcritical pitchfork bifurcation, an unstable equilibrium solution

gains stability accompanied by the emergence of a symmetric pair of unstable equilibria.

Supercritical and subcritical pitchfork bifurcations are generally described in the literature

through the prototype one-dimensional equations ẋ = µx−x3 and ẋ = µx+x3, respectively.

See Refs. [7, 11] for an extensive exploration of these local bifurcations.

Definition 1.2.9 (Hopf Bifurcation). A Hopf bifurcation occurs when the real part of a

pair of imaginary eigenvalues of the linearized version of a nonlinear system switches from

negative to positive (or moves from the left half plane to the right half plane).

A Hopf bifurcation results to the emergence of periodic solutions. A Hopf bifurcation can

either be supercritical, in which case a stable spiral switches to an unstable spiral that is

enclosed within a stable limit cycle or subcritical, in which case the ensuing limit cycle is

unstable. See, for example, Refs. [11, 18] for a formal definition of the Hopf bifurcation and

a detailed discussion on bifurcations. Bifurcation diagrams depicting pitchfork bifurcations

are analogous to those depicting Hopf and period-doubling bifurcations.

A global bifurcation arises as a result of a collision between equilibrium solutions of a

dynamical system and larger invariant sets of the system. Examples of global bifurcations

include homoclinic bifurcations, in which there is a collision between a saddle and a limit

cycle, heteroclinic bifurcations, in which there is a collision between at least two saddles and

a limit cycle, infinite-period bifurcations, which involve the appearance of both a saddle and

a stable node on a limit cycle, and chaotic attractors [19]. Compared to local bifurcations,

global bifurcations are complex and can not easily be characterized through stability analysis.

Points at which bifurcations occur are called bifurcation points. Bifurcations are com-
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monly illustrated on diagrams referred to as bifurcation diagrams. On bifurcation diagrams,

the long-term maximum value, minimum value, average value, frequency, etc., of a variable

of interest is plotted on the ordinate against the bifurcation parameter, on the abscissa. Solid

lines are typically utilized to denote stable equilibria while broken lines are used to denote

unstable equilibria. See Refs. [8, 9, 11, 20] for more information on bifurcations.

1.2.3 Chaos and Strange Attractors

The wide range of dynamical behavior arising from nonlinear dynamical systems has at-

tracted much attention in the scientific world. One such behavior is chaos.

Definition 1.2.10 (Chaos). Chaos is deterministic aperiodic motion that is complex but

ordered, unpredictable in the long run and manifests sensitivity to initial conditions [11, 21].

Each of the key words in the definition 1.2.10 has a specific meaning. The word deterministic

denotes the existence of a governing rule to the motion. Even though chaotic systems show

irregularity in order or pattern, they are not random. Aperiodicity indicates that there

is no repetition in the motion or behavior as is the case for periodic behavior. Effects of

slight disturbances persist in aperiodic systems. Sensitive dependence on initial conditions

indicates that solution curves or trajectories that originate close to each other move further

and further away from each other over time. This aspect of chaos can be quantified through

the largest Lyapunov exponent. A positive largest Lyapunov exponent indicates that nearby

trajectories grow further apart in an exponential fashion as time progresses, while zero and

negative largest Lyapunov exponents denote limit cycles and fixed points respectively [22].

Sensitive dependence on initial conditions indicates that motion can be predicted initially

and within a short time but not in the long-term [23].

Systems that exhibit chaos are said to be chaotic. Chaos surfaces in almost every disci-

pline, mathematics, physics, chemistry, ecology, finance, etc. Some examples of well-studied

chaotic systems include the Lorenz system [24], the Rössler model [25], the three-variable

food chain model [26], the Hindmarsh-Rose neuron model [27], the BZ reaction in chemistry

[11], etc. Chaotic systems generally attract questions with regard to the emergence of the

chaos. This has given rise to many studies on the various routes to chaos. Identification and
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description of the route to chaos has been shown to play a crucial role in the interpretation

of experimental and numerical observations. For instance, it may be quite difficult to decide

whether an experimental system is chaotic as a result of errors or noise in the system. This

difficulty can be resolved by understanding the route to chaos and by carrying out time series

analysis [28]. A number of routes to chaos have been identified and investigated [3, 28, 29].

The simplest of these routes is period-doubling. Period-doubling usually culminates in chaos,

whereby the period is infinite. In some systems, chaos is followed by reverse period-doubling.

The limit set of chaotic trajectories is termed a strange attractor [11, 30].

1.2.4 Dissipative and Conservative Systems

Many systems, such as open systems, interact with their environments. Interaction be-

tween systems and their environments may result in dissipation, loss, gain or conservation of

certain properties of the system such as matter, energy, area, volume, etc. Systems in which

such properties are dissipated or phase space volume shrinks over time are called dissipative

systems [11]. A dissipative system supplies less energy or information to its surroundings

than it absorbs [31, 32]. We now quote, Willem’s mathematical definition of a dissipative

system [31]. The original variables in the definition have been changed in order to ensure

consistency in the variables used in this chapter.

Definition 1.2.11 (Dissipative Systems). Let (x, y, z) ∈ Rm × Rn × Rp where x, y, and z

are, respectively, the state, output, and input values. Then the dynamical system

ẋ = f(x, z), y = g(x, z) (1.3)

is said to be dissipative with respect to the function

h : Rm ×Rn → R
if there exists a function

V : Rm → R
such that

V̇ (x(.)) ≤ h(z(.), y(.))

for all x(.), y(.), z(.) in the set of all solutions (x, y, z) : R→ Rm ×Rn ×Rp [31, 33].
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Notice that the concept of dissipative systems in open systems generalizes Lyapunov

theory in closed systems, with dissipation in the open systems corresponding to the notion

of stability in the closed systems [33]. The long-term behavior of a dissipative system is

characterized by an attractor that is the target of trajectories in the basin of attraction in

phase space. Small perturbations of the system from these attractors decay to zero over time,

and therefore, the long-term dynamics within the basin of attraction relax to the attractor.

[21]. Dissipative systems generally emerge in physical contexts associated with energy dis-

sipation, viscosity, friction, etc. [11]. Examples of dissipative dynamical systems include

electrical circuits, mechanical systems, thermodynamic systems, the Belousov-Zhabotinsky

(BZ) reaction, the autocatalator model, and the three-variable food chain model. Many

studies have been carried out on dissipative systems, for example, see Refs. [31–38].

Although many physical or real-world systems are naturally dissipative, some are conser-

vative or nearly conservative, for example, the solar system. In conservative systems, there is

no dissipation or loss of energy or shrinking of phase space volume. Rather, these properties

are conserved. Hence, properties of the system such as total energy are constant over time

and, generally, Hamiltonian systems are conservative. In contrast to dissipative systems, the

long-term behavior of conservative systems depends on initial conditions.

1.2.4.1 Illustration of Conservative and Dissipative Systems: The Simple Pendulum

Periodic motion is common in the real world, which may be due to an initial push or

the effect of an external force, for example, swinging of tree leaves and branches under the

influence of the wind, mechanical motion such as the motion of a mass-spring system, or

the pendulum. The simple pendulum is one of the most fundamental nonlinear dynamical

systems, which consists of a point mass attached to the lower end of a massless rod with

its upper end fixed to a point. The simple pendulum exhibits periodic phenomena and

its motion can be either conservative or dissipative depending on whether the system is

undamped or damped. The motion of the simple pendulum is generally described by the

following second-order ordinary differential equation:

θ̈ + bθ̇ +
g

l
sin θ = 0. (1.4)
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Here, θ represents the angle (measured in radians) or the angular displacement, l represents

the length of the pendulum rod, b > 0 is the ratio of the damping coefficient (or damping

strength) to the mass of the pendulum bob, g is the acceleration due to gravity and the dot

on θ denotes differentiation with respect to time, t. An essential assumption made in the

derivation of equation (1.4) is that the weight of the rod is negligible compared to the mass

of the point object. In preliminary studies of the dynamics of the simple pendulum, the

approximation sin θ ≃ θ, for small θ is used to simplify the nonlinear equation (1.4) into a

linear equation whose solution can easily be determined analytically.

1.2.4.2 Undamped Simple Pendulum (Undamped Oscillator)

In the absence of friction and/or other damping forces, b = 0 and Eq.. (1.4) reduces to

θ̈ +
g

l
sin θ = 0. (1.5)

By setting θ̇ = ν where ν represents the angular velocity of the simple pendulum, we can

rewrite equation (1.5) as the following system of first order ordinary differential equations:

θ̇ = ν, (1.6)

ν̇ = −g

l
sin θ. (1.7)

The equilibrium solutions of this system are (θ∗, ν∗) = (0, 0) and (θ∗, ν∗) = (nπ, 0), where

n ∈ Z and the Jacobian matrix of the system evaluated at (θ∗, ν∗) is

J(θ∗, ν∗) =




0 1

−g

l
cos θ∗ 0



 .

If λ is an eigenvalue of J , then we have the following characteristic equation:

λ2 +
g

l
cos θ∗ = 0. (1.8)

At (θ∗, ν∗) = (0, 0), λ1,2 = ±i
√

g/l. Hence, the origin is a center, which is neutrally

stable.

For the equilibrium solution (θ∗, ν∗) = (nπ, 0), we consider the case in which n is even and

the case in which n is odd. The characteristic equation and, hence, the eigenvalues reduce to
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those obtained above when n is even. Therefore, the equilibrium solution (nπ, 0) is a center

for even n. For odd n, λ1,2 = ±
√

g/l, and therefore, the equilibrium solution (nπ, 0) is a

saddle point. Simulations confirming these characteristics are presented in Fig. 1.1.

θ

ν
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Figure 1.1. Simulation results for the undamped simple pendulum system with g = 9.81

and l = 1. The equilibrium solution (θ∗, ν∗) = (nπ, 0) is a center (denoted

by green filled circles) for even n and a saddle point (denoted by red filled

circles) for odd n. Notice that the horizontal line that passes through the

origin and the vertical lines are nullclines. Equilibria occur at the intersection

of these nullclines. The arrowed lines represent the direction fields.
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The system (1.6)-(1.7) is conservative with a conserved quantity, the total energy E. One

way to determine the equation for the phase paths is to divide equation (1.6) by equation

(1.7) and solve the ensuing differential equation, which is separable in this particular case.

The division yields
dθ

dν
=

ν

−g

l
sin θ

. (1.9)

Separating the variables and integrating yields,

1

2
ν2 =

g

l
cos θ + Constant ⇔ 1

2
ν2 − g

l
cos θ = Constant, (1.10)

where 1
2
ν2 is the kinetic energy of the system and g

l
cos θ is the potential energy. Hence,

E =
1

2
ν2 − g

l
cos θ = Constant.

The fact that all equilibrium solutions are only centers and saddles is consistent with the

system being conservative or Hamiltonian since such systems do not possess nodes and foci.

Alternatively, we can use the standard approach of Jordan and Smith [7] to show that

the system of equations (1.6)-(1.7) is Hamiltonian. To this effect, we need to find a function

E that satisfies the conditions

∂E

∂ν
= ν, (1.11)

∂E

∂θ
=

g

l
sin θ. (1.12)

Since ∂
∂θ
(ν) + ∂

∂ν

(
−g

l
sin θ

)
= 0, as each of the partial derivatives is clearly zero, E is the

Hamiltonian function of the system. Hence, if θ(t) and ν(t) are specific solutions, using the

chain rule, we obtain the following governing equation for the associated phase path:

dE

dt
=

∂E

∂θ

dθ

dt
+

∂E

∂ν

dν

dt
=
(g

l
sin θ

)

ν + ν
(

−g

l
sin θ

)

= 0. (1.13)

Now,
dE

dt
= 0 ⇒ E(θ, ν) = Constant. (1.14)

Integrating (1.11) with respect to ν and (1.12) with respect to θ gives

E(θ, ν) =
1

2
ν2 + A(θ),

E(θ, ν) =
g

l
cos θ +B(ν),
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where A and B are arbitrary functions of single variables. The only time the above two

equations will be equal is when A(θ) = g

l
cos θ − C and B(ν) = 1

2
ν2 − C, where C is a

constant. Hence, the phase paths of the system are characterized by the energy equation

E(θ, ν) =
1

2
ν2 − g

l
cos θ = C.

1.2.4.3 Damped Simple Pendulum (Damped Oscillator)

This is the case in which the damping coefficient b is non-zero. Again, by setting θ̇ = ν,

we rewrite (1.4) as the following system of ordinary differential equations:

θ̇ = ν, (1.15)

ν̇ = −g

l
sin θ − bν. (1.16)

Again, the equilibrium solutions of this system are (θ∗, ν∗) = (0, 0) and (θ∗, ν∗) = (nπ, 0),

where n ∈ Z. Linearizing equations (1.15)-(1.16) about (θ∗, ν∗) yields the Jacobian matrix

J(θ∗, ν∗) =




0 1

−g

l
cos θ∗ −b



 .

If λ is an eigenvalue of J , then we have the following characteristic equation:

λ2 + bλ+
g

l
cos θ∗ = 0. (1.17)

At the equilibrium solution (θ∗, ν∗) = (0, 0), λ1,2 =
(

−b±
√

b2 − 4g/l
)

/2, and λ1 < 0

and λ2 < 0 irrespective of whether b2−4g/l < 0 or b2−4g/l > 0. However, when b2−4g/l < 0,

the origin is a stable spiral, and when b2 − 4g/l > 0 the origin is a stable node. Hence, the

origin is asymptotically stable. Note that the origin is still stable when b2 − 4g/l = 0.

For the equilibrium solution (θ∗, ν∗) = (nπ, 0), the case of even n yields the same

stability results as that of the origin. However, for the case of odd n, we have λ1,2 =
(

−b ±
√

b2 + 4g/l
)

/2, and both eigenvalues are real with one positive and the other neg-

ative. Therefore, the equilibrium solution (nπ, 0), where n is odd is a saddle. As opposed

to the undamped system, we now have only spirals or nodes and saddles, and no centers.

Simulation results are presented in Figs. 1.2-1.3.
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Figure 1.2. Simulation results for g = 9.81, l = 1 and b = 0.5. Note that we have saddles

(denoted by red filled circles) and stable foci (denoted by green filled circles),

corresponding to the case in which b2 − 4g/l < 0.
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Figure 1.3. Simulation results for the damped simple pendulum system for g = 9.81, l = 1

and b = 3.0. In this case, we have stable foci (denoted by green filled circles)

and saddle points (denoted by red filled circles).
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The system (1.15)-(1.16) is dissipative, and we show that there is no conserved quantity

[11]. Rewriting (1.4) as

θ̈ +
g

l
sin θ = −bθ̇

and multiplying through by θ̇ yields

θ̇
(

θ̈ +
g

l
sin θ

)

= θ̇(−bθ̇) ⇔ d

dt

(

1

2

(
dθ

dt

)2

− g

l
cos θ

)

= −b

(
dθ

dt

)2

.

That is,

Ė = −bθ̇2 ≤ 0.

Hence, the energy function E is monotonically decreasing. Therefore, the total energy of the

system is no longer constant, due to it being consumed in overcoming friction.

The analysis in Sections 1.2.4.2 and 1.2.4.3 indicates that the undamped simple pendulum

is conservative. However, on introducing damping or friction, the system becomes dissipative.

1.3 Synchronization

Many natural phenomena, including human activities, occur in synchrony. Synchroniza-

tion easily arises in coupled systems, and the notion is not restricted to physical motion in

coupled dynamical systems. Synchronization also involves the dynamics of coupled systems

that coincide in time or in which the motion of one subsystem seems to precede that of the

other. Studies on synchronization have flourished since the days of Christiaan Hugens, the

first scientist to perceive and communicate the phenomenon in 1665 [39, 40].

Generally, synchronization is a phenomenon in which the asymptotic behaviors of two

or more coupled dynamical systems are in synchrony for coupling strength values beyond

a certain threshold [41]. See Refs. [42, 43] for a mathematical definition of synchroniza-

tion. Synchronization can be achieved in a number of ways, including varying the cou-

pling strength and entrainment generated by external forcing. Introducing the notion of

synchronization in chaotic systems turns out to be interesting and surprising since slight

differences in initial conditions of chaotic systems are amplified over time. Chaos synchro-

nization occurs when identical dynamical behavior is exhibited by two or more coupled
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chaotic dynamical systems [43–46]. Chaos synchronization has useful applications in en-

gineering and it can also be helpfully in understanding some complex real-world systems.

Like other types of synchronization, chaos synchronization can be triggered by external

forcing or a variation in the coupling strength between the systems. Apart from chaos syn-

chronization, other classes of synchronization such as complete or identical synchronization

[47–49], general synchronization [50], phase synchronization [48, 51–53], lag synchroniza-

tion [51, 54], and amplitude envelope synchronization [55] have been identified and studied.
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Chapter 2

Introduction

Malaria, a mass killer communicable disease, is one of the leading causes of morbidity and

death to the human race in many parts of the world. Its devastating impact has persisted for

decades. A February 2010 News Week article [1] states that Malaria is the likely killer of the

boy Pharaoh in about 1324 BC. For more technical details, see the article by Hawass et al. [2].

Despite the longevity of the disease, malaria, which has been brought under control in some

developed countries, still constitutes a major health menace in many developing countries,

where most areas of high endemicity reside. Some African countries, especially countries

within sub-Saharan Africa, still feature among the leading areas of high malaria endemicity

in the world [3]. According to the latest version of the World Health Organization report

[4], an estimated 225 million malaria clinical cases occurred in 2009, with an estimated

781,000 malaria mortalities. Although these statistics reflect a reduction compared to an

estimated 243 million malaria cases, with an estimated 863,000 malaria deaths, 89% of

which occurred in Africa in 2008 [5], the reduction is not sufficient. Generally, susceptibility

to malaria is universal, that is, any person residing in or traveling to a country where malaria

is prevalent is at risk of contracting the disease. However, the impact of malaria is greatest

amongst children below five [6], where one in every five childhood deaths is due to the effects

of the disease, among pregnant women, and among people from non–malarious regions.

Due to easy worldwide transportation and other factors, non-malarious regions of the world

risk experiencing malaria resurgence [7, 8]. In addition to being the paramount source of

morbidity and mortality in malaria endemic regions, malaria also weakens the active and

potential workforce, thereby negatively impacting economic growth in these areas [9]. Gallup
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et al. [10] in their 2001 paper stated, “malaria and poverty are intimately connected.” Hence,

continuous research to find ways to effectively control the disease and bring down the number

of malaria deaths will not only save lives and a future generation, but improve the economic

conditions of the most affected nations, which tend to be very poor.

Recently published research by Rich et al. [11] traces the origin of malaria to chimpanzees.

This breakthrough eliminates the uncertainty in answering questions related to the origin of

malaria that have lingered for years, and opens new avenues for research that may lead to

the discovery of more effective drugs and/or vaccines for malaria.

Malaria is caused by a micro-parasitic organism of the genius Plasmodium and indirectly

conveyed from one human to another1 through female Anopheles mosquito bites. Both male

and female Anopheles mosquitoes feed mostly on nectar, fruit juices, and other plant liquids.

However, the female Anopheline also requires blood for the development of its eggs. In the

course of acquiring a blood meal, a female Anopheles mosquito may pick up the form of

the parasite that is transmissible from humans to mosquitoes (called gametocytes) from an

infectious human or deposit the form of the parasite that is transmissible from mosquitoes

to humans (salivary glands sporozoites) to a human (who may be susceptible or already

infected). A bite from an infectious female Anopheles mosquito initiates the human phase

of the parasite’s life cycle and culminates with the production of gametocytes (the sexual

and transmissible form of the parasite from humans to mosquitoes) in the human blood

system. Four species of human Plasmodium, Plasmodium falciparum, Plasmodium vivax,

Plasmodium ovale and Plasmodium malariae have been identified. Plasmodium falciparum

is the most pernicious species and it is transmitted by the Anopheles gambiae complex. It

accounts for about 80% of malaria related cases annually and this percentage rose to 93 in

2008 [5]. Coexistence of more than a single species of the human malaria parasite in the same

malaria endemic community may be possible. In such cases, humans may harbor multiple

species of the parasite concurrently. Other species of Plasmodium are also found in animals;

1Unlike directly transmissible diseases such as Influenza, TB, HIV, sexually transmitted diseases, etc.,

indirectly transmitted diseases such as dengue fever and malaria are transmitted from one human to another

by an intermediate transmission agent, the disease vector. This leads to a vicious cycle in which humans are

infected by vectors and vectors are infected by humans in turn. However, except in the rare case of blood

transfusion, humans do not infect other humans directly and vectors do not infect other vectors directly.
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for example, Plasmodium reichenowi in the chimpanzee.

Plasmodium has an intricate life process, with part invested within the human host and

the other part within the vector host. The human phase begins with an infectious bite from a

female Anopheles mosquito, which introduces sporozoites (the asexual form of the parasite)

from its salivary glands into the human victim’s bloodstream. These sporozoites make their

way into the victim’s liver through the blood circulatory system and encroach on liver cells

where they undergo asexual replication. At this stage the human is clinically sick but with

no symptoms. After a few days, merozoites are unleashed into the human blood stream.

These merozoites parasitize erythrocytes, where they eventually enlarge into trophozoites.

The human phase culminates with further production of merizoites or gametocytes (sexual

and infectious forms of the parasite) in the human blood system. At this point, there is a

clear manifestation of malaria symptoms2 and the malaria vector can pick up these parasites

during a blood meal. The incubation period3 of the parasite within the human host varies

between 8 and 30 days and it depends on the species of the parasite and the human’s immune

response. The vector phase of the life cycle begins with the female Anopheles mosquito

picking up male and female gametocyte forms of the parasite from the human host during

a blood meal, and culminates with the release of sporozoites into the mosquito’s salivary

glands. It is worth noting that sporozoites constitute the infectious form of the parasite

within the vector host. Generally, completion of the sporogonic cycle of the parasite within

the vector depends on both intrinsic and extrinsic factors, such as the human Plasmodium

species, ambient temperature, humidity, etc. The incubation period of the parasite within

the vector ranges from 10 to 18 days. The life cycles of the four plasmodium species are

similar with only slight differences, for example, in the incubation period. See [12–16] for an

extensive discussion on malaria epidemiology.

2Malaria symptoms include bouts of fever, headache, vomiting, fatigue, pains in the joints and flu-like

symptoms. Manifestation of symptoms ceases once the parasites are destroyed, e.g. through the use of drugs.

3By incubation period, we are referring to the time that elapses between infection and infectiousness. For

humans, this is the time between the introduction of sporozoites into the blood system and the emergence of

gametocytes in the blood system. For the vectors, this is the time between the introduction of gametocytes

in the vector’s gut and the appearance of sporozoites in the salivary glands.
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Temperature is known to affect the developmental stages of the Plasmodium falciparum

parasite [17, 18] and also the metamorphic stages of the mosquito [19]. There is a general

consensus that future changes in climate may alter the prevalence and incidence of malaria;

however, there are conflicting views among authors as to what the role of global warm-

ing is [20–23]. Additionally, some authors have argued that climate and ecology are the

main determinants in the severity of malaria and the difficulty in controlling it [10]. Other

factors that have led to difficulties in controlling the disease in the most affected malaria

countries are shortcomings in socioeconomic conditions, population growth, urbanization,

drug resistance, deficiencies in health care systems, poor sanitation, lack of information and

education, water storage, garbage disposal, unpaved roads, and drainage systems that gen-

erate excellent breeding grounds for disease transmission agents close to human settlements

[19, 24–27]. Thus, research in malaria that integrates the disease dynamics with breeding

sites/demographic properties of the vector and the different developmental stages of the

parasite may provide novel insights toward disease control and eradication.

Collective interdisciplinary research efforts involving the medical field, computer science,

biological and mathematical sciences have been formed, all in an attempt to develop strate-

gies of containing malaria. Multidisciplinary approaches will be necessary in order to deter-

mine the best methods for combatting this virulent disease. However, some policy makers in

developing countries, as well as in the biological and medical sciences, fail to appreciate the

role of mathematical models in epidemiology. On the contrary, mathematical models have

much to contribute to the design, evaluation and implementation of optimal health policies.

Mathematical models provide a means for better understanding the disease dynamics and

transmission in terms of disease variables and underlying parameters, and provide a platform

for new containment strategies as well as health policies. The year 1911 witnessed the dawn

of a new era in studies of malaria with the development of the first mathematical model for

malaria by R. Ross [28]. Ross’ model featured two ordinary differential equations: one for

the total human population and the other for the total mosquito population. This model has

evolved through time, with variations and extensions to incorporate different characteristic

features of malaria. Some of these extensions include splitting the human and vector pop-

ulations into different compartments, thereby giving rise to SI, SIS, SIR, SIRS, SEI, SEIS,
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SEIR, and SEIRS models, where S represents susceptible individuals, E represents latent

or exposed individuals, I represents infectious individuals, and R represents recovered indi-

viduals. Other extensions include the notions of superinfection [29] and acquired immunity

[30–32]. A comprehensive survey of classical mathematical models for malaria can be found

in Refs. [33–35]. More recent mathematical models for malaria include Ngwa and Shu’s

SEIRS model [24], which features a class of partially immune individuals, Ngwa et al. pro-

posed a SEIS [36] model that incorporates a time delay to capture the time lapse between egg

laying and adult mosquito eclosion and also accounts for vector deaths in life stages prior to

the adult stage. In the former model, an explicit expression was derived for the contact rates

based on the fact that mosquitoes have a human biting rate, and for both models threshold

parameters that determine the stability and instability of equilibria were calculated. An

extension of the Ngwa and Shu’s model to incorporate a generalization of the human biting

rate of the mosquitoes and human immigrations was developed and studied by Chitnis et

al. [37, 38]. Other models for malaria have focused on the basic unit of study, the malaria

parasite, for example, Teboh-Ewungkem et al. [39, 40] developed models that examine the

contribution of gametocytes in the spread of malaria and the within-vector dynamics of the

malaria parasite. For a few other recent malaria models see Refs. [41–48].

Although malaria is deadly, it can be cured by administering anti-malaria drugs. How-

ever, in endemic regions, the malaria parasite develops resistance to such drugs [49] and

there is no effective vaccine for malaria. Consequently, prevention is the only other option.

Prevention can be achieved through the use of prophylactic drugs and vector control strate-

gies. To advance, plan, design, and implement effective or better vector control measures, a

clear understanding of mosquito population dynamics, the disease dynamics, and mosquito

interaction with the human population is necessary.

We introduce a new approach to the development of models for malaria transmission,

wherein the mosquito vector is placed at the centre of the transmission process. Our objective

is to develop a mathematical model for the dynamics of malaria transmission that takes

into consideration the population dynamics of the malaria vector and how these vectors

interact with the human population. To do that, an understanding of the vector population

demography and dynamics is needed.
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The malaria vector undergoes a complete metamorphosis, as it passes through four dif-

ferent life stages: egg, larva, pupa and adult. The egg, larva and pupa stages are aquatic,

while the adult stage is terrestrial. The entire cycle from egg laying to the emergence of

the adult mosquito takes approximately 7-20 days, with 2-3 days spent in the egg stage,

4-10 days spent in the larva stage, and 2-4 days spent in the pupa stage [19]. While the

average life span of the adult female mosquito ranges from 2-3 weeks, that of the males is

approximately one week. As for the first three life stages, the life span of the adult mosquito

depends on the species and ambient temperature. In addition to natural factors, survival of

the adult female Anopheles mosquito also depends on its success in acquiring blood meals

from humans. The flight range of an unnourished adult female Anopheles mosquitoes is

about 2 Km [50]. However, transportation by car, aircraft or ship can enable mosquitoes

to go much further. Like other disease vectors, the malaria vector is capable of locating hu-

mans [19, 51] and attempting as many times as possible to feed. The vectors exhibit varied

behavioral habits: some will nourish inside human homes (endophagic), while others nourish

outside (exophagic); some bite humans at night (nocturnal), while others bite humans at

dawn or dusk (crepuscular); some share a common resting area with humans (endophilic),

while others favor resting on different sites from human dwellings (exophilic) [52, 53]. In

some areas where there is constant use of insecticide impregnated mosquito nets and appli-

cation of other strategies to avoid mosquito bites, mosquitoes may seek alternative sources

of blood meals from animals, such as cattle [54–56]. Nourishment is usually followed by a

choice of breeding site, and this is where the mosquito eventually lays its eggs. Proximity to

the human habitat from which the mosquito acquired its blood meal and safety from preda-

tion are major factors [57, 58]. It is clear that the feeding and resting habits of the malaria

vector are major factors to be considered when designing vector intervention strategies. For

instance, female mosquitoes that prefer human blood to animal blood have a higher chance

of assisting in spreading the parasite within the human community than those that prefer

animal blood. Intervention strategies may entail destroying or effecting changes to poten-

tial mosquito breeding sites, such as application of insecticides through indoor spraying or

introduction of biological agents such as predators [59]. Common mosquito breeding sites

include openings in trees, shallow slow running streams, swampy and humid areas, stagnant
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water reservoirs such as bad drainage systems, depressions in the soil, pot-holes filled with

water, and improperly disposed hollow material like cans, bowls, wheels, etc.

The mosquito population density fluctuates both seasonally and by virtue of its life cycle

and reproductive pattern, which gives rise to oscillations in the vector population dynamics.

Some modeling attempts aimed at quantifying the dynamics of infectious disease vectors

have been proposed [60–62]. However, none of the models distinguish between reproducing

and non-reproducing vectors. Ngwa [52] recently developed and studied a mathematical

model for the dynamics of the malaria vector. The model splits the total adult female vector

population into three compartments, comprising fed and reproducing vectors, unfed and

questing vectors, and unfed and resting vectors. A delay to model vector deaths in prior life

stages and the time lapse between egg laying and the emergence of the adult vector is also

included in the model. A detailed analysis of the model for the case in which the delay is set

to zero [52] and of the full delay model [63] produced results that included the appearance

of a Hopf bifurcation. The model also captured the naturally occurring oscillatory dynamics

that govern the mosquito population without the usual external seasonal forcing that is

incorporated in many insect population dynamics models. However, the model considered

only the interaction between the human population and questing vectors that are recruited

from resting vectors from a single breeding site. The model was later extended to study the

vector population dynamics when more than one breeding site is involved [25]. Since the

focus of the models in Refs. [25, 52, 63] is on the population dynamics of the malaria vector,

none of them include malaria dynamics and interactions between humans and the vector.

Our objective here is to update the model in Ref. [52] by developing and analyzing a

deterministic SIS model for the dynamics of malaria transmission that includes the dynamics

of the malaria vector. The vector dynamics and demography together with their interaction

with the human host will be included as well as the transmission of the malaria parasite from

one human host to another. It is well known that the most general form of a compartmental

model for the dynamics of malaria transmission is an SEIRS model [24, 38]. However, in order

to highlight the novelty in our modeling approach, we develop and analyze (using rigorous

analytical and numerical techniques) a simple SIS model with the following objectives:

1. to capture the natural oscillations that are known to exist in the prevalence of malaria
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without recourse to external seasonal forcing,

2. to redefine and calculate a new value of the basic reproduction number for malaria,

3. to present a possible interpretation of why it is difficult to eradicate malaria,

4. to compare our SIS model with the original Ross SIS malaria model and, hence, reveal

the novelty in our approach,

5. to propose possible areas of control based on the model results.

The rest of this part is organized as follows: In Chapter 3, we derive and analyze the

classical SIS model. We derive and nondimensionalize the basic ordinary differential equation

model in Chapter 4. A detailed analysis of the model in the absence and in the presence of

the disease is presented in Chapter 5. Finally, we present a comparison of our model and

the classical SIS model and some concluding remarks in Chapter 6.
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Chapter 3

The Classical Ross-Macdonald Type SIS Model

3.1 Introduction

To highlight the novelty of the new deterministic SIS model for the dynamics of malaria

transmission that we derive in Chapter 4, it is necessary to begin by deriving and studying a

simple classical SIS model for malaria [1–3]. This will enable us to identify the limitations of

this simple model and, hence, substantiate the need to develop and study a new framework

for modeling malaria transmission dynamics. We derive and analyze the Ross-Macdonald’s

malaria model. Depending on whether the basic reproduction number is less than unity or

larger than unity, this model can exhibit a stable disease-free equilibrium solution, denoting

the situation in which the malaria disease is absent from the population, or a stable endemic

equilibrium solution, denoting the situation in which the malaria disease perpetuates itself

within the population. Oscillatory dynamics may be possible only when a delay or a nonlinear

external forcing term is introduced in the model.

This chapter is organized as follows: We derive the classical SIS Ross-Macdonald’s malaria

model in Section 3.2 and establish the existence, local stability, and global stability of equi-

librium solutions to the model in Section 3.3. We present numerical simulation results and

a summary of the Chapter in Sections 3.4 and 3.5, respectively.
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3.2 Classical Model Derivation

Figure 3.1. A conceptual framework of the classical SIS model for malaria. Mosquitoes

interact with humans and transfer the malaria parasite from human to human

and within the mosquito population. Broken red lines represent interactions

between humans and questing mosquitoes, solid blue lines denote links that

result in an increase in the susceptible populations, solid red lines denote

links that result in growth in the infectious populations, while purple lines

represent links that result in deaths in both the human and mosquito popu-

lations. At any time t, the human and mosquito populations are subdivided

into susceptible and infectious individuals so that Nh(t) = Sh(t) + Ih(t) and

Nv(t) = Sv(t) + Iv(t).
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In the classical model derivation, both the human and mosquito populations are broken

down into two disjoint groups consisting of susceptible and infectious individuals so that at

any time t, there are Sh(t) susceptible humans, Sv(t) susceptible mosquitoes, Ih(t) infectious

humans and Iv(t) infectious mosquitoes. The total human and mosquito populations are

denoted by Nh(t) and Nv(t), respectively, where Nh(t) = Sh(t) + Ih(t) and Nv(t) = Sv(t) +

Iv(t), andNh andNv are assumed to be large enough so that the variables Sh, Sv, Ih and Iv are

treated as continuous variables. It is also assumed that all new human and mosquito births

are susceptible and occur at non-increasing density dependent rates λh and λv, respectively.

On the other hand, natural deaths in the human and mosquito classes occur at density

dependent rates µh and µv, respectively, where µh and µv are assumed to be monotone non-

decreasing. The average human and mosquito life spans are, respectively, 1/µh and 1/µv. In

addition, humans die as a result of the malaria disease at rate γ. Humans recover and join the

susceptible class at rate rh and therefore the average duration of infection is 1/rh. Mosquitoes

do not recover from the infection. Therefore, the human portion of the model is SIS while

the mosquito portion of the model is SI. Uniform and homogeneously mixing populations

are considered and βh and βv are, respectively, the contact rates between susceptible humans

and infectious mosquitoes and susceptible mosquitoes and infectious humans. Contacts at

the above rates bring about transitions between the susceptible and infectious classes.

Using the flow chart in Figure 3.1 and the assumptions above, we write the following

system of differential equations for the SIS model:

Ṡh = λh(Nh)Nh + rhIh − βh(Nh)IvSh − µh(Nh)Sh,

İh = βh(Nh)IvSh − (rh + γh + µh(Nh))Ih, (3.1)

Ṡv = λv(Nv)Nv − βv(Nh)IhSv − µv(Nv)Sv,

İv = βv(Nh)IhSv − µv(Nv)Iv,

and the total human and mosquito populations are modeled by the equations,

Ṅh = λh(Nh)Nh − µh(Nh)Nh − γIh,

Ṅv = λv(Nv)Nv − µv(Nv)Nv, (3.2)

where the functional forms for λh, µh, λv and µv are chosen accordingly. For instance, if
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λh and λv are non-increasing functions and µh and µv are monotone non-decreasing, then

equilibrium total populations will exist. By substituting Sh = Nh − Ih and Sv = Nv − Iv

into system (3.1), the equations for Sh and Sv can be dropped and we end up with two

equations; one modeling the infectious human population Ih and the other modeling the

infectious mosquito population Iv.

İh = βh(Nh)(Nh − Ih)Iv − (rh + γh + µh(Nh))Ih,

İv = βv(Nh)(Nv − Iv)Ih − µv(Nv)Iv. (3.3)

3.3 Classical Model Analysis

The total human and mosquito populations are constant in the classical Ross-Macdonald’s

model. That is, λh = µh = constant, λv = µv = constant and γh = 0. In this case,

βh(Nh) = βh = constant and βv(Nh) = βv = constant. We use these assumptions to further

simplify systems (3.1) and (3.3) to systems (3.4) and (3.5), respectively.

Ṡh = µhNh + rhIh − βhIvSh − µhSh,

İh = βhIvSh − (rh + µh)Ih, (3.4)

Ṡv = µvNv − βvIhSv − µvSv,

İv = βvIhSv − µvIv,

İh = βh(Nh − Ih)Iv − (rh + µh)Ih,

İv = βv(Nv − Iv)Ih − µvIv. (3.5)

Note that the assumptions of constant population sizes and no disease-induced mortalities are

valid for diseases of short duration. To complete the formulation of system (3.4), appropriate

initial conditions must be defined. The simplest type of initial conditions are of the form

(Sh(0), Ih(0), Sv(0), Iv(0)) = (S0
h, I

0
h, S

0
v , I

0
v ). (3.6)

Since the variables represent human and mosquito populations, they are all positive and so

we can explore system (3.4) in the following positively invariant feasible region:

Ψ1 = {(Sh, Ih, Sv, Iv) ∈ R4
+ : Sh, Ih, Sv, Iv > 0, Sh + Ih = Nh, Sv + Iv = Nv}, (3.7)

47



Similarly, system (3.5) can be studied in the following realistic region

Ψ2 = {(Ih, Iv) ∈ R2
+ : 0 < Ih < Nh, 0 < Iv < Nv}. (3.8)

We use the next generation matrix approach [4] to calculate the basic reproduction num-

ber for the simplified classical SIS model. This gives

Rc
0 =

βvβhNvNh

µv(rh + µh)
. (3.9)

See Section 5.3.1 for details on the basic reproduction number of epidemiological models.

Definition 3.3.1 (Disease-free equilibrium solution). A disease-free or infection-free equi-

librium solution is a solution that exists when there is no disease in the population.

Stability of a disease-free equilibrium represents a situation in which the disease is completely

eradicated from the population. In epidemiological modeling, this is possible when R0 ≤ 1.

Definition 3.3.2 (Endemic equilibrium solution). An endemic or infection equilibrium so-

lution is an equilibrium solution that exists when there is disease in the population.

Stability of an endemic equilibrium solution represents a situation in which a disease estab-

lishes itself within a community. In epidemiological modeling, this is possible when R0 > 1.

Theorem 3.3.3. System (3.5) has a disease-free equilibrium solution when R0 ≤ 1, and a

unique endemic equilibrium solution when R0 > 1, where R0 is given by (3.9).

Proof. Let E∗
0 and E∗

e be the disease-free and endemic equilibrium solutions of system (3.5),

respectively. Then these equilibrium solutions are given by the solutions of the system

0 = βh(Nh)(Nh − Ih)Iv − (rh + γh + µh(Nh))Ih,

0 = βv(Nh)(Nv − Iv)Ih − µv(Nv)Iv.

Solving this system of algebraic equations yields,

E∗
0 = (I∗h, I

∗
v ) = (0, 0),

E∗
e = (I∗h, I

∗
v ) =

(
µv(rh + µh)(R0 − 1)

βv(βhNv + rh + µh)
,
µv(rh + µh)(R0 − 1)

βh(βvNh + µv)

)

.

The trivial equilibrium solution E∗
0 exists and is the only equilibrium solution for R0 ≤ 1,

while the endemic equilibrium solution E∗
e exists for R0 > 1. Notice that E∗

e reduces to E∗
0

when R0 = 1. This proves the theorem. �

48



Remark 3.3.4. (i) In terms of the full system (3.4), the equilibrium solutions are

E0 = (S∗
h, I

∗
h, S

∗
v , I

∗
v ) = (Nh, 0, Nv, 0), (3.10)

Ee = (S∗
h, I

∗
h, S

∗
v , I

∗
v ), (3.11)

where

S∗
h =

(rh + µh)(βvNh + µv)

βv(βhNv + rh + µh)
=

(βhNv +R0(rh + µh))Nh

R0(βhNv + rh + µh)
> 0,

I∗h =
µv(rh + µh)(R0 − 1)

βv(βhNv + rh + µh)
> 0 when R0 > 1, (3.12)

S∗
v =

µv(βhNv + rh + µh)

βh(βvNh + µv)
=

(βhNv + rh + µh)Nv

βhNv +R0(rh + µh)
> 0,

I∗v =
µv(rh + µh)(R0 − 1)

βh(βvNh + µv)
when R0 > 1.

(ii) From the equilibrium values given by (3.10)-(3.12), βvβhNvNh = µv(rh + µh) when

R0 = 1. In this case, the endemic equilibrium Ee reduces to the disease-free equilibrium

E0. On the other hand, when R0 < 1, the only realistic equilibrium solution is E0.

Theorem 3.3.5 (Local stability of equilibrium solutions). Let E∗
0 and E∗

e be the disease-free

and endemic equilibrium solutions of system (3.5). Then,

(i) E∗
0 is locally asymptotically stable when R0 < 1, and unstable when R0 > 1;

(ii) E∗
e is locally asymptotically stable when R0 > 1.

Proof. To investigate the local stability of equilibrium solutions to the simplified version of

system (3.5), we linearize the system about (I∗h, I
∗
v ). This yields the Jacobian matrix

J(I∗h, I
∗
v ) =




−(βhI

∗
v + rh + µh) βh(Nh − I∗h)

βv(Nv − I∗v ) −(βvI
∗
h + µv)



 ,

which gives rise to the characteristic equation

ξ2+(βhI
∗
v +βvI

∗
h+ rh+µh+µv)ξ+(βhI

∗
v + rh+µh)(βvI

∗
h+µv)−βvβh(Nv−I∗v )(Nh−I∗h) = 0,

(3.13)

where ξ is an eigenvalue of J .
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(i) At E∗
0 , equation (3.13) reduces to

ξ2 + (rh + µh + µv)ξ + µv(rh + µh)(1− R0) = 0. (3.14)

From the quadratic formula,

ξ1,2 =
−(rh + µh + µv)±

√

(rh + µh + µv)2 + 4µv(rh + µh)(R0 − 1)

2
.

When R0 < 1, the two values of ξ are negative if they are real, or have negative real

parts if they are complex. In this case, E∗
0 is locally asymptotically stable. On the

other hand, if R0 > 1, one value of ξ is positive while the other value is negative.

Hence, E∗
0 is a saddle when R0 > 1, which is linearly unstable.

(ii) At E∗
e , the characteristic equation (3.13) reduces to

θ2ξ
2 + θ1ξ + θ0 = 0, (3.15)

where

θ2 = (βhNv + rh + µh)(βvNh + µv),

θ1 = βvNh(βhNv(rh + µh + µv) + (rh + µh)
2) + βhµ

2
vNv

+ µv(rh + µh)(βhNv + βvNh + rh + µh + µv)R0,

θ0 = µv(rh + µh)(βhNv + µv)(βvNh + rh + µh)(R0 − 1).

Using the quadratic formula once more, we obtain

ξ1,2 =
−θ1 ±

√

θ21 − 4θ2θ0
2θ2

.

Since the other two coefficients θ1 and θ2 of the characteristic equation (3.15) are both

positive, the sign of the constant term θ0 is essential in determining the stability of the

endemic equilibrium solution E∗
e . Notice that when R0 > 1, θ0 > 0. Therefore, when

R0 > 1, both ξ1 and ξ2 are negative, if they are real or have negative real parts, if they

are complex. Hence, E∗
e is locally asymptotically stable when R0 > 1. �

Corollary 3.3.6. The disease-free equilibrium solution E∗
0 is stable when R0 = 1.
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Proof. Follows directly from the proof of Theorem 3.3.5 by setting R0 = 1 in (3.14). �

Theorem 3.3.7 (Global stability of equilibrium solutions). Let E0 and Ee be the disease-free

and endemic equilibrium solutions of system (3.4), respectively. Then,

(i) E0 is globally and asymptotically stable when R0 < 1,

(ii) Ee is globally asymptotically stable when R0 > 1.

Proof. In the proofs of both parts of the Theorem, we use LaSalle’s invariance principle [5]

and Lyapunov functions of the form

V =

n∑

i=1

ai

(

Wi −W ∗
i −W ∗

i ln
Wi

W ∗
i

)

,

where Wi,W
∗
i and ai, i = 1, 2, 3, ..., n are, respectively, state variables, the equilibrium values

of Wi and positive constants. See, for example, Refs. [6–14] for a detailed exploration of

Lyapunov functions and global stability analysis for compartmental epidemiological models.

(i) As mentioned above, to show that the disease-free equilibrium solution E0 of system

(3.4) is globally asymptotically stable, we construct a Lyapunov function for the sys-

tem. To this effect, consider the function U defined as follows:

U : {(Sh, Ih, Sv, Iv) ∈ Ψ1 : Sh, Sv > 0} → R,

U(Sh, Ih, Sv, Iv) = a0

(

Sh −Nh −Nh ln
Sh

Nh

)

+ b0Ih +

c0

(

Sv −Nv −Nv ln
Sv

Nv

)

+ d0Iv,

where b0 = a0, d0 = c0 and a0 and c0 are positive constants to be determined. Then U

is continuously differentiable in Ψ1. Also, U(Sh, Ih, Sv, Iv) > 0 and U(Sh, Ih, Sv, Iv) = 0

if and only if (Sh, Ih, Sv, Iv) = (S∗
h, I

∗
h, S

∗
v , I

∗
v ) = (Nh, 0, Nv, 0).

Next, if Ux, where x = Sh, Ih, Sv, Iv denotes the partial derivative of U with respect

to x, while a dot on U and the other variables denote time derivatives, then we have

U̇ = USh
Ṡh + UIh İh + USv

Ṡv + UIv İv
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= a0

(

1− Nh

Sh

)

Ṡh + a0İh + c0

(

1− Nv

Sv

)

Ṡv + c0İv

= a0

(

1− Nh

Sh

)

(µhNh + rhIh − βhIvSh − µhSh) + a0(βhIvSh − (rh + µh)Ih) +

c0

(

1− Nv

Sv

)

(µvNv − βvIhSv − µvSv) + c0(βvIhSv − µvIv).

From (3.10), E0 = (S∗
h, I

∗
h, S

∗
v , I

∗
v ) = (Nh, 0, Nv, 0). Since Sh + Ih = Nh, Ih = Nh − Sh

and rhIh = rh(Nh − Sh) = rhNh − rhSh. This leads to

U̇ = a0

(

1− Nh

Sh

)

((rh + µh)Nh − βhIvSh − (rh + µh)Sh) + a0(βhIvSh − (rh + µh)Ih)

+ c0

(

1− Nv

Sv

)

(µvNv − βvIhSv − µvSv) + c0(βvIhSv − µvIv)

= a0

(

1− Nh

Sh

)

(−βhIvSh − (rh + µh)(Sh −Nh)) + a0(βhIvSh − (rh + µh)Ih) +

c0

(

1− Nv

Sv

)

(−βvIhSv − µv(Sv −Nv)) + c0(βvIhSv − µvIv)

= −a0(rh + µh)
(Sh −Nh)

2

Sh

+ a0(−βhIvSh + βhNhIv) + a0(βhIvSh − (rh + µh)Ih)

− c0µv

(Sv −Nv)
2

Sv

+ c0(−βvSvIh + βvNvIh) + c0(βvIhSv − µvIv)

= −a0(rh + µh)
(Sh −Nh)

2

Sh

− c0µv

(Sv −Nv)
2

Sv

+ a0(βhNhIv − (rh + µh)Ih) +

c0(βvNvIh − µvIv)

= −a0(rh + µh)
(Sh −Nh)

2

Sh

− c0µv

(Sv −Nv)
2

Sv

− a0(rh + µh)

(

−βhNhIv
rh + µh

+ Ih

)

− c0βvNv

(

−Ih +
µv

βvNv

Iv

)

.
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By setting a0 = 1 and c0 = (rh + µh)/(βvNv), U̇ becomes

U̇ = −(rh + µh)
(Sh −Nh)

2

Sh

− µv(rh + µh)

βvNv

(Sv −Nv)
2

Sv

− (rh + µh)

(

− βhNh

rh + µh

+
µv

βvNv

)

Iv

= −(rh + µh)
(Sh −Nh)

2

Sh

− µv(rh + µh)

βvNv

(Sv −Nv)
2

Sv

− µv(rh + µh)

βvNv

(

− βvβhNvNh

µv(rh + µh)
+ 1

)

Iv

= −(rh + µh)
(Sh −Nh)

2

Sh

− µv(rh + µh)

βvNv

(Sv −Nv)
2

Sv

− µv(rh + µh)

βvNv

(1− R0)Iv

≤ 0, when R0 ≤ 1.

Now, by setting (Sh, Ih, Sv, Iv) = (Nh, 0, Nv, 0), we have U̇ = 0. Hence, U̇ = 0 if

and only if (Sh, Ih, Sv, Iv) = (Nh, 0, Nv, 0). Thus, the singleton {E0} constitutes the

largest compact invariant set in {(Sh, Ih, Sv, Iv) ∈ Ψ1 : U̇ = 0}. Therefore, LaSalle’s

invariance principle assures us that the disease-free equilibrium solution E0 is globally

asymptotically stable in Ψ1. This completes the proof of the first part of the Theorem.

(ii) Note that the endemic equilibrium solution Ee = (S∗
h, I

∗
h, S

∗
v , I

∗
v ) that is given by (3.11)-

(3.12) exists only when R0 > 1. Now, consider the function V defined as follows:

V : {(Sh, Ih, Sv, Iv) ∈ Ψ1 : Sh, Ih, Sv, Iv > 0} → R,

V (Sh, Ih, Sv, Iv) = a

(

Sh − S∗
h − S∗

h ln
Sh

S∗
h

)

+ b

(

Ih − I∗h − I∗h ln
Ih
I∗h

)

+ c

(

Sv − S∗
v − S∗

v ln
Sv

S∗
v

)

+ d

(

Iv − I∗v − I∗v ln
Iv
I∗v

)

,

where b = a, d = c and a and b are positive constants to be determined. We establish

that V is a Lyapunov function for system (3.4).
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First we note that V is continuously differentiable in Ψ1, V (Sh, Ih, Sv, Iv) > 0 for all

(Sh, Ih, Sv, Iv) 6= (S∗
h, I

∗
h, S

∗
v , I

∗
v ), and V (S∗

h, I
∗
h, S

∗
v , I

∗
v ) = 0. That is, V (Sh, Ih, Sv, Iv) = 0

if and only if (Sh, Ih, Sv, Iv) = (S∗
h, I

∗
h, S

∗
v , I

∗
v ), where the equilibrium values S∗

h, I
∗
h, S

∗
v

and I∗v are given by equation (3.12).

Next, we show that V̇ < 0 and that V̇ = 0 if and only if (Sh, Ih, Sv, Iv) =

(S∗
h, I

∗
h, S

∗
v , I

∗
v ). To this effect, if Vx, where x = Sh, Ih, Sv, Iv denotes the partial deriva-

tive of V with respect to x, while a dot on V and the other variables denote time

derivatives, then we have

V̇ = VSh
Ṡh + VIh İh + VSv

Ṡv + VIv İv

= a

(

1− S∗
h

Sh

)

Ṡh + a

(

1− I∗h
Ih

)

İh + c

(

1− S∗
v

Sv

)

Ṡv + c

(

1− I∗v
Iv

)

İv

= a

(

1− S∗
h

Sh

)

(µhNh + rhIh − βhIvSh − µhSh) +

a

(

1− I∗h
Ih

)

(βhIvSh − (rh + µh)Ih) + c

(

1− S∗
v

Sv

)

(µvNv − βvIhSv − µvSv) +

c

(

1− I∗v
Iv

)

(βvIhSv − µvIv).

Since Sh + Ih = Nh, Ih = Nh − Sh and rhIh = rhNh − rhSh. This leads to

V̇ = a

(

1− S∗
h

Sh

)

((rh + µh)Nh − βhIvSh − (rh + µh)Sh) +

a

(

1− I∗h
Ih

)

(βhIvSh − (rh + µh)Ih) + c

(

1− S∗
v

Sv

)

(µvNv − βvIhSv − µvSv) +

c

(

1− I∗v
Iv

)

(βvIhSv − µvIv). (3.16)
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Now, the equilibrium values of system (3.4) are given by the following system:

µhNh + rh(Nh − S∗
h)− βhI

∗
vS

∗
h − µhS

∗
h = 0,

βhI
∗
vS

∗
h − (rh + µh)Ih∗ = 0,

µvNv − βvI
∗
hS

∗
v − µvS

∗
v = 0,

βvI
∗
hS

∗
v − µvI

∗
v = 0.

This can be expressed as follows:

(rh + µh)Nh = βhI
∗
vS

∗
h + (rh + µh)S

∗
h, (3.17)

rh + µh =
βhI

∗
vS

∗
h

I∗h
, (3.18)

µvNv = βvI
∗
hS

∗
v + µvS

∗
v , (3.19)

µv =
βvI

∗
hS

∗
v

I∗v
. (3.20)

Substituting equations (3.17)-(3.20) in system (3.16) yields

V̇ = a

(

1− S∗
h

Sh

)

(βhI
∗
vS

∗
h + (rh + µh)S

∗
h − βhIvSh − (rh + µh)Sh) +

a

(

1− I∗h
Ih

)(

βhIvSh − βhI
∗
vS

∗
h

Ih
I∗h

)

+

c

(

1− S∗
v

Sv

)

(βvI
∗
hS

∗
v + µvS

∗
v − βvIhSv − µvSv) +

c

(

1− I∗v
Iv

)(

βvIhSv − βvI
∗
hS

∗
v

Iv
I∗v

)
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= a

(

1− S∗
h

Sh

)(

βhI
∗
vS

∗
h

(

1− IvSh

I∗vS
∗
h

)

− (rh + µh)(Sh − S∗
h)

)

+

aβhI
∗
vS

∗
h

(

1− I∗h
Ih

)(
IvSh

I∗vS
∗
h

− Ih
I∗h

)

+

c

(

1− S∗
v

Sv

)(

βvI
∗
hS

∗
v

(

1− IhSv

I∗hS
∗
v

)

− µv(Sv − S∗
v )

)

+

cβvI
∗
hS

∗
v

(

1− I∗v
Iv

)(
IhSv

I∗hS
∗
v

− Iv
I∗v

)

= aβhI
∗
vS

∗
h

(

1− S∗
h

Sh

)(

1− IvSh

I∗vS
∗
h

)

− a(rh + µh)

(

1− S∗
h

Sh

)

(Sh − S∗
h) +

aβhI
∗
vS

∗
h

(

1− I∗h
Ih

)(
IvSh

I∗vS
∗
h

− Ih
I∗h

)

+ cβvI
∗
hS

∗
v

(

1− S∗
v

Sv

)(

1− IhSv

I∗hS
∗
v

)

−

cµv

(

1− S∗
v

Sv

)

(Sv − S∗
v) + cβvI

∗
hS

∗
v

(

1− I∗v
Iv

)(
IhSv

I∗hS
∗
v

− Iv
I∗v

)

= −a(rh + µh)
(Sh − S∗

h)
2

Sh

− cµv

(Sv − S∗
v )

2

Sv

+

aβhI
∗
vS

∗
h

(

2− S∗
h

Sh

− I∗h
Ih

+
Iv
I∗v

− I∗hIvSh

IhI∗vS
∗
h

)

+

cβvI
∗
hS

∗
v

(

2− S∗
v

Sv

− Iv
I∗v

+
Ih
I∗h

− IhSvI
∗
v

I∗hS
∗
vIv

)

.

By setting a = βvI
∗
hS

∗
v and c = βhI

∗
vS

∗
h, V̇ reduces to

V̇ = −βvI
∗
hS

∗
v(rh + µh)

(Sh − S∗
h)

2

Sh

− µvβhI
∗
vS

∗
h

(Sv − S∗
v)

2

Sv

+

βvβhI
∗
hS

∗
vI

∗
vS

∗
h

(

4−
(
S∗
h

Sh

+
S∗
v

Sv

+
I∗hIvSh

IhI∗vS
∗
h

+
IhSvI

∗
v

I∗hS
∗
vIv

))

.

Clearly,

4 ≤ S∗
h

Sh

+
S∗
v

Sv

+
I∗hIvSh

IhI∗vS
∗
h

+
IhSvI

∗
v

I∗hS
∗
vIv
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for all values of Sh, Ih, Sv, Iv ≥ 0, since the geometric mean is less than or equal to the

arithmetic mean. Therefore,

V̇ = −
(

βvI
∗
hS

∗
v(rh + µh)

(Sh − S∗
h)

2

Sh

+ µvβhI
∗
vS

∗
h

(Sv − S∗
v )

2

Sv

)

− βvβhI
∗
hS

∗
vI

∗
vS

∗
h

(
S∗
h

Sh

+
S∗
v

Sv

+
I∗hIvSh

IhI∗vS
∗
h

+
IhSvI

∗
v

I∗hS
∗
vIv

− 4

)

≤ 0. (3.21)

Now, by setting (Sh, Ih, Sv, Iv) = (S∗
h, I

∗
h, S

∗
v , I

∗
v ) in (3.21), we obtain V̇ = 0. Hence,

V̇ < 0 for (Sh, Ih, Sv, Iv) 6= (S∗
h, I

∗
h, S

∗
v , I

∗
v ) and V̇ = 0 if and only if (Sh, Ih, Sv, Iv) =

(S∗
h, I

∗
h, S

∗
v , I

∗
v ) for all S

∗
h, I

∗
h, S

∗
v , I

∗
v > 0. Hence, the singleton Ee constitutes the largest

compact invariant set in {(Sh, Ih, Sv, Iv) ∈ Ψ1 : V̇ = 0} and LaSalle’s invariance

principle assures us that the unique endemic equilibrium solution Ee of system (3.4) is

globally asymptotically stable in Ψ1. This concludes the proof of the Theorem. �

3.4 Numerical Simulations of the Classical SIS Model

We now present numerical simulations that confirm the above results. We use a human

natural death rate of µh = 4.6×10−5 per day, which corresponds to an average life expectancy

of 60 years, a vector natural death rate of µv = 4.8 × 10−2 per day, which corresponds to

an average vector life span of 21 days, a human disease recovery rate of rh = 8.3× 10−3 per

day, which corresponds to a duration of infection of 120 days, a total human population of

Nh = 5.0× 103, and a total vector population Nv = 1.0× 104. We vary the contact rates βh

and βv accordingly for the disease-free and endemic cases. Integrating system (3.5) using a

regular fourth-order Runge-Kutta scheme with variable step-size control [15, 16] yields the

results plotted in Figs. 3.2-3.3.

Figure 3.2 depicts a stable disease-free equilibrium. It thus represents the situation in

which the disease is completely eradicated from the population. Notice that although there

were 2,000 infectious humans from the onset, some of them recovered from the disease to

join the susceptible class while some died. Since we assumed constant population sizes, the

number of new births is exactly the same as the number of deaths, and so the total human
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population and vector populations, which become entirely susceptible, stabilize at 5,000 and

10,000, respectively, after some time.

Figure 3.3 depicts a stable endemic equilibrium solution. This is the situation in which the

disease establishes itself within the community. Notice that although there was no infectious

human and only one infectious vector from the onset, the disease eventually affects most of

the human population, resulting in 4,525 infectious humans and 8,403 infectious vectors.
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Figure 3.2. Time series plot of solutions to the classical SIS model depicting a sta-

ble disease-free equilibrium solution for the parameter regime µh = 4.6 ×
10−5, µv = 4.8 × 10−2, rh = 8.3 × 10−3, Nh = 5.0 × 103, Nv = 1.0× 104, βh =

5.0× 10−6, and βv = 2.0× 10−6. The initial conditions are (S0
h, I

0
h, S

0
v , I

0
v ) =

(3000, 2000, 7000, 3000). The basic reproduction number is R0 = 0.7519 and

the equilibrium solution is (S∗
h, I

∗
h, S

∗
v , I

∗
v ) = (5000, 0, 10000, 0).
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Figure 3.3. Time series plot of solutions to the classical SIS model depicting a stable

endemic equilibrium solution for the parameter regime µh = 4.6×10−5, µv =

4.8×10−2, rh = 8.3×10−3, Nh = 5.0×103, Nv = 1.0×104, βh = 5.0×10−5, and

βv = 2.0×10−6. The initial conditions are (S0
h, I

0
h, S

0
v , I

0
v ) = (5000, 0, 9999, 1).

The basic reproduction number is R0 = 12.53 and the equilibrium solution

is (S∗
h, I

∗
h, S

∗
v , I

∗
v ) = (475, 4525, 8403, 1597).
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3.5 Conclusion

We have derived and analyzed the classical SIS model for malaria. The model has two

equilibrium solutions, a disease-free equilibrium solution that exists and is stable when the

basic reproduction number is smaller than or equal to unity and an endemic equilibrium

solution that exists and is stable when the basic reproduction number is larger than unity.

A closer observation of the characteristic polynomial (3.13) shows, as has been established

in the literature, that this classical SIS model for malaria transmission cannot generate

oscillatory dynamics, a clear limitation of the model. This limitation can be attributed to

the assumptions made in deriving the model.
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Chapter 4

Derivation of the Basic ODE Model

4.1 Introduction

In this chapter, we derive and nondimensionalize a new deterministic SIS (susceptible-

infectious-susceptible) mathematical model for the dynamics of malaria transmission. Since

malaria does not confer permanent immunity, it makes sense to consider an SIS model,

whereby infectious humans regain susceptibility after recovering from the disease. The new

model shall pay greater attention to the population dynamics of the disease transmission

agent, the mosquito, a factor that has hitherto been omitted in most malaria models. Con-

trary to traditional SIS models in the biological and epidemiological literature (see, for

example, [1–5]), the new model further subdivides the vector population into three mutually

disjoint classes based on the resting, fertility, nourishment, and reproductive status of the

vector. Mosquito population dynamics was first modeled in this manner by Ngwa [6] and has

been extended in Refs. [7, 8]. However, these models focused only on the dynamics of the

vector population in the absence of the malaria disease. Here, we derive a full SIS malaria

model consisting of a system of eight coupled ordinary differential equations – two for the

human population dynamics and six describing the dynamics of the vector population.

This chapter is organized as follows: In Section 4.2, we briefly describe the variables and

parameters to be used in the new model. The general SIS non-linear ordinary differential

equation model is derived Section 4.3. A simplified SIS model is presented and nondimen-

sionalized in Section 4.4, and we conclude the chapter in Section 4.5.
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4.2 Model Variables and Parameters

The full general SIS mathematical model will take the form of a non-linear delayed differ-

ential system of ordinary differential equations involving both the human and vector pop-

ulations. Only populations involved in disease transmission are represented in the model

formulation, and these include female Anopheles mosquitoes and humans of all ages and

sexes. The equations are derived based on the additional fact that, in the presence of the

malaria disease in the populations, both mosquitoes and humans can infect each other upon

contact. While infected humans can recover from the malaria infection, it is assumed that

once a mosquito is infected, it remains infected until death. To capture the life cycle of the

mosquito vector in the model, the vector population is divided into three biologically realis-

tic compartmental classes representing physiological status. These classes are: The class of

fed and reproducing vectors returning from human habitats to vector breeding sites repre-

sented by the variable U ; the class of unfed and resting vectors present at vector breeding

sites represented by the variable V ; and the class of unfed vectors questing (or foraging)

for food (blood meal) in human habitats represented by the variable W . The human pop-

ulation and the vector population in each compartmental class are again classified into two

epidemiologically realistic compartmental classes representing disease status: the susceptible

class, consisting of individuals with the potential to contract the Plasmodium parasite but

who have not yet contracted it, and the infectious class, consisting of individuals who have

already contracted the Plasmodium parasite and can transmitted it. Therefore, there are

eight dependent variables that continuously depend on time t. All variables and parameters

in the human system will carry the subscript h, while those in the vector subsystem will

carry one of the subscripts v, u or w depending on the physiological status of the vector.

Thus, at any time t we have humans of type Sh(t) and Ih(t), and vectors of type Sv(t),

Sw(t),Su(t), and type Iv(t), Iw(t) and Iu(t), as explained in Table 4.1. The total human and

vector populations, denoted by Nh(t) and Nmv(t), respectively, are then given as

Nh(t) = Sh(t) + Ih(t), (4.1)

Nmv(t) = Sv(t) + Iv(t) + Sw(t) + Iw(t) + Su(t) + Iu(t). (4.2)

See Tables 4.1 and 4.2 for descriptions model variables and parameters, respectively.
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Table 4.1. Model variables and their definitions.

Variable Definition

Sh(t) Susceptible humans (humans with the potential of being infected but who do

not harbor malaria parasites in their liver or blood stream) at time t.

Ih(t) Infectious humans (humans carrying either the liver or blood stage forms of

the malaria parasite) at time t.

Nh(t) Total human population at time t.

Su(t) Susceptible vectors of class U . These are the fertilized, fed and reproducing

susceptible female vectors that do not have any form of the malaria parasite.

Sv(t) Susceptible vectors of class V . This comprises of previously fertilized suscep-

tible female vectors at breeding site that have just laid their eggs but are still

resting at the breeding site together with all unfertilized females that have not

yet fed on blood from humans and are not questing for blood but are swarming

at the breeding site (some of these are the newly emerging vectors).

Sw(t) Susceptible vectors of class W . These are all the fertilized but non-reproducing

susceptible vectors that have left the breeding site and are questing for a

blood meal. They comprise of the newly fertilized vectors together with the

previously fertilized susceptible vectors; that is, those Sv vectors recruited from

the Su(t) class of vectors that fed on susceptible humans and successfully made

it back to the breeding site.

Iu(t) Infectious vectors of class U . These are the fertilized, well nourished and

reproducing vectors that fed on infectious humans.

Iv(t) Infectious vectors of class V (previously fertilized infectious female vectors at

breeding site that have just laid eggs but are still resting at the breeding site).

Iw(t) Infectious vectors of class W . These are the fertilized but non-reproducing

infectious vectors that have left the breeding site and are questing for their

second or subsequent blood meal.

Nmv(t) Total vector population at time t.
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Table 4.2. System parameters representing the transition rates from one class to another

together with recruitment and removal rates for humans and mosquitoes.

Parameter Description

av The rate at which successfully fed vectors return to breeding site.

αv The rate at which vectors are attracted to human habitats.

µh Natural human death rate.

µu,v,w Natural mosquito death rate from each mosquito population class.

λh Human birth rate.

λ̃v Mosquito birth rate.

rh Recovery rate among humans. Once infected, vectors are assumed to remain

infectious for the remainder of their lives.

βv Flow rate from susceptible questing mosquito to either a susceptible human

or an infectious human. Contact between a susceptible questing mosquito

and an infectious human, denoted by βvsi , leads to an infectious mosquito or

new infection in the mosquito population, while contact between a susceptible

mosquito and a susceptible human, which we denote by βvss , does not.

βh Flow rate from infectious questing mosquitoes to susceptible or infectious

humans. Contact between an infectious mosquito and a susceptible human,

denoted by βhis
, leads to a new infectious human, while contact between an

infectious mosquito and an infectious human, denoted by βhii
, does not.

p Probability that a susceptible questing vector successfully takes a blood meal

from a susceptible human.

q Probability that a susceptible questing vector successfully takes a blood meal

from an infectious human.

p1 Probability that an infectious questing vector successfully takes a blood meal

from an infectious human.

q1 Probability that an infectious questing vector successfully takes a blood meal

from a susceptible human.

η Proportion of emerging adult mosquitoes at the breeding site that are female.
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4.3 THE ODE MODEL

A conceptual framework for the model is shown in Fig. 4.1.

Figure 4.1. Conceptual framework for new SIS malaria model. Mosquitoes interact with

humans and transfer the malaria parasite from human to human and within

the mosquito population. Interactions between humans and mosquitoes are

denoted by broken lines, with red broken lines representing interactions in

which at least one of the parties is infectious and blue broken lines repre-

senting interactions in which both parties are susceptible. For all success-

ful interactions, the mosquito population grows as a result of transfer of

biomass/energy through blood meals taken from humans. Susceptible tran-

sitions are denoted by blue solid lines, infectious transitions are denoted by

red solid lines, and death links are denoted by purple solid lines. The different

flow rates are explained in Table 4.2.
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4.3.1 Model Equations

The model derivation uses a restricted form of homogeneous mixing based on the idea that

the mosquito has a human-biting rate. In our model, we assume that all new born humans

and newly emerged mosquitoes are susceptible; that is, there is no vertical transmission.

Flow from susceptible humans to infectious humans is a result of contact between the

susceptible humans, Sh, and an infectious questing vector, Iw. Recruitment of new suscepti-

ble humans is from births by both susceptible and infectious humans at rate λh. Deaths can

occur among susceptible humans naturally at rate µh. In the presence of the malaria disease

in the human population, infectious humans can either die naturally at rate µh or due to

malaria infection at rate γh or recover and join the susceptible class at rate rh. The trans-

mission rate of the parasite from mosquitoes to humans depends on the interaction between

the susceptible humans and infectious questing mosquitoes with contact rate βhis
. When an

infectious questing mosquito successfully takes a blood meal from a susceptible human with

contact rate βhis
and success probability p1, this mosquito becomes an infectious fed vector

of type U , (Iu), or it fails with probability 1−p1 and is assumed killed. Hence the equations

governing the human populations are

Ṡh = λh (Nh)Nh + rhIh − βhis
(Nh)ShIw − µh(Nh)Sh, (4.3)

İh = βhis
(Nh)ShIw − (µh (Nh) + rh + γh)Ih, (4.4)

and the equation for the total human population is:

Ṅh = (λh (Nh)− µh (Nh))Nh − γhIh. (4.5)

Next, we derive the equations that describe the population dynamics in each of the vector

classes. Resting susceptible vectors are recruited when susceptible or infectious fed vectors

(respectively, types Su and Iu vectors) reproduce at rate λ̃v per fed and reproducing vector.

Note that λ̃v : [0,∞] → R is a suitable continuously differentiable monotone decreasing

vector birth rate function. We account only for the vector populations involved in disease

transmission, the female vectors, by setting λv = ηλ̃v where η ∈ (0, 1) is a constant. Now,

reproduction by a female mosquito is possible only when the mosquito visits a human being

at the human habitat, takes a blood meal, rests, and then lays eggs at a chosen breeding
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site. When eggs are laid, they hatch into larvae that further metamorphose into pupae and

eventually develop into full adult vectors of class Sv. Hence, new adult mosquitoes only

emerge after a delayed time period T > 0, accounting for the elapsed time between egg

laying and emergence of the new vectors. We assume there are no additional mortalities

in any of the four life stages apart from natural deaths. Starting with the first stage, the

egg, we suppose Te > 0 is the maturation period of eggs1 and that µve > 0 is the natural

death rate constant of eggs. We also assume that the rate of egg laying depends only

on the current size of the adult fed and reproducing vectors Su and Iu. Furthermore, let

avλv(Su(t)) and avλv(Iu(t)) be the respective rates at which susceptible and infectious fed

and reproducing female vectors that return to the breeding site lay eggs; then at any time

t, avλv(Su(t))Su(t) + avλv(Iu(t))Iu eggs are produced by susceptible and infectious fed and

reproducing vectors. Now, if E(t) is the expected number (or density) of eggs from time

t− Te to time t, then

E(t) =

∫ t

t−Te

(avλv(Su(s))Su(s) + avλv(Iu(s))Iu(s))e
−µve (t−s)ds, (4.6)

where e−µveTe is the probability that an egg laid at an earlier time t − Te survives to time

t. See Refs. [6, 9–11] for details on how equation (4.6) is derived. Using Leibnitz rule

(see Appendix B.1) to differentiate equation (4.6) with respect to t, we obtain the following

equation describing the rate of change in the egg stage:

Ė(t) = avλv(Su(t))Su(t) + avλv(Iu(t))Iu(t)− avλv(Su(t− Te))Su(t− Te)e
−µveTe

−avλv(Iu(t− Te))Iu(t− Te)e
−µveTe − µveE(t), (4.7)

where avλv(Su(t))Su(t) + avλv(Iu(t))Iu(t) is the density of unhatched eggs at the breeding

site at time t, −av[λv(Su(t− Te))Su(t− Te) + λv(Iu(t− Te))Iu(t− Te)]e
−µveTe is the density

of eggs that hatch into larvae at time t, and µveE(t) is the density of eggs that die at time

t. Note that the eggs that hatch into larvae at time t are those eggs that were laid at an

earlier time t− Te and that have survived through the maturation period of Te time units.

Next, let Tl > 0 and µvl > 0 be the maturation period and natural death rate constant

of larvae, respectively. Then proceeding in a similar way, we obtain the following expression

1The maturation period of eggs is the length of time that elapses before laid eggs hatch into larvae.
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depicting the entry rate into the pupa stage at time t:

−av[λv(Su(t− (Te +Tl))Su(t− (Te +Tl))+λv(Iu(t− (Te +Tl)))Iu(t− (Te +Tl))]e
−µveTe+µvl

Tl.

Notice that the total maturation period for the first two life stages is Te+Tl time units, and

that the larvae that progress to the pupal stage are those that emerged from eggs laid at an

earlier time and that have survived through this total maturation period.

Finally, let Tp > 0 and µvp be the maturation period and natural death rate constants of

pupae. Then assuming that all deaths in earlier life stages occur at a uniform constant rate

µv > 0, i.e., 0 < µv = µve = µvl = µvp , and continuing as in the first two stages, we obtain

the following expression for newly emerging adult mosquitoes from the pupal stage:

−av[λv(Su(t− T ))Su(t− T ) + λv(Iu(t− T ))Iu(t− T )]e−µvT ,

where 0 < T = Te + Tl + Tp is the total maturation period for the first three life stages.

We now use the above adult vector emergence rate to derive the equations describing the

rates of change in the Sv and Iv classes. Additional recruitment of susceptible resting vectors

is obtained via the susceptible fed vectors (Su) that return at rate av from human habitats

to the breeding sites to lay eggs. Thus, population growth of vectors of type Sv is brought

about by the newly emerging adult vectors as computed above and by old egg laying female

vectors of type Su that returned from human habitats to the breeding site at rate av. If the

fed vectors that returned to the breeding site are infected, i.e., they fed on type Ih humans

and thus are type Iu vectors, upon arrival at the breeding site they become vectors of type

Iv, and thus serve as recruiters of type Iv vectors.

After acquiring some rest and after swarming, newly emerged adult female vectors and all

previously fertilized adult susceptible (Su) and infected (Iu) vectors can then return to human

habitats at rate αv(Nh) to seek blood meals. Additionally, individuals leave the susceptible

and infected resting classes via natural death at rate µv. Taking into consideration the

descriptions above and all assumptions made, the time rates of change of the Sv and Iv

classes are, respectively,

Ṡv = av[λv(Su (t− T ))Su (t− T ) + λv(Iu(t− T ))Iu(t− T )]e−µeT + avSu

−(µv + αv(Nh))Sv, (4.8)
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and

İv = avIu − (µv + αv(Nh))Iv. (4.9)

In equation (4.8), the birth rate function λv, which is assumed to be continuously dif-

ferentiable and strictly monotonic decreasing, can be modeled using any of the common

birth functions in the biological and ecological literature. Common birth functions include

the Verhulst-Pearl logistic birth rate function [12–14], the Beverton-Holt birth rate func-

tion [15], the Ricker birth rate function [16], the Hassell birth rate function [17], and the

Maynard-Smith-Slatkin birth rate function [18, 19]. See Section 5.5 and Refs. [11, 20] for

more birth functions. The specific form of the birth rate function used here will be described

in Section 4.4. Additionally, from equations (4.8) and (4.9), type V vectors from the breeding

site are attracted to humans at a rate αv that is dependent on the total human population.

To complete the description of these equations, we derive an appropriate functional form

for α. Let Bh and Ba be the blood indices of vectors that prefer human and animal blood,

respectively. Then BhSv susceptible unfed vectors feed on humans, while BaSv susceptible

unfed vectors feed on animals. The fractions of susceptible unfed vectors Sv that feed on

humans and animals are given by the expressions

BhSv

BhSv +BaSv

Nh =
Bh

Bh +Ba

Nh and
BaSv

BhSv +BaSv

Na =
Ba

Bh +Ba

Na,

respectively, where Nh is the total human population and Na is the total animal population.

Hence, the proportion of susceptible unfed vectors that prefer human blood to animal blood

is given by
Bh

Bh +Ba

Nh

Bh

Bh +Ba

Nh +
Ba

Bh +Ba

Na

=
Nh

Nh + k
,

where k = BaNa/Bh is a positive constant accounting for the existence of an alternative

blood source for the vector. Therefore, susceptible unfed vectors at the breeding site are

attracted to humans at rate

αv(Nh) = bNh/(Nh + k),

where bNh/(Nh + k) is the proportion of susceptible unfed vectors that prefer human blood

meals to animal blood meals and b is a positive constant to measure the flow rate of vectors
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from breeding sites to human habitats. We are assuming that the mosquito’s preference for

human or other blood is not altered when the mosquito is infected. Continuing as above, we

can easily show that type Iv vectors are also attracted to humans at the same rate.

We now model the rate of change for the type W vectors Sw and Iw. Once a vector,

susceptible (Sv) or infected (Iv) from the vector breeding site, arrives at a human habitat,

it becomes a questing vector of type W (respectively, susceptible (Sw) or infected (Iw)).

A questing susceptible or infectious mosquito can either feed on a susceptible or infectious

human. When a susceptible questing mosquito successfully takes a blood meal from an

infectious human with contact rate βvsi and success probability q, this mosquito becomes an

infectious fed vector of type U , represented as (Iu), or else it fails with probability 1− q and

is assumed killed. These contacts may lead to the production of new infectious vectors. If

a questing susceptible vector instead successfully feeds on a susceptible human with contact

rate βvss and with success probability p, it becomes a susceptible fed vector of type U ,

represented as (Su), or else it fails with probability 1−p and is assumed killed. These contacts

do not lead to any new infections. When an infectious questing mosquito successfully takes

a blood meal from an infectious human with contact rate βhii
and success probability p1, this

mosquito becomes an infectious fed vector of type U , (Iu), or else it fails with probability

1 − p1 and is assumed killed. No new infections ensue from these contacts. If an infectious

questing vector instead successfully feeds on a susceptible human, with contact rate βhis

and probability q1, it becomes an infectious fed vector of type U , (Iu), or else it fails with

probability 1 − q1 and is assumed killed. These contacts may lead to new infections in

the human population but not in the vector population. Natural deaths in the Sw and Iw

classes occur at rate µw which is considered to be constant at all times. From the above

description, the respective governing equations for the population densities of the susceptible

and infectious questing vectors assume the forms:

Ṡw = αv(Nh)Sv − (µw + βvssSh + βvsiIh)Sw, (4.10)

İw = αv(Nh)Iv − (µw + βhis
Sh + βhii

Ih)Iw. (4.11)

When susceptible questing vectors of type Sw successfully feed on humans, they either

become fed and reproducing vectors of type Su or of type Iu, depending on whether the
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human they fed on was susceptible or infectious, at the rates described above. However,

when infectious questing vectors (Iw) successfully feed on humans, they become infectious

fed vectors of type Iu. Exits from the questing vector classes occur via natural deaths at

constant rate µu and through vectors returning to the breeding site at rate av. Thus, the

equations for the time rate of change of Su and Iu are, respectively,

Ṡu = pβvssShSw − (av + µu)Su, (4.12)

İu = p1βhis
ShIw + q1βhii

IhIw + qβvsiIhSw − (av + µu)Iu. (4.13)

Combining equations (4.8) through (4.13), we obtain the following system of equations that

govern the time rate of change of the vector population:

Ṡv = av(λv(Su (t− T ))Su (t− T ) + λv(Iu(t− T ))Iu(t− T )e−µeT + avSu − (µv + αv(Nh))Sv,

Ṡw = αv(Nh)Sv − (µw + βvssSh + βvsiIh)Sw,

Ṡu = pβvssShSw − (av + µu)Su, (4.14)

İv = avIu − (µv + αv(Nh))Iv,

İw = αv(Nh)Iv − (µw + βhis
Sh + βhii

Ih)Iw,

İu = p1βhis
ShIw + q1βhii

IhIw + qβvsiIhSw − (av + µu)Iu,

where

αv(Nh) = bNh/(Nh + k). (4.15)

The following equation governs the density of the total vector population:

Ṅv = avλv(Su (t− T ))Su (t− T ) e−µeT + avλv(Iu (t− T ))Iu (t− T ) e−µeT

− (µvSv + µwSw + µuSu + µvIv + µwIw + µuIu)− (1− p)βvssShSw (4.16)

−(1− q)βvsiIhSw − (βhis
Sh + βhii

Ih) Iw + p1βhis
ShIw + q1βhii

IhIw.

Combining equations (4.3)-(4.4) and system (4.14) yields the system
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Ṡh = λh (Nh)Nh + γhIh − βhis
(Nh)ShIw − µh(Nh)Sh,

İh = βvis (Nh)ShIw − (µh (Nh) + γh + νh)Ih,

Ṡv = avλv(Su (t− T ))Su (t− T ) e−µeT + avλv(Iu)Iu + avSu − (µv + αv(Nh))Sv,

Ṡw = αv(Nh)Sv − (µw + βvssSh + βvsiIh)Sw, (4.17)

Ṡu = pβvssShSw − (av + µu)Su,

İv = avIu − (µv + αv(Nh))Iv,

İw = αv(Nh)Iv − (µw + βhis
Sh + βhii

Ih)Iw,

İu = p1βhis
ShIw + q1βhii

IhIw + qβvsiIhSw − (av + µu)Iu,

with the following equations for the total populations:

Ṅh = (λh (Nh)− µh (Nh))Nh − γhIh, (4.18)

Ṅv = avλv(Su (t− T ))Su (t− T ) e−µeT + avλv(Iu (t− T ))Iu (t− T ) e−µeT

− (µvSv + µwSw + µuSu + µvIv + µwIw + µuIu)− (1− p)βvssShSw (4.19)

−(1 − q)βvsiIhSw − (βhis
Sh + βhii

Ih) Iw + p1βhis
ShIw + q1βhii

IhIw,

where αv is given by equation (4.15).

To complete the formulation, system (4.17) must be solved with appropriate initial con-

ditions. The simplest type of initial conditions would take the form

(Sh(0), Ih(0), Sv(0), Sw(0), Su(0), Iv(0), Iw(0), Iu(0)) = (S0
h, I

0
h, S

0
v , S

0
w, S

0
u, I

0
v , I

0
w, I

0
u). (4.20)

4.4 Simplified Model

As a first step we study a simplified model, where we assume that p1 = q1, and that deaths

in each of the mosquito classes occur at a uniform constant rate µv, that is, µw = µu = µv =

constant. Since our objective is to demonstrate a new route to periodic oscillations in

the dynamics of malaria transmission, we make yet another approximation by assuming

instantaneous mosquito births and set the maturation delay parameter T to zero.
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The malaria transmission process is essentially driven by the human biting habit of the

mosquito and hence the contact rates. In classical epidemic models, contact rates can be

assumed to be directly proportional to the population numbers, as in Ref. [21], or constant

as in Ref. [22], or some intermediate form as in Ref. [23]. Therefore, the fractional incidence

rates which we have computed as βvss , βvsi , βhis
and βhii

can take several forms, especially if

we attempt to model the rate as a probability distribution with parameter Cwh(Nmv, Nh)/Nh

or Chw(Nmv, Nh)/Nh as in Refs. [24–26]. Such a distribution can be binomial, Poisson,

censored Poisson, exponential, negative exponential, uniform, etc. Assuming mass action

contact rates in all cases leads to uniform distributions at rates βvss , βvsi , βhis
and βhii

.

Hence, in the context of these simplifications, we assume uniform mass action contact rates,

in which case the rates βvss , βvsi , βhis
and βhii

are constants and then set βvss = βvsi = βv(Nh)

= βv = constant and βhis
= βhii

= βh(Nh) = βh = constant.

Next, we choose a specific functional form for the birth rate function λv. To this effect,

we consider the logistic function,

λv(ϑ) = λ0

(

1− ϑ

L

)

, (4.21)

where λ0 is a positive growth constant, L > 0 is the environmental carrying capacity2, and

ϑ = Su or ϑ = Iu. Notice that this is a positive real-valued continuously differentiable and

strictly monotonic decreasing function of its argument provided ϑ < L. The motivation for

using the Verhulst-Pearl logistic birth rate function for the mosquito lies in the fact that it

is linear, and in fact, is a general form for the first linear approximation to any monotone

decreasing continuously differentiable function. More nonlinear forms, such as the Maynard-

Smith-Slatkin function, have been used to study the effect of nonlinear birth in the dynamics

of mosquito populations [7].

Furthermore, we assume that human recruitment and deaths both occur at an equal

constant rate µh (that is, λh(Nh) = µh(Nh) = µh, a constant) and that there are no disease-

induced human deaths, that is, γh = 0. These assumptions permit us to safely consider a

2By environmental carrying capacity, we are referring to the constant maximum population size of a

specific species that a designated habitat or breeding site can accommodate over an indefinite period of time

without any deleterious repercussions.
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constant human population, especially if there is always a human for a mosquito to attempt

to feed on, in which case the total human population can be regarded essentially as constant.

These simplifications together with some rearrangement reduce our model to

Ṡh = µhNh + rhIh − βhShIw − µhSh,

İh = βhShIw − (µh + rh)Ih,

Ṡu = pβvShSw − (av + µv)Su,

Ṡv = avλv(Su)Su + avλv(Iu)Iu + avSu − (µv + αv(Nh))Sv, (4.22)

Ṡw = αv(Nh)Sv − (µv + βvNh)Sw,

İu = p1βhNhIw + qβvIhSw − (av + µv)Iu,

İv = avIu − (µv + αv(Nh))Iv,

İw = αv(Nh)Iv − (µv + βhNh)Iw,

together with the following equations for the total populations:

Ṅh = 0, (4.23)

˙Nmv = avλv(Su)Su + avλv(Iu)Iu − µvNmv − (1− p)βvShSw

−(1− q)βvIhSw − (1− p1)βhNhIw, (4.24)

where αv(Nh) and λv(ϑ), ϑ = Su, Iu are given by (4.15) and (4.21), respectively. The sim-

plified equation (4.23) immediately shows that Nh, the total human population, is constant

and thus may appear as a parameter in the model. We note, in this case, that the mass

action contact term is actually βh(Nh)ShIw, where, to bring out the fact that it is really

the proportion of susceptible humans that get infected, we can have βh(Nh) = β/Nh, and

the constant β may be viewed as a mass action coefficient. Since Nh is constant, we simply

write βh(Nh) = βh, a constant, and the above simplification becomes reasonable. The same

applies to βv = βv(Nh). Now, for a constant human population, if we write Sh = Nh − Ih,

we can compute Sh once we know Ih, which can be computed from the İh equation in (4.22).

In the absence of the malaria disease, Ih = Iv = Iw = Iu = 0 and Sh = Nh. When these

are substituted in system (4.22), the system reduces to

78



Ṡu = pβvNhSw − (av + µv)Su,

Ṡv = avλv(Su)Su + avSu − (µv + αv(Nh))Sv, (4.25)

Ṡw = αv(Nh)Sv − (µv + βvNh)Sw,

so that when βv = τ , Nh = H , Su = U , Sw = W and Sv = V , we recover the demographics

model for the population dynamics of the malaria vector developed and studied in Ref. [6]

when η = 1, and later extended in Ref. [8]. This model exhibits periodic behavior.

4.4.1 Well Posedness, Positivity and Boundedness

In this section, we discuss the existence and uniqueness of solutions, positivity of solutions

when they exist and boundedness of solutions. Since the system (4.22) models human and

mosquito populations, it is assumed that all human and mosquito population variables are

non-negative. This assumption yields the epidemiologically reasonable domain

D = {(Sh, Ih, Nh, Su, Sv, Sw, Iu, Iv, Iw, Nmv) ∈ R
10 : Sh ≥ 0, Ih ≥ 0, 0 < Sh + Ih ≤ Nh,

Su ≥ 0, Sv ≥ 0, Sw ≥ 0, Iu ≥ 0, Iv ≥ 0, Iw ≥ 0, 0 < Su + Sv + Sw + Iu + Iv + Iw ≤ Nmv}.

It can be shown using standard techniques described in Ref. [27, 28] that if initial conditions

are specified for each of the state variables at time t = 0, with Sv(0)+Sw(0)+Su(0)+Iv(0)+

Iw(0) + Iu(0) = Nmv(0), then there exist a unique solution satisfying these initial conditions

for all t ≥ 0, with Sv(t) + Sw(t) + Su(t) + Iv(t) + Iw(t) + Iu(t) = Nmv(t) for all t ≥ 0. It

can also be verified that if Nmv(0) > 0, then Nmv(t) > 0 for all t, whereas if Nmv(0) = 0,

then Nmv(t) = 0 for all t. Of course similar arguments apply to the human equations

with corresponding expressions. Thus the system (4.22) is well posed from a mathematical

and physical standpoint. Additionally, our focus will be on the total mosquito population

(equation (4.24)) since the total human population (equation (4.23)) is constant. Studying

the system (4.24) yields the following theorem.

Theorem 4.4.1. The closed set

Ψ =

{

(Su, Sv, Sw, Iu, Iv, Iw) ∈ R6
+ : Nmv = Su + Sv + Sw + Iu + Iv + Iw ≤ 2avλ0L

µv

}

,
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is positively-invariant and attracting with respect to the system (4.22).

Proof. From equation (4.24) we see that

Ṅmv ≤ avλv(Su)Su + avλv(Iu)Iu − µvNmv, (4.26)

since all human and mosquito population variables are non-negative and βv ≥ 0, βh ≥ 0 and

0 ≤ p, q, p1 ≤ 1. From equation (4.21), if ϑ ≤ L then λv(ϑ) ≤ λ0. Thus, if Su ≤ L and/or

Iu ≤ L then

Ṅmv ≤ 2avλ0L− µvNmv. (4.27)

Separating variables and solving for Nmv, yields the following inequatity:

Nmv(t) ≤
2avλ0L

µv

+ e−µvt

(

Nmv(0)−
2avλ0L

µv

)

, ∀t ≥ 0, (4.28)

where Nmv(0) is the initial total mosquito population. Hence, if Nmv(0) ≤ 2avλ0L/µv, then

from the last inequality, Nmv(t) ≤ 2avλ0L/µv implying that Ψ is a positively-invariant set.

Notice that positivity is preserved if both Su > L and Iu > L, since in this case Ṅmv(t) < 0

for t ≥ 0 and so the mosquito population is decreasing. Hence Nmv(t) ≤ Nmv(0). Next, if

Nmv(t) > 2avλ0L/µv then from equation (4.27) we see that Ṅmv(t) < 0 and so the mosquito

population is decreasing. From (4.28), Nmv(t) approaches 2avλ0L/µv as t approaches infinity.

Thus, solutions either enter Ψ in finite time or Nmv(t) approaches 2avλ0L/µv. Hence, Ψ is

an attracting set. Therefore, the solutions of the model are considered epidemiologically and

mathematically well-posed in Ψ.

4.4.2 Nondimensionalization and Reparametrization

We set Sh = Nh − Ih and introduce the following new variables:

τ =
t

t0
, I =

Ih
I0h

, vs =
Sv

S0
v

, ws =
Sw

S0
w

,

us =
Su

S0
u

, vi =
Iv
I0v

, wi =
Iw
I0w

, ui =
Iu
I0u

, (4.29)

where t0, I0h, S
0
v , S

0
w, S

0
u, I

0
v , I

0
w and I0u are reference values. Substituting in system (4.22) yields
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I0h
t0
İ = βhI

0
wI

0
h

(
Nh

I0h
− I

)

wi − (µh + γh)I
0
hI,

S0
u

t0
u̇s = pβvI

0
hS

0
w

(
Nh

I0h
− I

)

ws − (av + µv)S
0
uus,

S0
v

t0
v̇s = avλ0

(

1− S0
uus

L

)

S0
uus + avλ0

(

1− I0uui

L

)

I0uui + avS
0
uus −

(

µv +
bNh

Nh + k

)

S0
vvs,

S0
w

t0
ẇs =

bNhS
0
v

Nh + k
vs − (µv + βvNh)S

0
wws, (4.30)

I0u
t0
u̇i = p1βhNhI

0
wwi + qβvI

0
hS

0
wIws − (av + µv)I

0
uui,

I0v
t0
v̇i = avI

0
uui −

(

µv +
bNh

Nh + k

)

I0vvi,

I0w
t0
ẇi =

bNhI
0
v

Nh + k
vi − (µv + βhNh)I

0
wwi,

which upon clearing the coefficients of the differentials on the left hand sides and carrying

out some preliminary simplifications becomes

İ = βhI
0
wt

0

(
Nh

I0h
− I

)

wi − (µh + γh)t
0I,

u̇s =
pβvI

0
hS

0
wt

0

S0
u

(
Nh

I0h
− I

)

ws − (av + µv)t
0us,

v̇s =
avλ0t

0

S0
v

((

1− S0
uus

L

)

S0
uus +

(

1− I0uui

L

)

I0uui

)

+
avS

0
ut

0

S0
v

us −
(

µv +
bNh

Nh + k

)

t0vs,

ẇs =
bNhS

0
v t

0

S0
w(Nh + k)

vs − (µv + βvNh)t
0ws, (4.31)

u̇i =
p1βhNhI

0
wt

0

I0u
wi +

qβvI
0
hS

0
wt

0

I0u
Iws − (a + µv)t

0ui,
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v̇i =
avI

0
ut

0

I0v
ui −

(

µv +
bNh

Nh + k

)

t0vi,

ẇi =
bNhI

0
v t

0

I0w(Nh + k)
vi − (µv + βhNh)t

0wi.

We now set

I0h = Nh, S
0
u = L = I0u, S

0
v =

S0
u(av + µv)(µv + βvNh)

pβvNhαv(Nh)
, (4.32)

S0
w =

αv(Nh)S
0
v

µv + βvNh

, I0v =
avI

0
u

µv + αv(Nh)
, I0w =

αv(Nh)I
0
v

µv + βhNh

, t0 =
1

av + µv

, (4.33)

and

δ =
p1βhNhI

0
wt

0

I0u
=

av
(av + µv)

αv(Nh)

(µv + αv(Nh))

βhNh

(µv + βhNh)
p1, ρ =

µv + αv(Nh)

av + µv

,

β = βhI
0
wt0 =

(
av

µv + av

)(
αv(Nh)

µv + αv(Nh)

)(
βh

µv + βhNh

)

L, γ =
µv + βvNh

av + µv

, (4.34)

α =
avt

0S0
u

S0
v

= p

(
av

µv + av

)(
βvNh

µv + βvNh

)(
αv(Nh)

µv + av

)

, αv(Nh) =
bNh

Nh + k
,

σ =
qβvI

0
hS

0
wt

0

I0u
= q/p, ǫ =

µv + βhNh

av + µv

, µ = (µh + rh)t
0.

Using the new dimensionless variable and parameter groupings defined in (4.29) and (4.34),

respectively, system (4.22) can be re-written as follows:
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İ = β(1− I)wi − µI,

u̇s = (1− I)ws − us,

v̇s = αλo(us(1− us) + ui(1− ui)) + αus − ρvs,

ẇs = γ(vs − ws), (4.35)

u̇i = δwi + σIws − ui,

v̇i = ρ(ui − vi),

ẇi = ǫ(vi − wi),

where the dots on the dimensionless variables represent differentiation with respect to τ and

the subscripts s and i, respectively, denote dimensionless variables in the susceptible and

infectious vector compartments.

For realistic dynamics of the density of susceptible fed vectors, 0 ≤ I < 1, or else

the susceptible fed vectors decays continuously to zero. Additionally, the dimensionless

parameters can be expresses in terms of the original model parameters follows:

δ =
p1βhNhI

0
w

L(av + µv)
=

p1βhNhb
∗I0v

L(av + µv)(av + βhNh)
=

av
(av + µv)

b∗

(µv + b∗)

βhNh

(µv + βhNh)
p1, (4.36)

since I0v = (avL)/(µv + b∗). Clearly, each fractional term in equation (4.36) is less than one

and since 0 < p1 < 1 we see that 0 ≤ δ < 1.

Next, in terms of the original parameters

ρ =
µv + b∗

µv + av
=

µv

µv + av
+

bNh

(µv + av)(Nh + k)
(4.37)

and

α = p

(
av

µv + av

)(
βvNh

µv + βvNh

)(
bNh

(µv + av)(Nh + k)

)

. (4.38)

Since 0 < p < 1, 0 <
av

µv + av
< 1, 0 <

βvNh

µv + βvNh

< 1, 0 < p

(
av

µv + av

)(
βvNh

µv + βvNh

)

< 1.

Therefore,

α = p

(
av

µv + av

)(
βvNh

µv + βvNh

)(
b∗

µv + av

)

<
b∗

µv + av
<

µv

µv + av
+

b∗

µv + av
= ρ.
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From the above verification, it is clear that 0 ≤ δ < 1 and α < ρ or ρ−α > 0. Assuming that

b = av (that is, the flow rates to and from human habitats are the same) implies b∗ ≤ av.

Thus, 0 < ρ < 1. Finally,

β =

(
av

µv + av

)(
b∗

µv + b∗

)(
βh

µv + βhNh

)

L <
L

Nh

, (4.39)

σ = q/p (4.40)

ασ < ρ < 1. (4.41)

Thus a feasible region for the parameter space is

Ω = {β ≥ 0, µ > 0, 0 < α < ρ < 1, 0 ≤ δ < 1, ǫ > 0, σ > 0, γ > 0, λ0 > 0}. (4.42)

4.5 Conclusion

We have derived and nondimensionalized a new deterministic SIS model for the dynamics

of malaria transmission that explicitly integrates the demography of the vector that transmits

malaria together with its interaction with the human population. The model incorporates

disease dynamics and it is different from standard SIS models in that only female adult

vectors that are questing for human blood are involved in disease transmission. We identified

and accounted for these vectors.
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Chapter 5

Model Analysis

5.1 Introduction

In this chapter, we analyze the model derived in Chapter 4. Rigorous qualitative and

quantitative techniques shall be applied to acquire insights into the dynamical behavior of

the model and to identify essential epidemiological threshold parameters that characterize

disease transmission and prevalence in the presence and in the absence of the disease. In

the presence of the disease, we show that there exist parameter spaces in which the model

exhibits Hopf and backward bifurcations and compare the effects of two different birth rate

functions on the dynamical behavior of the model.

The Chapter is organized as follows: In Section 5.2, we study the model in the absence

of the disease. We calculate the equilibrium solutions of the disease-free model in Section

5.2.1, study the stability of these equilibria in Section 5.2.2, and present simulation results

in Section 5.2.3. In Section 5.3, we analyze the full disease model. We compute a new basic

reproduction number for malaria in Section 5.3.1, compute the equilibria of the disease model

and explore their stability properties in Sections 5.3.2 and 5.3.3, respectively, and present

simulation results to the disease model in Section 5.3.4. We investigate the existence of a

backward bifurcation in Section 5.4 and the effects of birth rate functions on the dynamics

of the disease model in Section 5.5. We end the Chapter with a conclusion in Section 5.6.
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5.2 Model in the Absence of the Malaria Disease

To be able to quantify the effect of the disease in the population, we first study the

dynamics of the model in the absence of the disease. In the absence of the malaria disease,

I = 0, ui = 0, vi = 0, wi = 0 and system (4.35) reduces to the following three-variable system

that models the population dynamics of the malaria vector:

u̇s = ws − us,

v̇s = αλ0us(1− us) + αus − ρvs, (5.1)

ẇs = γ(vs − ws).

We highlight important results on the existence and stability of equilibria of system 5.1.

5.2.1 Existence of Realistic Equilibrium Solutions

Theorem 5.2.1. There exists a threshold parameter, R∗ = αλ0/(ρ − α) such that when

R∗ ≤ 1, system (5.1) has a unique equilibrium solution, the trivial equilibrium solution, and

when R∗ > 1, a non-trivial equilibrium solution coexists with the trivial equilibrium solution.

Proof. By setting the left-hand sides of system (5.1) to zero and solving the ensuing system

of algebraic equations simultaneously, we obtain the following two equilibrium solutions:

E0 = (u∗
s, v

∗
s , w

∗
s) = (0, 0, 0),

E1 =

(

1− 1

R∗ , 1−
1

R∗ , 1−
1

R∗

)

,

where

R
∗ = αλ0/(ρ− α) (5.2)

is a threshold parameter directly linked to the demography of the vector. A realistic positive

non-zero steady E1 exists when R∗ > 1. When R∗ = 1, E1 reduces to the trivial equilibrium

E0 and when R∗ < 1, E1 does not exist. �

5.2.2 Stability of Equilibrium Solutions

Theorem 5.2.2. In the absence of the malaria disease, there exists a threshold parameter

R∗ satisfying equation (5.2) such that

90



1. If R∗ ≤ 1, there exists a unique equilibrium E0, which is stable to small perturbations.

2. If R∗ > 1, there are two equilibrium solutions, the trivial equilibrium E0, which is lin-

early unstable to small perturbations, and a realistic non-trivial equilibrium E1, whose

stability is determined by the relationship between λ0(γ) and its critical value

λc
0(γc) =

(γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ
, (5.3)

or

ζ =
P (R∗ − 1)

QR
, (5.4)

and its critical value ζc = 1.

(a) The non-trivial equilibrium E1 is linearly stable to small perturbations when the

coefficients of the characteristic equation (5.9) satisfy QR−P (R∗−1) > 0, which

is equivalent to 0 < λ0 < λc
0 or 0 < ζ < 1.

(b) The non-trivial equilibrium E1 is linearly unstable to small perturbations when the

coefficients of the characteristic equation (5.9) satisfy QR−P (R∗−1) < 0, which

is equivalent to λ0 > λc
0 or ζ > 1.

(c) When QR − P (R∗ − 1) = 0, which is equivalent to 0 < λ0 = λc
0 or 0 < ζ = ζc =

1, the characteristic equation (5.9) admits three roots: a real and negative root

λ = −Q and a pair of purely imaginary roots λ = ±
√
Ri, indicating that there is

a parameter space where a Hopf bifurcation occurs.

Proof. The proof of the existence portion of this Theorem was already established in Theorem

5.2.1. Hence, we focus on the proof of stability here. To establish the stability of equilibrium

solutions, we perturb system (5.1) about the equilibrium solution (u∗, v∗, w∗) by setting

us = u + u∗, vs = v + v∗ and ws = w + w∗ where |u| ≪ 1, |v| ≪ 1 and |w| ≪ 1. Expanding

the resulting system in a Taylor series about (u∗, v∗, w∗) and retaining only linear terms in

u, v and w gives rise to the following linear system:
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u̇

v̇

ẇ








=








−1 0 1

α(λ0 + 1)− 2αλ0u
∗ −ρ 0

0 γ −γ








︸ ︷︷ ︸

J(u∗

s ,v
∗

s ,w
∗

s)








u

v

w








,

where J(u∗
s, v

∗
s , w

∗
s) is the Jacobian matrix of the system evaluated at the equilibrium point

(u∗
s, v

∗
s , w

∗
s). At each of the equilibrium solutions, we seek solutions to the linear system of the

form
−→
X =

−→
X0e

λt, where
−→
X = (u, v, w)T ,

−→
X0 = (u0, v0, w0)

T is a non-zero vector of constants,

and λ is an eigenvalue that measures the growth or decay rate of solutions to the linearized

system. This gives rise to the linear system of algebraic equations (J − λI)
−→
X0 =

−→
0 , which

has non-zero solutions when

|J − λI| = 0. (5.5)

Now, at the trivial equilibrium point E0,

J(0, 0, 0) =








−1 0 1

α(λ0 + 1) −ρ 0

0 γ −γ








.

The eigenvalues of J(0, 0, 0) are computed from the characteristic polynomial equation

λ3 + (γ + ρ+ 1)λ2 + (γ + ρ+ γρ)λ + γρ− αγ(λ0 + 1) = 0, (5.6)

which is obtained by expanding the equation (5.5). Equation (5.6) can be rewritten as

λ3 +Qλ2 +Rλ+ P (1− R
∗) = 0, (5.7)

where

Q = γ + ρ+ 1 > 0

R = γ + ρ+ γρ > 0, (5.8)

P = γ(ρ− α) > 0, since ρ > α,

and R∗ is as defined in equation (5.2). Using Descartes” rule of signs and the Routh-Hurwitz

conditions, we determine the following stability properties for the trivial equilibrium solution:
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1. If R∗ ≤ 1, there is no sign change in the sequence of coefficients of equation (5.7)

indicating that there is no positive real value of λ. Now, by the Routh-Hurwitz con-

dition all roots of the characteristic equation (5.7) will have negative real parts since

Q > 0, R > 0 and P (1 − R∗) > 0 when R∗ ≤ 1. Furthermore, QR − P (1 − R∗) =

(γ+ρ+γρ+1)(γ+ρ)+γρR∗+γα(1−R∗) = (γ+ρ+γρ+1)(γ+ρ)+γα+γ(ρ−α)R∗ > 0

for all parameters in the parameter space Ω. Hence, when R∗ ≤ 1, the trivial equilib-

rium is linearly stable, and it is the only existing equilibrium solution.

2. If R∗ > 1, the constant term in equation (5.7) is negative and there is exactly one sign

change in the sequence of coefficients. This indicates that equation (5.7) can have at

most one positive real value of λ. We easily verify that the Routh-Hurwitz conditions

fail and thus the trivial equilibrium E0 is linearly unstable to small perturbations

whenever R∗ > 1.

Next, we examine the linear stability of the non-trivial equilibrium solution, E1 =

(u∗
s, v

∗
s , w

∗
s). The Jacobian matrix evaluated at this equilibrium solution is

J(u∗
s, v

∗
s , w

∗
s) =








−1 0 1

2ρ− α(λ0 + 1) −ρ 0

0 γ −γ








,

and the eigenvalues of J are given by the following characteristic polynomial equation:

λ3 +Qλ2 +Rλ+ P (R∗ − 1) = 0, (5.9)

where Q > 0, R > 0, P > 0 are defined in (5.8). Since R∗ > 1, P (R∗ − 1) > 0.

(a) By the Routh-Hurwitz necessary and sufficient conditions, all solutions of equation

(5.9) have negative real parts if QR − P (R∗ − 1) > 0. That is, if 0 < λ < λc
0 or

0 < ζ < 1. This establishes the linear stability of the non-trivial equilibrium, E1.

(b) For a parameter space where QR− P (R∗ − 1) < 0, that is, λ > λc
0 or ζ > 1, the

Routh-Hurwitz criterion fails and so a pair of complex eigenvalues have positive

real parts. This indicates that the nontrivial equilibrium solution E1 is linearly

unstable to small perturbations when QR − P (R∗ − 1) < 0 or λ0 > λc
0. That is,
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E1 loses stability at QR − P (R∗ − 1) = 0 or at λ0 = λc
0, and the instability is

accompanied by the emergence of periodic solutions.

(c) If QR = P (R∗ − 1), equation (5.9) has a pair of purely imaginary roots. In fact,

if QR = P (R∗ − 1), which is equivalent to λ0 = λc
0 or ζ = ζc = 1, equation (5.9)

can be rewritten as

λ3 +Qλ2 +Rλ+QR = 0,

which factors to (λ + P )(λ2 + Q) = 0 and thus admits three roots: a real and

negative root λ = −Q and a pair of purely imaginary roots λ = ±
√
Ri, indicating

that there is a parameter space where a Hopf bifurcation occurs when QR =

P (R∗ − 1). To confirm the occurrence of a Hopf bifurcation at λ0 = λc
0 or

ζ = ζc = 1, and to further explore the nature of the instability that arises when

λ0 > λc
0 or ζ > ζc = 1, we assume that the eigenvalue λ depends continuously on

ζ . That is, λ = λ(ζ). Note that equation (5.9) can be rewritten as

λ3 +Qλ2 +Rλ+ ζQR = 0. (5.10)

We perturb ζ about ζc by setting ζ = ζc + ̺2ν where |̺| ≪ 1 and ν = ±1. This

yields λ(ζ) = λ(ζc + ̺2ν). Expanding λ in a Taylor series about ζc and keeping

linear terms in ̺2ν only, we obtain

λ(ζ) = λ(ζc) + λ′(ζc)̺
2ν, (5.11)

where the prime denotes differentiation with respect to ζ . Differentiating (5.10)

implicitly with respect to ζ and solving for λ′ gives

λ′(ζ) = − QR

3λ(ζ)2 + 2Qλ(ζ) +R
.

Now, at ζ = ζc, λ(ζc) = ±
√
Ri. Evaluating λ′ at ζc yields

λ′(ζc) =
QR

2(Q2 +R)
± i

Q2
√
R

2(Q2 +R)
.

Clearly, Reλ(ζc) = 0 and Reλ′(ζc) =
QR

2(Q2+R)
> 0. Next, from equation (5.11),

λ(ζ) = λ(ζc) + λ′(ζc)̺
2ν =

QR

2(Q2 +R)
̺2ν ± i

√
R

(

1 +
Q2

√
R

2(Q2 +R)
̺2ν

)

.
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We have therefore demonstrated that for 0 < ζ < 1, all solutions of (5.1) have negative

real parts. At ζ = ζc = 1, a purely imaginary pair of eigenvalues arises, and for ζ > 1,

the real parts of the imaginary eigenvalues become positive. Thus, as ζ traverses ζc = 1,

stable solutions of system (5.1) become unstable. Associated with this loss of stability is the

emergence of periodic oscillations with initial period and amplitude approximately given by

2π
√
R
(

1 + Q2
√
R

2(Q2+R)
̺ν
) and exp

(
QR

2(Q2 +R)
̺2ντ

)

, respectively, where ̺ =

√

|ζ − ζc|
|ν| .

This completes the proof of Theorem 5.2.2. �

Remark 5.2.3. Instability of E0 is reasonable from a physical stand point and rules out any

possibility of easily eradicating the mosquito population permanently whenever R∗ > 1.

Remark 5.2.4. Note that if in the absence of the malaria disease, Su, Sv and Sw are scaled

by S0
u = u∗, S0

v = v∗, S0
w = w∗, where u∗, v∗, w∗ are the equilibrium solutions of the disease-free

model, the associated dimensionless system will have a trivial equilibrium solution (0, 0, 0) and

a non-trivial equilibrium solution (1, 1, 1). This will lead to the equivalent reparameterization

of the reduced model (5.1) as studied in [1].

5.2.3 Numerical Simulations of the Disease-free Model

As demonstrated in Sections 5.2.1 and 5.2.2, in the absence of the disease, system (5.1)

can exhibit either one or two equilibrium solutions depending on whether R∗ ≤ 1 or R∗ > 1.

We also showed that when R∗ > 1, the equilibrium solution E1 is asymptotically stable

if λ0 < λc
0, and unstable with the emergence of period oscillations if λ0 > λc

0. We now

present numerical simulations to further confirm these results. Here, we use the parameter

regime α = 0.4636, γ = 0.7849, 0.01 ≤ λ0 ≤ 16, and ρ = 0.6182 (see Table 5.2 for details)

and a fourth-order Runge Kutta method with variable step size to simulate system (5.1) for

10,000 time steps. Time series plots depicting stable solutions are shown in Fig. 5.1, while

a time series and a phase plot depicting periodic oscillatory solutions are shown in Fig. 5.2.

A bifurcation diagram illustrating the switch from a stable trivial equilibrium solution that

exists when 0 < λ0 ≤ 0.33 or 0 < R∗ ≤ 1 to a stable non-trivial equilibrium solution that
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exists when 0.33 ≤ λ0 < λc
0 = 12.79 or 1 < R∗ < 38.37, and then to periodic solutions when

λ0 > λc
0 = 12.79 or R∗ > 38.37 is presented in Fig. 5.4. Notice that a Hopf bifurcation

occurs at λ0 = λc
0 = 12.79 or R∗ = 38.37. Here, we plot the maximum and minimum values

of us against λ0 and R∗. Analogous plots can be obtained for vs and ws.
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5.1.1. Solution for the first 50 time steps.
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5.1.2. Solution for the first 1,000 time steps.

Figure 5.1. Solutions of the disease-free model (5.1). The system converges to the stable

non-trivial equilibrium solution E1 = (u∗
s, v

∗
S, w

∗
s) = (0.9667, 0.9667, 0.9667)

for α = 0.4636, γ = 0.7849, λ0 = 10, and ρ = 0.6182. Note that R∗ = 30.
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5.2.1. Time series showing periodic oscillations.
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5.2.2. Phase plot showing the limit cycle.

Figure 5.2. Time series and phase plot of system (5.1) for α = 0.4636, γ = 0.7849, λ0 =

13, and ρ = 0.6182 showing periodic oscillations.

98

CNN_5_MalariaModelAnalysisFigures/NoDiseaseOsc2.eps
CNN_5_MalariaModelAnalysisFigures/NoDiseaseOscPhase.eps


Time

T
ot
al

m
os
q
u
it
o
p
op

u
la
ti
on

9900 9920 9940 9960 9980 10000

1

2

3

4

5

6

Figure 5.3. Plot of the total mosquito population showing sustained bounded oscillations.
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5.4.1. Maximum and minimum values of us against λ0.
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5.4.2. Maximum and minimum values of us against R∗.

Figure 5.4. Bifurcation diagrams showing the transition from a stable trivial equilibrium

for 0 < λ0 ≤ 0.33 (0 < R∗ ≤ 1) to a stable non-trivial equilibrium for 0.33 ≤
λ0 < 12.79 (1 < R∗ < 38.37), and then to periodic solutions for λ0 > 12.79

(R∗ > 38.37). A Hopf bifurcation occurs at λ0 = 12.79 (R∗ = 38.37).

100

CNN_5_MalariaModelAnalysisFigures/DiseaseFreeStabilityBifDiag_Lambda_0.eps
CNN_5_MalariaModelAnalysisFigures/DiseaseFreeStabilityBifDiag.eps


γ

u
m
a
x

s
,u

m
in

s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 5.5. Bifurcation diagram illustrating the transition from a stable equilibrium so-

lution to bounded periodic oscillations through a Hopf bifurcation and then

back to a stable equilibrium solution through a second Hopf bifurcation as

the parameter γ is increased from 0 to 3.5.
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5.3 Model Analysis in the Presence of the Disease

5.3.1 A Discussion on the Basic Reproduction Number, R0

A threshold parameter that is of essential importance to infectious disease transmission

is the basic reproduction number denoted by R0. R0 measures the average number of sec-

ondary clinical cases of infection generated in an absolutely susceptible population by a

single infectious individual throughout the period within which the individual is infectious

[2–7]. Generally, the disease disappears from the community if R0 < 1 and may establish

itself if R0 > 1. Thus, R0 serves as a direct quantitative measure of the intervention effort

needed to eradicate the disease. Disease pathogens strive to maximize R0. The dynamics of

some diseases exhibit backward bifurcation involving the existence of two endemic equilibria

when R0 < 1. In such diseases, simply reducing R0 below unity may not be enough for

disease elimination. The critical case R0 = 1 represents the situation in which the disease

reproduces itself thereby leaving the community with a similar number of infection cases at

any time. The definition of R0 specifically requires that initially everybody but the infec-

tious individual in the population be susceptible. Thus, this definition breaks down within

a population in which some of the individuals are already infected or immune to the disease

under consideration. In such a case, the notion of reproduction number R becomes useful.

Unlike R0 which is fixed, R may vary considerably with disease progression. However, R is

bounded from above by R0 and it is computed at different points depending on the number

of infected or immune cases in the population.

One way of calculating R0 is to determine a threshold condition for which endemic equi-

librium solutions to the system under study exists or for which the disease-free equilibrium is

unstable. Another method is the next generation matrix approach, where R0 is the spectral

radius of the next generation matrix [2]. Smith et al. [8] applied a novel approach to com-

pute R0 for malaria within 121 African populations. They illustrated that 1 ≤ R0 ≤ 3000.

Large values for R0 indicate that it may be impossible to eradicate malaria.

Using the next generation matrix approach, we identify all state variables for the infection,

Ih, Iu, Iv and Iw, and their corresponding equations to be:
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İh = βhShIw − (µh + rh)Ih,

İu = p1βhNhIw + qβvIhSw − (av + µv)Iu,

İv = avIu − (µv + αv(Nh))Iv,

İw = αv(Nh)Iv − (µv + βhNh)Iw.

We then identify terms representing new infections from the above equations and rewrite the

system as the difference of two vectors F̃ and Ṽ where F̃ consists of all new infections and

Ṽ consists of the remaining terms or transitions between states. That is, we set İi = F̃− Ṽ
where the subscript i = (h, u, v, w). This gives rise to

F̃ =











βhShIw

qβvIhSw

0

0











and Ṽ =











(µh + rh)Ih

−p1βhNhIw + (av + µv)Iu

−avIu + (µv + αv(Nh))Iv

−αv(Nh)Iv + (µv + βhNh)Iw











.

Evaluating
dF̃

dIi
and

dṼ
dIi

, where i = (h, u, v, w) at the disease-free equilibrium, (0, S∗
u, S

∗
v , S

∗
w, 0, 0, 0)

gives

F =
dF̃

dIi
=











0 0 0 βhNh

qβvS
∗
w 0 0 0

0 0 0 0

0 0 0 0











,

and

V =
dṼ
dIi

=











µh + rh 0 0 0

0 av + µv 0 −p1βhNh

0 −av µv + αv(Nh) 0

0 0 −αv(Nh) µv + βhNh











.

Note that F and V are the rates of new infections and the transitions near the disease-free

equilibrium, respectively. Next, we compute V−1:
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V−1 =
















1

µh + rh
0 0 0

0
B2B3

B0

p1αv(Nh)βhNh

B0

p1βhB2Nh

B0

0
avB3

B0

B1B3

B0

p1avβhNh

B0

0
avαv(Nh)

B0

αv(Nh)B1

B0

B1B2

B0
















,

where

B0 = B1B2B3 − p1avαv(Nv)βhNh,

B1 = av + µv,

B2 = µv + αv(Nh),

B3 = µv + βhNh.

Note that B0 > 0 since 0 < p1 < 1. This still holds even if we set p1 = 1. Also note that

V−1 is proportional to the amount of time spent in each class. We find FV−1, the total rate

at which new infections arise in the population within the entire duration of the infection:

FV−1 =















0
avαv(Nh)βhNh

B0

αv(Nh)βhB1Nh

B0

βhB1B2Nh

B0

qβvS
∗
w

µh + rh
0 0 0

0 0 0 0

0 0 0 0















.

We can then calculate R0 to be the largest eigenvalue of the next generation Matrix M =

FV
−1. Since the eigenvalues of M = FV

−1 are

−
√

qavαv(Nh)βvβhNhS∗
w

(µh + rh)(B0)
, 0, 0,

√

qavαv(Nh)βvβhNhS∗
w

(µh + rh)(B0)
,

R̃0 = max

(

−
√

qavαv(Nh)βvβhNhS∗
w

B(µh + rh)
, 0, 0,

√

qavαv(Nh)βvβhNhS∗
w

B(µh + rh)

)
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=

√

qavαv(Nh)βvβhNhS∗
w

B(µh + rh)
,

where

B = µv

(

avαv(Nh)

(

1 +
(1− p1)βhNh

µv

)

+ (µv + βhNh)(av + αv(Nh) + µv)

)

.

Similar calculations can be carried out for the scaled model (4.35). In dimensionless

parameters, R̃0 takes the form

R̃0 =

√

βσw∗
s

µ(1− δ)
=

√

βσ(R∗ − 1)

µ(1− δ)R∗ . (5.12)

However, since R̃0 > 0, if R̃0 ≤ 1, then R̃2
0 ≤ 1 and if R̃0 > 1, R̃2

0 > 1, we use the values

R0 = R̃2
0 which coincides with the value of the basic reproduction number obtained by

seeking conditions for the existence of an endemic equilibrium or instability of the disease-

free equilibrium. That is,

R0 =
βσ(R∗ − 1)

µ(1− δ)R∗ (5.13)

for the scaled model and

R0 =
βvβhNhS

∗
w

µv(rh + µh)
.q.

avαv(Nh)

avαv(Nh)
(

1 + (1−p1)βhNh

µv

)

+ (µv + βhNh)(av + αv(Nh) + µv)
(5.14)

for the unscaled model. Note that since

0 < q < 1 and 0 <
avαv(Nh)

avαv(Nh)
(

1 + (1−p1)βhNh

µv

)

+ (µv + βhNh)(av + αv(Nh) + µv)
< 1,

it is evident that R0 <
βvβhNhS

∗
w

µv(rh + µh)
.

5.3.2 Existence of Equilibria

Theorem 5.3.1. In the presence of the disease, there exists a non-disease threshold param-

eter R∗ given by (5.2) and a disease threshold parameter R0 given by (5.13) which exists

when R∗ > 1, such that
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1. When R∗ ≤ 1, system (4.35) has a unique equilibrium, the trivial equilibrium E0.

2. When R∗ > 1, system (4.35) also has a non-trivial disease-free equilibrium Edfe.

3. In addition to the threshold parameters R∗ and R0, there exist parameter groupings

A1 = 1− βρu∗
s

αµλ0

and A2 = u∗2
s (R0 − 1), (5.15)

where u∗
s is the equilibrium value of us such that system (4.35) has

(a) two endemic equilibrium solutions when R0 < 1, A1 > 0, and A2
1 > 4A2,

(b) a single endemic equilibrium solution when R0 > 1, A1 > 0, and A2
1 > 4A2,

(c) a single endemic equilibrium solution when R0 > 1, A1 < 0 and A2
1 > 4A2,

(d) a single endemic equilibrium solution when R0 > 1, A1 = 0, and A2
1 > 4A2,

(e) a single endemic equilibrium solution when R0 = 1, A1 > 0, and A2
1 > 4A2,

(f) a single endemic equilibrium solution when R0 < 1, A1 > 0 and A2
1 = 4A2.

Proof. We compute the equilibrium solutions of system (4.35) by setting the left-hand sides

of the system to zero and solving the resulting system of algebraic equations. This gives rise

to the following equilibrium solutions:

E0 = (I∗0 , u
∗
s0
, v∗s0, w

∗
s0
, u∗

i0
, v∗i0, w

∗
i0
) = (0, 0, 0, 0, 0, 0, 0), (5.16)

a disease-free equilibrium,

Edfe = (I∗(R∗), u∗(R∗), v∗(R∗), w∗(R∗), u∗(R∗), v∗(R∗), w∗(R∗))

=

(

0, 1− 1

R∗ , 1−
1

R∗ , 1−
1

R∗ , 0, 0, 0

)

, (5.17)

where R∗ is a disease-free threshold parameter as defined in (5.2). Additionally, there is an

endemic equilibrium

Ee = (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (I∗(w∗

i ), u
∗
s, ws(w

∗
i ), ws(w

∗
i ), w

∗
i , w

∗
i , w

∗
i ), (5.18)

where

I∗(w∗
i ) =

βw∗
i

βw∗
i + µ

, u∗
s =

µ(1− δ)

βσ
,

v∗s(w
∗
i ) = w∗

s(w
∗
i ) =

(1− δ)βw∗
i + βσu∗

s

βσ
= u∗

s +
βu∗

s

µ
w∗

i , (5.19)

u∗
i = v∗i = w∗

i ,
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and w∗
i is the positive solution of the quadratic equation

w∗2
i − A1w

∗
i − A2 = 0, (5.20)

where A1 and A2 are given by (5.15) and R0 is given by (5.13). Solving the quadratic

equation (5.20) for positive values of w∗
i yields the following two solutions:

w∗
i1,2 =

A1 ±
√

A2
1 + 4A2

2
.

That is,

w∗
i1,2 =

β(αλ0σ − ρ(1− δ))±
√

(β(αλ0σ − ρ(1− δ))2 + (2αλ0µ(1− δ))2(R0 − 1)

2αβλ0σ
. (5.21)

1. It is clear from (5.16) and (5.17) that when R∗ ≤ 1, E0 = (0, 0, 0, 0, 0, 0, 0) is the only

equilibrium solution of system (4.35).

2. From (5.17), Edfe exists and is nontrivial when R∗ > 1.

3. With the values of w∗
i given by equation (5.21), we can write the various realistic

endemic equilibria in closed form. However, the existence of these realistic equilibrium

solutions are governed by the signs of A1, A2 and ∆, where

∆ = A2
1 + 4A2 =

(β(αλ0σ − ρ(1− δ))2 + (2αλ0µ(1− δ))2(R0 − 1)

(αβλ0σ)2
. (5.22)

The following are worth noting:

• A2 > 0 when R0 > 1, A2 < 0 when R0 < 1, and A2 = 0 when R0 = 1; thus, a

dependence on R0;

• A1 > 0 when λ0 >
ρ(1 − δ)

ασ
, A1 < 0 when λ0 <

ρ(1− δ)

ασ
, and A1 = 0 when λ0 =

ρ(1 − δ)

ασ
, where σ = q/p is the ratio of the probability that a susceptible quest-

ing mosquito feeds on an infectious human to the probability that a susceptible

questing mosquito feeds on a susceptible human; thus, A1 the depends on λ0.

A detailed analysis of equation (5.21) yields the following non-negative, non-trivial

realistic endemic equilibrium solutions in closed form:
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(a) When A2 < 0 or R0 < 1 and A1 > 0 or λ0 >
ρ(1 − δ)

ασ
and ∆ > 0, we have the

following two realistic endemic equilibria:

I∗1,2 =
β(αλ0σ − ρ(1− δ))±

√

(αβλ0σ)2∆

2αλ0µσ + β(αλ0σ − ρ(1− δ))±
√

(αβλ0σ)2∆
,

u∗
s1,2 =

µ(1− δ)

βσ
, (5.23)

v∗s1,2 = w∗
s1,2 = (1− δ)

2αλ0µσ + β(αλ0σ − ρ(1− δ))±
√

(αβλ0σ)2∆

2αβλ0σ2
,

u∗
i1,2 = v∗i1,2 = w∗

i1,2 =
β(αλ0σ − ρ(1− δ))±

√

(αβλ0σ)2∆

2αβλ0σ
.

(b) When A2 > 0 or R0 > 1 and A1 > 0 or λ0 >
ρ(1− δ)

ασ
and ∆ > 0, the unique

endemic steady state is

I∗ =
β(αλ0σ − ρ(1 − δ)) +

√

(αβλ0σ)2∆

2αλ0µσ + β(αλ0σ − ρ(1− δ)) +
√

(αβλ0σ)2∆
,

u∗
s =

µ(1− δ)

βσ
,

v∗s = w∗
s = (1− δ)

2αλ0µσ + β(αλ0σ − ρ(1− δ)) +
√

(αβλ0σ)2∆

2αβλ0σ2
, (5.24)

u∗
i = v∗i = w∗

i =
β(αλ0σ − ρ(1− δ)) +

√

(αβλ0σ)2∆

2αβλ0σ
.

(c) When A2 > 0 or R0 > 1 and A1 < 0 or λ0 <
ρ(1− δ)

ασ
and ∆ > 0, the only realistic

equilibrium has the same representation as in equation (5.24) above. However,

since A1 is positive in (5.24) while here, A1 < 0, that is, ασλ0 − ρ(1− δ) < 0, the

two equilibrium values will differ numerically.

(d) When A2 > 0 or R0 > 1 and A1 = 0 or λ0 =
ρ(1− δ)

ασ
and ∆ > 0, we have

w∗
i =

µ(1− δ)(
√
R0 − 1)

βσ
and the corresponding equilibrium solution is
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I∗ =
(1− δ)

√
R0 − 1

σ + (1− δ)
√
R0 − 1

,

u∗
s =

µ(1− δ)

βσ
,

v∗s = w∗
s =

µ(1− δ)

βσ

(

1 +
(1− δ)(

√
R0 − 1)

σ

)

, (5.25)

u∗
i = v∗i = w∗

i =
µ(1− δ)(

√
R0 − 1)

βσ
.

(e) When A2 = 0 or R0 = 1 and A1 > 0 or λ0 >
ρ(1− δ)

ασ
and ∆ > 0, we have

w∗
i = A1 =

αλ0σ − ρ(1− δ)

αλ0σ
and the corresponding equilibrium solution is

I∗ =
β(αλ0σ − ρ(1− δ))

β(αλ0σ − ρ(1− δ)) + αλ0µσ
,

u∗
s =

µ(1− δ)

βσ
,

v∗s = w∗
s = (1− δ)

αλ0µσ + β(αλ0σ − ρ(1− δ))

αβλ0σ2
, (5.26)

u∗
i = v∗i = w∗

i =
αλ0σ − ρ(1 − δ)

αλ0σ
.

(f) When A2 < 0 or R0 < 1, A1 > 0 or λ0 >
ρ(1− δ)

ασ
and ∆ = 0, we have w∗

i =

A1

2
=

αλ0σ − ρ(1− δ)

2αλ0σ
, and the corresponding equilibrium solution is

I∗ =
β(αλ0σ − ρ(1− δ))

β(αλ0σ − ρ(1 − δ)) + 2αλ0µσ
,

u∗
s =

µ(1− δ)

βσ
,
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v∗s = w∗
s = (1− δ)

2αλ0µσ + β(αλ0σ − ρ(1− δ))

2αβλ0σ2
, (5.27)

u∗
i = v∗i = w∗

i =
αλ0σ − ρ(1− δ)

2αλ0σ
.

This concludes the proof of the Theorem. �

Various conditions for the existence of realistic equilibrium solutions and the number of

equilibriums as outlined in Theorem 5.3.1 are summarized in Table 5.1 and illustrated in

Fig. 5.6. As indicated both in Table 5.1 and illustrated in Fig. 5.6, it is possible to have

realistic solutions even when A1 < 0 ⇔ λ0 <
ρ (1− δ)

ασ
. Additionally, there is a bifurcation

point in the model, when the number of realistic endemic equilibrium solutions switch from

zero to one to two equilibria. The fact that, for A2 < 0 when R0 < 1, there are two non-trivial

endemic equilibria is a prerequisite for the occurrence of backward bifurcation.

110



Table 5.1. Summary of conditions for the existence of realistic equilibrium solutions and

the number of realistic equilibrium solutions.

A2 A1 ∆ Number of realistic equilibria Region

A2 > 0 A1 < 0 ∆ > 0 One realistic equilibrium with w∗
i1 = A1+

√
∆

2

(
√
∆ > |A1|)

(I)

(R0 > 1) A1 = 0 ∆ > 0 One realistic equilibrium with w∗
i1 =

√
A2 (II)

A1 > 0 ∆ > 0 One realistic equilibrium with w∗
i1 = A1+

√
∆

2

(
√
∆ > A1)

(III)

A2 = 0 A1 > 0 ∆ > 0 One realistic equilibrium with w∗
i1 = A1 (IV)

(R0 = 1)

A1 > 0 ∆ > 0 Two realistic equilibria with w∗
i1,2 = A1±

√
∆

2

(
√
∆ < A1)

(V)

A1 > 0 ∆ = 0 One realistic equilibrium with w∗
i = A1/2 (VI)

A1 > 0 ∆ < 0 No realistic equilibrium (VII)

A2 < 0 A1 = 0 ∆ < 0 No realistic equilibrium (VIII)

(R0 < 1) A1 < 0 ∆ = 0 No realistic equilibrium (IX)

A1 < 0 ∆ < 0 No realistic equilibrium (X)

A1 < 0 ∆ > 0 No realistic equilibrium (XI)

A2 = 0 A1 > 0 ∆ > 0 One realistic equilibrium with w∗
i1 = A1 (XII)

(R0 = 1)
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(II) A1 = 0, A2 > 0,∆ > 0:
One realistic equilibrium Solution

(IV) A1 > 0, A2 = 0,∆ > 0:
One realistic equilibrium solution

(VII) A1 > 0, A2 < 0,
∆ < 0: No realistic
equilibrium solution

(X) A1 < 0, A2 < 0,
∆ < 0: No realistic
equilibrium solution

A1

A2

(I) A1 < 0, A2 > 0,∆ > 0:
One realistic equilibrium solution

(IX) A1 < 0, A2 < 0, ∆ = 0:
No realistic equilibrium solution

(V) A1 > 0,
A2 < 0, ∆ > 0:
Two realistic
equilibrium
solutions

(VIII) A1 = 0, A2 < 0, ∆ < 0:
No realistic equilibrium solution

(VI) A1 > 0,
A2 < 0, ∆ = 0:
One realistic
equilibrium
solution

(III) A1 > 0, A2 > 0,∆ > 0:
One realistic equilibrium solution

(XI) A1 < 0,
A2 < 0, ∆ > 0:
No realistic
equilibrium
solution

(XII) A1 < 0, A2 = 0,∆ > 0:
No realistic equilibrium solution

Figure 5.6. A diagram showing various regions in the A1-A2 plane within which zero,

one or two endemic equilibrium solutions exist. ∆ = A2
1 + 4A2. Endemic

equilibrium solutions exist on the solid magenta line, light green line and

dark green curve within the graph, while there are no endemic equilibrium

solutions on the dashed lines. Endemic equilibrium solutions also exist in

the first quadrant, the second quadrant and the upper part of the fourth

quadrant (above or to the right of the curve ∆ = 0).
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5.3.3 Stability of Equilibria

To investigate the linear stability of the equilibrium solutions to system (4.35), we begin by

linearizing the system about the equilibrium point (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ). To this effect,

we set ~X = ~X∗+~x, where ~X = (I, us, vs, ws, ui, vi, wi)
T , ~X∗ = (I∗, u∗

s, v
∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i )

T , ~x =

(I1, u, v, w, x, y, z)
T , |I1| ≪ 1, |u| ≪ 1, |v| ≪ 1, |w| ≪ 1, |x| ≪ 1, |y| ≪ 1, and |z| ≪ 1 in sys-

tem (4.35), and expand the resulting system in a Taylor series about (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ).

This leads to the following linearized system:

(

İ1, u̇, v̇, ẇ, ẋ, ẏ, ż
)T

= J (I1, u, v, w, x, y, z)
T ,

where

J =




















−(βw∗
i + µ) 0 0 0 0 0 β(1− I∗)

−w∗
s −1 0 1− I∗ 0 0 0

0 αλ0(1− 2u∗
s) + α −ρ 0 αλ0(1− 2u∗

i ) 0 0

0 0 γ −γ 0 0 0

σw∗
s 0 0 σI∗ −1 0 δ

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ǫ −ǫ




















is the Jacobian matrix of the linearized system evaluated at (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ).

5.3.3.1 Stability of the Trivial Equilibrium

Theorem 5.3.2. The trivial equilibrium solution E0 is linearly and asymptotically stable

when R∗ ≤ 1 and linearly unstable otherwise.

Proof. The Jacobian matrix evaluated at the trivial equilibrium, E0 = (0, 0, 0, 0, 0, 0, 0) is
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J(0, 0, 0, 0, 0, 0, 0) =




















−µ 0 0 0 0 0 β

0 −1 0 1 0 0 0

0 α(λ0 + 1) −ρ 0 αλ0 0 0

0 0 γ −γ 0 0 0

0 0 0 0 −1 0 δ

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ǫ −ǫ




















.

We seek solutions of the form ~x = ~x0e
λt, where λ is an eigenvalue of J and ~x0 is a vector of

constants. This gives the following characteristic equation:

(λ+ µ)[λ3 +Qλ2 +Rλ+ P (1− R
∗)][λ3 +Q1λ

2 +R1λ+ P1] = 0, (5.28)

where P,Q and R are as defined in (5.8) and

Q1 = ǫ+ ρ+ 1 > 0; R1 = ǫ+ ρ+ ǫρ > 0; P1 = ǫρ(1− δ) > 0 since 0 ≤ δ < 1. (5.29)

Using Descartes’ rule of signs and the Routh-Hurwitz conditions, we can easily show that

the trivial equilibrium is linearly stable to small perturbations whenever R∗ ≤ 1 and linearly

unstable whenever R∗ > 1. Since the coefficients of the first cubic polynomial on the left-

hand side of (5.28) are all positive and QR−P (1−R∗) > 0 when R∗ ≤ 1, and since all the

coefficients of the second cubic polynomial on the left-hand side of equation (5.28) are all

positive and Q1R1 − P1 = (ǫ + ρ)(1 + ǫ + ρ + ǫρ) + δǫρ > 0, the Routh-Hurwitz conditions

assure us that all solutions of equation (5.28) have negative real parts when R∗ ≤ 1. �

5.3.3.2 Stability of the Disease-free Equilibrium

Theorem 5.3.3. When R∗ > 1, the non-trivial disease-free equilibrium solution Edfe is

1. linearly stable to small perturbations when R0 ≤ 1 and QR − P (R∗ − 1) > 0,

2. linearly unstable to small perturbations, accompanied by the emergence of periodic os-

cillations, when R0 ≤ 1 and QR − P (R∗ − 1) < 0,

3. linearly unstable to small perturbations when R0 > 1.
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Proof. At the disease-free equilibrium, Edfe given by (5.17),

J(Edfe) =




















−µ 0 0 0 0 0 β

−u∗
s −1 0 1 0 0 0

0 αλ0(1− 2u∗
s) + α −ρ 0 αλ0 0 0

0 0 γ −γ 0 0 0

σu∗
s 0 0 0 −1 0 δ

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ǫ −ǫ




















.

We search for solutions of the linear system (5.3.3) with J evaluated at Edfe in the form

~x = ~x0e
λt, where λ is an eigenvalue of J and ~x0 is a vector of constants. This leads to the

system (J − λI7)~x0 where I7 is the 7× 7 identity matrix. Non-zero solutions exist when

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−µ− λ 0 0 0 0 0 β

−u∗
s −1− λ 0 1 0 0 0

0 αλ0(1− 2u∗
s) + α −ρ− λ 0 αλ0 0 0

0 0 γ −γ − λ 0 0 0

σu∗
s 0 0 0 −1− λ 0 δ

0 0 0 0 ρ −ρ− λ 0

0 0 0 0 0 ǫ −ǫ− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

which can be rewritten as

[(λ+1)(λ+γ)(λ+ρ)−γ(αλ0(1−2u∗
s)+α)][(λ+µ)(−(λ+1)(λ+ǫ)(λ+ρ)+δǫρ)+βǫρσu∗

s ] = 0,

or the product of a cubic equation and a quartic polynomial equations as follows:

(λ3+Qλ2+Rλ+P (R∗−1))(λ4+(Q1+µ)λ3+(µQ1+R1)λ
2+(µR1+P1)λ+P1µ(1−R0)) = 0.

That is,

λ3 +Qλ2 +Rλ + P (R∗ − 1) = 0 (5.30)

or

λ4 + (Q1 + µ)λ3 + (µQ1 +R1)λ
2 + (µR1 + P1)λ+ P1µ(1−R0) = 0, (5.31)

115



where P,Q, and R are as defined in (5.8), P1, Q1, and R1 are as defined in (5.29), and Edfe

is as given in (5.17). Notice that equation (5.30) is exactly the characteristic equation (5.9)

of the model in the absence of the disease. The condition R∗ > 1 is fulfilled trivially since

the disease-free equilibrium only exists when R∗ > 1. As demonstrated in Theorem 5.2.2,

when R∗ > 1, all solutions of this equation are either negative or have negative real parts if

QR − P (R∗ − 1) > 0, a Hopf bifurcation occurs when QR − P (R∗ − 1) = 0, and solutions

with positive real parts exist if QR − P (R∗ − 1) < 0. Hence, to complete the proof of the

first two parts of the Theorem, all we need here is equation (5.31).

Now, when R0 ≤ 1, all coefficients of equation (5.31) are positive and thus by Descartes’

rule of signs, there are no positive real solutions λ. Furthermore, from Lemma 5.3.4 below,

the Routh-Hurwitz criterion assure us that when R0 ≤ 1 all the roots of equation (5.31) have

negative real parts. Therefore, the non-trivial disease-free equilibrium Edfe is linearly stable

to small perturbations when QR−P (R∗−1) > 0 and becomes unstable with the emergence

of periodic oscillations when QR− P (R∗ − 1) > 0. The instability is via a Hopf bifurcation

as shown in Theorem 5.2.2. This proves the first two parts of the Theorem.

When R0 > 1, µP1(1 − R0) < 0 and, hence, there is one sign change in the sequence of

coefficients of equation (5.31). Thus, there exist at least one positive real value of λ and so

the disease-free equilibrium Edfe is linearly unstable to small perturbations. This proves the

third part of the Theorem and, hence, completes the proof. �

Lemma 5.3.4. All solutions of equation (5.31) have negative real parts when R0 < 1.

Proof. Notice that Q1 + µ > 0, µR1 + P1 > 0, and µP1 (1− R0) > 0 when R0 < 1. All we

need to show is that

(Q1 + µ) (µQ1 +R1) (µR1 + P1) > (µR1 + P1)
2 + (Q1 + µ)2 µP1 (1− R0) .

Now, subtracting the expression on the left-hand side of the inequality from the expression

on the right-hand side and simplifying yields

(Q1 + µ) (µQ1 +R1) (µR1 + P1)− [(µR1 + P1)
2 + (Q1 + µ)2 µP1 (1−R0)]

= (µR1 + P1) ((Q1 + µ)µQ1 +Q1R1 − P1)− (Q1 + µ)2 µP1 (1− R0)
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= (µR1 + P1) (Q1R1 − P1) + µ2R1 (Q1 + µ)Q1 + P1µQ1 (Q1 + µ)

+ (Q1 + µ)2 µP1R0 − (Q1 + µ)2 µP1

= (µR1 + P1) (Q1R1 − P1) + P1µQ1 (Q1 + µ) + (Q1 + µ)2 µP1R0

+ (Q1 + µ)µ (µR1Q1 − (Q1 + µ)P1)

= (µR1 + P1) (Q1R1 − P1) + P1µQ1 (Q1 + µ) + (Q1 + µ)2 µP1R0

+ (Q1 + µ)µ (µ (R1Q1 − P1)−Q1P1)

= (µR1 + P1) (Q1R1 − P1) + (Q1 + µ)2 µP1R0 + (Q1 + µ)µ2 (Q1R1 − P1) > 0,

since

Q1R1 − P1 = (1 + ǫ+ ρ) (ǫρ+ ǫ+ ρ)− ǫρ (1− δ) = (ǫ+ ρ) (ǫρ+ ǫ+ ρ) + ǫ+ ρ+ ǫρδ ≥ 0.

Hence, by the Routh-Hurwitz criterion, all solutions of equation (5.31) have negative real

parts when R0 < 1. �

Remark 5.3.5. From Lemma 5.3.4, it is clear that when R0 < 1, Edfe is linearly and

asymptotically stable to small perturbations. When
µ(1− δ)

βσ
= 1− 1

R∗ and A2 = 0, R0 = 1.

There are no sign changes. Using the Routh-Hurwitz conditions, we can easily verify that,

except for one eigenvalue which is zero, all other eigenvalues have negative real parts.

5.3.3.3 Stability of Endemic Equilibria

We illustrated in Section 5.3.2 that in the presence of malaria, system (4.35) can have

zero, one or two equilibrium solutions when certain conditions are fulfilled. We explore the

stability of these endemic equilibria in this section. At (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ), where

I∗(w∗
i ) =

βw∗
i

βw∗
i + µ

< 1,

u∗
s =

µ(1− δ)

βσ
,

v∗s(w
∗
i ) = w∗

s(w
∗
i ) =

(1− δ)βw∗
i + βσu∗

s

βσ
= u∗

s

1

µ
(βw∗

i + µ) ,

u∗
i = v∗i = w∗

i ,

the eigenvalues λ of J are given by the characteristic equation |J − λI7| = 0, where I7 is the

7× 7 identity matrix and the determinant |J − λI7| is
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(βw∗
i + µ)− λ 0 0 0 0 0 β(1− I∗)

−w∗
s −1− λ 0 1− I∗ 0 0 0

0 αλ0(1− 2u∗
s) + α −ρ− λ 0 αλ0(1− 2u∗

i ) 0 0

0 0 γ −γ − λ 0 0 0

σw∗
s 0 0 σI∗ −1− λ 0 δ
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∣
∣
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∣
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∣
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.

By expanding |J − λI7| = 0, we obtain the following polynomial equation:

[λ+(βw∗
i +µ)][−(λ+1)(λ+ǫ)(λ+ρ)+δǫρ][(λ+1)(λ+γ)(λ+ρ)−γ(αλ0(1−2u∗

s)+α)(1−I∗)]

+ αλ0(1− 2w∗
i )γσI

∗(λ+ (βw∗
i + µ))(λ+ 1)(λ+ ǫ)(λ+ ρ)

+ βǫρσ(1− I∗)w∗
s [(λ+ 1)(λ+ γ)(λ+ ρ)− γ(αλ0(1− 2u∗

s) + α)] = 0, (5.32)

which can be be rewritten in the following expanded and simplified form:

A7λ
7 + A6λ

6 + A5λ
5 + A4λ

4 + A3λ
3 + A3λ

3 + A2λ
2 + A1λ+ A0 = 0, (5.33)

where

A7 = 1,

A6 = Q1 +Q+ βw∗
i + µ,

A5 = (Q1 +Q)(βw∗
i + µ) +QQ1 +R +R1,

A4 = (Q1Q +R +R1)(βw
∗
i + µ) + P1 +Q1R +R1Q+ φ+ αλ0γσ(2w

∗
i − 1)I∗,

A3 = (Q1R +R1Q + φ)(βw∗
i + µ) + αγλ0σ(2w

∗
i − 1)I∗((βw∗

i + µ) +Q1)

+ P1(βw
∗
i +Q) + φQ1 +R1R,

A2 = (φQ1 +R1R)(βw∗
i + µ) + αγλ0σ(2w

∗
i − 1)I∗(Q1(βw

∗
i + µ) +R1)

+ P1(βQw∗
i +R) + φR1,

A1 = φR1(βw
∗
i + µ) + αγλ0σ(2w

∗
i − 1)I∗(P1(βw

∗
i + µ) + ǫρ) + βP1Rw∗

i + φP1,

A0 = φP1(βw
∗
i + µ) + βǫρσ(αγλ0(2w

∗
i − 1)w∗

i + P (u∗
s)

2
R

∗(R0 − 2)),

φ = P + γαI∗ − γαλ0(1− 2u∗
s)(1− I∗) = P + αγ[(I∗ − λ0(1− I∗)) + 2λ0u

∗
s(1− I∗)].
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Note that

1− I∗(w∗
i ) =

µ

βw∗
i + µ

,

(βw∗
i + µ)I∗ = βw∗

i ,

(1− I∗)w∗
s = u∗

s,

βǫρσu∗
s = µ(ǫρ(1− δ)) = µP1,

βǫρσQu∗
s = µP1Q,

βǫρσRu∗
s = µP1R.

Remark 5.3.6. All coefficients of the characteristic polynomial are positive if φ ≥ 0, w∗
i ≥

1/2 and R0 ≥ 2. Notice that φ > 0 if I∗ − λ0(1− I∗) ≥ 0 or if λ0 ≤
I∗

1− I∗
.

Whenever the conditions of Remark 5.3.6 hold, all the coefficients of the characteristic

equation (5.33) are positive and, hence, Descartes’ rule of signs assures us that there are no

positive real values for λ that are zeros of (5.33). This indicates that any instabilities that

can arise as a result of perturbations in parameters are oscillatory instabilities. At this stage

we can apply the Routh-Hurwitz criterion, as before, to obtain information on the signs of

the real parts of the roots of the characteristic polynomial (5.33). Now, if we consider the

endemic equilinrium solution presented in equation (5.25), which arises when A2 > 0 or

R0 > 1 and A1 = 0 or λ0 =
ρ(1− δ)

ασ
and ∆ > 0, we have

I∗ =
(1− δ)

√
R0 − 1

σ + (1− δ)
√
R0 − 1

, u∗
s =

µ(1− δ)

βσ
and w∗

i =
µ(1− δ)(

√
R0 − 1)

βσ
.

At this equilibrium,

w∗
i ≥ 1/2 ⇔ µ(1− δ)(

√
R0 − 1)

βσ
≥ 1

2
⇔ R0 ≥ 1 +

(
βσ

2µ(1− δ)

)2

= 1 +

(
1

2u∗
s

)2

and

if λ0 ≤ I∗

1− I∗
=

(1− δ)
√
R0 − 1

σ
,R0 ≥ 1 +

(
λ0σ

1− δ

)2

= 1 +
( ρ

α

)2

in which case φ > 0.

It is thus evident that there is richer dynamics in the region in parameter space where the

conditions of Remark 5.3.6 fail for the equilibrium in (5.25) or even in the region where

0 ≤ R0 ≤ 2. This can equivalently be shown for the other endemic equilibria. Thus, we

are considering the fact that from a mathematical and physical stand point, all we wish to
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establish is whether there exists parameter regimes wherein the polynomial (5.33) has zeros

with positive real parts. Such zeros will indicate the existence of growing oscillating solutions

in the linear regime, which, should become bounded by the nonlinearity in the model to give

(bounded) limit cycle solutions in phase space. Given the size of the system and the complex

nature of the coefficients of (5.33), for the purposes of illustrating the potential of the model,

we use MATLAB and the symbolic manipulation package MATHEMATICA to numerically

evaluate and search the parameter space in view of exploring the nature of the solutions of

the characteristic polynomial, and also having an insight into the possible solutions that exist

for the full model. As illustrated in Section 5.3.4, there exist parameter regimes whereby

the equilibrium solutions can be driven to instability via a Hopf Bifurcation and parameter

regimes whereby a backward bifurcation occurs.

5.3.4 Numerical Simulations

We use the physically reasonable parameter values shown in Table 5.2 to explore the

dynamics of system (4.35). All the parameters in the model have been explained in Table

4.2. See Table 5.3 for sample numerical values of equilibrium solutions of system (4.35) and

their stability properties for some of the parameters in Table 5.2.

Table 5.2. Physically meaningful ranges of parameter values for system (4.35).

Parameter Range of Values Value Used Reference

µh, (per day) [1/(72× 365), 1/(45× 365)] 1/(60× 365) [9]

rh, (per day) [1/120, 1/80] 1/120 [4]

µv, (per day) [1/21, 1/14] 1/21 [4, 10]

av 0.5 ≤ av ≤ 1 1.0 [4]

αv(Nh) 0.5 ≤ αv(Nh) < av 0.8 [1]

λ0 variable variable

ǫ variable 0.9

L variable variable

Nh [103, 107] variable
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Table 5.3. Sample simulation results for the existence and stability of endemic equilibria

showing the possibility of a Hopf bifurcation when A2 > 0 or R0 > 1 and the

possibility of a backward bifurcation when A2 < 0 or R0 < 1.

L Nh A1 A2 ∆ w∗
i λ Stability

-7.8667, -2.4876, -1.0147,

104 103 0.9822 0. 0002 0.9653 0.9823 -0.8904, -0.6215, unstable

0.0487± 1.4520i.

-2.3158, -0.0062, -0.1401,

104 5× 106 0.9822 0.0971 1.3532 1.0727 −0.0406± 1.2995i, stable

−1.1916± 0.5758i.

-2.4617, -0.0035, -0.0950,

0.9150 −1.2140± 0.6184i, unstable

0.0310± 1.4263i.

104 6× 106 0.9822 -0.0614 0.7190 -2.4582, -0.0651, 0.0014,

0.0671 −1.2302± 0.6486i, unstable

0.0286± 1.4228i.

We now present numerical simulation results that illustrate the relationship between the

two threshold parameters R∗ and R0 as the parameters γ and λ0 are varied. Let us note

that in terms of the original system parameters, γ depends on βv , that is the contact rate

between a susceptible questing mosquito and a susceptible or infectious human and λ0 is the

growth rate of newly emerging mosquitoes. By varying γ and computing the corresponding

values of R∗ and R0, we can determine the relationship between these threshold parameters

and γ. On the other hand, by varying λ0 and computing the corresponding values of the

two threshold parameters, we can also determine a relationship between these threshold

parameters and λ0. See Fig. 5.7 for a graphical illustrations of this. Fig. 5.7.3 illustrates

that there are potentially four regions of interest for R∗ and R0 that could be of great

importance and could inform policy makers on control strategies.
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5.7.4. Plot of R0 against λ0.

Figure 5.7. Plots of the threshold parameters R∗ and R0 against the parameters γ and

λ0. Notice that R0 becomes unrealistic or becomes negative when R∗ < 1

and that R0 attains a maximum of
1

u∗
s

=
βσ

µ(1− δ)
= 29.03.
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Next, we explore the endemicity of the disease by studying the relationship between the

equilibrium solutions and the basic reproduction number, R0. To do this, we set the other

parameters as in Table 5.2 and vary the total human population Nh from 103 to 106 and

compute the corresponding values of R0, w
∗
i and I∗. The results of this study confirm the

analytical results presented in Section 5.3.2, which predicted the possibility of having two

co-existing realistic endemic equilibria when R0 < 1. This is a prerequisite for backward

bifurcation. For R0 > 1, we have a single realistic endemic equilibrium that is also stable.

R0

I
∗ 1
,I

∗ 2
,w

∗ i1
,w

∗ i2

I∗1

I∗2

w∗
i1

w∗
i2

.8

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure 5.8. Endemic curves. Plot of the equilibrium number of infectious humans and

vectors against the basic reproduction number R0. The curves illustrate the

possibility of having two realistic endemic equilibrium solutions when R0 < 1

and a single realistic endemic equilibrium solution when R0 > 1 .
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We now apply a fourth-order Runge Kutta method with variable step size to simulate and

characterize the disease-free equilibrium solution and each of the endemic equilibria depicted

in Fig. 5.6. To explore, we set γ = 0.7849, ǫ = 0.9, L = 5× 103 and Nh = 4× 106, where Nh

is specifically selected such that R0 < 1. By choosing λ0 appropriately and maintaining the

other parameters as provided in Table 5.2, we can either have a stable disease-free equilibrium

solution or oscillatory solutions. For instance, when λ0 = 10, the above parameter regime

yields R∗ = 30 and R0 = 0.7016 and our system relaxes to a stable disease-free equilibrium

solution in the long time limit. This behavior is illustrated in Fig. 5.9. This is the case

in which λ0 is smaller than some critical value λc
0 = 12.79. For λ0 > 12.79, we obtain

oscillatory behavior around the disease-free equilibrium. Hence, there is a critical value of λ0

below which the disease-free equilibrium is stable and above which it is unstable, with the

instability giving rise to oscillatory phenomena. See Fig. 5.10 for a graphical demonstration

of the oscillatory behavior.
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Figure 5.9. Time series plot of solutions to the full model (4.35) for γ = 0.7849, λ0 =

10, ǫ = 0.9, L = 5× 103, Nh = 4× 106 depicting a stable disease-free equilib-

rium. The corresponding values of the two threshold parameters are R∗ = 30

and R0 = 0.7050. Edfe = (0, 0.9667, 0.9667, 0.9667, 0, 0, 0) while the equilib-

rium value of each of the other variables is zero.
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Figure 5.10. Time series plot of solutions to our full model for γ = 0.7849, λ0 = 13, ǫ =

0.9, L = 5×103, Nh = 4×106 showing oscillatory behavior for the variables

us, vs and ws. The corresponding values of R∗ and R0 are 39 and 0.7106,

respectively. Notice that each of the other variables relaxes to zero and that

even though R0 < 1, we still have oscillatory solutions since λ0 > λc
0. The

approximate period of oscillation is 5 days.
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5.3.4.1 Exploration of the Unique Endemic Equilibrium Solution in Region (I) of Fig. 5.6

A single endemic equilibrium solution exists within Region (I) of Fig. 5.6. The condi-

tions that guarantee the existence of this equilibrium solution are A1 < 0 and A2 > 0 or

equivalently R0 > 1. By retaining the parameter values in Table 5.2 and setting λ0 = 0.5

and δ = 0.4, we obtain R0 = 3.2415, A1 = −0.3714, A2 = 0.0237 and ∆ = 0.2327. This

parameter regime gives rise to the asymptotically stable equilibrium solution

(I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (0.2173, 0.1028, 0.1314, 0.1314, 0.05552, 0.05552, 0.05552).

The long-term behavior of solutions to the system within Region (I) is presented in Fig. 5.11.
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Figure 5.11. Long-term behavior of solutions of system (4.35) in Region (I) for λ0 = 0.5

and δ = 0.4 depicting a stable endemic equilibrium.
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5.3.4.2 Exploration of the Unique Endemic Equilibrium that exists when A1 = 0, A2 > 0 and ∆ > 0

We establish the stability of the equilibrium solution on the line labeled (II) in Fig. 5.6.

For λ0 = 0.9143, δ = 0.2, and the other parameters given in Table 5.2, we obtain R0 =

4.6343, A1 = 0.0, A2 = 0.0683 and ∆ = 0.2733, which satisfy the existence condition for the

endemic equilibrium solution on the line labeled (II).

(I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (0.5666, 0.1371, 0.3163, 0.3163, 0.2614, 0.2614, 0.2614).

As illustrated in Fig. 5.12, the equilibrium solution is asymptotically stable.
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Figure 5.12. Time series plot of solutions to system (4.35) for λ0 = 0.9143 or R0 = 4.6343

showing a stable endemic equilibrium solution. Only the first 1,000 out of

a total of 10,000 time steps are shown.
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5.3.4.3 Characterization of the Unique Endemic Equilibrium Solution in Region (III) of Fig. 5.6

We select Nh such that R0 > 1. For Nh = 105 and λ0 = 12, R∗ = 36 and R0 = 28.2239.

This parameter set gives rise to a stable endemic equilibrium solution, representing the

situation in which malaria establishes itself within the community. See Figs. 5.13 and 5.14.
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Figure 5.13. Time series plot of solutions to system (4.35) for γ = 0.7849, λ0 = 12, ǫ =

0.9, L = 5×103, Nh = 105. These and the rest of the parameters in Table 5.2

yield R∗ = 36, R0 = 28.3631, and the stable endemic equilibrium solution

(I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (0.8351, 0.0343, 0.2079, 0.2079, 1.0127, 1.0127,

1.0127). Notice that as predicted by our analysis, v∗s = w∗
s and u∗

i = v∗i =

w∗
i . Only the first 50 out of 10,000 time steps are shown.
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Figure 5.14. Time series plot of solutions to system (4.35) for γ = 0.7849, λ0 = 12, ǫ =

0.9, L = 5×103, Nh = 105. These and the rest of the parameters in Table 5.2

yield R∗ = 36, R0 = 28.3631, and the stable endemic equilibrium solution

(I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (0.8351, 0.0343, 0.2079, 0.2079, 1.0127, 1.0127,

1.0127). Notice that as predicted by our analysis, v∗s = w∗
s and u∗

i = v∗i =

w∗
i . Only the first 1,000 out of 10,000 time steps are shown.
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On the other hand, for Nh = 105 and λ0 = 14.775, R∗ = 44.325 and R0 = 28.5153.

This gives rise to an unstable endemic equilibrium solution that is accompanied by the

emergence of oscillatory solutions. See, for example, Fig. 5.15 for time series plots, Fig. 5.16

for phase plots, and Fig. 5.17 for a plot of the total mosquito population. The figures

show sustained bounded oscillations which arise as the result of a Hopf bifurcation as the

parameter λ0 is varied. These indicate that natural occurring oscillations in the mosquito

population introduce oscillations in the dynamics of malaria transmission. Until now, the

way in which oscillations in malaria dynamics have been captured was by the inclusion

of a seasonal forcing term or via delays. However, here we have demonstrated that it is

possible to capture oscillations in the dynamics of malaria transmission by appropriately

interpreting the life style and behavior of the transmitting vector, and by incorporating the

relevant aspects into the malaria model without the consideration of delay or the inclusion

of a seasonal forcing term. Note that from equations (5.12) and (5.13), R0 = R̃2
0. Thus,

though the values of R0 computed here for the particular parameter regime may seem large

(< 29), a focus should be placed on the value of R̃0, which is less than 6.
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Figure 5.15. Typical time series plots of solutions to system (4.35), showing oscillatory

phenomena for γ = 0.7849, λ0 = 14.775, ǫ = 0.9, L = 5×103, and Nh = 105.

These and the rest of the parameters in Table 5.2 yield R∗ = 44.325 and

R0 = 28.5153. The approximate period of oscillation is 5 days.
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5.16.6. Limit cycle: Plot of I against wi.

Figure 5.16. Limit cycles of system (4.35) for γ = 0.7849, λ0 = 14.775, ǫ = 0.9, L = 5 ×
103, Nh = 105. For this parameter regime, R∗ = 44.325 and R0 = 28.5153.
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Figure 5.17. Pot of the total mosquito population in the presence of the disease showing

bounded periodic oscillations.
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5.3.4.4 Exploration of the Unique Endemic Equilibrium that Exists whenA1 > 0, A2 = 0 and ∆ > 0

A realistic nontrivial endemic equilibrium exists when A1 > 0,∆ > 0 and A2 = 0 or

equivalently R0 = 1. Here, λ0 = λc
0 = 0.3452, R0 = 1, A1 = 0.3378, A2 = 0.0, ∆ = 0.1141

and the numerical value of the endemic equilibrium solution is

(I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) = (0.6282, 0.0343, 0.0922, 0.0922, 0.3378, 0.3378, 0.3378).

As illustrated in Fig. 5.18, the equilibrium is asymptotically stable.
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Figure 5.18. Dynamical behavior of solutions to system (4.35) for λ0 = λc
0 = 0.3452 or

R0 = 1. A stable endemic equilibrium exists for this parameter regime.
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5.3.4.5 Exploration of the Endemic Equilibrium that Exists when A1 > 0, A2 < 0 and ∆ = 0

In contrast to many epidemiological models in which endemic equilibria exist only when

R0 > 1, depending on whether ∆ = 0 or ∆ > 0, system (4.35) can exhibit one or

two endemic equilibrium solutions when R0 < 1. Here, we focus on the a single en-

demic equilibrium solution that exists when A1 > 0, A2 < 0 and ∆ = 0. The parame-

ter regime, λ0 = 0.23, R0 = 0.9918, A1 = 0.0062, A2 = −1 × 10−5 and ∆ = 0 satisfies

conditions for the existence of the endemic equilibrium solution (I∗, u∗
s, v

∗
s , w

∗
s , u

∗
i , v

∗
i , w

∗
i ) =

(0.0153, 0.0343, 0.0348, 0.0348, 0.0031, 0.0031); however, as illustrated in Fig. 5.19, the equi-

librium solution is unstable.
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Figure 5.19. Dynamical behavior of solutions to system (4.35) when A1 > 0, A2 < 0 and

∆ = 0. An unstable endemic equilibrium exists for this parameter regime.
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We completely characterize the two endemic equilibrium solutions in region (V) of Fig. 5.6

that occur when A1 > 0, A2 < 0 and ∆ > 0 in the next section.

5.4 Characterization of Backward Bifurcation

Epidemiological models can exhibit some interesting dynamical behavior near R0 = 1. In

most cases, there is a supercritical or forward bifurcation at R0 = 1. However, situations

do arise in epidemiological modeling where we run into a double bifurcation at R0 = 1. In

this case, we have both a supercritical or forward bifurcation and a subcritical or backward

bifurcation. The occurrence of a forward bifurcation is accompanied by the emergence of

an asymptotically stable endemic equilibrium and loss of stability of the disease-free equi-

librium. A major prerequisite for the occurrence of a backward bifurcation is the existence

of two endemic equilibria when R0 < 1. The other requirement is that one of the endemic

equilibria together with the disease-free equilibrium have to be stable while the second en-

demic equilibrium has to be unstable. The phenomenon of backward bifurcation was first

established by Huang et al. [11] and further exploited in Refs. [3, 12–17] among others. It is

very essential in disease control in that it enlightens us to the fact that the basic reproduction

number may not be the only possible threshold parameter to focus on in formulating disease

control and eradication strategies. In fact, it tells us that simply reducing R0 below unity

might not be enough to eradicate certain diseases. We explore the existence of backward

bifurcation in our model using the approach proposed by Castillo-Chavez et al. in Ref. [15]

and then use our results to propose better malaria control strategies. We use the following

Theorem due to Castillo-Chavez et al., which for convenience we quote in its entirety.

Theorem 5.4.1 (Theorem 4.1 in [15]). Consider a general system of ordinary differential

equations with a parameter φ:

dx

dt
= f(x, φ), f : Rn × R → R

n, and f ∈ C
2(Rn × R). (5.34)

Without loss of generality, it is assumed that 0 is an equilibrium for System (5.34) for all

values of the parameter φ; that is, f(0, φ) = 0 for all φ.
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Assume

A1: A = Dxf(0, 0) =
(

∂fi
∂xj

(0, 0)
)

is the linearization matrix of a System (5.34) around

the equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all other eigen-

values of A have negative real parts;

A2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v correspond-

ing to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj

∂2fk
∂xi∂xj

(0, 0), (5.35)

b =

n∑

k,i=1

vkwi

∂2fk
∂xi∂φ

(0, 0). (5.36)

The local dynamics of the system around 0 are totally determined by a and b.

1. a > 0, b > 0. When φ < 0 with |φ| ≪ 1, 0 is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < φ ≪ 1, 0 is unstable and there exists a

negative and locally asymptotically stable equilibrium;

2. a < 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < φ ≪ 1, 0 is stable and a positive

unstable equilibrium appears;

4. a < 0, b > 0. When φ changes from negative to positive, 0 changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive

and locally asymptotically stable.

For the system (4.35) we have the following result:
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Theorem 5.4.2. Let 0 < λ0(γ) <
(γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ
. Then model (4.35)

undergoes a backward bifurcation at R0 = 1. In addition, there exists a threshold value of R0,

namely, Rc
0 = 1− ξ where ξ =

(
β(αλ0σ − ρ(1− δ))

2αλ0µ(1− δ)

)2

such that for R0 < Rc
0, there exists a

unique stable disease-free equilibrium and for Rc
0 < R0 < 1, there exists a stable disease-free

equilibrium, a stable endemic equilibrium and an unstable endemic equilibrium.

Proof. We follow through and establish that the conditions of Theorem 5.4.1 are satisfied

and then conclude that there is a backward bifurcation in the model. The matrix A of the

linearized system about the disease-free equilibrium is

A =




















−µ 0 0 0 0 0 β

−u∗
s −1 0 1 0 0 0

0 αλc
0(1− 2u∗

s) + α −ρ 0 αλc
0 0 0

0 0 γ −γ 0 0 0

σu∗
s 0 0 0 −1 0 δ

0 0 0 0 ρ −ρ 0

0 0 0 0 0 ǫ −ǫ




















(5.37)

and the characteristic equation of A is given by

[λ3+Qλ2+Rλ+P (R∗−1)][λ4+(Q1+µ)λ3+(µQ1+R1)λ
2+(µR1+P1)λ+P1µ(1−R0)] = 0,

(5.38)

where

P = γ(ρ− α) > 0,

Q = 1 + γ + ρ > 0,

R = γ + ρ+ γρ > 0,

P1 = ǫρ(1 − δ) > 0,

Q1 = 1 + ǫ+ ρ > 0,

R1 = ǫ+ ρ+ ǫρ > 0.

When R0 = 1, we have

λ[λ3 +Qλ2 +Rλ+ P (R∗ − 1)][λ3 + (Q1 + µ)λ2 + (µQ1 +R1)λ+ (µR1 + P1)] = 0. (5.39)
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Hence, there is a simple zero eigenvalue when R0 = 1. Also, when R0 = 1,

βσ(R∗c − 1)

µ(1− R∗c)
= 1

⇔ R
∗c =

βσ

βσ − µ(1− δ)
=

1

1− µ(1−δ)
βσ

,

⇔ λc
0 =

βσ(ρ− α)

α[βσ − µ(1− δ)]
=

ρ− α

α
[

1− µ(1−δ)
βσ

] .

Since R∗ = R∗c > 1 when R0 = 1 and

(Q1 + µ)(µQ1 +R1)− (µR1 + P1) = µQ1(µ+Q1) + (ǫ+ ρ)(1 +R1) > 0,

the Routh-Hurwitz conditions assure us that all other eigenvalues of A have negative real

parts when 0 < λ0(γ) <
(γ + ρ+ 1)(γ + ρ+ γρ) + γ(ρ− α)

αγ
.

Now, if we rewrite system (4.35) as

İ = β(1− I)wi − µI = f1(I, us, vs, ws, ui, vi, wi),

u̇s = (1− I)ws − us = f2(I, us, vs, ws, ui, vi, wi),

v̇s = αλo(us(1− us) + ui(1− ui)) + αus − ρvs = f3(I, us, vs, ws, ui, vi, wi),

ẇs = γ(vs − ws) = f4(I, us, vs, ws, ui, vi, wi), (5.40)

u̇i = δwi + σIws − ui = f5(I, us, vs, ws, ui, vi, wi),

v̇i = ρ(ui − vi) = f6(I, us, vs, ws, ui, vi, wi),

ẇi = ǫ(vi − wi) = f7(I, us, vs, ws, ui, vi, wi),

then we have the following derivatives evaluated at (0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0):
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∂2f1
∂I∂wi

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) =

∂2f1
∂wi∂I

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = −β,

∂2f2
∂I∂ws

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) =

∂2f2
∂ws∂I

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = −1,

∂2f3
∂u2

s

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = −2αλc

0,

∂2f3
∂u2

i

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = −2αλc

0,

∂2f5
∂I∂ws

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) =

∂2f5
∂ws∂I

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = σ,

∂2f3
∂us∂λ0

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = α(1− 2u∗

s),

∂2f5
∂ui∂λ0

(0, u∗
s, v

∗
s , w

∗
s , 0, 0, 0, λ

c
0) = α,

where

u∗
s = v∗s = w∗

s =
α(1 + λc

0)− ρ

αλc
0

= 1− 1

R∗c =
µ(1− δ)

βσ
,

λc
0 =

βσ(ρ− α)

α[βσ − µ(1− δ)]
=

ρ− α

α
[

1− µ(1−δ)
βσ

] .

Now,

a =

n∑

k,i,j=1

vkwiwj

∂2fk
∂xi∂xj

(x∗, λc
0) = −2βv1w1w7 − 2v2w1w4 − 2αλc

0v3(w
2
2 + w2

5) + 2σv5w1w4,

b =

n∑

k,i=1

vkwi

∂2fk
∂xi∂λ0

(x∗, λc
0) = αv3w2(1− 2u∗

s) + αv3w5.

Next, we determine a nonnegative right eigenvector w = (w1, w2, w3, w4, w5, w6, w7)
T and a

left eigenvector v = (v1, v2, v3, v4, v5, v6, v7)
T that correspond to the simple eigenvalue of the

matrix A. For the right eigenvector, we solve the system

Aw = 0.
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This system is the same as

− µw1 + βw7 = 0,

−u∗
sw1 − w2 + w4 = 0,

(αλc
0(1− 2u∗

s) + α)w2 − ρw3 + αλc
0w5 = 0, (5.41)

w3 − w4 = 0,

σu∗
sw1 − w5 + δw7 = 0,

w5 − w6 = 0,

w6 − w7 = 0.

By solving this system, we obtain the following form for the right eigenvector w = (w1, w2,

w3, w4, w5, w6, w7)
T :




















w1

w2

w3

w4

w5

w6

w7




















=




















β

µ
w7

W ∗
2w7

W ∗
3w7

W ∗
4w7

W ∗
5w7

W ∗
6w7

W ∗
7w7




















,

where

W ∗
2 =

u∗
s
β

µ
(αλc

0(1− 2u∗
s) + α)− αλc

0

αλc
0(1− 2u∗

s) + α− ρ
− u∗

s

β

µ
,

W ∗
3 =

u∗
s
β

µ
(αλc

0(1− 2u∗
s) + α)− αλc

0

αλc
0(1− 2u∗

s) + α− ρ
,

W ∗
4 = W ∗

3 ,

W ∗
5 = W ∗

6 ,

W ∗
6 = W ∗

7 ,

W ∗
7 = 1.
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Note that

λc
0 =

ρ− α

α
(

1− µ(1−δ)
βσ

) =
ρ− α

α(1− u∗
s)

⇒ αλc
0 =

ρ− α

1− u∗
s

and αλc
0(1−2u∗

s)+α = ρ−(ρ−α)
u∗
s

1− u∗
s

.

Also note that 0 < 1 − u∗
s < 1, since when R0 = 1, u∗

s = 1− 1

R∗ ⇒ 1− u∗
s =

1

R∗ < 1. It is

also worth noting that since we are in the right half plane of the bifurcation diagram, A1 > 0.

Using these simplifications we obtain

w =




















w1

w2

w3

w4

w5

w6

w7




















=




















β/µ

A1/u
∗
s

(βu∗2
s + A1µ)/(µu

∗
s)

(βu∗2
s + A1µ)/(µu

∗
s)

1

1

1




















. (5.42)

We then compute v such that v.w = 1. To this end, we obtain

v =




















v1

v2

v3

v4

v5

v6

v7




















=




















0

0

v3

v3

v5

0

0




















=




















0

0

(βσw3)/(2(2βσw
2
3 + αλc

0µ(w
2
2 + 1)))

(βσw3)/(2(2βσw
2
3 + αλc

0µ(w
2
2 + 1)))

(βσw2
3 + αλc

0µ(w
2
2 + 1))/(2βσw2

3 + αλc
0µ(w

2
2 + 1))

0

0




















. (5.43)

With the vectors w and v, we obtain

a = −2αλc
0

(
A2

1

u∗2
s

+ 1

)

v3 + 2
σ

µ
w3v5 =

βσ(βu∗2
s + µA1)

2µ2u∗
s

,

b = α((1− 2u∗
s)w2 + w5)v3 = α

(
A1

u∗
s

− 2
A1

u∗
s

u∗
s + 1

)

v3

= α

(
A1

u∗
s

−A1 − A1 + 1

)

v3 =
α

u∗
s

(A1(1− u∗
s) + (1− A1)u

∗
s) v3.
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Clearly, a > 0. Since 0 < u∗
s < 1 and 1 − A1 > 0, b > 0. Hence, the model exhibits a

backward bifurcation since both a and b are strictly positive.

Finally, by using the existence condition for endemic equilibrium solutions to our system,

we derive the critical value of R0 below which only a stable disease-free equilibrium solution

exists and above which three equilibrium solutions, a locally stable disease-free equilibrium,

a locally stable endemic equilibrium, and an unstable second endemic equilibrium exist.

Considering the third and fourth quadrants of the bifurcation diagram, A2 < 0 and A1

can either be positive, zero or negative and we can either have no endemic equilibrium

solution, one equilibrium solution or two endemic equilibrium solutions. For instance, for

A1 > 0, when ∆ < 0, there is no endemic equilibrium solution, when ∆ = 0, there is a

single endemic equilibrium solution, and when ∆ > 0, there are two endemic equilibrium

solutions. Therefore by setting ∆ = 0, we can obtain the critical value of R0, namely, Rc
0 < 1

below which we have no endemic equilibrium solution and above which we have two endemic

equilibrium solutions.

Now,

∆ = 0 ⇔ [β(αλ0σ − ρ(1 − δ))]2 + [2αλ0µ(1− δ)]2(Rc
0 − 1)

(αβλ0σ)2
= 0.

This yields

Rc
0 = 1− ξ,

where

ξ =

(
β(αλ0σ − ρ(1− δ))

2αλ0µ(1− δ)

)2

.

Clearly, ξ ≥ 0. Note that ξ < 1 if

λ0 <
βρ(1− δ)

α[βσ − 2µ(1− δ)]
=

ρ(1− δ)

ασ
[

1− 2µ(1−δ)
βσ

] =
βρ
[
µ(1−δ)

βσ

]

αµ
[

1− 2µ(1−δ)
βσ

] .

When 0 < ξ < 1, Rc
0 < 1 and

1. when R0 < Rc
0, there exists a stable disease-free equilibrium;

2. when Rc
0 < R0 < 1, there exists two endemic equilibrium solutions, one of which is

stable and a locally stable disease-free equilibrium solution. �
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Figure 5.20. Plot depicting the existence of both a backward (subcritical) bifurcation

and a forward (supercritical) bifurcation. There is a critical value Rc
0 =

0.83 of R0 such that for R0 < Rc
0, there exists a unique stable disease-free

equilibrium (solid green line to the left of R0 = Rc
0). For Rc

0 < R0 <

1, there exists a stable disease-free equilibrium (solid green line segment

between R0 = Rc
0 and R0 = 1), a stable endemic equilibrium (solid blue

line between R0 = Rc
0 and R0 = 1), and an unstable endemic equilibrium

(dashed magenta line between R0 = Rc
0 and R0 = 1). Finally, for R0 > 1,

there exists a stable endemic equilibrium (solid blue line segment to the

right of R0 = 1 and an unstable disease-free equilibrium denoted by the

dashed magenta line segment to the right of R0 = 1). DFE represents

disease-free equilibrium and EE represents endemic equilibrium.
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5.5 Effects of Birth Rate Function

Different recruitment or birth rate functions have been used in the biological and ecological

literature to quantify birth processes. These include simple constant birth rates, linear birth

rates, the Verhulst-Pearl logistic birth rate function [18–20], the Beverton-Holt birth rate

function [21], the Ricker birth rate function [22], the Hassell birth rate function [23], and

the Maynard-Smith-Slatkin birth rate function [24, 25]. The birth rate function used to

model a specific biological or ecological process has a profound effect on the dynamics of the

model. Some birth rate functions can lead to oscillatory dynamics. In this case, the size

of the amplitude and perhaps period of oscillations may be different for different birth rate

functions used to model the same process. In ecological processes, competition for sustainable

resources among inhabitants of a community can lead to nonlinearities in the dynamics of

the process. Such competition can be referred to as scramble or contest when individuals

within the same species compete for the same resource [26, 27]. Scramble competition

involves a situation in which the available resources are apportioned equally between the

individuals involved. Generally, the resources are not sufficient to satisfy individual needs

of the entire population, and in extreme situations, all individuals or species may become

extinct. In contrast, contest competition is a “survival of the strongest” situation, in which

the species or individuals that emerge victorious in the encounter can acquire the required

amount of resources, while the losers may acquire little or nothing. By assuming that female

Anopheles mosquitoes can always find humans to feed on, it is reasonable to consider the

competition between female Anopheles mosquitoes for human blood as contest, whereby

those that succeed to acquire human blood proceed to reproduce, whereas those that do not

succeed to acquire blood meals are assumed to be killed. While the Verhulst-Pearl logistic

birth rate function is suitable to modeling contest competition, the Maynard-Smith-Slatkin

birth rate function is suitable for modeling both scramble and contest competition.

The analysis presented in this Part uses the Verhulst-Pearl logistic birth rate function

(4.21) to model mosquito birth. Here, we compare the size of the amplitudes of the oscil-

lations for two different birth rate functions, the Verhulst-Pearl logistic birth rate function

and the Maynard-Smith-Slatkin birth rate function. The Maynard-Smith-Slatkin birth rate
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function is given by

λv(ϑ) =
ϑ

1 +
(
ϑ
L

)n , (5.44)

where ϑ = Su, Iu and n is a constant. Note that the Verhulst-Pearl logistic birth rate

function is an approximation to the Maynard-Smith-Slatkin birth rate function. Replacing

the Verhulst-Pearl logistic birth rate function in system (4.22) by equation (5.44) and scaling

the system appropriately, we obtain the following system:

İ = β(1− I)wi − µI,

u̇s = (1− I)ws − us,

v̇s = αλ0

(
us

1 + un
s

+
ui

1 + un
i

)

+ αus − ρvs,

ẇs = γ(vs − ws), (5.45)

u̇i = δwi + σIws − ui,

v̇i = ρ(ui − vi),

ẇi = ǫ(vi − wi).

For the same parameter regime, system (5.45) produces periodic oscillations with higher

amplitudes than system (4.35). For example, for γ = 0.7849, λ0 = 14.775, ǫ = 0.9, L = 5 ×
103, Nh = 105, n = 50, and the other parameters as in Table 5.2, system (5.45) yields periodic

solutions with an approximate amplitude of 0.15 while system (4.35) yields periodic solutions

with an approximate amplitude of 0.0001. See Figs. 5.21 and 5.22 for illustrations. In

dimensional terms, these numbers correspond to 1,500 and 10 infectious humans, respectively.

The fact that system (5.45) produces more sustained higher amplitude periodic oscillations

than system (5.45) implies that it is more appropriate for modeling biological, epidemiological

and ecological birth processes. Hence, the Maynard-Smith-Slatkin birth rate function seems

to be a better function for quantifying birth processes. With the Maynard-Smith-Slatkin

function, n also plays an important role in disease dynamics. System (5.45) exhibits sustained

periodic oscillations for n ≥ 4 and non-oscillatory stable equilibrium solutions for n < 4.
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Figure 5.21. Illustration of the effect of the Verhulst-Pearl birth rate functions on the

dynamics of system (4.35). The amplitude of the oscillations is 0.0001. But

since Nh = 100, 000, the amplitude corresponds to 10 infectious human.

The period is approximately 5 days.
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Figure 5.22. Illustration of the effect of the Maynard-Smith-Slatkin birth rate function

on the dynamics of system (5.45). The amplitude of the oscillations is 0.15.

For Nh = 100, 000, the amplitude corresponds to 1,500 infectious humans.
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5.6 Conclusion

We have applied analytical and numerical techniques to study the SIS model for the

dynamics of malaria transmission described in Chapter 4. In the absence of the disease, we

identified a threshold parameter R∗ that is linked to mosquito demography. The disease-

free model always has a trivial equilibrium solution which is linearly stable when R∗ ≤ 1

and unstable otherwise. When R∗ > 1, a non-trivial equilibrium solution co-exists with

the trivial equilibrium solution. We identified a critical value λc
0 of λ0 and showed that the

non-trivial equilibrium solution is stable when 0 < λ0 < λc
0 and unstable with the emergence

of periodic solutions when λ0 > λc
0. A Hopf bifurcation occurs at 0 < λ0 = λc

0.

In the presence of the disease, we calculated a new basic reproduction number for malaria

and used it to explore the existence and stability of disease-free and endemic equilibria. We

showed that the system has an unstable trivial equilibrium solution and a non-trivial disease-

free equilibrium solution. Conditions for the stability of the disease-free equilibrium solution

were derived and, as in the disease-free model, we showed that the full model also exhibits

a Hopf bifurcation. We derived conditions under which the model can have two, one or

no endemic equilibrium solutions and also showed that there is a parameter space within

which the model exhibits a backward bifurcation. We also demonstrated that the Maynard-

Smith-Slatkin birth rate function can lead to oscillatory dynamics with higher periods than

the Verhulst-Pearl logistic function. Hence, the Maynard-Smith-Slatkin function is more

suitable to modeling the population dynamics of the malaria vector under our framework.

The discovery of oscillatory dynamics in the analysis of the model indicates that we have

been able to capture natural oscillations known to exist in mosquito dynamics and hence

malaria prevalence without recourse to external seasonal forcing. This oscillatory dynamics

provides a plausible framework for designing and implementing malaria control strategies.

For example, an efficient strategy will be to apply control measures when the mosquito

population is at its minimum amplitude. Applying control strategies when the mosquito

population is at its peak amplitude will require substantial effort, otherwise only a portion

of the mosquito population will be suppressed and the population will eventually recover

when conditions become favorable.
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Chapter 6

Comparison of the New SIS Model with the

Classical Ross-Macdonald Malaria Model,

General Conclusions and Open Questions

6.1 Intoduction

In this Chapter, we compare the classical SIS Ross-Macdonald model derived and studied

in Chapter 3 with the SIS malaria model derived in Chapter 4 and analyzed in Chapter 5.

We show that the new model is an improvement on the classical model, provide a general

conclusion to Part I, and present some open questions and possible areas for future research.

6.2 Comparison of Model (4.22) to the Classical Ross SIS Model

We now examine how the simple Ross-type malaria model compares to the new simplified

model (4.22) and how the Ross-type model can be recovered from the simplified model (4.22).

To this effect, we set p1 = 1 and q = 1, or p1βh = βh and qβv = βv, which accounts for

the proportion of successful contacts. Also, we set Im = Iu + Iv + Iw ( fed + questing +

breeding site infectious mosquitoes) and Sm = Su + Sv + Sw ( fed + questing + breeding

site susceptible mosquitoes) where Im and Sm denote infectious and susceptible mosquitoes,

respectively. Additionally, we take λv(ϑ)ϑ, where λv is as defined in (4.21) to be a constant,

λ0. This simplifies system (4.22) to the following system:
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·
Sh = µhNh + rhIh − βhShIw − µhSh,
·
Ih = βhShIw − (rh + µh) Ih,
·

Sm = avλ0 − βvSwIh − µvSm, (6.1)
·
Im = βvSwIh − µvIm.

Let Nh and Nw be the total human and questing mosquito populations, respectively. Using

Sh = Nh − Ih and Sw = Nw − Iw, we can drop the equations for Sh and Sm from system

(6.1) and have

·
Ih = βh(Nh − Ih)Iw − (rh + µh) Ih,
·
Im = βv(Nw − Iw)Ih − µvIm.

In our model, βh(Nh − Ih)Iw models the contact between infectious questing female

mosquitoes and susceptible humans, while in the Ross-type model, such a term is the contact

made between mosquitoes and susceptible humans. Likewise, βv(Nw − Iw)Ih models the

contact between susceptible questing female mosquitoes and infectious humans, while such a

term is the contact made between mosquitoes and infectious humans in the Ross-type model.

Note that because the total human population in both models is constant, the incidence

functions in both our model and the classical Ross-Macdonald model are comparable.

In Ross-type models, Su+Iu is calledNv, and Sw is Sv. In model (4.22), the demography of

the mosquito is important. Only those female mosquitoes that need to feed and are questing

are involved in disease transmission, and they are appropriately accounted for. Additionally,

only breeding vectors populate the susceptible class. This is true for fed vectors and breeding

site vectors. The novelty is especially visible when control is taken into consideration. This

is because with model (4.22), we can say how it will impact the model dynamics when the

questing, breeding site, or even the fed mosquitoes are reduced.

The basic reproduction number provides another comparison between the Ross’s model

and model (4.22). The basic reproduction number for the Ross’s model is

Rclassical
0 =

βhβvNhNv

µv (rh + µh)
,
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while the basic reproduction number for model (4.22) is

R0 =
βvβhNhS

∗
w

(rh + µh)
.

qavαv(Nh)

((av + µv)(µv + αv(Nh))(µv + βhNh)− p1avαv(Nh)βhNh)
,

which can be rewritten as

R0 =
βvβhNhS

∗
w

µv(rh + µh)
.q.

avαv(Nh)

avαv(Nh)
(

1 + (1−p1)βhNh

µv

)

+ (µv + βhNh)(av + αv(Nh) + µv)
.

It is evident that R0 < Rclassical
0 since

0 < q < 1 and 0 <
avαv(Nh)

avαv(Nh)
(

1 + (1−p1)βhNh

µv

)

+ (µv + βhNh)(av + αv(Nh) + µv)
< 1.

Additionally, since S∗
w ≤ Nmv, the basic reproduction number of model (4.22) is less than or

equal to the basic reproduction number of the classical SIS (Ross-type) model. Hence, our

model brings out an important scaling factor for the R0 obtained from the classical SIS model

so that R0 ≤ ̺Rclassical
0 , where ̺ < 1. Note that unlike the Ross-type model, whose basic

reproduction number involves the total vector population, the basic reproduction number of

model (4.22) involves the equilibrium value of the susceptible questing vectors, which are the

only proportion of vectors that can become infected. Hence, R0 can be reduced by regulating

the rate at which susceptible female vectors visit human habitats to quest for blood meals.

The analysis of model (4.22) indicates that the model captures the natural oscillations

known to occur in mosquito populations. These oscillations lead to oscillations in the malaria

dynamics and thus the entire system oscillates, which is not captured by Ross-type models

without recourse to external forcing by means of periodic contact rates, delays, etc. These os-

cillations provide a plausible framework for designing and implementing malaria intervention

and control measures, especially measures that are related to mosquito control.

6.3 Synopsis and Conclusion

In this Part, we have developed a new SIS model for endemic malaria that explicitly

integrates the demography of the mosquito vector that transmits the disease together with

its interaction with the human population – and incorporates the disease dynamics. The

157



general model is an improvement on the classical Ross-Macdonald SIS model and provides

a new framework for modeling malaria transmission. A simplification of the derived model,

which is comparable to but still an improvement on the classical Ross-Macdonald SIS model

is used to study the dynamics of the malaria disease within a closed human population. In

summary, the main differences and improvement of our model over the Ross-type model are:

1. Mosquitoes involved and accounted for in disease transmission are only the female

mosquitoes that need to feed and thus are questing for a human blood meal.

2. The vector demography is emphasized and, therefore, the impact of malaria control on

the vector populations, fed and questing, resting and breeding, or newly emerging can

be studied appropriately and accounted for.

3. The basic reproduction number, R0, computed for the new model is smaller than that

computed for the Ross-Macdonald SIS model, since not all mosquitoes take part in the

transmission process, a fact that has not been quantified in previous models.

4. Two threshold parameters, both of which can be used for control purposes, have been

identified. One of these parameters is directly linked to the demography of the vector

and the other is linked to the disease dynamics. The difficulty in eradicating malaria

may therefore lie in the complicated life style of the malaria parasite; that is, in its

ability to share its life cycle in the mosquito and in the human. Thus, model (4.22) is

an improvement on the Ross model and provides important areas for malaria control.

5. The analysis of model (4.22) captures natural fluctuations as well as presents a new

route to periodic oscillations in the dynamics of malaria transmission without recourse

to external seasonal forcing and/or delays, a feature which the Ross-type model fails

to capture unless some external forcing term is introduced.

In addition to the results highlighted in the discussion of the differences between model

(4.22) and the Ross-type models, a detailed analytical and numerical exploration of model

(4.22) yields the following results in the absence and in the presence of the malaria disease:
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In the absence of the malaria disease, we presented and discussed conditions for the

existence and stability of a realistic non-trivial equilibrium solution and also conditions for

the existence of a Hopf bifurcation and hence oscillatory solutions.

In the presence of the malaria disease, we have carried out the following analysis:

1. Demonstrated the existence and stability of both a trivial and a disease free steady

state, as well as derived conditions for the existence of a Hopf bifurcation. Instability

of the trivial steady state E0 is reasonable from a physical stand point, which rules out

the possibility of permanently eradicating the mosquito population.

2. Captured natural fluctuations known to occur in the mosquito population dynamics

without external seasonal forcing or delays. These fluctuations led to fluctuations in

the malaria disease dynamics and thus presented a new route to periodic oscillations

and a plausible framework for developing and implementing control strategies.

3. Derived conditions that guarantee the existence and stability of endemic equilibria.

When R0 > 1, we have one endemic equilibrium. However, when R0 < 1, there are

conditions for which there exist no endemic equilibrium, one endemic equilibrium, or

two endemic equilibria, which may lead to a backward bifurcation.

4. Applied techniques described in Refs. [1–3] to completely characterize the backward

bifurcation that arises when R0 < 1. The occurrence of a backward bifurcation indi-

cates that simply reducing R0 below unity is not enough to eradicate the disease. That

is, the disease can still establish itself within the population even when R0 < 1. We

thus derived a critical value Rc
0 of R0 that is also less than unity. The disease can be

eradicated when R0 ≤ Rc
0 and can persist when R0 > Rc

0 .

The most striking result of our analysis is the highly multidimensional facets that seem to

characterize the lives of the malaria mosquito population, the agents involved in transmitting

the malaria parasite that causes malaria. This presents a significant challenge for malaria

control and an opportunity for research in order to understand what this might mean for

malaria control. In particular, control schemes need to be well thought out to capture all

three phases of the mosquito population. Consequently, a desirable control scheme should be
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one that targets each of the three stages of the mosquito population. It should seek to limit

contact between questing mosquitoes and humans and disrupt breeding sites or move them

further from human habitats. In fact, from the re-interpreted basic reproduction number, as

the carrying capacity of the breeding sites is halved, the basic reproduction number is also

halved and thus can drive R0 from a value greater than one to a value less than one.

We have thus accomplished the task of addressing the five goals stated in the intro-

duction. We captured the natural oscillations that are known to exist in the prevalence of

malaria without recourse to external seasonal forcing, redefined and calculated a new value

for the basic reproduction number for malaria, presented a possible interpretation of why it

is difficult to eradicate malaria, and have compared the new SIS model with the original Ross

SIS type malaria model. Additionally, we identified a parameter regime within which our

model exhibits a Hopf bifurcation and another regime where a backward bifurcation occurs.

Our model indicates that to fully understand the dynamics of indirectly transmitted dis-

eases such as malaria fever, dengue fever, yellow fever, Leishmaniasis, etc., mathematical

models should not be developed in isolation, but should incorporate the demography of the

vectors or arthropods that transmit the agent that cause these diseases. We have therefore

presented a framework that researchers can build upon and apply to other indirectly trans-

mitted diseases. We hope that it provides information that might lead to eradicating malaria

and other vector-borne diseases, or significantly reducing their burden on humans.

6.4 Possible Extensions and Areas for Future Research

From the analysis of model (4.22), it is evident that there are many areas that require

further development and areas of possible extensions. Additionally, there are some open

questions that can be investigated. We now present some of these.

1. The mathematical analysis of the stability results of the endemic steady states needs

further development. In our brief exploration of the endemic steady states, a number

of issues became evident. It is evident that there is a richer dynamics in the region in

parameter space where the conditions of remark 5.3.6 hold or fail and understanding
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what this means mathematically is of importance. Additionally, exploring the dynam-

ical behavior of the disease in the limit as R0 → 1 may lead to interesting results.

2. Figure 5.7.3 shows four regions for the threshold parameters R∗ and R0 as the pa-

rameter λ0 is varied. The dynamics of malaria in each of these regions may expose

interesting features about malaria dynamics and offer potentially useful information

towards malaria eradication. Therefore, this is worth investigating.

3. We have modeled the fact that a mosquito takes a bite from a human as a Bernoulli

random variable – success or failure. However, it is possible that a mosquito may fail

to take a blood meal and then try again and again. It will be interesting to see how

this aspect affects the disease dynamics.

4. Another open question is the exploration of the possibility of chaotic dynamics. Does

it occur, and if so, under what conditions?

5. It is well known that the most general form of a compartmental model for the dynamics

of malaria transmission is an SEIRS-type model [4, 5]. However, we used a simple SIS

model. This was because we wanted to illustrate the novelty in our approach as well as

acquire a deeper understanding of the associated dynamics and biological significance

to malaria. Now that we have a sound understanding of this new framework and the

role it can play in malaria control, it is necessary to extend it to capture and address

more realistic features of the biology and dynamics of malaria transmission. Hence,

it is necessary to develop and analyze deterministic and stochastic SEIRS models for

malaria and other indirectly transmissible diseases that incorporate the following:

(a) disease-induced mortalities, since they are significant in endemic regions,

(b) vector demography and all the aquatic life stages of the malaria vector,

(c) multiple human habitats and multiple vector breeding sites.
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Part II

Disease-driven Poverty Traps

163



Chapter 7

Disease-driven Poverty Traps: The Effects of

Determinism, Stochasticity, and Safety Nets

7.1 Introduction

About one sixth of the world’s population is poor, living on less than one U.S. dollar per

day [1]. The poor are located mostly in developing countries, where poverty has lingered for

ages. Unfortunately, most of the chronically poor hardly experience real economic growth at

any stage of their lives. The reasons for such extreme poverty are varied and include factors

such as: bad governance, corruption, poor health care systems, lack of education and social

infrastructure, and biophysical factors such as agricultural productivity and environmental

degradation [2–7]. Extreme poverty is common among socially marginalized people, people

who are discriminated against, unhealthy people, etc. Based on poverty and infectious

disease prevalence levels, populations can be grouped into a number of classes that include:

1. under-developed and high disease-burden populations that are stuck in a vicious cycle

of poverty and disease,

2. developed and low disease-burden populations with growing economies and good health,

3. populations with intermediate levels of income and infectious disease prevalence, etc.

The gap between the extremely rich and the extremely poor has attracted much attention

from the economics and development communities [8–11]. This has given rise to recent
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research that is focused on identifying optimal intervention strategies for poverty alleviation

and improvement of the health conditions of those leaving in extreme poverty. See, for

example, Refs. [12–21] for an extensive coverage of this subject.

Any self-reinforcing system that prevents economic growth can be regarded as a poverty

trap. One such system involves the interaction between disease and poverty. This interaction

can lead to a vicious cycle where poor health and poverty reinforce each other in a positive

feedback system, locking a country in a trap of poverty and poor health. Individuals and

countries that are stuck in a poverty trap tend also to have high burdens of disease, while

in contrast, rich individuals and developed countries have a relatively low disease burden.

Health and nutrition are important for the acquisition of the education and training necessary

for income generation, while disease can cause death and inhibit labor productivity, thereby

limiting economic growth [22–24]. Disease weakens the workforce of a country and hence

impacts economic growth negatively. On the other hand, disease prevalence tends to high

in poor countries since such countries lack the necessary health care resources to contain

and/or combat diseases. The reasons for the perpetuation of poverty traps are many but

the role of per capita income and other economic variables cannot be discounted [9]. Other

economic variables may include conflict [25, 26], household income, environmental factors

[27] and infectious disease burdens [5, 23, 28].

Disease-driven poverty traps have been qualitatively studied and documented exten-

sively [29]. While formal models of poverty traps have existed for decades, they have not

been integrated with the natural sciences and epidemiology [9, 30–34]. Bonds et al. [35]

recently proposed a theoretical framework for poverty traps based on an infectious disease

model. They translated the generalized poverty trap cycle into a mathematical framework,

in which the interaction between income and infectious disease prevalence is studied through

a deterministic SIS (susceptible-infectious-susceptible) compartmental model with per capita

income-dependent parameters. Although this framework formally demonstrates how poverty

traps caused by infectious diseases can emerge in a very simple model, it is incomplete in

several aspects. The framework fails to capture and/or explain the mechanism by which

countries fall into disease-induced poverty traps and how countries can leave the poverty

trap. Most importantly, which equilibrium the country relaxes to is determined entirely by
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its initial level of income and burden of infectious disease. Moreover, once a country steps

into the high income and low disease state, or the low income and high disease state, the

country has no way of leaving that state. This is unrealistic in real-life. These deficiencies

in the framework are attributed to the fact that their system is deterministic.

Stochastic models, that is, models that include random variation, can lead to qualitatively

different results than deterministic models in a range of systems and scales of analysis [36, 37].

Stochastic processes are also an important part of the economic growth literature [30, 38],

and they have played a central role in the development of population ecological theory

[39–41]. A substantial amount of empirical work, from laboratory studies of marine micro-

organisms to field studies of large mammals, has contributed to a growing consensus that

stochastic processes are often as important as their underlying deterministic structure in

explaining patterns of population dynamics [41–46]. For example, stochastic models have

been essential in explaining the temporal behavior of infectious diseases of humans, such as

measles, whooping cough, cholera, dengue fever, etc. [47–51]. Stochasticity can also play an

important role in generating poverty traps, and in deciding whether or not a population or

a country falls into, or leaves a poverty trap.

The question at issues is: what can be done about perpetual cycles of poverty and

disease? There are those who suggest that what is needed is broad economic development,

and everything else (such as mortality rates) will follow. Such goals have not only been

elusive, they are not necessarily based on an understanding of the underlying mechanics

of persistent poverty. Health conditions through a system of feedback mechanisms can be

an important determinant of long-term economic growth and improving health care can

play a role in breaking cycles of poverty and disease. Here, we explore deterministic and

stochastic models of disease-driven poverty traps in view of determining the best ways of

escaping disease-driven poverty traps. We show that deterministic models can give rise to

poverty traps that can only be overcome by substantial external changes to the initial levels

of income and health care, whereas there is always a possibility of breaking poverty traps

arising from stochastic models. We also show that a “safety net1”, which can be implemented

as an economic measure, a health measure or both an economic and health measure is a

1A safety net is an externally enforced minimum level of health or economic conditions.
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guaranteed measure of escaping from a poverty trap. This measure remains effective even

when it is implemented within the basin of attraction of the poverty trap. Therefore, this

research addresses structural versus stochastic poverty, and provides theoretical mechanisms

for understanding the role of health safety nets in the context of stochastic poverty.

This study is motivated by the following findings developed from disparate literatures:

1. health, which depends largely on disease ecology, can influence economic productivity,

2. the effectiveness of policy is sensitive to the nature of poverty dynamics, and

3. the dynamics of income and disease have both deterministic and stochastic components.

The chapter is organized as follows: We explore the effects of determinism and stochas-

ticity on disease-driven poverty traps in Sections 7.2 and 7.3, respectively, advance policy

interpretations of our investigations in Section 7.4, and conclude the chapter in Section 7.5.

7.2 The Deterministic Approach

The parameters and variables used in this Section are described in Tables 7.1 and 7.2,

respectively, while a schematic framework illustrating the flow of individuals between the

susceptible and infectious classes is presented in Fig. 7.1.
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Table 7.1. Model parameters and their descriptions.

Parameter Description

λ Birth rate of susceptible and infectious individuals

β Transmission rate

β1 Maximum transmission rate

r Rate at which infectious individuals recover from the disease

r1 Maximum rate at which infectious individuals recover from the disease

µ Natural death rate of susceptible and infectious individuals

γ Disease-induced death rate

M0 Maximum income

ρ Growth rate of income

σ Volatility of per capita income

Table 7.2. Model variables and their descriptions.

Variable Description

S̃(t) Susceptible individuals at time t. These are individuals with the

potential of contracting the disease but who has not yet contracted

the disease.

Ĩ(t) Infectious individuals at time t. These are individuals who have

already contracted the disease and can transmit it.

M(t) Per capita income at time t.
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Figure 7.1. A schematic framework illustrating the movement of individuals into and out

of the susceptible (S̃) and infectious (Ĩ) classes. The various transition rates

are described in Table 7.1. At any time, the total population Ñ , is given by

Ñ = S̃ + Ĩ .
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We derive and analyze a SISM (Susceptible-Infectious-Susceptible-Per capita income)

deterministic ordinary differential equation model for a class of infectious diseases of humans

that can serially reinfect their hosts. Such diseases may include bacterial infections, sexually

transmitted diseases, vector-borne diseases such as malaria and dengue fever. Literature

indicates that such diseases have been accused of inhibiting economic growth [23, 52, 53].

The generic S̃ĨS̃ part of the model has been widely studied in the literature [54–57]. See,

for example, Chapter 2 for the derivation of this part of the model. Since disease-driven

poverty traps arise as a result of positive feedback between income and disease, we adopt the

framework proposed by Bonds et al. and model the contact and recovery rates as functions

of per capita income. Using standard mass action laws and and the schematic in Fig. 7.1,

we write the following system of differential equations for the disease model:

dS̃

dt
= λÑ + r(M)Ĩ −

(

β(M)Ĩ

Ñ
+ µ

)

S̃,

dĨ

dt
=

β(M)Ĩ

Ñ
S̃ − (r(M) + µ+ γ)Ĩ , (7.1)

where the total population is modeled by the equation

dÑ

dt
= (λ− µ)Ñ − γĨ.

For convenience, we rewrite the disease model in terms of proportions of susceptible and

infectious individuals. To achieve this variable transformation, we set S = S̃/Ñ and I = Ĩ/Ñ

in system (7.1). The derivatives on the left-hand sides are now given by:

dS

dt
=

d(S̃/Ñ)

dt
=

1

Ñ

(

dS̃

dt
− S̃

Ñ

dÑ

dt

)

,

dI

dt
=

d(Ĩ/Ñ)

dt
=

1

Ñ

(

dĨ

dt
− Ĩ

Ñ

dÑ

dt

)

.

Further simplification yields the following system:

dS

dt
= λ(1− S)− β(M)IS + r(M)I + γIS,

dI

dt
= β(M)IS − (r(M) + γ + λ)I + γI2, (7.2)
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where S and I are, respectively, the proportions of susceptible and infectious individuals.

Since S + I = 1, S = 1− I. We use this fact to reduce system (7.2) into the single equation

dI

dt
= β(M)I(1− I)− (r(M) + γ + λ)I + γI2. (7.3)

In contrast to previous frameworks used in modeling income [28, 35, 58], we regard per

capita income as a state variable and model it explicitly through the following ordinary

differential equation that is chosen in such a way that per capita income increases with

decreasing disease prevalence and decreases with increasing disease prevalence:

dM

dt
= −ρM(M −M0(1− I)), (7.4)

where ρ is the growth rate of income and M0 is the maximum income that would be earned

if there is no disease in the population. To complete the description of the model, we select

appropriate functions for the income-dependent rates. The transmission rate can be modeled

through a decreasing function of income, while the recovery rate can be modeled through

an increasing function of income. Note that the rich can easily afford treatment, cure and

measures to avoid contacts with infectious individuals than the poor. We adopt the following

functions from Ref. [35]:

β(M) =
β1ǫ

M + ǫ
, (7.5)

r(M) =
r1M

M + κ
, (7.6)

where ǫ and κ are positive constants and β1 and r1 are defined in Table 7.1. The selected

transmission rate function β, has a maximum value of β1, which arises when income falls to

zero. The recovery rate function r, attains a maximum of r1. Note that β approaches zero

asymptotically, while r approaches r1 asymptotically as M increases. See Fig. 7.2.

Rewriting equations (7.3) and (7.4), we obtain the following disease-income system:

dI

dt
= β(M)I(1− I)− (r(M) + γ + λ)I + γI2,

dM

dt
= −ρM(M −M0(1− I)). (7.7)
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M

β
,r

β

r

0

Figure 7.2. A sketch of the transmission and recovery rate functions from equations (7.5)

and (7.6). The transmission rate function β, denoted by a blue line decays to

zero asymptotically, while the recovery rate function r, denoted by a green

line, grows and saturates at a maximum as income increases.

172

CNN_7_PovertyTrapProjectFigures/RateFunctions.eps


7.2.1 Existence of Equilibrium Solutions and Linear Stability Analysis

We identify the following threshold parameter and use it to explore the stability of system

(7.7):

Rm
0 =

β1ǫ(M0 + κ)

(M0 + ǫ)(r1M0 + (γ + λ)(M0 + κ))
. (7.8)

Remark 7.2.1. The following can be deduced from the parameter Rm
0 :

(i) An increase in M0, representing an improvement in economic conditions reduces Rm
0 .

(ii) An increase in r1, representing improved medical treatment, better nutrition, better

health education, better health policies, etc., will decrease Rm
0 .

(iii) A decrease in β1 will reduce Rm
0 .

Let (I∗,M∗) be an equilibrium solution of system (7.7). Then by substituting I = I∗

and M = M∗ in system (7.7), setting the left-hand sides to zero, and solving the resulting

algebraic equations, we obtain the following five equilibrium solutions:

E∗
0 = (I∗,M∗) = (0, 0),

E∗
M0

= (I∗,M∗) = (0,M0),

E∗
I = (I∗,M∗) =

(
β1 − (λ+ γ)

β1 − γ
, 0

)

, (7.9)

E∗
2,3 = (I∗,M∗) = (I∗i ,M

∗
m),

where the equilibrium solution E∗
I exists (or is positive) only for β1 < γ or β1 > λ+ γ, and

I∗i =
β(M∗

m)− (r(M∗
m) + λ+ γ)

β(M∗
m)− γ

,

M∗
m = M0(1− I∗i ), I

∗
i < 1.

We investigate the stability of the equilibria in (7.9) by linearizing system (7.7) about

each of the equilibrium solutions. To this effect, we perturb the system about (I∗,M∗) by

setting I = I∗+ i and M = M∗+m, where s and m are small. Substituting these values into

the system and expanding in a Taylor series about (I∗,M∗) and retaining only linear terms

in i and m yields the following linear system of ordinary differential equations in i and m:
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di

dt

dm

dt









= J




i

m



 ,

where

J =









β1ǫ

M∗ + ǫ
(1− 2I∗)− r1M

∗

M∗ + κ
− (λ+ γ) + 2γI∗ − β1ǫI

∗

(M∗ + ǫ)2
(1− I∗)− r1κI

∗

(M∗ + κ)2

−ρM0M
∗ −ρ(2M∗ −M0(1− I∗))









is the Jacobian matrix of the linear system. Let ξ be an eigenvalue of J .

Now, at the trivial equilibrium solution E∗
0 = (0, 0), J reduces to the diagonal matrix

J(E∗
0) =








β1 − (λ+ γ) 0

0 ρM0








,

whose eigenvalues are ξ1 = ρM0 > 0 and ξ2 = β1 − (λ + γ). These eigenvalues are real

and positive when β1 > λ + γ, and they have opposite signs when β1 < λ + γ. Hence, E∗
0

is an unstable node when β1 > λ + γ, and a saddle when β1 < λ + γ. Instability of E∗
0 is

reasonable since it is assumed impossible to have a country with no income and no disease

prevalence. Note that the condition, β1 > λ+γ, for which E∗
0 is an unstable node guarantees

the existence of E∗
I .

At the equilibrium point E∗
M0

, the Jacobian matrix becomes:

J(E∗
M0

) =









β1ǫ

M0 + ǫ
− r1M0

M0 + κ
− (λ+ γ) 0

−ρM2
0 −ρM0









and the eigenvalues of J(E∗
M0

) are

ξ1 = −ρM0,

ξ2 = −(r1M0 + (λ+ γ)(M0 + κ))(1− Rm
0 )

M0 + κ
,
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where Rm
0 is given by equation (7.8). Clearly, E∗

M0
is a stable node when Rm

0 ≤ 1 and an

unstable node when Rm
0 > 1. Stability of E∗

M0
represents the situation in which the disease

dies out at a certain level of income M0.

At the equilibrium solution E∗
I , we have

J(E∗
I ) =








β1(1− 2I∗)− (λ+ γ) + 2γI∗ −β1I
∗

ǫ
(1− I∗)− r1I

∗

κ

0 ρM0(1− I∗)








,

with eigenvalues, ξ1 = β1(1−2I∗)−(λ+γ)+2γI∗ and ξ2 = ρM0(1−I∗), where I∗ is given by

(7.9). Note from (7.9) that I∗ < 1. This makes sense, since I is the proportion of infectious

individuals. Since I∗ < 1, ξ2 > 0. Therefore, E∗
I is an unstable node if ξ1 > 0 and a saddle

if ξ1 < 0. Instability of E∗
I conforms with the fact that it is difficult to have a country that

is stuck in a state with high disease prevalence and no income at all.

Calculating E∗
2,3 in closed form is difficult. Hence, studying the stability of these equilibria

analytically is also difficult. We therefore resort to numerical simulations.

7.2.2 Numerical Simulations of the Deterministic Model

We use the following parameter values to simulate system (7.7): λ = 0.06, γ = 0.02,

ρ = 0.05, β1 = 40, ǫ = 15, r1 = 13.5, κ = 100, M0 = 100. The simulation results confirm

as well as reinforce the analytical evaluation of the stability of the equilibrium solutions,

with the trivial equilibrium E∗
0 and the zero income-high disease prevalence equilibrium E∗

I

unstable, while the high income and no disease equilibrium point E∗
M0

, is stable. In addition,

the non-trivial equilibrium solution E∗
2 , is unstable, whereas the high disease prevalence-low

income equilibrium solution E∗
3 , is stable. Note that E

∗
3 6= E∗

I , since the equilibrium value of

M in E∗
3 is not necessarily zero as in E∗

I . The stable equilibrium point to which the system

relaxes in the long time limit is determined strictly by the initial conditions. Trajectories

that originate close to a given stable equilibrium solution relax to that equilibrium solution.

Trajectories that originate to the left of, and above the unstable equilibrium E∗
2 , converge to

the high income-low disease prevalence equilibrium E∗
M0

, while trajectories that originate to

the right of, and below E∗
2 , converge to E∗

3 . Trajectories that originate close to the unstable
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equilibrium solution E∗
I , converge to E∗

3 . The stable equilibrium solution E∗
3 , constitutes

a poverty trap. The stable equilibrium E∗
M0

is called a development equilibrium. Typical

phase plots illustrating the behavior of system (7.7) are presented in Figs. 7.3-7.5.
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Figure 7.3. Simulation results for the deterministic model showing the path taken by a

typical trajectory that starts at a particular initial point to arrive at E∗
M0

.
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Figure 7.4. Simulation results for the deterministic model showing the path a typical

trajectory that starts at an initial point takes to get to the poverty trap E∗
3 .
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Figure 7.5. Simulation results for the deterministic model showing the paths taken by

two typical trajectories that start at different initial points to arrive at the

development stable equilibrium solution, E∗
M0

, and the poverty trap, E∗
3 . The

blue and the red lines represent the nullclines, dM/dt = 0 and dI/dt = 0,

respectively, while the purple and magenta lines denote the paths taken by

two typical trajectories to converge to the stable development equilibrium and

the poverty trap, respectively. The parameter values used are: λ = 0.06, γ =

0.02, ρ = 0.05, β1 = 40, ǫ = 15, r1 = 13.5, ρ = 90, κ = 100,M0 = 100.
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We now determine the combinations of initial values of per capita income and disease

prevalence that will converge to the poverty trap over time. To achieve this, we integrate

system (7.7) on a grid of initial values of per capita income and disease prevalence. The result

of this simulation is illustrated in Fig. 7.6. Within the set defined by this combination, the

probability that the system converges to the poverty trap is one. Outside this set, the system

evolves to the development equilibrium point long run. In this case, the probability that the

system will fall into the poverty trap is zero.

Although we have used a deterministic approach to explore some important features of

poverty traps, modeling poverty traps deterministically has a number of limitations. For

a given set of parameters, determinism implies that a country is permanently stuck in a

trap of poverty and disease if its initial epidemiological and economic conditions fall within

the basin of attraction of the poverty trap equilibrium, or a country is stuck in a high

income and no disease state if its initial epidemiological and economic conditions are located

within the basin of attraction of the development equilibrium. Determinism also indicates

that a substantial initial push is required to move the state variables out of the basin of

attraction of the poverty trap, or a change in the parameters that alters the existence or

location of equilibria in the state space. Hence, determinism may lead to restrictive policy

recommendations that require large external interventions which may not be necessary. It

also provides a limited set of criteria for detecting poverty traps empirically.
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Figure 7.6. Phase plot illustrating the effect of initial conditions on determining the

stable equilibrium point to which the system relaxes in the long time limit.

The following parameter values are used: λ = 0.06, γ = 0.02, ρ = 0.05, β1 =

40, ǫ = 15, r1 = 13.5, ρ = 90, κ = 100,M0 = 100.
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7.3 Stochastic Model

Figure 7.7. A schematic framework illustrating the states to which a typical susceptible

or infectious individual can evolve. At any time, the total population is

Ñ = S̃ + Ĩ.
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We now formulate and study a stochastic model describing the interplay between per

capita income and infectious disease prevalence.

7.3.1 Partial Stochastic Model

Here, we study a stochastic disease model and a deterministic income model. In general,

a deterministic ordinary differential equation model can give at best an approximation to

a dynamical process that is by definition random. The solution to the system of ordinary

differential equations described above results in the expected behavior of the system, pro-

viding no information as to the distribution of possible paths that the dynamical system

can follow. In order to acquire a measure for this distribution, we numerically simulate the

dynamical system using the Gillespie Algorithm. The Gillespie algorithm simulates random

discrete events and the time elapsed between events. Here, the events are: birth of a sus-

ceptible individual, infection of a susceptible individual, recovery of an infectious individual,

death of an infectious individual, and death of a susceptible individual. The total popu-

lation that we consider as the sum of susceptible (S) and infectious (I) individuals is not

constant. Starting from a state with susceptible and infectious individuals, there are five

states, (S+1, I), (S− 1, I +1), (S+1, I− 1), (S− 1, I), and (S, I − 1) corresponding to the

five events mentioned above to which the system can evolve at different rates. See the flow

chart, Fig. 7.7 and what follows for details. For notational convenience, we have dropped

the wiggles on S and I so that S and I are now the number of susceptible and infectious

individuals, respectively.

• The state (S+1, I) represents increments to the susceptible population through births

from susceptible and infectious individuals that occur at rate λ.

• The state (S − 1, I + 1) describes movements of individuals from the susceptible class

to the infectious class. These movements occur at rate βI

N
, where β is the contact rate

between susceptible and infectious individuals. To quantify the effect of income on

disease transmission, we allow β to be a decreasing function of income.

• The state (S + 1, I − 1) describes movements of individuals from the infectious class

to the susceptible class. These are individuals who recover from the disease at rate r
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to join the susceptible class. As in the deterministic model, to emphasize the effect of

income on disease prevalence, we allow r to be an increasing function of income.

• The state (S − 1, I) denotes the natural death of a susceptible individual that occur

at rate µ.

• The state (S, I − 1) represents natural and disease-induced mortalities from the infec-

tious that occur at rates ratesµ and γ, respectively.

7.3.1.1 Numerical Simulations of the Partial Stochastic Model

Using the same functional forms for β and r, and the same parameter values as in the

deterministic model, we simulate the above stochastic system in MATLAB. To illustrate the

unique properties of the stochastic system, we start the simulations at an intermediate level

of both income and disease prevalence, close to the (unstable) intermediate equilibrium point

E∗
2 of the system. Fig. 7.8 shows the results of four different runs, with the same parameters,

and the same starting point. In contrast to the deterministic case, where the system would

always tend towards one of the stable steady states for all four runs, the system approaches

the development equilibrium for some runs and falls into the poverty trap equilibrium for

others. Hence, the stable equilibrium point to which the system relaxes in the long term

is not necessarily determined by the initial condition applied to the system. Running the

Gillespie algorithm multiple times from different initial conditions allows us to quantify

the probability of ending up in either the development or poverty trap equilibrium. This

probability was either zero or one in the deterministic case. But this is not the case with the

stochastic model. As illustrated in Fig. 7.9, the probability of convergence to the poverty

trap or development equilibrium is a number from zero to one. Given such a landscape plot,

one can ask questions like, what is the quickest, or most likely path from the poverty trap

to the development equilibrium? This is the sequence of disease-burden and income states

that are likely to arise from a country moving from the poverty trap to the development

equilibrium. One simple way to visualize this is to examine the plot from Fig. 7.9, and draw

an arrow at each point in the direction of the neighboring point with the highest probability

of ending up in the development equilibrium. By following the arrows from the bottom right
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of the plot to the top left corner of the plot, Fig. 7.10, one can trace a likely path that a

population or a country can take to leave the poverty trap. The solid lines on Figs. 7.9 and

7.10 represent contour lines, suggesting that there are intermediate values of the probability

of a country leaving the poverty trap to the development equilibrium.
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7.8.1. One possible path to the stable de-

velopment equilibrium point.
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7.8.2. Second path to the stable develop-

ment equilibrium point.
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7.8.3. One possible path to the poverty

trap
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7.8.4. Second path to the poverty trap

Figure 7.8. Possible paths to the stable development and poverty trap equilibria. No-

tice that unlike the deterministic case, irrespective of the initial conditions,

it is possible to attain any of the two stable equilibria. That is, different

simulations with the same initial condition and the same parameter values

can drive the system to one stable equilibrium at one time and to the other

stable equilibrium at another time.
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Figure 7.9. Phase plot illustrating the fact that there are intermediate values of the

probability of moving from the poverty trap to the development equilibrium.
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Figure 7.10. Phase plot illustrating the effect of initial conditions. The arrows indicate

the quickest path to the development equilibrium, which can be interpreted

as the direction in which a country should move in the prevalence-income

phase plane if it wants to maximize its probability of ending up in the stable

development equilibrium.

187

CNN_7_PovertyTrapProjectFigures/StochasticPhaseDirection.eps


7.3.2 Full Stochastic Model

For infectious disease dynamics, stochasticity is most often modeled as “demographic”;

i.e., through the inherently random component of the movement between discrete states,

with transitions determined by the rates in Fig. 7.7. For income, we model the stochastic

process as “environmental”; i.e., through a Wiener process that includes the addition of

an exogenous stochastic component. This is a standard method in economics and finance

that applies naturally to poverty dynamics where incomes are often generated from highly

variable agricultural productivity or through volatile earnings associated with an informal

economy [59, 60]. Because income is a continuous variable it is modeled here as a simple

differential equation:

dM = g(M)Mdt + σdWt, (7.10)

where dWt is a random variable with mean 0, generated by a Wiener process, g(M) =

−r(M −M0(1−I)) is the average growth rate of per capita income, and σ is the volatility of

per capita income. Constant σ ensures that the poor are more sensitive to swings in income.

As in Section, 7.3.1, we simulate the disease process through a Gillespie algorithm. At

each event, the income is updated by numerically integrating equation (7.10) for the time

elapsed. The quantity, dWt is approximated by a vector of normally distributed random

variables with mean 0 and variance dt, where dt is a dynamically determined step-size. Such

an algorithm allows us to simulate both the disease and income processes simultaneously. As

with the partial stochastic model, simulations of the full stochastic model for the same set

of parameter values and initial levels of disease prevalence and income generate trajectories

that can converge to the stable development equilibrium or the poverty trap equilibrium.

This is illustrated in Figs. 7.11 and 7.12. On the other hand, for each point on a grid of initial

disease prevalence and per capita income values, we simulate the stochastic disease-income

model for 70 iterations, noting the proportion of times that convergence to the poverty trap

equilibrium occurs. These proportions constitute the z-values in the contour plot illustrated

in Fig. 7.13. Figure 7.14 is generated by drawing an arrow at each point on the grid pointing

to the neighboring point that has the highest probability of convergence to the development

equilibrium. The interpretation is reversed when populations fall into poverty traps.
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Figure 7.11. Stochastic simulations. In contrast to the deterministic case, it is possible

to attain either of the two stable equilibria with the same initial conditions.

For example, for the initial values (I,M) = (0.5, 50), the system converges

to the development equilibrium during the first simulation.
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Figure 7.12. Stochastic simulations. In contrast to the deterministic case, it is possible

to attain either of the two stable equilibria with the same initial conditions.

For the same initial values (I,M) = (0.5, 50), the system converges to the

poverty trap during the second simulation.
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Figure 7.13. Phase plot illustrating probabilities that an initial condition will lead to

landing in the poverty trap. Each solid line corresponds to a single proba-

bility of reaching either the development or poverty trap equilibrium.
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Figure 7.14. Phase plot illustrating the path to development. The arrows indicate the

quickest path to the development equilibrium. Note that this path depends

on the status of the level of income and disease.
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7.4 Policy Interpretation

As illustrated in Fig. 7.14, the level of income and disease prevalence plays a crucial

role in determining the highest probability strategy of breaking a disease-driven poverty

trap. Hence, a possible intervention strategy aimed at breaking disease-driven poverty traps

involves effecting direct changes to the state variables, such as increasing income, reducing

disease prevalence or increasing income and reducing disease prevalence simultaneously. The

most efficient intervention in terms of the highest probability of leaving the poverty trap and

heading towards the development equilibrium in areas of the state space where the arrows

point vertically upward would be to increase income. In areas of state space where the

arrows point horizontally to the left, the most efficient intervention strategy requires an

improvement in health care, or a reduction in disease prevalence. Finally, in areas of state

space in which the arrows point diagonally upwards and to the left, the best intervention

strategy entails increasing income and reducing disease prevalence simultaneously. Such

policies would be futile in a deterministic system where small interventions could change

only the rate at which the system approaches its pre-destined stable equilibrium outcome.

A safety net, defined as the minimum enforced level of income and public health be-

low which a population is not allowed to fall, constitutes another important intervention

measure. Safety net interventions are modeled by incorporating an income threshold and a

disease threshold and imposing conditions that prevent income from falling below the income

threshold and disease prevalence from rising above the disease threshold. We then simulate

the full stochastic model 500 times on a grid of initial values for disease prevalence and per

capita income, with each simulation run until the development equilibrium is reached. The

expected time to development equilibrium is estimated as the average of the time until the

development equilibrium is reached for each of the 500 runs. The effect of safety nets is

illustrated in Figs. 7.15-7.17. Development or convergence to the development equilibrium

occurs even when the safety net is set within the basin of attraction of the poverty trap. Ad-

ditionally, development occurs when the safety net is implemented as an economic (income

safety net) and a public health (health safety net) policy simultaneously. This provides the

fastest route to escape from the poverty trap. Furthermore, development is still attained
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even when the safety net is implemented only as an economic condition or only as a public

health policy. Hence, safety nets can guarantee ultimate escape from a poverty trap.
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Figure 7.15. Stochastic simulation where the initial state is reinforced by a safety net.

Income safety net set at M = 10. The safety net ensures that the sys-

tem is driven towards the development equilibrium even though it is set

in the basin of attraction of the poverty trap. The broken blue line repre-

sents M∗(I), the broken red line represents I∗(M) and the magenta curve

represents the path a typical trajectory follows.
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Figure 7.16. Stochastic simulation where the initial state is reinforced by a safety net.

Health safety net set at I = 0.90. The safety net ensures that the sys-

tem is driven towards the development equilibrium even though it is set

in the basin of attraction of the poverty trap. The broken blue line repre-

sents M∗(I), the broken red line represents I∗(M) and the magenta curve

represents the path a typical trajectory follows.
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Figure 7.17. Stochastic simulation where the initial state is reinforced by a safety net.

Income and health safety net, (I,M) = (0.90, 10) . The safety net ensures

that the system is driven towards the development equilibrium even though

it is set in the basin of attraction of the poverty trap. The broken blue line

represents M∗(I), the broken red line represents I∗(M) and the magenta

curve represents the path a typical trajectory follows.
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The location of the safety net is important in determining the expected time to attain

development. Figure. 7.18 presents the expected (i.e., mean) time it takes to reach the

development equilibrium, which we define here as the “rate of development”, for the full range

of initial conditions when reinforced by safety nets in both health and income. The slope of

the contour lines in Fig. 7.18 indicate the relative sensitivity of this rate of development to

safety nets at different levels of income and disease. For example, if the slope of the contour

lines in Fig. 7.18 is greater than 1, then changes in the disease safety net will have a larger

impact on the rate of development than changes in the income safety net. At the extreme, a

vertical contour line (slope = ∞) would indicate that the development process was limited

only by disease, and therefore changes in a safety net in income would have no effect on the

rate of development. Likewise, horizontal contours (slope = 0) would signify that the rate

of development is limited only by income. The proximity of the contour lines in the bottom

right corner of Fig. 7.18 indicates that the rate of development is most sensitive to changes

in the location of the safety net closest to the poverty trap equilibrium.
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Figure 7.18. Phase plot illustrating the average time required to attain the development

equilibrium from initial conditions that are reinforced by safety nets.
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7.5 Conclusion

We have used a simple SISM model framework to address some basic questions on the

feedback between income and disease. We demonstrated that deterministic models of poverty

traps have qualitatively different behavior than stochastic models, and correspond to a dif-

ferent, and more limited, set of policy options. Economic development in the deterministic

model requires either significant changes to initial conditions or a change in the parametric

structure of the system. In contrast, the stochastic model shows how external interventions

in the form of safety nets can significantly improve the development trajectory of a popu-

lation irrespective of knowledge of the location of the poverty trap threshold. Even minor

safety nets in population health, per capita income or both can have long-term impacts on

economic development. Not only can development result from safety nets that are set within

the basin of attraction of the poverty trap, but the rate of development is most sensitive

to changes in safety nets near the poverty trap equilibrium, where marginal improvements

in population health are also likely to be the least expensive. Thus, we have shown that a

safety net can guarantee ultimate escape from a poverty trap, even if it is set within the

basin of attraction of the poverty trap, and even if the safety net is only in the form of a

health intervention. If a population is near the poverty-trap equilibrium, the benefits of a

safety net is lowest in the deterministic system and highest for the stochastic model.

The disease component of our model is generic and can be used to study a variety of

human diseases such as bacterial diseases, sexually transmitted diseases, and many vector-

borne diseases including malaria, which are well known for having a negative impact on

economic growth. Therefore, our model can be adapted to study poverty traps for different

countries–developed or developing, and for different diseases by building in factors that are

specific to such countries and diseases.

In this research, we identified various optimal intervention strategies for taking popula-

tions out of disease-driven poverty traps and highlighted when it is best to apply a specific

intervention measure. The research also highlights the role mathematical models can play in

public policy making. In fact, based on our analysis of the stochastic model, the following

optimal economic development and public health intervention questions were answered:
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(i) To help populations escape from poverty traps, is it preferable to provide health care,

income/income generating resources (to enable these populations generate wealth), or

both health care and income/income generating resources?

(ii) How long will it take a population in a poverty trap to attain economic development

when the initial health and economic conditions are reinforced by safety nets?

Generally, the availability of good quantitative models is very important in the formu-

lation of effective public policy. A new fundamental model such as ours can be studied in

mathematical detail, and if it is found to produce good results, it can then be made more

precise and used as an effective tool to guide decision makers. The relative lack of good

mathematical models for understanding poverty dynamics, and the potential for this new

model to explain and predict the evolution of income and poverty, makes this an exciting

contribution within the field of dynamical system modeling, and on the formulation of public

policy. This research provides a novel and plausible framework on which public policy can

be informed by meaningful integration between economics and methodological advances in

the natural sciences, epidemiology and mathematics.

Additionally, this research opens new areas for further investigation that include studying:

1. feedback between income and more realistic epidemiological models for specific diseases

such as HIV, TB, malaria, childhood diseases, etc. in specific countries and

2. within-population dynamics as opposed to the previous framework whose dynamics is

at the population level. This is necessary since within a given population or coun-

try, there are rich and healthy, rich and unhealthy, poor and healthy, and poor and

unhealthy individuals.
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Chapter 8

Introduction to Chemical Chaos

8.1 Introduction to Chemical Chaos through the Autocatalator Model

Many physical phenomena such as the weather, naturally occurring biological, physical and

chemical systems, the human heartbeat, etc. have been shown to exhibit complex dynamical

behaviors such as chaos [1]. Chaos is characterized by dynamical behavior that includes the

emergence of strange attractors. Examples of systems that exhibit chaotic behavior include

oscillatory chemical reactions. Such oscillatory systems present different periodic behaviors

in response to variations in a parameter or a set of parameters in the system. Some systems

exhibit period-doubling bifurcations, whereby trajectories take approximately twice as long

to repeat as each bifurcation is realized. Period-doubling bifurcations culminate in chaotic

behavior, whereby oscillations with infinite periods emerge. A widely studied system that

exhibits such complex behavior is the Belousov-Zhabostinsky (BZ) reaction [2–4].

Oscillatory and chaotic dynamics do not require great complexity in the chemical mech-

anism. Chemical systems may exhibit chaotic dynamics if the chemistry includes sufficient

feedback, which may also give rise to multiple steady states in a system. Chemical feed-

back typically occurs as a result of autocatalysis or non-isothermal reactions. Autocatalysis

occurs when a product contributes in its own production while a non-isothermal reaction

is one in which a change in temperature occurs. Autocatalytic reactions generally begin at

slow rates, since the initial amount of the autocatalyst is small, and then speed up over time

with the consumption of the reactant and production of more autocatalyst. A number of

prototypical chemical reaction schemes for investigating oscillatory behavior have been pro-
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posed and analyzed. Our investigation is based on a chemical model system that has been

used in many studies of chemical oscillations and chaotic dynamics, the autocatalator model

[5–11]. The two-variable autocatalator system, originally introduced by Gray and Scott [12],

exhibits simple oscillations [13–16], while the three-variable autocatalator model, proposed

by Peng et al. [17], exhibits complex periodic and chaotic behavior. Numerical studies have

been carried out to investigate the quantitative behavior of the three-variable autocatalator

model (see, for example, Ref. [18]); however, fewer studies have appeared on the qualitative

behavior of the model. Hence, our goal in this Chapter is to carry out a comprehensive

investigation of the qualitative behavior of the three-variable autocatalator model.

The Chapter is organized as follows. In Section 8.2, we review the two-variable autocata-

lator model. We present the three-variable autocatalator model in Section 8.3, reproduce as

well as extend previous quantitative results through numerical simulations in Section 8.3.2,

present a full qualitative analysis in Section 8.3.3, and summarize our results in Section 8.4.

8.2 The Two-variable Autocatalator Model

The two-variable autocatalator model is possibly the simplest prototype chemical model

that is capable of exhibiting oscillations. The scheme involves the conversion of a chemical

precursor A with constant concentration to a final product B through two intermediate

species, X and Y . Let ki, (i = 0, 1, 2, 3) be rate constants; the kinetic model is described by

the following 4-step sequence of reactions:

A
k0−→ X, (R8.1)

X
k1−→ Y, (R8.2)

X + 2Y
k2−→ 3Y, (R8.3)

Y
k3−→ B. (R8.4)

Reaction (R8.3), in which the intermediate species Y catalyzes its own production is the

most crucial reaction of this model. This step is called the cubic autocatalysis step, which is

the reason why this model is called the cubic autocatalator model. It provides a nonlinear

feedback mechanism in the system that accounts for the observed oscillatory dynamics. The
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corresponding ordinary differential equation model is:

˙[X ] = k0A0 − k1[X ][Y ]2 − k3[X ],

˙[Y ] = k1[X ][Y ]2 − k2[Y ] + k3[X ], (8.1)

where A0 is the concentration of the reactant A. The dimensionless variables and parameters,

x =

(
k2
k3

) 1

2

[X ], y =

(
k2
k3

) 1

2

[Y ], t = k3τ, µ =

(
k2
k3

)
k0A0

k2
, α =

k1
k3

,

simplify system (8.1) to

ẋ = µ− xy2 − αx,

ẏ = xy2 − y + αx. (8.2)

This system has been analyzed in detail in a number of papers. Merkin et al. [13]

considered the special case in which the uncatalyzed reaction (R8.2) is excluded from the

system. They identified a stationary state (x∗, y∗) = (1/µ, µ) and showed that it is stable

for µ ≥ 1. They also showed that a Hopf bifurcation occurs at µ = 1, and that a stable

limit cycle exits for µc < µ < 1, where µc = 0.90032. Merkin et al. [14] also studied the full

system (8.2). They identified a steady state (x∗, y∗) = (µ/(µ2 + α), µ), which is stable for

α > 0.125. For α < 0.125, they identified two critical values of µ,

µc
0 =

√

(1− 2α)−
√
1− 8α

2
and µc

1 =

√

(1− 2α) +
√
1− 8α

2
,

at which Hopf bifurcations occur and showed that a stable limit cycle exists for µc
0 < µ < µc

1.

Gray et al. [15] examined the effect of the inclusion of a quadratic step in the model. Forbes

and Holmes [16] used analytical and numerical techniques to show that limit cycle behavior is

only possible in a restricted region of the parameter space. They also found strong numerical

evidence that this limit cycle is unique and stable to infinitesimal perturbations.

Figure 8.1 represents a bifurcation diagram of system (8.2) for α = 0.1 and 0.3 ≤ µ ≤ 0.9.

Notice that for this value of α, the critical values of µ at which Hopf bifurcations occur are,

respectively, µc
0 = 0.4200 and µc

1 = 0.7897. Figures 8.2.1 and 8.2.2 are, respectively, the time

series and phase plots of the system for the parameter values µ = 0.5 and α = 0.0625.

212



Bifurcation parameter, µ
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Figure 8.1. Bifurcation diagram for the two-variable autocatalator model. The maximum

and minimum values of the variable x are plotted against the parameter µ,

which serves as the bifurcation parameter. For α = 0.1, the critical values of

µ at which Hopf bifurcations occur are µc
0 = 0.4200 and µc

1 = 0.7897.
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8.2.1. Time series plot showing periodic behavior.
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8.2.2. Phase plot showing limit cycle.

Figure 8.2. Time series and phase plots of the two-variable autocatalator model for the

parameter values µ = 0.5 and α = 0.0625. In Fig. 8.2.1, we plot x (the dimen-

sionless concentration of the intermediate X) against time, and in Fig. 8.2.2

we plot y (the dimensionless concentration of the intermediate Y ) against x.
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Generally, the two-variable autocatalator model has one steady state, which is stable

within a particular parameter regime and unstable outside this regime, with oscillatory con-

centrations of the intermediate species in the unstable region. The two-variable autocatala-

tor model exhibits only steady state and oscillatory behavior. For more complex dynamical

behavior such as chaos, a system with at least three variables is required.

8.3 The Three-variable Autocatalator Model

8.3.1 The Model

The original three-variable autocatalator model is derived from the two-variable model.

Unlike the two-variable autocatalator model, the three-variable model incorporates a second

feedback loop and, hence, is capable of exhibiting complex periodic behavior and chaos.

The model reaction scheme involves the conversion of a chemical precursor A with constant

concentration to a final product B via three intermediate species X, Y and Z. If ki (i = 0,

1, 2, 3, 4, 5) are the rate constants for the reactions, the model is given by the following six

reaction steps:

A
k0−→ X, (R8.5)

A+ Z
k1−→ X + Z, (R8.6)

X
k2−→ Y, (R8.7)

X + 2Y
k3−→ 3Y, (R8.8)

Y
k4−→ Z, (R8.9)

Z
k5−→ B. (R8.10)

The fourth reaction, (R8.8), in the above system describes an autocatalytic process

whereby the intermediate species Y catalyzes its own production. This autocatalysis in-

troduces a nonlinear reaction term k3XY 2, which is essential for the oscillatory behavior

observed in the system. The chaotic behavior arises as a result of the introduction of a

second feedback loop through the third variable Z in (R8.6). Notice that Z is produced

from reaction (R8.9) and fed back into the system through reaction (R8.6) to catalyze the
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production of X from A. Notice also that in reaction (R8.8), Y is an autocatalyst while in

reaction (R8.6), Z serves as a normal catalyst.

Let A0, [X ], [Y ] and [Z] be the concentrations of A, X, Y and Z, respectively. Then

using standard mass action laws, which state that the instantaneous rate of change of any

species is proportional to the product of the concentrations of the reacting species, we write

the following system of first-order ordinary differential equations for the time evolution of

the intermediate species:

˙[X ] = k0A0 + k1A0[Z]− k2[X ]− k3[X ][Y ]2,

˙[Y ] = k2[X ] + k3[X ][Y ]2 − k4[Y ], (8.3)

˙[Z] = k4[Y ]− k5[Z],

where the concentration of the precursor is held constant at A0. Using the new variables

x =

(
k3k2
k2
4

) 1

2

[X ], y =

(
k3
k2
2

) 1

2

[Y ], z =

(
k3k

2
5

k2k
2
4

) 1

2

[Z], τ = k2t,

and the positive dimensionless parameter groupings

µ =

(
k1
k5

)

A0, κ =

(
k0k5
k1k4

)(
k3
k2

) 1

2

, σ =

(
k2
k4

)

, δ =

(
k2
k5

)

,

proposed by Peng et al. [18], we obtain the following scaled version of the system (8.3):

ẋ = µ(κ+ z)− x(1 + y2),

σẏ = x(1 + y2)− y, (8.4)

δż = y − z.

Remark 8.3.1. To arrive at the dimensionless variable and parameter groupings, we set

τ =
t

t0
, x =

[X ]

X0
, y =

[Y ]

Y 0
and z =

[Z]

Z0
,

where t0, X0, Y 0 and Z0 are reference variables. Substituting into system (8.3), we obtain

t0 =
1

k2
, X0 =

(
k2
4

k2k3

) 1

2

, Y 0 =

(
k2
2

k3

) 1

2

, Z0 =

(
k2k

2
4

k3k2
5

) 1

2

,

and the parameter groupings given in (8.4).
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We note that 0 < x, y, z < ∞ since x, y and z represent dimensionless concentrations of

chemical reagents. The parameters σ, δ, µ and κ are positive as well since they represent

combinations of reaction rate constants. The only parameter that can vary is µ, which

contains the rate constants k1 and k5 and the fixed concentration of the precursor A0. Hence,

µ serves as the bifurcation parameter whose variations give rise to the transitions between

different dynamical behaviors. The above system has been successfully used in studies on

chemical chaos and controlling chemical chaos. See, for example, Refs. [18–22] for details.

8.3.2 A Quantitative Study of the Three-variable Autocatalator Model

In our analysis of system (8.4), we use the initial condition (x0, y0, z0) = (0.01, 0.1, 0.1),

and reserve µ for the bifurcation parameter, allowing it to vary in the interval [0, 1). We also

fix the other parameters in the system as follows: κ = 65, σ = 5× 10−3 and δ = 2× 10−2.

For different values of µ, we use a fourth order Runge-Kutta integration scheme with vari-

able step size to integrate the system for 29,000 time steps and retain only the last 5,000

steps of the time series data in order to eliminate all transients. As µ is gradually increased,

different dynamical behaviors are observed. For example, we observe stable steady state

behavior for 0 ≤ µ ≤ 0.015. A Hopf bifurcation occurs at µ = 0.016, leading to the emer-

gence of oscillatory behavior. The Hopf bifurcation is supercritical, since a small limit cycle

emerges at the bifurcation, which grows with increasing values of µ. This Hopf bifurcation

is accompanied by period doubling, with period-1 from µ = 0.016, period-2 from µ = 0.143,

period-4 from µ = 0.153, and chaos from µ = 0.154. At µ values close to the chaotic region,

period-doubling occurs for very small increments in µ. Further increases in µ beyond the

chaotic regime leads to a reverse period-doubling sequence. A second Hopf bifurcation occurs

at µ = 0.175 and the system eventually regains stable steady state behavior as µ is further

increased. Figures 8.3 and 8.4, respectively, depict typical time series and the corresponding

phase plots, while the bifurcation diagram for the system is presented in Fig. 8.5.
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8.3.1. Time series for µ = 0.016 show-

ing period-1 behavior.
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8.3.2. Time series for µ = 0.143 show-

ing period-2 behavior.
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8.3.3. Time series for µ = 0.153 showing

period-4 behavior.
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8.3.4. Time series for µ = 0.154 showing

chaotic behavior.

Figure 8.3. Typical time series plots of the three-variable autocatalator model showing

different dynamical behaviors for κ = 65, σ = 5× 10−3, δ = 2× 10−2 and for

different values of the bifurcation parameter µ. We plot x (the dimensionless

concentration of the intermediate product X) against time.
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8.4.1. Phase plot for µ = 0.016 showing

period-1 behavior.
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8.4.2. Phase plot for µ = 0.143 showing

period-2 behavior.
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8.4.3. Phase plot for µ = 0.153 showing

period-4 behavior.
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8.4.4. Phase plot for µ = 0.154 showing

chaotic behavior.

Figure 8.4. Typical phase plots of the three-variable autocatalator model showing differ-

ent periodic and chaotic attractors for κ = 65, σ = 5 × 10−3, δ = 2 × 10−2

and for different values of the bifurcation parameter µ. We plot z (the di-

mensionless concentration of the intermediate product Z) against y (the di-

mensionless concentration of the intermediate product Y ).
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Figure 8.5. Bifurcation diagram of the three-variable autocatalator model. A plot of am-

plitude of x against the bifurcation parameter µ, showing a period-doubling

sequence, chaos, and a reverse period-doubling sequence. Here, we set

κ = 65, σ = 5× 10−3, and δ = 2× 10−2.
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To confirm that system (8.4) is chaotic, we computed the Lyapunov exponents of the

system for the same set of parameters used in the simulations above. Lyapunov exponents

provide a quantitative measure of chaotic dynamical behavior, since they measure the average

exponential rate at which trajectories that originate close to each other diverge or converge

over time. Chaotic behavior is governed by a positive largest Lyapunov exponent, while pe-

riodic behavior is characterized by a zero largest Lyapunov exponent. The largest Lyapunov

exponent for system (8.4) within the chaotic parameter regime (µ = 0.154) is λ1 = 5.28.

Positivity of the largest Lyapunov exponent indicates that any two nearby trajectories sep-

arate exponentially as τ → ∞. Hence, the system exhibits sensitive dependence on initial

conditions, which results in a complete loss of information about the initial conditions in

the long term [23]. To illustrate the notion of sensitive dependence on initial conditions, we

vary the initial value of x (x0) by 0.0001, fix the initial values of the other variables, and

integrate the system for both sets of initial conditions within the chaotic regime. Here, we set

µ = 0.154 and retain the values of the other system parameters used above. The trajectories

begin close to each other due to the small difference in initial conditions but diverge over

time. A plot of the Lyapunov exponents against time is presented in Fig. 8.6, while time

series plots illustrating sensitive dependence on initial conditions are presented in Fig. 8.7.
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Figure 8.6. A plot of the Lyapunov exponents of system (8.4) for µ = 0.154, κ = 65, σ =

5 × 10−3, and δ = 2 × 10−2. The largest Lyapunov exponent λ1 is positive

and so the system is chaotic.
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8.7.1. Small initial trajectory divergence.
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8.7.2. Large long term trajectory divergence.

Figure 8.7. Divergence of x trajectories when the system exhibits chaotic dynamics for

a 0.0001 difference in the initial values of x. The blue line represents the

trajectory that starts at the smaller value of x0, while the red line represents

the trajectory that begins at the larger value of x0. These lines almost

coincide initially but drift apart over time.
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Chaotic behavior can also be characterized by one-dimensional maps. Fig. 8.8 below

shows one-dimensional maps constructed from the time series of the model system within

the chaotic regime. The unstable period-1 limit cycle is depicted by the intersection of this

map and the bisectrix zn+1 = zn. Generally, the unstable period-i where i = 1, 2, 4, 8, ... limit

cycle is given by the intersection of the plot of zn+i versus zn and the bisectrix zn+i = zn.

zn

z n
+
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15 19 23 27
15
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23

27

Figure 8.8. One-dimensional return maps constructed from the time series of system

(8.4) within the chaotic region for µ = 0.154 (green) and µ = 0.155 (blue).

The magenta line is the bisectrix zn+1 = zn.
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8.3.3 Qualitative Study of the Three-variable Autocatalator Model

To acquire further insights into the qualitative behavior of system (8.4), we investigate the

existence of steady states and perform a linear stability analysis about these steady states.

We also employ analytical techniques to prove the occurrence of a Hopf bifurcation and

to derive an expression for the approximate period and amplitude of the ensuing periodic

solutions.

Definition 8.3.2. In the context of this work, we call a solution (x(t), y(t), z(t)), t ∈ [0,∞)

of system (8.4) realistic if the solution is non-negative for all time.

Theorem 8.3.3. System (8.4) has a realistic equilibrium solution S whenever 0 ≤ µ < 1.

Proof. Let S = (x∗, y∗, z∗) be a steady state solution of (8.4). Then by substituting x∗, y∗ and

z∗ in (8.4), setting the left hand sides to zero and solving the system of algebraic equations

simultaneously, we obtain

S = (x∗, y∗, z∗) =

(
κµ(1− µ)

(κµ)2 + (1− µ)2
,

κµ

1− µ
,

κµ

1− µ

)

. (8.5)

It is now a trivial matter to see that this steady state is realistic for 0 ≤ µ < 1. �

Corollary 8.3.4. The system (8.4) has a trivial steady state solution S0 = (0, 0, 0) for µ = 0

and a non-trivial realistic steady state S∗ for 0 < µ < 1.

Proof. The proof follows from the proof of Theorem 8.3.3 by setting µ = 0 for S0 and con-

sidering 0 < µ < 1 for S. �

Remark 8.3.5. Notice that the steady state values of x and z above can be expressed in

terms of the steady state value of y as follows: x∗ = y∗

y∗2+1
and z∗ = y∗.

Remark 8.3.6. Since we are concerned with chemical concentrations, only non-negative

concentrations of the reactants are meaningful. All rate constants must also be positive.

Next, we present results related to the linear stability analysis of solutions to system

(8.4). The linear stability of the equilibrium solutions of system (8.4) can be explored by

linearizing the system about the equilibrium solution (x∗, y∗, z∗).
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Theorem 8.3.7. Let 0 ≤ µ ≤ 1
κ+1

and (x∗, y∗, z∗) be an equilibrium solution of system (8.4).

Suppose also that

λ3 + Pλ2 +Qλ+R = 0 (8.6)

is the characteristic polynomial derived from the Jacobian matrix of the linearized system,

where λ is an eigenvalue of the Jacobian matrix. Then

(i) y∗ ∈ [0, 1],

(ii) all coefficients of (8.6) are positive,

(iii) the equilibrium solution (x∗, y∗, z∗) is linearly stable to small perturbations for all

γ ∈ (0, 1) and unstable for γ > 1 where γ = R/(PQ),

(iv) a Hopf bifurcation occurs at γc = 1 where γc represents a critical value of γ. Addition-

ally, increasing γ through γc results in periodic solutions whose initial period can be

determined as a function of the perturbation of γ from γc.

Proof. (i) Recall that y∗ = κµ

1−µ
, where 0 ≤ µ < 1. Clearly, y∗ ∈ [0, 1] for 0 ≤ µ ≤ 1

κ+1
.

(ii) We linearize system (8.4). To this effect, we set x = x∗ + u, y = y∗ + v and z = z∗ + w,

where |u| ≪ 1, |v| ≪ 1 and |w| ≪ 1. Substituting these in (8.4) and expanding the

right hand sides in a Taylor series about (x∗, y∗, z∗) yields

u̇ = [µ(κ+ z∗)− x∗(1 + y∗2)]− (y∗2 + 1)u− (2x ∗ y∗)v + µw − (x∗v2 + 2y∗uv + uv2),

σv̇ = [x∗(1 + y∗2)− y∗] + (y∗2 + 1)u+ (2x∗y∗ − 1)v + (x∗v2 + 2y∗uv + uv2), (8.7)

δẇ = [v∗ − w∗] + v − w.

Recognizing the fact that each of the expressions in square brackets is zero since

(x∗, y∗, z∗) is an equilibrium solution of (8.4) and retaining only linear terms in u, v, and w

yields the following linear approximation:

u̇ = −(y∗2 + 1)u−
(

2y∗2

y∗2 + 1

)

v + µw,

σv̇ = (y∗2 + 1)u+

(
2y∗2

y∗2 + 1
− 1

)

v, (8.8)

δẇ = v − w,
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where x∗ = y∗

y∗2+1
= κµ(1−µ)

(κµ)2+(1−µ)2
. The Jacobian matrix of the linearized system is

J =










−(y∗2 + 1) − 2y∗2

y∗2 + 1
µ

y∗2 + 1

σ

y∗2 − 1

σ(y∗2 + 1)
0

0
1

δ
−1

δ










.

We find linearly independent solutions to (8.8) of the form

u = u0e
λt, v = v0e

λt, w = w0e
λt, (8.9)

where u0, v0 and w0 are constants and the eigenvalue λ determines the growth or decay

rate of solutions to the linearized system. Substituting (8.9) in (8.8) and imposing the

condition for non-trivial solutions, we obtain
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−(y∗2 + 1)− λ − 2y∗2

y∗2 + 1
µ

y∗2 + 1

σ

y∗2 − 1

σ(y∗2 + 1)
− λ 0

0
1

δ
−1

δ
− λ

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.

Expanding this determinant, we obtain the characteristic equation

(−(y∗2 + 1)− λ)

(
y∗2 − 1

σ(y∗2 + 1)
− λ

)(

−1

δ
− λ

)

+

(
2y∗2

σ

)(

−1

δ
− λ

)

+ µ

(
y∗2 + 1

σδ

)

= 0,

which can be written as an expanded cubic polynomial in λ of the form given in (8.6)

above, where y∗ is as calculated in the proof of Theorem 8.3.3 and

P =
σ(y∗2 + 1)(δy∗2 + δ + 1) + δ(1− y∗2)

δσ(y∗2 + 1)
,

Q =
(y∗2 + 1)2(δ + σ) + (1− y∗2)

δσ(y∗2 + 1)
, (8.10)

R =
(y∗2 + 1)(1− µ)

δσ
.

Clearly, P , Q and R are positive by part (i) of the Theorem. Note that we discard the

possibility of y∗ ∈ (−1, 0) since this renders y∗ and consequently z∗ unrealistic.

(iii) To conclude that the equilibrium solution (x∗, y∗, z∗) is linearly and asymptotically

stable, it suffices to show that all solutions of (8.6) have negative real parts. Since
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P > 0, Q > 0 and R > 0 (see part (ii) of the Theorem) by the Routh-Hurwitz’s

necessary and sufficient condition, all the solutions of (8.6) have negative real parts if

PQ−R > 0. But then PQ−R > 0 is equivalent to

pσ2 + qσ + r > 0, (8.11)

where

p = (y∗2 + 1)3[δ(y∗2 + 1) + 1],

q = (y∗2 + 1)[δ2(y∗2 + 1)3 + δµ(y∗2 + 1)

+ 2δ(y∗2 + 1)(1− y∗2) + (1− y∗2)], (8.12)

r = δ(1− y∗2)[δ(y∗2 + 1) + (1− y∗2)].

Hence, if inequality (8.11) is true or if 0 < γ < 1 where γ = R/(PQ), the equilibrium

solution (x∗, y∗, z∗) is linearly and asymptotically stable. To be more precise, (x∗, y∗, z∗)

is a stable spiral. However, if pσ2 + qσ + r < 0, or if γ > 1, the equilibrium solution

(x∗, y∗, z∗) is an unstable spiral since the Routh-Hurwitz condition fails.

(iv) Since the stability properties of our equilibrium solution witness a change at γc = γ = 1,

γc = 1 is a critical value of γ. To acquire a better understanding of the nature of the

instability, we assume that λ depends continuously on γ. That is λ = λ(γ) in which

case equation (8.6) can be rewritten as

λ3 + Pλ2 +Qλ+ γPQ = 0, (8.13)

which factors to

(λ+ P )(λ2 +Q) = 0 (8.14)

at γ = γc = 1. The solutions of (8.14) are λ(γc) = −P or λ(γc) = ±i
√
Q. Hence,

at γc = 1, we have a real and negative eigenvalue and a purely imaginary pair of

eigenvalues. Thus, a Hopf bifurcation exists.
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We now perturb γ about γc by setting γ = γc + ǫ2ν where |ǫ| ≪ 1 and ν = ±1. This

yields λ(γ) = λ(γc + ǫ2ν). Expanding λ in a Taylor series about γc and holding onto

linear terms in ǫ2ν only, we obtain

λ(γ) = λ(γc) + λ′(γc)ǫ
2ν, (8.15)

where the prime denotes differentiation with respect to γ. Differentiating (8.13) im-

plicitly with respect to γ and solving for λ′ gives

λ′(γ) = − PQ

3λ(γ)2 + 2Pλ(γ) +Q
. (8.16)

Now,

λ′(γc) =
PQ

2(P 2 +Q)
± i

P 2
√
Q

2(P 2 +Q)
. (8.17)

Clearly, Reλ(γc) = 0 and Reλ′(γc) =
PQ

2(P 2+Q)
> 0. Next,

λ(γ) = λ(γc) + λ′(γc)ǫ
2ν =

PQ

2(P 2 +Q)
ǫ2ν ± i

√

Q

(

1 +
P 2

√
Q

2(P 2 +Q)
ǫ2ν

)

. (8.18)

We have effectively demonstrated that for 0 < γ < 1, all solutions of (8.6) have negative

real parts. At γ = γc = 1, a purely imaginary pair of eigenvalues arises and for γ > 1,

the real parts of the imaginary eigenvalues become positive. Thus, as γ traverses

the critical value γc = 1, stable solutions of (8.4) become unstable. Associated with

this loss of stability is the emergence of periodic oscillations with initial period and

amplitude approximately given by

2π
√
Q
(

1 + P 2
√
Q

2(P 2+Q)
ǫ2ν
) and exp

(
PQ

2(P 2 +Q)
ǫ2ντ

)

, respectively, where ǫ =

√

|γ − γc|
|ν| .

The above completely describes a Hopf bifurcation1. �

Remark 8.3.8. As illustrated by our simulations, the three-variable autocatalator model

exhibits two Hopf bifurcations at two critical values of the bifurcation parameter µ. These

critical values can be computed from γc = 1 or from the equation pσ2 + qσ + r = 0.

1A good source for the statement and proof of the Hopf bifurcation Theorem is Hassard et al. [24]
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Corollary 8.3.9. The trivial equilibrium solution S0 = (0, 0, 0) that exists when µ = 0 is

linearly and asymptotically stable to small perturbations.

Proof. By setting µ = 0, the Jacobian of the linearized system above is:

J =








−1 0 µ

1/σ −1/σ 0

0 1/δ −1/δ








,

and the characteristic equation (8.6) reduces to

(−1− λ)

(

−1

σ
− λ

)(

−1

δ
− λ

)

= 0.

Since all three eigenvalues, λ = −1,−1/δ,−1/σ are negative, (0, 0, 0) is linearly and asymp-

totically stable. In fact, the origin is a stable node. �

Table 8.1 summarizes the solutions of (8.6), and the corresponding steady states and their

stability properties for a few values of µ, when κ = 65, σ = 0.005, δ = 0.02. The information

in the table corresponds to that obtained from the numerical simulations.

Table 8.1. A summary of some numerical values of the equilibrium solutions, eigenvalues

and stability properties of system (8.4) for µ = 0.0, 0.015, 0.016, 0.175, 0.178.

µ (x∗, y∗, z∗) λ1 λ2 λ3 Stability

0.000 (0, 0, 0) −50 −1 −200 Stable

0.015 (0.5, 0.9898, 0.9898) −50 −2.010 + 19.79i −2.01 + 19.79i Stable

0.016 (0.4992, 1.0569, 1.0569) −50 4.470 + 20.08i 4.470− 20.08i Unstable

0.175 (0.0721, 13.7879, 13.7879) −50 3.380 + 195.40i 3.380 + 195.40i Unstable

0.178 (0.0707, 14.0754, 14.0754) −50 −0.584 + 199.50i −0.584 + 199.50i Stable
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8.4 Conclusion

We have reviewed the two-variable autocatalator model and examined the dynamical be-

havior of the three-variable autocatalator model. Our quantitative and qualitative studies of

the three-variable autocatalator model show that for specific values of µ we can have either

stable steady state behavior or unstable steady state behavior accompanied by oscillations.

Our numerical studies are in line with previous studies, depicting a switch from stable steady

state behavior to a period-doubling sequence through a Hopf bifurcation, chaos, a reverse

period-doubling sequence and then stable steady state behavior again through a second Hopf

bifurcation as the bifurcation parameter µ is gradually increased in the interval [0, 1). For our

qualitative studies, we computed a steady state (x∗, y∗, z∗) that exists and is nonnegative for

µ ∈ [0, 1). We also identified a threshold parameter γ and showed that (x∗, y∗, z∗) is stable

for γ ∈ (0, 1), unstable for γ ∈ (1,∞) and that a Hopf bifurcation occurs at γ = 1. It is also

important to mention that both quantitative and qualitative investigations indicate that the

three-variable autocataltor model possesses a unique attractor for all values considered of

the bifurcation parameter µ. That is, all initial conditions converge to a specific attractor

for each given value of µ. This indicates that there is no sign of multistability corresponding

to coexisting attractors for any parameter set in the system studied here. Multistability was

reported by Petrov et al. [5] for other parameter values.
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Chapter 9

Extreme Multistability in the Autocatalator Model

9.1 Introduction

Nonlinear dynamical systems in general and dissipative systems in particular possess a

rich variety of interesting long-term dynamical behaviors, ranging from stationary points

(such as nodes, spirals, saddles and combinations of these) to limit cycles or periodic and

quasi-periodic oscillations to chaotic behavior. The asymptotic behavior of such systems is

characterized by a finite number of attractors, typically one in most cases. However, some

systems exhibit more than one attractor, and the number of attractors typically changes as

a system parameter is varied. Over the years, most of the research devoted to dynamical

systems theory has focused on systems having only one or a few coexisting attractors for

a given set of system parameters. But there are many systems in nature, especially in

biology and physics that exhibit a multitude of coexisting attractors [1–3]. Simple instances

of multistability include the existence of more than one stable steady state and the case of

a subcritical Hopf bifurcation. Examples of multistable systems include systems from laser

and semiconductor physics [4–7], chemistry [8, 9], neuroscience [10] and population dynamics

[11]. Multistability is a rather common phenomenon, found in different classes of systems

such as weakly dissipative systems [12, 13], coupled systems [14–16] and systems with delays

[17–19]. See, for example, Refs. [2, 3] for a general exposition on multistable systems.

Many studies on dynamical systems in general and dynamical chaos in particular have

been centered around fixing a set of initial conditions and varying a parameter or a set of

parameters in the system. This might give rise to new qualitative dynamical behavior of the
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system for some values of the control parameter(s) (see, for example, Refs. [20–24]). Through

this approach, various bifurcations and transitions to chaos have been identified and studied,

and the control parameter(s) can be used to characterize the behavior of dynamical systems

[25, 26]. However, studies by H. Sun et al. [27] based on two coupled Lorenz systems, in

which all parameters in the coupled system were held fixed and only the initial conditions

were varied, revealed unusual and interesting dynamical behavior for a purely dissipative

system. Generally, small perturbations of a dissipative system from an asymptotically sta-

ble attractor eventually decay over time and the system finds itself at the same attractor.

Consequently, the solutions of dissipative systems for a given set of parameters exhibit the

same dynamical behavior in the long run irrespective of the choice of initial conditions. In

contrast to most other dissipative systems, which would relax back to the original stable

state when the initial conditions are varied, variation of initial conditions caused the coupled

Lorenz system to evolve to completely different states. This study suggests a new class of

nonlinear dynamical systems in which the asymptotic behavior is determined by the initial

conditions. Perturbations or changes in initial conditions push these dynamical systems to

evolve to completely new attractors with different statistical properties. Consequently, such

systems may exhibit an infinite number of asymptotic attractors, some stationary, some peri-

odic and some chaotic. To address the notions of multistability and synchronization, we refer

to this behavior as extreme multistability. Extreme multistability should not be confused

with the famous sensitive dependence on initial conditions of chaotic systems. Rather, it is

a form of multistability, since for the same parameter or set of parameter values we can have

completely different attractors depending on the initial conditions. Extreme multistability

is governed by an interplay between multistability and synchronization. However, extreme

multistability is different from known examples of multistability in that we have an infinite

number of attractors, whereas multistability involves the coexistence of a finite number of at-

tractors. The complexity of the dynamics in extreme multistability is visualized by plotting

the long-term attractors obtained in simulations versus the initial condition. Surprisingly,

these plots resemble bifurcation diagrams, though the initial condition can not be regarded

as a bifurcation parameter. Moreover, all known transitions between the different attractors

can be observed by simply varying the starting point for one of the state variables. The
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associated dynamics of some coupled and high order systems can be studied through appro-

priate reduced systems in which the quantitative behavior may be different from that of the

original system but the qualitative properties are essentially equivalent.

Chemical systems are among the most studied examples of dynamical systems exhibit-

ing complex dynamics, chaos and pattern formation [28–30]. The dynamics leading to ex-

treme multistability might account for reported irreproducibility of behavior in the chlorate-

thiosulfate reaction [31] and in the chlorite-iodide reaction [32]. In these two reactions, the

dynamical behavior varies from experiment to experiment under the same set of experimental

conditions. The inability to reproduce the dynamical behavior for the same set of conditions,

despite care to ensure reproducibility, suggests that the inherent dynamics of these systems

is playing some role. In a modified three-variable autocatalator model, Wang et al. [33]

showed that this system can possess infinitely many coexisting attractors when a “buffer

step” is included in the chemical kinetics, where two reactants are produced and consumed

in the same processes, a mechanism similar to that proposed by Epstein and co-workers for

the chlorate-thiosulfate and chlorite-iodide reactions [31, 32].

In this Chapter we explore the dynamics of a coupled chemical model system possessing an

infinite number of coexisting attractors. We show how this coupling scheme yields extreme

multistability. We also demonstrate that the phenomenon of multistability is associated

with generalized synchronization of the two coupled subsystems as well as the emergence

of a conserved quantity. The conserved quantity is determined by a conservation law in

which all intermediate chemical reactants are weighted by their reaction time constants and

is therefore given by the initial concentrations of the intermediates. We show that the state

space is divided into submanifolds, each of which is characterized by a certain value of the

conserved quantity as well as a certain type of attractor. Since the conserved quantity can

take any real value, we obtain infinitely many attractors.

This Chapter is organized as follows: We begin by coupling two three-variable autocatala-

tor systems into a six-variable system in Section 9.2 and then present a non-dimensionalization

of the coupled system in Section 9.3. We show that the extended system exhibits extreme

multistability in Section 9.4. In Section 9.5, we show that the dynamics of this system

is characterized by a conserved quantity that can be used to reduce the system to a five-
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variable system. We study the robustness of the phenomenon of extreme multistability with

respect to a slight mismatch of the parameters of the subsystems (making the subsystems

non-identical) in Section 9.6, and end the Chapter with concluding remarks in Section 9.7.

9.2 Coupled Autocatalator Model

The dynamical behavior becomes more complex when two three-variable autocatalator

models are coupled in a particular way. To achieve this coupling, we start with two three-

variable autocatalator subsystems with variables X1, Y1, Z1 and X2, Y2, Z2, respectively. As

shown below, the coupling is realized through Z2 in reaction (R9.12) and indirectly through

Z1 in reaction (R9.22), since the reactant E is produced from Z1 in reaction (R9.16). The

chemical model obtained applying this coupling follows:

A
k0−→ X1, (R9.11)

A + Z2
k1−→ X1 + Z2, (R9.12)

X1
k2−→ Y1, (R9.13)

X1 + 2Y1
k3−→ 3Y1, (R9.14)

Y1
k4−→ Z1, (R9.15)

Z1
k5−→ E, (R9.16)

A
k0−→ X2, (R9.17)

A + Z2
k1−→ X2 + Z2, (R9.18)

X2
k2−→ Y2, (R9.19)

X2 + 2Y2
k3−→ 3Y2, (R9.20)

Y2
k4−→ Z2, (R9.21)

E + Z2
k′
5−→ F. (R9.22)

Let A0, [X1], [Y1] [Z1], [X2], [Y2] and [Z2] be the concentrations of A, X1, Y1 Z1, X2, Y2

and Z2 respectively and let k′
5 ≫ k5. Then using the law of mass action, which states that

the effect of the instantaneous rate of change of any species is proportional to the product of
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the concentrations of the reacting species, we formulate the following mathematical model:

˙[X1] = k0A0 + k1A0[Z2]− k2[X1]− k3[X1][Y1]
2,

˙[Y1] = k2[X1] + k3[X1][Y1]
2 − k4[Y1],

˙[Z1] = k4[Y1]− k5[Z1], (9.1)

˙[X2] = k0A0 + k1A0[Z2]− k2[X2]− k3[X2][Y2]
2,

˙[Y2] = k2[X2] + k3[X2][Y2]
2 − k4[Y2],

˙[Z2] = k4[Y2]− k5[Z1].

9.3 Nondimensionalization

Nondimensionalization reduces the number of parameters in the system as well as leaves us

with dimensionless quantities that facilitate analysis, and we therefore rescale system (9.1).

To this effect, we set

τ =
t

t∗
, x1 =

[X1]

x∗
1

, y1 =
[Y1]

y∗1
, z1 =

[Z1]

z∗1
, x2 =

[X2]

x∗
1

, y2 =
[Y2]

y∗1
, and z2 =

[Z2]

z∗1
,

where t∗, x∗
1, y

∗
1, and z∗1 are reference values with the same units as t, [X1], [Y1], [Z1], respec-

tively. Note that x∗
1, y

∗
1 and z∗1 also has the same units as [X2], [Y2] and [Z2], respectively.

Now,

τ =
t

t∗
⇒ d

dt
=

d

dτ

dτ

dt
=

1

t∗
d

dτ
,

and

ui =
[Ui]

u∗
1

⇒ ˙[Ui] =
dUi

dt
=

u∗
1

t∗
dui

dτ
=

u∗
1

t∗
u̇i,

where the dot on ui denotes differentiation with respect to τ and u represents the variables

xi, yi, zi, i = 1, 2. Substituting these in (9.1), we obtain
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x∗
1

t∗
ẋ1 = k0A0 + k1A0z

∗
1z2 − k2x

∗
1x1 − k3x

∗
1x1y

∗2
1 y21,

y∗1
t∗
ẏ1 = k2x

∗
1x1 + k3x

∗
1x1y

∗2
1 y21 − k4y

∗
1y1,

z∗1
t∗
ż1 = k4y

∗
1y1 − k5z

∗
1z1, (9.2)

x∗
1

t∗
ẋ2 = k0A0 + k1A0z

∗
1z2 − k2x

∗
1x2 − k3x

∗
1x2y

∗2
1 y22,

y∗1
t∗
ẏ2 = k2x

∗
1x2 + k3x

∗
1x2y

∗2
1 y22 − k4y

∗
1y2,

z∗1
t∗
ż2 = k4y

∗
1y2 − k5z

∗
1z1.

Dividing each equation by the coefficient of the differential on the left-hand side, we have

ẋ1 =
k0A0t

∗

x∗
1

+
k1A0z

∗
1t

∗

x∗
1

z2 − k2t
∗x1 − k3x

∗
1y

∗2
1 t∗x1y

2
1,

ẏ1 =
k2x

∗
1t

∗

y∗1
x1 + k3x

∗
1y

∗
1t

∗x1y
2
1 − k4t

∗y1,

ż1 =
k4y

∗
1t

∗

z∗1
y1 − k5t

∗z1, (9.3)

ẋ2 =
k0A0t

∗

x∗
1

+
k1A0z

∗
1t

∗

x∗
1

z2 − k2t
∗x2 − k3x

∗
1y

∗2
1 t∗x2y

2
2,

ẏ2 =
k2x

∗
1t

∗

y∗1
x2 + k3x

∗
1y

∗
1t

∗x2y
2
2 − k4t

∗y2,

ż2 =
k4y

∗
1t

∗

z∗1
y2 − k5t

∗z1.

By setting t∗ = 1/k2 and y∗1 = (k2/k3)
1

2 into system (9.3) and simplifying, we obtain

ẋ1 =
k0A0

k2x∗
1

+
k1A0z

∗
1

k2x∗
1

z2 − x1(1 + y21),

k2
k4

ẏ1 =
(k2k3)

1

2x∗
1

k4
x1(1 + y21)− y1,

k2
k5

ż1 =
k4y

∗
1

k5z∗1
y1 − z1, (9.4)

ẋ2 =
k0A0

k2x∗
1

+
k1A0z

∗
1

k2x∗
1

z2 − x2(1 + y22),

k2
k4

ẏ2 =
(k2k3)

1

2x∗
1

k4
x2(1 + y22)− y2,

k2
k5

ż2 =
k4y

∗
1

k5z∗1
y2 − z1.
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Next, by setting

x∗
1 =

k4

(k2k3)
1

2

and z∗1 =
k4
k5

(
k2
k3

) 1

2

in system (9.4) and simplifying, we have

ẋ1 =
k1A0

k5

((
k0k5
k1k4

)(
k3
k2

) 1

2

+ z2

)

− x1(1 + y21),

k2
k4

ẏ1 = x1(1 + y21)− y1,

k2
k5

ż1 = y1 − z1, (9.5)

ẋ2 =
k1A0

k5

((
k0k5
k1k4

)(
k3
k2

) 1

2

+ z2

)

− x2(1 + y22),

k2
k4

ẏ2 = x2(1 + y22)− y2,

k2
k5

ż2 = y2 − z1.

Finally, on setting

µ =
k1
k5

A0, κ =

(
k0k5
k1k4

)(
k3
k2

) 1

2

, σ =
k2
k4

and δ =
k2
k5

in system (9.5), we obtain a nondimensionalized version of system (9.1). In summary, the

dimensionless variable and positive parameter groupings

τ = k2t, x1 =
(k1k3)

1

2

k4
[X1], y1 =

(
k3
k2

) 1

2

[Y1], z1 =

(
k5
k4

)(
k3
k2

) 1

2

[Z1],

x2 =
(k1k3)

1

2

k4
[X2], y2 =

(
k3
k2

) 1

2

[Y2], z2 =

(
k5
k4

)(
k3
k2

) 1

2

[Z2],

µ =
k1A0

k5
, κ =

(
k0k5
k1k4

)(
k3
k2

) 1

2

, σ =
k2
k4

and δ =
k2
k5

simplify the coupled six-variable system (9.1) to the following dimensionless system:

241



ẋ1 = µ(κ+ z2)− x1(1 + y21),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z1, (9.6)

ẋ2 = µ(κ+ z2)− x2(1 + y22),

σẏ2 = x2 − y2 + x2y
2
2,

δż2 = y2 − z1,

where 0 < x1, y1, z1, x2, y2, z2 < ∞ since x1, y1, z1, x2, y2 and z2 are the dimensionless chemical

concentrations. The parameter µ > 0, since it is related to the constant concentration of the

reactant A and rate constants. All the other parameters in system (9.6) are also positive

since they are dimensionless rate constant groupings. The corresponding coupling for this

nondimensional system is achieved by replacing z1 in the first equation of system (9.6) by z2

and z2 in the sixth equation of system (9.6) by z1.

9.4 Model Analysis

Theorem 9.4.1 (Existence of equilibria). Let κ > 0, µ > 0, y∗2 > 0 and y∗2 ≥ κµ where y∗2 is

the equilibrium value of y2. Then system (9.6) has a non-negative equilibrium solution E∗

that is expressible in terms of y∗2. Furthermore, this equilibrium solution is nontrivial and

positive when y∗2 > κµ and reduces to

E∗ =

(
κµ

1 + (κµ)2
, κµ, κµ,

κµ

1 + (κµ)2
, κµ, 0

)

when y∗2 = κµ.

Proof. Let E∗ = (x∗
1, y

∗
1, z

∗
1 , x

∗
2, y

∗
2, z

∗
2) be an equilibrium solution of system (9.6). Then

substituting E∗ in (9.6), setting the right hand sides of the equations to zero and solving the

ensuing system of algebraic equations for x∗
1, y

∗
1, z

∗
1 , x

∗
2, y

∗
2 and z∗2 , we obtain

E∗ = (x∗
1, y

∗
1, z

∗
1 , x

∗
2, y

∗
2, z

∗
2) =

(
y∗2

1 + y∗22
, y∗2, y

∗
2,

y∗2
1 + y∗22

, y∗2,
y∗2 − κµ

µ

)

. (9.7)
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It is now easy to see that each term in (9.7) is non-negative when κ > 0, µ > 0, y∗2 >

0 and y∗2 ≥ κµ, since the last term z∗2 would either be zero or strictly positive.

It also follows from (9.7) that E∗ is nontrivial and positive when y∗2 > κµ and that

E∗ =

(
κµ

1 + (κµ)2
, κµ, κµ,

κµ

1 + (κµ)2
, κµ, 0

)

when y∗2 = κµ. �

The algebra of the linear stability analysis of this system is very complex, and we therefore

resort to numerical simulations to investigate the stability and dynamical behavior of the

system. While the dynamics of a single subsystem possesses a unique attractor for any given

set of parameters and for all initial conditions, as shown in Chapter 8, we now observe a

multitude of coexisting attractors. To be more specific, the coupled system exhibits extreme

multistability, i.e., there exist infinitely many attractors for a given set of parameters.

To demonstrate this behavior, we fix the parameters in such a way that the uncoupled

three-variable autocatalator exhibits a simple periodic solution (µ = 0.157, κ = 65, σ =

5× 10−3, δ = 2× 10−2), which is reached from any initial condition in the three-dimensional

state space. Keep in mind that only positive initial conditions make sense, since we are

dealing with chemical entities that correspond to concentrations of reactants. Let us now

check to which final state the dynamics of the coupled autocatalator systems converge. To

this end, we fix five of the six initial conditions, (0.01, 0.1, 0.1, 0.0, y02, 0.0) and vary the initial

concentration of y2 within the interval 4.0 ≤ y02 ≤ 8.0. To plot the long-term dynamical

behavior depicted in Fig. 9.3, we integrate system (9.6) using a fourth-order Runge-Kutta

method following the scheme of Dormand and Prince with variable step size control (see, for

example, Ref. [34]). The computations were sufficiently long for asymptotic behavior to be

exhibited, and the simulation time was mostly determined by the parameter regime under

consideration. In particular, the simulations were carried out for at least 50,000 time steps,

and only the last one-tenth of each time series was used. Identical behavior was found in

simulations with one-half and three-quarters as many time steps, showing that the behavior is

asymptotic. We also employed higher-order Runge-Kutta methods (7th-8th order) to verify

the accuracy of our results. As shall be seen in Section 9.5, system (9.6) can be reduced to
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a simpler system using a conserved quantity. This reduced system yields exactly the same

results, which is a strong check of the validity of the numerical integration.

We find a great variety of dynamics, stretching from simple periodic motion for large

values of y02 to oscillations of different periods for intermediate values to chaotic behavior for

low values of y02. Period-doubling is found at y02 = 7.145 (T → 2T ), y02 = 5.515 (2T → 4T ),

y02 = 5.165 (4T → 8T ), and y02 = 5.095 (8T → 16T ). Chaotic behavior immersed with

periodic windows is evident as well. Typical time series and phase plots depicting periodic

behaviors of different periods and chaotic behavior of this coupled system are presented in

Figs. 9.1 and 9.2, respectively. Figure 9.3 shows the maximum values of the amplitude of

x1, corresponding to a Poincaré section, so that a simple oscillation with a period T appears

in the plot as a fixed point. We obtain a picture, which looks like a complete bifurcation

diagram; however, we do not change a bifurcation parameter but the initial condition, and

therefore it only resembles a bifurcation diagram.
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9.1.1. Chaotic behavior at y02 = 4.0.
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9.1.2. Period-2 behavior at y02 = 5.2
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9.1.3. Period-2 behavior at y02 = 6.5.
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9.1.4. Period-1 behavior at y02 = 8.0.

Figure 9.1. Time series plots of the coupled autocatalator model for κ = 65, µ =

0.157, σ = 5 × 10−3, δ = 2 × 10−2 showing different dynamical behaviors

for different values y02. We plot x1 (the dimensionless concentration of the

intermediate product X1) against dimensionless time τ .
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9.2.1. Chaotic attractor at y02 = 4.0.
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9.2.2. Period-2 attractor at y02 = 5.2.
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9.2.3. Period-2 attractor at y02 = 6.5.
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9.2.4. Period-1 limit cycle at y02 = 8.0.

Figure 9.2. Phase plots of the coupled six-variable autocatalator model for κ = 65, µ =

0.157, σ = 5 × 10−3, δ = 2× 10−2 showing different dynamical attractors for

different values of y02. We plot z1 (the dimensionless concentration of the

species Z1) against y1 (the dimensionless concentration of the species Y1).
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Figure 9.3. Long term dynamics of the coupled six-variable autocatalator model. A plot

of the maximum amplitude of x1 against the initial condition y02 showing a

reverse period-doubling sequence.
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Considering the quantitative behavior of the system, one could argue that the number of

attractors is finite because there are entire intervals of y02 leading to an oscillation of a certain

period, say, period 2T . However for each initial condition within this interval the location

of the 2T periodic orbit is slightly different. This means that for any pair of nearby initial

conditions the corresponding final attractors are never identical. In that sense we obtain an

infinite number of different attractors in state space, so that each initial condition converges

to a different attractor. Moreover, taking into account the qualitative behavior of the system,

we can also argue that there is an infinite number of different coexisting attractors, since the

period-doubling cascade is complete, with bifurcations between period-1, period-2, period-4,

period-8, period-16, etc. up to period-infinity.

This behavior of extreme multistability in coupled systems is quite surprising since the

uncoupled system possesses a unique attractor. In Ref. [27] it was shown that this special

type of dynamics is related to the emergence of generalized synchronization between the two

subsystems. In case of the two coupled Lorenz systems considered in Ref. [27], two of the

variables are fully synchronized (y1 = y2 and z1 = z2) while the difference between one of

the variables takes a constant value c in the long-term limit (c = x1 − x2). Which value

of c is reached depends on the initial condition. For the two coupled autocatalator systems

described by Eqs. (9.6), we do not find such a simple kind of generalized synchronization,

as shown in Figs. 9.4-9.6. There is seemingly no simple synchronization scheme visible, but

as we will show later, we obtain a more complicated form of generalized synchronization.
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9.4.1. y02 = 4.0, chaotic regime.
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9.4.2. y02 = 5.2, period-4 regime.
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9.4.3. y02 = 6.5, period-2 regime.
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9.4.4. y02 = 8, period-1 regime.

Figure 9.4. Time series plots illustrating the difference between x1 and x2 within the

chaotic, period-4, period-2 and period-1 regimes.
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9.5.1. y02 = 4.0, chaotic regime.
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9.5.2. y02 = 5.2, period-4 regime.
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9.5.3. y02 = 6.5, period-2 regime.
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9.5.4. y02 = 8, period-1 regime.

Figure 9.5. Time series plots illustrating the difference between y1 and y2 within the

chaotic, period-4, period-2 and period-1 regimes.
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9.6.1. y02 = 4.0, chaotic regime.
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9.6.2. y02 = 5.2, period-4 regime.
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9.6.3. y02 = 6.5, period-2 regime.

τ

z 1
,z

2

z1
z2

49.4 49.6 49.8 50.0
5

10

15

20

9.6.4. y02 = 8, period-1 regime.

Figure 9.6. Time series plots illustrating the difference between z1 and z2 within the

chaotic, period-4, period-2 and period-1 regimes.
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9.5 Conserved Quantity

To explain the appearance of extreme multistability we note that the coupling scheme im-

plies the emergence of a conserved quantity. This quantity, which we call C with dC/dt = 0,

corresponds to the sum of the weighted differences of the concentrations of all corresponding

intermediate species. The weighting is provided by ratios of the reaction time constants.

Lemma 9.5.1 (Conserved quantity). There is a conserved quantity,

C = x2 + σy2 + δz2 − (x1 + σy1 + δz1), (9.8)

associated with system (9.6) that satisfies dC/dt = 0.

Proof. By setting e1 = x2 − x1, e2 = y2 − y1 and e3 = z2 − z1 in Eqs. (9.6) and simplifying,

we obtain the following three-variable system of differences:

ė1 = −x2(1 + y22) + x1(1 + y21), (9.9)

σė2 = x2(1 + y22)− x1(1 + y21)− y2 + y1, (9.10)

δė3 = y2 − y1. (9.11)

Adding Eqs. (9.9)-(9.11), we obtain

ė1 + σė2 + δė3 = 0 or (ẋ2 − ẋ1) + σ(ẏ2 − ẏ1) + δ(ż2 − ż1) = 0. (9.12)

On integrating Eq. (9.12), we obtain

e1 + σe2 + δe3 = constant or (x2 − x1) + σ(y2 − y1) + δ(z2 − z1) = constant.

By setting the constant to C and rearranging, we obtain the desired conserved quantity. We

show that dC/dt = 0 is always fulfilled by setting C = e1+σe2+ δe3 in equation (9.12). �

The value of C is given by the initial condition C = x02+σy02+ δz02− (x01+σy01+ δz01)

and defines a complicated manifold in state space on which the dynamics takes place. Based

on the existence of the conserved quantity C we can illustrate extreme multistability with

the following schematic views depicted in Figs. 9.7 and 9.8. The whole state space is densely

filled with manifolds (hypersurfaces), each associated with a value of C. In each of these
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manifolds there exists at least one attractor. Since C can take any real value, the state space

is “sliced” into infinitely many such manifolds, each of them containing another long-term

dynamics. Changing the initial condition corresponds to a change of the manifold in which

the dynamics takes place.
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Figure 9.7. A sampling of the synchronization manifolds as a function of the conserved

quantity C. Chaotic (light blue), period-4 (red), period-2 (dark blue), period-

1 (magenta) behavior is exhibited for C = 0.0075, 0.0135, 0.020, and 0.0275.
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Figure 9.8. A sampling of the synchronization manifolds as a function of the initial con-

dition y02. Due to the existence of the conserved quantity C, the state space

is divided into submanifolds corresponding to different values of C. In each of

these submanifolds another long-term dynamics can be found. Chaotic (light

blue), period-4 (red), period-2 (dark blue), period-1 (magenta) behavior is

exhibited for y02 = 4, 5.2, 6.5 and 8 respectively. In terms of the conserved

quantity C, chaotic, period-4, period-2 and period-1 behavior is exhibited for

C = 0.0075, 0.0135, 0.020, and 0.0275 respectively.
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The existence of a conserved quantity allows us to reduce the dimension of the dynamical

system describing the two coupled autocatalators by one. From Eq. (9.8),

z2 = (C + x1 + σy1 + δz1 − (x2 + σy2))/δ.

Substituting z2 in Eqs. (9.6) leads to

ẋ1 = µ(κ+ (x1 + σy1 + δz1 + C − x2 − σy2)/δ)− x1(1 + y21),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z1, (9.13)

ẋ2 = µ(κ+ (x1 + σy1 + δy1 − C − x2 − σy2)/δ)− x2(1 + y22),

σẏ2 = x2 − y2 + x2y
2
2,

From this rewriting it becomes obvious that the conserved quantity C, and hence the

initial condition y02, can be indeed regarded as a bifurcation parameter in the reduced system

(9.13). We see that Fig. 9.3 can be interpreted as a bifurcation diagram in the mathematical

sense, exhibiting many known dynamical transitions. Now, using the conserved quantity

C as a bifurcation parameter for system (9.13) and fixing all the system parameters and

initial conditions as for the full system, we obtain dynamical behavior that is qualitatively

identical to that of the full system. We observe chaotic behavior for small values of C and

reverse period-doubling for larger values of C. There is a switch from period-16 to period-8

at C = 0.01298, period-8 to period-4 at C = 0.01334, period-4 to period-2 at C = 0.01508

and period-2 to period-1 at C = 0.2326. Figure 9.9 illustrates the behavior of system (9.13).
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Figure 9.9. A bifurcation diagram of the reduced autocatalator model showing a reverse

period-doubling sequence. Here, we are plotting the maximum value of x1

(the dimensionless concentration of the intermediate species X1) against the

conserved quantity C for µ = 157, κ = 65, σ = 5× 10−3 and δ = 2× 10−2.
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The existence of a conserved quantity is also apparent when computing Lyapunov ex-

ponents to characterize chaotic behavior in system (9.6). To verify this, we computed the

Lyapunov exponents both as functions of time and the initial conditions. Computations

of Lyapunov exponents as a function of time yield a positive largest Lyapunov exponent,

λ1 = 5.08, two zero Lyapunov exponents, λ2 = λ3 = 0.00, and three negative Lyapunov

exponents, λ4 = −21.19, λ5 = −27.00, λ6 = −16.75, as shown in Fig. 9.10. As discussed in

Chapters 1 and 8, a positive largest Lyapunov exponent indicates that solution trajectories

that originate close to each other drift apart exponentially as time become infinite.

For computations of Lyapunov exponents as a function of the initial condition y02, we also

obtain two zero Lyapunov exponents, where the first zero is the usual one corresponding to

the Lyapunov exponent along the trajectory, while the second zero indicates the existence of

a conserved quantity. We also have a positive largest Lyapunov exponent within the chaotic

region. The Lyapunov exponents are negative within the periodic regions, except for the

zero values. A plot of the largest three Lyapunov exponents is presented in Fig. 9.11.
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Figure 9.10. Dynamics of Lyapunov exponents of the coupled six-variable autocatalator

model versus time. The largest Lyapunov exponent is positive while two of

the Lyapunov exponents are zero. One is the usual zero Lyapunov exponent

while the second is a result of the conserved quantity.
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Figure 9.11. Dynamics of the three largest Lyapunov exponents of the coupled six-

variable autocatalator model (9.6) versus the initial condition y02.
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We now discuss the relation between the dynamics of the two coupled oscillators. As

already mentioned and shown in Figs. 9.4-9.6, the two three-variable oscillators synchronize

with a certain time lag so that the phase retains a fixed difference, while the amplitude

difference varies. Hence, there is no amplitude synchronization. In Figs. 9.4-9.6, we observe

lag synchronization in the periodic and chaotic cases. Lag synchronization generally emerges

while varying the coupling strength between two oscillators [35]; however, such a change is

not possible in this system, where the coupling is realized by chemical reactions. With this

restriction in mind, we note that the coupled autocatalators exhibit a type of generalized

synchronization with features much like those seen in chaotic synchronization.

The concept of basins of attraction, the sets of initial conditions that converge to the

same attractor, of coexisting attractors is very important when studying multistable systems.

To discuss this concept in the case of extreme multistability, we first note that the conserved

quantity C is defined in equation (9.8) by the initial values x01, y01, z01, x02, y02 and z02.

Therefore, C can be realized through many different initial conditions. This is because C

is determined solely by sums and differences and different combinations of xi, yi, zi, (i =

1, 2) give rise to the same value of C. Nonetheless, the question remains whether all these

combinations of initial conditions leading to the same value of C also lead to the same

attractor. To address this question, we fixed four of the initial values, say, x01, z01, x02 and z02

and varied only two corresponding initial values, say, y01 and y02 in such a way that the

difference between them is always the same. This way, we obtained new initial conditions

in y01 and y02 while holding the value of C constant. We then spanned the bifurcation

diagram, considering the chaotic, period-8, period-4, period-2 and period-1 regimes, and then

repeated the entire process so that different initial conditions for the other pairs (x01, x02)

and (z01, z02) and combinations of all three pairs were also explored. In any specific region

of the bifurcation diagram, we always obtained the same attractor for all the different initial

conditions leading to the same value of C. The different initial condition combinations

therefore lead to the same attractor for any specific value of C. Thus, each of the infinite

coexisting attractors of system (9.6) is associated with its own basin of attraction, which

is the set of initial conditions that satisfy the conservation equation (9.8). The basin of

attraction of each attractor is therefore the manifold determined by the particular value of
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the conserved quantity. However, these manifolds or slices in state space are dense, so that

in each arbitrarily close neighborhood of each manifold there is another manifold leading

to another attractor. That is, in each arbitrarily close neighborhood of an attractor there

are points belonging to another manifold and, hence, to another basin of attraction. As a

consequence, all attractors here are weak attractors in the Milnor sense [36].

Finally, another essential novelty in this work is the discovery of a new class of dynamical

systems that manifests features of both dissipative and conservative systems. As described

above, the system is dissipative because any set of initial conditions that satisfies the conser-

vation relation, for a particular value of the conserved quantity, will relax to the associated

attractor. For example, there are an infinite number of initial conditions that satisfy equa-

tion (9.8) for the value of C that gives rise to a period-1 orbit. We note that the limit cycle

is stable only to perturbations that satisfy (9.8), while perturbations that do not satisfy

(9.8) will move the system to another attractor. On the other hand, due to the existence

of a conserved quantity, the dynamics becomes similar to the dynamics of Hamiltonian sys-

tems, where the marginally stable invariant set reached in the long-term limit depends on

the value of the energy of the system. However, it is important to note that in contrast to

the Hamiltonian case, the coupled autocatalator system is dissipative, and the invariant sets

approached as time goes to infinity are attractors.

9.6 Nonidentical coupled systems

Another issue that needs to be addressed is the chemical plausibility of the reactions.

So far we have assumed that the two subsystems coupled together are identical. That is,

they are described with the same set of parameters, and the corresponding reactions in both

subsystems therefore have the same rate constants. This is a very strong assumption, since

it is difficult to find identical systems in nature apart from such cases as optical isomers.

Naturally occurring subsystems would usually have at least some small mismatch in the pa-

rameters, arising, for example, from different isotopes. The question therefore arises whether

extreme multistability is a robust feature occurring when there is a small mismatch in the

parameters. For the chemical systems considered here, a mismatch in the parameters can
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be interpreted as a mismatch in the rate constants for the reactions.

We now demonstrate that extreme multistability is sustained for small parameter mis-

matches. The mismatch values are obtained by considering the various dimensionless pa-

rameter groupings (κ, µ, σ and δ) and scaling each of them by 0 to 0.5% of their values

accordingly to reflect the effect of the rate constants lumped into the parameter. First

we note that the bifurcation diagrams shift with changing parameters in such a way that

the period-doubling cascade occurs over a narrower range. Consequently, for rather large

parameter mismatches, only period-1 and chaotic solutions survive, as higher periods dis-

appear as the mismatch is increased. To demonstrate that extreme multistability is still

possible, we have examined the long-term dynamics obtained with parameter mismatches

ranging from 0.01% to 0.5%, while closely examining 0.01%, 0.05%, 0.1%, 0.2%, and 0.5%

parameter mismatches. Figures 9.12 and 9.13 show the bifurcation sequences generated with

0.01% and 0.05% parameter mismatches, and Fig. 9.15 shows some time series and attractor

plots derived from a 0.5% parameter mismatch. Our investigation indicates that the num-

ber of qualitatively different attractors is still infinite in the case of very small parameter

mismatch. However, for larger parameter mismatches, say for 0.1% and higher, the number

of qualitatively different attractors no longer tends to infinity because the period-doubling

bifurcations are no longer resolved. Therefore, we conclude that extreme multistability is

not dependent on the coupled systems being identical, but it is more likely to occur when

systems are identical or are almost identical.
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Initial condition, y02
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Figure 9.12. Long-term dynamics for two coupled autocatalator systems with 0.01% pa-

rameter mismatch vs. initial condition y02.
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Figure 9.13. Long-term dynamics for two coupled autocatalator systems with 0.05% pa-

rameter mismatch vs. initial condition y02.

Table 9.1 lists values of y02 for period-8 to period-4, period-4 to period-2 and period-2 to

period-1 transition for 0%, 0.01% and 0.05% parameter mismatches.

Table 9.1. Values of y02 for period-doubling transitions with increasing mismatches.

Transition 0% mismatch 0.01% mismatch 0.05% mismatch

Period-8 to period-4 5.165 5.34 6.2

Period-4 to period-2 5.51 5.735 6.23

Period-2 to period-1 7.14 7.4 8.23
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9.14.1. y02 = 25, period-1 regime.
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9.14.2. y02 = 20, chaotic regime.

Figure 9.14. Plots for a 0.5% parameter mismatch. Only the chaotic and period-1

regimes are prominent. Squeezing of the bifurcation diagram renders it

difficult to distinguish the period-doubling sequence from chaos especially

for periods higher than 2T .
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9.15.1. y02 = 25: Limit cycle.
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9.15.2. y02 = 20: Chaotic behavior.

Figure 9.15. Plots for a 0.5% parameter mismatch. Only the chaotic and period-1

regimes are prominent. Squeezing of the bifurcation diagram renders it

difficult to distinguish the period-doubling sequence from chaos especially

for periods higher than 2T .
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Fig. 9.16 below illustrates the narrowing of the reverse period-doubling sequence. Here,

we plot selected values of the initial condition y02 within the period-1, period-2, and chaotic

regimes against the corresponding parameter mismatch.

Mismatch

y 0
2

period-1

period-2

chaos

1

0.1 0.12 0.14 0.16 0.18 0.2
4

5

6

7

8

9

Figure 9.16. A plot of values of y02 against corresponding parameter mismatches within

the period-1, period-2 and chaotic regimes illustrating the narrowing of the

reverse period-doubling sequence as the parameter mismatch is increased.
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9.7 Conclusion

Our investigation shows that depending on the choice of initial conditions, an infinite num-

ber of different attractors can be attained, including fixed points, periodic orbits and chaotic

orbits. This phenomenon is not exhibited with a single uncoupled three-variable autocatala-

tor model. The phenomenon of extreme multistability is closely linked to the emergence of

a conserved quantity that is determined by the initial conditions. This conserved quantity

determines a complex manifold in state space in which the dynamics occur. An infinite num-

ber of attractors arise, since this conserved quantity can serve as a bifurcation parameter in

a reduced system that gives rise to chaos in an infinite period-doubling cascade. Hence, the

system contains orbits of all periods. Our investigations also indicate that extreme multi-

stability has a close association with the emergence of generalized synchronization between

the two autocatalator subsystems coupled together.

We have demonstrated that the phenomenon of extreme multistability emerges in a cou-

pled six-variable system obtained by coupling two identical or slightly different three-variable

systems. The fact that we are able to vary corresponding parameters of the three-variable

systems by at least small amounts indicates extreme multistability is robust. We shall show

in the next chapter, how this coupling scheme is not unique.
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Chapter 10

Robustness of Extreme Multistability

10.1 Introduction

In Chapter 9, we demonstrated that extreme multistability emerges in a coupled six-

variable system obtained by coupling two three-variable autocatalator systems in a special

way. To show that the coupling technique is not unique, we examine three more coupling

schemes, each of which gives rise to extreme multistability. We show that, in contrast to

system (9.6), the conserved quantities associated with extreme multistability for the first

two coupling schemes are no longer contained in the equations but arise in a non-trivial way

as a result of the dynamics in the long-term limit. The conserved quantities of these two

models are similar to that in the system studied by Sun et al. [1]. The conserved quantity

for the last coupling scheme is similar to that of system (9.6).

This Chapter is organized as follows: In Section 10.2, we use a different scheme to couple

two three-variable autocatalator systems, and show that the coupled system exhibits extreme

multistability. We also show that the dynamics of the coupled system can be studied through

a reduced system that differs from the original three-variable system only by a constant, the

conserved quantity. We examine the dynamical behavior associated with two more coupling

schemes in Sections 10.3 and 10.4, respectively, and conclude the chapter in Section 10.5.
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10.2 Second Coupling Scheme

10.2.1 The Model

The second model involves the conversion of a chemical precursor A to a final product E

through six intermediate species Xi, Yi and Zi (i = 1, 2). This occurs in two subsystems with

an intermediate species from each subsystem involved in the other subsystem, comparable

to model (R9.11)-(R9.22). In the course of the conversion, two intermediate species C and D

are formed that do not take part in the dynamics. The final product E does not participate

in any reaction. We therefore neglect the time evolution of C, D and E in deriving system

(10.1). Let ki (i = 0, 1, 2, 3, 4, 5), k′
4 and k′′

4 be rate constants. Then the chemical

representation of our model is as follows:

A
k0−→ X1, (R10.23)

A + Z1
k1−→ X1 + Z1, (R10.24)

X1
k2−→ Y1, (R10.25)

X1 + 2Y1
k3−→ 3Y1, (R10.26)

B + Y1
k4−→ C, (R10.27)

B + Y2
k′
4−→ Z1 + Z2 + Y2, (R10.28)

Z1
k5−→ E, (R10.29)

A
k0−→ X2, (R10.30)

A+ Z2
k1−→ X2 + Z2, (R10.31)

X2
k2−→ Y2, (R10.32)

X2 + 2Y1
k3−→ Y2 + 2Y1, (R10.33)

C + Y2

k′′
4−→ D, (R10.34)

Z2
k5−→ E. (R10.35)

We keep the concentrations of A and B constant at A0 and B0. Additionally, we assume

that k′′
4 ≫ k′

4B0 = k4. Reaction (R10.26) describes an autocatalytic process in which Y1 cat-

alyzes its own production. Since Y1 is produced through autocatalysis in reaction (R10.26)
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and is used to produce Y2 in reaction (R10.33), we can also imagine an indirect autocatalysis

occurring in the fourth equation of the second subsystem (R10.33). In contrast to each of

the individual three-variable systems, each of which has simple feedback loops, there are

more complex feedback loops in the coupled system. For example, Z1 and Z2 are produced

in reaction (R10.28) and fed back into the system through reactions (R10.24) and (R10.31),

respectively, to catalyze the production of X1 from A, and the production of X2 from A

respectively. Note that while B is constant with the value B0, C is generated in reaction

(R10.27) of the first subsystem and rapidly consumed in reaction (R10.34) of the second sub-

system. Therefore, the rate of reaction (R10.34) is determined by the rate of reaction (R10.27).

Consequently, we use k4Y1 = k′
4B0Y1 instead of k′′

4CY2 in the corresponding mathematical

model. This contributes to the coupling of the two subsystems. The first subsystem is also

coupled to the second subsystem through Y2 in reaction (R10.28), while the second subsystem

is also coupled to the first system through Y1 in reaction (R10.33).

Let A0, [X1], [Y1], [Z1], [X2], [Y2] and [Z2] be the concentrations of A, X1, Y1, Z1, X2, Y2

and Z2 respectively. Then using the law of mass action we write the following system of

first-order ordinary differential equations for the above model:

˙[X1] = k0A0 + k1A0[Z1]− k2[X1]− k3[X1][Y1]
2,

˙[Y1] = k2[X1] + k3[X1][Y1]
2 − k4[Y1],

˙[Z1] = k4[Y2]− k5[Z1], (10.1)

˙[X2] = k0A0 + k1A0[Z2]− k2[X2]− k3[X2][Y1]
2,

˙[Y2] = k2[X2] + k3[X2][Y1]
2 − k4[Y1],

˙[Z2] = k4[Y2]− k5[Z2].

Using a scaling procedure similar to that of Chapter 9, we obtain the following dimensionless

variable and parameter groupings:

τ = k2t, x1 =
(k1k3)

1

2

k4
[X1], y1 =

(
k3
k2

) 1

2

[Y1], z1 =

(
k5
k4

)(
k3
k2

) 1

2

[Z1],

x2 =
(k1k3)

1

2

k4
[X2], y2 =

(
k3
k2

) 1

2

[Y2], z2 =

(
k5
k4

)(
k3
k2

) 1

2

[Z2],

µ =
k1A0

k5
, κ =

(
k0k5
k1k4

)(
k3
k2

) 1

2

, σ =
k2
k4

and δ =
k2
k5

,
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which reduce system (10.1) to

ẋ1 = µ(κ+ z1)− x1(1 + y21),

σẏ1 = x1(1 + y21)− y1,

δż1 = y2 − z1, (10.2)

ẋ2 = µ(κ+ z2)− x2(1 + y21),

σẏ2 = x2(1 + y21)− y1,

δż2 = y2 − z2.

10.2.2 Model Analysis

System (10.2) has a nonnegative equilibrium solution,

(x∗
1, y

∗
1, z

∗
1, x

∗
2, y

∗
2, z

∗
2) =

(
y∗1

y∗21 + 1
, y∗1,

y∗1 − κµ

µ
,

y∗1
y∗21 + 1

,
y∗1 − κµ

µ
,
y∗1 − κµ

µ

)

,

for y∗1 ≥ κµ, κ > 0 and µ > 0. Notice that when y∗1 > κµ, this equilibrium solution is positive

and when y∗1 = κµ, it reduces to

(x∗
1, y

∗
1, z

∗
1 , x

∗
2, y

∗
2, z

∗
2) =

(
κµ

1 + (κµ)2
, y∗1, 0,

κµ

1 + (κµ)2
, 0, 0

)

.

We use numerical simulations to investigate the dynamical behavior of the system. Through-

out this chapter, we set κ = 65, σ = 5× 10−3 and δ = 2× 10−2. In Section 10.2.2.1, we allow

µ to vary in the interval [0, 1), and in Section 10.2.2.2, we set µ = 0.145.

10.2.2.1 Dynamical Behavior for Varying µ

We study the coupled system with µ serving as a bifurcation parameter. Using the initial

conditions (x01, y01, z01, x02, y02, z02) = (0.5, 0.9898, 0.9896, 0.5, 0.9898, 0.9896), which is

the steady state to which the system relaxes with initial conditions (x01, y01, z01, x02, y02, z02)

= (0.01, 0.1, 0.1, 0.0, 0.0, 0.0), we integrate system (10.2) for different values of µ, retaining

only the last tenth of the total number of time steps in order to eliminate any transients.

To ensure that this represents the asymptotic behavior of the system, we verified that the

behavior of our solutions for the last quarter, fifth and tenth of the total number of time
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steps was the same. In each case, we found the behavior to be asymptotic. The qualitative

behavior of the system for different values of µ is identical to that of the three-variable

system. As µ is increased, the solutions switch from stable to chaotic through a period-

doubling cascade. This is followed by period halving, which takes the system back to stable

steady state behavior. For example, for 0 ≤ µ ≤ 0.015, we have steady state solutions, which

switch to period-1 through a Hopf bifurcation at µ = 0.016. As µ is further increased, there

is a switch from period-1 to period-2 at µ = 0.143, a switch from period-2 to period-4 at

µ = 0.1527, a switch from period-4 to period-8 at µ = 0.1532 and chaos at µ = 0.154. As µ is

increased beyond the chaotic region, period halving occurs, and the system finally returns to

stable a steady state through a second Hopf bifurcation at µ = 0.175. A bifurcation diagram

for the system showing different periodic and chaotic behaviors is presented in Fig. 10.1.
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Figure 10.1. Long-term dynamics of the coupled six-variable autocatalator model de-

picting chaotic behavior, period-doubling and reverse period-doubling se-

quences. Here, we plot the amplitude of x1 against the bifurcation parame-

ter µ. As µ is increased beyond the region where chaotic behavior was first

observed, windows of parameter values where periodic solutions exist can

be identified. Hence, an aperiodic parameter regime is sandwiched between

periodic parameter regimes.
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10.2.2.2 Illustration of Extreme Multistability

To explore the phenomenon of extreme multistability, we set (x01, y01, z01, x02, y02, z02)

= (0.01, 0.1, 0.1, 0, y02, 0), where y02 is allowed to vary from 0 to 10. We also set µ = 0.145,

which corresponds to a solution of period 2T for a single uncoupled three-variable autocata-

lator, and integrate the system for different values of y02. As y02 is gradually increased from 0

through 10, we observe stable steady state behavior and a transition to chaos through period-

doubling. As y02 is increased beyond the chaotic region, a reverse period doubling sequence

that takes the system back to stable steady state behavior occurs. For example, solutions

switch from period-1 to period-2 when y02 = 0.955, period-2 to period-4 when y02 = 6.525,

period-4 to period-8 when y02 = 6.835, etc. Hence, this coupled system also exhibits the

phenomenon of extreme multistability as illustrated in Fig. 10.2. Corresponding time series

and phase plots are shown on Figs. 10.3 and 10.4 respectively.
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Initial condition, y02
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Figure 10.2. Long-term dynamics of the coupled six-variable autocatalator model depict-

ing chaotic behavior as well as period doubling phenomena. The amplitude

of x1 is plotted on the ordinate axis while the initial condition y02 is plot-

ted on the abscissa. A period doubling sequence is identified for values of

y02 prior to the chaotic region. For values of y02 beyond the region where

chaotic behavior is observed, periodic solutions reappear. Hence, an aperi-

odic solution regime is sandwiched between two periodic solution regimes.
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10.3.4. y02 = 7.325: Chaotic behavior

Figure 10.3. Typical plots of system (10.2) for κ = 65, µ = 0.145, σ = 5 × 10−3, δ =

2× 10−2 showing different dynamical behaviors for different values of y02.
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10.4.3. y02 = 6.7: Period-4
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10.4.4. y02 = 7.325: Chaotic behavior

Figure 10.4. Typical phase plots of system (10.2) for κ = 65, µ = 0.145, σ = 5×10−3, δ =

2 × 10−2 showing different dynamical behaviors for different values of y02.

We plot z1 against y1.
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10.2.3 Reduced System

We now show that the dynamics of system (10.2) can be studied through a reduced system.

In contrast to the first coupled autocatalator system studied in Chapter 9, the new coupling

gives rise to simple generalized synchronization between the two subsystems, in which two

pairs of variables, (x1, x2) and (z1, z2), synchronize completely, while the variables in the

third pair, (y1, y2), differ by a constant, c = y2 − y1. This type of synchronization is also

associated with the emergence of a conserved quantity that characterizes the synchronization

manifold. Compared to system (9.6), the conserved quantity c appears as a result of the

dynamics, which takes its final value only in the long-term limit as τ → ∞. To justify

this statement, we introduce the new variables ei, i = 1, 2, 3, which are appropriate for

characterizing synchronization [2], since they can be interpreted as deviations from complete

synchronization:

e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1. (10.3)

By subtracting each of the first three equations of system (10.2) from the corresponding

equation in the last three equations of system (10.2), simplifying and applying the new

variable definitions (10.3), we obtain the following equations for the deviations ei:

ė1 = µe3 − (1 + x2
2)e1,

σė2 = (1 + x2
2)e1, (10.4)

δė3 = −e3.

Theorem 10.2.1 (Existence and stability of steady state solutions). System (10.4) exhibits

a single steady state solution, (e∗1, e
∗
2, e

∗
3) = (0, e∗2, 0), where e∗2 is a constant that depends on

the initial conditions. Moreover, this steady state solution is asymptotically stable.

Proof. By setting the right-hand side of (10.4) to zero and solving the ensuing system of

algebraic equations for e∗1, e
∗
2 and e∗3, where e

∗
i , i = 1, 2, 3 represents the steady state value of

ei, we obtain (e∗1, e
∗
2, e

∗
3) = (0, e∗2, 0). This proves the first part of the Theorem.

We now determine the stability of (0, e∗2, 0) by computing a Lyapunov function for system

(10.4). Notice that all the terms on the right-hand side of system (10.4) are linear in e1 and

e3 and that these terms are equally independent of e2. Consequently, a good Lyapunov
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function candidate would be a function that consists of a combination of terms in e1, e3 and

e1e3, with the total power of each term even. We consider the following candidate:

v(e1, e2, e3) = ae21 + be1e3 + ce23,

where a, b and c with 4ac > b2 are constants to be determined. Let γ = 1 + x2
2, then

γ > 0, ∀x.

v̇(e1, e2, e3) =
∂v

∂e1
ė1 +

∂v

∂e2
ė2 +

∂v

∂e3
ė3 =

(

2µa− b

(

γ +
1

δ

))

e1e3 − 2aγe21 −
(
2c

δ
− µb

)

e23.

Now, for v̇ < 0, we must have:

2µa− b

(

γ +
1

δ

)

= 0, a > 0, and
2c

δ
− µb > 0. (10.5)

That is, we must choose a, b and c such that all three conditions in (10.5) are satisfied. We

satisfy the third condition by setting c = 1 and b = 1
δµ
. This gives 2c

δ
− µb = 1

δ
> 0 since

δ > 0. Next, from the equation 2µa− b(γ + 1
δ
) = 0, we obtain a = γδ + 1

2(δµ)2
> 0 since γ > 0,

and δ > 0. Thus, the conditions in (10.5) are satisfied if we choose

a =
γδ + 1

2(δµ)2
, b =

1

δµ
and c = 1.

Notice that with these values of a, b and c,

a > 0, b > 0, c > 0 and 4ac− b2 =
2(1 + x2

2)δ + 1

(δµ)2
> 0.

Thus, v(e1, e2, e3) > 0 for (e1, e2, e3) 6= (0, e∗2, 0) and v(e1, e2, e3) = 0 only at (e1, e2, e3) =

(0, e∗2, 0). The function,

v(e1, e2, e3) =
(1 + x2

2)δ + 1

2(δµ)2
e21 +

1

δµ
e1e3 + e23

satisfies the following conditions:

• v is continuous and has continuous first partial derivatives,

• v > 0 for all (e1, e2, e3) and v = 0 only for (e1, e2, e3) = (e∗1, e
∗
2, e

∗
3) = (0, e∗2, 0),

• v̇ = −
(

γ(γδ+1)
(δµ)2

e21 +
1
δ
e23

)

< 0 for all (e1, e2, e3) and v̇= 0 only for (e1, e2, e3) = (0, e∗2, 0).
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Hence, v is a Lyapunov function for (10.4) and (0, e∗2, 0) is asymptotically stable [3]. �

We have shown in Theorem 10.2.1 that the steady state (0, e∗2, 0) is asymptotically stable.

Hence, any solution of (10.4) converges to this steady state over time, and any perturbation

of the system from this steady state decays to zero asymptotically. Consequently, the pairs

of variables (x1, x2) and (z1, z2) whose differences constitute e1 and e3, respectively, are

completely synchronized in the long-term limit, and since e1 → 0 as τ → ∞, the second

equation of (10.4) implies that e2 = y2 − y1 → c, where c is a constant that depends on

the initial conditions of the full system (10.2). To see the dependence of c on the initial

conditions of the full system, we note that in the long term, the second equation of (10.4)

assumes the form ẏ2 − ẏ1 → 0, since e1 → 0 as τ → ∞. But the general solution of the

differential equation ẏ2 − ẏ1 = 0 is y2 − y1 = c, where c is a constant that depends on the

initial values of y1 and y2. Therefore, y2 − y1 → c or y2 → y1 + c as τ → ∞. The constant c is

a conserved quantity, which, in contrast to the conserved quantity computed for model (9.6),

is not given directly by the initial conditions but evolves to its final value on approaching

the asymptotic state and, hence, depends on the initial conditions in a nontrivial way. The

value of c determines the synchronization manifold on which the long-term dynamics takes

place. A schematic representation like that depicted in Fig. 9.7 holds only as τ → ∞. In the

long-term limit, the state space is divided into infinitely many synchronization manifolds,

each corresponding to a particular value of c, as shown in Fig. 10.5. There exists at least

one attractor in each synchronization manifold.
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Figure 10.5. A sampling of the synchronization manifolds as a function of the con-

served quantity c. Chaotic (light blue), period-4 (red), period-2 (dark blue),

period-1 (magenta) behavior is exhibited for c = 5.3, 4.5, 0.0, and 6.0, and

−1.5, and 7.8.
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The initial condition is not necessarily contained in the synchronization manifold. A new

value of c is obtained for each new set of initial conditions, establishing a constant difference

between the remaining pair of variables (y1, y2). Therefore, we can substitute y2 = y1 + c

in the third equation of the first subsystem in the asymptotic state and obtain a reduced

system, which can be further used to explore extreme multistability for τ → ∞:

ẋ1 = µ(κ+ z1)− x1(1 + y21),

σẏ1 = x1(1 + y21)− y1, (10.6)

δż1 = (y1 + c)− z1,

The only difference between this system and the original three-variable autocatalator system

arises from the introduction of an additional parameter c, which depends on the initial

conditions of the full system (10.2) in a complex manner. Our goal is to use c as a bifurcation

parameter to study the dynamical behavior of system (10.6), and show that the reduced

system can be used to explore the dynamics of the full system, (10.2). Using the same

parameter values as in Section 10.2.2.2, we first integrate system (10.2) for different initial

conditions as we did in Section 10.2.2.2 and use the last values of y1 and y2 to compute c

according to the formula c = y2 − y1. Notice that using the last values of these variables

ensures that all transients are eliminated and asymptotic dynamical behavior is attained.

With these values of c and the initial condition (0.01, 0.1, 0.1), we integrate the reduced

system using a Runge-Kutta scheme with variable step size. A transition from simple to

complex dynamical behavior is observed as c is gradually increased. Solutions of the system

switch from period-1 to period-2 at c = −1.208, from period-2 to period-4 at c = 4.362, from

period-4 to period-8 at c = 4.672, etc. The period doubling sequence leads to chaos that is

followed by a period halving sequence that culminates in a stable steady state. Typical time

evolution and phase plots of the solutions of the reduced system (10.6) for different values

of c are presented in Fig. 10.6, while a bifurcation sequence depicting the dynamics of the

system as a function of the conserved quantity c is illustrated in Fig. 10.7.
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10.6.6. Chaotic behavior at c = 5.2.

Figure 10.6. Typical time evolution and phase plots of the reduced system (10.6).
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Bifurcation parameter, c
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Figure 10.7. Bifurcation diagram of the reduced autocatalator model (10.6). A plot of

the maximum amplitude of x1 against c.
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The parameter, c, characterizes a synchronization manifold in state space describing

generalized synchronization, where two pairs of variables in the two subsystems are fully

synchronized while the variables in the third pair are separated from each other by a constant

c. The equivalence between the dynamical behavior of the full six-dimensional model (10.2)

as a function of y02 and the reduced three-dimensional system (10.6) as a function of c can be

observed by comparing the bifurcation diagram in Fig. 10.7 and the initial condition diagram

in Fig. 10.2. The two diagrams are in complete correspondence. Figure 10.2 represents the

long-term dynamical behavior for different initial conditions, which resembles a bifurcation

diagram, while Fig. 10.7 is a bifurcation diagram in the mathematical sense, since c is a

bifurcation parameter for the reduced system (10.6).

Figure 10.8 depicts typical time series plots for the full six-dimensional system in the

long-term state. It highlights the nontrivial dependence of the final value of the conserved

quantity c on the initial conditions. Figure 10.9 illustrates complete synchronization of the

xi and zi, (i = 1, 2) variables. For all of the plots, y01 = 0.1. This indicates that the initial

difference y02 − y01 is not equal to the final value of the conserved quantity c = y2 − y1.
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10.8.1. Chaotic regime: y02 = 7.325, c =

5.1670, y02 − y01 = 7.225.
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10.8.2. Period-2 regime: y02 = 8.0, c =

5.842, y02 − y01 = 7.9.
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10.8.3. Period-1 regime: y02 = 15, c =

12.842, y02 − y01 = 14.9.

τ

y 1
,y

2

y1
y2

49.6 49.7 49.8 49.9 50
10

15

20

25

30

35

40

10.8.4. Stable steady state regime: y02 =

25, c = 22.842, y02 − y01 = 24.9.

Figure 10.8. Time series plots illustrating the constant difference between y1 and y2

within the chaotic, period-2, period-1 and stable steady state regimes.
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10.9.6. Period-1 regime: y02 = 15.

Figure 10.9. Time series plots illustrating complete synchronization of the variables x1

and x2 and z1 and z2 within the chaotic, period-2 and period-1 regions.
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Computing the Lyapunov exponents and plotting them as a function of y02 reveals a

similar behavior to that observed in Chapter 9. Due to the existence of a conserved quantity,

there are two zero Lyapunov exponents for all initial conditions (Fig. 10.10).

Initial condition, y02
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Figure 10.10. The three largest Lyapunov exponents of the coupled six-variable auto-

catalator model (10.2) vs. the initial condition y02.
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10.3 Third Coupling Scheme

The third coupling scheme is accomplished through Y1 in reaction (R10.47) of the second

subsystem, and through Y2 and Z2 in reactions (R10.39) and (R10.41), respectively, of the first

subsystem. We assume that the formation of the intermediate species is accompanied by

the formation of side products B, C, D and P , whose time evolution we omit. We also

assume that the reaction between D and Y2 is so fast that its rate is determined by the rate

of formation of D. This permits us to use k4Y1 instead of k′
4DY2 as the removal term in the

fifth equation of the corresponding mathematical system. This coupling yields the model

A
k0−→ X1, (R10.36)

A+ Z1
k1−→ X1 + Z1, (R10.37)

X1
k2−→ Y1, (R10.38)

X1 + 2Y2
k3−→ B, (R10.39)

X1 + 2Y1
k3−→ X1 + 3Y1, (R10.40)

Y1
k4−→ D + Z1 + Z2, (R10.41)

Z1
k5−→ E, (R10.42)

A
k0−→ X2, (R10.43)

A+ Z2
k1−→ X2 + Z2, (R10.44)

X2
k2−→ Y2, (R10.45)

X2 + 2Y2
k3−→ C, (R10.46)

X2 + 2Y1
k3−→ X2 + 2Y1 + Y2, (R10.47)

D + Y2
k′
4−→ P, (R10.48)

Z2
k5−→ E, (R10.49)
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where k′
4 ≫ k4. The corresponding mathematical model is:

˙[X1] = k0A0 + k1A0[Z1]− k2[X1]− k3[X1][Y2]
2,

˙[Y1] = k2[X1] + k3[X1][Y1]
2 − k4[Y1],

˙[Z1] = k4[Y1]− k5[Z1], (10.7)

˙[X2] = k0A0 + k1A0[Z2]− k2[X2]− k3[X2][Y2]
2,

˙[Y2] = k2[X2] + k3[X2][Y1]
2 − k4[Y1],

˙[Z2] = k4[Y1]− k5[Z2].

Using a nondimensionalization procedure similar to that of Chapter 9, we obtain:

ẋ1 = µ(κ+ z1)− x1(1 + y22),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z1, (10.8)

ẋ2 = µ(κ+ z2)− x2(1 + y22),

σẏ2 = x2 − y1 + x2y
2
1,

δż2 = y1 − z2.

We use the parameters κ = 65, σ = 5 × 10−3 and δ = 2 × 10−2. The bifurcation parameter

is set to µ = 0.157 which corresponds to a solution of period-1 for a single uncoupled

three-variable model. System (10.8) exhibits the phenomenon of extreme multistability as

illustrated in Fig. 10.11. We also identify a conserved quantity, c associated with this system.

This quantity is similar to that of system (10.2) and is also given by y2 − y1 = c in the long

term limit. Substituting y2 = y1 + c in the first equation of system (10.8) in the asymptotic

state, we obtain the following reduced system which can also be used to further explore the

dynamics of the full system (10.8) as τ → ∞:

ẋ1 = µ(κ+ z1)− x1(1 + (y1 + c)2),

σẏ1 = x1 − y1 + x1y
2
1, (10.9)

δż1 = y1 − z1.
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Initial condition, y02

x
m
a
x
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0.6

0.7
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Figure 10.11. Long term dynamics of the coupled six-variable autocatalator system

(10.8) showing periodic and chaotic behavior.

10.4 Fourth Coupling Scheme

The fourth coupling is achieved through Z1 in reaction (R10.57) of the second subsystem,

and indirectly through Z2 in reaction (R10.55) of the first subsystem. The coupled chemical
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model is:

A
k0−→ X1, (R10.50)

A + Z1
k1−→ X1 + Z1, (R10.51)

X1
k2−→ Y1, (R10.52)

X1 + 2Y1
k3−→ 3Y1, (R10.53)

Y1
k4−→ Z1, (R10.54)

E + Z1
k′
5−→ F, (R10.55)

A
k0−→ X2, (R10.56)

A + Z1
k1−→ X2 + Z1, (R10.57)

X2
k2−→ Y2, (R10.58)

X2 + 2Y2
k3−→ 3Y2, (R10.59)

Y2
k4−→ Z2, (R10.60)

Z2
k5−→ E, (R10.61)

where k′
5 ≫ k5. The corresponding mathematical model is:

˙[X1] = k0A0 + k1A0[Z1]− k2[X1]− k3[X1][Y1]
2,

˙[Y1] = k2[X1] + k3[X1][Y1]
2 − k4[Y1],

˙[Z1] = k4[Y1]− k5[Z2], (10.10)

˙[X2] = k0A0 + k1A0[Z1]− k2[X2]− k3[X2][Y2]
2,

˙[Y2] = k2[X2] + k3[X2][Y2]
2 − k4[Y2],

˙[Z2] = k4[Y2]− k5[Z2].

Using a similar scaling as that of the previous sections, we obtain the following system:
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ẋ1 = µ(κ+ z1)− x1(1 + y21),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − z2, (10.11)

ẋ2 = µ(κ+ z1)− x2(1 + y22),

σẏ2 = x2 − y2 + x2y
2
2,

δż2 = y2 − z2.

System (10.11) also exhibits extreme multistability, as illustrated in Fig. 10.12. As in

system (9.6) of Chapter 9, the conserved quantity is the same expression:

C = x2 + σy2 + δz2 − (x1 + σy1 + δz1).

By setting z2 = (C+x1+σy1+δz1− (x2+σy2))/δ in system (10.11), we obtain the following

reduced five-variable system that can be used to explore the dynamics of system (10.11)

when the conserved quantity C is used as the bifurcation parameter:

ẋ1 = µ(κ+ z1)− x1(1 + y21),

σẏ1 = x1 − y1 + x1y
2
1,

δż1 = y1 − (C + x1 + σy1 + δz1 − (x2 + σy2))/δ, (10.12)

ẋ2 = µ(κ+ z1)− x2(1 + y22),

σẏ2 = x2 − y2 + x2y
2
2.
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Initial condition, y02

x
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Figure 10.12. Long term dynamics of the six-variable autocatalator model (10.11) show-

ing period doubling and chaotic behavior.
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10.5 Brief Synopsis and Conclusion

We have demonstrated that two three-variable autocatalator models coupled in four dif-

ferent ways can exhibit extreme multistability. Therefore, the coupling technique leading

to extreme multistability is not unique. We also illustrated that the dynamics of each of

the coupled system is associated with a emergence of a conserved quantity. However, the

conserved quantity for two of the coupled systems, (10.2) and (10.8) does not depend on the

initial conditions of the full coupled system in a trivial way as that for systems (9.6) and

(10.11). The conserved quantity for systems (10.2) and (10.8) emerges only from the dy-

namics in the long-term limit. The long-term dynamics of these two systems can be studied

through reduced three-variable systems, each of which differs from the original three-variable

system only by a constant c that arises as τ → ∞. These two systems exhibit generalized

synchronization in which two pairs of variables are completely synchronized and the third

pair has variables that are separated by a constant. The robustness of extreme multistability

with respect to a mismatch in the parameters of the uncoupled three-variable subsystems

can also be verified for each of the three coupled systems studied here.
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Chapter 11

Generalization of Extreme Multistability

11.1 Introduction

In this chapter, we summarize the results of our studies on extreme multistability and

outline some evidence in support of the fact that the special coupling technique leading to

extreme multistability gives rise to a new class of dynamical systems that exhibits charac-

teristics of both dissipative and conservative systems. We also use our results to conclude

that extreme multistability is a general concept.

11.2 Overview and Generalization

We have demonstrated the phenomenon of extreme multistability using four different

coupling schemes of a chemical model system. For each of these couplings, we showed that

the asymptotic behavior of the coupled system exhibits an infinite number of attractors,

some stationary, some periodic and some chaotic. This situation was not possible with each

of the two three-variable subsystems prior to the coupling. We explained the phenomenon of

extreme multistability by illustrating that it is associated with the emergence of a conserved

quantity. This conserved quantity can appear due to a special choice of the coupling scheme

leading to a coupled system whose variables are no longer independent. In this case, the

conserved quantity is determined directly by the initial conditions of the coupled system.

This is the case for systems (9.6) and (10.11). On the other hand, other coupling options

may lead to conserved quantities that emerge from the dynamics in the long-term limit. This
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case is more complex and intriguing since the conserved quantity is not given but appears

only when the trajectory reaches the attractor. Such conserved quantities were found in the

coupled six-variable autocatalator systems (10.2) and (10.8). The dynamics of these coupled

systems are governed by two properties of extreme multistability:

1. The dynamics takes place on a manifold in state space that is determined by the

value of the conserved quantity and contains at least one attractor. Hence in the limit

τ → ∞, extreme multistability can be interpreted in terms of a division of the state

space into infinitely many manifolds on which the dynamics takes place.

2. Extreme multistability is associated with the appearance of generalized synchronization

between the coupled subsystems.

The emergence of a conserved quantity in the long-term limit allows a model reduction of

the coupled systems, (10.2) and (10.8). Since the dynamics for τ → ∞ takes place on a

hypersurface in state space determined by the value of the conserved quantity, each of these

systems can be reduced to a new three-variable system that differs from the original three-

variable system only by a constant, the conserved quantity. The conserved quantity serves as

a bifurcation parameter in the classical sense for each of the reduced three-variable models.

This model reduction confirms the existence of an infinite number of attractors since the

variation of the new bifurcation parameter, the conserved quantity, gives rise to an infinite

cascade of period-doubling in transition to chaos. Extreme multistability therefore contains

periodic orbits of all periods. In terms of the original system variables, the analysis of systems

(10.2) and (10.8), and the corresponding reduced systems indicate that small differences in

the concentrations of the intermediate species Y1 and Y2 may not only alter the dynamic

behavior of the system quantitatively but also qualitatively. The variables x1 and x2 relax

to the same value, and z1 and z2 also relax to the same value. However, the variables y1 and

y2 relax such that y2 − y1 = c. Consequently, the plots of y1 and y2 are identical except for a

shift by the factor of c. Note that the variables y1 and y2 exhibit phase synchronization. The

analysis for systems (9.6) and (10.11), in which the associated conserved quantities emerge

as well as depend on the initial conditions in a simple way is slightly different. There is no

complete synchronization between any of the variable pairs. Thus, the conserved quantity
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can be used to reduce each of these two systems by only a single variable. The conserved

quantity can also serve as a bifurcation parameter in the mathematical sense.

The coupled six-dimensional chemical systems studied here exhibit both characteristics

of dissipative and conservative dynamics. Common examples of conservative systems are the

Lotka model [1] and the undamped simple pendulum system briefly examined in Chapter

1. The main difference between the coupled autocatalator systems and purely conservative

systems resides in the fact that the former also possesses dissipative components, since the

system relaxes to its asymptotic state, whereas there is no relaxation to an attractor in the

latter. Due to the existence of a conserved quantity, the dynamics of the coupled autocata-

lator systems has features in common with Hamiltonian systems. However, the four systems

studied here are dissipative and, hence, possess attractors in contrast to Hamiltonian sys-

tems, which exhibit marginally stable orbits. Conserved quantities in Hamiltonian systems,

like energy, have fixed values from the very beginning. This is also true with systems (9.6)

and (10.11). However, the conserved quantity for each of the systems in (10.2) and (10.8)

emerges during the time evolution of the system and its value is fixed only as τ → ∞. Al-

most all perturbations of the coupled systems lead to changes in the value of the conserved

quantity and consequently to a change in the long-term dynamics. The exception, of course,

is a perturbation in the values of the variables that preserve the conserved quantity, for

example, a perturbation that changes y1 and y2 such that the conserved quantity remains

the same. The set of initial conditions or perturbations that leave a particular conserved

quantity unchanged constitutes the basin of attraction of the attractor defined by the value

of that conserved quantity. Hence, each of the attractors has its own basin of attraction.

In each of the coupled systems, the rate constants for corresponding reactions in the

subsystems are the same. To illustrate that extreme multistability can arise in a wider range

of systems, we addressed the chemical plausibility of the reactions in the coupled systems.

We demonstrated that it is possible to vary the rate constants for corresponding reactions

by at least a small amount (less than 1%) without losing extreme multistability. For other

systems such as the coupled Lorenz systems studied in [2], extreme multistability is lost for

parameter mismatches that exceed 0.1% [3]. Thus, we conclude that extreme multistability

is more likely to occur when almost identical subsystems are coupled.
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Noise is inevitable in naturally occurring systems. Hence, it is necessary to address the

robustness of extreme multistability against noise. For multistable systems possessing a large

number of coexisting attractors it has been shown that noisy dynamics can be viewed as a

combination of two phases of motion, where the first phase is characterized by a motion

around the attractor and the second phase corresponds to a jump from one attractor to

another [4]. Therefore, the duration of these two phases of motion is irregular and the

overall dynamics appears as a hopping process between different attractors. For systems

exhibiting extreme multistability, we also observe this hopping as noise of a certain strength

drives the system to move from one synchronization manifold to another. However, it is

important to note that this hopping can only be observed for small noise strengths, since

strong noise leads to a diffusion process in state space.

The four different coupling schemes of the autocatalator model, each leading to extreme

multistability, demonstrates that the special coupling technique is not unique. In an attempt

to generalize the approach and the phenomenon of extreme multistability, we tried to find a

generic prescription for constructing models that exhibit infinitely many attractors. Differ-

ent factors including symmetry and asymmetry, coupling both subsystems through a single

variable, coupling both subsystems through two or more variables, selecting coupling vari-

ables from any of the equations involved in the system, etc. have been considered. Taking

these factors into account, we developed a number of different couplings for the autocatalator

system. Some of these coupled models exhibit extreme multistability and some do not. Our

investigations revealed that symmetry and asymmetry do not appear to play a major rule

in the occurrence of extreme multistability. We also discovered that all coupling attempts

through a single variable failed to exhibit extreme multistability. Hence, the coupling should

involve at least two variables.

Apart from the coupling, we may also try to generalize the notion of extreme multi-

stability by considering the nature of the original subsystems. Here, we conjecture that

a requirement for extreme multistability is chaos or chaotic subsystems. This is definitely

a requirement for an infinite number of qualitatively different attractors, since the period-

doubling cascade to chaos is the main characteristic that leads to this feature in all systems

known to exhibit extreme multistability. We could not find extreme multistability in coupled
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two-variable oscillatory systems of ordinary differential equations.

In addition to the Lorenz and the autocatalator systems, we also demonstrated the occur-

rence of extreme multistability in biological and ecological models such as the Hindmarsh-

Rose neuron model [5, 6] and the ratio-dependent food chain model [7]. We are thus rea-

sonably convinced that given a system that exhibits chaotic behavior we can find extreme

multistability by appropriately coupling two such systems. In contrast to the autotacalator

system in which we could easily verify that the couplings make sense physically, it is more

difficult to verify whether the coupled Lorenz and biological systems are physically plausible.

11.3 Conclusion

Extreme multistability is an unusual kind of multistability characterized by the coexis-

tence of an infinite number of attractors. It appears when two identical or almost identical

systems are coupled in a special way. The special coupling gives rise to a new class of dy-

namical systems that exhibits characteristics of both dissipative and conservative dynamical

systems. Extreme multistability is closely associated with generalized synchronization and

the emergence of a conserved quantity.
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Appendix A

Principle of Linear Stability

A linear stability analysis provides information about the local stability of equilibrium

solutions to a dynamical system described by an autonomous system of ordinary differential

equations. The principle of linear stability can be used to determine the equilibrium solution

x∗ of the nonlinear autonomous system of ordinary differential equations ẋ = f(x) and its

stability from the stability of the zero solution of the corresponding linear system x̃ = Jx̃,

where J is the Jacobian matrix of the linear system and x̃ is a perturbation of the variable

x from x∗. We briefly examine the principle of linear stability below.

Let us begin by considering the following autonomous system of differential equations:

ẋ = f(x), (A.1)

where f ∈ Rn is a continuously differentiable function of x and x ∈ Rn is a continuous

function of t with t ∈ R. Suppose x∗ is an equilibrium solution of (A.1); then we can study

the linear stability of x∗ by perturbing the system about x∗. To achieve this, we set

x̃ = x− x∗ or x = x∗ + x̃,

where ||x̃|| ≪ 1 in (A.1) and expand in a Taylor series about x∗. This results in the system

˙̃x = f(x∗) + Jx̃+HOT, (A.2)

where HOT represents higher order terms in x̃. The entries aij of the n×n Jacobian matrix

J can be determined according to the formula aij =
∂fi(x

∗)
∂xj

, i, j = 1, 2, 3, ..., n. Now, since x∗

is an equilibrium solution of (A.1), f(x∗) = 0, and since ||x̃|| ≪ 1, we can re-write system
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(A.2) while disregarding f(x∗) and HOT as follows:

˙̃x = Jx̃. (A.3)

In expanded form, J can be written as

J =
















∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn
















.

Next, we seek linearly independent solutions of this linear system of the form x̃ = veλt, where

λ is an eigenvalue that measures the temporal response of the perturbation and v 6= 0 is the

corresponding eigenvector that spans the null space of the system (A.3). Substituting this

exponential solution in (A.3) and simplifying yields the new system

(J − λIn)v = 0, v 6= 0, (A.4)

where In is the n × n identity matrix. From linear algebra, it is obvious that (A.4) has

non-trivial solutions only when |J − λIn| = 0 or

λn + a1λ
n−1 + a2λ

n−2 +−−−+ an−2λ
2 + an−1λ+ an = 0, (A.5)

where the coefficients ai, i = 1, 2, 3, · · · , n are real constants. Equation (A.5) is an n−degree

polynomial equation in λ, called a characteristic equation. Note that with these values of λ,

the corresponding eigenvectors can be found from (A.4). Once we have values for λ and the

corresponding eigenvectors, the solution of system (A.3) can be expressed in the form

x̃(t) =

n∑

i=1

kivie
λt, (A.6)

if all eigenvalues are distinct, and in the form

x̃(t) =

m∑

i=1

kivmt
m−1eλmt +

n∑

i=m+1

kivie
λt, (A.7)
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if λm is a repeated eigenvalue of multiplicity m. In either case, the ki’s are constants whose

values can be computed if initial conditions are specified.

Without necessarily determining the explicit solution of the system (A.3), it is possible

to establish the local stability of solutions to system (A.3) and consequently system (A.1)

as long as we are capable of determining the eigenvalues of (A.3). To this end, equilibrium

solutions to (A.3), and consequently to (A.1), are linearly and asymptotically stable if all

eigenvalues of (A.3) have strictly negative real parts, stable if the eigenvalues have non-

positive real parts, and unstable if at least one eigenvalue has a positive real part. If λ

is complex, we can have damped oscillations when the real part of λ is negative, growing

oscillations when the real part of λ is positive, and sustained periodic oscillations when the

real part of λ is zero; that is, when λ is purely imaginary. The system is neutrally stable

when λ is purely imaginary. Neutral stability is fragile to perturbations. This is because

small perturbations can destabilize the system or cause it to become attractive.
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Appendix B

Libnitz Rule, Descartes’ Rule of Signs, and

Routh-Hurwitz Criterion

B.1 Libnitz Rule

The Libnitz Rule [1–4] is important in differentiating definite integrals whose limits are

differentiable functions. It states that,

d

dt

∫ v(t)

u(t)

p(s, t)ds =

∫ v(t)

u(t)

∂p(s, t)

∂t
ds+ p(v(t))v′(t)− p(u(t))u′(t), (B.1)

where the primes on u and v denote differentiation with respect to t.

Descartes’ rule of signs [5, 6] and the Routh-Hurwitz criterion [7, 8] play an important role

in determining the stability of linear systems of autonomous ordinary differential equations.

B.2 Descartes’ Rule of Signs

Given the sequence {ai}ni=1 formed from the coefficients of the n-degree polynomial equa-

tion (A.5), and given that m is the number of sign switches from one non-zero coefficient

of equation (A.5) to the next, then Descartes’ rule of signs states that the number of real

positive roots of equation (A.5) is either m or m− k, where k is a positive even number. By

repeating the rule with λ replaced by −λ, the number of negative real roots of (A.5) can

be determined. Note that although Descartes’ rule of signs predicts the number of positive

roots of a polynomial, it does not provide any information about the values of the roots.
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B.3 Routh-Hurwitz Criterion

The Routh-Hurwitz stability criterion provides necessary and sufficient conditions for all

the roots of a polynomial equation to be negative if they are real or have negative real parts

if they are complex. We now state the Routh-Hurwitz criterion.

Consider the n-degree characteristic polynomial equation (A.5), and the following Hur-

witz matrices constructed from the coefficients of the polynomial:

H1 = ( a1 ), H2 =




a1 1

a3 a2



 , H3 =








a1 1 0

a3 a2 a1

a5 a4 a3








, H4 =











a1 1 0 0

a3 a2 a1 1

a5 a4 a3 a2

a7 a5 a4 a3











, · · · ,

Hn =














a1 1 0 0 0 · · · 0

a3 a2 1 0 0 · · · 0

a5 a4 a3 a2 1 · · · 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · an














.

Suppose ai > 0, where i = 1, 2, 3, · · · , n. Then |Hi| > 0, i = 1, 2, 3, · · · , n, where the

vertical bars to the left and right of the Hurwitz matrix Hi denote, ”determinant of”, is a

necessary and sufficient condition for all values of λ; that is, all the roots of the characteristic

equation (A.5) to have negative real parts.

To construct the matrix Hn, the coefficients a1, a2, a3, · · · , an are arranged along the

leading diagonal in ascending order of subscript from the top left corner of the matrix to the

bottom right corner. The columns consist of coefficients with either odd or even subscripts

only, arranged in ascending order from top to bottom. Note that the entries of the columns

alternate between coefficients with odd and even subscripts. For example, the first column

consist of coefficients with odd subscripts, the second column consists of coefficients with

even subscripts, the third column consists of elements with odd subscripts, etc. Entries

with subscripts less than 0 or bigger than n are set to 0. We now state the Routh-Hurwitz
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stability criterion for the first few values of n, say, for n = 2, 3, 4, 5.

All values of λ that satisfy the characteristic equation (A.5) have negative real parts (or

lie within the left half plane) if and only if:

• for n = 2:

|H2| =

∣
∣
∣
∣
∣
∣

a1 1

0 a2

∣
∣
∣
∣
∣
∣

= a1a2 > 0

or a1 > 0 and a2 > 0.

• for n = 3:

|H3| =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 1 0

a3 a2 a1

0 0 a3

∣
∣
∣
∣
∣
∣
∣
∣
∣

= a3(a1a2 − a3) > 0

or a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3.

• for n = 4:

|H4| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2

0 0 0 a4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= a4(a1a2a3 − a23 − a21a4) > 0

or a1 > 0, a2 > 0, a3 > 0, a4 > 0 and a1a2a3 > a23 + a21a4.

• for n = 5:

|H5| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a1 1 0 0 0

a3 a2 a1 1 0

a5 a4 a3 a2 1

0 0 a5 a4 a3

0 0 0 0 a5

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0

or a1 > 0, a2 > 0, a3 > 0, a4 > 0, a5 > 0, a1a2a3 > a23 + a21a4 and (a1a4 − a5)(a1a2a3 −
a23 − a21a4) > a5(a1a2 − a3)

2 + a1a
2
5.
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Appendix C

Existence and Uniqueness Theorem for

Solutions to Systems of First-order Ordinary

Differential Equations

We state a Theorem that guarantees the existence and uniqueness of solutions to a system

of first-order ordinary differential equations. We reproduce the Theorem from Ref. [1].

Theorem C.0.1 (Existence and Uniqueness). For the nth order system

ẋ = f(x, t), (C.1)

suppose that f is continuous and ∂fj/∂xi, i, j = 1, 2, · · · , n are continuous for x ∈ D , t ∈ I,

where D is a domain and I is an open interval. Then if x0 ∈ D and t0 ∈ I, there exists a

solution x∗(t), defined uniquely in some neighbourhood of (x0, t0), which satisfies x∗(t0) = x0.

See Refs. [2–4] for an elaborate exploration of existence and uniqueness theorems for

solutions to systems of first-order ordinary differential equations.
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Appendix D

Lyapunov Functions and Lyapunov Exponents

D.1 Lyapunov Functions

A positive definite scalar-valued function V for which V̇ is negative semi-definite or nega-

tive definite with respect to a dynamical system described by a system or ordinary differential

equations constitutes a Lyapunov function for the system. That is, a function v is called

a Lyapunov function for a regular autonomous system of ordinary differential equations

ẋ = f(x), where x, x∗, f ∈ Rn are vectors and x∗ is an equilibrium solution of the system if

it satisfies the following properties:

1. v is continuous and has continuous first partial derivatives,

2. v > 0 for all x and v = 0 only for x = 0,

3. v̇ < 0 for all x and v̇ = 0 only for x = x∗.

Lyapunov functions provide a sufficient but not necessary condition for assessing the sta-

bility of equilibria to dynamical systems described by systems of ordinary differential equa-

tions without necessarily solving the systems explicitly. In order to show that an equilibrium

solution x∗ of a regular autonomous system of ordinary differential equations is asymptoti-

cally stable, it suffices to construct a Lyapunov function v = v(x) for the system. Lyapunov

functions are not unique and they can also be used for establishing global stability. Even

though Lyapunov functions play a crucial role in establishing the stability of equilibrium so-

lutions of dynamical systems, there is, however, no general or fixed approach for constructing
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them [1]. Generally, one has to approach this through trial-and-error. However, there are

some documented methods for computing Lyapunov functions for certain classes of systems.

For example, Ref. [2] outlines a method for computing Lyapunov functions for a linearized

two dimensional system of ordinary differential equations and shows that the same function

is also a Lyapunov function for the corresponding two dimensional nonlinear system. In

some cases, the system at hand may furnish us with a clue on how to compute its Lyapunov

function. As an example, we construct a Lyapunov function for the following system:

ẋ1 = µx3 − γx1,

σẋ2 = γx1, (D.1)

δẋ3 = −x3,

All of the terms on the right-hand side of system (D.1) are linear in x1 and x3, while δ, γ, µ

and σ are positive constants. These terms are equally independent of x2. Consequently, good

Lyapunov function candidates would be functions that consist of a combination of terms in

x1, x3, and x1x3, with the total power of each term even. For example,

• v(x1, x2, x3) = ax2
1 + bx2

3, where a and b are positive coefficients to be determined,

• v(x1, x2, x3) = ax4
1 + bx4

3, where a and b are positive coefficients to be determined,

• v(x1, x2, x3) = ax2
1 + bx1x3 + cx2

3, where a, b and c with 4ac− b2 > 0 are constants.

The third candidate v(x1, x2, x3) = ax2
1 + bx1x3 + cx2

3, where a, b and c with 4ac > b2 are

constants is the best choice for system (D.1). Let vy denote differentiation with respect

to y, where y = x1, x2, x3 and a dot on v, x1, x2 and x3 denote time derivatives. Then by

differentiating v with respect to time t, we obtain the following:

v̇(x1, x2, x3) = vx1
ẋ1 + vx2

ẋ2 + vx1
ẋ3

= (2ax1 + bx3)ẋ1 + (0)ẋ2 + (bx1 + 2cx3)ẋ3

= (2ax1 + bx3)(µx3 − γx1) + (0)
(γ

σ
x1

)

+ (bx1 + 2cx3)

(

−1

δ
x3

)

=

(
2aµδ − b(γδ + 1)

δ

)

x1x3 − 2aγx2
1 −

(
2c− bµδ

δ

)

x2
3.

Now, for v̇ < 0, we must have
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• 2aµδ − b(γδ + 1)

δ
= 0,

• a > 0, and

• 2c− bµδ

δ
> 0.

That is, we must choose a, b and c such that the three conditions above are satisfied. To this

effect, we set c = 1 and b = 1/(δµ). This gives (2c− bµδ)/δ = 1/δ > 0 since δ > 0. Next, we

determine a from the equation (2aµδ − b(γδ + 1))/δ = 0. The result is a = (γδ + 1)/(2(δµ)2) > 0

since γ > 0, ∀x and δ > 0. Thus, the above conditions are satisfied if we choose a =

(γδ + 1)/(2(δµ)2) > 0, b = 1/(δµ) and c = 1. Notice that 4ac− b2 = (2γδ + 1)/(δµ)2 > 0

and that v satisfies conditions (1)-(3) above. Therefore, the following function is a Lya-

punov function for system (D.1):

v(x1, x2, x3) =
γδ + 1

2(δµ)2
x2
1 +

1

δµ
x1x3 + x2

3.

See the proof of Theorem 3.3.7 for an example on how to compute Lyapunov functions for

epidemiological models and Refs. [3–5] for more on Lyapunov functions.

D.2 The Largest Lyapunov Exponent

Largest Lyapunov exponents provide a quantitative measure of chaotic behavior of dynam-

ical systems. They measure the average exponential rate at which trajectories that originate

close to each other either diverge from or converge to each other over time. Chaotic behavior

is governed by a positive largest Lyapunov exponent, while periodic behavior is characterized

by a zero largest Lyapunov exponent. Positivity of the largest Lyapunov exponent indicates

that any two nearby trajectories separate exponentially in the long term. In this case, the

system exhibits sensitive dependence on initial conditions. This results to a complete loss

of information about the initial data in the long term [6]. Negative Lyapunov exponents

are common among asymptotically stable dissipative systems and denote stable equilibrium

points or stable limit cycles.

Consider the following autonomous system of ordinary differential equations:

ẋ = f(x), (D.2)
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where x, f ∈ Rn. Let x(t0) = x0 be the vector of initial values of x, then Theorem C.0.1

provides conditions under which system (D.2) can have a unique solution, say, x(t) = F (x, t).

However, our interested here resides in the long-term asymptotic behavior of dF ; that is,

the differential of the solution F . We perturb the system about a reference trajectory, say

x∗ by setting x = x∗ + u, where x∗, u ∈ R
n and ||u|| ≪ ||x∗||. Substituting in system

(D.2), expanding in a Taylor series about x∗, and retaining only linear terms in u yields the

following linear system:

u̇ =
















∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn
















x=x∗

u. (D.3)

Let u(t∗0) = u0 be the initial conditions of the linearized system (D.3), then the system

has a unique solution u(t) that can be expressed in terms of the solution of the original

system as follows:

u(t) = F (t, t∗0)u0, (D.4)

where F (t, t∗0) is a matrix obtained by linearizing the solution of system (D.2). If

lim
t→∞

1

t
ln ||F (t, t∗)|| < ∞,

then the largest Lyapunov exponent of the system is given by

λL = lim
t→∞

1

t
ln

( ||u(t)||
||u0||

)

. (D.5)

See [7] for details on how to calculate the largest Lyapunov exponents.
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Appendix E

LaSalle’s Invariance Principle

LaSalle’s invariance principle is an extension of Lyapunov’s method and it is useful in

proving global asymptotic stability for continuous and discrete dynamical systems. It uses

the notions of limit sets and invariance to define Lyapunov functions in a less restrictive

manner. For example, LaSalle’s invariance principle eliminates the strict requirement that a

Lyapunov function V for a continuous dynamical system that is described by an autonomous

system of ordinary differential equations must have a negative definite time derivative for

the system to be asymptotically stable.

Definition E.0.1 (Invariant set). A set Ψ is said to be invariant with respect to the system

of ordinary differential equations ẋ = f(x), if all trajectories x(t) that originate from the set

do not leave the set Ψ at any time.

Theorem E.0.2 (LaSalle’s invariance principle). Suppose the set Ψ ⊂ D is compact and

positively invariant with respect to the system of ordinary differential equations ẋ = f(x).

Suppose further that the function V defined by V : D → R is continuously differentiable and

that V̇ ≤ 0 on Ψ. If E = {x ∈ Ψ : V̇ (x) = 0} and E∗ is the largest invariant set in E, then

every solution of the system of ordinary differential equations ẋ = f(x) that begins in the set

Ψ approaches E∗ as time t approaches infinity.

See Refs. [1–6] for more on LaSalle’s invariance principle.
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Appendix F

Third Hands-On Research in Complex Systems

Advanced Study Institute: University of Buea,

Cameroon, August 2-13, 2010

 

http://www.handsonresearch.org/

This Appendix consists of teaching material I prepared for the Third Hands-On Research

in Complex Systems Advanced Study Institute that took place at the University of Buea,

Cameroon from August 2-13, 2010. The audience was composed of outstanding graduate

students and young faculty selected from developing countries. The hands-on sessions ran

for three hours each day. My session received much attention and participants requested

extended three-hour sessions almost on a daily basis. The Directors of the Institute were

Professors Rajarshi Roy (University of Maryland), Kenneth Showalter (West Virginia Uni-

versity), and Harry L. Swinney (University of Texas) and the local organizers were Dr.

Josepha Foba and Dr. Gideon Ngwa (University of Buea, Cameroon). See the next page for

the sponsors of the Institute, and the website http://www.handsonresearch.org/ for more

information on the Institute and for information on past and future Hands-On Schools.
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Communicable Diseases Session
Dr Gideon A. Ngwa (University of Buea, Cameroon), assisted by

Calistus N. Ngonghala and Professor Kenneth Showalter (West

Virginia University), Dr. Fidelis Cho-Ngwa (University of Buea,

Cameroon) and Henry Dilonga (University of Buea, Cameroon)

F.1 Session Description Summary

Communicable diseases are carried by microorganisms and are diseases that can be commu-

nicated between persons. Examples of communicable diseases include malaria, HIV/AIDS,

ringworm, and intestinal worms (Ascaries, Taenia, etc.). These diseases are called commu-

nicable because the infection can be ”communicated” just as information can be commu-

nicated from one person to another. A human-to-human communicable disease could be

passed through blood, mucus, uterine fluid, breast milk, semen, saliva, or breath. Question:
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Can money harbor pathogens and thus serve as a communicable disease vector? It is well

known that money is handled by persons of varying health and hygienic standards and also

stored under varying environmental and personal hygienic conditions. Thus the chances of

pathogens being present on money and persisting through multiple handling are high.

F.1.1 Theoretical and Experimental Part

In the first part of the session, participants will have the opportunity to carry out simple

microscopic examinations to establish the existence of microorganisms (and the possible

types) that can persist on the surfaces of money (coins and notes). In the second part,

participants will learn how to develop simple mathematical models for indirectly transmitted

diseases of humans. In the third part, participants will have the opportunity to formulate

the hypotheses and mechanisms that may be useful in proposing mathematical models to

assess the efficacy of money as a vector for communicating diseases between humans and

then using MATLAB to analyze these models.

F.1.2 Simulation Introduction

Participants will explore the existence and stability of equilibrium solutions to an SIR dis-

ease model with and without vital dynamics using standard analytical techniques. MATLAB

codes for an SIR disease model will be provided: The first two codes are for a deterministic

SIR model with and without births and deaths (or vital dynamics). The third code will be

for a stochastic version of an SIR disease model. The fourth code will be a deterministic

SIR infectious disease model with a periodic contact rate. Participants will vary the con-

tact rate to observe different dynamical behaviors, ranging from a stable steady state to a

period-doubling cascade. A C code for an SEIRS model for endemic malaria from Ref. [1],

which incorporates a spatial component, will be examined. Participants will use the built-in

C compiler in MATLAB to compile and execute this code. They will then vary system

parameters and diffusion coefficients to observe their effects on disease prevalence and the

wave front of an infection process propagating through the community.
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F.2 Detailed Session Description

F.2.1 Deterministic SIR Model

 

Figure F.1. A schematic framework illustrating the flow of individuals between the sus-

ceptible, infectious and immune classes. At any time, the total population

is N = S + I +R.

Deterministic models are described by ordinary or partial differential equations. Predictions

of system behavior can be obtained from the solutions of the system if such solutions can

be computed explicitly, or via a stability analysis, if closed form solutions can not be found.

These models are preferred when the population size under consideration is large.

To obtain the classical SIR model we simulate here, the total population is divided into

susceptible individuals (those who have not contracted the disease), infectious individuals

(those who have contracted the disease and can transmit it to others), and removed or

immune individuals. The model is described by the following system of differential equations:
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dS

dt
= µN − βSI − µS,

dI

dt
= βSI − (µ+ ν)I, (F.1)

dR

dt
= νI − µR,

where µ is the birth/natural death rate, β is the contact rate, and ν is the removal rate. The

basic reproduction number is

R0 =
βN

µ+ ν
. (F.2)

The threshold parameter, R0 determines the existence and stability of equilibrium solutions

to the system. When R0 ≤ 1, there exists a stable disease free equilibrium, representing

the situation in which the disease dies out, and when R0 > 1, there exists a stable endemic

equilibrium, indicating that the disease establishes itself in the community.

F.2.1.1 Exercise

1. Compute the equilibrium solutions of system (F.1).

2. Verify that the basic reproduction number R0 presented above is correct.

3. Determine the linear stability of the equilibrium solutions computed above.

4. Verify whether the equilibrium solutions are globally asymptotically stable or not.

F.2.1.2 Simulating the Deterministic Model with no Vital Dynamics

By no vital dynamics, we are referring to the situation in which there are no births and

deaths; i.e., µ = 0. The MATLAB code SIRNoVitalDyn.m is provided for the simulations.

1. Run the code by typing SIRNoVitalDyn in the command prompt and hitting “return”.

2. Vary the parameters and observe their effects on disease prevalence.
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Figure F.2. Simulation results with µ = 0.

F.2.1.3 Simulating the Deterministic Model with Vital Dynamics

We now simulate the entire system, taking into consideration births and deaths. That is,

we consider the situation in which µ 6= 0. To this effect, the MATLAB code SIRVitalDyn.m

is provided. See Fig. F.3 for a sample time series and phase plot.

Exercise

1. Vary the parameters to determine their effects on both R0 and disease prevalence.

2. Verify the linear stability results for the cases R0 ≤ 1 and R0 > 1.
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Figure F.3. Solution of system with vital dynamics
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F.2.2 SIR Model with Periodic Contact Rate

F.2.2.1 Background

The prevalence of some diseases vary with seasonality and so the dynamics may exhibit

oscillations. For instance, the prevalence of contagious diseases of children of school age is

usually higher during the school term than during holidays. The dynamics of some commu-

nicable diseases of humans such as malaria vary with seasonality. This is due to variations

in the mosquito population dynamics. One way of capturing such oscillations is by incorpo-

rating periodic contact rates as in Ref. [2]. See Refs. [3, 4] for other techniques of capturing

periodicity in epidemiological models. Here, we re-examine the SIR model from Section

F.2.1. As in Ref. [2], we consider a periodic contact rate given by β(t) = β0(1 + β1 cos 2πt)

where B0 and β1 are positive constants.

F.2.2.2 Simulations

The MATLAB script, SIRPeriodic.m is provided. SIRPeriodic.m integrates the system

using a fourth-order Runge Kutta method and produces both a time series and a phase plot

of the results. This script can be run by typing “SIRPeriodic” at the MATLAB command

prompt and hitting “return”. A preliminary run with the parameters µ = 0.02, ν = 100, β0 =

1800, β1 ∈ {0.0, 0.02, 0.08} and initial conditions S0 = 0.0556 and I0 = 0.001 provides the

output plotted in Figs. F.4 and F.5.
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Figure F.4. Typical dynamical behaviors for different values of β1. Stable spiral when

β1 = 0.0 and period-1 behavior when β1 = 0.02.
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Figure F.5. Typical dynamical behaviors for different values of β1. Period-2 oscillations

for β1 = 0.08 and chaotic behavior for β1 = 0.095.
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F.2.2.3 Exercise

1. Fix all system parameters and vary only the contact rate by varying the parameter

β1 to observe different dynamical behaviors, ranging from stable steady state behavior

through a period-doubling cascade.

2. Fix the contact rate and vary the other system parameters.

3. Determine the parameter regimes for which R0 < 1, R0 = 1 and R0 > 1, and investigate

the consequences on disease prevalence.

F.2.3 Stochastic SIR Model

F.2.3.1 Model Description

We now consider a stochastic version of the deterministic SIR model above. As in deter-

ministic models, variables are also used to denote states in stochastic models. However, the

transition rates between these states are probabilities instead of simple reaction or flow rates

as in deterministic models. In general, a deterministic ordinary differential equation model

can only give an approximation of the corresponding stochastic model. Stochastic models

are usually computationally more expensive than deterministic models; however, they are

more appropriate when the population size under consideration is small. With the same set

of initial data, stochastic models can yield different outcomes due to fluctuations.
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Figure F.6. A schematic framework illustrating the states to which individuals can

evolve. The labels along the arrows are the rates.

The flow chart in Fig. F.6 represents a conceptual framework of the stochastic model.

Starting from a state with susceptible, infectious and immune individuals, there are eight

states, (S+1, I, R), (S−1, I+1, R), (S+1, I−1, R), (S−1, I, R), (S, I−1, R), (S, I−1, R),

(S, I − 1, R + 1), and (S, I, R− 1) to which the system can evolve at different rates. Notice

that the state (S, I − 1, R) is repeated since an infectious individual can either die naturally

or as a result of the disease. Also notice that the ratio of the rates to the sum of the rates

are effectively the probabilities for the events: birth, infection, recovery, natural death of a

susceptible individual, natural death of an infectious individual, disease-induced death of an

infectious individual, immunity and natural death of an immune individual along the arrows.

That is, the transition probabilities or the probability that a specific event occurs is the ratio

of the rate at which the event occurs to the sum of all the rates.
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Table F.1. Summary of events and transition probabilities. The sum of the rates is given

by Γ = λN + βSI + rI + µS + µI + γS + µR + νI.

Event State Rate Probability

Birth S + 1, I, R λN λN/Γ

Infection S − 1, I + 1, R βSI βSI/Γ

Recovery S + 1, I − 1, R rI rI/Γ

Natural death of a susceptible individual S − 1, I, R µS µS/Γ

Natural death of an infectious individual S, I − 1, R µI µI/Γ

Disease-induced death of an infectious individual S, I − 1, R γS γS/Γ

Natural death of an immune individual S, I, R− 1 µR µR/Γ

Immunity S, I − 1, R + 1 νI νI/Γ

F.2.3.2 Simulation of the Stochastic Model

We numerically simulate the model using the Gillespie Algorithm1 [7–13]. Figure F.7

depicts the results for four simulations. Notice that, unlike the deterministic model that

gives the same result for the same set of parameters and initial conditions irrespective of the

number of runs, the outcomes of the stochastic model can be different for different runs with

the same initial conditions and parameters. The MATLAB script StochasticSIR.m is used

and can be run by typing “StochasticSIR” at the command prompt and hitting “return”.

1The Gillespie algorithm simulates random discrete events and the time elapsed between such events.

The crux of the algorithm resides on drawing two numbers at each step – one to identify the time that will

elapse before the next event occurs and the other to select which event occurs next. The algorithm proceeds

in the following simple steps (c.f. Refs. [5, 6]):

(i) Initialization of system variables, parameters, and random number generator.

(ii) Determination of the propensity functions and their sum.

(iii) Selection of the next event and the time interval through the aid of randomly generated numbers.

(iv) Updating the time step and state variables.

(v) Return to to step (ii) if the allocated final time has not been attained or if the variables are not zero.
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F.7.1. Run number 1. The single in-

fectious individual dies leaving a

disease-free community.
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F.7.2. Run number 2. Disease persists

in the community.
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F.7.3. Run number 3. Disease dies out.
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F.7.4. Run number 4.

Figure F.7. Plots for different runs with the same parameter values, initial conditions

and the same noise seed showing different behaviors. The parameter values

are β = 0.03, ν = 0.05, γ = 0.01, r = 0.1, µ = 0.02. We consider a total

population of 100 and assume that 99 of these individuals are susceptible

initially, 1 is infectious and none is immune.
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F.2.3.3 Exercise

1. Run the system a few of times with the given parameter values and initial populations.

2. Vary the initial and the total populations. Increase N up to 1000.

3. Vary the parameters and observe the effect on the system.

4. Vary the length of time for which the code runs.

5. The model is set up such that infectious individuals can recover from the disease and

rejoin the susceptible class directly without acquiring immunity. Assume the disease

confers temporary immunity so that immune individuals eventually lose their immunity

and join the susceptible class. This transforms the model into an SIRS model. Modify

the script StochasticSIR.m to incorporate this assumption and repeat the exercises.

F.2.4 Spatiotemporal SEIRS Malaria Model

F.2.4.1 Background

In this Section we explore the dynamics of a spatiotemporal SEIRS model for endemic

malaria. Our model is obtained by introducing diffusion into the vector population of the

ODE model developed and studied in Ngwa and Shu [1]. This model is described by the

following nondimensional system of partial differential equations:

∂u

∂τ
= λ(1− u) + βR + rw + γwu− ξuz,

∂w

∂τ
= ν(1− u− R) + γw2 − (r + α+ γ + λ+ ν)w,

∂R

∂τ
= αw − γwR− (β + λ)R, (F.3)

∂s

∂τ
= Ds

(
∂2s

∂x2
+

∂2s

∂y2

)

+ a(1− s)− bsw − csR,

∂z

∂τ
= Dz

(
∂2z

∂x2
+

∂2z

∂y2

)

+ e(1− s)− (a+ e)z,

where u is the proportion of susceptible humans, w is the proportion of infectious humans, R

is the proportion of immune humans, s is the proportion of susceptible vectors, and z is the

proportion of infectious vectors. Ds and Dz are, respectively, the diffusion coefficients of the
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fractions of susceptible and infectious vectors, while γ, ξ, α, r, β, λ, ν, a, b and c are positive

dimensionless parameter groupings. It is worth noting that the dimensionless dependent

variables u, w,R, s and z are functions of the spatial variables x and y and the temporal

variable τ . The original system from Ref. [1] is a seven-variable model. However, since the

total human and vector populations for the model reformulated in terms of proportions are

given by u+ v+w+R = 1 and s+ q+ z = 1, respectively, where v and q are the proportions

of exposed humans and vectors, the substitutions v = 1 − (u + w + R) and q = 1 − (s+ z)

make it possible to eliminate the equations for the proportions of exposed individuals in each

population, thereby leaving us with system (F.3).

The basic reproduction number for the corresponding ODE system was computed in Ref.

[1] and it is given by

R0 =
ξeν(αc+ b(β + λ))

a(a + e)(β + λ)(λ+ ν)(α + r + γ + λ)
. (F.4)

It was shown that when R0 ≤ 1, there exists a disease free equilibrium solution (1, 0, 0, 1, 0)

that is locally and asymptotically stable, and when R0 > 1, there exists a unique endemic

equilibrium (u∗, w∗, R∗, s∗, z∗) that is locally and asymptotically stable.

F.2.4.2 Simulations

First, the MATLAB m-file, ODESEIRS.m, required to solve the system presented in [1] is

provided. ODESEIRS.m solves the system and plots the results. See Fig. F.8 for the results

of one run with initial conditions (1.0, 0.0, 0.0, 0.9, 0.1) and the parameters in Table F.2.

Second, the code Malaria.c written in C together with the MATLAB function SEIR.m

are provided. Malaria.c integrates system (F.3) above and it can be opened as well as

edited using the MATLAB editor. This code can be compiled as well as executed within

MATLAB using the built-in C compiler. This process requires the use of MEX, a utility

within MATLAB that facilitates calling of C, C++ or Fortran codes in MATLAB. The code

is compiled into a MEX-file that is executable in MATLAB just like any built-in MATLAB

function. See the Mathworks support page for details [14]. To compile Malaria.c within

MATLAB, type “mex Malaria.c” at the MATLAB command prompt and hit “return”.

This compiles the code and generates a mex file called Malaria. Simply type “Malaria” and
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hit “return” at the MATLAB command prompt to execute.

The function SEIR.m plots solutions within some chosen cells and can be evoked by

typing “SEIR” at the MATLAB command prompt. The function makemovie.m produces a

propagating wave showing how the infection spreads within the community. This function

can be run simply by typing “makemovie” at the command prompt and hitting return.

For our preliminary simulation, we use a grid size of 10× 10 and begin with completely

susceptible human and vector populations in each of the cells and then introduce some

infectious vectors only in cell (1,1). We also use the parameter values presented in Table F.2

which, apart from the last two parameters, are obtained from Ref. [1]. See the referenced

paper for a discussion on the dimensional and physical significance of these parameters.

Table F.2. Parameter values for the SEIRS malaria model.

Parameter Value 1 Value 2 Value 3 Value 4 Value 5

γ 0.00100

ξ 4.06600

α 0.30000

r 0.20000

β 0.35000

λ 0.00184

ν 2.00000

a 1.00200

b 10.0000

c 1.00000

e 2.40000

Ds 0.00001

Dz 0.00001

342



F.2.4.3 Exercise

1. Using ODESEIRSMain.m, vary the parameter values to determine their effects on

disease prevalence. Fill in your parameter values in the spaces provided in Table F.2.

2. Compile and execute Malaria.c with the above parameters, switching off diffusion the

first and second time. Plot the results from different sample cells.

3. Vary the system parameters in Malaria.c to determine their effects on disease preva-

lence. Your target should be arriving at a realistic parameter regime for which there

exists a stable disease-free equilibrium and another for which there exists a stable

endemic equilibrium.

4. Vary the diffusion coefficients in Malaria.c and observe how the disease spreads within

the population. What happens when the diffusion coefficient is too small? What

happens when the diffusion coefficient is too large? What happens when the diffusion

coefficient is neither too large nor too small?

5. Using Malaria.c, vary the cell(s) with infectious vectors and the proportion of infectious

vectors in each cell.

6. Vary the grid size, the time step, and the length of time the code is run.

7. Formulate and simulate the stochastic version of the SEIRS model (F.3) above. Assume

Ds = Dz = 0.
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F.2.4.4 Some Results with the Parameter Values in Table F.2
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Figure F.8. Simulation results for the ode model using ODESEIRSMain.m.
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Figure F.9. Solution of the ode model in cell (1,1). All variables converge to the unique

endemic equilibrium (0.0918, 0.4315, 0.3683, 0.1762, 0.5811) as t → ∞.

R0 = 104.895 and the corresponding equilibrium values of the fractions of

exposed humans and vectors are 0.1084 and 0.2427, respectively.
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Figure F.10. Plots of some solutions within cells (1,1)-red, (2,1)-blue, (2,2)-green, (3,3)-
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the spread of the infection.
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Appendix G

Latex Files, MATLAB Codes, and Figures

See the accompanying DVD and external hard-drive for all the codes and figures. The

latex files and the figures used to generate this dissertation are indexed as in Table G.1, while

the codes used for generating the figures and the original figures are indexed as in Table G.2.

G.1 Latex Code

Table G.1. Latex Code and Figures

S/N Folder/File Description

01 CNN Main All required files

02 CNN DissMain Main code

04 CNN Ref Reference files

05 CNN Chapters Chapter codes

06 CNN Appendix Appendix codes

07 CNN Part1Figs Part 1 Figures

08 CNN Part2Figs Part 2 Figures

09 CNN Part3Figs Part 3 Figures

10 CNN HandsFigs Hands-on Figures

11 mynewstyle3.bst Bibtex style

12 sty Fancy Chapters

13 SecStyle Section Style

G.2 MATLAB Codes

Table G.2. MATLAB Codes and Figures

S/N Folder Chapter

14 Simple Pendulum 1

15 Classical Malaria Model 3

16 Disease Free Model 5

17 Disease Model 5

18 Determin Poverty Traps 7

19 Stochastic Poverty Traps 7

20 Intro to Chemical Chaos 8

21 Extreme Mult. Model 1 9

22 Extreme Mult. Model 2 10

24 Extreme Mult. Model 3 10

25 Extreme Mult, Model 4 10

26 Buea Hands-on F
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