
Graduate Theses, Dissertations, and Problem Reports

2000

Approaches to creating anonymous patient database Approaches to creating anonymous patient database

Shijun Shen
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Shen, Shijun, "Approaches to creating anonymous patient database" (2000). Graduate Theses,
Dissertations, and Problem Reports. 1089.
https://researchrepository.wvu.edu/etd/1089

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F1089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/1089?utm_source=researchrepository.wvu.edu%2Fetd%2F1089&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

APPROACHES TO

CREATING ANONYMOUS PATIENT DATABASE

Shijun Shen

Thesis submitted to the College of Engineering and Mineral Resources
at

West Virginia University
in partial fulfillment of the requirements for

the degree of

Master of Science
in

Computer Science

V.Jagannathan, Ph.D., Chair
Ramana Reddy, Ph.D.
Sumitra Reddy, Ph.D.

Department of Computer Science and Electrical Engineering
Morgantown, West Virginia

2000

APPROACHES TO

CREATING ANONYMOUS PATIENT DATABASE

Shijun Shen

ABSTRACT

Health care providers, health plans and health care clearinghouses collect patient

medical data derived from their normal operations every day. These patient data can

greatly benefit the health care organization if data mining techniques are applied upon

these data sets. However, individual identifiable patient information needs to be

protected in accordance with Health Insurance Portability and Accountability Act

(HIPAA), and the quality of patient data also needs to be ensured in order for data mining

tasks achieve accurate results. This thesis describes a patient data transformation system

which transforms patient data into high quality and anonymous patient records that is

suitable for data mining purposes.

This document discusses the underlying technologies, features implemented in the

prototype, and the methodologies used in developing the software. The prototype

emphasizes the patient privacy and quality of the patient data as well as software

scalability and portability. Preliminary experience of its use is presented. A performance

analysis of the system’s behavior has also been done.

Approaches to Creating Anonymous Patient Database iii

ACKNOWLEDGEMENT

I acknowledge with gratitude a large and continuing intellectual debt to my advisor Dr.

V. Jagannathan. His expert guidance has been very helpful.

I would also like to thank the other members of my committee Dr Ramana Reddy and Dr.

Sumitra Reddy for their support and review of several drafts of this thesis.

I am extremely grateful to the people at the Department of Computer Science and

Electrical Engineering for having provided me with an opportunity to work with cutting

edge technologies in the field of computer science.

-Shijun Shen

Approaches to Creating Anonymous Patient Database iv

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 PROBLEM DESCRIPTION 2

1.2 OBJECTIVES 2

1.3 METHODOLOGY 3

1.4 PREVIEW OF CHAPTERS 4

2 BACKGROUND 5

2.1 KDD AND DATA MINING 5

2.2 HIPAA PATIENT PRIVACY RULES 10

2.3 RANDOM NUMBER GENERATION 16

2.4 EXTENSIBLE MARKUP LANGUAGE 16

2.4.1 Overview 16
2.4.2 XML Element 17
2.4.3 XML Document 18
2.4.4 Well Formed XML Document vs. Valid XML Document 18
2.4.5 XML and Health Care 19

2.5 XML PARSER 20

2.6 DOCUMENT OBJECT MODEL 20

2.6.1 DOM API 21

2.7 JAVA AND JDBC 23

2.8 LOGGING PACKAGE FOR JAVA 23

3 SYSTEM OVERVIEW 25

3.1 SYSTEM REQUIREMENTS 25

3.2 SOFTWARE ARCHITECTURE 26

3.3 FUNCTIONAL OVERVIEW OF THE SOFTWARE SYSTEM 28

3.3.1 Event Control Model Configuration 28
3.3.2 Transformation Process 32
3.3.3 LOG and Error Recovery 33

4 DESIGN 35

4.1 DESIGN APPROACH TO ANONYMIZE THE PATIENT RECORD 35

4.1.1 Requirements Analysis 35
4.1.2 Design Approach 36
4.1.3 Design of ID Encoding Schema 37

Approaches to Creating Anonymous Patient Database v

4.1.4 Design of ID Encoding Operation 38

4.2 DESIGN APPROACH TO PRESERVE THE BUSINESS LOGIC 39

4.3 SYSTEM ARCHITECTURE 41

4.3.1 Design of Transformation Process 41
4.3.1.1 Transformation Process Class Diagram Description 46

4.3.2 Design of Event Control Model Configuration 48
4.3.2.1 Design of Command Handling 48
4.3.2.2 Event Control Model Diagram 50
4.3.2.3 “EventControlFrame” Class Diagram 52
4.3.2.4 “EventControlOpen” Class Diagram 53
4.3.2.5 “EditDialog” Class Diagram 54
4.3.2.6 “EventControlPanel” Class Diagram 55
4.3.2.7 “EventControlToolBar” Class Diagram 56
4.3.2.8 Class Diagram Description 57

5 IMPLEMENTATION 58

5.1 IMPLEMENTATION DECISIONS 58

5.1.1 Choice of Implementation Language 58
5.1.2 Choice of the XML Parser 58
5.1.3 Choice of the Database 62
5.1.4 Choice of the JDBC Driver 62

6 ANALYSIS AND CONCLUSION 64

6.1 ANALYSIS OF THE SYSTEM 64

6.2 FUTURE WORK 66

6.3 CONCLUSION 66

REFERENCE 67

Approaches to Creating Anonymous Patient Database 1

1 INTRODUCTION

Outcomes measurement, a term used by the health care industry is a form of data

mining in that it is based on past behavioral information which is used to improve the

quality and efficiency of care for patients (Bresnahan, 1997). Outcomes measurement

involves the examination of clinical information, insurance claims and billing data to

gauge the results of previously used treatments and procedures.

A Norfolk, VA, HMO based health system, Sentara, used outcomes measurement

to reduce its 12% mortality rate of pneumonia patients, as well as reduce the number of

cases which developed complications requiring expensive antibiotics and extended

hospital stays. Sentara’s quality improvement team start exploratory data mining into

claims which uncovered the high pneumonia mortality and complication rates. They

found out later that doctors were ordering sputum cultures many times for a single patient

in hope one test might return and yield useful, timely information. Meanwhile, the

patient’s illness progressed as physicians waited for the lab results which took several

days. The quality team quickly developed a new system which allowed the transfer of

the culture from the patient to the lab and lab results back to the physicians within two

hours. Not only did the mortality rate for all pneumonia patients drop to 9%, but the

average hospital stay decreased to one week and the cost to manage a single pneumonia

case was reduced to $2000(Bresnahan, 1997).

Data Mining can benefit the health care industry in the following area:

• Identify which methods work and which don’t in particular cases, allows them

to recognize areas for improvement.

Approaches to Creating Anonymous Patient Database 2

• Help health care providers cut costs and improve care by showing which

treatments statistically have been effective.

• Identify people statistically at risk for certain ailments so that they can be

treated before the condition escalates into something expensive and

potentially fatal.

• Detect fraud in the health care system.

“Information has become the most valuable commodity in health care”, according to

Jeffrey C. Bauer, president of The Bauer Group, Inc., a Colorado-based consultant group.

“In the past, studies have shown that as many as one-third of all medical interventions do

not lead to an improvement in patients’ conditions. In other words, about 33 cents on a

dollar is spent on services that do not demonstrably make the patient better off. But

today we can afford to provide only productive interventions. Outcomes data will finally

allow us to weed out the resources that aren’t making people better”(Bresnahan, 1997)

1.1 Problem Description

There is no doubt about the benefits of integrating data mining service into

existing health care information systems. Certain factors, however, present problems.

First of all, individual identifiable health information can not be protected if data mining

analysis is directly applied upon the patient data collected. Any party who is performing

data mining task over these data sets will be able to identify individual patient

information. Secondly, quality of the patient data directly influence the outcome of the

data mining analysis.

1.2 Objective
Most healthcare information management system generates data from its normal

operations. If those patient data are transformed into “ready to be mined” data, the data

Approaches to Creating Anonymous Patient Database 3

mining techniques can be directly applied upon those data sets and useful knowledge can

be discovered. The goal of this thesis is to design a patient data transformation system

which will provide “ready to be mined” patient data. “ready to be mined” patient data

follows the following constraints. Patient data needs to be anonymous, which means no

party who performs the data mining tasks should be able to draw any relation between the

medical information provided with any individual patient. Yet at the same time, all entity

relationships and business logic of the pre-processed patient records are preserved in the

transformed patient records. A prototype of the system is developed as a component of

CareFlow|Net’s Careflow Development Kit (CDK), which is an intranet-enabled suite of

middleware software engineered to support and integrate healthcare workflow processes.

Patient records in CDK are XML based patient documents

 (e.g., Patient Record Architecture). To summarize, the main objective of designing this

system is:

• Protect individual identifiable information.

• Preserve the entity relationship of pre-processed patient data in

transformed patient records.

• Preserve the business logic of pre-processed patient data in transformed

patient records.

• Provide Logging and Error Recovery functionality.

• System is portable and scalable.

1.3 Methodology

The prototyping approach was used to design the system. Traditional approach

like the water fall model or the life cycle approach could not be used since all

Approaches to Creating Anonymous Patient Database 4

requirements could not be found in advance without testing the system and gathering

more requirements from the users. Based on the feedback from the users, new features

are implemented and the specification and design are modified accordingly.

The Objected Oriented (OO) approach was used to develop the software as it

provided number of advantages over the traditional function-based approach. Applying a

prototyping approach to function-based software would have been cumbersome;

Moreover, function-based software does not lend itself easily to modification.

1.4 Preview of Chapters

The rest of this paper is organized as follows: Chapter 2 gives a literature review

taken up to develop the prototype. Chapter 3 gives a functional overview of the

prototype. Chapter 4 discusses the detailed design of the system. Chapter 5 describes the

implementation issues. Chapter 6 discusses the testing/analysis of the system, also

conclusion and future works are included in that Chapter.

Approaches to Creating Anonymous Patient Database 5

2 BACKGROUND

2.1 Knowledge Discovery in Database(KDD) and Data Mining

I will use in this paper the definition given by Fayyad (Fayyad, 1996) to

differentiate between KDD and Data Mining. According to Fayyad, KDD refers to the

overall process of extracting high-level knowledge from low-level data, while Data

Mining is just one step of the KDD process. “Knowledge discovery in databases is the

non trivial process of identifying valid, novel, potentially useful, and ultimately

understandable pattern or model in data”. defined in Fayyad (Fayyad, 1996). Although

general, this definition emphasize that KDD is a process that always involves

experimentation, iteration, user interaction.

Figure 1. Overview of the KDD Process(Fayyad ,1996)

The following steps are usually followed in KDD. These steps are iterative, with the

process moving backward whenever needed.

1. Develop an understanding of the application, relevant prior knowledge, and

the end user’s goals.

2. Create a target data set to be used for discovery.

Approaches to Creating Anonymous Patient Database 6

3. Clean and preprocess data (including handling missing data fields, noise in the

data, accounting for time series and known changes).

4. Reduce the number of variables and find invariant representations of data if

possible.

5. Choose the data mining task (classification, regression, clustering, etc.)

6. Choose the data mining algorithm.

7. Search for patterns of interest in a particular representational form or a set of

such representations.

8. Interpret the pattern mined, translating the useful patterns into terms

understandable by users. If necessary, iterate through any of steps 1 through

7.

9. Using discovered knowledge.

The first two steps, understanding the application and determining the target data to be

used for discovery are common to all forms of data analysis. This step includes knowing

what relevant prior knowledge exists, the goals of the project, and what data exists. If a

data warehouse is available, its metadata helps in pinpointing what data exists. The third

step, cleaning and preprocessing the data is the usual one used in preparing data for

warehousing. Basic operation includes removing noise or outliners if appropriate,

collecting necessary information to model or account for noise, deciding on strategies for

handling missing data fields, and accounting for time sequence information and known

changes. The fourth step, data reduction and projection includes finding useful features

to represent the data, depending on the goal, and using unidimensional reduction or

transformation methods to reduce the effective number of variables under consideration

Approaches to Creating Anonymous Patient Database 7

or to find invariant representations for the data. Because with too many variables, it is

difficult to make any sense out of the result. The fifth, sixth and seventh steps are the

heart of the KDD process, they are the data mining process. The fifth step choose the

data mining task. Data mining breaks into four major categories: clustering, classifying,

estimating and predicting, and affinity grouping.

Clustering:

Clustering is a pure example of undirected data mining, where the user has

no specific agenda and hopes that the data mining tool will reveal some

meaningful structure. For example, define new market segments.

Classifying:

An example of classifying is to examine a candidate customer and assign

that customer to a predetermined cluster or classification. Another example of

classifying is medical diagnosis. A classification is a decision.

Estimating and predicting:

Estimating and predicting are two similar activities that normally yield a

numerical measure as the result. For example, we may find a set of existing

customers who have the same profile as a candidate customer. From the set of

existing customers we may estimate the overall indebtedness of the candidate

customer. Prediction is the same as estimation except that we are trying to

determine a result that will occur in the future, e.g. Stock market fluctuation.

Estimation and prediction can also drive classification.

Affinity Grouping:

Approaches to Creating Anonymous Patient Database 8

Affinity grouping is a special kind of clustering that identifies events or

transactions that occur simultaneously. A well-known example of affinity

grouping is market basket analysis. Market basket analysis attempts to

understand what items are sold together at the same time. This is a hard problem

from a data processing point of view and in a typical retail environment there are

thousands of items sold together because the list quickly reaches astronomical

proportions. The art of market basket analysis is to find the meaningful

combinations of different levels in the item hierarchy that are sold together. For

instance, it may be meaningful to discover that individual item Coca 12 oz is very

frequently sold with the category of Frozen Pasta Dinners.

Step six and seven, choose data mining algorithm and searching for patterns. In these

steps the actual mining is done. The algorithm selected solely depends on the data

mining task to be performed. The following table shows what data mining algorithms

can be used for which category of data mining.

Category of Data Mining Corresponding Data Mining Algorithms

Clustering Statistics

Memory-based reasoning

Neural networks

Decision trees

Classifying Statistics

Memory-based reasoning

Genetic algorithms

Link analysis

Approaches to Creating Anonymous Patient Database 9

Decision trees

Neural networks

Estimating and Predicting Statistics

Neural networks for numerical variables

Algorithms described for classifying when

predicting only a discrete outcome

Affinity Grouping Statistics,

Memory-based reasoning

Link analysis

Special purpose market basket analysis

tools

Table 1 Overview of Data Mining Algorithms

The eighth step introduces the human back into the picture. The results of the data mining

operation of step 7 are examined by an analyst who judges whether the outcomes are

possible, internally consistent, plausible. Possible means that result is physically possible

(e.g., doesn’t exceed the speed of light). Internally consistent implies the result doesn’t

contradict itself. Plausible implies that the association found is believable, it could

actually happen. If the analyst is unsatisfied with the result, he/she can returns the case

with refined queries and conditions. That is this process is iterative. The analyst can

repeat the above procedure until he/she is satisfied with the outcome. Then step nine will

take over, presenting the result in a more understandable form to the decision maker. The

form of representations of the result can be graphical diagram, natural language, etc.

Finally, actions are taken based on the findings. And this is a complete KDD process.

Approaches to Creating Anonymous Patient Database 10

2.2 HIPAA Patient Privacy Rules

The Health Insurance Portability and Accountability Act (“HIPAA”) is a federal

law with provisions that aim to protect patient privacy and confidentiality from the ease

of communications through technology. The Department of Health and Human

Services(“HHS”) drafted the proposed rules. The rules are authorized by HIPAA.

HIPAA decreed that if congress failed to adopt patient privacy legislation by August

1999, then HHS must propose administrative rules for the same purpose, which HHS did

in November 1999. Originally scheduled to be become effective February 21, 2000, the

comment period was extended to February 17, 2000, and the rules’ effective date is

expected to be at least 60 days thereafter.

The proposed federal rules will impose demanding new duties on health care

providers and health plans to protect the privacy of patient information. Stiff monetary

and criminal penalties are authorized for violation of the rules and related statues.

Compliance will require operational and administrative changes as varied as accounting

to patients for disclosures of protected information and training employees with access to

patient records. Larger and more sophisticated entities will be expected to monitor

disclosures carefully to ensure that only necessary information is used and released.

Policies and procedures, release authorization forms and contracts with outside entities

will have to be revised. These and numerous other regulatory demands must be fully met

within two years from the date the proposed rules become effective.

The proposed rules reflect the fear that increasing use of computers for storing

and sending patient information will undermine patient confidentiality. The proposed

rules, however, apply to individually identifiable information in any form once it has

been maintained or transmitted by computer. As a practical matter, therefore, the

Approaches to Creating Anonymous Patient Database 11

proposed rules will create a federal floor for the protection of all individually identifiable

patient information. The proposed rules are expected to become final sometime spring,

2000. Given their breadth and complexity, and the civil and criminal sanctions

authorized by HIPAA, two years will not be too much time to come into compliance.

Compliance planning and implementation should begin as soon as possible. The

following contents will highlight the principal features of the proposed rules.

Application

Covered Entities: The rules apply to health care providers, health plans and health

care clearinghouse. “Health care provider” is broadly defined to include health

care facilities, licensed practitioners, and suppliers of health care services or

supplies.

Protected Information: The rules protect individually identifiable health

information that is or has been maintained or transmitted by computer. The rules

therefore extend to individually identifiable health information in any form once it

has been maintained or transmitted by computer. This protection ‘looks’ forward

and backwards: printouts of computer files are protected, as are paper records

supplying the information from which computer files are created. Note that

information need not be labeled with an individual’s name to be identifiable: it is

sufficient that the information, either alone or in combination with other

information, permits an individual’s identity to be determined. Note also that

when state law allows minors to give informed consent, minors have the same

privacy rights as adults if state law does not otherwise permit access by parents or

others to their health information.

Approaches to Creating Anonymous Patient Database 12

Relationship between state and federal law: HIPAA preempts state law that is less

protective of patient privacy and preserves state law that is more protective. The

result will be a patchwork quilt of federal and state regulations, with HIPAA

setting a federal floor and state laws adding additional layers of protection. State

laws specifically addressed to sensitive records, such as HIV test information and

mental health records, will continue to be effective.

Authorization of Use and Disclosure

Prohibited authorizations: The proposed rules prohibit covered entities from

obtaining patient authorization for uses or disclosures related to treatment,

payment and “health care operations” such as quality assurance, premium rating

and other health care-related purposes. Reasoning that these pro forma

authorizations provide little privacy protection but may delay care or authorize

inappropriate access to patient information, the rules actually proscribe the most

routine instances of patient authorization.

Authorization required: The general rule is that patient authorization is required

for any use or disclosure of protected information unrelated to treatment, payment

or health care operations. Even disclosures within a covered entity must be

authorized if the department receiving protected information is not engaged in

health care delivery.

Exceptions to authorization requirement:

Unauthorized use and disclosure of protected information is permitted on certain

public policy grounds: for law enforcement, research and public health purposes.

Patient authorization is generally not required to respond to subpoenas and other

Approaches to Creating Anonymous Patient Database 13

forms of legal process, although a court order will be required to obtain

information concerning an individual who is not a party to litigation. Use and

disclosure is generally permitted for banking and payment processes,

emergencies, government data collection, and facility directories and for

communications with family and close friends.

Business Partners

Contractual commitments: Covered entities may not disclose protected

information to “business partners” rendering services to them or on their behalf

without first obtaining contractual commitments safeguarding patient privacy.

Vicarious liability: Covered entities are liable for violations of patient privacy by

business partners if they knew or reasonably should have known of the violation

and failed to stop or mitigate the effects of the violation. The rules accordingly

require covered entities to implement safeguards to ensure compliance by

business partners.

Patient Rights

Notice: Upon request, covered entities must provide patients with a notice of their

rights under the law and the entities’ relevant policies and procedures.

Access: Within 30 days of a request, patients must be allowed to review, inspect

and copy “designated record sets’ kept by covered entities or their business

partners.

Accounting for disclosures: Within 30 days of a request, covered entities and

business partners must produce an accounting of disclosures unrelated to

treatment, payment or health care operations.

Approaches to Creating Anonymous Patient Database 14

Corrections and amendment: Individuals may request health care providers and

health plans to correct or amend protected information contained in designated

record sets. Records should be corrected or amended in such a manner that the

original record is preserved and the date and author of the correction or

amendment is noted.

Minimum use and disclosure: Covered entities may use or disclose only the

minimum amount of protected information necessary to achieve the purpose of

the use or disclosure.

Administrative Requirements

Designation of Responsible Personnel: The rules require the designation of a

“privacy official” charged with developing and implementing the covered entity’s

privacy policies and procedures. A “contact person” of office also must be

designated to receive complaints and to provide information on policies and

procedures.

Training: All employees likely to have access to protected information must be

trained in the privacy policies and procedure relevant to their job duties.

Safeguards: Appropriate technical, administrative and physical safeguards must

be implemented to preserve the privacy of protected information.

Complaint Procedures: Procedures for the filling, recording, processing and

preservation of complaints must be developed. Sanctions must be authorized and

applied to personnel violating the rules or the entity’s own policies and

procedures.

Approaches to Creating Anonymous Patient Database 15

Documentation of compliance: Covered entities must adequately document the

policies and procedures assuring compliance with the proposed rules.

Some Areas of Special Concern

Private rights of action: HIPAA does not create a federal cause of action for

violation of the proposed rules. However, it will create enforceable contract

rights by requiring the patients and enrollees be designated as third party

beneficiaries of contracts between covered entities and their business partners.

Minors: Minors’ privacy rights may trump parental interests in access to their

children’s health information. Where minors have the power of informed consent

but state law is silent regarding the rights of parents or others to access minors’

health information, minor have the same rights as adults to control access.

Sanctions: HIPAA authorizes both civil and criminal penalties for privacy

violations. Civil penalties of up to $25000 per privacy standard are authorized

annually. These civil fines don’t require any wrongful intent, an unknowing

violation of the rules is sufficient. Given the rules’ complexity, unknowing

violations are not unlikely. Given the Criminal sanctions, of course, do require

wrongful intent, but the sanctions are potentially devastating: fines ranging from

$50000 to $250000 per violation and prison terms of up to ten years.

One interesting concept is that many practical problems disappear once patient

information is no longer identifiable with an individual. How can we “de-identify”

patient information upon receipt and to restore identifying information at appropriate

junctures in the treatment and billing process?

Approaches to Creating Anonymous Patient Database 16

2.3 Random Number Generation

The only true sources for (partially) random numbers involve measuring physical

phenomena, such as the timing of radioactive decay, which can be distilled into purely

random sequences using some mathematical tricks. Without access to physical devices,

computer programs that need random numbers are forced to generate the numbers

themselves. But the determinism of computers makes this algorithmically quite difficult.

As a result, most programmers turn to pseudo-random numbers. Now, let’s look at

pseudo-random number generators (PRNG).

The most common type of a PRNG is the linear congruential random number

generator. Begins with an initial value or “seed” r0. Each successive random number ri+1

is generated by

ri+1= (a × ri + b) mod n

where a, b and n are constants. Often, n is chosen as 1 more than the maximum number

that can be stored in a computer world, so that this computation can be performed by

discarding any portion of the intermediate result that exceeds storage. This generator

produces random integers between 0 and n-1. The more bits of a seed you use, the harder

the PRNG to break.

2.4 Extensible Markup Language

2.4.1 Overview

The Extensible Markup Language (XML) is a meta-markup language that

provides a format for describing structured data. XML is an application profile or

restricted form of SGML, the Standard Generalized Markup Language. It provides a

structural representation of data that has proved broadly implementable and easy to

deploy. XML is a subset of SGML that is optimized for delivery over the Internet; it is

Approaches to Creating Anonymous Patient Database 17

defined by World Web Consortium (W3C), ensuring that structured data will be uniform

and independent of application or vendors. It enabled a new generation of internet-based

data viewing and manipulation application.

The power and beauty of XML is that it maintains the separation of the user

interface from the structured data. XML uses markup tags as well, but, unlike HTML,

XML tags describe the content, rather than the presentation of that content. By avoiding

formatting tags in the data, but marking the meaning of the data itself with custom user

definable tags, we actually make it easier to search various documents for a tag and view

documents tailored to the preferences of the clients. This separation of data from

presentation enables the seamless integration of data from diverse sources. Customer

information, purchase order, medical records, and other information can be converted to

XML on the middle tier, allowing data to be exchanged online easily. Data encoded in

XML can then be delivered over the Internet to the client. No retrofitting is necessary for

legacy information stored in mainframe databases; the client can just use Extensible Style

Language (XSL) or Cascading Style Sheets (CSS) to view the data according to his/her

preference.

2.4.2 XML Element

XML is a meta-markup language, a set of rules for creating semantic tags used to

describe data. An XML element is made up of a start tag, an end tag, and data in between.

The start and end tags describe the data within the tags, which is considered the value of

the element. For example, the following XML element is a "FIRSTNAME" element with

the value "John".

<FIRSTNAME>John</FIRSTNAME>

Approaches to Creating Anonymous Patient Database 18

The element name "FIRSTNAME" allows you to mark up the value "John"

semantically, so you can differentiate that particular bit of data from another, similar bit

of data. For example, there might be another element with the value "John”.

<LASTNAME>John</LASTNAME>

Because of each value is associated with a different tag. We can easily tell that first

appearance of value “John” implies a person’s first name where second appearance of

value “John” implies a person’s last name.

In addition, XML tags are case sensitive. <firstname> and <FIRSTNAME> are

considered different tags in XML.

2.4.3 XML Document

A basic XML document is simply an XML element that can, but might not

include nested XML elements.

2.4.4 Well formed XML Document vs. Valid XML Document

Document Type Definition (DTD) defines elements, attributes, and relationships

between elements. When the XML document is processed, it will check against the DTD

to be sure the document is constructed correctly and all tags are used in the proper

manner. Once the XML document meets its DTD constraints, the document is

considered as a valid XML document. Note a DTD is not required in order to create a

XML document, it is only needed if one wants to validate his/her XML document. As for

well formed XML document, it only needs to follow the XML syntax rules.

The above are only the basic of XML, a lot more functionality is provided by

XML.

Approaches to Creating Anonymous Patient Database 19

2.4.5 XML and Health Care

Healthcare information is, to a very large extent, exchanged and stored as

unstructured or slightly structured text that can be processed and retrieved. XML opens a

completely new perspective in document handling and processing and message

transmission in healthcare.

Some usage of XML in Health Care arena include:

Patient Record Architecture (PRA)

The emerging HL7 PRA standard for encoding of patient record documents

promises to provide a vendor-neutral, platform-independent means of exchanging clinical

healthcare information from a wide variety of sources. The scope of PRA is the

representation of clinical documents in a patient record, and a PRA document is the basic

unit of a document oriented electronic patient record. Some key aspects of PRA include:

• PRA documents are encoded in XML.

• PRA documents derive their meaning from the Health Level 7 (HL7)

Reference Information Model (RIM) and use RIM data types.

The PRA is receiving significant interest from healthcare software and was a fundamental

feature of a prototype interoperability demo at Healthcare Information Management

Systems Society 1999 and 2000.

XML Data Warehousing for Browser-based Electronic Health Records

Patient records are created and maintained as XML documents within an XML

database.

XML as a Vehicle for the exchange of Electronic Patient Records

Approaches to Creating Anonymous Patient Database 20

XML is used to wrap the data in an easy maintainable and accessible format and

XSL provides mapping and presentation rules of the data in a distributed health care

database.

2.5 XML parser

A XML parser is a program that converts XML documents into some object

model. Once a XML document is parsed, it exists in the memory as a set of objects.

Instead of manipulating the XML document directly, one can access and modify

information stored in the XML document through the objects in memory. XML parser

creates a document object representation of the XML document. This document object

contains a tree of nodes, which represents the structural and content information of the

XML document. This tree of nodes can be accessed and modified using the DOM API,

which is created by W3C. However, the XML parser will have to provide the

implementation of the DOM APIs. The entire conversion process is illustrated in Figure

2.

Figure 2. XML document to Document Object conversion process

Figure 3 shows the hierarchical structure of the XML document object

2.6 Document Object Model

Approaches to Creating Anonymous Patient Database 21

Document Object Model (DOM), a platform and language neutral interface that

allows programs and scripts to dynamically access and update the content, structure and

style of documents. The Document Object Model provides a standard set of objects for

representing HTML and XML documents, a standard model of how these objects can be

combined, and a standard interface for accessing and manipulating them. Vendors can

support the DOM as an interface to their proprietary data structures and APIs, and

content authors can write to the standard DOM interfaces rather than product-specific

APIs, thus increasing interoperability on the Web.

2.6.1 DOM API

The DOM API allows hierarchical access of the information stored in XML

documents. Any XML parser implements DOM API needs to put all interfaces in

org3.w3c.dom package. However, remember that the code to instantiate DOM object

depends on the specific XML parser, all the other code can be completely DOM

standards based and portable. If factory pattern is used to instantiate the objects that

implement the DOM interfaces, then all the code are completely portable, no parser

specific code will be embedded. In DOM, everything is a Node. The other interfaces are

provided to make things more object-oriented. Figure 3 shows the inheritance

relationship between some of the important interfaces.

Approaches to Creating Anonymous Patient Database 22

Figure 3 Inheritance relationship between important DOM interfaces

The root Node object of the document tree is also the Document object. Document is a

subclass of Node. Every DOM object must have a root. Another important interface is

the Element interface, which is a subclass of Node; the Element interface can be used to

access the elements in a DOM Document object tree. The Node interface encapsulates

access to a lot of information about a node. You can find out if a Node has children or

not by calling hasChildNodes() method. The getNodeType() method returns the type of a

Node; the type is just a constant integer that is used to identify types of Node. For an

instance, Node.ELEMENT_NODE type identifies a Node to be an Element.

GetNodeValue() method can be used to get the textual data stored inside a Node. The

Node interface also has methods that allow the traversal of a Node tree. The

getChildNodes() method is useful for getting all the elements inside a Node. This method

returns all Nodes(if they exist) in an object that is a container for Node objects; the

object implements the NodeList interface. NodeList is an iterator for a list of nodes.

Approaches to Creating Anonymous Patient Database 23

XML document and a va lidating XML parser is needed in order to read

information from a XML document into your programs. And DOM API is the tool used

to access and modify the contents of the XML documents.

2.7 Java and JDBC

The JDBC API is a Java API for accessing virtually any kind of tabular data. As

a point of interest, JDBC is trademarked name and is not an acronym; nevertheless,

JDBC is often thought as standing for “Java Database Connectivity”. The JDBC API

consists of a set classes and interfaces written in the Java programming Language that

provide a standard API for tool/database developers and makes it possible to write

industrial strength database applications using all-Java API.

The value of the JDBC API is that an application can access virtually any data

source and run on any platform with a Java Virtual Machine. In other words, with the

JDBC API, it isn’t necessary to write one program to access a Sybase database, another

program to access an Oracle database, another program to access an IBM DB2 database,

and so on. One can write a single program using the JDBC API, and the program will be

able to send SQL or other statements to the appropriate data source. And with an

application written in Java, one doesn’t have to worry about writing different applications

to run on different platforms.

2.8 Logging Package for Java

With Logging Package for Java (Log4J) it is possible to enable logging at run

time without modifying the application binary. The Log4J package is designed so that

these statements can remain in shipped code without incurring a heavy performance cost.

Approaches to Creating Anonymous Patient Database 24

Logging behavior can be controlled by editing a configuration file, without touching the

application binary.

Logging equips the developer with detailed context for application failures. On

the other hand, testing provides quality assurance and confidence in the application. One

of the distinctive features of log4j is the notion of inheritance in categories. Using a

category hierarchy it is possible to control which log statements are output at arbitrarily

fine granularity but also great ease. This helps reduce the volume of logged output and

minimize the cost of logging.

The target of the log output can be a file, an “OutputStream”, a remote log4j

sever, a remote Unix Syslog daemon or even a NT Event logger.

On a 233 MHZ ThinkPad running JDK 1.1.7Beta, it costs about 46 nano-seconds

to determine if that statement should be logged or not. Actual logging is also quite fast,

ranging from 79 u-seconds using the SimpleLayout, 164u-seconds using the

TTCCLayout and around a milliseconds when printing exceptions. The performance of

the PatternLayout is almost as good as the dedicated patterns, except that it is a lot more

flexible.

Approaches to Creating Anonymous Patient Database 25

3 SYSTEM OVERVIEW

3.1 System Requirements

The goal of this thesis is to develop a patient data transformation system which

transforms XML based electronic patient records (e.g., PRA documents) into anonymous

high quality patient data that is suitable for data mining purposes. The key requirements

of the system are listed below.

• Anonymousness of Patient Data

Protect individual identifiable patient information in accordance with HIPPA. No

party who performs the data mining tasks should be able to identify any health

information with a specific patient.

• Preserve the Entity Relationship of the pre-processed Patient Data

As the input Patient data are transformed into anonymous patient records (e.g.,

patient ID numbers that won’t make any sense), the entity relationships among input

patient data needs to be preserved in the transformed anonymous patient records, so data

mining over these data sets are possible.

• Preserve the Business Logic of the pre-processed Patient Data

All the properties of a patient record should be preserved except those properties,

which needs to be altered in order to anonymize the patient record.

• Logging and Error Recovery

The history of the transformation process must be captured so any abnormal

behavior will be spotted and appropriate error recovery procedure could be taken. This

will further enhance the quality of the transformed patient records.

• Portability and Scalability

Approaches to Creating Anonymous Patient Database 26

Integrating the transformation system into any healthcare information

management system as it is. The system should be developed as a “plug and play”

software component. Any further modification or enhancements can be made very

easily on the current system if the software is component based. In other words, the

transformation system should be scalable.

3.2 Software Architecture

Software Architecture

Figure 4 Software Architecture

Inbox

Inbox contains the pre-processed XML based patient records, which needs to be

transformed.

x
Client 2 Client NClient 1

Transformation Server

 OUTBOX ARCHIVE

Event Control Model
 INBOX

 JDBC ID Mapping
Database

LOG

Event Control Configuration File

Approaches to Creating Anonymous Patient Database 27

Outbox

Outbox contains the transformed anonymous patient records which are also XML

documents

Transformation Server

The component does all the transformation work, it is the core of the system. The

transformation server checks the inbox every so often to see if new patient records have

arrived. If so, it takes the new patient records and transforms them.

Event Control Configuration File (XML document)

Each group of patient documents (e.g., PRA documents with document type levelone)

have a corresponding Event Control Configuration File. All the event control

information is stored in this File. And it can be accessed via an Event Control Model

Configuration GUI provided by the system.

Event Control Model

Event Control Model is an object indicates to the transformation server what actions

needs to be taken to a particular patient record in order for the creation of the anonymous

patient record. Each document type has its corresponding Event Control Model. Event

Control Model is created on the fly based on Document type specific event control

configuration file.

ID Mapping Database

ID Mapping Database stores some mapping information needed for the transformation

process.

Clients, in the case of CDK, are different services of CDK that generates patient

data and send them to the inbox. Transformation Server checks the inbox directory and

Approaches to Creating Anonymous Patient Database 28

realize there are new patient records information to be processed, it grabs the patient

records and transforms them based on event control model, dumps the anonymous patient

records in the outbox directory. Copies of pre-processed patient data will be kept in

archive directory. A log file is also generated to capture the history of the process and

spot any abnormal behavior if possible. If any error occurred, the operator can check

against the log file and figure out exactly what went wrong, get the pre-processed patient

records that had process failures from the archive directory, retransform them. Therefore,

no data loss will be encountered. The outbox is virtually an anonymous XML patient

database, data mining techniques can then be applied upon this XML information pool.

3.3 Functional Overview of the Software System

3.3.1 Event Control Model Configuration

Event Control Model basically tells the transformation server the set of actions

needs to be taken in order to successfully transform a specific patient record. A GUI is

developed to ease the difficulty of creating, modifying Event Control Model. The

underlying data of Event Control Model is the XML elements in Event Control

configuration file.

Approaches to Creating Anonymous Patient Database 29

Figure 5 Event Control Model Configuration 1

Figure above illustrates the Event Control Model GUI. After operator clicks the

“Open File” button. A dialog box will pop up and asks the operator for the Event Control

configuration file location (as shown on Figure 6). The Event Control configuration file

name are constructed in the following format: document type + “Config.xml”. For an

instance, the configuration file name for document type levelone of PRA documents will

be “leveloneConfig.xml”, the configuration file name for document type patientReport

will be “patientReportConfig.xml”. If the patient record doesn’t specify a particular

document type, “defaultConfig.xml” will be used as the default configuration file.

Approaches to Creating Anonymous Patient Database 30

Figure 6 Event Control Model Configuration 2

The following shows the contents of “leveloneConfig.xml” and the DTD of Event

Control configuration file.

EventControl.dtd

LeveloneConfig.xml

<?xml version= '1.0'?>
<EventControl>

 <Item>
 <Scope>levelone</Scope>
 <TagName>id</TagName>
 <Attribute>V</Attribute>
 <Event>IDTranslator</Event>
 </Item>

 <Item>
 <Scope>levelone</Scope>
 <TagName>G</TagName>
 <Attribute>V</Attribute>
 <Event>HideField</Event>
 </Item>

 <Item>
 <Scope>actor</Scope>
 <TagName>F</TagName>
 <Attribute>V</Attribute>
 <Event>HideField</Event>
 </Item>

</EventControl>

<!ELEMENT EventControl (Item)>
<!ELEMENT Item (Scope, TagName, Attribute, Event)>
<!ELEMENT Scope (#PCDATA)>
<!ELEMENT TagName (#PCDATA)>
<!ELEMENT Attribute (#PCDATA)>
<!ELEMENT Event (#PCDATA)>

Approaches to Creating Anonymous Patient Database 31

Figure 7 Event Control Model Configuration 3

As shown in Figure 7, the Event Control Model for document type levelone that is

derived from “leveloneConfig.xml” is a table-structured data set. The “Xml Tag” and

“Attribute Name” indicates the entities in the XML documents that need to be

transformed. “Scope” column of the Event Control Model indicates in which part of

XML document, the entities specified in “Xml Tag” and “Attribute Name” needs to be

altered. If the operator wishes the transformation of certain entities taken effect over the

whole XML document, the root element of that document should be given as the

“Scope”, otherwise, the “Scope” value needs to be assigned accordingly. “Event ID”

indicates what action needs to be taken upon these entities. Event ID “IDTranslator”

means encode the value of that entity (e.g., encode the patient ID), “HideField” means

hide the value of the given entity (e.g., .hide patient name) For future work, more “Event

ID” can be defined for enhanced capabilities (e.g., define Event ID “NoiseReduction” to

be the indication of noise reduction on a given entity).

Approaches to Creating Anonymous Patient Database 32

Figure 8 Event Control Model Configuration 4

Operator can modify the contents of Event Control Model by select the entity and click

“Add”, “Edit” or “Delete” button. Figure 8 shows the Edit function, after the operator

select the entity with the “Xml Tag” valued ‘F’ and click “Edit” button, a dialog box pops

up, modification on that entity then can be made. After operator finishes all the

modification needed, click button “Save File” on the tool bar, all the modification will be

saved into the corresponding configuration file. Click “Close Frame” to exit Event

Control Configuration GUI.

To create a new Event Control configuration file, repeat the same step as

described above. Upon exiting, click the “Save File” button on the tool bar, the system

will create the configuration file automatically based on the information entered in the

Event Control Model Configuration GUI.

3.3.2 Transformation Process

All the transformation process is done in the Transformation Server. The

following chart illustrates the work flow of the transformation process.

Approaches to Creating Anonymous Patient Database 33

Figure 9 Transformation Process Work Flow Chart

A patient record is put into the XML Rendering Engine for document processing.

The XML Rendering Engine will parse the patient record document and make necessary

changes according to the Event Control Model, if ID encoding is required, the XML

Rendering Engine will connect to the ID Mapping database through JDBC and retrieve

the ID Mapping information it needs. Through out the whole transformation process,

multiple log entries relating process behavior will be created and feed into the LOG file.

3.3.3 LOG and Error Recovery

Logging capability is provided by the system. A log file named “LOG” is created

while the transformation server is started the first time in the system, and all the process

history will be captured into the “LOG” file. Operator can decide what process history

needs to be captured by modifying some of the parameters in the “LOG” configuration

file at runtime. However, the corrupted processes are always reported into the “LOG”

file for error recovery reasons. The operator is responsible to check the “LOG” file

periodically for corrupted processes and take the necessary error recovery action.

Patient Record
(XML doc)

 XML Rendering Engine

Transformed Patient Record
(XML doc)

Event Control Model
(to corresponding
document type)

ID Mapping
Database

Process Entry in LOG

Approaches to Creating Anonymous Patient Database 34

Since all the input patient records are archived. Therefore, the operator simply

needs to identify which patient records had process failures based on the “LOG” file, and

put those patient records into Inbox to be transformed again. Also by analyzing the

process history, useful information regarding the transformation process can be

discovered. The following are some sample log entries.

Figure 10 Sample Log Entries

2000-11-15 22:48:14,945 INFO [main] TransformationServer - Start transforming /usr08/shawny/thesis/Code/inbox/V2C.xml
2000-11-15 22:48:16,826 ERROR [main] IDTranslator - SQLException: ORA-01017: invalid username/password; logon denied

2000-11-15 23:12:49,798 INFO [main] TransformationServer - Start transforming /usr08/shawny/thesis/Code/inbox/V2C.xml
2000-11-15 23:12:56,512 INFO [main] XmlRenderingEng - /usr08/shawny/thesis/Code/inbox/V2C.xml transformation process finished

Approaches to Creating Anonymous Patient Database 35

4 DESIGN

This chapter discusses the various issues involved in the design of the Patient

Data Transformation System. The design considerations, methodology and constraints

are described in detail.

4.1 Design Approach to anonymize the patient record

4.1.1 Requirements Analysis

As one of the requirement states that no party should be able to associate any

medical information with a specific patient. All electronic patient documents regarding a

particular patient are associated via different ID, those meaningful ID numbers represent

some aspect of a specific patient. For an instance, for patient “213233454” whose name

is “John Smith”, his physician “phy-12345” whose name is “Jane Doe” created a report

“10090” for him as event “00001” at facility “09890” (Radiology) on Dec, 18th, 1999. If

those electronic patient records are provided as the data source for data mining analysis,

the party who performs the data mining tasks will be able to identify the medical

information provided with a specific patient which is direct violation of HIPAA.

Therefore, a protocol needs to be developed so that all the information in a patient record

or any combination of information from different patient records which could lead to

possible individual identifiable patient information needs to be transformed into some

pattern such that individual identifiable patient information could be protected. However,

at the same time, all entity relationships among those patient records need to be preserved

in order for possible data mining analysis.

Identifying Information that could lead to Possible Individual Identifiable Patient

Information

Approaches to Creating Anonymous Patient Database 36

First couple of things come to mind would be the patients’ name, patients’ address

and phone number, these entities in a patient record is the direct indication of the

patient’s identity. Therefore, an operation needs to be provided to hide these entities.

A lot of patient data is provided as data source for the data mining tasks which

means the data mining analyst would have access to all these patient data in order to

perform the data mining task. If a set of patient records whose direct indications of

identities (e.g., patient name, phone number) are all well hidden is provided as the data

source, would this be good enough to protect individual identifiable information? Not

quite, an in-depth analysis has been done which indicated that any ID in a patient record

has the possibility becoming an indirect lead of an identification of a specific patient

under different circumstances.

4.1.2 Design Approach

Hide Direct Indication of Patient’s Identity

In a XML based patient record, in order to hide patient name and phone number,

we simply needs to parse through the document and change the value of those entities to

whatever dummy value we want them to be. However, with IDs, such approach would

not succeed.

ID Encoding Schema

IDs are normally the entities in each patient record that establishes the entity

relationship. If simply replace the ID value with some dummy value, those entity

relationships among patient data would be broken. Therefore, the ID encoding schema

must satisfy the following conditions:

1. There exist a one to one relationship between the ID and its encoded ID.

Approaches to Creating Anonymous Patient Database 37

2. ID encoding should be a one way operation, meaning that reverse generation of the

original ID from the encoded ID is impossible for unauthorized personnel.

4.1.3 Design of ID Encoding Schema

To realize the ID encoding schema described in section 4.1.2, a mapping table is

first created which resides in a secured database.

Field Name Data Type Null? Unique?

ID VARCHAR2(20) Not Null Unique

RandomizedID VARCHAR2(40) Not Null Unique

Table 2 “IDMapping” Table

In order to realize the one way ID encoding, we need to find an encryption

algorithm that is efficient yet secure. The reason for efficiency is there are lot of ID

encoding operations needed for each patient record, an efficient algorithm will be low

cost in terms of computation time as we all know that encryption operations are

expensive. In order for the reverse generation of the original ID becomes impossible.

The original ID must not have any logical connection with the encoded ID, which implies

that the original ID should never be used as the input for the encryption algorithm.

Because there is always a possibility that brute force attack can be used to break the

encryption. There was couple of alternatives present, such as Data Encryption Standard

(DES), message digest, various password encryption algorithms and random number

generators. After evaluated all the alternatives, DES and message digest are both

considered to be too expensive and over qualified for the ID encoding schema. Linear

congruent random number generator is taken as the ID encoding algorithm mainly

because the following reasons:

Approaches to Creating Anonymous Patient Database 38

• It is cheaper than DES and message digesting.

• It is sophisticated enough for ID encoding operation if original ID is not used

as the seed for the random generator.

4.1.4 Design of ID Encoding Operation

Since the same seed would produce the same sequence of random numbers,

unique seed needs to be feed into the PRNG every time in order to produce unique

random number at each generation. Since we can’t use the original ID as the seed

because of the security reasons described above. What’s a better choice than system

clock time which is different every nanoseconds. Because of the linear congruent

PRNG’s mathematical properties, there is still a very slim possibility that a different seed

might produce the same random number. A check is performed after each random ID

generation to ensure that the random ID generated is unique within the “IDMapping”

Table. The following Diagram illustrates the process flow of ID Encoding:

Approaches to Creating Anonymous Patient Database 39

Figure 11 ID Encoding Process Flow Chart

All the criteria specified in section 4.1.2 has been meet in this ID encoding schema under

the condition that only assigned personnel has access to “IDMapping” table.

4.2 Design Approach to Preserve the Business Logic

One of the requirements states that the business logic of the pre-processed patient

data needs to be preserved in the transformed patient data. All the properties of a patient

record should be preserved except those properties, which needs to be altered in order to

anonymize the patient record. Each health organization normally has its own set of

workflow procedures, patient records are generally created in a specific order; in the case

of CDK, the creation date of each patient record represent sort of workflow logic.

Therefore, the creation date of the transformed patient record should be as same as the

creation date of input patient record. This could be easily achieved by setting the

transformed patient record’s timestamp as same as the timestamp of the input patient

record. Most of patient record’s document name has its own meaning, it would be wise

to keep the transformed document’s name as same as its original name. This also could

IDMapping Table
If ID exist in the table, which means this ID has
already been encoded, retrieve the randomizedID
Else ID doesn’t exist in the table, which indicates
this ID has not been encoded before, generate
randomizedID using computer clock time as the
seed of the linear congruent PRNG. Perform a
check ensure the uniqueness of the new
randomizedID through the IDMappingTable.

Database

ID

RandomizedID

Approaches to Creating Anonymous Patient Database 40

be easily achieved. The rule of thumb is “Don’t change anything unless you absolutely

needs to do so!”

Approaches to Creating Anonymous Patient Database 41

4.3 System Architecture

4.3.1 Design of Transformation Process

Figure 12 Class Diagram of Transformation Process

Description of Classes

Class “RenderingEng” : public, abstract

This class is provided as a prototype for document rendering engines.

Methods:

void Transform(String inputSource,String ouputSource) : public abstract

Approaches to Creating Anonymous Patient Database 42

Method Transform takes input filename and output filename as parameters. Since

this method is abstract. Any subclass of Class “RenderingEng” must provide

document specific implementation for method Transform.

Class “XmlRenderingEng” : public, extends RenderingEng

This class is provided as a XML document rendering engine.

Constructor:

XmlRenderingEng(String inputFile,String outbox,String archive,long timeStamp)

Parameter “inputFile” indicates the input Xml document’s file name (e.g.,

c:\inbox\1.xml). Parameter “outbox”, “archive” indicate the “outbox” and

“archive” file path. Parameter “timeStamp” indicates the timeStamp (creation

date) of the input Xml document.

Methods:

void Transform (String inputFile, String outputFile) : public

Since class “XmlRenderingEng” is a subclass of class “RenderingEng”. Class

“XmlRenderingEng” must provide the document specific implementation for

method Transform. The Transform method in class “XmlRenderingEng” takes in

a Xml document, loads up the Event Control Model object based on the document

type of that XML document. Get the Event ID from the Event Control Model,

load up the corresponding class at run time and invoke the appropriate method

dynamically. For an instance. Event ID extracted from Event Control Model is

“IDTranslator”, the “XmlRenderingEng” object will load up class “IDTranslator”

at run time, instantiated it, and invoke the appropriate method (entityTransform)

dynamically. This approach will ease the difficulty of future enhancement to the

Approaches to Creating Anonymous Patient Database 43

system. In the future, if it is decided that additional transformation tasks such as

noise reduction of certain entity is needed; a class “noiseReduction” will need to

be created and in the Event ID field of the Event Control Model, the value has to

be assigned “noiseReduction”. No modification is needed on the application

binary because method Transform dynamically loads class “Event ID” and invoke

method entityTransformation on that “Event ID” object.

Interface “Transformation”: public

Methods:

void entityTransform(XmlDocument doc, Item item) : public

Any class that implements interface “Transform” must provide its own

implementation of method entityTransform. As discussed above about the

dynamic method invocation of method entityTransform on “Event ID” object.

Any class that is created regarding the transformation tasks (e.g., IDTranslator)

must implement interface “Transformation”, therefore it is required to provide its

own task specific implementation for method entityTransform.

Class “IDTranslator” : public, implements interface “Transformation”

Class “IDTranslator” performs the ID encoding operation over the specified

entities in a patient record.

Methods:

entityTransform(XmlDocument doc, Item item) : public

Method “entityTransform” takes a XML Document and an Item object as the

parameters. The Item object was first accessed in order to extract which entity in

Approaches to Creating Anonymous Patient Database 44

the XML document needs the ID encoding operation. ID encoding operation will

then be performed over the specified entities in the XML document.

String IDTranslation(String ID) : pubic, throws SQLException

Method “IDTranslation” takes the ID number as the parameter and make a JDBC

connection to the IDMapping table in Oracle8i database. If the ID has already

exists in the IDMapping table, which means this specific ID has already been

encoded before. Method “IDTranslation” will retrieve the encoded ID from

IDMapping table and return it to method “entityTransform”. Otherwise, if the ID

is not in the IDMapping table, which means this specific ID has not been encoded

before, the method will generate a random ID and store the newly generated

random ID in the IDMapping table and return the encoded ID to method

“entityTransform”.

PRNG() : default

Method “PRNG” is the pseudo random number generator which will generate the

random ID. It generates the random ID based on the computer clock time.

Class “HideField” : public, implements interface “Transformation”

Class “HideField” performs the entity hiding task. It is called when entities in

XML documents need to be hidden.

Methods:

entityTransform(XmlDocument doc, Item item) : public

Method “entityTransform” takes a XML Document and an Item object as the

parameters. The Item object was first accessed in order to extract which entity in

Approaches to Creating Anonymous Patient Database 45

the XML document needs to be hidden. Hide Field operation will then be

performed over the specified entities in the XML document.

Class “dtdByPasser” : public, extends com.sun.xml.parser.Resolver

Class “dtdByPasser” is the quick and dirty way to bypass the DTD reference in

XML documents programmatically, i.e., by creating your own “EntityResolver”.

Whenever there is a call to a DTD file, create and return an empty “InputSource”.

“com.sun.xml.parser.Resolver” is the default entity resolver, subclass it and override

“resolveEntity()” method.

Class “XmlFilter” : public, implements interface “java.io.FilenameFilter”

Class “XmlFilter” implements the “accept()” method in interface

“java.io.FilenameFilter” in such a way that only files with “.xml” extension will be

accepted.

Class “XmlUtils” : public

Class “XmlUtils” is utility class who provides a set of operations, which are

useful to extract information from a XML document. All the methods in class

“XmlUtils” are declared static.

Class “rootConfigProperty” : public

Class “rootConfigProperty” reads configuration information from the

“RootConfig.xml” which stores the root configuration information. Method

“rootConfigReader” is provided to perform such task.

Class “TransformationServer” : public

Class “TransformationServer” initializes the Patient Data Transformation System.

Methods:

Approaches to Creating Anonymous Patient Database 46

static void TransformationProcess() : public

Method “TransformationProcess” grabs the patient records in “inbox” directory

and invokes “XmlRenderingEng” object to process these patient records.

static File[] listFiles(File entry) : private

Method “listFiles” takes the “inbox” directory as the parameter and grab all the

files with “.xml” extension (patient records) in that directory. It is enforced

programmatically that only the files with “.xml” extension will be taken (ref.

Class “XmlFilter”)

Class “LogControl” : public

Class “LogControl” provides the logging facilities. Method “init” initialize the

logging facility.

4.3.1.1 Transformation Process Class Diagram Description

The transformation of patient records is a sequential process. Once the

“TransformationServer” object grabs the a list of patient records, it will process it one at a

time, not concurrently. The initial approach was to process the patient records

concurrently, in the intention of improving the performance of the system. However,

later on it was realized that if the patient records are processed concurrently, it will cause

some problems with the ID Encoding Operation.

Approaches to Creating Anonymous Patient Database 47

Figure 13 Concurrent Processing of Patient Records

As shown in the above diagram, it is possible for the “System Time” parameter to be the

same while method “PRNG” is invoked since multiple concurrent processes are running.

Therefore, the Randomized ID generated will also be the same. Even though, there is a

check enforced to make sure that the Randomized ID that is going to be inserted into the

“IDMapping” table is unique within the table. However, the following could occur, the

check for the uniqueness of the Randomized ID can be executed one right after another

before any insert Randomized ID tasks was done. So Each “XmlRenderingEng”

processes will think the Randomized ID it generated is unique and insert its newly

generated Randomized ID into the “IDMapping” table. Then the one to one relationship

between the ID and encoded ID won’t hold.

Component Interaction

The “rootConfigureProperty” object first reads the “inbox”, “outbox” and

“archive” location from “RootConfig.xml” and pass those values into the

“TransformationSever” object. The “TransformationServer” object is designed to be an

active object. Therefore, instead of sitting around waiting for the input patient records,

Approaches to Creating Anonymous Patient Database 48

“TransformationServer” object goes and look for the patient records in the inbox

directory. “TransformationServer” object grabs the XML based patient records and keep

them in an array, and for each XML document entry in that array, an

“XmlRenderingEng” object will be created to process it.

Inside each “XmlRenderingEng” object, the corresponding “EventControl” object

will be loaded. And depending on the “Event ID” field of the “Item” object inside the

“EventControl” object, Different transformation tasks will be performed on the given

entities inside the patient record by loading up “Event ID” classes which implements

interface “Transformation” (e.g., IDTranslator).

4.3.2 Design of Event Control Model Configuration

The Event Control Model Configuration GUI developed should have a consistent

look and feel across platforms. The components of the GUI should be consistent with

other applications running on the same platform, given that the platform in question has a

standardized set of GUI components.

4.3.2.1 Design of Command Handling

Event Control Model Configuration GUI is event-driven. User interaction with

the GUI results in events being generated to inform the application of user actions.

Clicking a button, closing a window results in appropriate event being sent to the

application.

Approaches to Creating Anonymous Patient Database 49

Figure 14 Event Delegation

The design of event handling feature is based on event delegation model. In the

event delegation model, an event source informs event listeners about events when these

occur, and supplies the necessary information about these events. In other words, an

event listener, which is interested in receiving events, is informed by an event source

when certain types of events occur, so that it can take appropriate action.

Approaches to Creating Anonymous Patient Database 50

4.3.2.2 Event Control Model Class Diagram

Figure 15 Class Diagram of Event Control Model

Class “EventControl” : public, implements interface “TableModel”

In class “EventControl” the presentation of the Event Control Model is a table-

structured data set. However, the underlying Event Control Model data structure is a List

of “Item” objects. The separation between presentation of the Event Control Model and

the actual physical data structure give user the freedom to tailor the presentation of the

Event Control Model according to his/her preference. Most of the methods provided in

class “Event Control” dealing with the visual presentation of the Event Control Model.

Approaches to Creating Anonymous Patient Database 51

Methods such as “add”, “remove”, “set”, “get”, “size” dealing with the manipulation of

the physical data structure of Event Control Model.

Class “Item” : public

Each “Item” object will be an entry of the Event Control Model. A set of

methods are provided in class “Item” to access and modify “Item” object.

Class “ConfigIoUtils” : public

Class “ConfigIoUtils” is a utility class. It provides the means for reading and

writing of the Event Control Model. A default constructor is provided.

Methods:

EventControl getEventControl(String file) : public, static

Method “getEventControl” takes the document type specific event control model

configuration file name as the parameter and returns the corresponding Event

Control Model.

void saveEventControl(java.util.List data) : public, static

Method “saveEventControl” takes the Event Control Model as the parameter and

saves the contents of the Event Control Model into the corresponding event

control model configuration file.

Approaches to Creating Anonymous Patient Database 52

4.3.2.3 “EventControlFrame” Class Diagram

Figure 16 Class Diagram of “EventControlFrame”

Class “EventControlFrame” : public, extends JFrame

Class “EventControlFrame” is the root graphic component of the Event Control

Model Configuration GUI. Other graphic components are all added upon

“EventControlFrame” object.

Constructor:

A default constructor is provided which initializes the Event Control Model

Configuration GUI.

Methods:

void showFileOpen() : public

Method “showFileOpen()” brings up the file dialog box.

void closeFrame() : public

Method “closeFrame” close and exit the Event Control Frame.

Class “WindowAction” : private, extends WindowAdapter

Approaches to Creating Anonymous Patient Database 53

Class “windowAction” is a private inner class of class “EventControlFrame”. It

handles window-generated events.

4.3.2.4 “EventControlOpen” Class Diagram

Figure 17 Class Diagram of “EventControlOpen”

Class “EventControlOpen” (extends class “JDialog”) is a graphic component,

which is a dialog box that asks for user’s input of Event Control Model configuration file

name. Class “CancelAction” and class “OpenAction” are both protected inner class of

class “EventControlOpen” and both of the class implements interface “ActionListerner”.

Class “CancelAction” is the class responsible for events generated by the “Cancel” button

on the dialog box. Class “OpenAction” is the class responsible for events generated by

the “Open” button on the dialog box.

Approaches to Creating Anonymous Patient Database 54

4.3.2.5 “EditDialog” Class Diagram

Figure 18 Class Diagram of “EditDialog”

Class “EditDialog” (extends class “JDialog”) is a graphic component, which is a

dialog box that asks the user’s input of the Event Control Model’s entry information. A

set of operations such as “getScope”, “getTagName”, etc,. are provided to retrieve the

entry’s information. Class “SetAction” and class “CancelAction” are both protected

inner class of class “EditDialog”, and both of these classes implement interface

“ActionListener”. Class “SetAction” is the class responsible for events generated by the

“Set” button on the dialog boxand class “CancelAction” is the class responsible for

events generated by the “Cancel” button on the dialog box.

Approaches to Creating Anonymous Patient Database 55

4.3.2.6 “EventControlPanel” Class Diagram

Figure 19 Class Diagram of “EventControlPanel”

Class “EventControlPanel” is a JPanel component (extends class “JPanel”), which

is a panel with “Add”, “Edit” and “Delete” buttons on it. Its primary responsibility is to

add, edit and delete Event Control Model’s entry. Methods “add”, “edit” and “remove”

are called after the entry information is entered in the dialog box (ref. Section 4.3.2.5).

These methods will modify the existing Event Control Model in memory based on the

information give in the dialog box. Class “DeleteAction”, class “AddAction” and class

“EditAction” are all protected inner class of class “EventControlPanel” and they all

implement interface “ActionListener”. Class “DeleteAction” is the class responsible for

events generated by the “Delete” Button. Class “AddAction” is the class responsible for

Approaches to Creating Anonymous Patient Database 56

events generated by the “Add” Button. Class “EditAction” is the class responsible for

events generated by the “Edit” Button on the panel.

4.3.2.7 “EventControlToolBar” Class Diagram

Figure 20 Class Diagram of “EventControlToolBar”

Class “EventControlToolBar” is a JToolBar component (extends class

“JToolBar”), which is a ToolBar has “Open File”, “Save File” and “Close Frame” Button

on it. Class “OpenAction”, class “CloseAction” and class “SaveAction” are all protected

inner class of class “EventControlToolBar” and they implement interface

“ActionListener”. Class “OpenAction” is the class responsible for events generated by

the button “Open File”. Class “CloseAction” is the class responsible for events generated

by the button “Close Frame”. Class “SaveAction” is the class responsible for events

generated by button “Save File”.

Approaches to Creating Anonymous Patient Database 57

4.3.2.8 Class Diagram Description

Figure 21 Class Diagram of GUI Core

Class “EventControlFrame” is the root component of the GUI, and it is physically

constructed by component “EventControlPanel” and “EventControlTooBar”. Both

“EventControlPanel” object and “EventcontrolToolBar” object depends on the services

provided by the “EditDialog” object and “EventControlOpen” object.

Approaches to Creating Anonymous Patient Database 58

5 IMPLEMENTATION

The Patient Data Transformation System is developed on Sun Solaris using JDK

1.2, Oracle 8i database, JDBC thin driver, Sun Project X XML parser, Log4J API and

XML. The Patient Data Transformation System’s performance directly depends on the

services offered by these tools. The following sections discuss the criteria for choosing

these tools.

5.1 Implementation Decisions

5.1.1 Choice of Implementation Language

Java language as defined in Sun Microsystems Java Development Kit (JDK 1.2)

was chosen as the implementation language for the following reasons:

• Java provides a very easy and extensive development API.

• Java enforces modular development thereby makes the future enhancements and

modification simpler.

• Any application built in Java is portable across multiple platforms.

• The automatic garbage collection and memory management facilities enable the

development of a robust application.

• The Swing API in Java language provides a set of light weight graphic components

for GUI development which has the ability to masquerade as native components of a

range of platforms, and allows new look & feel schemes to be designed. The look

and feel can be changed dynamically.

5.1.2 Choice of the XML Parser

Since all the patient records are XML based, and a lot of the process time in the

transformation system will be spent on the parsing and manipulation of the patient

Approaches to Creating Anonymous Patient Database 59

records. Therefore, a right XML parser will make a big difference in the system

performance. The Sun Project X parser was chosen as the XML parser, however, it was a

tough decision.

A comparative test was done among the Sun Project X parser, IBM XML parser

and OpenXml parser.

Testing Methodology:

The parsers were tested by generating different size of XML documents

that contains an internal DTD, elements, attributes, entities, #PCDATA sections

and CDATA sections.

Test Limitations:

The test results and testing methods outlined here only compare the read

performance of these XML parsers. That is, the testing only measures the time it

takes to read an XML document and convert it into a (DOM 1.0) document

object. It does not say anything about the performance of these parsers for

modifying the (DOM) document object using the DOM API. These tests show the

read-only performance of the parsers. Also, these tests have nothing to do with the

SAX performance of these parsers, because we are only testing DOM

performance.

Testing Environment:

The following hardware configuration was used

• Single processor machine, PentiumII/233, 256MB PC100 SDRAM, ASUS

P2B motherboard, IDE harddrive, WinNT4.0 SP3

Approaches to Creating Anonymous Patient Database 60

• Dual processor machine, PentiumII/400, 256MB PC100 SDRAM, ASUS

P2B-DS motherboard, Ultra Wide SCSI II harddrive, WinNT4.0 SP4.

Test Results:

The following table contains test data for the JDK 1.2 Classic VM on a Dual

processor machine.

Figure 22 XML Parser Comparative Testing 1

The following table contains test data for JDK 1.2 classic VM on a single

processor machine.

Approaches to Creating Anonymous Patient Database 61

Figure 23 XML Parser Comparative Test 2
Analysis:

As shown in both of tables, IBM parser performs the best. The Sun parser

however can deal with the largest files in similar memory configurations. The

OpenXML parser comes in at third place for speed and file size handling.

However, after a detailed analysis done with IBM parser, it was found out that

IBM parser doesn’t support the String representations of method getAttributes() in

DOM API. Since getAttributes() method will be used heavily in the

Transformation System, the Sun Project X XML parser was chosen so the

implementation of the system would become easier considering the performance

Approaches to Creating Anonymous Patient Database 62

difference is very slim between the Sun Parser and the IBM parser if the

document size is under 1MB which is the case with patient documents.

5.1.3 Choice of the Database

First of all, the database chosen has to be a secure database with sophisticated

access control procedure since vital mapping information between the ID and its encoded

ID will be stored in that database. And because of the implementation language was

Java, the database must have Java Database Connectivity (JDBC) drivers available.

Hence, the Oracle ver 8.1.5 was chosen as the database for the Patient Data

Transformation System.

5.1.4 Choice of the JDBC driver

A JDBC driver is the set of classes that implement the JDBC interfaces for a

particular database. There are four different types of JDBC driver: A Type 1 driver is a

JDBC-ODBC bridge driver; this type of driver enables a client to connect to an ODBC

database via Java calls and JDBC, neither the database nor middle tier need to be Java

compliant. However, ODBC binary code must be installed on each client machine that

uses this driver. A Type 2 driver converts JDBC calls into calls for a specific database.

This driver is referred to as a “native-API, partly Java driver.” As with the Type 1 driver,

some binary code may be required on the client machine. A Type 3 driver is a JDBC-Net

pure Java driver, which translates JDBC calls into database-independent net protocol.

Finally, a Type 4 driver, or the “native protocol, pure Java” driver converts JDBC calls

into the network protocol used by the database directly. A Type 4 driver requires no

client software.

Approaches to Creating Anonymous Patient Database 63

Oracle provides both Type 2 and Type 4 drivers. All Oracle JDBC drivers

support the full JDBC specification, but in addition, they support the extended

capabilities of the Oracle database. Oracle’s Type 4 JDBC driver, referred to as the

Oracle “thin” driver includes its own implementation of a TCP/IP version of Oracle’s

Net8 written entirely in Java, so it is platform independent, and doesn’t require any

Oracle software on the client Side. Oracle “thin” driver (Type 4) was chosen as the

JDBC driver for the above reason.

Approaches to Creating Anonymous Patient Database 64

6 ANALYSIS AND CONCLUSION

6.1 Analysis of the System

Component Testing

Component testing was done at each stage of the development lifecycle. This

implies that classes is built and refined iteratively and therefore tested iteratively. In

addition to test the new functionality added to a class during an iteration, the pre-existing

functionality is tested to determine that it still performs correctly within its new

environment.

System Integration Testing

Several test cases are done after all the components are integrated into the Patient

Data Transformation System.

Test Case 1:

Objective: Test the basic operations of the system.

Input: 10 XML based patient records with pre-defined entity relationships and business

logic in “inbox”.

Output: 10 transformed anonymous patient records in “outbox”. 10 copies the pre-

processed patient records in “Archive”. The output satisfies the system requirements 1, 2

& 3 defined in section 3.1.

Test Case 2:

Objective: Test the logging functionality and Error Handling

Input: 10 XML based patient records with pre-defined entity relationships and business

logic. One of these patient records is not a well-formed patient record.

Approaches to Creating Anonymous Patient Database 65

Output: 9 transformed anonymous patient records in “outbox”. 10 copies the pre-

processed patient records in “Archive”. “LOG” file indicated that which patient record

transformation process has failed caused by parsing error. The output satisfies the system

requirements 4 defined in section 3.1.

Test Case 3:

Objective: portability testing of the system

Testing Environment:

Dell OptiPlex GX1, WinNT.

Ultra Enterprise 450, Sun OS

The Patient Data Transformation System behaved as expected on both of the platforms.

No abnormal behavior was discovered. Portability requirement has been satisfied.

Performance Analysis

Testing Environment:

Ultra Enterprise 450 w/ 4 400Mhz UltraSparc 2 processors, 1 gig of Ram

Dell OptiPlex GX1, 300MHZ, 64MB

Testing Result:

Ultra Enterprise 450 w/ 4 400Mhz UltraSparc 2 processors, 1 gig of Ram:

Number of Patient Records Total Size of Patient Records Total Process Time

19 154k 57,695ms

Table 3 Utral Enterprise 450 Testing Result

Process time/patient record = Total Process Time / Number of Patient Records = 3036ms

Dell OptiPlex GX1, 300MHZ, 64MB:

Approaches to Creating Anonymous Patient Database 66

Number of Patient Records Total Size of Patient Records Total Process Time

19 154k 54,947ms

Table 4 Dell OptiPlex GX1 Testing Result

Process time/patient record = Total Process Time / Number of Patient Records = 2891ms

Analysis:

For an average size PRA (10k), it took both system around 3 seconds to process

it. Of course, larger files will take longer time.

6.2 Future Work

More transformation tasks can be added upon the existing system to handle more

data manipulation operations, such as noise reduction, find the invariant representation of

data, etc. Extensive integration testing and performance analysis strongly recommended

to be done in order to analyze system behavior in large and complicated environment.

6.3 Conclusion

This thesis described a Patient Data Transformation System, which provides

confidential high quality patient data as the data source for data mining tasks. The

objective of the system as stated in the first chapter has been met. The system is user

friendly and provides a user interface.

Approaches to Creating Anonymous Patient Database 67

REFERENCE

1. Fayyad, U. “Data Mining and Knowledge Discovery: Making Sense Out of Data”. IEEE

Expert Intelligent Systems and their Applications, (11) :5, 1996, pp.20-25.

2. Fayyad, U. Piatetsky-Shapiro, G., & Smyth, P. “The KDD Process for extracting Useful

Knowledge from Volumes of Data”. Communications of the ACM, (39):11, 1996, pp.27-34.

3. Kimball, R. & Reeves, L. “The Data Warehouse, Lifecycle Toolkit”. Wiley Computer

Publishing, 1998.

4. Hagan, K. “Member Service Bulletin” Oregon Association of Hospitals and Health Systems,

2000.

5. MacCraw, G., & Viega, J. “Make your software behave: Playing the numbers, truly secure

software needs an accurate random number generator” Reliable Software Technologies,

2000.

6. Charles P. Pfleeger: “Security in Computing Second Edition”. Prentice Hall PTR,

1997.

7. Bresnahan, J. “Health Care Data Mining: A Delicate Operation”. CIO, June 15, 1997, pp. 44-

54.

8. Dudeck, J. “XML & Health Care”. XML Europe 2000, June 16, 2000.

9. CareFlow|Net. “CDK Administration Guild”. CareFlow|Net, 1999.

10. World Wide Web Consortium. “Document Object Model Level 1 Specification”. World

Wide Web Consortium, 1998.

11. World Wide Web Consortium. “Extensible Markup Language Specification Version 1.0”.

World Wide Web Consortium, 2000.

12. Log4J.org. “Logging Package for Java Specification Version 0.8.5b”. Log4J.org, 2000.

13. Sun Microsystems Inc. “JDBC API Specification Version 2.0”. Sun Microsystems, 1999.

Approaches to Creating Anonymous Patient Database 68

14. Mughal, K. & Rasmussen, R. “A Programmer’s Guide to Java Certification”. Addison-

Wesley, 1999.

15. Sun Microsystems Inc. “Java 2 SDK Specification”. Sun Microsystems, 2000.

	Approaches to creating anonymous patient database
	Recommended Citation

	/var/tmp/StampPDF/h2lK3XA6Dp/tmp.1540820079.pdf.ZKvWn

