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ABSTRACT 

 
Noise and Error Propagation in Diffusion Tensor Imaging 

 
Shital Bipin Desai 

 
 

Diffusion Tensor Imaging (DTI) is a unique non-invasive technique for in vivo 
visualization and analysis of white matter fiber tracts by measuring the anisotropy of 
water molecule diffusion in the brain tissue.  DTI has been used to highlight white matter 
to demonstrate subtle abnormalities in neurological disorders such as stroke, dyslexia, 
multiple sclerosis etc. and is currently being used increasingly in clinical imaging 
protocols. Diffusion weighted images are affected by several artifacts and noise from the 
human subject and the MRI scanner. This thesis studies the error propagation in the 
calculation of the DTI invariant anisotropy. The main focus is on the computation of 
Fractional Anisotropy (FA) across an image volume using four different methods and 
quantitatively comparing them in terms of error propagation, filtering and computational 
efficiency in data sets containing either simulated or human brain data. Simulated data is 
an important contribution in this thesis as they serve as a platform to validate the FA 
results for human brain MRI data. The four methods that were used were Diffusion 
Tensor, Diffusion Ellipsoid, Hasan and Platonic Variance. The results showed similar 
trends across the simulated and real data sets for all methods. Of the four methods used to 
calculate FA, the Hasan method without diffusion tensor yielded best efficiency, in terms 
of computation time, but exhibited poor noise robustness, whereas the Platonic Variance 
method was more robust to noise and also provided relatively good efficiency for 
computation time. 
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Chapter 1: Introduction 
 
 
1.1 Motivation and the Problem 
 

Diffusion Tensor Imaging (DTI) is an in vivo visualization Magnetic Resonance 

Imaging (MRI) technique that provides quantitative information about the integrity and 

orientation of the white matter tracts in the human brain. These white matter tracts carry 

information between the brain regions. In case of neurological disorders, DTI is an 

effective imaging technique that could potentially assess tract disruption.  Several 

artifacts are introduced during the acquisition of diffusion tensor images. These artifacts 

are produced by certain interactions of the patient’s body or body functions with the 

imaging process. Also the raw data from the MRI scanner will be degraded by various 

amounts of noise which is in the form of spurious RF energy picked up from the patient’s 

body. In order to obtain accurate computations of the DTI indices, it is important to use 

robust methods to remove noise from the images while preserving tissue and anatomical 

details that can be found to obtain good fiber tracking results.   

 

Image noise introduces errors in the calculated diffusion tensor and hence the 

calculated eigen values (principal diffusivities) and eigen vectors (principal axes). 

Random variations in these quantities complicate the analysis and interpretation of DTI 

experiments. These artifacts and noise propagate in the form of a chain of errors from the 

diffusion tensor (DT) to the various invariant measures of DTI.  A few of these scalar 

invariant indices are Fractional Anisotropy (FA), Relative Anisotropy (RA) and Volume 

Ratio (VR). These scalar indices are widely used in clinical applications such as the study 

of brain development, surgical planning for brain tumor resection and characterization of 

white matter diseases [6].  

 

This thesis deals with the problem of noise and error propagation in DTI. We 

have implemented four previously studied methods to compute the FA maps. We have 

suggested methods to denoise the FA maps and extended the formulae to compute the 
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error propagation in the various invariant anisotropies of DTI.  A comparison between the 

four methods is made using simulated and real human brain data for estimate of accuracy 

as well as speed of computation. 

  

1.2 Thesis Objective 

 
The main objectives of this thesis are summarized as follows: 

 

(a) To implement the proposed four methods generating FA maps. These methods 

include using the Diffusion Tensor calculation (Pierpaoli & Basser 1996) [2], [7], 

the Ellipsoid Method (Ulug & Van Zijl in 1999) [3], Hasan method (Hasan & 

Narayanan 2003) [4], and Platonic Variance method (Akkerman 2003) [5];  

(b) To generate directional FA maps from the four methods using color coding; 

(c) To denoise the FA maps and provide methods to improve their visual appearance;  

(d) To test the methods of FA map calculations on simulated data and on human brain 

MRI data; 

(e) To compute error propagation in the invariant measures of DTI; 

(f) To compare results between simulated and human brain MRI data. 

 

1.3 Thesis Contribution 
 

In this thesis, we have: 

 

(a) Studied the variance measure of error propagation in invariant measures such as 

FA and RA. We have extended this work and proposed corresponding error 

propagation formulae for other measures such as Volume Ratio (VR), trace, 

Anisotropy index (AI), and Ultimate Anisotropy (UA). 

(b) Generated simulated data and obtained their FA maps using the four methods to 

validate the results obtained from real human brain MRI data. 

(c) Implemented methods to denoise the FA maps and suggested new methods such 

as intervoxel coherence methods to improve the visual appearance of these maps. 
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(d) Provided a detailed comparison of the robustness and time efficiency of the 

different FA methods on simulated and human data. 

 

1.4 Thesis Organization 

 
This thesis is organized in six chapters. An introduction and overview of MRI, 

DTI its sources of error and clinical applications are briefly discussed in Chapter 2. 

Objectives (a) and (b) are covered in Chapter 3 which discusses various methods for 

computing the FA maps.  Propagation of error in various DTI parameters is described in 

Chapter 4, and new relations are derived and proposed in Chapter 4. This chapter also 

deals with methods to filter the FA maps and to improve them using Intervoxel 

Coherence methods. Chapter 5 puts forth the results using simulated data and human 

brain MRI data. It also provides a comparative study on the robustness and computational 

efficiency of the four FA methods using simulated and human brain data.  Chapter 6 

concludes the thesis, examining how each of the objectives have been met, and provides 

some ideas for future work. The Appendix contains Figures of the brain slices taken in 

six different directions and FA maps for the human brain data with varying number of 

averages.  
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Chapter 2: Background 
 

2.1 Introduction 
 

Diffusion Tensor Magnetic Resonance Imaging (DTI) refers to the Magnetic 

Resonance Imaging (MRI) measurement of the direction of water diffusion within each 

voxel of an imaging volume and its analytical display. The use of DTI is evolving for 

imaging the internal structure of the brain and may help diagnose conditions that affect 

the white matter in the brain. MRI is a tomographic imaging technique that produces 

images of internal physical and chemical characteristics of an object from externally 

measured nuclear magnetic resonance signals, in the radio frequency range. In case of 

neurological disorders, DTI is an effective imaging technique that could potentially 

assess possible tract disruption. Diffusion is an intrinsic process that is independent of the 

MRI effect or the magnetic field. In theory, the diffusion along any direction in space can 

be measured by MRI. MRI provides access to both superficial and deep organs with high 

resolution without any interference with the diffusion process. 

 

Using MRI we can distinguish between the gray matter, white matter and 

cerebrospinal fluid of the human brain. Gray matter contains the brain cells or neurons, is 

relatively dark in color and consists of masses of cell bodies and dendrites. White matter 

is the heavily myelinated central nervous tissue, light in color and consisting of bundles 

of axons. In general, gray matter represents information processing centers in the brain, 

and white matter represents the networking of – or connections between – these 

processing centers [36].  Cerebrospinal fluid is a clear watery liquid that surrounds and 

protects the brain from mechanical injury by acting as a shock absorber [37]. It is also a 

transport medium for important brain nutrients and chemical messengers. The white 

matter appears homogeneous in the structural MRI images and we are unable to observe 

the white matter tracts directly. However, with DTI, the imaging is sensitive to the 

anisotropic diffusion within the white matter tracts of the brain. Potential applications in 

neurology and neurosurgery include disturbances of white matter tracts caused by 

neurosurgery, the presence of brain tumors and associated edema (swelling), ischemia 
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(brain damage from restricted blood flow) and certain types of brain tumors. In the rest of 

this chapter, a general background on the principles of MRI, principles of DTI and 

sources of error for DTI have been briefly discussed. 

 

 Diffusion weighted MRI methods such as DTI techniques, provide images that 

are sensitive to the random displacement of water molecules. These molecules move 

freely in a glass of water whereas their motion is restricted in highly compartmentalized 

structures such as brain tissue. Thus the water molecules in most brain regions will have a 

lower diffusion coefficient compared to those in a glass of water. This diffusion 

coefficient reflects the amount of net diffusion the water molecules experience. We can 

use MRI to calculate pictures and maps of diffusion coefficients, called apparent 

diffusion coefficient (ADC), of the brain.  

 

2.2 Magnetic Resonance Imaging (MRI) 

 

2.2.1 Origins and Development of MRI 

The first successful Nuclear Magnetic Resonance (NMR) experiment was 

performed in 1946 by Felix Bloch and Edward Purcell.  In the years 1950-1970 NMR 

was developed and used for physical and chemical molecular analysis of solid inanimate 

and inert molecules. In 1971, Raymond Damadian showed that the nuclear magnetic 

relaxation times of tissues and tumors differed, thus motivating scientists to consider 

magnetic resonance for the detection of disease. In 1973, MRI was first demonstrated on 

small test tube samples by Paul Lauterbur working in the USA and independent to Sir 

Peter Mansfield working in the United Kingdom. Lauterbar and Mansfield received the 

Nobel Prize for Physics in 2004 for their respective contributions for producing magnetic 

resonance images in two dimensions for the first time [39]. In 1975, Richard Ernst 

proposed magnetic resonance imaging using phase and frequency encoding, and image 

reconstruction using the Fourier Transform. This technique is the basis of current MRI 

techniques. In 1977, Raymond Damadian demonstrated MRI of the whole body [30]. 
MRI continues to be a growing science. 



                                6

2.2.2 Principles of MRI 

 Routine clinical NMR imaging involves acquiring the resonant signal from the 

proton in the hydrogen nuclei found abundantly in the human body in the form of water 

molecules. Originally called “nuclear magnetic resonance imaging” the confusion caused 

by the word associated with radioactive phenomena led to the use of the simpler term 

“magnetic resonance imaging”. The term “imaging” comes from the fact that these data 

are acquired in two dimensions. 

There are various references that review an overview of MRI principles [1], [33], 

[12], [26]. The introduction material below primarily follows the description in [1]. The 

basic principles of MRI can be given as: 

1. the protons in the body are excited using radio frequency (RF) energy; 

2. after a delay the protons emit the RF energy; 

3. the resulting emitted RF energy from the tissue is sampled using a specialized  

receiver; 

4. the sampled data are reconstructed to form a two dimensional image of the 

particular region of interest in the body being studied. 

                             

The wavelengths used in MRI are the RF range. The signals from the excited 

protons can be detected. The MRI image is made up of a set of signals which depend on 

three main parameters: proton density,  ρ  and relaxation times, T1  and T2  

                       

Proton density describes the number of protons in one unit volume. Protons can 

be considered as tiny bar magnets with north and south poles. In the absence of a 

magnetic field the protons are randomly oriented. However, when subjected to a 

magnetic field B0  , they orient themselves in the direction of the magnetic field and reach 

an equilibrium magnetization. Transmission of energy to the protons excites and forces 

the net magnetization to flip transiently from their equilibrium position. When the 

excitation is interrupted, the magnetization returns back to equilibrium position, i.e. 

relaxes. During relaxation, the protons emit MRI signals that are collected to generate a 

two dimensional MRI image [35].  
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The relaxation time can be split up into two components: 

T1 : Spin-lattice relaxation time, 

T2 : Spin-spin relaxation time. 

 

The magnetization vector, M, represents the resultant of the protons, whose 

orientation depends on the proportion of protons in the parallel or antiparallel position.  

T1  characterizes the return of the M vector to equilibrium along the longitudinal axis 

defined by B0 . T1  results from the interaction between the protons and the whole 

environment. T1  characterizes the efficiency of the environment in absorbing the energy 

of excited protons during relaxation: T1  is short when the environment has a high 

efficiency for absorbing energy (i.e. absorbs the energy faster) as in the case of fat; it is 

long in the opposite case, as in pure water. 

 

T2  characterizes the dephasing individual protons with respect to each other 

causing a decrease in the magnitude of the M vector in the transverse plane perpendicular 

to B0 . T2  is called the spin-spin relaxation time because it is the result of interactions 

between neighboring protons. Since each proton is a tiny magnet, it creates a 

micromagnetic field, disturbing the neighboring protons, leading to a loss of phase 

coherence. The tissues in which there are relatively significant microvariations added to 

B0  rapidly lose phase coherence i.e. T2  is short as in the case of fat. When the 

microvariations have relatively little effect in other tissues; T2  is long as in the case of 

pure water [14]. 

 

Thus the relaxation times depend on the biological state of tissues and in just the 

same way that different people vary in weight and height, tissues have different T1  and 

T2 . T1  and T2  remain constant in a given tissue in a given state. The range of T1  and T2  

in the human body is: T1 : 300-2000 ms; T2 : 30-150 ms, for the standard range of field 

strengths. The intensity at each point of an MR image is a blend of the proton densityρ , 

T1  and T2 . It is also possible to monitor the proportional effects of ρ , T1  and T2  [1]. 
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Protons are excited by energy supplied in the form of low energy electromagnetic 

waves or RF. This energy is not transmitted by the transmitter coil continuously, but in 

short pulses. A pulse sequence is a succession of RF pulses ( 900  pulse i.e. M rotates to 

an angle of 900  to its equilibrium position, 1800  pulse i.e. inversion of M with respect to 

B0 ) at varying time intervals. The time intervals are: 

Repetition time (TR): This is the time interval between the beginnings of two 

 consecutive data acquisition and is chosen by the operator. 

Echo time (TE): Time between the beginning of the sequence and the middle of the 

 echo. 

 

The pulse sequence used for diffusion imaging is based on the spin echo. 

 

Spin Echo (SE): 

 This is a most frequently used pulse sequence. Each pulse consists of two RF 

pulses: 900  and then 1800 . The 900  pulse produces a signal which cannot be used to 

generate an image; 1800  pulse generates a signal which can be used to produce an image. 

The 1800  RF pulse reflects the first signal in the form of an echo signal that increases 

then decreases. Spin echo is widely used as it is considers all the three parameters proton 

density, T1  and T2  for diagnosis. It generates T1  and T2  weighted images. 

 

2.2.3 The MRI Scanner 

 

A mobile bed, or gurney, facilitates insertion of the patient into the machine. The area 

of the tissue to be studied is positioned at the center of the magnet. The key elements of a 

MRI system include: 

1. Super conducting cryogen-cooled electromagnet 

2. RF emission/reception coil 

3. Gradient coils 

4. Data collection and processing systems 

5. Power supplies 
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6. Control and display console 

 

                                                 

       Figure 2.1: The MRI scanner [2] 
 
         The MRI scanner uses magnetic and RF fields to create cross sectional images or 

slices of the human body. The main component of the MRI scanner is a large tube shaped 

or cylindrical magnet with strength between 0.1 Tesla and 7.0 Tesla. The MRI scanner in 

the Center for Advanced Imaging at WVU is 3.0 Tesla and has a bore width of 55cm. 

 

         To begin a clinical MRI examination, the patient lies on a mobile table and is then 

moved inside the MRI scanner’s bore where the magnetic field is created. Each clinical 

MRI examination typically is comprised of a series of 6 to 15 sequences, with each 

sequence lasting between 0.5 and 5 minutes. An "MRI sequence" is an acquisition of data 

that yields a specific image orientation and a specific type of image appearance or 

"contrast." Thus a typical exam can last for a total of ten minutes to an hour, depending 

on the type of exam being run and the MRI scanner being used [1].  

  

         During the examination, the RF pulses are repeated and subsequently the energy 

which is absorbed by different atoms in the body is echoed or emitted back out of the 

body. These echoes are continuously measured by the MRI scanner and a digital 

computer reconstructs these echoes into images of the body. The clanging and banging 

heard during the MRI exam is created when gradient coils are rapidly switched on and off 

to spatially localize the MRI signal being emitted from the patient's body. An important 

benefit of MRI is that it can easily acquire direct views of the body in any orientation, 

while CT scanners only acquire images perpendicular to the long body axis [2]. 
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A few important parameters associated with the MRI system include: 

 

Field of View (FOV): It is defined as the size of a two dimensional spatially sampled 

area which makes the image. It is the square image area that contains the object of 

interest to be measured. The smaller the FOV, the higher the resolution and the 

smaller the voxel size but the lower the measured signal. The right choice of FOV is 

important for MR image quality and depends on the body part being imaged [33]. It 

ranges from 10 to 50 cm for most machines. 

Slice Thickness: It is the thickness of an imaging slice. For optimal image quality it is 

important to choose the best fitting slice thickness for an examination. When a small 

item of interest is contained within the slice thickness with other tissue of differing 

signal intensity then the resulting signal displayed on the image is a combination of 

these two intensities. If the slice is the same thickness or thinner than the small 

structure of interest, only that structures signal intensity is displayed on the image 

[33]. It ranges mainly from 3 to 15 mm. 

Matrix Size: All digital techniques consider images to be divided into a matrix of pixels 

– or two dimensional individual image components. For each pixel, the MR signal 

intensity is represented on an 8-bit gray scale. The pixels together form a two 

dimensional image matrix. By contrast, voxels are three dimensional entities that are 

sampled in the two dimensionality image space. Three dimensional voxels are 

represented by two dimensional voxels making up the MR image with the third 

dimension being filled out by multiple slices. The most commonly used matrix size is 

256 256× . 

Number of Excitations: Every individual signal needed to generate an MRI image can 

be acquired once or several times with repeated excitations generating an average image. 

With more excitations the average error in the measurements decreases resulting in more 

precise measurements. However, this lengthens image acquisition time which can then 

result in imaging artifacts when the subject moves. The number of excitations typically 

ranges from 1 to 6.  
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2.2.4 MRI Views of Human Brain 

 
The brain can be sliced or sectioned in three orthogonal planes: axial, coronal and 

sagittal as shown in the Figure 2.2. 

 
  Figure 2.2: Axial, coronal and sagittal planes in human brain images [2] 

 

Axial/Transverse ( )X Y− : Axial sections form a series of circumferential slicing- like 

slicing the human brain into series of pancakes and stacking them one over the other.  

Coronal ( )X Z− : Coronal sections follow from front (anterior) to back (posterior). It is 

as though cutting through a corona, or halo, around the head. 

Sagittal ( )Y Z− : Sagittal sections follow from one side of the body to the other i.e. left 

to right or right to left. In anatomy, lateral means outside and medial means inside. 

 

Example MRI pictures of slicing through the brain in different orientations are as shown: 

  
   Figure 2.3: MRI slices in different orientations [3] 

 

 

 

 

X 

Z
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2.3 Diffusion Tensor Imaging (DTI) 

 
Diffusion accounts for the net movement of a substance from an area of high 

concentration to an area of lower concentration in the absence of other pressures or 

forces. It is greater in fluids and restricted in the cellular tissue environment. Diffusion 

Tensor Magnetic Resonance Imaging (DT-MRI), commonly known as diffusion tensor 

imaging (DTI) is a non-invasive method that is used to determine the orientation and 

integrity of the white matter tracts in vivo [12]. One method to estimate these white 

matter tracts using DTI is called tractography. DTI is the only clinical means of non-

invasively imaging the myelinated axonal structure of the human brain. However in 1986 

when Le Bihan introduced the concept of diffusion imaging [2], the clinical applications 

faced several restrictions like motion sensitivity which caused severe ghosting artifacts 

and signal loss.  While observing molecular displacement in micrometers, any motion, 

even unavoidable involuntary head motion or physiological, cardiac related pulsations of 

the brain tissue, can interfere with the measurement. When scans must be obtained from 

disoriented and confused stroke patients or young children, who can move their head 

excessively, scan quality can be severely compromised. All these limitations and 

restrictions were a major motivation for the development of faster sequences that are 

more robust to different motion types [14]. 

 

2.3.1 Principles of Diffusion 

 

Diffusion refers to a process by which molecules continually intermingle as a 

result of their kinetic energy which transfers into random motion if they are relatively 

unbound as in a solution. The tendency towards increased diffusion is strong at room 

temperature because of the high molecular velocities associated with the thermal energy 

of the particles [26]. Molecular diffusion is referred to as Brownian motion. In 1827 

Robert Brown observed the chaotic movement of plant spores on the water’s surface and 

called the phenomenon water diffusion. Molecular motion is affected by the properties of 

the medium in which it occurs. Diffusion within a biological tissue is affected by both the 

tissue structure and its architecture at the microscopic level. All biological tissues exhibit 



                                13

the property of movement of water molecules by Brownian motion. Instead of the water 

molecules moving with a fixed velocity the movement varies.  For a particle undergoing 

Brownian motion, the Einstein relation for time and distance is given by [4]: 

                                                         D r=
1

6
2

τ
                                                            (1.1)                               

where D is the Diffusion coefficient, τ  is period of time during which a particle 

undergoes Brownian motion, r is the net displacement.  

 

When the environment is restricted, the particles undergoing Brownian motion are 

displaced with greater magnitudes in directions parallel to the boundary and smaller 

magnitudes in directions perpendicular to the boundary. Thus directionally dependent 

Brownian motion reflects the underlying structure of the bounded environment. Diffusion 

is said to be anisotropic when displacement due to Brownian motion is directionally 

limited. Anisotropy is used to describe the different the rates and directions of diffusion 

in a tissue [21].  

 

 In anisotropic diffusion, the Einstein relation is generalized as: 

                                                              D rr t=
1

6τ
$$                                                     (1.2) 

where D is a second order tensor, $r  is the displacement vector indicating both magnitude 

and direction for Brownian motion and $$rr t  represents matrix dot operator. In this case 

D is known as the diffusion tensor [4].  

 

Fractional anisotropy (FA) is the most commonly used scalar measure of 

anisotropy in DT-MRI.  It represents the degree of anisotropy in the diffusion tensor. It is 

zero in isotropic diffusion and is equal to unity when diffusion is anisotropic. In general a 

higher value of FA occurs when local diffusion has a higher degree of isotropy [17], [21]. 

Diffusion values determined by MRI might be a composite from several structural 

compartments (extracellular and intracellular) within a voxel. There can be different 

diffusion coefficient values within these compartments. Since there is movement of fluid 

in and out of the blood vessels and the tissues, we cannot exactly measure the diffusion in 
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the tissue – it is not a closed system Therefore MRI does not give the true diffusion 

values, but only apparent diffusion coefficients (ADC’s) [33].  

 

The measurement of water diffusion in tissues is based on the movement of water 

molecules within the tissue environment. In pure liquids, such as water, individual water 

molecules are in constant motion in every direction due to random motion. In tissues, 

however, the presence of various tissue components (larger molecules, intracellular 

organs, membranes, cell walls, etc.), restrict the Brownian motion. In many tissues, when 

averaged over the macroscopic scale of image voxels, this restriction is identical in every 

direction, i.e., the diffusion is isotropic. In some very structured tissues, however, such as 

muscle or cerebral white matter, cellular arrangement shows a preferred direction of 

water diffusion that is largely uniform across the entire voxel, i.e., the diffusion is 

anisotropic. This possible selectivity in orientation is the key in using diffusion in 

analysis of physiological structures. 

 

In general the diffusion tensor depends on particle mass, size, structure of the 

medium and temperature. In DTI, the particle mass of water molecules and the 

temperature at which the measurements are conducted is assumed constant. This 

assumption allows the DTI to be determined in terms of local anatomical structure. 

 

2.3.2 The Imaging Process 

 
Diffusion imaging is based on the principle that the diffusion motion of the 

molecules produces a dephasing of the spinning protons within a voxel that result in a 

reduced MR signal intensity and image brightness. The dephasing is produced by 

applying additional diffusion sensitizing gradients during the image acquisition cycle. 

Two gradients, one applied before the 1800  RF pulse and the second applied after the 

pulse are used in conjunction with the pulse sequence as shown in Figure 2.4. During the 

time of the gradient, the spinning protons will be in different field strengths spinning at 

different rates along the direction of the gradient. This produces a dephasing of the 

protons within the voxel. When the 1800  RF pulse is applied it reverses the spin 
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direction. Now, when the second gradient is applied, it produces a rephasing on the 

spinning protons within the voxel [35]. 

 
 

 

 

 

                               Figure 2.4: Diffusion acquisition [35] 

 

However, only the protons that have not moved or changed positions between the 

times of the two gradients will be completely rephrased. The protons in molecules that 

have moved will be in a different location and field strength during the second gradient 

and will not be completely rephrased. This results in reduced signal intensity that 

produces the contrast of the diffusing molecules with respect to the non-moving tissue 

structure [35].   
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2.3.3 Neural Structure and Diffusion Tensor Imaging (DTI) 

 
 Our brain is made up of approximately 100-billion nerve cells called neurons. 

Neurons are cells in the nervous system that transmit electrochemical signals in the form 

of nerve impulses over long distances, from one part of the body to another. They are 

composed of three basic parts: cell body or soma, the axon and dendrites or endings.  

Dendrites are tree-like branches attached to the neuron cell body and receive impulses 

from other neurons at synapses [4]. Axons are long cable-like structures that transmit 

information away from the cell body and dendrites as shown in Figure 2.5. Axons are 

wrapped by a thin layer of connective tissue known as endoneurium. Groups of wrapped 

axons are bundled together in tracts or fascicles, by a thin boundary known as 

perineurium.  

 

 
Figure 2.5: Structure of a myelinated neuron [32] 

 

The portion in the human brain that contains white fatty myelinated Schwann 

cells forms the white matter in the brain. The ability of water to diffuse across tracts with 

myelinated boundaries is restricted, causing water to diffuse anisotropically in greater 

amounts in directions parallel to fiber tracts and in lesser amounts of diffusion in 

directions towards the boundaries. This physical situation of increased water diffusion in 

directions parallel to myelinated fascicles is what is measured in diffusion weighted 

images to construct diffusion tensors which are 3x3 symmetric matrices that capture 

directional variation in the diffusion rates and resulting tractography estimates that 

compute the pathways of the complete nerve fiber tracts. In DTI maps, white matter 



                                17

tracts, which exhibit a high anisotropy index, appear bright. Gray matter and 

cerebrospinal fluid, on the other hand, are represented by dark shades according to their 

low or absent anisotropy. Several acquisitions of image data with diffusion weighting 

along different directions are taken. A minimum case needs seven diffusion weighted 

images out of which six images are acquired with gradients in at least six non collinear 

directions and one is an unweighted T2 image. The six images on combining using the 

Stejskal-Tanner equation (as explained in Chapter 3) generates a system of six linear 

equations with six unknowns which in turn are solved to yield the apparent diffusion 

coefficients [4]. 

 

2.4 Sources of Error in DTI/MRI 

         The main artifacts in DTI data are those associated with acquiring the diffusion 

weighted images from which the diffusion tensor is estimated. Artifacts are undesirable 

objects, such as streaks and spots that appear in images which do not directly represent an 

anatomical structure. They are produced by certain interactions of the patient’s body or 

body functions with the imaging process.  In a DTI examination, images with different 

directions of diffusion weighting are recorded from multiple slices of the subject’s brain. 

Eddy currents and geometric distortions between images with different diffusion 

sensitizing directions, may cause deformed depictions of the brain slices. To correct this, 

the distortion effect must be modeled and elastic alignment algorithms are applied such 

that the geometric deformation is reversed [16].  Other artifacts can include subject 

motion and magnetic susceptibility effects. Patient motion is the largest artifact, often 

resulting from head and body movements (e.g. eye movements and swallowing) and 

other physiological artifacts (e.g. respiration, cardiac motion). Movement of the 

imaged object during the sequence results in inconsistencies in phase and amplitude 

which leads to blurring and ghosting effects [20].  

Magnetic susceptibility is the extent to which a material becomes magnetized 

when placed within a magnetic field. Magnetic susceptibility artifacts occur as a 

result of microscopic gradients or variations in the magnetic field strength that 

occurs near the interfaces of substances of different magnetic susceptibility. It may 
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occur due to a medical device or an object near or in an imaging field of view whose 

magnetic susceptibility is different from the tissue [33].  

The raw data from the MRI scanner will be degraded by various amounts of noise 

which is in the form of random, unwanted RF energy. Some noise might be generated 

within the receiver coil or other electronics, but it is usually much less than the noise 

from the patient’s body [37]. In order to obtain accurate computations, it is important to 

use robust methods to remove noise from the images while preserving edges and 

anatomical details that can be found to obtain good fiber tracking results. Hardware 

issues such as background gradients, gradient non-linearity and miscalibration also cause 

error in the measurement [22].  

Another artifact called the partial voluming is caused by the size of the image 

voxel. For example, if a small voxel contains only fat or water signal, and a larger voxel 

might contain a combination of the two, the large voxel possesses signal intensity equal 

to the weighted average of the quantity of water and fat present in the voxel. Another 

manifestation of this type of artifact is a loss of resolution caused by multiple features 

present in the image voxel [34]. This is important in DTI, as this will occur in regions 

where tracts traveling in different directions come together. 

2.5 Clinical Uses of DTI Techniques 

 
DTI has great potential as a tool for neurological research and clinical 

applications [16].  Loss of tissue structure, due to a brain injury, can result in an increase 

in the ADC’s and cause a reduction in FA. DTI allows us to image these processes and to 

potentially determine how they are related to disability and cognitive impairment. DTI 

provides quantitative information which can be used to compare numbers between 

different patients, or between the same patient imaged at different times. This allows us 

to monitor the structural changes in the white matter taking place in the brain over a 

period of time. Water proton diffusion anisotropy abnormalities have been reported in a 

variety of disorders: stroke, schizophrenia, alcoholism, developmental dyslexia, multiple 

sclerosis and in the normal brain development in the new born [16]. Based on geometry 
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and the degree of anisotropy loss, white matter tract pathology such as dislocation, 

infiltration, swelling and disruption can be documented [38]. Disruption in the brain 

connectivity resulting from physical trauma, brain tumor, infection with human 

immunodeficiency virus can be quantified using DTI. Diffusion MRI provides some 

patients with the opportunity to receive suitable treatment at a stage when the brain tissue 

might still be salvageable [23]. For example: a neurosurgical procedure which can avoid 

damaging these crucial structures in the brain as the neurosurgeon can plan his or her 

surgical approach based on this imaging data.  
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Chapter 3: Computing Fractional Anisotropy Maps 
 

3.1 Diffusion Tensor and Diffusion Weighted Imaging  

      
 Fractional Anisotropy (FA) is the most commonly used DTI invariant index. It is 

a measure of the fraction of magnitude of the tensor that can be ascribed to the 

anisotropic diffusion. It ranges from 0 to 1 i.e. from isotropic diffusion to diffusion along 

a single direction. Diffusion weighted MRI uses diffusion gradient pulses to weight the 

signal by the relative amount of diffusion in the measurement direction, $g  [7]. Diffusion 

weighted images are used as the raw data source that for the input for the diffusion tensor 

calculation.  To measure the diffusion tensor, diffusion-weighted acquisitions in at least 

six different directions must be performed, yielding an equal number of apparent 

diffusion coefficients (ADCs). Taking more than six diffusion weighted measurements 

creates an over constrained system of equations which may be solved using the least 

squares approach [40]. 

 

 Diffusion values determined by MRI might be a composite from several structural 

compartments (extracellular and intracellular) within a voxel. There could be different 

diffusion coefficient values within these compartments. Since there is movement of fluid 

in and out of the blood vessels and the tissues, we cannot exactly measure the diffusion in 

the tissue – it is not a closed system. Therefore MRI does not give the true diffusion 

values, but only the ADCs. The ADC for a given direction is calculated on a pixel-by-

pixel basis by fitting signal intensities to the Stejskal-Tanner equation [9], [7] as shown 

below: 

                                                   ( ) ( ) ( )S n S bADC= −0 exp                                            (3.1) 

where                                                                                                                              (3.2) 

( )S n  is the intensity of the image in the nth  direction and ( )S 0  is the intensity of the 

unweighted image. ADC can be computed using the following equation: 

                                               
( ) ( )

ADC
S S n

b
=

−ln ln0
                                                 (3.3) 

( )b G= −γ δ δ2 2 2 3∆
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 However, these ADC maps are not the diffusion tensor elements. Let ADCijk  

denote the diffusion map obtained from data along the direction ( )( )G G G i j kx y z, , , ,= . 

For example, ADC110  is the ADC map when Gx  and Gy  are applied simultaneously. The 

diffusion tensor elements are given by D D D D D Dxx yy zz xy xz yz, , , , ,  in the x, y, z, xy, xz, yz 

directions respectively. If only Gx  is applied, then ADC Dxx100 =  and so on. However if 

more than one gradient is applied simultaneously, then the expression will involve off - 

diagonal elements for the diffusion tensor. For example, the relation between ADC110  

and the elements of the tensor is given by: 

                                                 ADC D D Dxx yy xy110 2= + +                                          (3.4) 

 

If we define gradients as: 

                  ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }G G Gx y z, , , , , , , , , , , , , , , , , , ,= − − −11 0 1 0 1 0 11 11 0 1 0 1 0 11                   (3.5) 

then we can express the ADC in terms of the tensor elements: 
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                                         (3.6) 

 

In matrix form it can be expressed as: 
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               (3.7) 

The above matrix equation can be written as: 

                                                ADC M D=                                                     (3.8) 
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where ADC  is a vector of the measured elements, D  is a vector of diffusion tensor 

elements and M is a transformation matrix that depends on the diffusion directions and 

relates ADC  to D . In the above matrix equation the diffusion tensor, D  is the unknown 

quantity which can be determined via the inverse relation [18]: 

                                                         D M ADC= −1                                                      (3.9) 

 

For a square matrix, the inverse is straightforward. However, when we consider 

more than six directions i.e. for a non-square matrix, the inverse matrix is generated using 

the least squares approach [40]: 

                                                     ( )M M M MT T− −
=1 1

                                              (3.10) 

 

The diffusion tensor is a second rank positive 3x3 matrix: 

                                       D
D D D
D D D
D D D

xx xy xz

yx yy yz

zx zy zz

=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
                                 (3.11) 

  

The three diagonal diffusion coefficients Dii  correspond to diffusion along 

orthogonal x, y and z axes and there are three off-diagonal coefficients for off-axis 

contributions. In the interior of the brain the on diagonal elements of the tensor matrix are 

positive, whereas the off-diagonal elements can be positive or negative. The diffusion 

tensor matrix has non-negative Eigen values and thus it can be represented as an ellipsoid 

[17].  

                                                                                     
In physics and engineering terminology, a tensor describes directional tension 

forces in solid bodies using an array of three dimensional vectors. Ellipsoids are used to 

represent these tensors where the three major axis are the three orthogonal directions of 

the co-ordinate system. The directions of the main axis of the ellipsoid represent the 

Eigen vector and its length is the Eigen value. In DTI we compute the tensor for every 

voxel of the entire sampled tissue volume. In order to compute the diffusion tensor, 

images are obtained from at least six independent diffusion encoding directions. For each 
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voxel, the longest main axis of the diffusion ellipsoid represents value and direction of 

maximum diffusion, whereas the shortest axis denotes value and direction of minimum 

diffusion. If the three Eigen values are equal, then the diffusion is said to be isotropic and 

the diffusion tensor can be visualized as a sphere, the FA = 0 , otherwise the diffusion is 

anisotropic and FA > 0 . 

 

Diffusion can be classified as linear or planar. When the main axis of the 

diffusion ellipsoid is much larger than the other two axes, it is called ‘linear diffusion’. 

The term ‘planar’ indicates that diffusion is restricted along one direction only and 

unrestricted along the other two directions. DTI data can be analyzed in several ways and 

the most common way is to characterize the overall displacement of water molecules by 

computing the mean diffusivity in the voxel. To obtain this we compute the trace of the 

diffusion tensor, the mean diffusivity is given as Trace(D)/3.  In order to compute the 

anisotropy, there are several measurements which are rotationally independent i.e. not 

dependent on the absolute orientation of the diffusion tensor ellipsoid. The most 

commonly used terms, first proposed by Basser [2], are:  

(1) Relative Anisotropy (RA), a normalized standard deviation representing the 

ratio of the anisotropic part of the tensor to its isotropic part;  

(2) Fractional Anisotropy (FA), a measure of the fraction of the magnitude of the 

tensor that can be ascribed to anisotropic diffusion; and,  

(3) Volume Ratio (VR), a measure representing the ratio of the ellipsoid volume 

to the volume as a sphere of radius λ, where λ is the average of the Eigen values. 

(4) Trace(D) is an anisotropic invariant computed as the sum of the diagonal 

elements of the diffusion tensor matrix; 

(5) Radius, Surface area, and Volume of diffusion, D D Dav surf vol, , , respectively 

are used to describe the diffusion ellipsoid.  

 

3.2 The Diffusion Tensor Method 
 

The diffusion tensors in MRI are given by a 3x3 symmetric matrix, whose values 

are measured relative to the co-ordinate reference frame for the tissue in the MRI 
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scanner.  Since they are real values, the diffusion tensor on diagonalization will generate 

three real Eigen values λ λ λ1 2 3, ,  and each of these has a corresponding orthogonal Eigen 

vector v v v1 2 3, ,  respectively [18]. The Eigen values are non-negative since negative 

diffusivity is physically undefined. The Eigen vectors represent the orientation of the 

diffusion tensor.  The Eigen system of the diffusion tensor can be interpreted graphically 

as an ellipsoidal surface with the semi-major axis oriented in v1  direction and the two 

semi minor axes in the v2  and v3  directions. The lengths of the axes are given by the 

corresponding Eigen values, i.e. λ1  represents the length of the semi-major axis whereas 

λ2  and λ3  represent the semi-minor axes of the ellipsoid. The principal (or major) Eigen 

vector is the one associated with the largest Eigen value and corresponds to the direction 

of fastest diffusion. The Eigen values are further used in computing rotationally invariant 

anisotropy metrics like FA, RA, and VR [2]. 

                          
( ) ( ) ( )[ ]
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− + − + −

+ +
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2
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where:                                                     λ
λ λ λ

=
+ +1 2 3

3
                                          (3.13) 

                                    
( ) ( ) ( )

RA =
− + − + −λ λ λ λ λ λ

λ
1

2

2

2

3

2

3
                               (3.14) 

                                                           VR =
λ λ λ
λ

1 2 3
3                                                     (3.15) 

 

FA and RA vary between 0 (isotropic diffusion) and 1 ( 2 for RA) (complete 

anisotropy). VR represents the ratio of the ellipsoid volume to the volume of a sphere of 

radius λ , its range is from 1 (isotropic diffusion) to 0. 

 

Based on the Eigen values, diffusion can be categorized in three cases: 

Linear Diffusion (λ λ λ1 2 3>> ≈ ): In this case diffusion is mainly in the direction of the 

Eigen vector with the largest Eigen value. 
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Planar Diffusion (λ λ λ1 2 3≈ >> ): Diffusion is in the plane spanned by two Eigen 

vectors with maximum Eigen value. 

Spherical Diffusion (λ λ λ1 2 3≈ ≈ ): Diffusion is isotropic i.e. the same in all the 

directions 

  

3.3  Generating Color Coded Principle Eigen Vector Weighted Maps of 

Fractional Anisotropy 

 
The most common visualization goal is to highlight the spatial patterns of the 

principal Eigen vectors in regions which are physiologically meaningful instead of a 

completely specifying all of the tensor information. Visualizing these patterns is an 

important step in verifying that a given DTI scan has succeeded in resolving the needed 

feature [10].  A most simple spherical colormap of the principal Eigen vector is the 

standard method to generate the color FA maps [11].  FA loses directional information; 

hence it is essential to generate the colormaps to represent fiber tract direction. 

 

From the given Eigen values ( )λ λ λ1 2 3, ,  the one which has the maximum value 

and its corresponding Eigen vector i.e. the principal Eigen vector is chosen. The x y z, ,  

components of the principal Eigen vector are compared and the color is assigned in the 

following manner   
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                                   (3.16) 

 

3.4 The Diffusion Ellipsoid Method 

 
DTI describes the direction of diffusion in tissues in a manner which is orientation 

co-ordinate system dependent. An alternative approach using the diffusion ellipsoid 

properties was suggested by Ulug and Zigl in 1999[3].  Instead of using the Eigen values, 
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the diffusion is characterized by a set of three rotationally invariant quantities that have 

magnitude and directions of true diffusion constants and contain information about the 

average radius, surface and volume of diffusion ellipsoid [3]. These scaled invariant 

quantities generate a new set of orientation independent anisotropies [which are also 

normalized between 0 (isotropic) and 1 (completely anisotropic)] but that do not involve 

tensor diagonalization and Eigen value determination. This can reduce the susceptibility 

to potential artifacts caused by numerical manipulations.  

 

Given the diffusion tensor we have the following relations for tensor invariants 

and tensor elements: 

First invariant or trace:  

                                        I D D D D D Dxx yy zz1 11 22 33= + + = + +                                (3.17) 

 

Second invariant: 

          I D D D D D D D D D D D Dxx yy xx zz yy zz xy yx xz zx yz zy2 = + + − − − (3.18) 

                                               I D D D D D D2 11 22 11 33 22 33= + +                                      (3.19) 

 

Third Invariant or determinant: 

           ( ) ( ) ( )I D D D D D D D D D D D D D D Dxx yy zz zy yz xy yx zz zx yz xz yx zy zx yy3 = − − − − −   (3.20) 

                                                         I D D D3 11 22 33=                                                     (3.21) 

 

Fourth Invariant: 

                                                            I I I4 1
2

22= −                                                    (3.22) 

                            I D D D D D D D D Dxx yy zz xy yx xz zx yz zy4
2 2 2 2 2 2= + + + + +                     (3.23) 

                                                      I D D D4 11
2

22
2

33
2= + +                                               (3.24) 

 

The first invariant is proportional to the sum of the square of the radii of the 

ellipsoid, the second invariant is proportional to the square of its surface area and the 

third invariant (determinant) is proportional to the square of its volume. Since computing 
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the invariants is a mathematical procedure wherein the diffusion constants are either 

added or multiplied, we need to scale the invariants so they have the units of true 

diffusion constants [3].  

 

The average, surface, volume and magnitude diffusion coefficients are given by: 

                                                              D
I
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                                                          D Ivol = 3
3                                                        (3.27) 

                                               D
I
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3 2                                     (3.28) 

 

These orientation independent anisotropies can be related to our scaled invariants 

and the normalized anisotropy definition is given by [3]: 

Fractional Anisotropy 
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mag

surf

mag
= − = −

3
2

1 1
2

2

2

2                                     (3.29) 

Relative Anisotropy 

                                           RA
D
D

D
D

mag

av

surf

av
= − = −

2

2

2

21 2 1                                    (3.30) 

Volume Ratio 

                                                            VR D
D

vol

av
= ⎛
⎝⎜

⎞
⎠⎟

3

                                          (3.31) 

 

3.5 The Hasan Method 

 
The paper by K. M. Hasan and P. A. Narayanan in 2003 [4] gives an analytical 

expression that relates commonly used diffusion tensor anisotropy measures obtained 

from the decoded and diagonalized diffusion tensor to those obtained from the first and 
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second order moments of the measured diffusion weighted data [4].  RA and FA can then 

both be computed online which makes it potentially more useful in clinical applications 

that require realtime execution. RA is related to the mean and standard deviation of the 

DW moments of the diffusion tensor, and an analytical, expression relating the RA and 

FA is derived from tensor invariants and given as: 

                                                    FA I I= − −1 2 4
1                                                  (3.32) 

                                                    RA I I= − −1 3 2 1
2                                               (3.33) 

                                                  [ ]FA RA= +− −
3 22 3

                                          (3.34) 

 

The first and second order moments for the data ADC are given as: 

                                                       m N ADCk
k

N

1
1

1
= −

=
∑                                                (3.35) 

                                                       m ADC ADC
N

t

2 =                                               (3.36) 

where N is the number of directions. 

 

Many dimensionless and scale-independent anisotropy measures can be defined 

from the first and second order moments and then related to the usual FA and RA: 

                                                    Aniso m m1 2 1
2 1= −                                            (3.37) 

                                                    Aniso m m2 1
2

21= −                                           (3.38) 

 

The DW based anisotropy measures can be related as: 

                                              ( )Aniso Aniso2 1
21 1= + −                                         (3.39) 

 

The relation between RA and Aniso1  after some algebraic reductions is given as: 

                                                       Aniso RA1 08= .                                               (3.40) 

 

Using the closed for relation between RA and FA and relating RA to Aniso1 , FA can be 

given as: 
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                                             [ ]FA Aniso= +− −
375 2 51

2 1
. ..                                      (3.41) 

 

Since Aniso1  and Aniso2  are related to the mean and standard deviation of 

diffusion weighted measurements, we can compute FA without tensor decoding and 

diagonalization [4]. In this thesis from hereon, computing FA maps by the Hasan method 

without DT will be referred to as the ‘Hasan A method’, and using DT will be referred to 

as the ‘Hasan B method’.  

 

3.6 The Platonic Variance Method 

 
  This method is computationally efficient as it can be programmed directly from 

the diffusion weighted images. This method uses gradient acquisition schemes, based on 

platonic solids: the icosahedric scheme ( )N = 6 , the dodecahedric scheme ( )N = 10  and 

their combinations-translating to acquiring DT-MRI data in 6 and 10 directions 

respectively. This scheme was put forth by Erik Akkerman in 2003 [5]. It is based on the 

relation that the average of the diffusion tensor Eigen values equals the average of the 

measured ADC and the variance of the Eigen values equals 5/2 times the variance of the 

diffusion coefficients:  

                                                                λ = ADC                                                      (3.42) 

                                                     ( )Var Var ADCλ =
5
2

                                               (3.43) 

 

Since this property has been verified only for icosahedrons and dodecahedron 

which are platonic solids and their combinations, this method of computing FA maps is 

called the Platonic Variance Method. It provides compact expressions for anisotropy 

measures, directly in terms of images without involving tensor elements or Eigen value 

computation. The tensor calculation procedure can be very time consuming and 

computationally expensive. Additionally many MRI scanners do not have the software to 

these calculations which have to be run on a separate dedicated workstation. Using the 
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Platonic Variance Method the FA map is calculated as simple “one-step” functions of the 

acquired diffusion weighted images [5].  

 

Using diffusion tensor method the FA map is given by: 

                                                          FA
Var

=
3
2 2

λ
λ

                                                (3.44) 

 

From earlier computations we can relate the mean and variance of Eigen values to the 

mean and variance of ADC maps: 

                                                              λ = ADC                                                       (3.45) 

                                                       ( )Var Var ADCλ =
5
2

                                             (3.46) 

 

The FA map in terms of the ADCs  is given by: 

                                         
( )

( ) ( )
FA

Var ADC

Var ADC ADC
=

+

3
2

5
2

5
2

2
                                    (3.47) 

Also:                                         ADC
S S

b
= =

−
λ

ln ln0                                              (3.48) 

 

By the above calculations we compute the FA as: 

                                       
( )

( ) ( )
FA

Var S

Var S S S
=

+ −

3
2

5
2

5
2 0

2

ln

ln ln ln
                                (3.49) 

where ln S  and ( )Var Sln  are the average and variance of ln , .......S jj = 1 23 . Thus we  

observe that FA can be computed directly from the weighted images independent of 

tensor elements and b-value.  
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RA can be computed as: 

                                                
( )

RA
Var Var S

S S
= =

−
λ

λ

5
2

0

ln

ln ln
                                      (3.50) 

 

 
Figure 3.1 FA maps in an axial slice of human brain using the four methods 
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Chapter 4: Noise and Error Propagation 

 
Noise is an inherent problem in diffusion weighted images. There are two major 

sources of noise in DTI measurements: 

i. Electromagnetic noise in the body due to movement of charged particles     

ii. Small anomalies in the measurement electronics, which depend on the size 

of the RF coil and the bandwidth of the pulse sequence.  

 

Noise in image data acquisition produces errors in the calculated quantities for all 

methods. Random variations in these quantities complicate the analysis and interpretation 

of DTI data [20], [22]. 

  

The error in anisotropy index calculations is due to the noise in the raw DTI data. 

Both the noise and the selected diffusion weighting scheme propagate through the 

diffusion tensor imaging computational chain into the variances of the diffusion tensor 

elements and then into the errors in the anisotropy indices. Depending on the b values, 

the number of diffusion gradient directions N, and diffusion weighting gradient scheme, 

the noise in the DW images could propagate into variances or other statistics computed 

on the diffusion tensor elements [6]. 

 

4.1 Computing Error Propagation in DTI Parameters 

 
For the two parameter case, we refer to the work of Poonawalla and Zhou [6] to 

investigate error propagation. Let x be a given descriptor for a type of anisotropy, for 

example: FA, RA, VR etc. Let u and v be the parameters used to determine x, for 

example: Dsurf , Dmag , Dvol .  These are the for the variance measure the error propagation 

is given as: 

                         σ σ
∂
∂

σ
∂
∂

σ
∂
∂

∂
∂x u v uv

x
u

x
v

x
u

x
v

2 2
2

2
2

22=
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟                           (4.1) 
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Since the covariance terms [last term of the equation above] are significantly 

smaller than the variance terms, we can disregard them and on applying the above 

formula, the error propagation in tensor shape invariants is computed. The error 

propagation σ FA  for FA can be computed as follows: 

                                                    FA
D
D

surf

mag
= −1

2

2                                              (4.2) 

 

Taking the partial derivative of FA  with respect to Dsurf  and Dmag  results in the 

following equation: 

( ) ( )∂
∂

FA
D

FA D D
FA

D
Dsurf

surf mag
surf

mag
= − = − ⋅− −1

2
2

11 2
2                          

( ) ( )∂
∂

FA
D

FA D D
FA

D
Dmag

mag surf
surf

mag
= ⋅ = − ⋅− −1

2
2

11 3 2
2

3  

 

The variance in FA can now be expressed using these terms:  
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                      (4.3) 

 

For the three parameter case we can extend the variance expression to obtain:  

    σ σ
∂
∂

σ
∂
∂

σ
∂
∂

σ
∂
∂

∂
∂

σ
∂
∂

∂
∂

σ
∂
∂

∂
∂x u v w uv uw vw

x
u

x
v

x
w

x
u

x
v

x
u

x
w

x
v

x
w

2 2
2

2
2

2
2

2 2 22 2 2=
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟ +

⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

      (4.4) 

 

This approach for the computation of the error propagation has been further 

extended in this thesis. Error propagation has been computed in other scalar indices such 

as trace, volume ratio, anisotropy index, ultimate anisotropy. The results are summarized 

in Table 4.1 below. 
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Computing error propagation in a three parameter case for example the error σ AI of the 

anisotropy index can be expressed as: 

                                               ( )AI D D Dav surf vol= − −2 3 22 2 2                                        (4.5) 

 

Taking the partial derivative of AI  with respect to Dav , Dsurf and Dvol  
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The variance can be expressed using these terms: 
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                                      σ σ σ σAI av av surf surf vol volD D D2 2 2 2 2 2 2144 64 16= + +                                          (4.6) 

 

The errors in VR, Trace, and Ultimate Anisotropy are derived in the same manner as 

equations [4.3] and [4.6].  

 

Table 4.1 Variances in Error Propagation of the Various DTI Parameters 

 

Parameter Error Propagation 
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Volume Ratio 
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4.2 Computing MSE and SNR 

 
Mean square error (MSE) is defined as the average of the square of the difference 

between the sampled and original image. The higher the value of MSE, the greater is the 

error in the sampled image. In this thesis, MSE has been used to evaluate the results of 

FA calculations in simulated and real human brain DTI data. 

 

Consider an original image X of matrix size N N× . Let Y be the sampled image 

of the same size. The MSE between X and Y can be computed as follows: 

 

                                          ( ) ( )[ ]MSE
N N

X i j Y i j
j

N

i

N

=
×

−
==
∑∑1 2

11
, ,                         (4.7) 

 

The term Signal-to-Noise-Ratio, often abbreviated as SNR or S/N, is an 

engineering term for the ratio between the magnitude of the signal (meaningful 

information) and the magnitude of the background (unwanted) noise. Since many signals 

have a very wide dynamic range, SNR’s are often expressed in the terms of a logarithmic 

decibel scale. It is preferred to have a high SNR, and hence a smaller associated MSE.  

                                          ( )SNR
h

MSE
db= 10 10

2

log                                 (4.8) 

where h  is the maximum intensity value (usually h = 255 for an 8-bit image). 

 

         SNR in medical imaging can be different to the expression above – the difference 

occurs in how the background noise is defined, and hence the calculations can differ.  It is 

well known that quantitative anisotropy measurements derived from the diffusion tensor 

are extremely sensitive to noise contamination [20]. The level of noise in the diffusion 

tensor imaging (DTI) experiment is usually measured from some estimate of the SNR in 

the component diffusion-weighted (DW) images. SNR is used to describe the relative 

contributions to a detected signal of the true signal and the superimposed signal 

(“background noise”) - a criterion for image quality [7]. 
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         SNR can be measured by recording the mean value of a small region of interest 

(ROI) ( RA  as shown in Fig. 4.1) placed in an homogeneous area of the tissue with high 

signal intensity (e.g. white matter) and the standard deviation of the background ROI 

( RB as shown in Fig. 4.1) placed outside the object in the image background (avoid 

ghosting or aliasing). 

 
Figure 4.1 Diagrammatic representation of the regions to compute SNR 

 

                            SNR    =                     Mean signal in region RA                               (4.9) 

                                              Standard deviation of background noise (region RB ) 

 

A common method that is used to improve SNR is to average several 

measurements of the sampled data. The SNR can also be improved by sampling larger 

volumes (increasing the field of view and slice thickness but coming with a cost of a 

corresponding loss of spatial resolution) or by increasing the magnetic field. Surface coils 

can also be used to improve the SNR in the tissue of interest.  SNR increases in 

proportion to the square root of the number of scan encodings. SNR decreases with field 

of view squared and wider bandwidths [7]. 

 

 

RA

RB
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4.3 Filtering and Improvements in Image Quality 
 

The images obtained from the MRI scanner contain a lot of noise in the form of 

random, unwanted RF energy picked up from the patient’s body. It is essential to use 

robust methods to minimize or eliminate the noise in order to increase the reliability of 

the data. 

 

4.3.1 Threshold Based Filtering  
 

Let I be an N N×  image with i and j denoting the co-ordinates of individual 

voxels in the image. Using the thresholding method on the source images we remove the 

neighboring noise: 

 

                            ( ) ( )
( )I i j

if I i j i N j N
I i j otherwise

,
, ... , ....

,
=

≤ = =⎧
⎨
⎪

⎩⎪
0 1 1τ               (4.10) 

where τ  is a threshold. 

 

This thresholding or masking procedure retains the central part of the image while 

eliminating all the surrounding noise. A histogram of the signal intensities in the source 

images is plotted and depending on the peak in the histogram we select τ  so as to 

eliminate all the noise in the background. We set all the pixels to the left hand side of the 

peak to zero. 

                                       
Figure 4.2 Histogram plot for slice 12 
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4.3.2 Median Filtering 

Median filtering is a simple and very effective noise removal filtering process. 

When performing median filtering, the median value of all pixels in a selected 

neighborhood (mask, template, window). The median value m of a population (set of 

pixels in a neighborhood) is that value in which half of the population has smaller values 

than m, and the other half has larger values than m. This class of filter belongs to the 

class of edge preserving smoothing filters which are non-linear filters. These filters 

smooth the data while preserving the small and sharp details or high spatial frequencies.  

Figure 4.2 compares the results of thresholding and median filtering. The FA 

maps in these results are obtained for real MRI data from a human brain sampled with 26 

slices.  Unfiltered and filtered source images are used to calculate FA maps slices 11, 12 

(from the center of the sampled brain volume) and calculated using the DT method are 

shown.  

  

 
Figure 4.3 FA maps before (left) and after (right) filtering in two axial slices of the brain 
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4.4 Intervoxel Coherence Methods  

 
 Section 4.3 dealt with filtering the source or intensity images by thresholding and 

median filtering. In this section noise removal following the computation of the FA maps, 

which helps improve the visual quality of the image is described. The pixel values are 

changed depending on neighboring pixels by the averaging and neighborhood difference 

method; hence we call this intervoxel coherence. A 3 3×  or 5 5×  matrix is selected and 

the center pixel is varied according to its neighborhood using the algorithms described in 

the following two subsections.  

 

4.4.1 Computing Average FA maps 
 

     

     

     

              

     

 

Figure 4.4 Averaging method for FA maps 

 

In this method we scan the entire image using a 5 5×  pixel matrix. The average of 

four pixels at the four corners of the matrix is taken to obtain P P P P1 3 5 7, , , . The vertical 

pixels are averaged to obtain P P2 6,  , whereas averaging the horizontal pixels yields 

P P4 8, . Essentially this maps a 5 5×  matrix to a 3 3×  matrix. The method is explained 

schematically in the Figure 4.4. 

 

P1      P2     P3  

    P8      

 

  P4  

   P7    P6    P5  

 

 

 

 X  X 
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If we consider a unit square, the distance for all diagonal elements is 1.414 and 

that of the vertical and horizontal elements is 1. Thus we can assign weights c, to the 

entries in the 3 3×  matrix as follows: 

                                              
c c c c
c c c c

1 3 5 7

2 4 6 8

1 2
1

= = = =
= = = =

                                            (4.11) 

 

We compute FAa  using the formula: 

                                                         FA
Pc

c
a

i i
i

i
i

= =

=

∑

∑
1

8

1

8                                                      (4.12) 

 

4.4.2 Neighborhood Difference 
 

 

 

 

 

 

                                         

Figure 4.5 A 3 3×   size matrix for neighborhood difference 

 

This method involves computing the difference between the center pixels and its 

eight neighbors of a 3 3×  size matrix and assigning a weighting coefficient to the 

neighborhood pixel depending on the magnitude of the difference. The algorithm for this 

method is as shown below: 

 

1. Compute ∆D X P ii i= − ∀ = 1 2 8, ,......,  where X is the center pixel, 

P P P1 2 8, ,.......,  are the eight neighbors specified in a clockwise manner and ∆Di  

P1      P2     P3  

    P8        P4  

   P7    P6    P5  

 X 
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is the difference in the signal intensity between the center and the i th  

neighborhood pixel. 

2. Set the coefficient vector as [ ]c = 1 0 9 08 0 7 0 6 05 0 4 0 3. . . . . . . . 

3. Sort ∆Di  values in the ascending order and assign a maximum coefficient to the 

minimum ∆Di  value. 

4. Compute FAd  using:  

                                                           FA
c D

c
d

i i
i

i
i

= =

=

∑

∑

∆
1

8

1

8                                           (4.13) 

 

4.4.3 Combining Averaging and Neighborhood Difference 
 

Here we compute FA maps by combining the averaging method with pixel 

differences using a simple average: 

                                                   FA
FA FA

c
a d=
+
2                                             (4.14) 

 

 
 

Figure 4.6: Effects of intervoxel coherence on an axial slice using the DT method                

(a) Original slice (b) Slice after averaging method, FAa  (c) Slice after neighborhood 

difference, FAd  (d) Slice after combining averaging and neighborhood difference FAc  



                                43

Intervoxel coherence generates FA maps of a better visual quality when observed 

with naked eye. We observed that the averaging method gives better results as compared 

to the neighborhood difference method in terms of computational efficiency and MSE as 

shown in the next section.  
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Chapter 5: Experiments and Results 
 
 
5.1 Simulation 
 
5.1.1 Simulation Environment 
 
 To evaluate the performance of the various methods for computing DTI 

parameters, we performed experiments using both human brain MR images and 

simulated digital data sets. The experiments were performed on an Inspiron 5160 Intel 

Pentium 4 Processor 518 (2.80 GHz) with 512 MB RAM and 60 GB Ultra ATA Hard 

Drive in a laptop PC. The software platform used was MATLAB 6.5. 

 

5.1.2 Simulation Assumptions and Simulated Data 
 
 Simulated data were generated using a matrix size 128 128×  in the form of 

squares, circles, overlapping squares and circles and horizontal and vertical bars on 

circles. The diffusion tensor coefficients were chosen depending on the type of data to be 

obtained. We chose a set of diffusion tensor as shown in table 5.1 to obtain four distinct 

rings in the simulated data. The gradients in six different directions were selected, with 

the following directional cosines: ( )± 2 2 0 2 2, , , ( )0 2 2 2 2, , ± , 

( )± 2 2 2 2 0, , .  These were taken from the standard GE pulse sequence. This 

generated a set of 8-bit source images shown in Figure 5.1 which provided an input to the 

programs that generated FA maps using the DT, Hasan, Ellipsoid and Platonic Variance 

methods.  A number of computations were performed on simulated and real MRI data i.e. 

filtering, added noise, and computed MSE and BIAS of FA maps as well as the 

computational efficiency of each of the method. Results from the simulated and real data 

were then compared. Using simulated data with a relatively simple form i.e. with 

diffusion tensor coefficients either in the x, y, z direction we could validate our methods 

for the implemented display of the directions as color coded FA maps and check the FA 

calculations. 
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5.1.3 Results with Simulated Data 

 

We used the set of diffusion tensors as shown in Table 5.1 to generate six data 

sets of matrix size 128 128×  as shown in Figure 5.1. 

 

Table 5.1: Diffusion tensor coefficients for simulated data 

Directions 
D1 

(Outer Circle) 
D2  

(Second Outer Circle) 
D3  

 (Third Outer Circle) 
D4  

(Center Circle) 
X 1 0.2 0 0 
Y 0 0.5 1 0.3 
Z 0.4 1 0.7 1 

XY 0 0 0 0 
YZ 0 0 0 0 
XZ 0 0 0 0 

 

 
Figure 5.1 Simulated source images 

 

The algorithms for the four methods of calculating the FA maps gave results as 

shown in Table 5.2. Each row of results is for the same pixel value in all the FA maps 

using the different methods. These pixel values correspond to D1, D2, D3, and D4 from 

outer to inner rings respectively. FA values will always range between 0 to 1 where 0 

indicates isotropic diffusion and 1 indicates complete anisotropy. Similar results were 

obtained using the DT, the Ellipsoid and the Hasan B method (with DT).  
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Table 5.2 FA values for simulated data using the four methods 

 

           

 

 

 

 

 
Figure 5.2 FA maps for simulated data using the four methods 

 

                             
    Figure 5.3 Directional FA map for simulated data 

 

As observed from the FA map shown in Figure 5.3, the outermost red ring 

indicates dominant diffusion is in the x direction, i.e. corresponding to D1 which has a 

True 
Value 

DT 
method Ellipsoid Hasan  

Platonic 
Variance 

    A (w/o DT) B (with DT)   
0.80943 0.80943 0.80943 0.69978 0.80943 0.74271 
0.61632 0.61632 0.61632 0.51216 0.61632 0.55149 
0.72815 0.72815 0.72815 0.61807 0.72815 0.66045 
0.85133 0.85133 0.85133 0.74379 0.85133 0.7863 

Red: X direction dominates 
Green: Y direction dominates 
Blue: Z direction dominates 

Y 
X 

Z 
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maximum coefficient in the x direction. Thereafter, since D2 has a maximum coefficient 

in z direction, we observe a blue ring in the image indicating that the directional diffusion 

is in z direction. Thus from visual inspection of these results, it appears that the simulated 

data were useful in checking the correctness of the computations and validating the 

methods. 

 

As stated earlier, we simulated structures such as squares, circles, overlapping 

squares and circles and horizontal and vertical bars on circles using the same method and 

parameters.  In terms of direction, all the four methods produced the same results. For 

given simulated data we generated the expected directional FA maps as shown in Figure 

5.4. 

 

              
 

        
Red: X direction 

Green: Y direction 
Blue: Z direction 

 

Figure 5.4 FA maps obtained using different simulated data 

 

 

 



                                48

5.1.4 Results with Addition of Noise 

  

 To test the robustness of the four methods in the presence of noise, we added 

Gaussian noise with mean = 0 and variance increasing from 0.001 to 0.005, in steps of 

0.001, to the simulated data.  

                                     
Figure 5.5: Original simulated image (left) and simulated image with added Gaussian 

noise (right) of variance = 0.002 

 

We obtained plots for Mean Square Error and Average difference of FA maps 

(sometimes called the BIAS [16]) for simulated data. The FA map obtained from the 

original source images was taken as a reference to compute MSE of the FA map 

generated from the noisy images. Plots for the DT, the Ellipsoid and the Hasan B (with 

DT) overlap each other as they gave almost the same results. Hasan A (without DT) 

showed minimum noise robustness.  

                
         Figure 5.6: Plot of MSE and BIAS of FA v/s noise variance for simulated data 
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5.2 Human Brain MRI Data 

 

5.2.1 Human Brain MRI Data Acquisition and Data Analysis Strategy 

 
To test the various DTI methods, an MRI experiment was performed on a 3.0 

Tesla General Electric Medical Systems Horizon LX MRI scanner at the Center of 

Advanced Imaging at WVU using a standard quadrature head coil. Sets of MRI and DTI 

were obtained from a healthy 25 year old male subject who consented to participate in a 

study approved by the Institutional Review Board at West Virginia University. The MRI 

scanner featured a gradient system capable of 40 mT m  gradient amplitude and a slew 

rate of 400 T/m/second. To acquire the DTI data, a standard spin echo planar imaging 

tensor pulse sequence was used. The b value was chosen to be 1000 s mm2  and a 

diffusion scheme with N = 6  directions. We used three pairs of vectors with the 

following directional cosines: ( )± 2 2 0 2 2, , , ( )0 2 2 2 2, , ± , 

( )± 2 2 2 2 0, ,  selected from the standard GE pulse sequence. The imaging 

sequence parameters were TE = 20 ms, TR between the acquisitions = 9 s, field of view 

(FOV) = 24 cm, phase FOV = 1, axial slice thickness = 4mm, interslice gap = 1mm, 26 

slices and image matrix size = 128 128× . Data were acquired to cover the whole brain. 

Four sets of these acquisitions were taken with the same parameters but NEX was varied 

as NEX = 1 2 3 4, , , . The total scan time was around 5 minutes for each data set for our data 

acquisition. For each set of data, one acquisition of unweighted images was taken at b = 0 

s mm2 . For any acquisition, the total number of images can be obtained from the 

number of directions, slices in each direction and the number of unweighted images: 

Total Number of images = Number of directions*Number of slices in each direction +  

                                               Unweighted images 

                                       = (n directions + 1)* n slices 

 

                                                ( )182 6 26 26= × +  
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As described for the simulated data, FA maps were computed from the 

reconstructed brain DTI data using the DT, Hasan, Ellipsoid and Platonic Variance 

methods. All other calculations like filtering these maps, adding noise, computing MSE 

and bias, performed for simulated data were repeated for the human data.  

 

5.2.2 Results with Human Structural MRI Data 

 
The MRI images obtained from the MRI scanner were byte swapped using a 

routine implemented in C to generate the source images [see Appendix Figure A1]. As 

mentioned in the earlier Section 5.2.1, a whole brain data set consisting of 26 slices were 

taken in each direction, but the 26th slice had no brain coverage; hence we have not 

obtained a source image for that and for every 26th slice in all the other directions. These 

source images were used as the input for the programs to generate FA maps. 

 

         The corresponding FA maps were generated using source images when NEX = 4 , 

with DT method for each of the 25 slices in 6 different directions are as shown in the 

Figure 5.7 

 
Figure 5.7 FA maps using DT with NEX = 4  
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The FA maps from all the four different methods are shown in Figure 5.8 for 

source images with NEX = 4 .  It can be observed that all four methods give the same 

visual results. The DT and Ellipsoid give nearly the same FA values. We have generated 

FA maps for all 25 slices using the four methods. However, we have displayed only 

slices 10-13 for all the methods as the major portion of the brain and the white matter 

tracts are observed in these slices. FA maps for source images with NEX = 1 2 3, ,  for 

slices 10-13 for all four methods are shown in the Appendix (Figures A8, A9, and A10 

respectively). 

 
      Figure 5.8 FA maps using the four methods with NEX = 4  

 

5.2.3 Results with Addition of Noise 

  

 To test the robustness of the four methods in the presence of noise, we added 

Gaussian noise with mean = 0 and variance increasing from 0.001 to 0.005, in steps of 

0.001, to the set of source images of human brain MRI data. Figure 5.9 shows a slice of 

human brain before and after addition of Gaussian noise. 
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Figure 5.9: Original brain slice (left) and slice with added Gaussian noise (right) 

 of variance = 0.002  

 

Thereafter we computed the Average difference of the FA maps (sometimes 

called the BIAS [16]) as well as the Mean Square Error (MSE) for slice 3 and slice 12 

with NEX = 4. The results are as shown in Figure 5.10 and Figure 5.11 respectively. The 

plots for Diffusion Tensor, Diffusion Ellipsoid and Hasan A (with DT) lie on top of one 

another. Hasan A gives low MSE and BIAS with small noise variance. However, as the 

noise variance increases the performance of Hasan A deteriorates in terms of MSE and 

BIAS. 

 

      
Figure 5.10 Plot of MSE and BIAS of FA v/s noise variance for slice 3 
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Figure 5.11 Plot of MSE and BIAS of FA v/s noise variance for slice 12 

 

The results for only Slices 3 and 12 are shown for brevity; however we have 

generated results for the whole brain data set.  

 

5.3 Comparison of Simulated and Human Brain MRI Data 

 

      
Figure 5.12: Plot of MSE of FA v/s noise variance for human MRI data and simulated 

data 
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Figure 5.13 Plot of BIAS of FA v/s noise variance for 

human MRI data and simulated data 

 

We observed similar results for MSE and BIAS of FA for the simulated and the 

human data (see Figure 5.12). Under a given noise variance, for the simulated and the 

human data, the DT, the Ellipsoid method and the Hasan B method (with DT) gave 

almost the same results (Figure 5.13). They were the most robust to noise. The Platonic 

Variance method was less robust to noise relative to these three methods. The Hasan A 

method (without diffusion tensor) showed maximum MSE and BIAS compared to all the 

other methods. For the Hasan A method, we can observe in human data that a small 

amount of added noise variance, gives good results, however as the variance increases 

this method crosses the plots of all other methods leading to increases noise sensitivity. 

Thus the Hasan A method was the least robust to noise.  
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5.4 Improvement and Filtering Results 

 

5.4.1 Results Following Filtering 
 

Using the threshold based filtering and median filtering technique, mentioned in 

section 4.3.1 we get the results as shown in Figure 5.14.  We can clearly observe the 

filtering in the background whereas the central part of the image is untouched.  

 

 
 

Figure 5.14 FA maps for slice 11 and 12 before (left) and after (right) 

 filtering with NEX = 4  
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Figure 5.15 MSE for FA slice 12 before (left) and after (right) filtering 

 

      
Figure 5.16 BIAS for FA slice 12 before (left) and after (right) filtering 

 

Figure 5.15 and 5.16 shows plots for MSE and BIAS of FA for slice 12 before 

and after filtering. Using FA maps with NEX = 4  as the reference, MSE and BIAS are 

obtained for FA maps with NEX = 1 2 3, , . We can see a considerable reduction in the 

MSE and BIAS in Slice 12 before and after the filtering techniques. However it is still 

observed that Hasan A (without DT) shows maximum MSE and BIAS whereas the DT 

method, the Ellipsoid method and the Hasan B method (with DT) show similar results. 

The Platonic Variance method showed the minimum MSE and thus gives the best results. 
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Also the MSE and BIAS decrease as we increase the number of averages (acquisitions) 

from 1 to 3.  

 

5.4.2 Results of Intervoxel Coherence Studies 

 
 Computing the average FA maps, difference with neighborhood pixels and a 

combination of averaging and difference with neighborhood pixels as mentioned in 

Section 4.4 yields the results as shown in Figure 5.17. The FA maps in these results are 

obtained using the DT method. 

 

 
 

Figure 5.17 : Effects of intervoxel coherence on slice 12 with NEX = 4 using the DT 

method (a) Original slice 12 (b) Slice 12 after averaging method (c) Slice 12 after 

neighborhood difference method (d) Slice 12 after combining averaging and 

neighborhood difference 
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As observed we get homogeneous and smoother images on using the intervoxel 

coherence methods. We have obtained plots of MSE and BIAS of FA maps with 

intervoxel coherence for slice 12 as shown in Figures 5.18 and 5.19 respectively. 

 

 
Figure 5.18 Effect of intervoxel coherence on MSE for FA slice 12 

 

 
Figure 5.19 Effect of intervoxel coherence on BIAS for FA slice 12 
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5.5 Computational Cost 

 
It would be the most advantageous to compute FA maps online; hence it is 

important to know the time efficiency of these methods. The amount of computation time 

for each of the method was calculated using both the simulated and human data. In the 

case of simulated data we obtained results by varying the number of directions as 6, 10, 

and 16. We used these specific directions, as the Platonic Variance method can only be 

used for these directions [5]. From the graph as shown in Figure 5.20 for the simulated 

data we observe that the Hasan B method (without DT) shows maximum computational 

efficiency followed by the Platonic Variance method. It can be seen that the computation 

time for each method increases with increase in the number of directions. For 20 and 26 

directions we have not computed the computation time by the Platonic Variance method, 

as the Platonic Variance method does not support solids with 20 and 26 sides. 

 

 
Figure 5.20 Time computation (in seconds) for different FA methods for simulated 

data with six slices and varying number of directions 
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Table 5.3 shows computation times, in seconds, for both the simulated and human 

brain MRI data. We could vary the number of directions for simulated data [only in a 

limited fashion though], but the human brain MRI data were acquired using 6 directions. 

However, we observed that for both types of data the Hasan B method (without DT) gave 

the best results in terms of time followed by the Platonic Variance method. From the 

computational performance, it can be observed that although Hasan B method is the least 

robust in the presence of noise, the method could indeed be useful for clinical 

applications that require immediate feedback. 

 

  Table 5.3 Computation time (seconds) for simulated and human brain MRI data 

                                          Simulated Data (128x128) 
Number of 
directions DT  Ellipsoid 

Hasan A 
(w/o D) 

Hasan B 
(with D) Platonic 

        
6 114.328 64.328 2.875 8.796 4.875 

10 120.593 68.234 3.532 16.719 5 
16 125.984 70.015 4.546 41.922 5.266 
20 127.813 71.7650 5.1720 42.3280 - 
26 133.031 73.9840 6.1250 45.2190 - 

      
 Human Brain MRI Data (256x256) 

Number of 
directions DT Ellipsoid 

Hasan A 
(w/o D) 

Hasan B 
(with D) Platonic 

        
6 236.391 137.266 4.5780 22.641 9.078 

 

5.6 Comparison of the Four FA Methods 
 

Table 5.4: Comparison of the four FA methods 
 

FA method Noise robustness 
1 – Minimum, 3 – Maximum 

Computationally efficient 
1 – Minimum, 5 – Maximum 

Diffusion Tensor 2 1 
Diffusion Ellipsoid 2 2 

Hasan A (without DT) 1 5 
Hasan B (with DT) 2 3 
Platonic Variance 3 4 

 
            

The Hasan A (without DT) is computationally fast, but has minimum noise 

robustness. The Platonic Variance method has good noise robustness and computational 
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efficiency, but is limited to platonic solids only. The Diffusion Tensor, Diffusion 

Ellipsoid and Hasan B (with DT) methods give similar results, although amongst the 

three we can state that the Hasan Method B is the best as it has the same noise robustness 

compared to the other two, but is more computationally efficient. 
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Chapter 6: Conclusions and Future Work 

 
 
6.1 Conclusions 
 
 

DT-MRI has become an increasingly important modality for aiding the 

understanding of the organization of normal brain structures and the evolution of 

neurological and psychiatric disorders. DTI is an in vivo visualization MRI technique that 

provides quantitative information about the integrity and orientation of white matter 

tracts in the human brain. Artifacts, produced by the interaction of the patients body or 

the body functions with the imaging process and noise from the scanner will degrade the 

quality of the diffusion weighted images which will in turn propagate the error to the 

invariant anisotropy measures. In this thesis we have mainly studied the noise and error 

propagation in these anisotropies, in particular, FA, was studied from maps calculated 

using four different methods. We have derived formulae to compute the variances in error 

propagation for other DTI parameters such as Volume Ratio, Trace, Anisotropy Index 

and Ultimate Anisotropy. 

 

 We have implemented four methods previously used for generating the FA maps. 

Visual inspection indicated close concordance amongst the four methods. The DT, 

Ellipsoid and Hasan (with DT) methods gave almost the same FA values. The flow of 

this thesis begins with the elimination of background noise from the source image, while 

leaving the central part of the image (brain) untouched. This method followed by median 

filtering considerably reduced the MSE and the bias of the FA maps. Another filtering 

technique of intervoxel coherence was implemented on the FA maps. In these methods, 

the result of the averaging technique is better than those obtained with neighborhood 

difference in terms of error as well as computational efficiency. A set of simulated data 

was generated and their FA maps were obtained, to draw similarities and to validate the 

results obtained from the simulated and human brain images.  It is seen that addition of 

noise has similar effects on both the simulated data and human data for a given FA 

technique.  
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Comparing the different FA techniques, it can be concluded that the Hasan A 

(without DT) has the least noise robustness, whereas the Platonic Variance method is 

most robust to noise. With regard to computational efficiency, the Hasan A (without DT) 

was the most efficient, followed by the Platonic Variance approach. Thus we can state 

that Platonic Variance approach yielded better results in terms of both dealing with noise 

and being time efficient. This method is limited to only platonic solids. However, the 

main advantage of the Hasan A method is the shorter computation time i.e. one can 

potentially compute the FA maps online. This is important for the clinical applications 

where immediate feedback is needed. The Platonic Variance and Hasan B method do not 

involve computing the DT in generating the FA maps. Rather, they can be derived 

directly from the pixel values of the source images and are hence faster compared to the 

DT, Ellipsoid and Hasan B methods which generate FA maps from the DT thus leading 

to longer computation time.  Overall, the Hasan B method is a good compromise with 

respect to time and noise robustness. 

  

6.2 Future Work 
  

In this thesis we studied the problem of noise and error propagation in DTI. We 

derived new relations for error propagation for various anisotropy indices. This work can 

be extended to implement the formulae for variances in error propagation in the different 

DTI parameters. Thereafter, depending on the results, instead of using FA as an invariant 

anisotropy measure, we can use other invariant DTI parameters that provide less variance 

in error propagation. This will improve the evaluation of the tract disruption in the brain. 

This can be also studied by addition of noise to all the different DTI parameters and 

computing its noise robustness and time efficiency, thus using the most efficient invariant 

measure for DTI. We can investigate the limits of noise robustness due to increasing 

number of averages and limiting the number of directions. 
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Appendix 
 

 
 

Figure A1: Slices 1-25 of human brain MRI data with NEX = 4 
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Directions 1-6 refer to the six different directions in which the human brain MRI data 

was acquired. 

 

 
 

Figure A2: Slices 1-25 in direction 1 of human brain MRI data with NEX = 4 
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Figure A3: Slices 1-25 in direction 2 of human brain MRI data with NEX = 4 
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Figure A4: Slices 1-25 in direction 3 of human brain MRI data with NEX = 4 
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Figure A5: Slices 1-25 in direction 4 of human brain MRI data with NEX = 4 
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Figure A6: Slices 1-25 in direction 5 of human brain MRI data with NEX = 4 
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Figure A7: Slices 1-25 in direction 6 of human brain MRI data with NEX = 4 
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Figure A8: FA maps using the four methods with NEX = 1 
 
 

 
 

Figure A9: FA maps using the four methods with NEX = 2 
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Figure A10: FA maps using the four methods with NEX = 3 
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