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Abstract 

Inhibiting the Cannabinoid Catabolic Enzyme MAGL to Potentiate the Anti-Arthritic 

Properties of the Synthetic Glucocorticoid Dexamethasone 

Sara R. Nass 

 Rheumatoid arthritis (RA, Table 1) is the most common type of inflammatory arthritis, 

and is characterized by swelling, inflammation, pain, and destruction of the synovial joints (i.e., 

knees, elbows, wrists, hips, and fingers). Glucocorticoid receptor agonists are a type of steroid 

hormone and are among the most common treatments for inflammatory arthritis because of their 

powerful anti-inflammatory effects. However, harmful side effects are associated with these 

glucocorticoids (GCs), including increasing patients’ vulnerability to infections. Cannabinoids 

(i.e., cannabis-like signaling molecules) exert anti-inflammatory and analgesic effects with 

limited side effects compared to traditional immunosuppressants making them excellent targets 

for the development of new arthritic therapeutics. For example, in mice, selective inhibition of 

the cannabinoid enzyme monoacylglycerol lipase (MAGL) reduces acute inflammatory pain and 

edema. Dual administration of drugs are promising novel treatments because it allows lower 

doses of drugs to attenuate pain and inflammation, while limiting side effects. Combined 

administration of an endocannabinoid enzyme inhibitor and nonsteroidal anti-inflammatory drug 

reduces neuropathic and acute pain. Similarly, inflammatory arthritis is reduced by a GC 

administered with an anti-inflammatory cytokine (i.e., immune system signaling molecule) in 

mice. Given the anti-inflammatory properties of MAGL inhibition, it is plausible that MAGL 

inhibition will increase the analgesic and anti-inflammatory effects of a steroid treatment, 

perhaps reducing the negative side effects of the steroid. Therefore, the goals of the present 

studies were to determine the analgesic and anti-inflammatory efficacy of (1) the MAGL 

inhibitor JZL184; (2) the glucocorticoid steroid dexamethasone (DEX); and (3) the combined 

administration of both JZL184 and DEX. To these ends, we used the collagen-induced arthritis 

(CIA) mouse model. We found that, although both JZL184 and DEX significantly attenuated 

proinflammatory cytokine levels in the paws of CIA mice, only DEX decreased pain-related 

behaviors and paw swelling. Combined administration of a sub-effective dose both drugs was 

ineffective overall.



 

iii 
 

Table of Contents 

Non-standard Abbreviations............................................................................................................1 

Introduction......................................................................................................................................2 

 The Immune System............................................................................................................2 

 Inflammatory Response in Rheumatoid Arthritis................................................................5 

Current Rheumatoid Arthritis Treatments...........................................................................6 

 Inflammatory Arthritis Model..............................................................................................8 

 The Endocannabinoid System..............................................................................................9 

 Cannabinoids in Inflammatory Arthritis............................................................................11 

 Combination Treatments....................................................................................................12 

Methods..........................................................................................................................................13 

 Animals..............................................................................................................................13 

 Collagen Induced Arthritis (CIA) Inflammatory Arthritis.................................................13 

 Paw Edema and Clinical Scoring.......................................................................................14 

 Behavioral Assessements...................................................................................................15 

 Cytokine and Myeloperoxidase Enzyme-Linked Immunosorbent Assay.........................17 

 Drugs..................................................................................................................................18 

 Statistical Analyses............................................................................................................18 

 Experimental Design..........................................................................................................19 



 

iv 
 

Results............................................................................................................................................24 

Discussion......................................................................................................................................31 

Acknowledgements........................................................................................................................42 

References......................................................................................................................................43 

Figures............................................................................................................................................58 

Appendix A. Grip strength as a measure of CIA-induced loss of paw function...........................68 

Appendix B. Anti-arthritic effects of CB2 agonism in CIA and CFA-induced arthritis models...72 

Appendix C. Collagen Antibody-induced Arthritis Model...........................................................76



Cannabinoid and Steroid Interaction in Arthritis  1 
 

 

 

Abbreviation Full Term 

2-AG 2-arachidonoylglycerol  

anandamide N-arachidonoylethanolamine  

CB1 cannabinoid receptor one 

CB2 cannabinoid receptor two 

CFA complete Freund’s adjuvant  

CIA  collagen induced arthritis 

CNS central nervous system 

DEX dexamethasone 

DMARDs disease-modifying antirheumatic drugs  

FAAH fatty acid amide hydrolase  

FLS fibroblast-like synoviocytes 

GCs glucocorticoids 

IFA incomplete Freund’s adjuvant 

IL interleukin 

IL-1β interleukin-1beta 

IL-10 interleukin-10 

IL-17 interleukin-17 

IL-6 interleukin-6 

MAGL monoacylglycerol lipase  

MHC major histocompatibility complex  

MMP matrix metalloproteinase  

MPO myeloperoxidase 

RA rheumatoid arthritis 

Th1 Type 1 T helper cells  

TH17 T helper 17 cells 

THC ∆9-tetrahydrocannabinol 

TNFα tumor necrosis factor alpha 

Treg regulatory T cells 

 

Table 1. Non-standard abbreviations. 
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Introduction 

 Rheumatoid Arthritis (RA) is a debilitating chronic joint disorder that causes mood 

disturbances and decreases activity. The most common features are swelling, inflammation, pain, 

and erosion of the synovial joints (Firestein, 2003). RA pain is primarily induced by chronic 

inflammation, and has a higher correlation with functional disability compared to joint 

destruction alone, indicating pain is a greater predictor for RA outcome (Sokka, Kankainen, & 

Hannonen, 2000). Chronic inflammation and tissue damage in RA is causes by a failure of the 

host's immune system to discriminate between self and non-self tissue, thus RA is an 

autoimmune disorder (Lindstrom & Robinson, 2010). The following sections cover a primer on 

the immune system and the inflammatory response as it relates to RA, followed by background 

on the endocannabinoid system, and rationale for combined targeting of both immune and 

cannabinoid systems to combat inflammatory arthritis in the proposed mouse model. 

The Immune System 

Although the immune system protects the host from pathogens (e.g., viruses and 

bacteria), an inflammatory response can also be initiated against self-tissue (i.e., autoimmunity) 

or non-threatening environmental stimuli (e.g., allergy). The two main branches of the immune 

system are innate and adaptive immunity. Innate immunity is non-specific and mounts a swift 

immune response in a consistent manner, even after multiple presentations of the same pathogen 

(Abbas, Litchman, & Pober, 2002). In contrast, a specific response to the presence of pathogens 

is developed by adaptive (i.e., acquired) immunity. A distinct response and memory for 

individual pathogens is acquired, so a quicker and more intense response can be mounted after 

repeat exposure. Adaptive immunity is essential in vaccinations, but also autoimmune disorders 

such as RA. After immunization with a weakened or killed pathogen, adaptive immunity 
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develops memory, causing a more powerful immune response when the pathogen is encountered 

in the future (Abbas et al., 2002). The adaptive immune system is normally nonreactive to tissues 

originating from the host. However, this tolerance to self-tissue can break down and lead to 

autoimmunity (Lindstrom & Robinson, 2010).  

 Although there are many different cells involved in the inflammatory response, only the 

cells most relevant to the proposed project will be discussed here (see Figure 1). The short-lived 

innate leukocytes (i.e., white blood cells), neutrophils, are the first cells to be activated during the 

inflammatory response and attract macrophages and dendritic cells to the site of inflammation 

(Nathan, 2006). Neutrophils express a substantial amount of the enzyme myeloperoxidase 

(MPO), which can be analyzed as an indirect measure of neutrophil activity (Al-Abd et al., 

2014). Monocytes are immature innate leukocytes that circulate in the blood and differentiate 

into macrophages when recruited to inflamed tissue (Abbas et al., 2002). Macrophages release 

pro-inflammatory cytokines (i.e., the “hormones” of the immune system), and engage in 

phagocytosis (i.e., engulfing harmful molecules) and antigen presentation (Boissier, Semerano, 

Challal, Saidenberg-Kermanac'h, & Falgarone, 2012). Dendritic cells bridge the gap between 

innate and adaptive immunity by engulfing antigens (i.e., substances that induce antibody 

production) and presenting them via major histocompatibility complex (MHC) class II 

molecules to T cells of the adaptive immune system. Activated helper CD4+T cells then migrate 

from lymph nodes to the site of inflammation. The Type 1 T helper (Th1) and T helper 17 

(Th17) cell subtypes are considered proinflammatory and activate leukocytes; whereas 

regulatory T cells (Tregs) release anti-inflammatory cytokines (Rabb, 2002). B cells of the 

adaptive immune system release antibodies that bind to antigens (Rabb, 2002).  
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 Cytokines are signaling molecules that modulate the immune response. Cytokines are 

pleiotropic (i.e., activate a variety of leukocytes) and redundant (i.e., different cytokines have 

similar effects). Proinflammatory cytokines stimulate leukocyte activation, to eliminate antigens 

and synthesize more cytokines. The pro-inflammatory cytokines tumor necrosis factor alpha 

(TNFα) and interleukin-1beta (IL-1β) are mainly produced by macrophages and stimulate 

leukocytes; whereas interleukin-17A (IL-17A) is produced by Th17 cells and induces 

proinflammatory cytokine production (Boissier et al., 2012; Shahrara, Huang, Mandelin, & Pope, 

2008). The proinflammatory cytokine interleukin-6 (IL-6) is released from a variety of 

 

Figure 1. Schematic drawing of the immune response in RA. During RA pathogenesis immune 

cells migrate to the joint synovium. Neutrophils are the first cells recruited to the site of 

inflammation. Macrophages proliferate in the synovium to ingest foreign bodies and produce 

proinflammatory cytokines (e.g., IL-1β, TNFα, & IL-6). Cytokines are signaling molecules that 

mediate inflammation. Dendritic cells present self-antigens to T cells that migrate from the 

lymph nodes into the synovium. T cells activate leukocytes and also produce proinflammatory 

cytokines (e.g., IL-17). The anti-inflammatory cytokine IL-10 is also produced by T cells, but 

there is an imbalance in favor of pro-inflammatory cytokines. B cells produce autoantibodies 

against self-tissue. The immune cells in the synovium form a pannus (i.e., abnormal layer of 

tissue) that leads to erosion of cartilage and eventually bone damage. 
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leukocytes and induces antibody production (Boissier et al., 2012). Some cytokines have 

predominantly anti-inflammatory effects. For example, the anti-inflammatory cytokine 

interleukin-1 (IL-10) is produced by Treg cells and reduces inflammation and regulates the 

inflammatory response, helping return the host to homeostasis after pathogen elimination (Chen 

et al., 2012).  

Inflammatory Response in Rheumatoid Arthritis  

 Although the exact etiology of RA is not well understood, the progression of 

inflammation involves the innate and adaptive immune systems (see Figure 1). The synovium 

(i.e., the soft tissue lining of synovial joints, such as knuckles) is the main site of inflammation 

and tissue destruction in RA (Smith, 2011). Genetic susceptibility to RA is associated with 

specific variations of the genes that encode for MHC class II molecules expressed on antigen 

presenting cells (e.g., dendritic cells and macrophages) (Roudier, 2006). There is an increase in 

activated macrophages within the RA synovium that release pro-inflammatory cytokines (e.g., 

TNFα, IL-1β, and IL-6) (McInnes & Schett, 2011). During RA pathogenesis, self-tissues are 

presented by MHC class II molecules on dendritic cells and macrophages to helper T cells. 

Within the synovium and blood of RA patients, proinflammatory Th1 and Th17 helper T cell 

subtypes increase in number, while anti-inflammatory Treg helper T cells decrease (Chen et al., 

2012; Shahrara et al., 2008). Immune memory develops when proinflammatory cytokines 

stimulate cells to produce autoantibodies (e.g., rheumatoid factor) against self-tissue, resulting in 

further inflammation in the synovium (Takemura, Klimiuk, Braun, Goronzy, & Weyand, 2001). 

Thus, the initial innate immune response to self-tissue becomes an acquired immune response to 

self-tissue that generally targets tissues in the synovial joints. 
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 Within the RA synovium there is an abundance of the proinflammatory cytokines TNFα, 

IL-1β, IL-6, and IL-17 (McInnes & Schett, 2007; Shahrara et al., 2008). These cytokines are also 

expressed in the serum of RA patients, but not healthy volunteers, indicating an upregulation of 

proinflammatory cytokines throughout the body (Chen et al., 2012). The presence of IL-10 in 

RA serum and joints indicates a failure of the immune system to keep RA inflammation in check 

(Chen et al., 2012). Proinflammatory cytokines induce inflammatory pain by decreasing 

nociceptor (i.e., free nerve ending that acts as a receptor for pain) activation threshold (Kidd & 

Urban, 2001). 

 In addition to leukocytes, fibroblast-like synoviocytes (FLS) are mesenchymal cells that 

proliferate and adhere to the cartilage in RA joints. FLS activated by TNFα and IL-1β 

aggressively destroy RA joints by releasing more proinflammatory cytokines and matrix 

metalloproteinase (MMPs) that degrade the cartilage extracellular matrix (Karouzakis, Neidhart, 

Gay, & Gay, 2006). Chronic inflammation and the release of cartilage degrading MMPs causes 

the synovium to become hyperplastic and develop pannus (i.e., an abnormal tissue layer), 

eventually leading to cartilage destruction and bone erosion (Karouzakis et al., 2006; McInnes & 

Schett, 2011).  

Current Rheumatoid Arthritis Treatments 

 Reducing RA symptoms typically involves decreasing joint inflammation and the 

resulting pain perception. Immunosuppressants, including disease-modifying antirheumatic 

drugs (DMARDs), glucocorticoids (GCs), and biologic therapies are the most common 

pharmacological treatments used to slow RA progression (Singh et al., 2016). However, 

immunosuppressants can induce aversive side effects, and patients often experience pain despite 
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improvement in inflammation (Lee, 2013). For example, DMARDs, such as methotrexate reduce 

pain in addition to inflammation, but need to be administered early to exert analgesic effects. 

Efficacy of DMARDs as analgesics decreases when introduced even just twelve months after 

diagnosis (Nell et al., 2004). Biologic therapies suppress specific components of the immune 

system. However, they are associated with higher annual healthcare expenditure compared to 

other immunosuppressants, and in some patients are ineffective at slowing the progression of 

joint damage or reducing symptoms (Walsh & McWilliams, 2012). 

 Steroids are clinically useful at quickly reducing inflammation and associated pain, but 

can induce harmful metabolic side effects (Singh et al., 2016). GCs are steroid hormones that are 

produced from cholesterol in the cortex of the adrenal glands. GCs bind to cytosolic GC 

receptors within cells to regulate gene expression. Steroids decrease immune cell recruitment 

through inhibition of the transcription of genes that encode proinflammatory cytokines (Coutinho 

& Chapman, 2011). In peripheral blood mononuclear cells taken from RA patients, GCs inhibit 

the production of the proinflammatory cytokines TNFα, IL-1β, IL-6, and IL-17 (Colin et al., 

2010; Schlaghecke, Beuscher, Kornely, & Specker, 1994). Due to their potent anti-inflammatory 

effects, synthetic GCs such as prednisone are effective at treating RA and other inflammatory 

diseases. However, GCs also activate expression of genes involved in metabolic processes 

(Coutinho & Chapman, 2011). Therefore, long term use increases the risk of serious aversive 

effects, including adrenal insufficiency, osteoporosis, diabetes, and cardiovascular risk 

(Ravindran, Rachapalli, & Choy, 2009). Due to the aforementioned side effects, GCs are mainly 

administered at low doses for maintenance therapy, or at high doses for short term use to reduce 

inflammation during “flare-ups” (J. F. Ferreira, Ahmed Mohamed, & Emery, 2016). Although 

immunosuppressive treatments are effective at slowing disease progression they can lead to 



Cannabinoid and Steroid Interaction in Arthritis  8 
 

 

serious side effects because they dampen the immune response. The main obstacle in 

immunosuppressant use is the increased susceptibility to infections, such as tuberculosis and 

hepatitis (Furst, 2010). 

Inflammatory Arthritis Model 

 Preclinical animal models of inflammatory arthritis are used to study RA mechanisms 

and treatments. The collagen-induced arthritis (CIA) model of inflammatory arthritis is the most 

extensively used animal model to research the pathogenesis of RA progression and potential 

novel treatments (Brand, Latham, & Rosloniec, 2007; Williams, Feldmann, & Maini, 1992). CIA 

is induced by immunizing mice with a mixture of type II collagen and complete Freund’s 

adjuvant (CFA) (Brand et al., 2007; Kinsey, Naidu, Cravatt, Dudley, & Lichtman, 2011b). Mice 

will develop anti-collagen antibodies and three to seven weeks after the initial immunization 

swelling and redness develop in one or more paws (Brand et al., 2007). Although the 

development of CIA is accelerated compared to RA, the pathogenesis of both is perpetuated by 

synovial infiltration of neutrophils as measured by the enzyme myeloperoxidase (MPO) (Al-Abd 

et al., 2014), autoreactive lymphocytes (i.e., T cells and B cells) (Seki et al., 1988; Svensson, 

Jirholt, Holmdahl, & Jansson, 1998), activation of macrophages and FLS (Holmdahl, Tarkowski, 

& Jonsson, 1991; Nishioku et al., 2012), and increased proinflammatory cytokine production 

(e.g., TNFα, IL-1β, and IL-6) (Rioja, Bush, Buckton, Dickson, & Life, 2004). Similar to RA, the 

inflammatory response and synovial pannus in CIA eventually leads to cartilage destruction and 

joint damage (Asquith, Miller, McInnes, & Liew, 2009; Brand et al., 2007). Thus, CIA and 

human inflammatory arthritis are mechanistically linked. 
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The Endocannabinoid System 

 Cannabinoid agonists, such as ∆
9
-tetrahydrocannbinol (THC), the main psychoactive 

component of Cannabis, bind to and activate the G-protein-coupled receptors, cannabinoid 

receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Mechoulam & Parker, 2013). CB1 mediates 

the central nervous system (CNS) effects of cannabinoids (e.g., pain, hypothermia, and cognitive 

and behavioral deficits) and is expressed throughout the body, including in the synovium of RA 

patients and on FLS (Crowe, Nass, Gabella, & Kinsey, 2014; Gui et al., 2014; Richardson et al., 

2008). On the other hand, CB2 is expressed mainly on immune cells, but is also expressed at low 

levels in the CNS, including on activated microglia (i.e., the macrophages of the CNS) (Cabral, 

Raborn, Griffin, Dennis, & Marciano-Cabral, 2008). In the RA synovium, CB2 is expressed on 

macrophages, T cells, and B cells, as well as FLS (Fukuda et al., 2014; Gui et al., 2014; Selvi et 

al., 2008). The presence of cannabinoid receptors in RA joints presents a possible target for 

novel anti-inflammatory and analgesic treatments. 

 One of the main mechanisms of cannabinoid modulation of inflammation is the 

regulation of cytokines. For example, THC attenuates the release of the pro-inflammatory 

cytokines IL-6 and TNFα in vitro from macrophages stimulated by the bacterial endotoxin 

lipopolysaccharide (Chang, Lee, & Lin, 2001; Fischer-Stenger, Updegrove, & Cabral, 1992). 

FLS cultured from RA synovial tissue and stimulated with the pro-inflammatory cytokines TNFα 

or IL-1β, produce and release the pro-inflammatory cytokine IL-6. Pan cannabinoid agonists, 

such as WIN-55,212-2 and CP55940 (Lowin, Pongratz, & Straub, 2016; Selvi et al., 2008), as 

well as the selective CB2 agonists, HU-308 and JWH133 (Fukuda et al., 2014; Gui et al., 2014), 

attenuate the secretion of IL-6 from stimulated FLS. Similarly, the endogenous cannabinoid, 

anandamide also attenuates TNFα stimulated FLS production of IL-6 and IL-8 (Lowin, Apitz, 
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Anders, & Straub, 2015). These data suggest that cannabinoids may reduce RA inflammation by 

attenuating the release of pro-inflammatory cytokines from FLS in the synovium. 

Many exogenous cannabinoid agonists have undesirable behavioral and cognitive effects, 

including deficits in attention, memory, and motor function. Furthermore, chronic administration 

can lead to tolerance and abuse (Mechoulam & Parker, 2013). One way to bypass the abuse 

potential and psychomimetic side effects of cannabinoid agonists is to target the endogenous 

cannabinoid (i.e., endocannabinoid) system. The two major endocannabinoids, N-

arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), are synthesized 

de novo from phospholipid precursors, and bind to and activate both cannabinoid receptors 

(Mechoulam & Parker, 2013). Within the CNS, 2-AG is more abundant than anandamide, and 

acts as a full agonist at the CB1 and CB2 receptors (Ahn, McKinney, & Cravatt, 2008). 2-AG is 

also present in the synovium of RA patients and throughout other areas of the body, including 

the spleen (i.e., lymphoid organ important in the immune system) (Hillard, 2000; Richardson et 

al., 2008). Monoacylglycerol lipase (MAGL) is the predominant catabolic enzyme for 2-AG, 

and metabolizes 2-AG into glycerol and arachidonic acid (Blankman, Simon, & Cravatt, 2007). 

Pharmacological inhibition of MAGL, for example by the highly selective MAGL inhibitor 

JZL184, increases 2-AG systemically (Long et al., 2009). JZL184 attenuates acute inflammatory 

pain and edema induced by injecting the seaweed extract carrageenan (Ghosh et al., 2012). 

However, there are no published reports on the effects of MAGL inhibition in chronic 

inflammatory pain models, such as arthritis. 
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Cannabinoids in Inflammatory Arthritis 

 Although cannabinoids are anti-inflammatory and analgesic with limited side effects 

compared to traditional immunosuppressants, research focused on the effects of cannabinoids in 

chronic inflammatory arthritis in vivo is limited. The oromucosal mouth spray Sativex, which 

contains a mixture of the Cannabis extracts THC and cannabidiol, decreases self-reports of RA-

induced pain in humans (Blake, Robson, Ho, Jubb, & McCabe, 2006). In the preclinical CIA 

model, repeated administration of cannabidiol, or its synthetic cannabinoid derivatives, decreases 

paw swelling and cartilage destruction (Haj et al., 2015; Malfait et al., 2000; Sumariwalla et al., 

2004). Cannabidiol also attenuates the production of TNF-α from CIA synovial cells (Malfait et 

al., 2000). Similarly, CIA-induced inflammation, cartilage degradation, and bone erosion is also 

attenuated by the repeated administration of the selective CB2 agonists JWH133 and HU-308 

(Fukuda et al., 2014; Gui, Liu, Liu, Su, & Dai, 2015).  

In addition to synthetic cannabinoid agonists, there is evidence that the endocannabinoid 

system modulates CIA. Just as MAGL catabolizes 2-AG, fatty acid amide hydrolase (FAAH) 

catabolizes the other endocannabinoid, anandamide. FAAH inhibition or genetic deletion 

increases tissue levels of anandamide. Genetic deletion of FAAH or repeated administration of 

the FAAH inhibitors URB597 or JNJ1661010 attenuates clinical signs of arthritis, and genetic 

deletion of FAAH attenuates joint damage in mice subjected to CIA (Kinsey et al., 2011b; Lowin 

et al., 2015). Interestingly, the FAAH inhibitor URB597 or genetic deletion of FAAH also 

reduces CIA-induced thermal hyperalgesia (i.e., hypersensitivity to noxious heat) (Kinsey et al., 

2011b). These data from human and animal studies suggest that endocannabinoids attenuate 

inflammatory joint pain and overt signs of joint inflammation. 
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Combination Treatments  

 In contrast to the classic approach of targeting a disease with a single drug, combined 

administration of multiple drugs offers several advantages. Combination therapies may maintain 

analgesic and anti-inflammatory efficacy by using lower doses of each drug, thereby decreasing 

the negative side effects (van Laar et al., 2012). In addition, chronic pain is often induced by 

multiple mechanisms. Although inflammation is the main perpetrator of RA pain, many patients 

also develop central sensitization, an increase in CNS pain pathway activity that causes 

hypersensitivity (Lee, 2013). Therefore, addressing multiple targets may increase the efficacy of 

the drug regimen. 

 The synthetic glucocorticoid receptor agonist dexamethasone (DEX) is used in 

preclinical research and reduces inflammation in the CIA model (Inglis et al., 2007a). A 

combination of DEX and the anti-inflammatory cytokine IL-4 attenuates CIA-induced paw 

inflammation (Kang et al., 2000; Kawalkowska et al., 2016). Interestingly, the combination of 

DEX and IL-4 also prevents the resurgence of CIA-induced paw swelling after treatment is 

terminated, indicating combination therapies may limit the need for long term use of 

glucocorticoids (GCs), thereby reducing undesirable side effects (Kawalkowska et al., 2016). 

Thus, there is evidence to support the idea that combining therapeutics with GCs may also 

reduce pain and inflammation in models of inflammatory arthritis with increased efficacy and 

decreased side effects. Endocannabinoid catabolic enzyme inhibition attenuates hyperalgesia and 

clinical signs of arthritis in the CIA model (Kinsey et al., 2011b), and the synthetic 

glucocorticoid receptor agonist DEX attenuates CIA-induced inflammation (Inglis et al., 2007a). 

The present study was designed to determine the analgesic and anti-inflammatory efficacy of (1) 

the MAGL inhibitor JZL184; (2) the glucocorticoid steroid dexamethasone (DEX); and (3) the 
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combined administration of both JZL184 and DEX. Our overall goal was to ascertain whether 

pain and inflammation caused by inflammatory arthritis are further reduced by targeting both 

glucocorticoid and cannabinoid receptors than by targeting either receptor system alone. 

Methods 

Animals 

Subjects were 226 male DBA/1J (Jackson Laboratory, Bar Harbor, ME) mice 9-12 weeks 

old at the start of the experiment. Males were chosen because multiple reports (Holmdahl, 

Jansson, & Andersson, 1986; Jansson & Holmdahl, 2001; Nilsson, Andren, Diaz de Stahl, & 

Kleinau, 2009) indicate that female mice are protected from collagen induced arthritis and rarely 

develop arthritis. Mice were housed 3-5 per cage in a temperature (20-22°C) and humidity 

controlled, AAALAC accredited facility, with ad libitum access to food and water, on a 12:12 

light:dark cycle. The Institutional Animal Care and Use Committee at West Virginia University 

approved all the experimental protocols (14-1007). 

Collagen Induced Arthritis (CIA) Inflammatory Arthritis 

 A timeline of the treatments is illustrated in Figure 2. Mice were anesthetized with 

isoflurane (Phoenix Pharmaceuticals, Burlingame, CA), and approximately 100 µl of an 

emulsion of bovine type II collagen (2 mg/ml), dissolved in 0.05 M acetic acid, in an equal 

volume of CFA was injected intradermally into the tail. Twenty-one days later (Brand et al., 

2007; Impellizzeri et al., 2013), mice were given a secondary "booster" exposure to the collagen 

preparation, in an equal volume of incomplete Freund’s adjuvant (IFA), slightly proximal from 

the first injection (Brand et al., 2007). Control mice were administered an emulsion of IFA and 

acetic acid, without collagen, at both exposures (Brand et al., 2007). The difference between 
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CFA and IFA is that CFA contains heat-inactivated bacteria, to cause an innate immune response 

at the injection site. The CFA in the proposed experiment consisted of M. tuberculosis (4 mg/ml) 

(Becton, Dickinson and Company, Franklin Lakes, NJ) suspended into 85% paraffin oil (Fisher 

Scientific, Pittsburgh, PA) and 15% mannide monooleate (Fisher Scientific, Pittsburgh, PA) 

(Brand et al., 2007).   

 At the conclusion of the experiments, mice were humanely euthanized and hind limb 

tissue were collected, snap frozen in liquid nitrogen, and stored at -80°C until assay.  

Paw edema and clinical scoring 

After the “booster” injection, all four paws were examined daily for arthritic signs using a 

semi-quantitative clinical scoring system as follows: 0, normal; 1, erythema and mild swelling 

 

Figure 2. Timeline of collagen-induced arthritis (CIA) progression. Mice were 

immunized with collagen/CFA and given a “booster” exposure to the collagen 21 days 

later. Starting at the booster, mice were administered drug for 15-20 days and assessed 

daily for paw swelling. Mice were tested behaviorally on day 15 or 19 of repeat 

dosing, and tissues were harvested.  

 

Behavior

Tissue 
collection

21 days

Immunization Booster

Edema & Clinical 
Scoring (15-20 days)

Chronic Dosing 
(15-20 days)
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confined to the ankle joint or toes; 2, erythema and mild swelling extending from the ankle to the 

midfoot or ankle joint; 3, erythema and moderate swelling extending from the ankle to the 

metacarpal/metatarsal joints; 4, erythema and severe swelling encompassing the ankle, foot, and 

digits (Kinsey et al., 2011b). The scores for each limb were summed for each mouse, resulting in 

a composite arthritis score with a maximum of 16 total points. Hind paw thickness was also 

measured with a digital micrometer, daily until the end of the experiment (Wixey WR100). Data 

from our lab as well as others indicate that CIA does not develop in our model until the “booster” 

collagen administration and daily handling before the booster reduces arthritis incidence (Brand 

et al., 2007). 

Behavioral Assessments 

 Behavioral assessments of mechanical allodynia (i.e., pain perception to non-noxious 

touch) and thermal hyperalgesia were conducted on mice subjected to the CIA model of 

inflammatory arthritis. Mice were randomly assigned to each drug treatment at the start of each 

experiment and repeatedly dosed for 15-20 days (see Table 2). Repeated dosing and behavioral 

testing schedules were based on the established timeline for mice to develop signs of arthritis and 

preliminary data (see Figure 2 and results) (Brand et al., 2007; Gao et al., 2015). Given that the 

effects of MAGL inhibition on chronic inflammation are unknown, we used a prophylactic 

design, with the goal of increasing the likelihood of detecting an effect of the novel drug 

treatments. On behavioral testing days, mice were tested for allodynia followed by hyperalgesia. 

The experimenter was blinded to treatments throughout testing. Independent experimenter 

reliabilities for behavioral tests and caliper measurements were performed at multiple time points 

throughout the experiment and were correlated to > 0.98.  
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 Mechanical allodynia. On test days, mice were brought into the testing room, weighed 

and injected. Immediately afterwards, mice were placed in ventilated polycarbonate chambers 

(7.5 x 9 cm) on an aluminum mesh table where they were allowed to acclimate for at least 60 

min before testing mechanical allodynia (Kinsey et al., 2009). Mechanical allodynia was tested 

by stimulating the plantar surface of each mouse hind paw with von Frey filaments (North Coast 

Medical, Morgan Hill, CA) using the  “up-down” method (Chaplan, Bach, Pogrel, Chung, & 

Yaksh, 1994; Crowe et al., 2015). Von Frey filaments are commonly used to test touch 

sensitivity in humans and other animals and are calibrated to bend at established weights. Each 

hind paw is stimulated approximately twice per second with each filament (0.16-6.0 g), starting 

with the 0.6 g filament. Hind paws were stimulated in ascending filament order until the mouse 

clutched or lifted its paw at least three out of five times. This was considered a positive response, 

and the sensitivity of each paw was tested by presenting the filaments in descending order to 

establish a sensory threshold. 

Thermal Hyperalgesia. Mice were placed in ventilated polycarbonate chambers (7.5 x 9 

cm) on a glass table and acclimated for at least 60 min before testing thermal hyperalgesia 

(Lichtman, Shelton, Advani, & Cravatt, 2004). Thermal hyperalgesia was tested using the plantar 

stimulator apparatus (Hargreaves, Dubner, Brown, Flores, & Joris, 1988; Lichtman et al., 2004). 

A plantar stimulator with a noxious heat source was positioned directly beneath the hind paws of 

each mouse, under a glass table. The latency for the mouse to withdraw its hind paw from the 

initiation of the radiant heat was scored as the dependent variable. A 20 s cutoff time was used to 

avoid the possibility of tissue damage (Kinsey et al., 2011a; Lichtman et al., 2004).  
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Cytokine and Myeloperoxidase (MPO) Enzyme-Linked Immunosorbent Assay (ELISA) 

 Paw cytokine and MPO protein levels were quantified by sandwich ELISA, per 

manufacturer’s protocol (R&D Systems, Minneapolis, MN). Paw samples were separated at the 

ankle joint, cut into small pieces, and homogenized in 1.5 ml phosphate-buffered saline using a 

Tissue Tearor (Bartlesville, OK). Proinflammatory (TNFα, IL-1β, IL-6, IL-17) and anti-

inflammatory (IL-10) cytokines, and MPO were quantified in duplicate. 

In brief, 96 well plates were coated with an anti-mouse capture antibody (derived from 

goat or rat immune cells that were exposed to the target mouse protein) and incubated at room 

temperature overnight. The following day, the samples and standards were added to each plate 

and incubated at room temperature for 2 h. Samples were decanted and each plate was washed 3 

times with wash buffer (0.05% Tween 20 in phosphate buffered saline). A detection antibody 

was then added to each well and incubated at room temperature for 2 h. The protein of interest 

(i.e., cytokine or MPO) became “sandwiched” between the capture antibody and detection 

antibody. Horseradish peroxidase (Streptavidin-HRP) was then added to each well and incubated 

for 20 min. HPR linked the detection antibody to a chemical tag (i.e., a 1:1 mixture of H2O2 and 

Tetramethylbenzidine) that produced color. The color reaction was halted after 20 min 

incubation in the dark by 2 N H2SO4. Optical densities were determined with a V max kinetic 

microplate reader (Molecular Devices, Sunnyvale, CA) and read at 450 nm with a 560 nm 

correction. Values for known standards on each plate were plotted. The optical density of each 

unknown sample was fitted to this standard curve to determine the concentration of cytokine or 

MPO in each sample. Data are reported as the mean of the duplicates. No values were excluded 

for being above detection limit. The detection limit (protein (min/max)) in pg/ml for each assay 
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were as follows: TNFα (2000/31.3), IL-1β (1000/15.6), IL-6 (1000/15.6), IL-17 (1000/15.6), IL-

10 (2000/31.3), and MPO (16000/250). 

Drugs  

 The MAGL inhibitor JZL184 was purchased from Cayman Chemical (Ann Arbor, MI). 

The synthetic glucocorticoid DEX was purchased from Sigma-Aldrich (St Louis, MO). Both 

drugs were dissolved in a vehicle consisting of ethanol, Cremophor (Sigma-Aldrich, St Louis, 

MO), and saline in a ratio of 1:1:18 parts (Crowe et al., 2015; Kinsey & Cole, 2013). All 

solutions were administered at room temperature at a volume of 10 µl/g body weight.  

Statistical Analyses  

Induction of CIA effect (as compared to non-CIA controls), was determined using 

unpaired t-tests with mechanical allodynia, thermal hyperalgesia, cytokine level, or MPO level as 

the dependent variable. All other data were analyzed using analysis of variance (ANOVA), 

followed by Tukey post hoc comparisons, with the exception of the DEX dose response data, for 

which Dunnett's post hoc comparison was used instead (all doses compared with CIA/VEH). For 

the first experiment, JZL184 data and DEX dose response data were analyzed using one way 

between subjects ANOVA with treatment (CIA/VEH, CIA/JZL184, CIA/DEX) as the 

independent variable and mechanical allodynia, thermal hyperalgesia, cytokine level, or MPO 

level as the dependent variable. In the second experiment, a one-way between subjects ANOVA 

of treatment condition (CIA/VEH, CIA/JZL184, CIA/DEX, CIA/JZL184+DEX) as the 

independent variable and mechanical allodynia, thermal hyperalgesia, cytokine level, or MPO 

level as the dependent variable was conducted, followed by Tukey post hoc comparisons. Data 

for clinical scores and edema were compared using mixed design ANOVA with days post 

immunization as the within subject variables and treatment as the between subjects variables. All 
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data are presented as mean ± S.E.M. Differences were considered statistically significant if p < 

0.05.  

 

 

 

 

 

 

 

 

 

 

Experimental Design 

An outline of the experimental design is summarized in Figure 3. Preliminary 

experiments were performed to determine the optimal behavioral testing days for mice subjected 

to CIA. Mice were administered a collagen/CFA emulsion to induce CIA, followed 21 days later 

by a booster exposure to collagen. Separate non-CIA control mice were also tested. Paw edema 

was assessed daily using digital calipers and arthritis severity was scored using a semi-

quantitative clinical scale. Mice were tested for mechanical allodynia and thermal hyperalgesia 

 

Figure 3. Diagram of experimental design. In the first experiment mice were 

subjected to CIA and the anti-arthritic efficacy of the MAGL inhibitor 

JZL184 and the glucocorticoid DEX was established. In the second 

experiment the analgesic and anti-inflammatory effects of the combination of 

JZL184 and DEX in the CIA model was elucidated. Mice were assessed for 

paw swelling, allodynia, and hyperalgesia. Then hind paws were dissected to 

analyze cytokine (TNFα, IL-1β, IL-6, IL-17, and IL-10) and MPO levels. 

Exp 1a: JZL184
Paw edema, clinical scoring, 

pain behavior,  ELISAS

Exp 1b: DEX
Paw edema, clinical scoring, 

pain behavior, ELISAS

Exp 2: JZL184 + DEX combination

Exp 2a: 
Paw edema, clinical 

scoring, pain behavior

Exp 2b: 
Cytokine & MPO ELISAs
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(Impellizzeri et al., 2013; Kinsey et al., 2009; Kinsey et al., 2011b) on days 22, 25, 28, 31, and 

34 post immunization to determine the optimal behavioral testing timeline. Planned comparisons 

were used to establish appropriate testing days for the proceeding experiments, as choosing the 

optimal test day was the rationale for running these experiments.   

The goal of the first experiment was to determine the appropriate doses of the MAGL 

inhibitor JZL184 (Exp1a) or the steroid DEX (Exp1b) to combine in the CIA model of 

inflammatory arthritis.  

Exp1a. Determine anti-arthritic efficacy of the selective MAGL inhibitor JZL184. Mice 

were subjected to CIA or control procedures. Starting at the booster individual mice were 

administered a dose of JZL184 (8 mg/kg) (Kinsey et al., 2013; Schlosburg et al., 2010) or 

vehicle once daily, for 15 consecutive days (i.e., days 21-35; see Table 2). Separate non-

CIA control mice were also tested. Paw edema was assessed daily using digital calipers 

and arthritis severity was scored using a semi-quantitative clinical scale. Mice were tested 

for mechanical allodynia and thermal hyperalgesia (Impellizzeri et al., 2013; Kinsey et 

al., 2009; Kinsey et al., 2011a) on day 14 of repeated dosing. On the 15
th

 day of repeated 

dosing, mice were humanly euthanized and hind limb tissues were collected. It was 

hypothesized that JZL184 (8 mg/kg) would attenuate CIA-induced paw swelling and 

behavioral pain responses.  

 A separate group of mice were subjected to CIA and administered a dose of 

JZL184 (4 mg/kg) (Kinsey et al., 2013; Schlosburg et al., 2010) or vehicle once daily, for 

15 consecutive days. Disease progression was assessed via paw swelling, clinical scoring, 

allodynia, and hyperalgesia (see Table 2). On the 15
th

 day of repeated dosing, mice were 
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humanly euthanized and hind limb tissues were collected. Due to a lack of allodynic or 

hyperalgesic effect of CIA, mice were dosed consecutively for an additional three days 

and tested for grip strength (see Appendix A) on day 16 and humanly euthanized and 

hind limb tissue were collected on day 18. It was hypothesized that JZL184 (4 mg/kg) 

would be subeffective at attenuating CIA-induced paw swelling and behavioral pain 

responses. 

Exp1b. Determine anti-arthritic efficacy of the synthetic glucocorticoid steroid 

dexamethasone. As in Exp1a, CIA was induced and a dose response curve was 

constructed to establish the anti-inflammatory and analgesic potency of the synthetic 

steroid dexamethasone (DEX; 0.0625, 0.125, 0.25, or 0.5 mg/kg) (Inglis et al., 2007a). 

For 15 consecutive days, mice were administered a dose of DEX or vehicle and then 

assessed for paw swelling, disease progression (i.e., clinical scoring), allodynia, and 

hyperalgesia (see Table 2). Due to the powerful anti-inflammatory effects of DEX, a 

second cohort of mice was run to test even lower doses of dexamethasone (i.e., 0.015625, 

0.03125, or 0.5 mg/kg) than originally proposed. For 15 consecutive days, mice were 

administered a dose of DEX or vehicle and then assessed for paw swelling, disease 

progression, allodynia, and hyperalgesia (see Table 2). Due to a lack of a behavioral 

effect of CIA, mice were dosed consecutively for an additional five days and retested on 

day 19, and humanly euthanized, and hind limb tissue were collected on day 21. It was 

hypothesized that DEX would dose dependently attenuate CIA-induced paw swelling and 

pain responses.  
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 The goal of the second experiment was to determine the analgesic and anti-inflammatory 

effects of repeated combined administration of both the MAGL inhibitor JZL184 and the 

synthetic glucocorticoid DEX in the CIA model of inflammatory arthritis.  

Exp2a. Determine the behavioral and arthritic effects of dual administration of 

subeffective doses of both JZL184 and dexamethasone. Mice were administered JZL184 

(4 mg/kg), DEX (0.015625 mg/kg), JZL184 (4 mg/kg) +DEX (0.015625 mg/kg), or 

vehicle once daily, for 15 consecutive days following the booster exposure to collagen 

(i.e., day 21) (see Table 2). During repeated drug administration, mice were assessed 

daily for gross signs of paw inflammation and disease progression was assessed by 

clinical scoring. After 15 days of treatment (i.e., day 35), each mouse was tested for 

allodynia, and hyperalgesia, as detailed above. Again, due to a null CIA effect in the 

behavioral tests, mice were consecutively dosed for another four days and retested on day 

19, humanly euthanized, and hind limb tissues were collected. It was hypothesized that 

the combination of subeffective doses of JZL184 and DEX would attenuate CIA-induced 

paw swelling and pain responses to a greater degree than either drug alone. 
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Exp2b. Determine the inflammatory effects of dual JZL184/DEX administration. Hind 

paws were dissected and homogenized to analyze proinflammatory (TNFα, IL-1β, IL-6, 

and IL-17) and anti-inflammatory (IL-10) cytokine and myeloperoxidase (MPO) levels 

using sandwich ELISA. It was hypothesized that the combination of JZL184 and DEX 

would decrease proinflammatory cytokine levels and increase anti-inflammatory cytokine 

levels. 

 

 

Table 2. Treatment groups and total sample size for each experiment. 

Condition Control CIA CIA

JZL184 
(mg/kg)

0 0 8

Mice 12 12 12

Experiment 1a: JZL184 Dosing

Condition Control CIA CIA CIA CIA CIA

DEX 
(mg/kg)

0 0 0.0625 0.125 0.25 0.5

Mice 10 10 9 10 9 10

Experiment 1b: DEX DRC

Control CIA

VEH VEH JZL184

Vehicle 9 11 8

DEX - 9 9

Experiment 2: Combination JZL + DEX

Condition Control CIA CIA

JZL184 
(mg/kg)

0 0 4

Mice 10 10 10

Condition Control CIA CIA CIA CIA

DEX 
(mg/kg)

0 0 0.015625 0.03125 0.5

Mice 10 10 9 9 9
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Results 

Preliminary data: CIA induces paw swelling and thermal hyperalgesia 

 Due to the inconsistencies with the CIA model in our lab in the past, we first ran a pilot 

group of mice to demonstrate that we could induce CIA and to establish a behavioral timeline. 

Mice were immunized with collagen to induce CIA, and given a booster exposure to collagen 21 

days later. A group of non-CIA control mice were given control emulsions. CIA induced an 

increase in arthritic clinical scores [F(1, 15) = 21.547; p <.01; Figure 4A] and paw thickness [F 

(1, 15) = 7.693; p <.01; Figure 4B] compared to non-CIA controls. 

Mice were tested for mechanical allodynia and thermal hyperalgesia on days 22, 25, 28, 

31, and 34 post immunization. In the von Frey test, there was no interaction between treatment 

and days post immunization [F(4, 22) = .6786, p = .1347; Figure 4C], nor was there a main 

effect of treatment [F(1, 22) =.8031, p = .8031] or days post immunization [F(4, 22) =.579, p = 

.6786], indicating CIA did not induce mechanical allodynia. Although in the plantar stimulator 

test there was also no interaction between treatment and days post immunization [F(4, 22) = 

1.828, p = .1305; Figure 4D] or main effect of days post immunization [F(4, 22) =2.173, p = 

.0786], there was a main effect of treatment [F(1, 22) = 15.612, p <.01], indicating CIA induced 

thermal hyperalgesia. Although there was only a main effect of collagen treatment and not an 

interaction effect in the plantar stimulator test, data for each individual testing day were analyzed 

based on a planned comparison to establish a behavioral timeline. Post hoc analyses revealed 

that CIA induced hyperalgesia on days 22, 31, and 34, but not days 25 or 28 post immunization. 

Based on these data behavioral testing was performed at least 31 days post immunization in all 

proceeding experiments. Although CIA did not induce mechanical allodynia in the preliminary 
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experiment, mechanical allodynia was still tested in experiments one and two, because it 

previously has been the most consistent behavioral test for the CIA model in our lab. 

Experiment 1a: Repeated MAGL inhibitor JZL184 partially attenuates CIA-induced paw 

cytokine level increase 

We next performed repeated administration of the MAGL inhibitor JZL184 (8 or 4 

mg/kg) to establish a subthreshold dose to be combined with the steroid DEX in experiment two. 

Tolerance develops after repeated dosing (6 days) of JZL184 (16 or 40 mg/kg) (Kinsey et al., 

2013; Schlosburg et al., 2010). Therefore, we hypothesized that a lower dose of JZL184 (4 

mg/kg) would be ineffective at attenuating CIA-induced pain and inflammation without causing 

tolerance after repeated administration.  

We first ran mice with only a moderate dose of JZL184 (8 mg/kg) to establish an 

effective dose of JZL184. Acute administration of JZL184 (8 mg/kg) attenuates CIA-induced 

thermal hyperalgesia (Nass, 2015), but these data were obtained before the model was optimized. 

Mice were administered the MAGL inhibitor JZL184 (8 mg/kg, s.c.) or vehicle once daily for 15 

consecutive days starting at the booster. There was an interaction in paw swelling between 

treatment and days post immunization as measured by arthritic clinical scores [F(30, 33) = 

10.544; p <.01; Figure 5A] and paw thickness [F(30, 33) = 7.693; p <.01; Figure 5B]. Post hoc 

comparisons revealed that CIA increased arthritic scores and paw thickness. Furthermore, post 

hoc analyses also indicated a statistical increase in paw swelling in JZL184/CIA mice compared 

to CIA. However, based on data from other cohorts of mice the effect is probably due to 

differences in paw swelling across collagen exposed mice and unlikely to replicate. Thus, the 

JZL184 effect is probably not biologically relevant.   
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Mice were tested for mechanical allodynia and thermal hyperalgesia on day 14 post 

booster. There was a significant effect of drug treatment on mechanical allodynia [F(2, 33) = 

4.653, p <.05; Figure 5C], although post hoc analyses indicated CIA did not induce mechanical 

allodynia. CIA induced thermal hyperalgesia [F(2, 33) = 11.623, p <.01; Figure 5D], but 

JZL184 (8 mg/kg) did not reverse this CIA-induced thermal hyperalgesia.  

Mice were humanely euthanized day 15 post booster and hind limb tissue were harvested. 

Right hind paws were separated and homogenized. A sandwich ELISA was used to analyze 

proinflammatory (TNFα, IL-1β, IL-6, and IL-17) and anti-inflammatory (IL-10) cytokine and 

MPO levels. CIA significantly increased paw levels of the proinflammatory cytokines TNFα [F 

(2, 33) = 7.298, p <.01; Figure 6A], IL-1β [F(2, 33) = 7.149, p <.01; Figure 6B], IL-6 [F(2, 33) 

= 9.188, p <.01; Figure 6C], and IL-17 [F(2, 33) = 7.069, p <.01; Figure 6D], the anti-

inflammatory cytokine IL-10 [F(2, 33) = 8.978, p <.01; Figure 6E], and the neutrophil marker 

MPO [F(2, 33) = 16.859, p <.01; Figure 6F]. Post hoc analyses revealed that the JZL184/CIA 

mice did not significantly differ in proinflammatory (TNFα, IL-1β, IL-6, and IL-17) and anti-

inflammatory (IL-10) cytokine from either the CIA or control mice. These results suggest that 

JZL184 (8 mg/kg) partially attenuates cytokine levels in CIA paws. MPO levels were not 

affected by JZL184 (8 mg/kg).   

Due to the partial attenuation of CIA paw inflammation by JZL184 (8 mg/kg), we next 

tested a separate group of mice with a low dose of JZL184 (4 mg/kg) to establish a subeffective 

dose. For 18 consecutive days, mice were administered the MAGL inhibitor JZL184 (4 mg/kg, 

s.c.) or vehicle once daily. There was an interaction between treatment and days post 

immunization in clinical scores [F(34, 27) = 5.854; p <.01; Figure 7A] and caliper 
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measurements [F(34, 27) = 6.310; p <.01; Figure 7B]. Post hoc comparisons revealed that CIA 

increased paw swelling, but JZL184 (4 mg/kg) was ineffective. 

On day 15 post booster, mice were tested for pain-related behaviors. CIA did not induce 

mechanical allodynia [F(2, 27) = 1.701; p =.2015; Figure 7C] or thermal hyperalgesia [F(2, 27) 

= 1.722; p =.4340; Figure 7D]. Due to the lack of CIA effect, there was no JZL184 (4 mg/kg) 

attenuation of pain-related behaviors. 

On day 18 post booster mice were humanely euthanized and hind limbs were harvested. 

Similar to the previous experiment, CIA significantly increased paw levels of cytokines TNFα [F 

(2, 27) = 7.298, p <.01; Figure 8A], IL-1β [F(2, 27) = 5.662, p <.01; Figure 8B], IL-6 [F(2, 27) 

= 7.378, p <.01; Figure 8C], IL-17 [F(2, 27) = 12.035, p <.01; Figure 8D], IL-10 [F(2, 27) = 

7.547, p <.01; Figure 8E]. However, CIA did not significantly increase MPO [F(2, 27) = 3.294, 

p =0525; Figure 8F] levels. Post hoc analyses revealed that JZL184 (4 mg/kg) had no effect on 

pro and anti-inflammatory (IL-10) cytokine levels or MPO.  

These data reveal that JZL184 (4 mg/kg) is subeffective in CIA-induced paw swelling 

and inflammatory mediators.  

Experiment 1b: Repeated steroid dexamethasone attenuates CIA-induced pain and 

inflammation 

We next performed a dose response curve of repeated administration of the steroid DEX 

to establish a subthreshold dose to be combined with JZL184 in experiment two. Repeated (15 

days) DEX (0.5 mg/kg) administration attenuates CIA-induced paw swelling, allodynia, and 

hyperalgesia (Unpublished data from our lab). Therefore, we hypothesized that repeated 

administration of a lower dose of DEX (0.25 mg/kg or below) would yield a subthreshold dose 
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that does not attenuate arthritic signs. CIA induced paw swelling as measured by clinical scores 

[F(15, 18) = 5.259; p <.01; Figure 9A] and paw thickness [F(15, 18) = 4.527; p <.01; Figure 

9B] compared to non-CIA controls. Mice were administered the steroid DEX (0.0625, 0.125, 

0.25, or 0.5 mg/kg; s.c.) or vehicle once daily for 15 consecutive days. In CIA mice there was an 

interaction between drug treatment and days post immunization in clinical scores [F(4, 60) = 

4.902; p <.01; Figure 9A] and paw thickness [F(4, 60) = 4.388; p <.01; Figure 9B]. Post hoc 

comparisons revealed that all doses of DEX attenuated CIA-induced increase in arthritic scores 

and paw diameter.  

Mice were tested for allodynia and hyperalgesia on day 15 post booster. CIA had no 

effect on mechanical allodynia, compared to control mice [t(18) = 1.828, p = .0842; Figure 9C]. 

However, DEX (0.0625, 0.125, or 0.5 mg/kg) decreased paw withdrawal thresholds in the von 

Frey test [F(4, 43) = 4.537; p < .01; Figure 9C], indicating an anti-allodynic effect. Similarly, 

CIA per se did not induce thermal hyperalgesia in the plantar stimulator test [t(18) = 1.144, p = 

.2674; Figure 9D]. DEX had no effect on thermal hyperalgesia as compared with CIA mice [F 

(4, 43) = .184; p = .9456; Figure 9D]. Due to the robust reduction in paw swelling by DEX (all 

doses), ELISAs were not run to determine cytokine and MPO levels in these mice. 

Because DEX (≥0.0625 mg/kg) attenuated CIA-induced paw swelling, we ran a second 

dose response curve with lower doses of DEX (i.e., 0.015625 or 0.03125 mg/kg) to find a 

subthreshold dose. The highest dose (i.e., 0.5 mg/kg) and negative controls were also included. 

CIA increased arthritic clinical scores [F(14, 18) = 11.310; p <.01; Figure 10A] and paw 

thickness [F(14, 18) = 6.493; p <.01; Figure 10B] compared to non-CIA controls. For 20 

consecutive days mice were administered DEX or vehicle once daily. There was a significant 

interaction between DEX treatment and days post immunization in mice administered collagen in 
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clinical scores [F(42, 32) = 6.493; p <.01; Figure 10A] and paw thickness [F(42, 32) = 5.470; p 

<.01; Figure 10B]. Post hoc analyses revealed all doses of DEX (≥0.015625 mg/kg) attenuated 

CIA-induced hind paw thickness, but clinical scores were reduced at (≥0.03125 mg/kg DEX). 

On day 19 post booster, CIA increased mechanical allodynia [t(18) = 5.916, p <.01; 

Figure 10C] and thermal hyperalgesia [t(18) = 4.829, p <.01; Figure 10D], as compared to non-

CIA control mice. Interestingly, in CIA mice, only the high dose DEX (0.5 mg/kg) attenuated 

mechanical allodynia [F(3, 33) = 4.919; p < .01; Figure 10C] and thermal hyperalgesia [F(3, 32) 

= 3.559, p <.05; Figure 8D].  

Mice were humanely euthanized on day 20 post booster and proinflammatory (TNFα, IL-

1β, IL-6, and IL-17) and anti-inflammatory (IL-10) cytokine and MPO paw levels were analyzed 

by sandwich ELISA. CIA significantly increased paw levels of IL-1β [t(18) = -2.791, p <.05; 

Figure 11B], IL-6 [t(18) = -3.043, p <.01; Figure 11C], and IL-10 [t(18) = -2.605, p <.05; 

Figure 11E] as compared to non-CIA controls. The CIA increase in IL-1β [F(3, 32) = 5.317, p 

<.01; Figure 11B], IL-6 [F(3, 32) = 6.900, p <.01; Figure 11C], and IL-10 [F(3, 32) = 4.573, p 

<.01; Figure 11E] tissue levels was attenuated by all doses of DEX (≥0.015625 mg/kg). 

Similarly, the paw levels of TNFα [t(18) = -2.703, p <.05; Figure 11A], IL-17 [t(18) = -2.112, p 

<.05; Figure 11D], and MPO [t(18) = -4.363, p <.01; Figure 11F] were increased in CIA mice 

compared to non-CIA controls. However, only DEX (≥0.03125 mg/kg) attenuated the CIA 

increase in paw TNFα [F(3, 32) = 4.552, p <.01; Figure 11A], IL-17 [F(3, 32) = 3.724, p <.05; 

Figure 11D], and MPO [F(3, 32) = 6.941, p <.01; Figure 11F].  

These data indicate that DEX (0.015625 mg/kg) was ineffective at attenuating CIA-

induced arthritic clinical scores, pain-related behavior, and proinflammatory cytokines TNFα and 

IL-17 and MPO paw levels. Therefore, DEX (0.015625 mg/kg) was used in Experiment Two.  
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Experiment 2a: Repeated dual administration of the MAGL inhibitor JZL184 and the 

steroid dexamethasone attenuates CIA-induced paw swelling 

In Experiment Two, we determined the effects of dual administration of subeffective 

doses of the MAGL inhibitor JZL184 (4 mg/kg) and the steroid DEX (0.015625 mg/kg), as 

established in Experiment One. We hypothesized that combined JZL184 and DEX would 

attenuate CIA-induced arthritic signs, but would be ineffective alone. CIA increased arthritic 

clinical scores [F(19, 18) = 11.098; p <.01; Figure 12A] and paw thickness [F(19, 18) = 6.348; p 

<.01; Figure 12B] compared to non-CIA controls. Mice were administered the MAGL inhibitor 

JZL184 (4 mg/kg), the steroid DEX (0.015625 mg/kg), a combination of JZL184 (4 mg/kg) and 

DEX (0.015625 mg/kg), or vehicle subcutaneously once daily for 19 consecutive days. In CIA 

mice, there was a significant interaction between treatment and days post immunization in 

clinical scores [F(60, 43) = 4.902; p <.01; Figure 12A] and paw thickness [F(60, 43) = 4.388; p 

<.01; Figure 12B]. Post hoc comparisons revealed that DEX and coadministration of 

JZL184/DEX attenuated CIA-induced arthritic clinical scores and paw thickness.  

Mice were tested for mechanical allodynia and thermal hyperalgesia on day 19 post 

booster. CIA-induced mechanical allodynia [t(18) = 2.210, p <.05; Figure 12C] compared to 

non-CIA control mice. However, in mice administered collagen JZL184, DEX, or JZL/DEX did 

not attenuate the CIA-induced increase in paw withdrawal thresholds in the von Frey test [F(3, 

33) = 1.729; p =.1801; Figure 12C]. CIA did not induce thermal hyperalgesia [t(18) = 1.660, p 

=.1142; Figure 12D]. Due to the lack of a CIA effect, post hoc comparisons revealed no 

significant attenuation of hyperalgesia by JZL184, DEX, or JZL/DEX [F(3, 33) = 1.611, p 

=.2056; Figure 12D]. Taken together, these results suggest that JZL/DEX attenuates CIA-

induced paw swelling, but the effect is probably driven by DEX. 
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Experiment 2b: Repeated dual administration of the MAGL inhibitor JZL184 and the 

steroid dexamethasone did not attenuate CIA-induced increase in paw cytokines and MPO 

Mice were humanely euthanized on day 19 post booster and hind limbs were taken. 

Proinflammatory (TNFα, IL-1β, IL-6, and IL-17) and anti-inflammatory (IL-10) cytokine and 

MPO levels were analyzed by sandwich ELISA. CIA significantly increased paw levels of the 

proinflammatory cytokines TNFα [t(18) = -2.521, p <.05; Figure 13A], IL-1β [t(18) = -2.635, p 

<.05; Figure 13B], IL-6 [t(18) = -32.535, p <.05; Figure 13C], IL-17 [t(18) = -2.416, p <.05; 

Figure 13D], and the neutrophil marker MPO [t(18) = -4.036, p <.01; Figure 13F] as compared 

to non-CIA controls. CIA paw tissue increase in TNFα [F(3, 33) = 1.058, p =.3801; Figure 

13A], IL-1β [F(3, 33) = .569, p =.6392; Figure 13B], IL-6 [F(3, 33) = .856, p =.4733; Figure 

13C], IL-17 [F(3, 33) = .985, p =.4118; Figure 13D], and MPO [F(3, 33) = 1.100, p =.3632; 

Figure 13F] was unaffected by JZL184 (4 mg/kg), DEX (0.015625 mg/kg), or JZL184 (4 

mg/kg) + DEX (0.015625 mg/kg). Similarly, CIA did not increase paw tissue levels of IL-10 

[t(18) = -1.475, p =.1575; Figure 13E] and JZL184, DEX, or JZL/DEX had no effect on IL-10 

[F(3, 33) = 1.1274, p =.2995; Figure 13E].  

Taken together, these data indicate that dual administration of JZL184/DEX did not 

affect the CIA-induced increase in proinflammatory cytokines or MPO paw tissue levels. 

Discussion 

 The overall goal of the present study was to elucidate the effects of targeting cannabinoid 

and glucocorticoid receptors alone and in combination, to attenuate pain and inflammation 

caused by the collagen-induced arthritis (CIA) mouse model of inflammatory arthritis. This is 

the first study to investigate monoacylglycerol lipase (MAGL) inhibition in a chronic pain 

model, either alone or in combination with the synthetic steroid dexamethasone (DEX).  
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 The first aim (Exp 1a) of the present study was to determine the efficacy of the selective 

MAGL inhibitor JZL184 in attenuating inflammatory arthritis. Repeated administration of 

JZL184 (4 or 8 mg/kg, s.c.) did not attenuate CIA-induced paw swelling. However, JZL184 (8 

mg/kg) partially attenuated the CIA-increased proinflammatory (IL-1β, TNFα, IL-6, & IL-17) 

and anti-inflammatory (IL-10) cytokines. These data align with previous studies demonstrating 

that MAGL inhibition by JZL184 attenuates proinflammatory (IL-1β, TNFα, & IL-6) and anti-

inflammatory (IL-10) cytokines in other preclinical models of inflammation (Kerr et al., 2013; 

Kinsey et al., 2011c).  

 The second Aim (Exp 1b) of the present study was to determine the efficacy of the 

synthetic glucocorticoid receptor agonist dexamethasone on CIA-induced inflammation and pain. 

Repeated administration of DEX (≥0.03125 mg/kg, s.c.) attenuated CIA-induced arthritic clinical 

scores. DEX (≥0.015625 mg/kg, s.c.) attenuated the CIA-increased proinflammatory (IL-1β & 

IL-6) and anti-inflammatory (IL-10) cytokines, whereas DEX (≥0.03125 mg/kg, s.c.) attenuated 

the CIA-increased proinflammatory (TNFα and IL-17) cytokines and MPO. These results 

confirm previous reports that DEX attenuates CIA-induced paw swelling and cytokine levels 

(Inglis et al., 2007a; Kawalkowska et al., 2016; Pu et al., 2016). This is the first report to show 

that DEX (0.5 mg/kg, s.c.) also attenuates CIA-induced allodynia and hyperalgesia. 

 The third Aim (Exp 2) of the present study was to determine the behavioral and immune 

effects of dual administration of subeffective doses of both JZL184 and dexamethasone. Due to 

its absence of anti-inflammatory effects in overt paw swelling and paw cytokine levels, the 4 

mg/kg dose of JZL184, was chosen. Similarly, the 0.015625 mg/kg dose of DEX was chosen, 

due to its lack of attenuation of CIA-induced arthritic clinical scores and paw cytokine (IL-1β, 

IL-6, & IL-10) levels. Repeated dual administration of JZL184 (4 mg/kg) and DEX (0.015625 
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mg/kg) attenuated CIA-induced paw swelling. However, solo DEX (0.015625 mg/kg) also 

reduced paw swelling to a similar extent as JZL184/DEX, indicating that this effect is probably 

driven by DEX. JZL184/DEX did not attenuate the CIA-induced increase in pro-inflammatory 

cytokine and MPO paw levels. 

 There is a paucity of research on behavior using the CIA model of inflammatory arthritis. 

Hence, we first performed a behavioral time course and determined that in our lab, CIA-induced 

thermal hyperalgesia starting 31 days post immunization, which corresponds to the beginning of 

a significant increase in paw swelling in CIA mice. These results align with previous reports that 

the onset of CIA-induced thermal hyperalgesia coincides with a significant increase in paw 

swelling in rats (Nieto, Clark, Grist, Chapman, & Malcangio, 2015). It was surprising that 

repeated administration of JZL184 (8 mg/kg) did not attenuate CIA-induced thermal 

hyperalgesia, because MAGL inhibition attenuates acute inflammatory pain induced by 

intraplantar injection of carrageenan (Ghosh et al., 2012; Ignatowska-Jankowska et al., 2013), a 

seaweed extract known to cause paw swelling. One possible explanation for the weak MAGL 

effect is that the inflammatory response in our model is more robust than other models. In 

support of this idea, JZL184 (8 mg/kg) did not reduce overt paw swelling despite partially 

attenuating paw cytokine levels. Alternatively, the mice may have developed partial tolerance to 

repeated JZL184 administration. Repeated administration of high doses (e.g., 40 mg/kg or 16 

mg/kg) of JZL184 reduces CB1 expression and sensitization (Schlosburg et al., 2010). 

Furthermore, tolerance develops to the analgesic and gastroprotective effects of JZL184 after 

repeated administration (6 days) of high doses (40 mg/kg or 16 mg/kg), but not low dose (4 

mg/kg) in mice (Kinsey et al., 2013; Schlosburg et al., 2010). Although the lower dose of 

JZL184 (8 mg/kg) used in the present study did not show tolerance at the cytokine level after 15 



Cannabinoid and Steroid Interaction in Arthritis  34 
 

 

days of repeated dosing, the effects of a 15 day treatment of JZL184 on cannabinoid receptor 

expression and sensitization are unknown and may reflect differences in CB1 vs. CB2 

susceptibility to tolerance.  

 Tolerance to JZL184 may be prevented at low doses (Kinsey et al., 2013). Therefore, we 

ran a separate cohort of mice to investigate the effects of JZL184 (4 mg/kg) on CIA-induced pain 

and inflammation. JZL184 (4 mg/kg) did not attenuate CIA-induced paw swelling or paw 

cytokine levels, indicating that 4 mg/kg is a subeffective dose in the CIA model. That said, there 

was no CIA effect in either the von Frey or plantar stimulator tests to use as a comparison group 

to properly determine the potential anti-analgesic effects of JZL184 (4 mg/kg). Although the von 

Frey and plantar stimulator tests are the most commonly reported preclinical pain tests in the 

CIA model (Gao et al., 2015; Impellizzeri et al., 2013; Inglis et al., 2007b), in our hands, 

behavior in either test was highly variable across cohorts. Therefore, we also piloted grip 

strength, which may discern CIA-induced loss of muscle function. In the grip strength test, a 

mouse is inverted on a wire cage bottom and the latency to fall from the wire is measured 

(Hutter-Saunders, Gendelman, & Mosley, 2012). We found the paw swelling interferes with the 

ability to grip the wire, as CIA mice showed a significant reduction in latency to fall from the 

wire that was unaffected by JZL184 treatment (please see Appendix A). 

 The overall goal of the present study was to find a subeffective dose of the steroid DEX 

to combine with the MAGL inhibitor JZL184 to reduced CIA-induced pain and inflammation.  

The steroid DEX is a well-known anti-inflammatory drug that attenuates CIA-induces paw 

swelling (Inglis et al., 2007a; Kawalkowska et al., 2016) and proinflammatory cytokines (e.g., 

IL-1β, TNFα, IL-6, & IL-17) in the serum of RA patients and rats subjected to CIA (Colin et al., 

2010; Pu et al., 2016; Schlaghecke et al., 1994). Furthermore, DEX attenuates LPS-induced paw 
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edema and tissue increase of the proinflammatory cytokines IL-1β and TNFα (Naidu, Kinsey, 

Guo, Cravatt, & Lichtman, 2010). Due to its potent anti-inflammatory effects, it was difficult to 

select a subeffective dose of DEX in the present study. After running two dose response curves it 

was determined that DEX (≥0.03125 mg/kg) attenuates CIA-induced paw swelling and increase 

in paw cytokine levels. DEX (0.015625 mg/kg) did not reduce CIA-induced arthritic clinical 

scores, mechanical allodynia, or thermal hyperalgesia and therefore, was chosen as the dose 

coadministered with JZL184.  

 We confirmed data from published reports that high dose DEX attenuates CIA 

inflammation, including paw swelling, clinical scores, and proinflammatory cytokine levels 

(Inglis et al., 2007a; Kawalkowska et al., 2016; Pu et al., 2016). We extended these findings by 

demonstrating that repeated DEX (0.5 mg/kg) administration also attenuates CIA-induced 

mechanical allodynia and thermal hyperalgesia. The observed analgesic and anti-inflammatory 

effects of DEX on inflammatory pain and paw swelling in the chronic CIA model is consistent 

with previous literature that DEX attenuates pain and edema in acute models of inflammatory 

pain (S. H. Ferreira et al., 1997; Naidu et al., 2010; Sasso et al., 2012). The present data, together 

with previous studies, suggest that DEX attenuates both chronic and acute inflammatory pain and 

inflammation. However, from a practical point of view, steroid hormones are not a viable long-

term treatment for RA, especially at high doses, due to their harmful side effects such as 

metabolic problems, adrenal insufficiency, osteoporosis, and mood changes (Nelson, 2011).  

 Therefore, the third goal of the present study was to coadminister subeffective doses of 

the MAGL inhibitor JZL184 and the steroid DEX to attenuated CIA-induced arthritic signs while 

mitigating aversive side effects. The combination of low doses of JZL184 and DEX attenuated 

arthritic clinical scores in the present study, but the combination group did not differ from the 
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DEX treated group, which indicates that the observed anti-inflammatory effect was likely driven 

by DEX and not JZL184. Although two dose response curves of DEX were run in present study, 

it is plausible that an even lower dose of DEX than we selected would yield a clearer 

coadministration effect. Indeed, despite the lack of a reduction in arthritic clinical scores by DEX 

(0.015625 mg/kg) in the dose response curve in Exp 1b, this same DEX dose did attenuate paw 

swelling in Exp 2. In support of the idea that DEX drove the anti-inflammatory effects, other labs 

have reported that glucocorticoids dominate the attenuation of CIA-induced paw swelling in 

combined treatments (Joosten et al., 1999; Kang, Lee, & Lee, 2000; Kawalkowska et al., 2016).  

For example, dual administration of DEX (0.25 or 0.025 mg/kg) and the anti-inflammatory 

cytokine IL-4 reduced paw inflammation, whereas IL-4 alone was ineffective, suggesting that the 

anti-inflammation was predominantly driven by DEX (Kang et al., 2000; Kawalkowska et al., 

2016). When DEX is repeatedly administered and then administration in halted, mice subjected 

to CIA demonstrate a “rebound” effect with exaggerated paw swelling once DEX is withheld 

(Kang et al., 2000; Kawalkowska et al., 2016). Interestingly, mice administered the dual 

DEX/IL-4 treatment had less of a rebound of paw swelling than mice in the DEX-only treatment 

(Kawalkowska et al., 2016). These data indicate that, although DEX may dominate the anti-

inflammatory effects of combined treatment, it is plausible that dual administration with another 

anti-inflammatory mediator may continue to reduce inflammation after DEX treatment is 

terminated. Steroid discontinuation-induced inflammation is problematic for patients of chronic 

inflammatory disorders because steroids are recommended only for short-term use due to their 

aversive side effects (Singh et al., 2016). Unfortunately, in the present study the protection of 

JZL184 against DEX discontinuation-induced inflammation was not tested because paw tissue 

was harvested to determine for cytokines, but the idea of MAGL inhibition protecting from 
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“steroid rebound” warrants further investigation. For example, mice may be subjected to CIA 

and administered DEX (as in Exp 1b) with or without JZL184. When DEX administration is 

suspended, a rebound effect (e.g., paw swelling) would be expected in DEX-treated mice, but 

JZL184 may attenuate such paw swelling. 

 Only one dose of JZL184/DEX coadministration was tested in the present study due to 

time and expense constraints, but it would be worth exploring multiple doses of JZL184/DEX for 

dual administration. The goal of the present study was to combine subeffective doses of both 

drugs to attenuate CIA-induced pain and inflammation to the same degree as an effective dose of 

either drug alone. Nevertheless, coadministration of subeffective doses of JZL184/DEX only 

reduced arthritic clinical scores. Although solo DEX attenuated CIA-induced inflammation and 

pain at high doses, aversive side effects limit the use of steroids in a clinical setting (Ravindran et 

al., 2009).  However, solo JZL184 partially attenuated CIA-induced increase in paw cytokine 

levels at the 8, but not 4 mg/kg dose. Therefore, subeffective DEX combined with a partially 

effective dose of JZL184 (i.e., 8 mg/kg) may yield a greater anti-arthritic effect compared to only 

a subeffective dose of JZL184, while limiting the risks associated with steroid use.  

 Although dual administration of JZL184 and DEX did not attenuate the CIA-induced 

increase in paw pro- and anti-inflammatory cytokine levels, the combination treatment partially 

attenuated MPO, a marker of neutrophil activation. This blunted MPO response may indicate 

that JZL184/DEX attenuates paw swelling by reducing immune cell activation, rather than by 

decreasing immune cell signaling. To better address this hypothesis, it would be interesting to 

quantify paw levels of different types of immune cell using flow cytometry. Dual administration 

of DEX/IL-4 decreases the amount of pro-inflammatory Th-17 cells, while increasing the 

amount of anti-inflammatory Treg cells (Kawalkowska et al., 2016). Thus, in addition to 
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decreasing neutrophil activity, the combination of JZL184/DEX may also attenuate the activity 

of other immune cells involved in RA, including macrophages, T cells, and B cells.  

 Due to the decrease in CIA-induced paw swelling by coadministration of JZL184/DEX 

future studies may also investigate joint tissue damage, using histology. Previous reports indicate 

that FAAH inhibition or CB2 receptor agonism attenuates paw swelling and joint degradation 

(Fukuda et al., 2014; Gui et al., 2015; Kinsey et al., 2011b). These data, along with the present 

study, suggest that dual administration of JZL184/DEX may also reduce CIA-induced joint 

damage. 

 A potential limitation of this study is that the dosing schedule was prophylactic and mice 

received drug treatment prior to the development of paw swelling. Prophylactic treatments are 

important for a variety of medical conditions that have an increased likelihood of occurring, 

including thromboembolic disease or infection after surgeries (Alhassan et al., 2017; Enzler, 

Berbari, & Osmon, 2011). Further, vaccines are a major source of preventative treatments 

(Rappuoli, Pizza, Del Giudice, & De Gregorio, 2014). However, most disorders are not 

detectable until the symptoms are present, and therefore must be treated therapeutically. In 

preclinical research both types of designs offer distinct advantages. Therapeutic dosing regiments 

are crucial in preclinical models to increase translatability to many human medical disorders. 

However, investigating preventative treatment is also useful in preclinical research. Although 

translatability is essential, it also is important to know if an effect is worth pursing further. In the 

present study there was a lack of an anti-inflammatory or analgesic effect after preventative 

treatment with the combination of JZL184 and DEX. Given that JZL/DEX could not prevent 

paw inflammation from developing, it is unlikely that dual administration would be anti-

inflammatory after paw inflammation was already present. 
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 A significant limitation of the CIA model chosen for the present study is that there was 

insufficient CIA induction of allodynia or hyperalgesia to determine the potential analgesic 

effects of dual JZL184/DEX treatment. In addition to the behavioral tests used, another potential 

reason for the inconsistent pain behavior is the CIA model itself. Although CIA is a great model 

of inflammatory arthritis, due to the strong similarities in pathogenesis with RA, there are many 

complicating factors in this model that make it difficult to use. For example, the presence of paw 

swelling is an obvious indication of collagen exposure. In the present study this was mitigated by 

blinding the experimenter to drug treatment, but due to the nature of the behavioral assays and 

paw swelling measurements it is impossible to blind an experimenter to the presence of paw 

swelling. Another limitation is that some of the mice immunized to collagen never develop paw 

swelling (Brand et al., 2007). The incidence of paw swelling in non-drug treated mice in our lab 

is typically above 80%, but there is considerable variance between experiments, a reflection of 

the variance of CIA responses between mouse cohorts. Furthermore, swelling across paws is not 

uniform in each individual mouse and paw swelling across mice is inconsistent. Multiple 

methodological refinements were made to increase consistency across cohorts. We also tried to 

mitigate inconsistencies across cohorts of mice by having only one rater across all experiments to 

increases internal reliability. Although interrater reliabilities were conducted periodically to 

minimize drift, having only one rater may decrease reproducibility. A possible remedy to the 

problem of variance in swelling across paws and incidence across cohorts is to trade the strong 

mechanistic link between RA and CIA for more control within each experiment by using a 

different model of inflammatory arthritis.  

 In contrast to the CIA model, which is mainly used to research RA immunosuppressant 

treatments, injection of an inflammatory mediator into the footpad is extensively used to 
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characterize chronic inflammatory pain (Ghasemlou, Chiu, Julien, & Woolf, 2015; Inglis et al., 

2007b). For example, intraplantar injection of CFA (without collagen, as is used in the CIA 

model) into the hind paw footpad of rodents induces chronic inflammatory pain in the injected 

paw, but not contralateral paw (Bagdas, AlSharari, Freitas, Tracy, & Damaj, 2015). Although 

intraplantar injection of an inflammatory agent induces fairly consistent edema and swelling 

across animals, the immune response does not activate lymphocytes of the adaptive immune 

system, and thus does not model the autoimmune response germane to rheumatoid arthritis RA 

(Ghasemlou et al., 2015). This disconnect between inflammatory research and pain research 

limits external validity and translational potential. For example, many immunosuppressant 

treatments for RA are ineffective at attenuating pain (Lee, 2013). Data from our lab indicate that 

the CB2 receptor agonist HU-308 attenuates CIA-induces paw swelling, but has no effect on 

allodynia; whereas HU-308 attenuates CFA-induced hyperalgesia, but not paw edema (see 

Appendix B). These data indicate the importance of incorporating behavioral tests into 

traditional models of inflammatory arthritis to develop novel treatments for RA that reduce both 

pain and inflammation. 

 Another alternative to the CIA model that is gaining popularity among inflammatory 

arthritis researchers is the collagen-antibody-induced arthritis (CAIA) model. In the classic CIA 

model, antibodies to self-collagen are produced by the mice. In the CAIA model, arthritis is 

induced by administration of these anti-collagen antibodies, along with immune stimulation by 

the gram-negative bacterial marker lipopolysaccharide (Kagari, Doi, & Shimozato, 2002). 

Swelling develops in one or more paws within 10 days and lasts approximately three weeks. 

Inflammation eventually leads to cartilage and bone destruction, similar to CIA and RA. The 

major benefit of CAIA is that the time course is more rapid than in CIA, but unlike RA and CIA 
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the joint inflammation in the CAIA model is not perpetuated by the T-cells of the adaptive 

immune system that are important in the induction of autoimmune disorders (Asquith et al., 

2009; Kagari et al., 2002). We conducted a pilot study using the CAIA model (see Appendix C), 

but unfortunately the CAIA mice did not develop significant paw swelling compared to non-

CAIA control mice, and thus MAGL inhibition was not anti-inflammatory. We consulted with 

the vendor, who was unable to explain the lack of arthritic development. Regardless, CAIA is 

reported to induce arthritis in multiple mouse strains that are resistant to CIA, as well as females 

(Khachigian, 2006). Thus, CAIA may offer broader opportunities to investigate cannabinoid 

effects on inflammatory arthritis, for example using genetic knockout mice that do not express 

MAGL.  

 In summary, we found that MAGL inhibition partially reduces paw inflammation caused 

by collagen-induced arthritis. This is the first demonstration of an anti-inflammatory effect of 

MAGL inhibition and an analgesic effect of DEX in a chronic inflammatory joint pain model. As 

previously demonstrated, the synthetic glucocorticoid dexamethasone was a potent anti-

inflammatory agent. Overall, the effects of either drug varied by test, by model, and by cohort. 

This variance may explain why behavioral data are rarely reported in the preclinical 

inflammatory arthritis literature. Given the strong negative side effects of current arthritis 

treatments, including but not limited to repeated steroid administration, the evidence that MAGL 

inhibition had anti-inflammatory effects is encouraging and merits additional investigation. 
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Figure 4. Collagen-induced arthritis (CIA) induces paw swelling and thermal hyperalgesia. Mice 

were administered an emulsion of collagen/CFA and then given a booster exposure to collagen 

21 days later. Control mice were administered an emulsion of acetic acid/IFA. CIA mice 

developed an increase in arthritic clinical scores (A) and hind paw thickness (B). Mice were 

tested for pain-related behaviors on days 22, 25, 28, 31, and 34 post immunization. Mice did not 

develop mechanical allodynia tested via the von Frey assay (C), but did develop thermal 

hyperalgesia in the plantar stimulator test (D). Data expressed as mean ± SEM (n = 12).  # p < 

0.05 vs. control mice. 
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Figure 5. Repeated dosing of the MAGL inhibitor JZL184 (8 mg/kg) did not affect paw 

swelling, allodynia, or hyperalgesia in mice subjected to CIA. Mice were administered JZL184 

(8 mg/kg, s.c.) or vehicle for 15 days. JZL184 did not attenuate CIA-induce paw swelling as 

measured by clinical scores (A) or paw thickness (B). CIA mice did not develop mechanical 

allodynia (C), but did develop thermal hyperalgesia (D). Data expressed as mean ± SEM (n = 

12). * p < 0.05 vs. CIA mice; # p < 0.05 vs. control mice. 
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Figure 6. Repeated dosing of the MAGL inhibitor JZL184 (8 mg/kg) partially attenuated CIA-

induced increase in paw levels of proinflammatory (TNFα, IL-1β, IL-6, and IL-17) (A-D) and 

anti-inflammatory (IL-10) (E) cytokines. JZL184 did not affect the CIA-induced increase in 

MPO (F), a marker of neutrophil activity. Mice were administered JZL184 or vehicle for 15 

days. Data expressed as mean ± SEM (n = 12). # p < 0.05 vs. control mice. 

  



Cannabinoid and Steroid Interaction in Arthritis  61 
 

 

 

Figure 7. Repeated dosing of the MAGL inhibitor JZL184 (4 mg/kg) was subeffective at 

attenuating CIA-induced paw swelling. Mice were administered JZL184 or vehicle for 18 days. 

JZL184 did not attenuate the CIA-induce increase in arthritic clinical scores (A) or hind paw 

thickness (B). CIA mice did not develop mechanical allodynia (C) or thermal hyperalgesia (D). 

Data expressed as mean ± SEM (n = 10). # p < 0.05 vs. control mice. 
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Figure 8. Repeated dosing of the MAGL inhibitor JZL184 (4 mg/kg) was subeffective at 

attenuating the CIA-induced increase in paw levels of proinflammatory (A-D) and anti-

inflammatory (E) cytokines. CIA did not increase paw MPO (F) levels. Mice were administered 

JZL184 or vehicle for 18 days. Data expressed as mean ± SEM (n = 10). # p < 0.05 vs. control 

mice. 
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Figure 9. Repeated dosing of the steroid dexamethasone (DEX) attenuated paw swelling and 

allodynia, in mice subjected to CIA. Mice were administered DEX or vehicle once daily for 15 

consecutive days. DEX attenuated CIA-induced clinical scores (A) or paw thickness (B). 

Although CIA did not induce mechanical allodynia, DEX attenuated mechanical allodynia (C). 

CIA did not induce thermal hyperalgesia in the plantar test (D). Data expressed as mean ± SEM 

(n = 9-10). * p < 0.05 vs. CIA mice; # p < 0.05 vs. control mice. 
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Figure 10. Repeated dosing of the steroid dexamethasone (DEX; 0.015625 mg/kg) was 

subeffective at attenuating arthritic clinical scores and pain-related behavior in CIA mice. Mice 

were administered DEX or vehicle once daily for 20 days. DEX attenuated CIA-induced arthritic 

clinical scores (A) paw thickness (B), mechanical allodynia (C), and thermal hyperalgesia (D). 

Data expressed as mean ± SEM (n = 9-10). * p < 0.05 vs. CIA mice; # p < 0.05 vs. control mice. 
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Figure 11. Repeated dosing of the steroid dexamethasone (DEX) was subeffective at attenuating 

the CIA-induced increase in proinflammatory cytokine (TNFα and IL-17) and MPO paw levels. 

Mice were administered DEX or vehicle once daily for 20 days. DEX attenuated the CIA-

induced paw increase in proinflammatory cytokines (A-D) and the neutrophil marker MPO (F). 

Data expressed as mean ± SEM (n = 9-10). * p < 0.05 vs. vehicle CIA mice; # p < 0.05 vs. 

control mice. 
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Figure 12. Repeated, dual administration of JZL184/DEX, or DEX alone, attenuated CIA-

induced paw swelling. Mice were administered the JZL184 (4 mg/kg; s.c.), DEX (0.015625 

mg/kg; s.c.), both JZL184 (4 mg/kg; s.c.) and DEX (0.015625 mg/kg; s.c.), or vehicle once daily 

for 19 days. DEX or JZL184/DEX attenuated CIA-induce arthritic clinical scores (A) and caliper 

measurements (B). CIA-induced mechanical allodynia (C) was not attenuated by drug treatment. 

There was no CIA-induced thermal hyperalgesia (D). Data expressed as mean ± SEM (n = 9-11). 

* p < 0.05 vs. CIA mice; # p < 0.05 vs. control mice. 
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Figure 13. Repeated dual administration of JZL184/DEX did not affect CIA-induced increase in 

paw levels of proinflammatory cytokine (A-D) and MPO (F). Mice were administered the 

JZL184 (4 mg/kg; s.c.), DEX (0.015625 mg/kg; s.c.), a combination of JZL184 (4 mg/kg; s.c.) + 

DEX (0.015625 mg/kg; s.c.), or vehicle once daily for 19 days. CIA did not affect IL-10 levels 

(E). Data expressed as mean ± SEM (n = 9-11). * p < 0.05 vs. CIA mice; # p < 0.05 vs. control 

mice. 
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Appendix A. 

Grip strength as a measure of CIA-induced loss of paw function 

Background 

 As proposed, the present study focused primarily on pain-induced behaviors such as 

mechanical allodynia (increased sensitivity to touch) or thermal hyperalgesia (increased 

sensitivity to noxious heat). These assays were chosen because they are among the most 

commonly used behavioral tests for pain induced by arthritis in rodents (Gao et al., 2015; Inglis 

et al., 2007b). That said, the vast majority of arthritis related reports focus exclusively on 

inflammation and not its resulting pain.  

 In addition, pain-induced behaviors are potentially problematic in that they are easily 

confounded by sedation. For example, mechanical allodynia is reversed by high dose opioids 

(Nagakura et al., 2003), which effectively sedate the test subject. On the other hand, pain-

suppressed behaviors are reversed when the animal increases its behavior, and are thus less 

susceptible to sedative confounds. Thus, the goal of this experiment was to examine a pain-

suppressed behavior as well as a test of functional ability, grip strength. 

Methods 

Thirty male DBA1/J mice were subjected to CIA or control, as described in the main body of the 

document. Half of the CIA mice were repeatedly administered JZL184 (4 mg/kg, s.c.) or vehicle 

for 16 days. The inverted cage lid test (Brooks, Higgs, Jones, & Dunnett, 2012) was used to 

measure grip strength. Mice were placed on the top of a wire cage bottom and the wire was 

briefly shaken to cause the mice to grip the wire. The wire was gently flipped upside-down along 
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the mouse’s y-axis (i.e., pitch, with the mouse’s head going forward and down) and suspended 

approximately 20 cm above a cage filled with soft bedding. The latency for the mouse to drop 

from the wire was measured by a second experimenter using a stopwatch.  

Results 

CIA treatment significantly decreased latency to fall [F(2, 27) = 6.395; p <.01; Figure A1]. Post 

hoc comparisons revealed that repeated JZL184 (4 mg/kg) treatment had no effect on grip 

strength. 

Discussion 

 The inverted cage lid test, a test of grip strength, was surprisingly effective at detecting 

CIA-induced loss of paw function. This low-tech alternative to allodynia and hyperalgesia tests 

has not been reported with CIA in mice, and offers some advantages over established pain 

models. The results align with a previous report indicating that CIA in rats attenuates grip 

strength as measured by the force used to grip a wire grid to resist the tail being pulled by a 

spring balance (Sasakawa, Sasakawa, Ohkubo, & Mutoh, 2005). One advantage of the method 

used in the present study is that the test requires no special equipment and training is minimal. 

 Watching the mice cling to the wire lid, the differences between CIA and control mice 

was striking. Mice that had significant paw swelling, especially in the forepaws, had the shortest 

latencies to fall from the wire. Mice with overt swelling in both forepaws fell from the lid almost 

immediately. Conversely, mice without paw swelling were able to ambulate along the underside 

of the lid until they reached the maximum cutoff time of one minute.  
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 The idea to assess grip strength came about at the end of the present project, and so there 

was inadequate time to incorporate the test more broadly. So, this brief study was limited to only 

one test point in one cohort of CIA mice. Although MAGL inhibition had no effect on grip 

strength on day 16, time course data may reveal a delay in functional loss. It may be informative 

to measure grip strength repeatedly over the course of CIA development, as a measure of 

functional loss of paw strength.   
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Figure A1. Collagen-induced arthritis (CIA) decreases grip strength. Mice were subjected to 

CIA. Mice were administered JZL184 (4 mg/kg, s.c.) or vehicle for 16 days, then grip strength 

was tested using the inverted cage lid test. Data expressed as mean ± SEM (n = 10).  # p < 0.05 

vs. non-CIA control mice. 
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Appendix B. 

Anti-arthritic effects of CB2 agonism in CIA and CFA-induced arthritis models 

Background 

 The goals of the present study were (1) to evaluate the possible analgesic effects of the 

CB2 agonist HU-308 in collagen-induced arthritis (CIA) mouse model and (2) to compare the 

anti-inflammatory and analgesic effects of CB2 agonism by HU-308 in the CIA model of 

inflammatory arthritis and the complete Freund's adjuvant (CFA) model of inflammatory pain. 

There are a variety of selective CB2 agonists that have been synthesized to have a greater binding 

affinity for the CB2 receptor over the CB1 receptor. CB2 agonists provide an opportunity to 

harness the anti-inflammatory and analgesic effects of exogenous cannabinoids without the 

undesirable cognitive and behavioral side effects exhibited by more traditional cannabinoid 

agonists, such as THC (Hanus et al., 1999; LaBuda, Koblish, & Little, 2005).  Acute 

administration of CB2 agonists reduces pain and inflammation in several animal models of acute 

inflammatory pain, including intraplantar injection of CFA (Clayton, Marshall, Bountra, & 

O'Shaughnessy, 2002; Kinsey et al., 2011a; Valenzano et al., 2005). However, despite the ability 

of CFA to induced chronic inflammatory pain that can last for weeks, the analgesic effects of 

CB2 agonism have not been evaluated beyond 48 h of inflammatory pain. Further, repeated 

administration of CB2 agonists reduces the inflammation and joint destruction caused by 

collagen induced arthritis (CIA) (Fukuda et al., 2014; Gui et al., 2015), but the analgesic effects 

are unknown.  The present study tested the hypothesis that the CB2 selective agonist HU-308 

decreases inflammation and pain caused by CIA or CFA.  
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Collagen-induced arthritis 

 For the CIA model, male DBA1/J mice were immunized with an emulsion of collagen 

and CFA followed 21 days later by a secondary "booster" exposure to the collagen emulsion, to 

induce anti-collagen autoimmunity. On day 28 mice were administered 25 µg lipopolysaccharide 

(LPS) in 0.1 ml saline (ip) to “synchronize” arthritis induction (Caccese, Zimmerman, & 

Carlson, 1992; Luo et al., 2011). CIA significantly increased paw swelling (i.e. arthritic clinical 

scores [F(32, 27) = 8.794; p <.01; Figure A2A] and caliper measurements [F(32, 27) = 4.136; p 

<.01; Figure A2B]) and mechanical allodynia, per the von Frey test [F(2, 27) = 12.728; p <.01; 

Figure A2C]. Repeated administration of the selective CB2 agonist HU-308 (3 mg/kg, i.p.) for 

10 days significantly attenuated CIA-induced paw swelling. Surprisingly, HU-308 did not affect 

CIA-induced mechanical allodynia.  

CFA-induced arthritis 

 The CIA model is extensively used to research immunosuppressant treatments that 

reduce inflammation and disease progression in inflammatory arthritis. In contrast, intraplantar 

injection of inflammatory mediators is extensively used to characterize novel analgesic 

treatments for chronic inflammatory pain. To test this hypothesis, either complete Freund’s 

adjuvant (CFA, 20 µl) or saline was injected directly into each hindpaw of male C57BL/6 mice 

to induce localized paw inflammation and pain. CFA significantly increased inflammatory pain 

and edema 24h after administration [F(6, 21) = 5.543; p <.01; Figure A2D]. Subchronic 

administration of HU-308 (50 mg/kg, i.p.) attenuated CFA-induced hyperalgesia, per the 

Hargreaves plantar stimulator test [F(2, 21) = 7.464; p <.01; Figure A2E]. In contrast to the CIA 

model, HU-308 did not significantly affect CFA-induced paw edema. 
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Discussion 

 Taken together these results suggest a disconnect between the CIA model of 

inflammatory arthritis traditionally used to develop immunosuppresants and the CFA model of 

inflammatory pain used to develop novel analgesic treatments. The CFA model is an attractive 

alternative to the CIA model because of its relatively fast throughput. However, neither model 

reflects all aspects of inflammatory arthritis in humans, and the effects of the synthetic CB2 

agonist HU-308 varied greatly between models. Although the present study provides new 

evidence that CB2 is a potential target for the development of new analgesic anti-inflammatory 

treatments for inflammatory arthritis these results may have reduced external validity and 

translatability. 
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Figure A2. Disconnect between anti-inflammatory and analgesic effects of the CB2 agonist HU-

308 in the CIA model of inflammatory arthritis and the CFA model of inflammatory pain. To test 

the effects of HU-308 in a model of inflammatory arthritis mice were subjected to CIA and 

administered HU-308 (3 mg/kg, i.p.) for 10 days. HU-308 attenuated CIA-induce paw swelling 

as measured by clinical scores (A) or paw thickness (B). HU-308 did not affect CIA-induced 

mechanical allodynia (C). A separate group of mice was injected in the hind paw with CFA and 

administered HU-308 (50 mg/kg, i.p.) for 4 days. HU-308 reduced CFA-induced edema, but did 

not attenuate CFA-induced hyperalgesia (D). Data expressed as mean ± SEM (n = 8-10). * p < 

0.05 vs. CIA; $ p < 0.05 vs. CFA; # p < 0.05 vs. control mice. Dotted line represented control 

saline paw latencies. 
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Appendix C. 

Collagen Antibody-induced Arthritis model 

 

Background 

 The goal of the present study was to pilot the collagen antibody induced arthritis (CAIA) 

model of inflammatory arthritis in the lab. The production of antibodies against self-peptides 

(e.g., rheumatoid factor, anti–citrullinated protein, and collagen) by B cells of the adaptive 

immune system are important in the pathogenesis of both RA and CIA (Asquith et al., 2009; 

Takemura et al., 2001). In the CAIA model, anti-collagen antibodies generated from mice are 

passively transferred to test mice to induce paw swelling and pain (Frolov, Yang, Dong, 

Hammock, & Crofford, 2013; Terato et al., 1992).  

 The CAIA model of inflammatory arthritis has several advantages and disadvantages 

over the more classical CIA model. For example, CAIA develops much faster than CIA (e.g., 

arthritis develops in one or more paws in two weeks, as opposed to five weeks with CIA). 

Further, unlike CIA, which can only be induced in susceptible mice with certain haplotypes of 

the major histocompatibility complex (MHC) class II genes, CAIA can be induced in a wide 

variety of mice strains (Asquith et al., 2009). This flexibility allows researchers to study 

inflammatory arthritis using genetic tools, such as gene knockout and transgenic mice that are 

typically backcrossed on the non-CIA susceptible C57BL/6 mouse strain.  

 On the other hand, although the CAIA model has a quicker throughput compared to CIA, 

arthritis induction is exceedingly more expensive in the CAIA model and the shorter timeline 

might not translate as well to human chronic inflammatory arthritis (Khachigian, 2006). In 

addition, CAIA inflammation is mainly perpetuated by the innate immune response and lacks the 
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critical adaptive T cell immune response needed to perpetuate CIA and RA (Asquith et al., 2009; 

Kagari et al., 2002). The present study tested the hypothesis that CAIA would induce paw 

swelling and pain-related behaviors that would be attenuated by the MAGL inhibitor JZL184 (4 

mg/kg).  

Methods 

Male BALB/c mice were administered a cocktail of anti-collagen antibodies or saline via tail 

vein injection, per manufacturer's protocol (Chondrex, Redmond, WA). Three days later, mice 

were administered lipopolysaccharide (LPS, 50 μg, i.p.) to stimulate the immune response. Mice 

were administered JZL184 (4 mg/kg, s.c.) or vehicle (1:1:18 parts ethanol, cremophor, and 

normal saline) once daily for 15 days. Mice were assessed daily for arthritis, including clinical 

scoring and paw thickness. On the 15th day after immunization, mice were tested for mechanical 

allodynia and thermal hyperalgesia, as detailed in the main body of the dissertation.   

Results 

CAIA did not significantly affect paw swelling (i.e., arthritic clinical scores [F(2, 24) = 2.161; p 

=.1371; Figure A3A] and caliper measurements [F(2, 24) = 1.411; p =.2634; Figure A3B]) or 

thermal hyperalgesia [F(2, 24) = .482; p = .6233; Figure A3D]. However, CAIA did induce 

mechanical allodynia, per the von Frey test [F(2, 24) = 4.654; p < .05; Figure A3C]. Repeated 

JZL184 had no effect on paw swelling or pain-related behaviors.  

Discussion 

 These results suggest that although the CAIA model is broadly reported to be easier to 

induce than the CIA model of inflammatory arthritis, the CAIA model, like CIA, still has 

optimization problems. Although consultation with the vendor did not yield any obvious 
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problems with our induction methodology, it is likely we had slight issues not written in 

published protocols that led to a lower incidence. It is suggested that delivering the antibodies via 

tail vein injection, versus intraperitoneal injection, produces optimal CAIA incidence 

(Khachigian, 2006). Thus, it is possible that some mice accidently received a subcutaneous tail 

injection, which is the least effective method of delivering CAIA. This is unlikely, given that I 

was thoroughly trained by the Office of Laboratory Animal Resources to inject into the tail vein, 

a procedure that I practiced extensively prior to injecting collagen antibodies. Moreover, I 

observed the injection sites for tell-tale blisters that form when injecting subcutaneously or 

intradermally, and observed neither phenomenon. Nevertheless, my opinion is that, with 

optimization, CAIA is a promising model to develop novel treatments for inflammatory arthritis. 
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Figure A3. CAIA induced mechanical allodynia, but not paw swelling. Mice were administered 

an anti-collagen antibody cocktail to induce CAIA or saline via tail vein injection. Three days 

later mice were administer 50 μg of LPS. Mice were JZL184 (4 mg/kg; s.c.) or vehicle once 

daily for 15 days. CAIA did not induce paw swelling compared to non-CAIA controls as 

measured by clinical scores (A) and calipers (B). CAIA induced mechanical allodynia in the von 

Frey assay (C), but not thermal hyperalgesia in the plantar test (D). JZL184 (4 mg/kg) did not 

affect paw swelling, allodynia, or hyperalgesia. Data expressed as mean ± SEM (n = 9). # p < 

0.05 vs. control mice. 
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