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Abstract

Username and Password Verification Through Keystroke Dynamics

Nick Bartlow

Most computer systems rely on usernames and passwords as a mechanism for access control
and authentication of authorized users. These credential sets offer marginal protection to
a broad scope of applications with differing levels of sensitivity. Traditional physiological
biometric systems such as fingerprint, face, and iris recognition are not readily deployable in
remote authentication schemes. Keystroke dynamics provide the ability to combine the ease
of use of username / password schemes with the increased trustworthiness associated with
biometrics. Our research extends previous work on keystroke dynamics by incorporating
shift-key patterns. The system is capable of operating at various points on a traditional
ROC curve depending on application specific security needs. A 1% False Accept Rate is
attainable at a 14% False Reject Rate for high security systems. An Equal Error Rate
of 5% can be obtained in lower security systems. As a username password authentication
scheme, our approach decreases the penetration rate associated with compromised passwords
by 95-99%.
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Chapter 1

Introduction

1.1 Motivation

With the onset of the Internet, the importance of identification technologies has increased

rapidly over the last decade. The amount of information that is accessed and transmitted

on a daily basis is phenomenal. Furthermore, much of this information is sensitive in nature

and should only be accessible by authorized users only. Systems with this burden often rely

on usernames and passwords to administer such controlled access. Relying solely on pass-

words for authentication raises many security issues. The most important issue is that when

passwords are compromised (stolen), the intruder necessarily has full access to the rights

and information of the authorized user. The field of biometrics has offered an alternative

to password based authentication and makes forging entry into systems much more difficult

when compared to passwords. Unfortunately, biometric authentication is often not readily

deployable in remote environments such as web access as the enrollment and verification

1



2 Chapter 1. Introduction

processes often require strict supervision and various hardware devices that a typical user

does not own. Keystroke dynamics may be a way to combine the usability of username

and password schemes with the benefits of biometric systems at minimal cost to system

administrators and users.

1.2 Goal

The goal of this study is to establish the viability of keystroke dynamics with username and

password input as a possible method of hardening authentication credentials. It should also

result in a method which allows for a biometric system to be readily deployable both in an

unsupervised and remote fashion. Finally, the study will attempt to establish the difference

in performance of the biometric system associated with two significantly different types of

passwords.

1.3 Contribution

This study results in numerous contributions to fields of keystroke dynamics, biometrics, and

information security. In terms of keystroke dynamics, it is the first study in that includes

the significance of shift-key behavior on matching performance. It also represents by far the

most statistically significant study in terms of data collected. Finally, it presents a novel

approach to matching keystroke dynamics input in terms of the algorithm applied. In terms

of biometrics, the study represents another look into the viability of keystroke dynamics as

a potential biometric. Finally, this study will offers useful knowledge to information security
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experts as it provides an easily implemented approach to strengthening password-based

systems through the use of an unobtrusive and replaceable biometric.

1.4 Organization

The remaining sections of this thesis are broken up as follows. Chapter 2 represents a

literature review providing introductions into biometrics, performance measures within bio-

metrics, machine learning, data mining, and pattern recognition. Chapter 3 covers the topic

of keystroke dynamics including previous work, technological aspects, and semantics used in

our study. Chapter 4 outlines the experimental design with detailed description of how it was

implemented. Chapter 5 focuses on the performance of the system using various algorithms

for matching / classification while also providing insight into the difference between the two

different types of passwords. Chapter 6 offers considerations and limitations of the system

regarding its benefits and its ability to be deployed as a real-world application. Finally

Chapter 7 provides the conclusions that are made as a result of the study and how they

apply to the related fields.





Chapter 2

Literature Review

The scope of this literature review is to familiarize the reader with three concepts directly

related to this project; an overview of biometrics, performance measures within biometrics,

and machine learning.

2.1 Overview of Biometrics

The problems of identification and verification of individual identity have existed throughout

the course of human history. Naturally various means have been used to solve these problems.

These means have traditionally been broken down into four main categories [3][4]:

1. What you have

2. What you know

3. What you are

5



6 Chapter 2. Literature Review

4. Where you are

The third category encompasses the field of biometrics as we know it today. What you are

can be thought of as an embodiment of various body characteristics and actions [4]. Probably

the first formal account of using such characteristics for an identity scheme occurred in 14th

century China when fingerprints were used as a form of signature [5]. Informally, it is easy to

imagine visual identification schemes existed even before the scope of written history. Current

schemes include an extremely vast range of characteristics spanning anywhere from the

aforementioned palm prints to DNA related technologies. It should be noted that historically

biometrics have been used in identity schemes typically in a hands-on, manual fashion. On

the other hand, the current state of the field would define biometrics as automated methods

of establishing identity based on one or more physiological / behavioral traits [6]. This

definition implies a difference between a biometric system and a biometric characteristic or

trait.

With a virtually infinite amount of characteristics making up a human being, a framework

has been devised to determine which characteristics can be considered valid as legitimate

biometrics [4]. A given physical or behavioral characteristic must satisfy to some degree all

of the following seven qualities in order to be considered a potential biometric characteristic

/ trait.

1. Universality- The characteristic should exist for each person in a given population.

For instance, typically all individuals have fingerprints. That having been said, some

individuals have lost digits in accidents or have substantially injured them to the point

that prints cannot be extracted.
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2. Distinctiveness- The characteristic should be sufficiently different between any two

individuals within the population. For instance, height is a characteristic that can

serve as an identifying factor over very small populations but clearly is not sufficient

for typical biometric systems [4].

3. Permanence- The characteristic should not vary significantly over a given period of

time. For example, a face of a human at age 30 may vary significantly compared to

the face of the same human at age 60 [4].

4. Collectability- There must be a ways to both measure the characteristic quantita-

tively and acquire the characteristic automatically. It is not enough to say, “This

iris looks like that iris.” Formal measurements must be extractable. Furthermore, the

manner in which these quantitative measures are acquired must be automatic; manual

extraction cannot occur in modern biometric systems.[4].

5. Performance- The degree in which the system based on the characteristic(s) can

perform relative to desired levels of identification / recognition accuracy and speed [4].

6. Acceptability- The level in which the population accepts the use of the characteristic.

DNA is extremely unique but other factors such as sample collection and privacy

concerns pose problems in terms of user acceptance [4].

7. Circumvention- The degree in which a system based on the potential characteristic(s)

can be easily fooled through fraudulent methods [4].

Clearly no potential characteristic can satisfy all qualities to the greatest degree. The de-

gree in which a candidate characteristic satisfies these qualities often dictates which type of
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biometric system / application it can be used for, i.e. personal use, low security commercial

access, high security access, etc

As mentioned earlier, there is an inherent difference between physiological biometrics and be-

havioral biometrics. Physiological biometrics are characteristics defined typically by anatom-

ical means in that they are related to the structure of the organism in question. Examples

of such physiological biometrics include but are not limited to:

• DNA

• Ear

• Face

• Fingerprint

• Hand Geometry

• Palmprint

• Hand Vein Print

• Iris

• Retina

• Footprint

• Odor
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Traditionally, it is said that physical biometrics are irreplaceable, in that anatomical struc-

tures such as those listed are not easily removed or fabricated. Behavioral biometrics unlike

physiological are based on human action or the way one behaves. Examples of such biomet-

rics include but are not limited to:

• Gait (the way one walks, runs, etc)

• Signature

• Face

• Speech / Voice

• Keystrokes

Typically these behaviors are the result of many years of acclimation and or training. For

example, the way you walk or the way you sign your name; it can be said that the current

state of either behavior is the culmination of many years of practice / experience. On the

other hand, it has been said that behavioral biometrics offer a degree of replaceability that

physiological biometrics do not. For instance, in terms of a person to person comparison,

the way an individual says one word may be fundamentally different from the way he says

a different word. Furthermore, although a time intensive process, it is said that individuals

may be able to change such behavioral characteristics given the appropriate desire / com-

mitment. For example, one could reinvent the way she signs her signature, it would take a

lot of practice, but it is clearly a possible. The final aspect of this overview to consider is

the layout of a generic biometric system. The layout of a traditional biometric system as

outlined by Ratha [7] is pictured in Figure 2.1. Within this layout, there are three main
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Figure 2.1: Traditional Biometric System Layout

blocks; sensor, feature extraction, feature and matching. The sensor block obtains raw data

representing the biometric sample. After receiving the raw data typically in the form of an

image, the feature extraction block removes selected information that represents the uniquely

identifying features of the biometric sample. During enrollment, these uniquely identifying

features are typically stored in the system database as templates. At this point, the extracted

features are passed into the matching block. Within this block matching feature matching

is performed either against one or more templates of one user (verification) or against one

or more templates of all users (identification). It should be noted that biometric systems

in verification mode verify that a person is the identity they claim to be (one to one). In

identification mode, a user provides no claim and the biometric system attempts to match

him / her to someone already enrolled in the database (one to many). Another mode not

formally addressed in basic diagrams is negative recognition in which the biometric system

assures the individual who provided the sample is not a member of a given database. In

the last block, a matching score is produced and the decision of “yes” or “no” is determined
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based on the relationship between the match score and the threshold (minimum / maximum

score acceptable for a match).

2.2 Performance Measures

Although talk of performance measures in biometric systems can easily be included in an

overview it was believed that the topic is significant enough to merit a complete section on

its own. Performance of biometric systems is typically measured in terms of various error

rates, namely False Accept Rate (FAR) and False Reject Rate (FRR). The FAR refers to

the errors the biometric system makes in which it incorrectly matches the features of the

biometric sample presented with those in the system database, smartcard, etc. In statistics,

this is referred to as a Type II error. The FRR refers to the errors the biometric system

makes in which it incorrectly does not match the biometric sample presented with those in

the system database, smartcard, etc In statistics, this is referred to as a Type I error. It is

common practice to plot the FARv s. FRR in a graph referred to as a Receiver Operating

Characteristic (ROC) curve which allows for analysis of where a biometric stands based on

the applications requirements. Figure 2.2 shows such a ROC curve with different application

scenarios noted. Occasionally some groups refer to FAR and FRR as False Non-Match Rate

(FNMR) and False Match Rate (FMR) respectively.

Besides the traditional FAR vs. FRR measures, there are also a series of singleton mea-

sures that can be used to assess the performance of biometric systems. These measures

include the Equal Error Rate (EER), d-prime, and many other off-shoots of the d-prime
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Figure 2.2: FAR vs. FRR ROC Curve [1]

measure. The EER is relatively simple to understand in that is it the point in the ROC

curve in which the FAR equals the FRR. Although there may not be a specific point in

which this precisely occurs in all data sets for a biometric system, it is typically estimated

by plotting the line Y=X in a conventional ROC curve. In Figure 2.2, the system EER falls

just below 20%. If a precise measurement of EER is required, Equation 2.2 can be applied.

EER =
FARt∗ + FRRt∗

2
(2.1)

t∗ = MINt |FARt − FRRt|

t=threshold
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D-prime offers a parametric distribution based singleton performance metric. Taking in the

mean and standard deviations of both the imposter and genuine distributions one can deter-

mine the degree of overlap of the two classes. Equation 2.2 displays the equation to arrive

at the d-prime measure for a given system.

d′ =
|µG − µI |√
σG

2 + σI
2

(2.2)

G=Genuine, I=Imposter

It should be noted that this measure is most applicable if both distributions are Gaussian

/ normally distributed. With this measure, the higher values indicate a greater degree of

separation between genuine and imposter distributions.

All the previously described metrics have deal with the “positive view” aspects of per-

formance measures within biometric systems. “Negative view” performance measures often

overlooked by casual observers of biometric systems and often notoriously excluded from

commercial product spec sheets and white papers. Specifically, Failure to Enroll (FTE) and

Failure to Acquire (FTA) rates are often used to bloat the more common observed FAR and

FRR measures previously mentioned. The FTE rate measures the percentage of individuals

who are not able to be enrolled in the system for any number of reasons. Typically, this

occurs if an individual does not have the biometric (loss of finger / eye) or has a severely

damaged biometric that the system cannot process during enrollment. The FTA rate mea-
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sures the percentage of time in which the biometric system cannot obtain the raw biometric

data of an enrolled user during verification / identification modes. This may occur due to

undue noise in the system such as loud background sound in a speaker recognition system

or an extremely dry winter day in a capacitive fingerprint system. As mentioned before,

commercial entities often like to conveniently not include these measures in product spec

sheets while internally relying on them to bolster FAR / FRR measures. It is not hard to

imagine how one could simply exclude individuals with sub-par biometrics samples either at

the enrollment stage or at verification / identification stages by simply not allowing enroll-

ment or continuation into matching blocks of the biometric system. Clearly this practice has

positive effects on FAR / FRR rates, which often taken singularly, are not indicative of the

overall performance of the biometric system. Therefore, the overall matching performance

of a biometric system should minimally be measured by four metrics; FAR, FRR, FTE, and

FTA.

2.3 Machine Learning, Data Mining and Pattern Recog-

nition

Although subtly different, generally speaking, the fields of Machine Learning, Data Mining

and Pattern Recognition all deal with fully or semi-automated methods of describing struc-

tural patterns within data. The idea of describing structural patterns of data can be thought

of as obtaining information about data in one of many ways; explanation, interpretation,

validation, and prediction. Formal definitions shed more light on the three fields [8].



2.3. Machine Learning, Data Mining and Pattern Recognition 15

• Machine Learning- An area of artificial intelligence concerned with the development

of techniques which allow computers to change behavior in a way to improve future

performance [8][9].

In “Data Mining,” Witten and Frank subsequently note the difference between learning

and training lies in the intent of the learning entity and the ownership of learning purpose

(teacher in training, learner in learning) [8].

• Data Mining- Data processing using sophisticated data search capabilities and sta-

tistical algorithms to discover patterns and correlations in large preexisting databases;

a way to discover new meaning in data [10].

The Wikipedia definition suggests a synonymous relationship between data mining and

Knowledge Discovery in Databases (KDD) [11]. This thought is supported by Witten and

Frank with particular stress on importance of knowledge discovery in the form of compre-

hensible models [8].

• Pattern Recognition- A branch of artificial intelligence concerned with the classifica-

tion or description of observations. Pattern recognition aims to classify data (patterns)

based on either a priori knowledge or on statistical information extracted from the pat-

terns. The patterns to be classified are usually groups of measurements or observations,

defining points in an appropriate multidimensional space [12].

This definition suggests a noted difference between data-mining in that although a descrip-

tion of observations is attained, the resulting descriptive and or predictive model need not
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Figure 2.3: Relationship between Machine Learning, Data Mining, and Pattern Recognition

be readily comprehensible to humans. This may be implied by the phrase “appropriate mul-

tidimensional space” as most humans have difficulties interpreting dimensionality beyond

three levels such as 4-D or 5-D space. Witten and Frank offer the same sentiment when

referring to neural networks [8]. Figure 2.3 offers one final attempt to allow an individual to

examine how the three fields relate to each other. It indicates that data-mining and pat-

tern recognition are subsets of the overall field of machine learning. Furthermore, the figure

shows how data mining and pattern recognition are not completely independent of each other.

These concepts were used within our keystroke analysis study with the hopes of attaining
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an acceptable predictive solution to the two-class classification problem (genuine, imposter)

presented by the verification mode of the potential biometric system. In this regard, the

pattern recognition subset of machine learning was called upon. Besides the desired predic-

tive mechanism measured by performance, it was also believed that some of the machine

learning algorithms employed could offer comprehensible models explaining the structure

of the two-class problem. In that regard, the data mining subset of machine learning was

called upon. Therefore this study seems to be holistic relative to the three fields and would

necessarily fall within the white, central region of 2.3.





Chapter 3

Keystroke Dynamics as a Biometric

3.1 Historical Perspective

Keystroke Patterns have been used as a biometric since the early 1900’s in the days of WWI.

During the war, the French used listening posts in which operators were able to recognize

the “fist” of enemy radio operators communicating in Morse code. These trained individuals

would learn to recognize operators by differing lengths of pauses, dots and slashes, and

varying transmission speeds. This intelligence subsequently allowed the French to establish

the identity of entities such as enemy battalions [13]. Although this communication did not

include the use of keyboards as we know them today, the increased complexity of today’s

keyboards undeniably allows for even more unique pattern development.

19
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Figure 3.1: Switch types found in modern keyboards [2]

3.2 Keyboard Technology / Low-Level Interface

In order to fully understand the terminology to be used in this paper, a basic understanding

of keyboard technology at its lowest level is necessary. This section attempts to outline

said technology. The first point of interest in low level keyboard technology is the different

types of keyboard layouts found in computers today. There are three main types; 101/2 key

layouts, 104 key layouts, and laptop layouts [2]. Laptop layouts are not standardized and

have a wide range of number of keys in their layouts so no value is specified. The differences

in these layouts are not of particular significance as the ability to input all printable and

non-printable control characters used in this study are possible regardless of the particular

keyboard layout of a given user.

Delving beyond layout, there are four different kinds of switch technology used in keyboards

today; pure mechanical, foam element, rubber dome, and membrane [2]. Figure 3.2 provides

a visual representation of these four switch types. Each switch type has various character-
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istics such feel, durability, price, etc That having been said, these characteristics are not of

importance relative to this project. No matter the key switch technology chosen, when a key

is depressed a degree of “bounce” is present. Bounce is the effect when the contact device

rapidly engages and disengages over an extremely short period of time [2]. Keyboards, either

external to desktop PC’s or internal to laptops are computers in their own right as they con-

tain a microprocessor, RAM, and sometimes ROM. Using their processors and controllers,

they filter out the difference between bounce and two successive keystrokes. Each stroke

therefore consists of two events, when the plates are engaged and when the engagement is

released or disengaged. Scan codes resulting from these events are sent from the controller in

the keyboard to the event handler in the BIOS of the PC itself [2]. Scan codes are recorded

by the processor based on a matrix composed of all the keys on the keyboards. The keyboard

matrix operates on a buffer that allows for the processing of simultaneous keystroke events.

As mentioned before, when a key is pressed down the plates become engaged, it is at this

point that the keyboard processor sends a “make code” encoded as a hex value to the PC.

The make code can be thought of as including both the key engaged and various other state

flags indicating if / how the key was modified by any of the various control keys such as

shift, alt, etc Once the key disengages, a corresponding “break code” is sent to the PC [2].

These ideas form the basis of keyboard technology at its lowest-level.

3.3 High Level Semantics

The data that will be collected for this project is directly related to the various terminologies

found in the previous section. However, for reasons of simplicity, we map the somewhat
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terse low level terminology into more intuitive higher level events. This section focuses on

establishing an understanding of the semantics of these high level events. The basis of all

features included in keystroke dynamics is founded on the keystroke event and the associated

“make code” / “break code” correlation described in the previous section. Instead of dealing

with terms like “make code,” “disengagement”, etc, we define and use the following terms

of interest which are much more intuitive.

1. KeyDown- The event that fires when a key is pressed down. This corresponds to the

event of the keyboard processor sending the PC a “make code.” It should be noted

that this event will continually fire until the key being depressed is released. The speed

at which the KeyDown event fires while a key is depressed is referred as the “repeat

rate.” This is a user customizable property in virtually all operating systems.

2. KeyUp- The event that fires when a currently depressed key is subsequently released.

3. Keystroke- The combination of an initial KeyDown event and the corresponding

KeyUp event.

4. Hold Time- the length of time between an initial KeyDown event and the correspond-

ing KeyUp event.

5. Delay (latency)- The length of time between two successive keystrokes. It should

noted that this time can be positive or negative (overlapping strokes).
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3.4 Related Previous Work

As mentioned in the historical perspective, keystroke dynamics have been around, in some

form, since the early 1900’s. Keystroke dynamics as known today are, on the other hand,

a significantly more youthful technology having first come about in a work by Gaines and

Lisowski in the early 1980’s [13]. Although not claiming to be exhaustive, this section at-

tempts to provide a thorough overview of the related previous work that has been conducted

since 1980 including academic research, government patents, and private sector commercial

technology. The chronologically ordered overview focuses on four major sections of each

study; the primary keystroke feature(s) and algorithm employed, input requirements for a

given sequence, scope of the study in terms of users and sequences gathered, and the perfor-

mance relative to the scope of the study. For the purposes of easy comparison, the overview

is provided as Table 3.1. The table provides a look into the field both during its infancy

and at the current state of the art. Instead of laboring over the particular intricacies of each

individual work, it seems more beneficial to point out both milestones and overall trends that

developed as the field matured. As noted before, the initial work was performed by Gaines

and Lisowski in 1980 [14]. It was at this time that the advent of the use of interkey latency /

delay was employed. Regarding features collected, we see that no significant additions occur

until Obaidat and Sadoun in 1997 when they introduced key hold times as another feature

of interest [20]. Over the last two decades we see a plethora of matching algorithms offered

ranging anywhere from statistical based techniques including t-tests, means, and standard

deviations, to conventional distance metrics such as Euclidean and Mahalanobis, to a Ma-

chine Learning algorithms such as Neural Networks and Perceptron [6]. It should also be
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Work Feature(s) / Algorithm Input Scope Performance
Gaines & Lisowski
(1980) [14]

Latency between 87 lowercase digraphs
using sample t-tests

300-400 word pas-
sage 2 times

7 secre-
taries

FAR 0% (0/55) FRR
4% (2/55)

Garcia (1986) [15] Latency between 87 lowercase digraphs
and space key & Complex Discrimina-
tion using Mahalanobis distance func-
tion

Individual’s name
& 1000 common
words 10 times each

N/A FAR 0.01% (N/A)
FRR 50% (N/A)

Young & Hammon
(1989) [16]

Plurality of features including: digraph
latencies, time to enter selected number
of keystrokes and common words using
Euclidean distance

N/A N/A N/A

Joyce & Gupta
(1990) [17]

Digraph latencies between reference
strings using mean and standard devi-
ation of latency distance vectors

Username, pass-
word, first name,
last name 8 times
each

33 users
of varying
ability

FAR 0.25% (2/810)
FRR 16.36% (27/165)

Obaidat & Mac-
chiarolo (1993) [18]

Digraph latencies between reference
strings using Neural Networks

15 character phrase
20 times each

6 users 97% overall accuracy

Bleha & Obaidat
(1993) [19]

Digraph latencies between of strings us-
ing Perceptron algorithm (50% test /
50% train)

Username ? Times 24 users FAR 8% FRR 9%

Obaidat & Sadoun
(1997) [20]

Digraph latencies and key hold times
using multiple machine learning algo-
rithms

Username 225
times / day for 8
weeks

15 users FAR 0% (N/A) FRR
0% (N/A)

Monrose, Weiter, &
Wetzel (2001) [21]

Digraph latencies and key hold times,
algorithm employed is unclear

8 character pass-
word

20 users FAR % (N/A) FRR
45% (N/A)

Bergadano,
Gunetti, & Pi-
cardi (2002) [22]

Trigraph duration using degree of dis-
order

683 character text 5
times

44 users FAR 0.04%
(1/10,000) FRR
4% (N/A)

BioPassword[23] Patented by Young (1989)[16] Username and
Password

N/A N/A

Table 3.1: Previous Work

noted that there is at least one noted trend that occurs over that time period and contin-

ues through present day. Initial works required extremely demanding input requirements

in terms of length of characters ranging from large passages and word lists (on the order

of 100’s and sometimes 1000’s of characters) whereas more recent work has attempted to

minimize such input requirements relying only on username and or passwords (on the order

of 10’s of characters).

There is also a relatively wide range in performance over the two decades with published
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FAR ranging from 0-8% and FRR ranging from 0-45%. Although these are ranges are indeed

wide, some studies seem to offer perfect, if not near perfect performance in both measures.

When considering these studies, it is highly important to understand the relationship be-

tween FAR / FRR performance and the scope of the study. There are notable deficiencies

across the board in that virtually all studies seem to have been conducted over extremely

small user populations or have only collected a limited amount of inputs per user. Most

of the papers admit that these deficiencies have a high impact on conclusions that can be

drawn from the performance results due to the limited amount of data collected.





Chapter 4

Experimental Design

4.1 Overview & Hypothesis

As mentioned in the previous section, several keystroke dynamics experiments have taken

place since the early 1980’s. The results of many experiments seem to support conclusions

in defense of using keystroke dynamics as a biometric. We have decided to use the following

characteristics to judge the results of such an experiment:

1. Performance- Traditionally, performance is measured in biometric systems in terms

of error rates including FAR, FRR, and EER. Other measures such as d-prime and

d-prime variants can also be considered.

2. Number of Users- One consideration of paramount importance in biometrics is

uniqueness. Uniqueness can only be established over large, statistically significant

databases including many users.

27
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3. Size of Data Set- Both the number of users and the number of trials per user in

terms of input sequences must be statistically significant.

4. Cost of Enrollment- Usability is also of paramount importance for biometric systems.

Besides traditional methods of minimizing FRR’s, it is also important to minimize cost

of enrollment both in terms of time and supervision.

5. Algorithm Employed- Another obvious consideration that is not completely orthog-

onal to the previous characteristics is the algorithm deployed. The validity and strength

of the algorithm in terms of time complexity and resource efficiency is very important

in biometric systems.

The design of our case study was based on a goal to meet all of these considerations to the

highest degree possible. Therefore, we decided that in order to facilitate a large user database

the collection of keystroke features should be web-based. Based on this decision, front-end

client-side Java applets were developed in the NetBeans Integrated Development Environ-

ment (IDE) and designed to run within web browsers (Mozilla Firefox, Internet Explorer,

Netscape) using the Sun Java Console. This offered both a tested open source platform as

well as the bulk of the computation to occur in the client computer. On the server side,

a MySQL database (also an open source product) was used to house the data. Therefore,

once client-side computation was finished, the input was entered into the database via the

already established client-server connection.

The system required the user to input only username and password fields which ensured

minimal input in both the registration / participation sections. It should be noted that



4.1. Overview & Hypothesis 29

this design allowed for user participation to be “completely unsupervised” in that the only

guidance / direction users received was in the form of written instructions and short video

clips.

Related work seemed to indicate that algorithms employing inter-key latencies or delays

combined with hold times appear to be to be most successful when given minimal data per

sequence. The most notable difference in the algorithm we developed in this project is that

shift key behavior was not only considered but highly emphasized. We hypothesized that

shift key behavior varies greatly across users. For instance, a trained professional will use

the left shift key to modify characters typed with the right hand and the right shift key to

modify characters typed with the left hand. While poor to average typists often use only one

shift key to modify characters on either side of the keyboard. Furthermore, our qualitative

observations seemed to indicate that many other user specific shift correlations existed. To

allow for the verification of this hypothesis, each user was assigned the following credentials

in the registration section:

• Username- in the following format:

Firstname.Lastname

first initial of first and last names capitalized

• Password1- an 8 character control password in the following format:

password

these passwords were all english words or names commonly found in cryptographic

attack dictionaries [24]
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Examples: computer, swimming, springer

• Password2- a 12 character test password in the following format:

SUUDLLLLDUUS

– S=special symbol

– U=uppercase letter

– L=lowercase letter

– D=digit

these passwords were randomly generated to conform to the format above

Examples: +AL4lfav8TB=, UC8gkum5WH

Figure 4.1 shows the layout of the registration screen in which users are provided with system

credentials.

Beyond the input, the behavioral nature of this biometric scheme required a slightly more

involved data collection process than what is typical in conventional physiological biometric

systems. Most notably, one cannot simply compare genuine input of one user to genuine

input from another user in order to establish imposter input or FAR measures as the pass-

words (at least in the study) are not the same for every individual. Therefore, two sections

had to be developed; one in which users input the credentials given to them in the en-

rollment phase and another in which users input the credentials assigned to other users. In

terms of a conventional biometric system, the former section represents genuine data and the
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Figure 4.1: System Registration Section

latter represents imposter data. Figure 4.2 shows the relatively simple genuine input screen.

Within this screen, users were asked to input each of their credentials (username + pass-

word1 and username + password2) five times each day for approximately 3 weeks.

The imposter input screen was slightly different and can be seen in Figure 4.3. In this sec-

tion, users were provided with credentials of users other than themselves from the database.

In that regard, a user would always select his / her username from the“My UserName” sec-

tion for the purposes of not inadvertently collecting genuine data in the imposter section.

Upon selection of “My UserName,” the database would populate the “Imposter Credentials

to Input” section in a load-balanced way, selecting a pair of credentials that had a relatively

low amount of imposter data collected. At this point the user would simply login in the same

manner as in the genuine input section and pending successful input, the credential section
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Figure 4.2: Genuine Input Section

Figure 4.3: Genuine Input Section
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would repopulate with potentially new credentials. Similar to the genuine input screen, users

were asked to input a total of 10 sequences per day for this screen.

Lastly, we look into what was actually collected for each sequence. Using the built-in Java

event handlers, key hold times and inter-key delays accurate to the millisecond were col-

lected for each keystroke in both the username and password for each sequence. After some

calculation, the following attributes were included to form a feature vector for each input

sequence, as seen in Table 4.1. Each attribute is not necessarily completely orthogonal to

1 USERID 22 RIGHT SHIFT HOLD STD

2 TOTAL STROKES 23 RIGHT SHIFT HOLD MAX

3 HOLD AVG 24 RIGHT SHIFT HOLD MIN

4 HOLD STD 25 RIGHT SHIFT HOLD TOTAL

5 HOLD MAX 26 DELAY AVG

6 HOLD MIN 27 DELAY STD

7 HOLD TOTAL 28 DELAY MAX

8 TOTAL SHIFTS 29 DELAY MIN

9 SHIFT HOLD AVG 30 DELAY TOTAL

10 SHIFT HOLD STD 31 LEFT SHIFT DELAY AVG

11 SHIFT HOLD MAX 32 LEFT SHIFT DELAY STD

12 SHIFT HOLD MIN 33 LEFT SHIFT DELAY MAX

13 SHIFT HOLD TOTAL 34 LEFT SHIFT DELAY MIN

14 LEFT SHIFTS 35 LEFT SHIFT DELAY TOTAL

15 LEFT SHIFT HOLD AVG 36 RIGHT SHIFT DELAY AVG

16 LEFT SHIFT HOLD STD 37 RIGHT SHIFT DELAY STD

17 LEFT SHIFT HOLD MAX 38 RIGHT SHIFT DELAY MAX

18 LEFT SHIFT HOLD MIN 39 RIGHT SHIFT DELAY MIN

19 LEFT SHIFT HOLD TOTAL 40 RIGHT SHIFT DELAY TOTAL

20 RIGHT SHIFTS 41 TYPE {G=genuine, I=Imposter}
21 RIGHT SHIFT HOLD AVG

Table 4.1: Feature Vector Collected for Each Input Sequence

every other attribute, but we believed that the inclusion of semi-redundant features may be

beneficial in terms of the classification process. Detailed descriptions of these features can

be found in Appendix A. Later sections will discuss how the sequences were analyzed.
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Should the results prove acceptable, the system would easily convert to a biometrics-based

password hardening system which would have the ability to be deployed without user super-

vision in enrollment and verification phases. Furthermore, the behavior-based nature of the

biometric would allow for replaceability through assignment of a new password.

4.2 Data Collection Results

At the time of final analysis the database had a total of 53 users with over 10,000 total input

sequences. After applying a minimum cutoff of 15 sequences of each type to be included in

the study, a total of 41 users and 8,775 total sequences were used. Out of the 8,775 total

sequences, 5,078 were of type genuine and 3,697 were of type imposter. The demographics

of the database represent a fairly diverse population in many regards, the gender split was

approximately equal, ages ranged from mid-teens to individuals in their late 50’s to early

60’s, there was also a relatively diverse racial makeup. Perhaps most importantly, the typing

ability of the population was also extremely diverse, ranging from the most inept “hunt

and peck” typists to individuals typists with professional training / experience. Due to the

nature of recruiting, the collection process lasted approximately one month but is currently

still ongoing for the purposes of future work.
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Classification / Matching

The matching block of most biometric systems operates over one or more relatively sim-

ple distance metrics used to determine the difference between sample and template feature

vectors. Such distance metrics include absolute, Euclidean, Manhattan, Hamming, Maha-

lanobis, least squares, etc [6][25]. All of these can easily be used when the feature vectors are

of the same fixed-length. Some biometrics such as fingerprints often cannot rely on fixed-

length feature vectors as the number of uniquely identifying characteristics such as minutiae

vary from individual to individual. Furthermore, variation also occurs from sample to sam-

ple within the same individual. These biometrics require somewhat more complex matchers

that must be capable of comparing feature vectors of unequal size.

Fortunately, the data gathered in this keystroke dynamics study allowed for fixed size feature

vectors. That having been said, initial tests employing traditional distance metrics did not

yield promising results as they seemed incapable of determining the complexity of feature

35
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importance over the entire scope of users. Although this does not indicate such a method

couldn’t achieve high results, we knew other more ”promising” methods could be employed

instead. As mentioned in the overview, the field of machine learning has various applications;

this section outlines the ability of various machine learning algorithms to provide verification

of user identity in our study. Performance analysis, measured by overall classification accu-

racy, FAR, and FRR was conducted on all data sets and tallied for short password sequences,

long password sequences, and short and long sequences concatenated.

Once again, the goal of the study was to use the keystroke dynamics biometric to aug-

ment the security of a traditional username and password authentication scheme. Although

the performance measures can be taken as a biometric system alone, it was not the intended

focus of this study. As a result, the traditional frame of thought does not directly apply. The

FAR can be thought of as the new penetration rate relative to the 100% penetration rate

associated with a compromised or stolen password. Furthermore, the FRR can be thought

of as the decrease in usability of the system due to the occasional misclassification of an

authorized user’s input. Finally, the overall classification accuracy simply represents the

summation of the two types of errors divided by the total number of instances.

5.1 Machine Learners

We selected several machine learners for the analysis. The list is significant for a number

of reasons. First, it represents a somewhat “classic” list of algorithms used for performance

comparison on a given set of data [26]. Second, it includes a wide range of machine learning
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approaches including decision tree, probabilistic, on-line linear separation, and meta-learning

methods that use boosting to augment simpler learning algorithms. Third, at least one

algorithm can presumably be compared to results of previous studies. Besides performance

measures, each section will also include explanation of each learning algorithm. Learning

with OneR, NaiveBayes, VotedPerceptron, and LogitBoost was conducted by scripting runs

to the command line interface of the Weka machine learning software package [27]. All

algorithms from Weka were run using the default Weka parameters for each algorithm,

which can be found in Appendix B. Similar techniques were applied with Quinlan’s C5.0

proprietary software package [28] and Liaw’s freely distributed R [29] implementation [30] of

Breiman’s Random Forests algorithm [31][32].

5.1.1 OneR

The most simplistic learner tested, OneR gets its name from the fact that it generates

one-level decision trees [8]. To do so, the algorithm diagnoses each value present for each

attribute within the instances being considered. It then generates one-level trees by finding

the most frequently occurring class for each of the aforementioned values. The classification

error is then calculated for this optimized value-attribute combination. Finally, the rule with

the lowest overall error rate is chosen out of the optimized value-attribute combinations [8].

Although this method is extremely intuitive and simple, it performs surprisingly well on many

data sets. Table 5.1 shows the performance of OneR in terms of overall classification accuracy,

FAR, and FRR. The table represents aggregate results over the 82 data sets acquired (41

users, short password and long password). The blue rows represent sequences involving

the eight letter (S=short) English passwords and the yellow rows represent the sequences
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involving the twelve character (L=long), shift-key intensive passwords. Each section has two

rows; totals and means. Totals reflect the summation of results for all users in all of the

categories. The means represent an average across all users for each measure. As the first

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 174 1451 0.880 92 622 0.148 82 829 0.099

S Mean 4.244 35.390 0.873 2.244 15.171 0.140 2.000 20.220 0.133

L Total 134 1405 0.905 77 582 0.132 57 823 0.069

L Mean 3.268 34.268 0.891 1.878 14.195 0.132 1.390 20.073 0.108

Table 5.1: OneR’s Overall Performance

set of results presented, OneR clearly shows there is a noticeable difference between genuine

and imposter sequences achieving total classification accuracy of 88% for short password

sequences and 90.5% for long sequences. Given the simplicity of this learner, we believe in

the merit of employing machine learning techniques to separate the classes of the keystroke

sequences. Despite the classification accuracy, it is important to note the mean FAR and

FRR’s of 14% and 13.3% and 13.2% and 10.8% for the two different password types. Given

modern standards, this would not be sufficient for a biometric system, yet it may prove

sufficient for this particular application of biometrics.

5.1.2 NaiveBayes

Having looked at one of the simplest learners, we next studied the performance of a more

complex learning scheme. The Naive Bayes learning algorithm is a well known machine

learner based on the Bayes’s rule of conditional probability as seen in Equation 5.1[33].

Naive Bayes generates class probabilities using the multiplicative rule for multiple events.



5.1. Machine Learners 39

Pr[H|E] =
Pr[E|H] ∗ Pr[H]

Pr[E]
(5.1)

Although more complex than OneR, Naive Bayes is still a relatively simple learner. Despite

the marginal increase algorithmic complexity, Table 5.2 shows a noticeable increase in per-

formance for at least some of the measures considered. The FAR for long passwords, and

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 150 1451 0.897 103 622 0.166 47 829 0.057

S Mean 3.659 35.390 0.888 2.512 15.171 0.165 1.146 20.220 0.064

L Total 95 1405 0.932 57 582 0.098 38 823 0.046

L Mean 2.317 34.268 0.926 1.390 14.195 0.098 0.927 20.073 0.046

Table 5.2: NaiveBayes’s Overall Performance

the FRR for both short and long passwords all improved in performance over OneR with

increases in mean accuracy of 3.4%, 6.9%, and 6.2%, respectively. Since NaiveBayes is based

on Bayes’s rule of conditional probability, it assumes independence between events. This

assumption clearly does not hold up on these data sets as some attributes clearly are not

independent of one another, i.e., TOTAL SHIFT HOLD, LEFT SHIFT HOLD, etc It is also

important to note the first instance of a trend of increased performance in long password

compared to short password sequences for all three performance measures.

5.1.3 VotedPerceptron

Once again increasing algorithmic complexity, the VotedPerceptron algorithm uses a series

of vector predictors attained through artificial neural networks to attempt to split two classes
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(genuine, imposter) thought to be linearly separable in multi-dimensional space [34][35][36].

This represents the first algorithm that makes use of multiple “options” by way of a voting

scheme. The algorithm places weighted voting power on possible linear separators based with

weighting based on the “survival” objective function intrinsic to the Perceptron algorithm

[34]. Table 5.3 shows the performance of the first voting scheme based algorithm considered.

The use of this algorithm demonstrates noted drop offs in performance in all categories

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 267 1451 0.816 153 622 0.246 114 829 0.138

S Mean 6.512 35.390 0.805 3.732 15.171 0.239 2.780 20.220 0.221

L Total 204 1405 0.855 96 582 0.165 108 823 0.131

L Mean 4.976 34.268 0.844 2.341 14.195 0.175 2.634 20.073 0.228

Table 5.3: VotedPerceptron’s Overall Performance

relative to OneR and NaiveBayes. At first thought this seems non-intuitive as the casual

observer may believe with increased complexity comes increased performance. This premise

often does not hold true in machine learning and surface analysis can shed light into why it

does not hold true in this case. The perceptron algorithm relies on the linear separability of

the genuine and imposter users; the typical two class problem. This may not be the case in

our study. Although the classes may be separable, the separation may indeed be non-linear

in nature requiring methods such as non-linear regression or cubic splines for splitting.

5.1.4 LogitBoost

The LogitBoost machine learning algorithm represents the first “true” boosting algorithm

considered to this point. Boosting is the process of combining similar complementary models

in the hope that an increase in performance will be achieved. The name boosting comes from
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the fact that model construction is an iterative process with particular incentive placed on

defining new models to correct the errors of previous models. Finally, similar to the Voted-

Perceptron algorithm a weighted voting scheme based on individual model performance is

used to construct the overall classification / prediction model. Unlike the VotedPerceptron,

LogitBoost is not limited to the use of a single algorithm (perceptron) in which to boost.

Many algorithms can be boosted; in our case the simple classification tree algorithm De-

cisionStump was boosted. Finally, it is important to note that the “Logit” in LogitBoost

comes from the fact that it uses additive logistic regression (maximum Bernoulli likelihood

as the objective function) as the boosting mechanism [37][8]. Table 5.4 shows the overall

performance of the LogitBoost algorithm. On the whole, this learner outperforms all other

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 97 1451 0.933 51 622 0.082 46 829 0.055

S Mean 2.366 35.390 0.930 1.244 15.171 0.079 1.122 20.220 0.074

L Total 65 1405 0.954 38 582 0.065 27 823 0.033

L Mean 1.585 34.268 0.951 0.927 14.195 0.062 0.659 20.073 0.038

Table 5.4: LogitBoost’s Overall Performance

learners considered thus far. It is here that we begin to see FAR (7% overall mean) and

FRR (5.6% overall mean) numbers similar to those attained in previous work. Furthermore,

overall classification accuracy begins flirting with the mid to upper 90% region coming in at

93.3% and 95.1% for short and long passwords. Finally, the trend of increased performance

in long password sequences vs. short password sequences continues.
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5.1.5 C5.0 (See5)

Quinlan’s C5.0 [28] (See5 for Windows) is the successor to his widely used decision tree

learner C4.5. Although the source code currently remains proprietary, it is believed that

the tree creation techniques have not changed substantially. In brief, the algorithm employs

probabilistic methods to grow decision tree branches and then uses a series of techniques to

prune sub-trees as to sufficiently generalize the final tree for test purposes (limit overfitting).

There are a few noted differences between C4.5 and C5.0, the difference of interest in this

paper is the addition of adaptive boosting. Very similar to the ideas described in LogitBoost,

when boosting is turned on, C5.0 constructs multiple decision trees instead of only one with

the latter trees attempting to alleviate the errors of the previous ones [38]. Once again, a

voting scheme is applied to determine the class value for a given instance that has been passed

through all the trees generated. Table 5.5 shows the results of the C5.0 decision tree learner

with boosting turned on (maximum of 10 boosting iterations). As the figure indicates, C5.0’s

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 105 1451 0.928 55 622 0.088 50 829 0.060

S Mean 2.561 35.390 0.922 1.341 15.171 0.085 1.220 20.220 0.084

L Total 81 1405 0.942 42 582 0.072 39 823 0.047

L Mean 1.976 34.268 0.938 1.024 14.195 0.074 0.951 20.073 0.055

Table 5.5: C5.0’s Overall Performance

performance is good, falling just below that of LogitBoost, the best algorithm thus far. Once

again, overall classification accuracy lies in the mid 90% range. Although, performance is

slightly lower than LogitBoost, C5.0 offers one noted advantage in that relatively easy to

comprehend “rulesets” can be derived from C5.0’s decision trees which might be desired by

a system administrator in the event that this was used as matcher in deployed biometric
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system [38].

5.1.6 Random Forests

The last machine learning algorithm considered in the study was Breiman and Cutler’s Ran-

dom Forests [31][32]. An elegant and powerful algorithm, Random Forests gets it name for

two different reasons. One, it is an algorithm that is based on the development of a “for-

est” of decision tree classifiers, each classifier being similar to a C5.0 decision tree. Two, the

method of generating the forests is based on the random sampling of features in the attribute

space. The tree generation algorithm works as follows: each tree is grown based on a ran-

dom sample selection from 2/3 of the entire instance population. Then nodes, branches, and

leaves are generated by continuously choosing the feature the yields the best split of the data

based on m randomly selected features from the feature space. Sub-tree generation continues

the furthest extent possible without pruning. Once all trees have been generated, instances

are passed through the trees of the forest and a voting process takes place to determine

the classification result. There are a number of attractive advantages to this scheme; this

study pays particular attention to two of them. One, due to the 2/3 sampling used to train

each tree, the remaining 1/3 out-of-bag (OOB) sample is used test performance. Therefore,

specific test and train sets do not have to be generated and the whole scope of data can be

included. The ability to define varying voting schemes allows for generation forests tailored

to specific matching applications. For instance, a 10%-90% voting scheme for genuine and

imposter classes places particular emphasis on the minimizing the FRR whereas a 90%-10%

scheme reverses the requirement, focusing attention on the FAR. This mechanism allows for

generation of entire ROC curves whereas previous learners necessarily generate only single-
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ton points on said curves. We generated 19 Random Forests, each with a different voting

scheme with voting increments of 0.05, between 0.05-0.95 and 0.95-0.05. Furthermore, for

each forest 500 trees were generated and default value of m was used, in this case 6, which

represents
√

40 or the square root of the number of features in the feature space. For the

sake of brevity, three voting schemes are shown here; the scheme with the EER minimized

(most useful for inter learner comparisons), one focused on the FRR, and the last focused on

the FAR. Table C.11 shows the performance of Random Forests using a 0.55-0.45 genuine-

imposter voting scheme which seemed to minimize the overall EER across all voting schemes.

Appendix C contains the same tables for all 19 Random Forests. It can be seen here that

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 230 4458 0.948 109 1851 0.059 121 2607 0.046

S Mean 5.610 108.732 0.946 2.659 45.146 0.059 2.951 63.585 0.063

L Total 149 4317 0.965 59 1846 0.032 90 2471 0.036

L Mean 3.634 105.293 0.962 1.439 45.024 0.032 2.195 60.268 0.055

Table 5.6: Random Forest Overall Performance with 0.55-0.45 Genuine Imposter Voting Scheme

Random Forests yield the highest performance all learners in all categories considered. FAR

and FRR drop down to 4.5% and 5.9% on average for all input sequences and 3.2% and 5.5%

for long password sequences. Note once again, the increased performance between short and

long password sequences. Although this performance is certainly comparable to most of the

previous work on keystroke dynamics as a biometric, an argument could be made that these

numbers do not represent performance required by modern day biometric systems. Taking

this prospective comment into account Table C.5 demonstrates the ability to increase “user

friendliness” by focusing attention on the FRR through a 0.25-0.75 genuine-imposter vot-

ing scheme. Here we see a slight decrease in overall classification accuracy while noticing
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 369 4458 0.917 346 1851 0.187 23 2607 0.009

S Mean 9.000 108.732 0.915 8.439 45.146 0.187 0.561 63.585 0.012

L Total 279 4317 0.935 263 1846 0.142 16 2471 0.006

L Mean 6.805 105.293 0.932 6.415 45.024 0.143 0.390 60.268 0.012

Table 5.7: Random Forest Overall Performance with 0.25-0.75 Genuine Imposter Voting Scheme

a significant increase in FAR. In this case FAR performance is sacrificed for usability. The

mean FRR of 1.2% for both short and long password sequences indicates that approximately

one individual will be falsely rejected in every 100 attempts. It is not hard to imagine the

application of such a scheme in an environment where security is not of paramount impor-

tance such as a photo-sharing or map service web sites. Table C.15 considers the alternate

situation high security situation displaying the 0.75-0.25 genuine imposter voting scheme.

As mentioned, the focus is flipped with the focus placed on security (FAR) at the cost of

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 329 4458 0.926 38 1851 0.021 291 2607 0.112

S Mean 8.024 108.732 0.919 0.927 45.146 0.021 7.098 63.585 0.151

L Total 249 4317 0.942 18 1846 0.010 231 2471 0.093

L Mean 6.073 105.293 0.935 0.439 45.024 0.010 5.634 60.268 0.140

Table 5.8: Random Forest Overall Performance with 0.75-0.25 Genuine Imposter Voting Scheme

usuability (FRR). Now we see penetration rates of approximately 1 to 2 in 100 attempts

with the overall mean FAR at 1% and 2.1% for long and short password sequences. It is

perhaps even easier to imagine situations where this type of scheme could be applied such as

online merchandizing and banking applications, perhaps even online government systems.

Overall we can see the many advantages of the Random Forest algorithm. The real life
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applicability in terms of operating at different areas of the ROC curve along with the over-

all better performance seems to support choosing it over other any of the other algorithms

tested. Further analysis, provided in the following chapters should further corroborate this

conclusion.

5.2 Inter-learner Performance Comparison

Although the performance of the learners has already been compared indirectly, it seems

appropriate to provide another comparison of all learners including 95% confidence intervals

on all three performance measures considered. The minimized EER Random Forest is once

again chosen for comparison purposes. Table 5.9 shows this comparison. Once again, the

95% Confidence Intervals (alp=0.05)

Classification

Accuracy FAR FRR

Lower Upper Lower Upper Lower Upper

Learner DataSet Bound Bound Bound Bound Bound Bound

OneR S 0.846 0.901 0.102 0.178 0.088 0.179

NaiveBayes S 0.861 0.915 0.122 0.209 0.040 0.087

VotedPerceptron S 0.765 0.845 0.161 0.317 0.130 0.312

LogitBoost S 0.911 0.949 0.054 0.103 0.043 0.104

C5.0 S 0.905 0.939 0.058 0.111 0.057 0.110

RandomForests S 0.935 0.957 0.044 0.074 0.048 0.077

OneR L 0.861 0.922 0.090 0.175 0.061 0.155

NaiveBayes L 0.903 0.949 0.058 0.137 0.026 0.065

VotedPerceptron L 0.809 0.879 0.111 0.240 0.130 0.325

LogitBoost L 0.937 0.964 0.039 0.084 0.019 0.057

C5.0 L 0.922 0.954 0.048 0.099 0.033 0.078

RandomForests L 0.954 0.971 0.021 0.043 0.040 0.070

Table 5.9: Learner Performance Comparison Through 95% Confidence Intervals

short password sequences are indicated by the S blue rows and the long password sequences

are indicated by the L yellow rows. Within the figure, leading performance measures are

bolded and italicized. It can be seen that with few exceptions, Random Forests achieves the
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best overall performance in both upper and lower bounds for all three measures. Further-

more, there is only one situation in which a single learner achieves the best overall bound

over Random Forests: this is in the case of the LogitBoost relative to the FRR for long

password sequences. These results provide rather conclusive evidence that Random Forests

are superior in terms of overall performance, FAR, and FRR for the data sets tested espe-

cially when one considers that this comparison only considers a single Random Forest voting

scheme (0.55-0.45).

5.3 Short Password Performance vs. Long Password

Performance

Although the comparisons in previous section indicate a clear trend of increased performance

from long password sequences compared to short password sequences it is important to look

into the statistical significance of the difference. To do so, a Student’s t-test was performed

on the performances from all 41 users when comparing short to long password sequences.

A large difference in performance is indicated by a large t value. Specifically a t value ≥

1.644 indicates a statistical difference for a 95% confidence level at 80 degrees of freedom

(41 short password sets + 41 long password sets - 2) [39]. Table 5.10 indicates the results of

the test across all learners. The figure indicates that on the whole performance is better in

long passwords over short passwords. This lends support to the conclusion that forcing the

user to include shift key behavior in passwords helps the classification process in virtually

any machine learning algorithm. At the same time only 7 out of 17 (one performance

decreased slightly) of these increases can be deemed statistically significant. We hypothesize
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Classif. Acc. FAR FAR

Learner Mean S Mean L TVal Sig? Mean S Mean L TVal Sig? Mean S Mean L TVal Sig?

OneR 0.873 0.891 0.995 No 0.140 0.132 0.261 No 0.133 0.108 0.869 No

NaiveBayes 0.888 0.926 2.204 Yes 0.165 0.098 2.192 Yes 0.064 0.046 1.430 No

VotedPerceptron 0.805 0.844 1.437 No 0.239 0.175 1.247 No 0.221 0.228 0.139 No

LogitBoost 0.930 0.951 1.851 Yes 0.079 0.062 1.048 No 0.074 0.038 2.481 Yes

C5.0 0.922 0.938 1.377 No 0.085 0.074 0.613 No 0.084 0.055 1.860 Yes

RandomForests 0.946 0.962 3.290 Yes 0.059 0.032 3.251 Yes 0.063 0.055 1.063 No

Table 5.10: Statistical Significance of Difference in Performance Between Short and Long Pass-
words Across Learners

that this is due to the relatively small tests sets. With such small tests sets, the three

measures become very sensitive to classification errors. To consider the effect of sample

size in attained performance measures, Table 5.11 shows the statistical significance of our

experiments change over the different voting schemes of the Random Forests algorithm. The

Classif. Acc. FAR FAR

Learner Mean S Mean L TVal Sig? Mean S Mean L TVal Sig? Mean S Mean L TVal Sig?

RF (0.05-0.95) 0.784 0.783 0.115 No 0.486 0.469 0.774 No 0.002 0.003 1.017 No

RF (0.10-0.90) 0.840 0.851 1.200 No 0.363 0.324 1.837 Yes 0.004 0.006 0.912 No

RF (0.15-0.85) 0.873 0.890 2.319 Yes 0.289 0.235 2.912 Yes 0.004 0.009 1.858 Yes

RF (0.20-0.80) 0.896 0.914 2.761 Yes 0.234 0.182 2.823 Yes 0.008 0.011 0.703 No

RF (0.25-0.75) 0.915 0.932 2.984 Yes 0.187 0.143 2.666 Yes 0.012 0.012 0.160 No

RF (0.30-0.70) 0.924 0.945 3.475 Yes 0.159 0.109 3.121 Yes 0.017 0.019 0.500 No

RF (0.35-0.65) 0.933 0.952 3.097 Yes 0.133 0.092 2.778 Yes 0.021 0.023 0.392 No

RF (0.40-0.60) 0.939 0.955 3.051 Yes 0.106 0.076 2.378 Yes 0.033 0.029 0.640 No

RF(0.45-0.55) 0.944 0.958 2.705 Yes 0.090 0.057 2.794 Yes 0.038 0.038 0.085 No

RF (0.50-0.50) 0.945 0.962 3.086 Yes 0.075 0.044 2.952 Yes 0.050 0.043 0.855 No

RF (0.55-0.45) 0.946 0.962 3.290 Yes 0.059 0.032 3.251 Yes 0.063 0.055 1.063 No

RF(0.60-0.40) 0.942 0.961 3.541 Yes 0.046 0.023 3.551 Yes 0.078 0.067 1.302 No

RF (0.65-0.35) 0.937 0.955 3.683 Yes 0.037 0.016 4.365 Yes 0.099 0.088 1.101 No

RF (0.70-0.30) 0.929 0.943 2.297 Yes 0.028 0.013 3.911 Yes 0.125 0.120 0.335 No

RF(0.75-0.25) 0.919 0.935 2.528 Yes 0.021 0.010 3.230 Yes 0.151 0.140 0.655 No

RF (0.80-0.20) 0.902 0.924 2.805 Yes 0.014 0.006 2.555 Yes 0.189 0.171 0.929 No

RF (0.85-0.15) 0.879 0.900 3.005 Yes 0.009 0.004 1.994 Yes 0.243 0.224 0.982 No

RF(0.90-0.10) 0.849 0.867 2.106 Yes 0.004 0.003 0.505 No 0.304 0.296 0.379 No

RF (0.95-0.05) 0.789 0.819 2.714 Yes 0.003 0.001 1.125 No 0.418 0.397 0.799 No

Table 5.11: Statistical Significance of Difference in Performance Between Short and Long Pass-
words Across Random Forests

results shown in this figure are demonstrably different from those in the previous figure.

Here we see that 48 / 57 individual measures represent an increase in performance from

short passwords to long passwords. Furthermore, of the 48 increases in accuracy we see

that 33 represent statistically significant increases. Therefore, over larger data sets sizes we
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see a rise in statistical significance in the increase in performance associated with longer

password sequences from 29.4% (5/17) to 68.8% (33/48). It is also important to note where

the results are significant; we see noted improvement in the FAR. This implies that the

longer more complex passwords that require more intense shift key behavior make the task

of system penetration much more difficult for imposters. Furthermore, it appears that the

FRR remains somewhat steady between the two different password types with only one

voting scheme (0.15-0.85) representing a statistically significant increase in the FRR from

short to long passwords. This is encouraging in that the long password does not appear

to hinder the usability of the system once users have acclimated themselves to the more

complex sequence.

5.4 The Importance of Shift-Key Features

Besides the performance comparisons between short and long password sequences, we can

also rely on output from the Random Forest classifier to determine whether or not shift-key

features are important in classifying sequences. For each Random Forest generated, it is

possible to output matrices which summarize the importance of features used in classifica-

tion. One measure of importance that can be attained is the “mean decrease in accuracy.”

This measure is a reflection of how an individual feature affects classification of out-of-bag

instances [32]. The higher the value, the more important the feature (negative values ac-

tually represent a decrease in accuracy; the name is misleading). Table 5.12 shows the top

twenty features in terms of this measure of importance across all users at the minimized EER

voting scheme (0.55-0.45) in both types of sequences. Features involving the shift-key are
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highlighted in green. Once again, Appendix A provides a detailed explanation of the what

the features. Clearly the shift key measures play a role in classification as they show up in

Short Passwords Long Passwords

Mean Mean

Decrease Decrease

in in

Feature Accuracy Feature Accuracy

DELAY TOTAL 1.626 DELAY AVG 1.486

DELAY AVG 1.544 DELAY TOTAL 1.443

HOLD AVG 1.172 HOLD TOTAL 0.985

HOLD TOTAL 1.160 SHIFT HOLD TOTAL 0.958

DELAY STD 0.930 HOLD AVG 0.957

SHIFT HOLD MIN 0.899 RIGHT SHIFT DELAY TOTAL 0.909

SHIFT HOLD AVG 0.884 DELAY STD 0.894

RIGHT SHIFT HOLD TOTAL 0.867 RIGHT SHIFT DELAY MAX 0.864

LEFT SHIFT HOLD TOTAL 0.829 RIGHT SHIFT DELAY AVG 0.841

HOLD MIN 0.824 RIGHT SHIFT HOLD MIN 0.840

SHIFT HOLD TOTAL 0.822 LEFT SHIFT HOLD MIN 0.837

DELAY MAX 0.801 RIGHT SHIFT HOLD TOTAL 0.808

HOLD STD 0.779 SHIFT HOLD MIN 0.807

LEFT SHIFT HOLD MIN 0.769 LEFT SHIFT HOLD TOTAL 0.792

RIGHT SHIFT HOLD MIN 0.766 SHIFT HOLD AVG 0.760

SHIFT HOLD MAX 0.748 LEFT SHIFTS 0.753

RIGHT SHIFT HOLD AVG 0.737 RIGHT SHIFT HOLD AVG 0.753

LEFT SHIFT HOLD AVG 0.731 LEFT SHIFT HOLD AVG 0.749

HOLD MAX 0.726 LEFT SHIFT HOLD MAX 0.747

RIGHT SHIFT HOLD MAX 0.702 RIGHT SHIFTS 0.733

Table 5.12: Feature Importance in Input Sequences

fifteen of the top twenty features in long password sequences and eleven out of twenty in

short password sequences. This indicates that the long password sequences designed to force

shift key behavior did indeed have an impact on the way sequences were classified relative

to the short password sequences. This is further supported by looking at the average mean

decrease in accuracy of the shift related attributes in the two types of sequences. Out of the

fifteen shift related features in the long password sequences, the average mean decrease in

accuracy was 0.810 whereas in 11 shift key attributes in short passwords this value averaged

0.796. These numbers further indicate a difference between the two password types.
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5.5 User Specific Voting Schemes

With what has been presented thus far, it is clear that a relationship exists between the

voting scheme and the performance measures considered. It should be noted that this trend

holds true “on the whole” but is not specific to individual users. Previously, it was suggested

that that voting scheme that best minimizes the EER for the performance measures across

all users fell at 0.55-0.45 imposter-genuine. Figure 5.1 shows the long password sequence

performance graphs for four individuals. The intersection of the FAR and FRR curves

indicates the EER for each user. Looking at these intersection points, we see the four users

all classified similarly relative to attainable EER’s. What is important to note is at which

Random Forest voting scheme the intersection takes place. There is a noticeable difference

in the optimal voting scheme with respect to minimization of the EER. It appears to range

from 0.25-0.75 through 0.8-0.2 across the four different users. This implies that a keystroke

dynamics biometric system would best be suited if it employs user specific matchers. Many

reasons can be put forth to explain this phenomenon, the most obvious of which is the

user’s typing ability. Although it cannot be ascertained from Figure 5.1, there is a notable

difference in the typing ability across the four user data set. However, it does not appear that

there is a consistent direct relationship between typing ability (speed) and optimal voting

scheme as the mapping is initially unclear and would contain many outliers. Appendix D

offers these same graphs for each user with both types of password sequences.
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Figure 5.1: Differing RF Voting Schemes for Optimization of EER Across Users

5.6 Per User System Performance

The previous section pointed out that users have different optimal voting schemes. Corollary

to this fact, the system did exhibit some variability in its ability to classify different users
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given a set voting scheme. Therefore, it would be beneficial to see how the system performed

based on the optimal voting scheme relative to the EER for each of the 41 users. Table 5.13

shows this system performance. This shows that the system delivers an EER under 5% for

Classification Performance Per User

Num Users

Password Type 0% ≥ EER > 5% 5% ≥ EER > 10% EER > 10%

Short 18 17 6

Long 29 9 3

Table 5.13: System Performance Per User

44% (18/41) of the users with respect to short passwords sequences. With the same <5%

EER criteria, long password sequences cover 71% user population (29/41). Once again, this

provides more support for the importance of shift-key behavior. If one is willing to accept

a 5% increase in EER, the coverage expands to 85% (35/41) and 93% (38/41) for short

and long password sequences. Currently, it is not known what causes the performance of

an individual user to rise above 10%. That having been said, there were no individuals for

whom the EER was significantly higher than 10%. Appendix D provides sets of graphs for

all users of both password types.

5.7 Overall System Performance

Combing what has already been done in individual sections, the overall system performance

can be measured in a number of ways. Traditionally, biometric systems are measured in

terms of a FAR / FRR ROC curve. Figure 5.2 shows this curve for the overall system with

respect to mean error rates. This figure illustrates that long passwords have an attainable

EER just under 5% and short passwords fall at approximately 7%. It also shows that the
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Figure 5.2: Overall System Performance ROC Curve
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only other classifier that can achieve a mean accuracy on par with Random Forests is Log-

itBoost at FAR and FRR rates of approximately 7% and 4% respectively. Table 5.14 shows

how this performance relates to password hardening. To consider the ability of our sys-

Password Hardening

FAR(%) FRR(%)

Password Type Before After Before After

Short 100 7 0 7

Long 100 5 0 5

Table 5.14: System Password Hardening Effect

tem to serve as a mechanism to increase password based authentication schemes we assume

that an imposter attempting unauthorized entry has obtained the targeted user’s password.

Therefore, it can be assumed that the FAR or penetration rate of the imposter will be 100%.

In other words, if imposter knows the targeted users credentials he will always be able to

type them in correctly in conventional password based systems. On the other hand, when

our keystroke dynamics biometric is used to augment the system, we increase the security

in terms of FAR by 93% and 95% respective to short and long passwords. These increases

are calculated by simply subtracting the keystroke dynamics FAR from the 100% pentration

with out the biometric augment. These significant increases in FAR performance come at a

relatively minor price as the associated increases in FRR are 7% and 5% in short and long

passwords. Therefore, there is only a small sacrifice in usability to achieve a large increase

in security. That having been said, one could further tailor this password hardening effect

in terms of FAR and FRR to his application specific security needs.

One final look into varying the Random Forests voting scheme solidifies to points that have

been supported throughout this chapter. One, complex password sequences involving shift-
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Figure 5.3: Classification Accuracy vs. Random Forests Voting Scheme

key behavior offer a noticeable improvement in performance (classification accuracy, FAR,

and EER) over short password sequences that do not require the extensive use of the shift

keys. Two, this phenomenon holds true over virtually the entire space of Random Forest

voting schemes tested. Figure 5.3 Throughout the course of the symmetrical arch formed

by plotting mean classification accuracy versus different Random Forest schemes the long

password sequences represented in red remain higher than the short password sequences

indicated by the blue curves.



Chapter 6

Discussion of Experimental Results

The results, although encouraging, do not come without caveats. The first notable one is

that input was gathered without taking error correction into consideration. This required

users to retype their username or password over if the delete or backspace key was hit during

an input sequence. Error correction could be added, but it seems it would certainly decrease

the accuracy of this keystroke dynamic based user authentication scheme as it relies on such

a small input sequence. This hypothesis is supported by the work of Monrose [21].

Related to the previous consideration, we also bring out the difference in user-friendliness

between short easy-to-understand passwords compared to somewhat longer much more non-

sensical randomly generated passwords that include special characters. This increased secu-

rity comes with a usability price. The decrease in usability may be justified by the increase

in trustworthiness of the authentication scheme. Furthermore, this decrease in usability is

arguably lower than that associated with augmentation through a traditional physiological
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biometric scheme as no new hardware is needed and collection of the biometric sample is

mostly transparent.

Another item to consider is the way we tested the system. To formulate ROC curves for

each individual, imposter data was gathered from all other users in the system. Clearly this

could not be easily accomplished in real-world systems. Imposter training data would either

have to be synthetically generated (which should be possible) or gathered by the group de-

ploying the system before the system was used. This could be avoided if user specific voting

thresholds were not applied but this does not appear to be a feasible alternative.

Intuitively this system can be considered remote and unsupervised. This is an extremely

attractive advantage but must be publicized carefully. If the enrollment process is unsuper-

vised, the system is only as good its ability to verify identity through other documentation

such as SSN’s and the “trusted” information that presumably is only known by the user

attempting enrollment. Although this may be a general problem that all authentication

schemes face, it is undeniable that human supervision can be used as a countermeasure to

decrease fraudulent enrollment in a system.

At a glance the system is taking a “live” biometric in that the user is typing during the

course of authentication process. As a result one might consider this characteristic a form

of “liveness detection”. Unfortunately, the system does not operate in this manner as the

client-side, server-side relationship still exists; collection of the keystroke data is indepen-

dent of server activity until the sequence is completed at which point the feature vector is
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transmitted to the server for matching / classification. Due to this fact, this system remains

vulnerable in the same way most biometric systems are; feature vectors could presumably be

forged and inserted at various points in the system. The assumed networked nature of the

system also renders it vulnerable to traditional network vulnerabilities such a session hijack-

ing and man-in-the-middle attacks [3]. These vulnerabilities are not specific to keystroke

dynamics or the proposed password hardening scheme. It simply must be clear that this

system does not eliminate these attack points.

Along the same lines, this study did not measure the ability of users to mimic other in-

dividuals typing behavior. Due to this fact, our imposter input can be characterized as

“zero-effort” attacks. Assuming a talented and properly motivated individual, all behavioral

biometric are susceptible to some degree of mimicry. It is not known to what extent our

system falls victim to this threat.

As one final consideration, assuming an individual has the ability to type to some degree,

the system theoretically does not seem to exude and Failure to Acquire (FTA). In practice

however, a small number of laptop keyboard configurations require odd control sequences

beyond the use of the shift-keys to generate various a small subset of the special symbols used

this study. This fact would require a real life deployment of the system to either rule out such

offending special symbols or include other control keys such as CTRL and ALT. Further-

more, an international extension of the this system would have to allow for non-QWERTY

keyboards.





Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this study, a web-based application was developed to acquire a large database to be used

to establish the viability of keystroke dynamics with usernames and passwords as a pos-

sible method of hardening a traditional user authentication scheme. The study was novel

in that shift-key behavior was included in the feature matching process. There seemed to

be significant performance difference between the eight letter lowercase English passwords

and twelve character randomly generated password which required shift-key behavior. The

long passwords sequences performed better across numerous performance tests and compar-

isons providing support for the hypothesis that shift-key behavior plays a significant role in

classification, especially in short input circumstances such as username and password. The

results may be considered unique in that the scope of the data tested currently outnumbers

what has been tested in previous studies. Performance results would most likely not be
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sufficient for a high security environment as a biometric system alone. That having been

said, it seems our algorithms offer an adequate improvement when taken as an unobtrusive

holistic approach merging password-based authentication with a behavioral biometric . Fur-

thermore, this system seems to excel where most biometric systems fail in terms of lacking

the need of supervision, location independence, decentralization, and replaceability. Based

on the results, we believe that users would be able to enroll in a system given proper written

instructions; thus, not requiring supervision. Use of the system can take place remotely

as opposed to having to travel to an access point. Furthermore, the remote access is not

costly in terms of added hardware as it can safely be assumed that all computer users have

keyboards. The nature of the system would not require overtly large server infrastructure as

the bulk of the processing is down on client computers outside the realm of system respon-

sibility. Finally, keystroke dynamics as a biometric is considered replaceable in the event of

compromise. Much like a voice recognition system, the feature template is changed when the

password or the passphrase are changed. Individuals are much less likely to be concerned

over losing information on how they type versus information about physical characteristics.

Also, “the way one types” is not extractable in terms of an adversaries’ ability to forcibly

aquire it, unlike other physiological biometrics. Although clearly the data set is does not

establish the scalability of the final product, it represents a start towards improving the

security of password systems that are so common in today’s IT based world.



7.2. Future Work 63

7.2 Future Work

This study could easily spawn more work down the road. It would be interesting to test

the system on a large user population, say at the order of tens of thousands to establish

scalability. It would also be interesting to determine how easily synthetic data could be

generated to supply the classification training process which requires user-specific, password

specific data. Along those lines, work could be extended to further customize user specific

matching parameters, as suggested by Jain and Ross [40]. Developing an independent mea-

sure of a user’s ability to acclimate himself to “hard” passwords would help to streamline the

enrollment process in an eventual real-world deployment. Further examination into user the

specific matching process would be beneficial in terms of performance analysis and possible

side effects. For instance, it may be possible to cluster individuals into typing categories

much in the same way fingerprints are categorized. Extending that idea leads one to ques-

tion whether or not username and password keystroke dynamics are feasible for identification

modes instead of simply verification.





Appendix A

Input Feature Descriptions

The following is a list of features make up the vector collected as input for each sequence

composed of a username and password.

1. USERID- An integer value that uniquely identifies the user from all others in the database.

2. TOTAL STROKES- An integer value indicating the total number of keystrokes within the sequence.

3. HOLD AVG- A decimal value indicating the average hold time in milliseconds of all keystrokes within the sequence.

4. HOLD STD- A decimal value indicating the standard deviation in milliseconds of all keystroke hold times within the

sequence.

5. HOLD MAX- A decimal value indicating the longest time in milliseconds that a key was held down within the

sequence.

6. HOLD MIN- A decimal value indicating the shortest time in milliseconds that a key was held down within the

sequence.

7. HOLD TOTAL- A decimal value indicating the total length of time all keystrokes were held down within the sequence.

8. TOTAL SHIFTS- An integer value indicating the total number of times either of the shift keys were typed.
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9. SHIFT HOLD AVG- A decimal value indicating the average hold time in milliseconds of all shift keystrokes within

the sequence.

10. SHIFT HOLD STD- A decimal value indicating the standard deviation in milliseconds of all shift keystroke hold

times within the sequence.

11. SHIFT HOLD MAX- A decimal value indicating the longest time in milliseconds that a shift key was held down

within the sequence.

12. SHIFT HOLD MIN- A decimal value indicating the shortest time in milliseconds that a shift key was held down

within the sequence.

13. SHIFT HOLD TOTAL- A decimal value indicating the total length of time all shift key keystrokes were held down

within the sequence.

14. LEFT SHIFTS- An integer value indicating the total number the left shift key was typed within the sequence.

15. LEFT SHIFT HOLD AVG- A decimal value indicating the average hold time in milliseconds of all left shift key

keystrokes within the sequence.

16. LEFT SHIFT HOLD STD- A decimal value indicating the standard deviation in milliseconds of all left shift key

keystroke hold times within the sequence.

17. LEFT SHIFT HOLD MAX- A decimal value indicating the longest time in milliseconds that the left shift key was

held down within the sequence.

18. LEFT SHIFT HOLD MIN- A decimal value indicating the shortest time in milliseconds that the left shift key was

held down within the sequence.

19. LEFT SHIFT HOLD TOTAL- A decimal value indicating the total length of time the left shift key was held down

within the sequence.

20. RIGHT SHIFTS- An integer value indicating the total number the left shift key was typed within the sequence.

21. RIGHT SHIFT HOLD AVG- A decimal value indicating the average hold time in milliseconds of all right shift key

keystrokes within the sequence.

22. RIGHT SHIFT HOLD STD- A decimal value indicating the standard deviation in milliseconds of all right shift

key keystroke hold times within the sequence.
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23. RIGHT SHIFT HOLD MAX- A decimal value indicating the longest time in milliseconds that the right shift key

was held down within the sequence.

24. RIGHT SHIFT HOLD MIN- A decimal value indicating the shortest time in milliseconds that the right shift key

was held down within the sequence.

25. RIGHT SHIFT HOLD TOTAL- A decimal value indicating the total length of time the left shift key was held

down within the sequence.

26. DELAY AVG- A decimal value indicating the average of the delays between each keystroke pair within the sequence.

27. DELAY STD- A decimal value indicating the standard deviation of the delays between each keystroke pair within

the sequence.

28. DELAY MAX- A decimal value indicating the longest delay between a keystroke pair within the sequence.

29. DELAY MIN- A decimal value indicating the shortest delay between a keystroke pair within the sequence.

30. DELAY TOTAL- A decimal value indicating the total delay between all keystroke pairs within the sequence.

31. LEFT SHIFT DELAY AVG- A decimal value indicating the average of the delays between each keystroke pair

involving the left shift key within the sequence.

32. LEFT SHIFT DELAY STD- A decimal value indicating the standard deviation of the delays between each keystroke

pair involving the left shift key within the sequence.

33. LEFT SHIFT DELAY MAX- A decimal value indicating the longest of the delays between a keystroke pair involving

the left shift key within the sequence.

34. LEFT SHIFT DELAY MIN- A decimal value indicating the shortest of the delays between a keystroke pair involving

the left shift key within the sequence.

35. LEFT SHIFT DELAY TOTAL- A decimal value indicating the total delay between all keystroke pairs involving

the left shift key within the sequence.

36. RIGHT SHIFT DELAY AVG- A decimal value indicating the average of the delays between each keystroke pair

involving the right shift key within the sequence.

37. RIGHT SHIFT DELAY STD- A decimal value indicating the standard deviation of the delays between each

keystroke pair involving the right shift key within the sequence.
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38. RIGHT SHIFT DELAY MAX- A decimal value indicating the longest of the delays between a keystroke pair

involving the right shift key within the sequence.

39. RIGHT SHIFT DELAY MIN- A decimal value indicating the shortest of the delays between a keystroke pair

involving the right shift key within the sequence.

40. RIGHT SHIFT DELAY TOTAL- A decimal value indicating the total delay between all keystroke pairs involving

the right shift key within the sequence.

41. TYPE G=genuine, I=Imposter- A character indicating what class the input sequence falls in.

It should be noted that all values having to do with hold times will necessarily be ≥ 0. With the exception of standard

deviation and delays do not have this requirement as any other feature having to do with delays may have a positive or negative

value.



Appendix B

Weka Parameters

The following is a table outlining the default parameters used by the this study when running machine learning algorithms

from Weka[27].
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OneR

Parameter Default Value

Minimum Bucket Size 6

NaiveBayes

Parameter Default Value

Use Kernel Estimator False

User Supervised Discretization False

VotedPerceptron

Parameter Default Value

Exponent 1

maxK 10000

numIterations 1

seed 1

LogitBoost

Parameter Default Value

Classifier DecisionStump

likelihoodThreshold -1.7976931348623157E308

numFolds 0

numIterations 10

numRuns 1

seed 1

shrinkage 1

useResampling False

weightThreshold 100



Appendix C

Random Forest Complete Voting

Scheme Results

The following set of tables represent the complete results for the 19 Random Forest voting schemes tested in our study.

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 903 4458 0.797 901 1851 0.487 2 2607 0.001

S Mean 22.024 108.732 0.784 21.976 45.146 0.486 0.049 63.585 0.002

L Total 870 4317 0.798 865 1846 0.469 5 2471 0.002

L Mean 21.220 105.293 0.783 21.098 45.024 0.469 0.122 60.268 0.003

Table C.1: Random Forest Overall Performance with 0.05-0.95 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 679 4458 0.848 673 1851 0.364 6 2607 0.002

S Mean 16.561 108.732 0.840 16.415 45.146 0.363 0.146 63.585 0.004

L Total 605 4317 0.860 597 1846 0.323 8 2471 0.003

L Mean 14.756 105.293 0.851 14.561 45.024 0.324 0.195 60.268 0.006

Table C.2: Random Forest Overall Performance with 0.10-0.90 Genuine Imposter Voting Scheme
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 543 4458 0.878 535 1851 0.289 8 2607 0.003

S Mean 13.244 108.732 0.873 13.049 45.146 0.289 0.195 63.585 0.004

L Total 445 4317 0.897 434 1846 0.235 11 2471 0.004

L Mean 10.854 105.293 0.890 10.585 45.024 0.235 0.268 60.268 0.009

Table C.3: Random Forest Overall Performance with 0.15-0.85 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 449 4458 0.899 434 1851 0.234 15 2607 0.006

S Mean 10.951 108.732 0.896 10.585 45.146 0.234 0.366 63.585 0.008

L Total 349 4317 0.919 335 1846 0.181 14 2471 0.006

L Mean 8.512 105.293 0.914 8.171 45.024 0.182 0.341 60.268 0.011

Table C.4: Random Forest Overall Performance with 0.20-0.80 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 369 4458 0.917 346 1851 0.187 23 2607 0.009

S Mean 9.000 108.732 0.915 8.439 45.146 0.187 0.561 63.585 0.012

L Total 279 4317 0.935 263 1846 0.142 16 2471 0.006

L Mean 6.805 105.293 0.932 6.415 45.024 0.143 0.390 60.268 0.012

Table C.5: Random Forest Overall Performance with 0.25-0.75 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 327 4458 0.927 295 1851 0.159 32 2607 0.012

S Mean 7.976 108.732 0.924 7.195 45.146 0.159 0.780 63.585 0.017

L Total 227 4317 0.947 201 1846 0.109 26 2471 0.011

L Mean 5.537 105.293 0.945 4.902 45.024 0.109 0.634 60.268 0.019

Table C.6: Random Forest Overall Performance with 0.30-0.70 Genuine Imposter Voting Scheme
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 288 4458 0.935 247 1851 0.133 41 2607 0.016

S Mean 7.024 108.732 0.933 6.024 45.146 0.133 1.000 63.585 0.021

L Total 201 4317 0.953 169 1846 0.092 32 2471 0.013

L Mean 4.902 105.293 0.952 4.122 45.024 0.092 0.780 60.268 0.023

Table C.7: Random Forest Overall Performance with 0.35-0.65 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 257 4458 0.942 197 1851 0.106 60 2607 0.023

S Mean 6.268 108.732 0.939 4.805 45.146 0.106 1.463 63.585 0.033

L Total 186 4317 0.957 141 1846 0.076 45 2471 0.018

L Mean 4.537 105.293 0.955 3.439 45.024 0.076 1.098 60.268 0.029

Table C.8: Random Forest Overall Performance with 0.40-0.60 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 237 4458 0.947 166 1851 0.090 71 2607 0.027

S Mean 5.780 108.732 0.944 4.049 45.146 0.090 1.732 63.585 0.038

L Total 167 4317 0.961 106 1846 0.057 61 2471 0.025

L Mean 4.073 105.293 0.958 2.585 45.024 0.057 1.488 60.268 0.038

Table C.9: Random Forest Overall Performance with 0.45-0.55 Genuine Imposter Voting Scheme
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 230 4458 0.948 138 1851 0.075 92 2607 0.035

S Mean 5.610 108.732 0.945 3.366 45.146 0.075 2.244 63.585 0.050

L Total 153 4317 0.965 81 1846 0.044 72 2471 0.029

L Mean 3.732 105.293 0.962 1.976 45.024 0.044 1.756 60.268 0.043

Table C.10: Random Forest Overall Performance with 0.50-0.50 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 230 4458 0.948 109 1851 0.059 121 2607 0.046

S Mean 5.610 108.732 0.946 2.659 45.146 0.059 2.951 63.585 0.063

L Total 149 4317 0.965 59 1846 0.032 90 2471 0.036

L Mean 3.634 105.293 0.962 1.439 45.024 0.032 2.195 60.268 0.055

Table C.11: Random Forest Overall Performance with 0.55-0.45 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 238 4458 0.947 86 1851 0.046 152 2607 0.058

S Mean 5.805 108.732 0.942 2.098 45.146 0.046 3.707 63.585 0.078

L Total 151 4317 0.965 43 1846 0.023 108 2471 0.044

L Mean 3.683 105.293 0.961 1.049 45.024 0.023 2.634 60.268 0.067

Table C.12: Random Forest Overall Performance with 0.60-0.40 Genuine Imposter Voting Scheme
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 260 4458 0.942 68 1851 0.037 192 2607 0.074

S Mean 6.341 108.732 0.937 1.659 45.146 0.037 4.683 63.585 0.099

L Total 171 4317 0.960 29 1846 0.016 142 2471 0.057

L Mean 4.171 105.293 0.955 0.707 45.024 0.016 3.463 60.268 0.088

Table C.13: Random Forest Overall Performance with 0.65-0.35 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 291 4458 0.935 52 1851 0.028 239 2607 0.092

S Mean 7.098 108.732 0.929 1.268 45.146 0.028 5.829 63.585 0.125

L Total 215 4317 0.950 24 1846 0.013 191 2471 0.077

L Mean 5.244 105.293 0.943 0.585 45.024 0.013 4.659 60.268 0.120

Table C.14: Random Forest Overall Performance with 0.70-0.30 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 329 4458 0.926 38 1851 0.021 291 2607 0.112

S Mean 8.024 108.732 0.919 0.927 45.146 0.021 7.098 63.585 0.151

L Total 249 4317 0.942 18 1846 0.010 231 2471 0.093

L Mean 6.073 105.293 0.935 0.439 45.024 0.010 5.634 60.268 0.140

Table C.15: Random Forest Overall Performance with 0.75-0.25 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 403 4458 0.910 26 1851 0.014 377 2607 0.145

S Mean 9.829 108.732 0.902 0.634 45.146 0.014 9.195 63.585 0.189

L Total 294 4317 0.932 11 1846 0.006 283 2471 0.115

L Mean 7.171 105.293 0.924 0.268 45.024 0.006 6.902 60.268 0.171

Table C.16: Random Forest Overall Performance with 0.80-0.20 Genuine Imposter Voting Scheme
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Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 494 4458 0.889 17 1851 0.009 477 2607 0.183

S Mean 12.049 108.732 0.879 0.415 45.146 0.009 11.634 63.585 0.243

L Total 389 4317 0.910 8 1846 0.004 381 2471 0.154

L Mean 9.488 105.293 0.900 0.195 45.024 0.004 9.293 60.268 0.224

Table C.17: Random Forest Overall Performance with 0.85-0.15 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 628 4458 0.859 8 1851 0.004 620 2607 0.238

S Mean 15.317 108.732 0.849 0.195 45.146 0.004 15.122 63.585 0.304

L Total 525 4317 0.878 6 1846 0.003 519 2471 0.210

L Mean 12.805 105.293 0.867 0.146 45.024 0.003 12.659 60.268 0.296

Table C.18: Random Forest Overall Performance with 0.90-0.10 Genuine Imposter Voting Scheme

Num Num

Data Classif. Num Classif. False Imp. False Gen.

Set Errors Inst. Acc. Accepts Inst. FAR Rejects Inst. FRR

S Total 896 4458 0.799 5 1851 0.003 891 2607 0.342

S Mean 21.854 108.732 0.789 0.122 45.146 0.003 21.732 63.585 0.418

L Total 734 4317 0.830 2 1846 0.001 732 2471 0.296

L Mean 17.902 105.293 0.819 0.049 45.024 0.001 17.854 60.268 0.397

Table C.19: Random Forest Overall Performance with 0.95-0.05 Genuine Imposter Voting Scheme



Appendix D

User Graphs

The following section provides all user graphs for both short and long password sequence types. The titles are labeled by

password type and userid. Each user has four graphs.
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