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ABSTRACT 
Examination of Genotypic Variation in Aluminum Tolerance of Populus 

Ernest Smith 

 

Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest 

productivity worldwide. Hybrid poplar (Populus spp.) was used as a model woody tree species to 

assess genotypic variation in Al resistance and physiological stress responses to Al. In the first 

study eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in 

solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. 

deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. 

deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good 

indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and 

symplastic fractions indicated that differences in sensitivity among genotypes were associated 

with Al uptake into the symplasm. Aluminum treatment increased callose and pectin 

concentrations of root tips in all genotypes, but more prominently in Al sensitive 

genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation 

correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, 

whereas organic acid accumulation was not as pronounced in Al resistant genotypes.  

These findings suggest that exclusion of Al from the symplast is associated with Al resistance. In 

the second study exudation was examined as a strategy for Al resistance in two poplar genotypes 

varying in Al tolerance.  Increased citrate exudation in the Al tolerant genotype DTAC-7 was 

found to be related to increases in organically bound Al in solution as well as lower callose 

accumulation in root tips.  A decrease in organic acid (OA) exudation over time was also 

observed in both genotypes.  These findings suggest that, under short term Al exposure, citrate 

exudation is a viable mechanism to promote Al resistance in poplar genotypes, but also suggests 

that other strategies may exist in longer term Al exposure.  Further screening of Al tolerant 

poplar genotypes could yield successful candidates to be utilized for sustainable 

reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree 

growth. 
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1.1 INTRODUCTION 
	  

Aluminum (Al) is earth’s third most abundant element after oxygen and silicon, 

accounting for almost seven percent of the earth’s crust (Ma et al., 2001).  While most of this Al 

in bound in unavailable forms in rocks and minerals, chemical weathering processes lead to the 

release of Al into the edaphic environment.  The mineral solublization and release of Al into 

solution are accelerated by acidity and, once in solution, the cationic Al+3 species is toxic to 

many plants (Marschner, 1991).  Indeed soil acidification and Al toxicity are major factors 

limiting plant growth and ecosystem productivity worldwide (Baringnaga, 1997).  Elevated soil 

Al may result from natural soil weathering processes and may increase with anthropogenic 

inputs of nitrogen into ecosystems (Aber et al., 1998; Halvin et al., 1999).  Surface mining may 

also increase soil acidity and Al availability due to the exposure of acidic overburdens to 

weathering processes (Karathanasis et al., 1998).  In agriculture, a common practice used to 

alleviate soil Al toxicity is the application of lime and phosphorous to acidic soils.  However, this 

practice is impractical as a long-term strategy for forest tree plantation management.  The 

identification of Al resistant tree genotypes and the underlying mechanisms of adaptation to Al 

in the environment is a more practical strategy for wood production on acidic, Al-rich soils. 

The primary target of Al toxicity is the root tip, and plants experiencing Al toxicity 

typically exhibit decreased root growth (Steiner et al., 1984; Kochian et al., 2005).  The toxicity 

of Al to plants results from its strong affinity for biological ligands within roots.  The binding of 

Al to cell walls, plasma membranes and symplastic metabolites detrimentally affects root 

physiology and, ultimately, growth (Cumming et al., 1992; Lux and Cumming, 2001; Kochian et 

al., 2005; Tahara et al., 2005).  Negatively charged polysaccharides, such as pectin, in cell walls 

may attract Al to the root apoplast and increase Al concentration within the root surface and lead 

to toxicity and alterations in nutrient acquisition (Yamamoto et al., 1997; Taylor et al., 2000).    

However, plants possess a number of mechanisms that can limit Al toxicity.  Plants may 

chelate Al in the rhizosphere through the exudation of organic acids (OAs), such as citrate and 

malate (Silva et al., 2004; Qin et al., 2007).  Aluminum may similarly be detoxified internally by 

the accumulation of OA-Al complexes (Watanbe and Osaki, 2002; Nguyen et al., 2003).  In 

depth studies on Al tolerance have been conducted on a number of agricultural species (Delhaize 

and Ryan, 1995; Matsumoto, 2000; Kochian et al., 2005).  Studies on forest tree resistance to Al 

have explored pathways such as organic acid exudation (Watannabe and Osaki, 2002; Silva et 
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al., 2004; Qin et al., 2007), callose accumulation (Hirano et al., 2004; Hirano et al., 2006), and 

Al fractionation within the root (Heim et al., 2001; Nowak and Friend, 2005).  A limited number 

of studies focus on interspecific and intraspecific differences in Al tolerance of tree species 

(Cuenca et al., 1990; Nguyen et al., 2003; Silva et al., 2004; Naik et al., 2009).  Therefore, there 

is a further need to explore genotypic variation in mechanisms of Al tolerance of a tree species.  

Forested ecosystems cover almost one-third of the earth’s surface area, making trees, as a 

group, keystone ecological organisms.  Trees are vital to human populations by providing 

resources, such as fuel, fiber, and timber, and ecological services, such as carbon and water 

storage (Tuskan and Walsh, 2001).  Due to their extended life span and habitat, forest trees must 

possess the ability to overcome a variety of abiotic and biotic stresses that may detrimentally 

affect their growth (Brunner and Godbold, 2007).  Poplar (Populus spp.) has become the model 

genus for the investigation of forest tree responses to environmental factors.  Genotypes within 

the genus Populus exhibit rapid growth, ease of vegetative propagation, a high degree of genetic 

variation and a sequenced genome (Strauss and Martin, 2004), providing the phenotypic and 

genetic resources for in-depth investigation of tree response to the environment.  Poplars are also 

used extensively in plantation production (Hansen et al., 1994), and understanding genotypic 

variation in response to soil factors will play an important role in supporting sustainable, low-

input wood and fiber production for the future. 

Large genotypic differences in Al resistance exist within the genus Populus (Steiner et 

al., 1984; Naik et al., 2009).  Since genotypic variation in Al resistance in many agricultural and 

non-woody species has been related to root exudation of OAs and phenols in response to Al 

(Delhaize and Ryan, 1995; Jones., 1998; Miyasaka and Hawes, 2001; Barcelo and 

Poschenrieder, 2002; Silva et al., 2004), investigating the function of such systems in Populus, a 

woody species with a sequenced genome and extensive genetic resources, would provide a 

unique opportunity to probe the genetic basis of Al resistance in a significant forest tree species. 

Identification of resistant genotypes and elucidating the physiological mechanisms of Al 

toxicity/resistance in a forest tree species may lead to the identification of Al resistant tree 

genotypes for production on acidic soils.   

The first study of this thesis examines a broad range of poplar genotypes varying in 

lineage to see if and how these genotypes differentially respond to Al.  The goal of this study 

was to see if differences in biomass due to Al stress could be reflected in physiological processes 

in Populus hybrid genotypes.  In the second study, patterns of root exudation were assessed in 



	  

3	  

Al-resistant and Al-sensitive Populus hybrid crosses and related exudation to Al speciation in the 

rhizosphere, Al fractionation within root tips, callose accumulation and growth of these 

genotypes when exposed to Al.  From these studies a better understanding of physiological 

mechanisms of Al tolerance in poplar genotypes can be conveyed and lays foundation for further 

genetic research in poplar.  

It is hypothesized that Al tolerant genotypes can be distinguished by greater biomass 

accumulation in response to Al treatment.  Also these changes in biomass can be reflected by 

physiological responses such as callose accumulation in root tips and changes in organic acid 

production.  Finally it is hypothesized that organic acid exudation plays a role in Al tolerance of 

Populus, with more tolerant genotypes exuding more organic acids.  
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2.1 Genotypic Variation in Aluminum Resistance, Cellular Aluminum Fractions, Callose 
and Pectin Formation and Organic Acid Accumulation in Roots of Populus Hybrids 

2.1.1 INTRODUCTION 

Soil acidity is a major impediment to agriculture and forestry worldwide.  Approximately 

40% of arable land has naturally acidic soil, and soil acidification is accelerated by certain 

farming practices and by atmospheric acid and nitrogen deposition (Marschner, 1991; von 

Uexküll and Mutert, 1995).  Surface mining may also exacerbate soil acidity due to the exposure 

of acidic overburdens to weathering processes (Karathanasis et al., 1988).  The solubilization and 

bioavailability of aluminum (Al) is one of the major chemical constraints limiting crop yield and 

forest productivity on acidic soils (Kochian et al., 2005; Brunner and Godbold, 2007).  In high-

input agricultural systems, combating Al toxicity is accomplished through the application of lime 

and fertilizer.  However, such practices are not feasible for much of the world’s agriculture or for 

forested ecosystems (Halvin et al., 1999).  An understanding of plant response to Al is critical to 

the selection of species and genotypes for long-term agricultural and managed forest 

productivity. 

The toxicity of Al to plants is a result of the high affinity of cationic Al for plant cell 

walls, membranes and metabolites (Kochian et al., 2005; Hiradate et al., 2007).  The binding of 

Al3+ with cell walls impairs root elongation (Ma et al., 1999; Rangel et al., 2009) and Al-

membrane interactions alter nutrient acquisition processes (Purcino et al., 2003; Klugh and 

Cumming, 2007).  Aluminum also alters cell homeostasis through the alteration of membrane 

channel activity and ion fluxes and by binding to enzymes and other cellular components in the 

symplasm (Huang et al., 1992; Purcino et al., 2003). 

Aluminum sensitivity and resistance mechanisms of crop plants have been well 

documented, particularly with emphasis on physiological and genetic basis of resistance 

(Delhaize and Ryan 1995; Kochian et al., 2005; Godbold and Brunner, 2007).  Quantitative data 

on the physiological responses of tree roots to Al are less numerous (Ruf and Brunner, 2003; 

Hirano and Brunner, 2006; Vanguelova et al., 2007).  As with crop species, tree species and 

genotypes within species differ widely in their responses to Al.  Rankings of Al resistance among 

tree species have been compiled based primarily on growth responses (McCormick and Steiner, 

1978; Steiner et al., 1984; Schaedle et al., 1989; Cuenca et al., 1990), whereas the physiological 
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traits underlying variation among genotypes within tree species have received less attention 

(Geburek and Scholz, 1992; Nowak and Friend, 2005; Godbold and Brunner, 2007). 

One potential physiological parameter for measuring Al resistance/sensitivity is Al-

induced callose synthesis in root apices, which has been related to reductions in root growth and 

root elongation (Zhang et al., 1994; Horst et al., 1997; Wissemeir et al., 1998).  Callose (1, 3-β-

glucan) is a plant polysaccharide that is synthesized in response to various biotic and abiotic 

stresses.  In roots of temperate forest trees, callose formation has been positively related to Al 

concentrations in solution under both laboratory and field conditions.  For example, callose 

concentrations in root apices of European chestnut (Hirano et al., 2006) and Norway spruce 

(Hirano et al., 2004) were strongly correlated with Al exposure.  This physiological marker of Al 

stress is more robust than other indicators, such as root elongation rates and hematoxylin staining 

(Zhang et al., 1994; Horst et al., 1997; de Macȇdo et al. 2009), suggesting that callose is a 

reliable biochemical marker of Al sensitivity in plants.  Information on callose as a marker for 

genotypic variation in response to Al exposure within tree species is scarce. 

The polyvalent Al3+ ion rapidly and strongly binds to negatively charged biomolecules in 

the root (Zhang and Taylor, 1989; Blamey et al., 1990).  Several studies indicate that Al 

accumulates mainly in the cell wall (CW), specifically binding to the pectin matrix (Chang et al., 

1999; Wang et al., 2004).  Pectin is a complex polysaccharide that is mainly composed of 

galacturonic acid chains and a strong, positive relationship between CW pectin content and Al 

accumulation has been recognized (Schmohl and Horst, 2000).  Although patterns of CW pectin 

content and Al resistance have been observed in several crop species (Eticha et al., 2005; Rangel 

et al., 2009), no such studies have been reported in forest trees in relation to Al stress.  

One of the well-established physiological mechanisms of Al stress resistance in plants 

involves the extracellular detoxification and exclusion of Al via root organic acid (OA) 

exudation and the intracellular chelation and detoxification of Al by OA accumulation.  Recent 

studies on forest tree species, including Populus, Melaleuca, Melastoma and Eucalyptus, indicate 

that Al-induced root OA exudation and accumulation may be involved in tree resistance to Al 

(Watanabe and Osaki, 2002; Nguyen et al., 2003; Silva et al., 2004; Naik et al., 2009).  The 

exudation (Nguyen et al., 2003) or accumulation (Yang et al., 1994; Jones, 1998; Silva et al., 

2004) of OAs lead to the extracellular and intracellular chelation and detoxification of the 

phytotoxic Al3+ ion, reducing its binding with cell components and subsequent impacts on root 

cell division and elongation, thus facilitating tree growth on acidic soils.  While the role of 
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exudation of OA anions in reducing Al uptake/binding in the root apoplast has been widely 

accepted, the role of symplastic OA accumulation and the intracellular detoxification of Al by 

OAs as a mechanism of Al resistance is still an issue of debate.  

The objective of the current study was to investigate differences in Al 

resistance/sensitivity among eight hybrid poplar (Populus spp.) genotypes.  To assess these 

differences, we measured growth and callose production as indicators of Al resistance as well as 

potential mechanisms of Al resistance, including CW pectin content and root tissue OA 

accumulation.  Finally, we assessed the relationships between tolerance indices and resistance 

mechanisms and the concentrations of symplastic, apoplastic and total Al in the root, assessing 

the efficacy of these mechanisms in conferring Al resistance to poplar genotypes.  Our 

overarching hypothesis was that Al resistance in poplar is associated with the exclusion of Al 

from the symplast or the intracellular chelation of Al by accumulated organic acids within root 

tips.  The exclusion or chelation of Al would limit the metabolic perturbations induced by 

intracellular ionic Al, thus conferring resistance to poplar genotypes exhibiting these traits. 

2.1.2 MATERIALS AND METHODS 

2.1.2.1 Plant materials, hydroponic culture and Al treatment 
 

        An experiment assessing genotypic variation among poplar hybrids was conducted using 

dormant hybrid poplar sapling stem cuttings from one-year-old plants originally started from 

cuttings obtained from Segal Ranch Hybrid Poplars (Grandview, WA, USA).  Healthy cuttings 

of uniform size were taken from eight hybrid poplar clones representing specific crosses of 

Populus trichocarpa (hereafter designated as T), P. nigra (hereafter designated as N) and P. 

deltoides (hereafter designated as D).  The genotypes used were 199-586 (T×D), DTAC-7 

(T×D), 50-194 (T×D), 306-45 (T×N), 309-74 (T×N), 311-93 (T×N), OP-367 (D×N) and PE-01 

(D×N).  Cuttings were approximately 15 cm in length and 3 mm in diameter with 2-4 dormant 

buds. These cuttings were chilled for 14 d at 4 oC to promote uniform bud sprouting.  

The propagation system was based on 10 L hydroponic tanks that were aerated 

vigorously by two air stones and aquarium pumps.  Each tank contained eight cuttings assigned 

such that all eight genotypes occurred together in each of seven tanks in each Al treatment.  To 

initiate rooting, cuttings were treated with liquid-based rooting hormone (0.2% indole-3-butyric 

acid, 0.1% 1-naphthaleneacetic acid)(Dip’n Grow, Inc., Clackamas, OR, USA) and were initially 
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rooted in tanks containing aerated solutions of 0.5 mM Ca(NO3)2 at pH 5.8 for 14 d.  Following 

root initiation and bud break, excess shoots were removed to promote uniform growth of a single 

shoot for each rooted cutting.  Clones were then supplied with a nutrient solution containing 1.0 

mM NO3, 0.4 mM NH4, 0.5 mM K, 0.2 mM Ca, 0.05 mM H2PO4, 0.1 mM Mg and SO4, 50.5 µM 

Cl, 20 µM Fe, 20 µM B, 2 µM Mn and Zn and 0.5 µM Cu, Na, Co and Mo adjusted to pH 4.0.  

Plants were grown on this solution for 11 d with changes twice weekly.  After this 25 d 

pretreatment period, cuttings were transferred to nutrient solutions containing 0, 50, 100, 200 or 

500 µM Al.  To prepare treatment solutions, Al was added with vigorous stirring from a 1 M 

AlCl3 stock, freshly prepared on the day of use.  All solutions were adjusted to pH 4.0 with 1 M 

NaOH or 1 M HCl.  Both were added slowly with continuous stirring of the solutions to avoid Al 

precipitation.  Treatment solutions were changed twice weekly.  

Plants were maintained in a climate-controlled greenhouse with supplemental lighting 

providing a 14-h photoperiod (mixed metal halide sources) and day/night temperatures of 

24/19+3 °C.  Relative humidity fluctuated with temperature and day. Cuttings were harvested 

following 30 days of Al exposure.  

2.1.2.2 Growth measurements 
 

            After 30 d of Al treatment, root tips were removed for measurement of tissue Al and root 

tip biochemistry (see below), with subsets being used to calculate fresh:dry weight ratios.  Shoots 

and remaining roots from each cutting were separated, dried in an oven at 60 oC for 72 h and re-

weighed.  For each genotype, the root tolerance index (TI) was calculated as: (Root dry weight of 

Al treated plants/mean root dry weight of control plants)*100. 

 

2.1.2.3 Determination of apoplastic and symplastic Al in root tips  
 

Apoplastic and symplastic Al contents were determined after (Tice et al., 1992; Nowak 

and Friend, 2005) with minor modifications.  At harvest, roots of the eight hybrid poplar 

genotypes were blotted on tissue paper.  Root apices (~2 cm) of 8-10 roots were collected, rinsed 

in 1.5 mM CaCl2 solution and kept in this solution at 4 oC until initiation of the Al fractionation 

procedure.  

The fractionation of Al for apoplastic and symplastic Al was performed as follows.  Step 
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1 (apoplastic Al): roots were washed with 10 mL of desorption solution containing ice-cold 0.25 

mM citric acid and 0.25 mM CaCl2 with gentle agitation for 2 min.  Step 2 (symplastic Al): root 

samples were transferred to 10 mL of the same desorption solution and cell membranes of the 

root samples were ruptured using combined methods of freezing (-20 oC) and sonication (2 min 

sonication in ice-cold water bath).  This process was repeated three times and solutions were 

pooled and used for symplastic Al determinations. Apoplastic and symplastic Al content were 

quantified as µmol g-1 dry weight of root tissue. 

 

2.1.2.4 Total tissue Al content 
 

Dried leaf and root tissues of each genotype were ground to pass a 20-mesh sieve in a 

Wiley Mill. Samples of 0.1 g of leaves and roots were digested in 5 mL HNO3 and 2 mL of 35% 

H2O2 (Jones and Case, 1990).  Samples were digested in a 75 ml closed vessel microwave 

digestion system (MARS Express, MARS, Inc., Cary, NC, USA) for 2 h at 200 °C.  After 

digestion, digests were brought to final volume of 75 mL and filtered though No. 44 Whatman 

filter paper. Aluminum concentrations were measured with a GTA 110 graphite tube furnace 

atomic absorption spectrometer (Varian, Inc., Mulgrave, Victoria, Australia). 

 

2.1.2.5 Root tip callose content 
 

Callose in root tips was assayed by a modification of the methods described by Hirano 

and Brunner (2006).  Root tips (~2 cm in length) were excised and fixed in 1 ml of 96% v/v 

ethanol.  Samples (~200 mg fresh weight) were homogenized using pre-cooled mortars and 

pestles for 3 min, sonicated for 2 min in ice water and the resulting slurries transferred to 2 mL 

Eppendorf tubes.  Homogenized root tip samples were then washed three-times with 1 mL of 

20% v/v ethanol containing 5% w/v PVPP.  One mL of 1 M NaOH was added to the washed 

samples and the tubes were heated at 85 °C for 20 min to solubilize callose.  The extract was 

centrifuged at 11,000×g for 20 min 4 oC and the clean supernatant assayed for callose.  The 

callose assay mixture contained 0.2 mL of supernatant, 0.4 mL of 0.1 % w/v aniline blue, 0.21 

mL of 1 M HCl and 0.59 mL of 1 M glycine-NaOH buffer (pH 9.0).  Blanks contained assay 

mixture lacking aniline blue and reaction controls lacked supernatant.  The reaction mixture was 
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incubated for 20 min at 50 °C and then 30 min at room temperature.  Callose was quantified with 

a Quantech FM109515 fluorometer (Barnstead/Turner, Dubuque, IA, USA) at excitation and 

emission wavelengths of 393 and 484 nm, respectively.  Slitwidths were set to 3 nm. Curdlan 

(Sigma, St. Louis, MO, USA) was used as a standard.  For each root sample, fluorescence 

intensities in the absence of aniline blue stain were subtracted from the intensities in the presence 

of aniline blue stain (Wissemeier et al., 1998).  Callose concentration was expressed as µg 

curdlan equivalent (CE) g–1 FW root mass.  

 

2.1.2.6 Determination of organic acids from root apices 
 

            Preparation of organic acids from root apices was carried out according to (Cumming et 

al., 2001; Qiu and Jin, 2002), with minor modifications.  Root tips (~2 cm in length) were 

excised, rinsed with distilled water, blotted with paper towels, weighed and immediately frozen 

in liquid nitrogen and stored at -80 °C for organic acid determination.  The frozen roots were 

ground in a cold mortar with 2 mL of cold 80% v/v ethanol to form slurries and samples were 

sonicated for 2 min in an ice bath. The mixture was centrifuged at 8,000×g for 15 min at 4 oC 

and the pellet was extracted twice with 2 mL ice-cold water.  The supernatants from each of 

these extractions were pooled and concentrated in a Speed Vac SC110 rotoevapopator (Thermo-

Savant, Holbrook, NY, USA).  The dried residues were dissolved in de-ionized water and filtered 

through a membrane filter (0.45 µm, Fisher Scientific, USA).  Concentrations of citrate, malate, 

succinate and formate were measured using a Dionex ICS-1500 ion chromatograph with an ion 

suppressor and a conductivity detector (Dionex, Sunnyvale, CA, USA).  For separation of 

organic acids, a Bio-Rad Aminex HPX-87H column (300 mm × 7.8 mm ID)(Bio-Rad 

Laboratories, Hercules, CA, USA) at 40 °C was employed with minor modification (Cumming et 

al. 2001).  For the separation of organic acids, the eluent was 2.3 mM heptafluorobutyric acid at 

a flow rate of 0.6 mL min-1, the reagent solution was 5 mM tetrabutylammonium hydroxide at a 

flow rate of 0.6 mL min-l and the analysis time was 20 min.  Calibration equations were 

determined based on peak area for each organic acid obtained for standard organic acids.  Peak 

areas were determined using Chromeleon software (Dionex, Sunnyvale, CA, USA). Tissue 

organic acid contents were quantified as µmol g–1 FW of root tissue.  
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2.1.2.7 Determination of CW pectin  
 

The terminal 5-cm sections of one primary and two seminal roots were harvested per 

plant.  Root samples were collected in 90% v/v ethanol in 2 mL Eppendorf tubes and extracted 

following methods modified after Schmohl and Horst (2000).  Root samples were thoroughly 

homogenized in 2 mL of ethanol using pre-cooled mortar and pestle for 3 min.  The 

homogenization was repeated three times.  After each ethanol addition, the samples were 

centrifuged at 11000×g for 5 min and the supernatant was discarded.  The remaining cell wall 

material was dried using a Speed Vac SC110 rotoevapopator (Thermo-Savant, Holbrook, NY, 

USA), weighed and hydrolyzed in 1 mL of concentrated H2SO4.  The pectin assay mixture 

contained 0.4 mL of hydrolysate and 2.5 mL of 1.25 mM solution of sodium tetraborate in 

concentrated H2SO4.  The reaction mixture was incubated for 5 min in boiling water bath, cooled 

at room temperature for 5 min and then mixed with 100 µL of 0.15% w/v m-hydroxydiphenyl 

reagent.  Blanks contained assay mixture lacking m-hydroxydiphenyl reagent.  Pectin content 

was measured using a Genysis 20 spectrophotometer (Thermo Spectronic, Madison, WI, USA) 

at 520 nm (Blumenkrantz and Asboe-Hansen, 1973).  Galacturonic acid was used as a calibration 

standard and the root pectin content was expressed as galacturonic acid equivalents (GaE). 

Tissue pectin contents were quantified as µg GaE g–1 FW of root tissue.  

 

2.1.2.8 Statistical analysis 
 

The experiment was established as nested factorial design (8 genotypes within 5 Al 

treatments) with 7 replicated tanks per Al treatment.  Replication ranged (n = 4 to 7) depending 

on measured variable.  Data were log-transformed wherever necessary in order to achieve 

homogeneity of variance. Biomass, tissue Al concentrations, apoplastic and symplastic Al 

concentrations, callose and pectin concentrations and root tip organic acid concentrations were 

analyzed using nested analyses of variance followed by Tukey-Kramer’s LSD to identify 

significant differences among genotypes or hybrids within Al treatments.  Data comparing 

genotype responses to Al were analyzed by nested ANOVA (genotype within Al)(reported in 

Table A.1).  Since there were multiple genotypes per hybrid cross, data were also analyzed as a 

doubly nested design (genotype within hybrid within Al) allowing assessment of broad hybrid 
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responses to Al (reported in Table A.2). Coefficients of determination (R2) were evaluated to 

assess relationships between measured variables (Table A.3). All statistical analyses were carried 

out using SAS JMP v.7 software (SAS Institute, Cary, NC, USA). 

 

2.1.3. RESULTS 

2.1.3.1 Plant biomass 
 

In all hybrid poplar genotypes, significant reductions in growth occurred at Al 

concentrations as low as 50 µM, with growth inhibition becoming increasingly pronounced as Al 

concentration increased (Fig. 1-1).  Across all genotypes, shoot biomass was reduced by 47% at 

50 µM Al and up to 85% at 500 µM Al (Fig. 1-1a).  However, significant variation in Al 

resistance among the eight genotypes was evident (Fig. 1-1, Table A.1).  Reductions in shoot 

growth at 50 µM Al ranged between 27% for the T×D genotype DTAC-1 and 72% for the D×N 

genotype PC-01. At 500 µM Al, reductions varied from 49% DTAC-1 to 97% in PC-01, 

reflecting the high degree of variation in Al resistance among genotypes.  In addition, shoot 

growth of genotypes within hybrid crosses in response to Al were consistent, with T×D hybrids 

being the most Al resistant, the T×N being intermediate and the D×N hybrids being the most Al 

sensitive (Fig. 1-1a, Table A.2). 

Roots in the 200 and 500 µM Al treatments exhibited classic Al toxicity symptoms and 

were brown and stunted with numerous thick and short lateral roots.  However, significant 

growth reductions occurred at Al concentrations as low as 50 µM, at which concentration root 

biomass was reduced by 41% across all genotypes.  Reductions in root growth increased with 

increasing Al up to 78% at 500 µM Al (Fig. 1-1b).  Again, there was substantial variation among 

genotypes (Table A.1). At 50 µM Al, root growth reductions ranged from 14% in the T×D 

genotype DTAC-1 to 86% in the D×N genotype PC-01.  At 500 µM Al, reductions ranged from 

60% in DTAC-1 to 98% in PC-01.  Root growth responses to Al were also consistent within 

hybrid crosses, with T×D crosses being the least and D×N crosses the most affected by Al (Fig. 

1-1b, Table A.2). 

The impacts of Al were more pronounced on shoot than root growth, with the root:shoot 

ratio increasing from 1.6 at 0 µM Al to 3.4 at 500 µM Al across all genotypes.  However, 

genotypes varied significantly in this growth allocation response under Al exposure (Table A.1).  
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The change in root:shoot ratio was most pronounced in the T×N genotype 311-93, increasing 4-

fold across the Al treatment gradient.  In contrast, the root:shoot ratio of the T×D genotype 

DTAC-1 declined slightly, but significantly, over this same Al gradient.  While genotypes varied 

in response to Al, there was no consistent pattern of response to Al for the root:shoot ratio for the 

poplar hybrid crosses (Table A.2). 

Within all hybrid crosses used in this study, resistant and sensitive genotypes could be 

identified based on Al-induced changes in biomass accumulation.  We used the root tolerance 

index (TI) as the relative root biomass at 200 µM Al for each genotype to compare 

genotype/hybrid responses for other measured variables (see later sections).  At this Al 

concentration, the magnitude of root TI among the genotypes ranged from 5 to 54.  Genotypes of 

T×D hybrids (DTAC-1, 199-586) had root TI values above 50.  Genotypes of D×N hybrids were 

less than 13.  The root TI values of the other 4 genotypes were intermediate and ranged between 

28 and 32.	  	  

	  

Figure 1-1 Shoot (a) and root (b) dry 
weights of eight poplar genotypes 
exposed to Al. Values are means ± S.E. (n 
= 7). Bar represents Tukey-Kramer’s LSD 
(P ≤ 0.05) for means comparisons.	  
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2.1.3.2 Tissue Al concentrations 
 

Total shoot and root Al concentrations exhibited distinctly binary patterns of 

accumulation (Fig. 1-2).  In shoots of poplar genotypes, exposure to Al led to 4- to 6-fold 

increases in foliar Al concentrations compared to plants grown without Al.  Genotypes varied 

extensively, with DTAC-1 accumulating the most and PC-01 the least Al (Fig. 1-2a and Table 

A.1).  There were no consistent differences in foliar Al accumulation among hybrids (Table A.2). 

In poplar genotypes grown in control solutions, only low concentrations of total Al were 

detected in roots and exposure to any Al treatment led to high total root Al concentrations (Fig. 

1-2b).  Total root Al varied by ~100 µmol g-1 DW among genotypes within and among Al 

treatments.  While there was significant variation in total root Al accumulation among genotypes 

in response to Al exposure, there were no consistent patterns of accumulation discernable for 

genotype or hybrid crosses to indicate that genetic background of the poplar genotypes 

influenced Al accumulation (Fig. 1-2b and Tables A.1, A.2). 
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2.1.3.3 Apoplastic and symplastic Al concentrations	  
 

Aluminum resistance in poplar may be related to differences in the binding and 

compartmentation of Al within roots.  To assess this, root apices were subjected to a fractionated 

desorption of Al to differentiate between apoplastically and symplastically-bound Al in the 

poplar genotypes.  Fractionated desorption released between 10 and 30% of the total Al in the 

root tips, depending on the genotype and the Al exposure concentration.  

The concentration of Al in apoplastic fractions increased with increasing Al exposure 

concentration (Fig. 1-3a).  Apoplastic Al accumulation varied among genotypes and hybrid 

crosses and was significantly higher in the T×D hybrid genotypes 199-586 and DTAC-1 than in 

the D×N hybrid genotypes OP-367 and PC-01 (Fig. 1-3a and Tables A.1, A.2).  Symplastic Al 

concentrations also increased with exposure to Al (Fig. 1-3b), however, in contrast to 

Figure 1-2 Total shoot (a) and root (b) Al 
concentrations (µmol g-1 DW) of eight 
poplar genotypes exposed to Al. Values 
are means ± S.E. (n = 5). Bar represents 
Tukey-Kramer’s LSD (P ≤ 0.05) for 
means comparisons.	  
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apoplastic fractions, we observed significantly higher symplastic Al content in Al-sensitive D×N 

hybrid genotypes OP-367 and PC-01 as compared to other genotypes (Fig. 1-3b and Tables A.1, 

A.2).  The Al-tolerant T×D hybrid genotypes 199-586 and DTAC-1 showed the least symplastic 

Al compared to other genotypes.  T×N genotypes accumulated intermediate levels of apoplastic 

and symplastic Al (Fig. 1-3a and 1-3b).  

 

2.1.3.4 Callose content 
	  

The Al resistance of poplar hybrid genotypes was reflected in differential Al-induced 

callose accumulation (Fig. 1-4a).  Callose accumulation increased with increasing Al 

Figure 1-3 Apoplastic (a) and symplastic 
(b) Al concentrations (µmol g-1 DW) in 2-
cm root tips of eight poplar genotypes 
exposed to Al. Values are means ± S.E. (n 
= 5). Bar represents Tukey-Kramer’s LSD 
(P ≤ 0.05) for means comparisons. 
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concentration in the nutrient solution and Al exposure differentially induced callose formation up 

to 10-fold in comparison to controls among the genotypes (Fig. 1-4a and Table A.1).  The Al-

resistant T×D hybrid genotypes 199-586 and DTAC-1 exhibited less callose accumulation than 

the Al-sensitive D×N hybrid genotypes OP-367 and PC-01 across the full range of Al exposure 

(Fig. 1-4a).  The intermediate sensitivity of the T×N hybrid genotypes 306-45, 309-74 and 311-

93 and the T×D genotype 50-194 was reflected by the intermediate callose accumulation in these 

genotypes (Fig. 1-4a).  Consistent differences in callose accumulation among hybrid crosses to 

Al exposure were also evident (Table A.2). 

 

2.1.3.5 Pectin content 
 

Pectin in the cell wall (CW) increased with exposure to Al, especially at higher Al 

concentrations and the extent of this increase was genotype specific (Fig. 1-4b and Table A.1).   

The Al-resistant T×D hybrid genotypes 199-586 and DTAC-1 produced significantly less pectin 

than the Al-sensitive D×N hybrid genotypes OP-367 and PC-01; an  intermediate response was 

observed in the T×N hybrid genotypes 306-45, 309-74 and 311-93 and the T×D genotype 50-194 

(Fig. 1-4b).  Consistent differences in root pectin concentration among hybrid crosses in 

response to Al exposure were also evident, supporting the patterns established by the genotypes 

(Table A.2).  
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2.1.3.6 Tissue organic acid content  
 

Exposure of the eight poplar genotypes to Al resulted in the increased production and 

accumulation of certain OAs in root tips (Fig. 1-5).  Organic acid concentrations were below the 

level of detection in roots not exposed at Al.  However, the concentrations of citrate, malate, 

succinate and formate significantly increased in root tips over the 50-500 µM Al treatment range 

(Fig. 1-5).  

Citrate accumulation exhibited significant genotype- and hybrid-dependent responses to 

Al (Fig. 1-5 and Tables A.1, A.2).  Roots of the Al-sensitive D×N hybrid genotypes OP-367 and 

PC-01 accumulated three-fold higher citrate concentrations compared to the Al-resistant T×D 

Figure 1-4  Callose (a) and pectin (b) 
concentrations in 2-cm root tips of eight 
poplar genotypes exposed to Al. Callose 
concentrations are expressed as curdlan 
equivalents (µg CE g-1 FW). Pectin 
concentrations are expressed as 
galacturonic acid equivalents (µg GAE g-1 
FW). Values are means ± S.E. (n = 5). Bar 
represents Tukey-Kramer’s LSD (P ≤ 
0.05) for means comparisons. 
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hybrid genotypes 199-586 and DTAC-1.  The intermediately sensitive T×N genotypes 

accumulated citrate to concentrations that were intermediate between those of the D×N and T×D 

genotypes (Fig. 1-5).  Malate accumulation in response to Al varied by genotype (Fig. 1-5 and 

Table A.1).  Roots of the Al sensitive genotype OP-367 accumulated the highest malate 

concentration of all genotypes, ranging between 2- and 11-fold higher than other genotypes at 

500 µM Al (Fig. 1-5).  Consistent responses of genotypes within hybrid crosses were not evident 

for the malate response (Table A.2).  Similarly to malate, succinate accumulation varied by 

genotype (Table A.1) without consistent hybrid cross responses (Table A.2).  In contrast to 

malate, the Al-sensitive genotype PC-01 accumulated the highest succinate in root tips, ranging 

between 2- and 12-fold higher than other genotypes at 500 µM Al (Fig. 1-5).  Formate was the 

least abundant OA in all the genotypes and its accumulation was the most responsive to Al in 

D×N genotypes (Fig.1-5 and Tables A.1, A.2).  

 
 

Figure 1-5 Concentrations of 
the dominant organic acids 
(µmol g-1 FW) in root tips of 
eight poplar genotypes exposed 
to Al. Values are means ± S.E. 
(n = 4). Bar represents Tukey-
Kramer’s LSD (P ≤ 0.05) for 
means comparisons. 

	  



	  

19	  

 

2.1.3.7 Relationships between root tolerance index, callose, pectin and Al fractions 
 

Sensitivity to Al as measured by root TI at 200 µM Al was highly correlated with root 

callose accumulation in poplar genotypes (R2 = 0.781)(Fig. 1-6a).  The Al-sensitive D×N hybrid 

genotypes OP-367 and PC-01 had the lowest tolerance index and the highest level of callose 

accumulation.  The opposite was observed in the Al-resistant T×D hybrid genotypes 199-586 and 

DTAC-1.  Genotypes with intermediate root TIs exhibited intermediate root callose production 

(Fig. 1-6a).  Root tolerance index was also negatively correlated with root pectin concentration 

(R2 = 0.593)(Fig. 1-6b), although the T×N genotype 306-45 exhibited an intermediate root 

tolerance index and low pectin concentrations in root tips. 
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Root apoplastic and symplastic Al concentrations were highly correlated with root 

tolerance index (Fig. 1-7, Table A.3).  These correlations were strongest at the 200 µM Al 

treatment (Table A.3).  Root tolerance index was positively correlated with apoplastic root tip Al 

(Fig. 1-7a) and negatively correlated with symplastic Al (Fig. 7b).  There was no association 

between total root Al concentration and root tolerance index (Fig. 1-7c). 

Figure 1-6 Relationships between root 
tolerance index and root tip callose (a) and 
pectin (b) concentrations of eight poplar 
genotypes exposed to 200 µM Al. Values 
are means ± S.E. (n = 5). 
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Root apoplastic and symplastic Al concentrations were also highly correlated with the 

accumulation of both callose and pectin in poplar root tips.  Apoplastic Al exhibited a negative 

correlation with callose and pectin (Fig. 1-8a and1- 9a), with the Al-resistant T×D hybrid 

genotypes 199-586 and DTAC-1 exhibiting the highest apoplastic Al content with the lowest 

callose and pectin concentrations.  The Al-sensitive D×N hybrid genotypes OP-367 and PC-01 

Figure 1-7 Relationships between root 
tolerance index and apoplastic (a), 
symplastic (b) and total (b) Al 
concentrations in root tissue of eight 
poplar genotypes exposed to 200 µM Al 
(n = 5).	  
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had the lowest apoplastic Al and highest callose and pectin concentrations (Fig. 1-8a and 1-9a).  

The opposite was true for symplastic Al accumulation and callose or pectin concentrations (Fig. 

1-8b and 1-9b).  Total root Al concentrations did not correlate with either callose or pectin 

concentrations in hybrid poplar root tips (Fig. 1-8c and 1-9c). 

 
 

Figure 1-8 Relationships between root tip 
callose concentration and apoplastic (a), 
symplastic (b) and total (c) Al 
concentrations in root tissue of eight 
poplar genotypes exposed to 200 µM Al 
(n = 5).  
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 Root apoplastic and symplastic Al concentrations were correlated with root tip 

citrate concentrations in hybrid poplar genotypes.  Apoplastic Al exhibited a negative correlation 

with root tip citrate concentration, with the Al-resistant T×D hybrid genotypes 199-586 and 

DTAC-1 exhibiting the highest apoplastic Al content and the lowest citrate concentration and the 

Al-sensitive D×N hybrids exhibiting the highest citrate concentration coupled with lower levels 

of apoplastic Al (Fig. 1-10a).  Conversely, high symplastic Al concentrations were associated 

Figure 1-9 Relationships between root tip 
pectin concentration and apoplastic (a), 
symplastic (b) and total (c) Al 
concentrations in root tissue of eight 
poplar genotypes exposed to 200 µM Al 
(n = 5).  
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with elevated root tip citrate accumulation (Fig. 1-10b). Total root Al shows no clear relationship 

with root tip citrate accumulation (Fig. 1-10c). 

 
 In addition to the relationships with citrate, apoplastic Al concentration was also 

correlated with root tip succinate accumulation (R2 = 0.455), but not with malate or formate 

concentration (data not presented).  Symplastic Al concentration was correlated with malate 

Figure 1-10 Relationships between root tip citrate 
concentration and apoplastic (a), symplastic (b) and total 
(c) Al concentrations in root tissue of eight poplar 
genotypes exposed to 200 µM Al (n = 4).  
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accumulation in root tissue (R2 = 0.626)(data not presented), whereas the associations with root 

tip succinate and formate concentrations were not significant (data not presented).  Total root Al 

was not correlated with the concentrations of any of the other detected organic acids (data not 

presented).  

 

2.1.4 DISCUSSION 

2.1.4.1 Biomass reduction in response to Al 
	  

Reduction in root biomass is often the best indicator of Al sensitivity, reflecting Al-

related disruptions of root cell physiological processes and subsequent growth (Larsen et al. 

1997; Ma et al., 1999; Kochian et al., 2005; Hiradate et al., 2007; Klugh and Cumming, 2007; 

Rangel et al., 2009).  In the current study, poplar genotypes and hybrid crosses exhibited distinct 

differences in Al sensitivity based on root growth (Fig. 1b and Tables A.1, A.2).  The T×D 

hybrids were, in general, most resistant, the T×N moderate and the D×N most sensitive to Al 

exposure.  The exception was the T×D hybrid genotype 50-194, which grouped, in many 

respects, with the T×N hybrids (Fig. 6).  Although the number of genotypes used in the current 

study was relatively limited due to the intensive focus on biochemical markers, the clear 

genotypic response clusterings suggest that the genetic traits underlying Al resistance/sensitivity 

may be associated with particular genera, particularly the P. trichocarpa lineage.  The observed 

variation in Al resistance of poplar genotypes corroborates an earlier study carried out on 22 

poplar hybrids (Steiner et al. 1984).  Although there were additional species crosses in this latter 

study, T×D hybrids were the most resistant (root length) followed by T×N or D×N hybrid poplar 

genotypes when exposed to 111 µM Al.  

Higher external Al concentrations (> 200 µM) elicited the most distinct partitioning of 

poplar hybrid crosses into tolerant and sensitive categories with respect to reductions in root 

biomass, although Al inhibited root growth in all genotypes at as little as 50 µM Al (Fig. 1b).  

This suggests that dose response studies are essential in order to explore thresholds for 

differentiating genotype differences in Al resistance and sensitivity (Barceló and Poschenrieder, 

2002; Tahara et al., 2005).  In contrast to many previous studies, our results also suggest the 

importance of shoot growth in Al sensitivity (Fig. 1a).  Root:shoot ratios increased significantly 

across the Al exposure gradient and genotypes varied significantly in these responses (Table 
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A.1).  However, hybrid crosses as groups did not vary consistently with respect to root:shoot 

ratio (Table A.2).  A possible explanation for reduced shoot growth in Al sensitive genotypes is 

Al-induced reduction of nutrient uptake by roots (Lu and Sucoff, 2003; Naik et al., 2009) or the 

possible hyper-accumulation of Al in shoots of Al sensitive species (Nguyen et al., 2003; Klugh 

and Cumming, 2007).  

 

2.1.4.2 Tissue Al concentrations 
 

In poplar, Al resistant T×D hybrids exhibited the highest leaf total Al concentrations (Fig. 

2a).  Furthermore, shoot growth was positively correlated with leaf Al concentration across all 

genotypes within each Al treatment (data not presented), suggesting that the hyper-accumulation 

of Al is not the basis for Al sensitivity and reductions in shoot growth in this genus.  The 

concentrations of Al in poplar leaves (as high as 16.6 µmol g-1 or 448 µg g-1, Fig. 2a) are 

comparable to that of other species within this genus (Lu and Sucoff, 2003; Naik et al. 2009) and 

other woody species (Nguyen, et al. 2003; Klugh and Cumming, 2007). 

Although root total Al varied among genotypes (Fig. 2b and Table A.1), there were no 

significant differences among hybrids (Table A.2) and no significant association between Al 

resistance/sensitivity and total root Al concentration (Fig. 7c).  Concentrations of Al in roots 

were consistent with other reports for woody species (Lux and Cumming, 2001; Lu and Sucoff, 

2003).  While total root tissue Al concentrations are considered an indicator of Al uptake and 

stress (Delihaze and Ryan,1995; Kochian et al., 2005), other studies have shown that total tissue 

Al content may not be reflective of total biological Al exposure (Naidoo et al., 1978; Kinraide 

and Parker, 1989).  The lack of a consistent relationship between Al accumulation in roots and 

Al resistance/sensitivity in the current study may be because the root is acting as a simple cation 

exchanger and levels measured after tissue digestion do not reflect the biological activity of Al 

within the root.  

 

2.1.4.3 Apoplastic and symplastic Al concentrations 

 
The Al extraction procedure allowed the separation of operationally defined apoplastic 

and symplastic Al fractions in roots of poplar genotypes after Al treatment (Nowak and 
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Friend 2005).  Among all the poplar genotypes, apoplastic Al was highest (48-52 µmol Al g-1 

DW) for Al resistant genotypes exposed to 500 µM Al (Fig. 3a) and apoplastic Al was positively 

correlated with root TI (Fig. 7a).  This suggests that apoplastic Al binding may be responsible for 

Al resistance in poplar genotypes.  The strong binding of Al in the apoplastic region of the root 

has been suggested to represent a detoxification system in wheat, pine and bean genotypes (Tice 

et al., 1992; Nowak and Friend, 2005; Rangel et al., 2009). 

Across all Al treatments, approximately 40% of the fractionated Al in root tips of poplar 

remained following the 0.25 mM citrate wash, suggesting that this fraction was retained in a 

compartment inaccessible to the citrate rinse, ascribed to be the root symplast by Nowak and 

Friend (2005).  Symplastic Al was greatest (47-82 µmol Al g-1 DW) for Al sensitive poplar 

genotypes exposed to 500 µM Al (Fig. 3b).  Across all genotypes, root growth was negatively 

correlated with root symplastic Al accumulation (Fig. 7b), which suggests that the uptake of Al 

into the symplasm may underlie Al induced stress leading to toxicity in poplar genotypes.  The 

accumulation of Al in the symplast will lead to distinct perturbations of cell metabolism, 

including cell membrane potentials and accompanying transport activity, calcium homeostasis, 

and oxidative stress  (Miyasaka et al., 1989; Huang et al., 1992; Olivetti et al., 1995; Osawa and 

Kojima, 2006; Vanguelova et al., 2007; Naik et al. 2009).  This pattern supports our first 

hypothesis that excluding Al from the symplast underlies Al resistance in poplar.  In comparison 

to other species, apoplastic and symplastic Al were similar to values reported for wheat roots 

(Tice et al., 1992) and pine roots (Nowak and Friend 2005).  In loblolly and slash pine roots, 

Nowak and Friend (2005) noted essentially equal distribution between apoplastic and symplastic 

pools within the ranges noted here for poplar.  Total Al concentrations reported in Fig. 2 and Fig. 

7-10 represent values derived from total root system digests, which likely vary in binding 

properties compared to 1-cm root tips used for apoplastic and symplastic Al determinations. 

 

2.1.4.4 Callose accumulation in root tips 
 

In the poplar hybrid genotypes investigated in this study, increasing external Al 

concentrations induced the accumulation of callose in root tips (Fig. 4a).  Although the number 

of the genotypes studied was limited, Al-induced callose accumulation was strongly correlated 

with Al sensitivity based on root biomass reduction (Fig. 6a).  Callose accumulation was greater 
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in Al sensitive D×N hybrid genotypes as compared to Al tolerant T×D hybrid genotypes (Fig. 4a 

and Fig. 6a).  Furthermore, elevated callose production was negatively correlated with apoplastic 

Al accumulation (Fig. 8a) and positively correlated with symplastic Al accumulation (Fig. 8b) in 

poplar genotypes.  These results suggest that Al-induced callose formation can be used as an 

indicator of Al sensitivity among the poplar hybrids and that production was stimulated by the 

uptake of Al into the symplast.  

Similar correlations between callose formation in root tips and sensitivity to Al have been 

found in cowpea (Wissemeier et al., 1992), maize cultivars (Llugany et al., 1994; Horst et al., 

1997) and Melaleuca and Eucalyptus species (Tahara et al., 2005).  However, callose production 

may or may not be associated with accumulation of Al in the root. Hirano et al. (2006) noted that 

fine root callose was positively correlated with fine root total Al in chestnut seedlings exposed to 

Al for 28 d, a pattern supported by Schmohl and Horst (2000) in maize.  However, Horst et al. 

(1997) found no such correlation in maize and no correlation to total Al in poplar was found in 

the current study (Fig. 8c).  The current study is the first to document the relationship between 

Al-induced callose production and specific root Al fractions, specifically the uptake of Al into 

the root tip symplast. 

 

2.1.4.5 Pectin concentration in root tips 
 

Aluminum treatment increased the pectin content in all genotypes (Fig. 4b). This is the 

first report, to our knowledge, revealing the involvement of CW pectin in forest tree response to 

Al.  Furthermore, this finding suggests that root pectin concentration is not simply a static 

physiological characteristic, but changes in response to the edaphic environment (Guglielmino et 

al., 1997; Nowak and Friend, 2005).  Pectin concentrations were similar among poplar genotypes 

when not exposed to Al (Fig. 4b).  When exposed to Al, pectin concentration increased to a 

greater extent in Al-sensitive D×N hybrid genotypes than in Al-tolerant T×D hybrid genotypes 

(Fig. 4b and Fig. 6b).  The exception was the T×N genotype 306-45, which did not exhibit an 

elevated pectin response at 200 µM Al, but did so at 500 µM Al (Fig. 4b).  The differences in 

pectin content of root apices associated with Al resistance and sensitivity in poplar hybrids may 

reflect a fundamental change in cell wall biochemistry resulting from altered cell homeostasis 

under Al exposure.  Similar increases in CW pectin content upon exposure to Al have been 
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reported in maize root tips (Schmol and Horst, 2000; Eticha et al., 2005), and common bean 

roots (Yang et al., 2010). 

The differences in pectin content of root apices associated with Al resistance and 

sensitivity in poplar hybrids were also correlated with root tip Al fractions.  Sensitive genotypes 

exhibiting high pectin concentrations had low apoplastic and high symplastic Al concentrations 

(Fig. 9a and 9b).  This pattern is contrary to the concept that pectin is negatively charged and 

genotypes with elevated pectin should adsorb considerably more cationic Al into the CW, which 

has been reported by some to be the primary site of Al toxicity (Horst et al., 2010; Yang et al., 

2011).  However, the degree of methylation of pectin defines the negativity of the CW 

(Guglielmino et al., 1997) and the Al content of the CW may be best related to CW pectin 

methylation.  The current study did not assess the methylation of pectin in hybrid poplar 

genotypes.  This may prove to be a useful tool to further understand the mechanisms by which 

pectin can affect the amount of Al bound to the cell wall (Wojciechowski and Fall, 1996; 

Schmohl and Horst, 2000;  Eticha et al., 2005).  

As an additional explanation for this negative association between CW pectin and 

apoplastic Al in poplar, it may be that the Al fractionation method used for poplar roots 

operationally misidentified Al fractions in Al sensitive poplar genotypes.  For example, Al may 

bind more tightly in root cell walls with elevated pectin contents and not be removed by the 

extract used to measure the “apoplastic” Al fraction.  This would lead to an apparent depression 

of apoplastic Al and an increase in the putative “symplastic” fraction, as noted for the Al-

sensitive D×N hybrid poplar genotypes in the current study.  Consistent with this, Yang et al. 

(2010) also noted that environmental stress altered cell wall biochemistry and Al binding and 

toxicity in Phaseolus vulgaris.  Thus, the role of apoplastic biochemical changes induced by Al 

and the subsequent influence on Al binding within the apoplast will require further investigation 

in order to ascribe Al sensitivity to specific Al fractions in poplar. 

 

2.1.4.6 Root tip organic acid concentrations 
 

In the current study, the accumulation of organic acids in root tips was stimulated by 

exposure to Al (Fig. 5).  Concentrations of organic acids in root tips were below the level of 

detection in plants not exposed to Al, but increased upon exposure to Al.  Depending on 
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genotype, citrate, malate, succinate and formate concentrations increased up to ~30 µmol g-1 FW 

(Fig. 5).  

Of the organic acids detected, citrate and formate exhibited responses that were 

consistent in direction and magnitude among the clones of the same hybrid cross (Table A.1 and 

A.2).  The Al sensitive D×N hybrid genotypes accumulated almost twice the concentrations of 

citrate and formate compared to other genotypes across all Al treatments (Fig. 5).  Malate and 

succinate increased in the root tips in response to Al in some genotypes (Fig. 5), but these 

changes were not consistently related to Al resistance or sensitivity (Fig. A.1). 

Many studies have shown citrate to play a major role in the chelation of Al (Tolrá et al., 

2005; Osawa and Kojima, 2006; Qin et al., 2007).  While other studies have suggested citrate as 

a possible internal detoxification mechanism (López-Bució et al., 2000; Ma et al., 2001; Kochian 

et al., 2005), the current study shows that higher levels of citrate and other organic acids within 

root tips were not associated with resistance to Al in poplar genotypes and, indeed, organic acid 

accumulation was most pronounced in Al sensitive genotypes (Fig. A.1).  These findings suggest 

that the accumulation of organic acids in root tissues of poplar may be a response to elevated Al 

accumulation in the symplast (Fig. 10b), but this response is not sufficient to promote resistance 

to Al in the rhizosphere (Fig. A.1).  This finding does not support our second hypothesis that 

internal chelation of Al by organic acids plays a role in Al resistance in poplar. 

Exudation of organic acids, which was not measured in the current study, may represent a 

mechanism of Al resistance in poplar (Jones, 1998).  Naik et al. (2009) noted that exposure to Al 

induced 40- to 100-fold increases in total carbon exudation by roots of P. tremuloides and P. 

trichocarpa, respectively, and that citrate, malate, and oxalate were significant contributors to 

exudation.  Exposure to Al, Cu or Zn also induced the exudation of organic acids by the roots of 

P. tremula, with Al specifically stimulating the release of oxalate and citrate (Qin et al., 2007).  

Other factors, such as stable membrane transport systems and inorganic anion exudation, may 

also function in Al resistance (Kochian et al., 2005). 

 

2.1.4.7 Physiology of Al tolerance in Populus genotypes  
	  

 Increased levels of symplastic Al was most closely related to Al toxicity symptoms such 

as increased callose accumulation and decreased biomass (Figure 1-7 and 1-8 ).  The current 
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study illustrates that Al sensitive genotypes exposed to Al for extended time periods experience 

increased accumulation of organic acids such as citrate, increased callose and pectin 

accumulation in root tips and decreases in biomass (Figure 1-11).  Al tolerant genotypes 

exhibited lower tissue organic acids coupled with higher levels of apoplastic Al (Figure 1-10).  

These findings suggest that organic acid exudation my play a role in Al tolerance in Populus 

genotypes (Figure 1-12).  

	  	  

 

Figure 1-11 Differences in cell physiology between Al tolerant and sensitve Populus genotypes exposed to Al 

  

 

Figure 1-12 Diagram of citrate exudation as an Al tolerance mechanism in Populus genotypes 

Al	  Tolerant	  

Al	  Tolerant	   Al	  Susceptible	  

Al	  Susceptible	  
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3.1 Examining the Role of Root Exudation in Aluminum Tolerance of Populus 
Genotypes  
 

3.1.1 INTRODUCTION 

Soil acidification and aluminum toxicity are major factors limiting plant growth and 

ecosystem productivity worldwide (Baringnaga, 1997).  Elevated soil Al may result from natural 

soil weathering processes and may increase with anthropogenic inputs of nitrogen into soil (Aber 

et al., 1998; Halvin et al., 1999).  Surface mining may also increase soil acidity and Al 

availability due to the exposure of acidic overburdens to weathering processes (Karathanasis et 

al., 1998).  In agriculture, a common practice used to alleviate soil Al toxicity is the application 

of lime and phosphorous to acidic soils.  However, this practice is impractical as a long-term 

strategy for forest plantation management.  The identification of Al resistant tree genotypes and 

the underlying mechanisms of adaptation to Al in the environment is a more practical strategy 

for the sustainable production of wood on acidic soils. 

The toxicity of Al to plants results from the strong affinity of the Al3+ ion for biological 

ligands. The primary site of Al toxicity appears to be the root tip, which exhibits rapid and 

dramatic alterations in structure and growth cessation upon Al exposure (Delhaize et al., 1993 a, 

b; Ma et al., 2001; Rangel et al., 2009).  These rapid changes result from changes in membrane 

fluidity, cell polarity, ion flux, and changes in signaling pathways that occur when Al binds to 

biological molecules (Kochian et al., 2005; Tahara et al., 2005).  This binding of Al to cell walls, 

plasma membranes, and symplastic metabolites detrimentally affects root physiology and leads 

to long-term reductions in growth and water and nutrient uptake by plant roots (Miyasaka et al., 

1989; Cumming et al., 1992; Matsumoto, 2000; Heim et al., 2001; Hiradate et al., 2007; Naik et 

al., 2009).   

Aluminum-induced changes in cell physiology may serve as signals for the induction of 

adaptive responses (Cumming and Tomsett, 1992) or as Al-detoxification mechanisms (Nguyen 

et al., 2003; Silva et al., 2004; Kochian et al., 2005).  The induction of callose, a 1,5 β-glucan, in 

roots is a good physiological marker for Al stress (Horst et al., 1997; Wissemeier et al., 1998; 

Hirano et al., 2004; Hirano and Brunner, 2006), and is robust enough to distinguish genotypic 

differences in Al sensitivity (Wissemeier et al., 1992; Zhang et al., 1994; Horst et al., 1997).  

Metabolic pathways, such as organic acid (OA) production, are altered upon exposure to Al and 
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may promote external and internal chelation of Al (Naik et al., 2009).  Plants may chelate Al in 

the rhizosphere through the exudation of OAs, such as citrate and malate (Silva et al., 2004; Qin 

et al., 2007).  Although less studied, exudation of phenolic compounds has also been related to 

Al tolerance in trees (Heim et al., 2001; Nguyen et al., 2003).  Aluminum may similarly be 

detoxified internally by the accumulation of OA-Al complexes (Watanbe and Osaki, 2002; 

Nguyen et al., 2003) as well as phenolic-Al complexes (Heim et al., 2001; Tolrá et al., 2009).  

These changes in metabolism may lead to differences in Al accumulation within the apoplastic 

and symplastic regions of the root and such changes in apoplastic and symplastic Al partitioning 

in roots may be related to Al tolerance (Tice et al., 1992; Nowak and Friend, 2005; Smith et al., 

2011).  

Due to their extended life span, forest trees must possess the ability to overcome a variety 

of abiotic and biotic factors that may detrimentally affect their growth (Brunner and Godbold, 

2007).  Forested ecosystems cover almost one-third of the earth’s surface area, making trees, as a 

group, keystone ecological organisms.  Trees are vital to human populations by providing 

resources, such as fuel, fiber, and timber, and ecological services, such as carbon and water 

storage (Tuskan and Walsh, 2001).  Poplar (Populus spp.) has become the model genus for the 

investigation of forest tree responses to environmental factors.  Genotypes within the genus 

Populus exhibit rapid growth, ease of vegetative propagation, a high degree of genetic variation 

and a sequenced genome (Strauss and Martin, 2004), providing the phenotypic and genetic 

resources for in-depth investigation of tree response to the environment.  Poplars are also used 

extensively in plantation production (Hansen et al., 1994), and understanding genotypic variation 

in response to soil factors will play an important role in supporting sustainable, low-input wood 

and fiber production for the future. 

Large genotypic differences in Al resistance exist within the genus Populus (Steiner et 

al., 1984; Naik et al., 2009).  Genotypic variation in Al resistance in many agricultural and non-

woody species has been related to root exudation of OAs and phenols in response to Al exposure 

(Delhaize and Ryan, 1995; Miyasaka and Hawes, 2001; Barcelo and Poschenrieder, 2002; Silva 

et al., 2004), and investigating the function of such systems in Populus, a woody species with a 

sequenced genome and extensive genetic resources, would provide a unique opportunity to probe 

the genetic basis of Al resistance in a woody species.  Identification of resistant genotypes and 

elucidating the physiological mechanisms of Al toxicity/resistance in a forest tree species may 

lead to the identification of Al resistant tree genotypes for wood production on acidic soils.   
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In the current study, we assessed patterns of exudation in Al-resistant and Al-sensitive 

Populus hybrid crosses and related exudation to Al speciation in the rhizosphere, Al fractionation 

within root tips, and growth of these genotypes when exposed to Al.  Building on previous study 

of these genotypes (Smith et al. 2011), our hypotheses were that the exudation of Al-chelating 

OAs or phenolic compounds by roots of the Al-resistant genotype DTAC-7 would detoxify Al in 

the rhizosphere and reduce the impacts of Al on roots, including the production of callose and 

the accumulation of Al in the apoplast and symplast of root cells. 

 

3.1.2 MATERIALS AND METHODS 

3.1.2.1 Plant materials, hydroponic culture and Al treatment 
 

 Stem cuttings were taken from one-year-old dormant hybrid poplar saplings originally 

started from cuttings obtained from Segal Ranch Hybrid Poplars (Grandview, WA, USA). 

Healthy cuttings of uniform size were taken from hybrid poplar clones representing specific 

crosses of Populus trichocarpa and P. deltoides (T×D, clone DTAC-7) or P. deltoides and P. 

nigra (D×N, clone OP-367). Cuttings were approximately 15 cm in length and 3 mm in diameter 

with 2-4 dormant buds. These cuttings were chilled for 30 d at 4 oC to promote uniform bud 

sprouting. 

The propagation system consisted of 10 L hydroponic culture tanks that were aerated 

vigorously by two air stones and aquarium pumps. Tanks were covered with aluminum foil to 

exclude light. Each tank contained two cuttings of each genotype, with six tanks for each Al 

treatment. To initiate rooting, cuttings were treated with liquid-based rooting hormone (0.2% 

indole-3-butyric acid, 0.1% 1-naphthaleneacetic acid)(Dip’n Grow, Inc., Clackamas, OR, USA). 

 Following root initiation and bud break, excess shoots were removed to promote uniform 

growth of a single shoot for each rooted cutting. Clones were then supplied with a nutrient 

solution containing 1.0 mM NO3, 0.4 mM NH4, 0.5 mM K, 0.2 mM Ca, 0.05 mM H2PO4, 0.1 

mM Mg and SO4, 50.5 µM Cl, 20 µM Fe, 20 µM B, 2 µM Mn and Zn and 0.5 µM Cu, Na, Co 

and Mo adjusted to pH 5.6. Plants were grown on this solution for 7 d with changes twice weekly 

until rooting was observed. The nutrient solution was then adjusted to pH 4 for 14 d. After this 

21 d pretreatment period, cuttings were transferred to nutrient solutions containing 0, 50, or 200 

µM Al. To prepare treatment solutions, Al was added with vigorous stirring from a 1 M AlCl3 
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stock, freshly prepared on the day of use. All solutions were adjusted to pH 4.0 with 1 M HCl. 

Treatment solutions were changed twice weekly.  

Plants were maintained in a climate-controlled growth chamber with supplemental 

lighting (400µmol m-2s-1) providing a 14-h photoperiod (incandescent and fluorescent sources) 

and day/night temperatures of 24/19 ± 2 °C. Relative humidity was kept at 70 ± 3%. Cuttings 

were harvested after 24 h and 7 d of Al treatment.  At harvest, cuttings were removed from 

culture tanks, roots were rinsed in respective treatment solutions and cuttings were transferred 

into individual exudate collection vessels containing 100 ml of the respective treatment solution.  

Cuttings remained in exudate collection vessels for 24 h.  

 

3.1.2.2 Exudate analysis 
 

After 24 hours in exudate collection vessels, plants were removed, volumes were brought 

back to 100 ml with d.H2O and the exudate solutions were filtered through a 0.45 mM PTBE 

syringe filters and stored at -20ºC (Cumming et al., 2001). Aliquots of 30 ml from these exudate 

solutions were lypholyzed to dryness (FreezeOne6, Labonco Corporation, Kansas City, MO, 

USA) and reconstituted with 3 ml Nanopure water.  The resulting 10x concentrate was used for 

total organic carbon, organic acid and total phenol measurements. 

 

3.1.2.3 Total organic carbon (TOC) analysis 
 

Total organic carbon content of exudate samples was quantified using a TOC analyzer 

(Model ROC-V-CPH, Shimadzu Corp., Kyoto, Japan).  Potassium hydrogen pthalate was used as 

a standard.  Concentrations are expressed on a root dry weight (DW) basis as µmol TOC g–1 DW 

d-1. 

 

3.1.2.4 Organic acid analysis  
 

The concentrations of citrate, malate, succinate and formate in solution were measured 

using a Dionex ICS-1500 ion chromatograph with an ion suppressor and a conductivity detector 
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(Dionex, Sunnyvale, CA, USA). For separation of organic acids, a Bio-Rad Aminex HPX-87H 

column (300 mm × 7.8 mm ID)(Bio-Rad Laboratories, Hercules, CA, USA) at 40 °C was 

employed with minor modification (Cumming et al., 2001; Qiu and Jin, 2002). For the separation 

of organic acids, the eluent was 2.3 mM heptafluorobutyric acid at a flow rate of 0.6 mL min-1, 

the suppressant solution was 5 mM tetrabutylammonium hydroxide at a flow rate of 0.6 mL min-l 

and the analysis time was 20 min. Calibration equations were determined based on peak area for 

each organic acid obtained for standard organic acids. Peak areas were determined using 

Chromeleon software (Dionex, Sunnyvale, CA, USA). Solution organic acid contents were 

quantified as µmol g–1 DW d-1.  

 

3.1.2.5 Total phenolic analysis 
 

The concentration of total phenolics in the exudate samples was determined 

spectrophotometrically according to Heim et al., (2001). Solutions were analyzed at 725 nm with 

phenol used as a standard in same matrix as samples.  Exuded total phenol concentrations were 

expressed as µmol g–1 DW d-1. 

 

3.1.2.6 Bound Al in solution 
 

At designated harvest times, 3-mL aliquots of nutrient solution were filtered through 0.45 

µm PTBE syringe filters and stored at -20 ºC until analysis.  Bound Al in these samples was 

analyzed using a modified method from Tangen et al. (2002).  Briefly, the comparison of 

samples directly from the hydroponic system to samples passed through a strong cation exchange 

(SCX) column allows the identification, by difference, of bound Al in solution, as bound Al does 

not adsorb to the SCX column.  Samples were run through 50 mg dry bed, 1 ml sample volume 

HyperSep SPE-SCX columns (Thermo Scientific, Pittsburgh, PA, USA) using a vacuum 

manifold at a constant pressure of -35 KPa.  Columns were prepped and samples treated in the 

following order: 2 mL 0.1% (v/v) HNO3; 4 mL acetate buffer pH 4.0; 2 mL 200 µM citrate 

solution pH 4.0; 2 ml rinse with sample; 1 mL of sample eluted from the column.  This final 1 

mL sample was used to measure Al concentrations usingn a GTA 110 graphite tube furnace 
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atomic absorption spectrometer (Varian, Inc., Mulgrave, Victoria, Australia). 

 
3.1.2.7 Growth measurements 
 

              Following exudate collection, root tips were removed for measurement of tissue 

biochemistry and Al concentration and subsamples were used to calculate fresh weight:dry 

weight ratios to adjust biomass estimates for tissue loss. Shoots and remaining roots from each 

cutting were separated, dried in an oven at 60 oC for 72 h and weighed. 

 

3.1.2.8 Root tip callose content 
 

Callose concentration in root tips was assayed by a modification of the methods 

described by Hirano and Brunner (2006). Root tips (~2 cm in length) were excised and fixed in 1 

ml of 96% v/v ethanol. Samples (~20 mg fresh weight) were weighed and placed in 2 mL 

Eppendorf tubes containing three steel ball bearings and 1 mL 20% v/v ethanol and were 

homogenized by vigorous shaking for six minutes. Homogenized root tip samples were then 

washed two more times with 1 mL of 20% v/v ethanol. One mL of 1 M NaOH was added to the 

washed samples and the tubes were heated at 85 °C for 20 min to solubilize callose. The extract 

was centrifuged at 10,000×g for 15 min at 20 oC and the clean supernatant assayed for callose. 

The callose assay mixture contained 0.4 mL of supernatant, 0.8 mL of 0.1 % w/v aniline blue, 

0.42 mL of 1 M HCl and 1.18 mL of 1 M glycine-NaOH buffer (pH 9.0). Blanks contained assay 

mixture lacking aniline blue and reaction controls lacked supernatant. The reaction mixture was 

incubated for 20 min at 50 °C and then 30 min at room temperature. Callose was quantified with 

a Quantech FM109515 fluorometer (Barnstead/Turner, Dubuque, IA, USA) at excitation and 

emission wavelengths of 393 and 484 nm, respectively. Slitwidths were set to 3 nm. Curdlan 

(Sigma, St. Louis, MO, USA) was used as a standard. For each root sample, fluorescence 

intensities in the absence of aniline blue stain were subtracted from the intensities in the presence 

of aniline blue stain (Wissemeier et al., 1998). Callose concentration was expressed as µg 

curdlan equivalent (CE) g–1 FW root mass.  

 



	  

38	  

3.1.2.9 Root tip Al fractions 
 

Apoplastic and symplastic Al contents were determined after Tice et al. (1992) and 

Nowak and Friend (2005) with minor modifications. At harvest, roots of the hybrid poplar 

genotypes were blotted on tissue paper. Root apices (~2 cm) of 8-10 roots were collected, 

weighed and stored at 4 oC in 5 ml of deionized water until initiation of the Al fractionation 

procedure.  

The fractionation of Al for apoplastic and symplastic Al was performed as follows. 

Apoplastic Al: Aluminum measured in the storage water wash was considered to be Al in the 

water free space within the root. Root segments were then transferred to 5 ml 1.5 mM CaCl2 at 

pH 4.3 and gently agitated for 5 min. This fraction was considered Donnan free space-bound Al. 

Roots were washed three times with 5 mL of desorption solution containing ice-cold 0.25 mM 

citric acid and 0.25 mM CaCl2 with gentle agitation for 5 min. This fraction was considered the 

apoplastic complexed fraction. For analysis, the sum of water free space, Donnan free space and 

apoplastic complexed fractions were considered the apoplastic Al fraction. 

Symplastic Al: Root samples were transferred to 5 mL of ice-cold 0.25 mM citric acid 

and 0.25 mM CaCl2 solution and cell membranes of the root samples were ruptured using 

combined methods of freezing (-20 oC) and sonication (5 min sonication in ice-cold water bath). 

This process was repeated three times and solutions were pooled and used for symplastic Al 

determinations. Apoplastic and symplastic Al content were quantified as µmol g-1 DW of root 

tissue. 

Residual Al in root tips was extracted by submerging root tips in 1 ml of trace metal 

grade HNO3 for 24 h at 80º C. Digests were brought to a final volume 25 ml and filtered through 

0.45 µM syringe filters. Aluminum concentrations were measured with a GTA 110 graphite tube 

furnace atomic absorption spectrometer (Varian, Inc., Mulgrave, Victoria, Australia). Residual 

Al was quantified as µmol g-1 DW. Total Al is presented as the summation of apoplastic, 

symplaastic and residual Al.  

 

3.1.2.10 Root tip organic acid and total phenol content 
 

At harvest, root tips were excised and stored at -80ºC until extraction.  For tissue 
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extraction of organic acids, root samples (~20 mg fresh weight) were weighed and placed in 2 

mL Eppendorf tubes containing three steel ball bearings and 1 mL d.H2O and were homogenized 

by vigorous shaking for six minutes.  Samples were centrifuged at 7000×g at room temperature 

for 10 minutes and 0.7 ml supernatant was extracted.  A 0.7 ml aliquot of d.H2O water was again 

added to the pellet and the pellet was vortexed for 20 seconds.  Samples were centrifuged a 

second time as described above and a second 0.7 ml aliquot of supernatant was removed for a 

final volume of 1.4 ml of extract supernatant.  The resulting supernatant was stored at –20ºC 

until analysis.  Supernatant was analyzed for organic acid content and total phenols as described 

above in the exudate analysis section.  

 

3.1.2.11 Statistical analysis 
 

The experiment was established as a three-way factorial design (2 genotypes x 3 Al 

treatments x 2 times), with 3-6 replicates per treatment.  Data were log-transformed wherever 

necessary in order to achieve homogeneity of variance. Exudate concentrations, root tip organic 

acid and phenol concentrations, bound solution Al, root tip Al fractionation, root tip callose, and 

biomass were analyzed initially using three-way analyses of variance (ANOVA) followed by 

Tukey-Kramer’s HSD to identify significant differences among genotypes and Al treatments 

(Table A.4).  To better identify genotypic differences in response to Al at each time point, two-

way ANOVAs were applied (Table A.5). Regressions analyses were performed among measured 

variables to assess relationships among bound Al in solution or callose production and organic 

acid exudation. All statistical analyses were carried out using SAS JMP v.7 software (SAS 

Institute, Cary, NC, USA). 

 

3.1.3 RESULTS 

3.1.3.1 Organic acid exudation 
 

Exposure to Al in solution induced the exudation of citrate and malate from the roots of 

both hybrid genotypes and altered the contributions of other organic acids to the exudation 

profiles (Figure 2-1).  After 24 h of Al exposure, citrate exudation was about 8-times greater in 
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DTAC-7 than OP-367 and was greatest at 50 µM Al (Figure 2-1a).  Aluminum also induced 

malate exudation, although production was much lower than citrate exudation and did not 

significantly differ between genotypes or Al treatments (Figure 1-1b, Table A.4).  The exudation 

of lactate, formate, and acetate changed with exposure to Al in OP-367, but were unaffected by 

Al treatment in DTAC-7 (Figure 2-1c, d, e).  Oxalate exudation was higher in OP-367 across Al 

treatments (Figure 2-1f). 

 
 

 

 

Figure 2-1 Organic acid exudate profiles in treatment containers after one day of Al exposure for (a) citrate, (b) 
malate, (c) lactate, (d) formate, (e) acetate and (f) oxalate.  Values (n=6) are means ± SE. Means between genotypes 
and Al treatments denoted with different letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). 
ND denotes organic acids not detected.  Note different scale for malate. 
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After seven days of Al exposure, the rates of organic acid exudation in both genotypes 

were lower than rates exhibited at 24 h (Figures 2-1 and 2-2).  Exposure to Al still induced the 

exudation of citrate at 50 µM Al, but this stimulation declined or was not evident at 200 µM Al 

in the two genotypes (Figure 2-2a). Malate exudation was still small relative to the production of 

other organic acids and DTAC-7 showed no difference in malate exudation between Al 

treatments, whereas OP-367 showed stimulations of malate exudation in response to Al (Figure 

2-2b).  Lactate, formate, and acetate exudation did not exhibit any consistent patterns between 

genotypes or in response to Al treatments (Figures 2-2c, d, e, Table A.4). Oxalate exudation was 

slightly higher in DTAC-7 at 50 µM Al, however oxalate exudation was elevated in both 

genotypes at 200 µM Al (Figure 2-2f).  
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3.1.3.2 Total phenol exudation 
 

Exposure to Al at 50 or 200 µM depressed the exudation of total phenols from roots of 

both Populus genotypes by 50 to 67% upon exposure to Al after 24 h and 7 d of exposure to Al 

(Figures 2-3a and 2-3b, Table A.4).  

Figure 2-2 Organic acid exudate profiles in treatment containers after seven days of Al exposure for (a) citrate, 
(b) malate, (c) lactate, (d) formate and (e) acetate and (f) oxalate.  Values (n=6) are means ± SE. Means between 
genotypes and Al treatments denoted with different letters are significantly different at P< 0.05 (Tukey-Kramer’s 
HSD Test). ND denotes organic acids not detected.  Note different scale for malate.	  
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Figure 2-3 Total phenol exudation profiles after one day (a) and seven days (b) Al exposure. Values (n=6) are 
means ± SE. Means between genotypes and Al treatments denoted with different letters are significantly different at 
P< 0.05 (Tukey-Kramer’s HSD Test). 

 

3.1.3.3 Total organic carbon exudation 
 

At the 24 h assessment period, the flux of total C from roots OP-367 was 64% greater 

than C flux from DTAC-7 (Figure 2-4a).  Exposure to Al, however, reduced the TOC content of 

exudates in OP-367 over all Al treatments to levels consistent with DTAC-7 (Figure 2-4a, Table 

A.4). In contrast, after seven days of Al exposure, TOC contents of exudates from DTAC-7 and 

OP-367 were elevated by 67% and 78%, respectively, under exposure to 200 µM Al (Figure 2-

4b). 
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Figure 2-4 Concentration of total organic carbon (TOC) in exudates of poplar genotype roots after one day (a) and 
seven days (b) of Al exposure. Values (n=6) are means ± SE. Means between genotypes and Al treatments denoted 
with different letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). 

 

3.1.3.4 Root tip organic acid concentrations 
 

Malate, lactate and citrate were the major organic acids detected in the root tips of 

Populus genotypes, whereas succinate was present at much lower concentrations (Figures 2-5 

and 2-6) and concentrations varied by both genotype and Al exposure (Table A.4).  After 24 h of 

Al exposure, exposure to 50 µM Al increased root tip citrate concentrations in DTAC-7 (Figure 

2-5a).  Exposure to Al reduced root tip malate concentrations in DTAC-7, but did not affect 

malate in OP-367 (Figure 2-5b).  Succinate concentrations in root tips almost tripled at 50 µM Al 

in both genotypes.  At 200 µM Al, DTAC-7 root tip succinate concentration returned to slightly 

lower than that of control, whereas succinate concentrations were depleted in OP-367 root tips 

(Figure 2-5c).  Tissue lactate concentrations increased by more than 7-fold in DTAC-7 when 

exposed to 200 µM Al, whereas OP-367 exhibited no significant increases in root tip lactate 

concentration upon exposure to Al (Figure 2-5d).  



	  

45	  

 
 

 

After 7 d of Al exposure, root tip organic acid concentrations varied by genotype and Al 

treatment as well (Figure 2-6, Table A.4).  Citrate concentration in DTAC-7 was elevated at 50 

µM Al, but returned to control levels at 200 µM Al (Figure 2-6a).  Root tip citrate in OP-367 

decreased as Al concentration increased, decreasing by almost 90% at 200 µM Al (Figure 2-6a).  

DTAC-7 had higher root tip malate concentrations across all Al treatments than OP-367 and 

malate concentrations in root tips of both genotypes decreased as Al increased (Figure 2-6b).  

Succinate increased in root tips of both genotypes at 50 µM Al, but was not detected at 200 µM 

Al in OP-367 (Figure 2-6c), consistent with patterns at 24 h.  At 200 µM Al, lactate 

concentrations in DTAC-7 declined with Al exposure, but were unaffected by Al in OP-367 

(Figure 2-6d).  

Figure 2-5 Root tip organic acid profiles after one day of Al exposure for (a) citrate, (b) malate, (c) succinate 
and (d) lactate.  Values (n=6) are means ± SE. Means between genotypes and Al treatments denoted with 
different letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). Note different organic 
acids are on different scales. 
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Figure 2-6 Root tip organic acid profiles after seven days of Al exposure for (a) citrate, (b) malate, (c) succinate and 
(d) lactate.  Values (n=6) are means ± SE. Means between genotypes and Al treatments denoted with different letters 
are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). Note different scales among organic acids. 

 

3.1.3.5 Root tip phenol concentration 
 

The concentration of total phenols in root tips increased by 31% in DTAC-7 after 1 day 

of exposure to 50 µM Al (Figure 2-7c).  Conversely, root tip phenol concentrations in OP-367 

significantly dropped by one-third at 200 µM Al during the same timeframe (Figure 2-7a).  

Following 7d of Al exposure, root tip phenol concentrations were consistently higher in DTAC-7 

than OP-367 across all Al treatments without any Al treatment effects (Figure 2-7d). 
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3.1.3.6 Bound Al in solution 
 

The analysis of total and cationic Al in solution indicated that the two Populus genotypes 

differentially affected Al speciation in solution (Figure 2-8, Table A.4).  Following 24 h of Al 

exposure, the amount of bound Al in solution was three-times higher in solutions from DTAC-7 

compared to OP-367 plants over both Al treatments, with the concentration of bound Al tending 

to increase as Al increased for both genotypes (Figure 2-8a).  After 7 d of Al exposure, the levels 

of bound Al declined compared to 24 h, and the concentrations of bound Al declined or tended to 

decline in solutions from both DTAC-7 and OP-367 as Al increased (Figure 2-8b).  

Figure 2-7 Root tip total phenol concentrations after one day (a) and seven days (b) Al exposure. Values (n=6) are means 
± SE. Means between genotypes and Al treatments denoted with different letters are significantly different at P< 0.05 
(Tukey-Kramer’s HSD Test). 
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Figure 2-8 Concentration of bound Al in solution due to poplar genotype exudation after one day (a) and seven days 
(b) of Al exposure. Values (n=6) are means ± SE. Means between genotypes and Al treatments denoted with 
different letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). 
 

3.1.3.7 Tissue Al fractionation  
 

Upon exposure to Al for 24 h, apoplastic and symplastic root Al increased with external 

Al concentrations in DTAC-7 to a greater extent than in OP-367 (Figure 2-9a and c, Table A.4). 

The symplastic Al fraction in root tips of DTAC-7 was six-times greater in DTAC-7 than OP-

367 at 200 µM Al (Figure 2-9c).  Total root tip Al concentrations of the two Populus genotypes 

were far greater than the two fractions extracted and were not significantly different from one 

another and there was a two-fold increase of total Al from 50 to 200 µM Al (Figure 2-9e).  

Following 7 d of Al exposure, patterns of Al fractionation were different than at 24 h 

(Figure 2-9, Table A.4, A.5).  Apoplastic Al increased with external Al in OP-367, whereas 

apoplastic Al plateaued in roots of DTAC-7 (Figure 2-9b).  No significant differences were noted 

in symplastic Al fractions between genotypes over the two Al treatments (Figure2- 9d).  Total 

root tip Al concentrations were significantly higher than extracted fractions and were 

significantly different between genotypes at both Al treatments (Figure 2-9f). DTAC-7 had twice 

as much Al in root tips as OP-367 at 50 µM Al, whereas OP-367 had 50% more Al in root tips 

than DTAC-7 at 200 µM Al (Figure 2-9f).  
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Figure 2-9 Compartmentalization of Al in poplar genotype root tissue after Al exposure for one day in the apoplast 
(a), symplast (c) and total (e).  Also the same fractions after seven days Al exposure (b),(d) and (f). Values (n=6) are 
means ± SE. Means between genotypes and Al treatments denoted with different letters are significantly different at 
P< 0.05 (Tukey-Kramer’s HSD Test). ND denotes Al not detected.  

 

 



	  

50	  

3.1.3.8 Callose accumulation  
 

Aluminum-induced callose accumulation in roots differed between the two Populus 

genotypes (Figure 2-10, Table A.4).  Across all Al treatments and exposure times, callose 

accumulation in roots of OP-367 was significantly greater than that in DTAC-7 (Figure 2-10a, 

b).  After 24 h Al exposure, callose accumulation increased with Al concentration in both 

genotypes, but to a greater extent in OP-367, and differences were most pronounced at 50 µM Al 

(Figure 2-10a).  Following 7 d of Al exposure, the accumulation of callose in roots of DTAC-7 

was significantly less than that of OP-367 and the difference was pronounced at both 50 and 200 

µM Al (Figure 2-10b). 

 
 

3.1.3.9 Biomass 
 

No significant differences were noted between Populus genotypes in shoot or root 

biomass following 24 h of Al exposure (Figure 2-11a, c).  Following 7 d of Al exposure, 

however, the growth of shoots of OP-367 was reduced by up to 45% at 200 µM Al, whereas 

shoot growth of DTAC-7 was not significantly affected (Figure 2-11b).  Root growth of DTAC-7 

Figure 2-10 Callose accumulation in root tips of poplar genotypes after one day (a) and seven days (b) of Al 
exposure.  Values (n=3) are means ± SE. Means between genotypes and Al treatments denoted with different 
letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test). 
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tended to increase at 50 µM Al and declined slightly at 200 µM Al compared to the control 

(Figure 2-11d), whereas root growth of OP-367 declined as Al in solution increased, with a 60% 

reduction in growth at 200 µM Al (Figure 2-11d).  

 
Figure 2-11 Biomass accumulation in poplar genotypes after one day Al exposure (shoots (a) and roots (c)) and 
after seven days of Al exposure (shoots (b) and roots (d)). Values (n=6) are means ± SE. Means between genotypes 
and Al treatments denoted with different letters are significantly different at P< 0.05 (Tukey-Kramer’s HSD Test).	  

 

 

 

 

 



	  

52	  

3.1.3.10 Mechanisms of Al resistance  
 

A positive relationship was found between citrate exudation and the amount of 

organically bound Al in solution for both genotypes and all Al concentrations (Figure 2-12). The 

two poplar genotypes tended to segregate in this association, with DTAC-7 genotypes exhibiting 

elevated levels of citrate exudation and higher concentrations of bound Al in solution (Figure 2-

12).  Root tip callose accumulation was negatively associated with citrate exudation (Figure 2-

13), with DTAC-7 exhibiting higher exudation of citrate and lower callose content in root tips 

than OP-367 (Figure 2-13).   

  

 
Figure 2-12 Association between bound Al in solution and citrate exudation in two poplar genotypes exposed to 
Al. Data are across two Al treatments (50 and 200 µM Al) and two exposure periods (1 and 7 d) (n=6). Control 
removed for analysis.	  
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3.1.3.11 Aluminum induced changes in exudation  
 
 Exudation of OAs increased over ten-fold in both Al treatments after one day of exposure 

in DTAC-7.  While after one day of Al exposure, OP-367 showed a small increase in OA 

exudation at 50 µM Al and a decrease at 200 µM Al (Figure 2-14).  Both genotypes exhibited a 

similar decrease in phenol exudation after one day Al exposure (Figure 2-14).  DTAC-7 

increased TOC exudation slightly after one day at 50 µM Al, while all other treatments and 

genotypes decreased TOC in exudates (Figure 2-14).  

 DTAC-7 continued to stimulate greater OA exudation than OP-367 after seven days of Al 

exposure (Figure 2-15). OP-367 decreased OA exudation at 200 µM Al after seven days 

treatment (Figure 2-15). OP-367 had a larger decrease in phenol exudation compared to DTAC-7 

after seven days treatment, yet both genotypes decreased in response to Al (Figure 2-15). Despite 

no large increase in OA and phenol exudation both genotypes showed in increase in TOC 

Figure 2-13 Association between root tip callose accumulation and citrate exudation in two poplar 
genotypes exposed to Al. Data are across two Al treatments (50 and 200 µM Al) and two exposure 
periods (1 and 7 d) (n=3). Control removed for analysis.	  
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content of exudates in response to 200 µM Al after seven days treatment (Figure 2-15). 

Figure 2-14 Percentage of change in exudation in regard to control plants of Populus genotypes exposed to two levels of Al 
(50 and 200 µM Al) for one day. 
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Figure 2-15 Percentage of change in exudation in regard to control plants of Populus genotypes exposed to two levels of Al 
(50 and 200 µM Al) for seven days. 
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3.1.4 DISCUSSION 

Over the years, several physiological and biochemical indicators of Al resistance have 

been identified in both agricultural and arboreal species (Barceló and Poschenrieder, 2002; 

Hirano et al., 2004; Kochian et al., 2005; Qin et al., 2007). In previous studies, Smith et al. 

(2011) suggested that Al sensitivity/resistance in poplar genotypes could be identified using a 

variety of physiological and biochemical markers.  Differences in Al-induced reductions in 

biomass were associated with differences in root tip organic acid contents, callose and pectin 

accumulation, and subcellular fractionation of Al (Smith et al., 2011).   

The current study specifically assessed mechanisms underlying these patterns of Al 

resistance in one Al tolerant (DTAC-7) and one Al sensitive (OP-367) poplar genotype.  

Following seven days of exposure to 50 or 200 µM Al, distinct differences in root morphology 

between genotypes were observed after seven days of exposure to Al (data not presented).  The 

Al-sensitive genotype OP-367 exhibited darkened and stunted lateral roots that were not present 

in DTAC-7 and these differences were reflected in root biomass differences between the two 

genotypes (Figure 2-11).  Underlying these differences in sensitivity may lie responses that 

function to limit the effects of Al on root homeostasis. 

 

3.1.4.1 Organic acid exudation 
	  

After one day of Al exposure, citrate and malate exudation increased in response to Al 

(Figure 2-1).  DTAC-7, the more Al tolerant genotype, exuded greater amounts of both citrate 

and malate in response to Al treatments (Figure 2-1), although the flux of malate was 

comparatively small.  The exudation patterns in this study were markedly different than those 

found by Qin et al. (2007), where citrate and oxalate were the predominant organic acids 

produced after 48 hours Al exposure.  In the current study, six organic acids were detected 

(Figure 2-1) and citrate dominated the exudation profile.  

After seven days of Al exposure, the exudation of organic acids declined compared to 

that at 24 hours (Figures 2-2).  This suggests that, after prolonged exposure to Al, OA exudation 

may not be a primary mechanism of Al tolerance.  This is also suggested by comparing 

exudation profiles for these genotypes (Figures 2-14 and 2-15), which highlight the decline in 

organic acid contribution to exudation after 7 days of Al exposure.  Many published studies of 
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organic acid exudation use short Al exposure times of 48 hours or less (Jones, 1998; Heim et al., 

2001; Nguyen et al., 2003; Qin et al., 2007) and, from these, it is difficult to conclude that 

organic acid exudation is a sustainable characteristic of Al-resistant genotypes.  Other studies 

have examined OA exudation on a long-term scale (Silva et al. 2004, Naik et al. 2009), although 

there is rarely consistent data from which to compare possible acclimation responses in short 

term Al exposures to long term adaptive Al resistance mechanisms.  Future studies focusing 

should evaluate how time of Al exposure may be related to OA exudation and the dynamics of 

root exudation as an Al resistance mechanism (Heim et al., 2000).  

 

3.1.4.2 Total phenol exudation 
	  

The exudation of phenolic compounds may function to chelate Al in the rhizosphere and 

may play a role in protecting plants from the perturbations associated with metal exposure (Heim 

et al. 2000, Nguyen et al. 2003).  The current study showed that total phenol exudation was 

significantly decreased in response to Al treatments at both time points (Figure 2-3a, 2-3b, Table 

A.4).  This suggests that exudation of phenols do not play a role in external detoxification of Al 

in poplar genotypes.  Several other reports suggest that phenol exudation is not associated with 

Al resistance.  Nguyen et al. (2003) noted limited exudation of phenol compounds from the roots 

of four tropical woody species, with levels significantly below those recorded in the present 

study (even accounting for mass basis differences).  Similarly, in Norway spruce, no change was 

found in total phenol exudation after Al exposure (Heim et al., 2000; Heim et al., 2001).  

Together, these data do not support Al-phenol chelation as a potential Al-resistance strategy in 

woody species. 

3.1.4.3 Exudate TOC  
	  

In the current study, trends seen in exudation of organic acids and total phenols of poplar 

genotypes were not reflected in overall solution TOC concentrations (Figures 2-4 and Figure 2-

14 and Figure 2-15).  Root exudation in tree species may be quite complex in composition and 

may account for almost 6% of a tree’s total carbon allocation (Grayston et al., 1996).  Common 

tree roots exudates include organic acid and phenolic compounds and other non-Al binding 
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exudates such as sugars, amino acids and other carbohydrates (Heim et al., 2000; Heim et al., 

2001; Jones et al., 2003; Nguyen et al., 2003; Walker et al., 2003; Silva et al., 2004; Qin et al., 

2007; Naik et al., 2009).  In the current study, the exudation of organic acids accounted for 

between 3 and 15% of TOC and phenolics between 2 and 10% of TOC, depending on 

genotype/treatment.  These contributions are significantly less than those reported by Naik et al. 

(2009) for two Populus species, which may reflect differences in culture systems between these 

two studies.  

3.1.4.4 Root tip organic acid concentration  
	  

Internal detoxification of Al has also been proposed as an Al tolerance mechanism in 

several species (Delihaze and Ryan, 1995; Wattanbe and Osaki, 2002; Ma et al., 2001; Naik et 

al., 2009).  In the current study, no clear pattern of root tip OA content in response to Al was 

observed that would support OA accumulation as an Al-detoxification mechanism.  On the 

contrary, Al exposure reduced root tip citrate, malate, and succinate concentrations in OP-367 

and malate in DTAC-7 (Figures 2-5 and 2-6). Increased malate concentration in root tips of Al 

tolerant (Naik et al., 2009) and sensitive (Smith et al., 2011) poplar genotypes has been 

previously reported.  

As with organic acid exudation, patterns of OA accumulation may vary with duration of 

exposure and may reflect complex interactions between carbon flux through the TCA cycle, 

demands for secondary compounds, and exudation of low molecular weight OAs (Piñeros et al., 

2002).  Smith et al. (2011) noted clear segregation of Al resistance responses in poplar genotypes 

following 30 days of exposure to Al.  In that study, DTAC-7 exhibited low concentrations of 

citrate in root tips and low symplastic Al concentrations compared to Al sensitive OP-367.  

However, in the current study, DTAC-7 exhibited sustained root tip citrate concentrations after 1 

and 7 days, whereas root citrate concentration declined precipitously in OP-367 after 7 days of 

exposure (Figures 2-5 and 2-6).  DTAC-7 also exhibited elevated symplastic Al compared to PC-

367, but only after 1 day of exposure.  Changes in tissue OA concentrations could be attributed 

to exudation demands or related to Al-induced changes in metabolism (Lopez-Bucio et al., 2000; 

Kochian et al., 2005; Barceló and Poschenrieder, 2002).  Such complex patterns are typical in the 

literature and support the view that Al resistance is a complex trait (Piñeros et al., 2002, Nian et 

al., 2004).   
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3.1.4.5 Root tip total phenol  
	  

The accumulation of phenolic compounds in roots may be a physiological response to 

oxidative stress resulting from metal exposure (Heim et al., 2001, Naik et al., 2009).  The 

concentration of total phenols in root tips of Al tolerant DTAC-7 was consistently higher than 

that in OP-367 in response to Al over all Al treatments and exposure times (Figure 2-7c, 2-7d).  

However, while there were genotypic differences in the concentration of total phenol in roots, 

there were no consistent patterns in the accumulation of phenolics in response to Al that 

suggested that these played a role in Al resistance (Figure 2-7).  This was consistent with the 

findings of Tolrá et al. (2005) in common sorrell.  

3.1.4.6 Apoplastic, symplastic and total Al in root tips 
	  

Previous study of the partitioning of Al in roots of poplar genotypes indicated that Al 

sensitivity was associated with elevated compartmentation within the symplast (Smith et al. 

2011).  The uptake of Al may lead to perturbations of cellular physiology that lead to reductions 

in growth.  In the current study, Al-resistant DTAC-7 had double the amount of apoplastic Al 

compared to OP-367 at 200 µM Al following one day of Al exposure (Figure 2-9a).  However, 

the pattern was reversed after seven days of exposure, with OP-367 accumulating almost double 

the amount of apoplastic Al (Figure 2-9b).  Symplastic Al was also elevated in DTAC-7 after 

one day, but did not differ between the genotypes after seven days of exposure (Figure 2-9).  

While these patters differ from those found in the long-tern exposures employed by Smith et al. 

(2011), the elevated apoplastic Al in OP-367 after seven days is consistent with lesser 

concentrations of solution bound Al resulting from the exudation of citrate in these genotypes 

(Figure 2-12) (Sattelmacher, 2000; Nowak and Friend, 2005).  

The elevated symplastic Al in DTAC-7 compared to OP-367 after one day of Al exposure 

at 200 µM Al (Figure 2-9c) and its subsequent recovery (Figure 2-9d) may reflect some 

fundamental difference between these genotypes that affects the driving force for Al 

accumulation.  Differences in root cell membrane electrical potentials, for example, may provide 

differential driving forces for Al accumulation in the short term (Olivetti et al., 1995).  These 
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findings may be supported by Vasquez et al. (1999), who showed that Al may enter the symplast 

well before severe cell damage has occurred.  Subsequent recovery at seven days may reflect the 

operation of exudation processes that bind Al in solution (Figure 2-12). 

Total Al concentration in poplar roots after one day of Al exposure exhibited no 

difference between genotypes (Figure 2-9e).  However, total Al in root tips showed the same 

trend as the apoplastic Al fraction after seven days of Al treatment (Figure 2-9f).  This suggests 

that after intermediate time exposures to Al, apoplastic fractions in root tips can govern total Al 

concentrations in poplar root tips.  The apoplast functions as a cation exchanger and would 

represent a sizable sink for Al accumulation (Ma et al., 1999; Sattelmacher, 2000).  Total root Al 

concentration values and trends are not comparable to those presented for poplar genotypes by 

Smith et al. (2011) because those measures were on total toot systems are the current on root 

tips.  Tice et al. (1992) noted differences in cellular fractions after two days of Al exposure in 

wheat genotypes, with the Al-sensitive variety accumulating greater quantities of apoplastic, 

symplastic and residual Al.  

3.1.4.7 Callose  
	  

 Previous studies have examined callose production in root tips in tree species in response 

to Al exposure (Hirano et al., 2004; Hirano and Brunner, 2006), however studies on genotypic 

differences in callose accumulation in response to Al have only been undertaken in agricultural 

species (Horst et al., 1997; Wissemeier et al., 1998; Yang et al., 2000).  Recently Smith et al. 

(2011) found that Al tolerance in Populus genotypes could be distinguished based on callose 

accumulation in root tips, with strong correlations between tolerance indices based on biomass 

and root tip callose concentration.  The current study corroborated those findings with the Al 

tolerant DTAC-7 accumulating less callose than OP-367 over all treatments (Figure 2-10).  

These findings suggest callose as a good physiological measure of Al tolerance in Populus and 

may be used to rapidly and simply discriminate Al-resistant genotypes. 

3.1.4.8 Biomass  
	  

Despite observed significant physiological differences between the two poplar genotypes 

induced by Al, no significant differences were observed in root or shoot biomass over all 



	  

61	  

treatments after one day of Al exposure (Figure 2-11 a, c). However, after seven days of Al 

exposure, significant differences in shoot biomass were observed at 200 µM Al with Al-induce 

reductions being more pronounced in OP-367 that DTAC-7 (Figure 2-11b).  DTAC-7 also had 

consistently higher root biomass over all Al treatments after seven days of exposure (Figure 2-

11d). These differences in growth sensitivity are consistent with other poplar genotypes of the 

same lineages exposed to Al treatments for seven days (Steiner et al., 1984) and thirty days 

(Smith et al., 2011).  

3.1.4.9 Al resistance mechanisms  
	  

Exudation of OA’s has been proposed as an effective Al tolerance mechanism that 

chelates Al externally in the rhizosphere, rendering it non-phytotoxic (Delihaze and Ryan, 1995; 

Barcelo and Poschenrieder, 2002; Kochian et al., 2005; Naik et al., 2009).  In the current study, 

the exudation of citrate responded dramatically to Al exposure, whereas malate and oxalate, 

while responsive to Al, were produced to much lesser extents in response to Al treatments 

(Figure 1, 2). The goals of this study were to examine how Al resistance mechanisms, such as 

citrate exudation, would be related to the speciation of Al in the rhizosphere and other plant 

responses to Al.  Citrate exudation should chelate Al and genotypes with higher levels of citrate 

exudation should exhibit lower levels of physiological stress, such as callose accumulation in 

root tips. 

To our knowledge, this is the first report analyzing levels of organically bound Al within 

nutrient solution, plant exudates, and stress physiology markers. Over all time points and Al 

treatments, DTAC-7 had significantly higher levels of bound Al in solution compared to OP-367 

(Figure 2-8, Table A.4).  Citrate exudation was also highest in DTAC-7 over all Al treatments 

and times of exposure (Figure 2-1a, 2-2a, Table A.5).  A positive relationship was found between 

the level of bound Al in solution and the level of citrate exudation in these poplar genotypes 

(Figure 2-12). This finding supports the existence of citrate as an effective chelator of Al in the 

rhizosphere of Populus genotypes exposed to Al. Although the concentration of bound Al was 

relatively low, these values are for a large volume hydroponic exposure system. In thin layer 

solutions at the root surface and in the cell walls in a soil system, these differences in Al 

speciation between poplar genotypes would be more pronounced.  

Callose accumulation in root tips has been widely recognized as an effective 
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physiological marker of Al stress in crop (Wissemeier et al., 1992; Horst et al., 1997) and tree 

species (Hirano et al., 2004; Hirano et al., 2006). In the current study, callose accumulation was 

induced by Al exposure after one day (Figure 2-10). The Al tolerant genotype could be 

distinguished based on callose accumulation, with DTAC-7 accumulating less callose than OP-

367 over all Al treatments and times (Figure 2-10).  The negative relationship between callose 

accumulation in root tips and citrate exudation (Figure 2-12) further supports citrate as an Al 

tolerance mechanism in poplar. Other studies have examined citrate exudation and callose 

accumulation concurrently (Yang et al., 2000; Qin et al., 2007). However, this study is the first to 

directly correlate callose accumulation and citrate exudation on a genotypic basis.  

In the short term, the patterns of Al speciation, callose accumulation, and citrate 

exudation are consistent with citrate exudation representing an Al resistance strategy in Populus. 

The Al-resistant genotype DTAC-7 maintained carbon flux into the rhizosphere under Al 

exposure (Figures 2-14 and 2-15) and the changes in C flux in comparison to controls were 

related to changes in OA exudation.  Carbon flux from the roots of OP-367 generally declined in 

response to Al (Figures 2-14 and 2-15). In the longer term (7 days), however, organic acid 

exudation and carbon flux in general declined compared to short-term exposures (Figures 2-1 

and 2-2). This pattern suggests that Al resistance in poplar may not solely rely on organic acid 

production and, with the numerous short-term exposure and exudation studies in the literature, 

points to the need for longer-term studies on Al resistance, exudation, and rhizosphere Al 

speciation. 

3.1.4.10 Conclusions 
	  

 This work shows that Al tolerant and susceptible genotypes can be distinguished on a 

physiological basis over short and long term Al exposure.  Although the more Al resistant 

genotype could be identified by biomass differences after only seven days of Al exposure, 

physiological responses, such as OA exudation and root tip callose accumulation, divereged after 

as little as one day of Al exposure. These distinct differences in physiology between genotypes in 

response to Al suggest that poplar represents a good model system to further elucidate genetic 

mechanisms of Al tolerance in a tree species.  

In this study, we hypothesized that OA exudation would be greater in the Al tolerant 

Populus genotype DTAC-7 and that this exudation functions as an Al tolerance mechanism in 
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this genotype.  Exudation of citrate and malate was induced by Al exposure and oxalate 

production was also stimulated by Al.  Of these responses, citrate exudation was found to be 

highest in DTAC-7 and this exudation was coupled with increased bound Al in the rhizosphere 

and with decreased callose accumulation in root tips. The fractionation of Al within the root did 

not provide any clear indication that citrate production altered the fate of Al within roots in the 

short term. As time of Al exposure increased from one to seven days, OA exudation declined.  

This suggests that OA exudation may not be the sole mechanism of Al resistance in poplar. 

After seven days of Al exposure, the shoot and root biomass of the Al tolerant DTAC-7 

genotype were significantly greater than the shoot and root biomass of OP-367 under Al 

exposure, indicating that the Al-induced physiological responses were translated into differences 

in growth between these genotypes. The availability of Al-resistant genotypes and genetic 

resources for poplar may yield successful genotypes for sustainable reforestation/reclamation and 

carbon sequestration projects where soil acidity may limit tree growth (Godbold and Brunner, 

2007). Furthermore, these physiological response mechanisms of hybrid poplar genotypes can be 

used to probe the poplar genome for genetic traits conferring acid soil tolerance for future work 

aimed at developing transgenic Al resistant poplar genotypes suitable for production on acidic 

soils.  
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4.1 CONCLUSIONS 
	  

 Soil acidity is a global concern for both agriculture and silviculture.  Approximately 40% 

of arable land has acidic soils where nutrient limitation and soil metal availability, especially Al, 

may limit plant growth.  Soil acidity is exacerbated by various agricultural practices and from the 

long-term deposition of nitrogen into ecosystems.  While the application of lime to offset acidity 

is practical on agricultural sites, such practice is not feasible for forested ecosystems impacted by 

nitrogen deposition.  In addition, vast areas throughout the Appalachian region that are impacted 

by coal mining are also plagued by soil acidity due to weathering reactions of the overburden.  

While such sites are often reclaimed with grasses or other herbaceous plants, such practices may 

not optimize ecosystem services in comparison to the forested ecosystems that once covered 

these lands.  Reclamation to trees would provide vast benefits in regards to carbon storage and 

nutrient and water cycling.  Therefore utilizing fast growing, Al tolerant tree species in these 

areas can help restore the productivity in these disrupted areas.  With increasing demands for 

bioenergy, the reclamation of once mined lands with fast growing Populus genotypes may 

provide a sustainable option for biomass production in the future. 

 The first study of this thesis aimed to assess the genotypic variation in Al 

resistance/sensitivity of Populus genotypes. To assess these differences, we measured growth 

and callose production of eight genotypes representing crosses of three poplar species as 

indicators of Al resistance as well as potential mechanisms of Al resistance, including CW pectin 

content and root tissue OA accumulation.  Finally, we assessed the relationships between 

tolerance indices and resistance mechanisms and the concentrations of symplastic, apoplastic and 

total Al in the root to determine the efficacy of these mechanisms in conferring Al resistance to 

Populus genotypes.  This study showed that Al tolerant Populus genotypes could be 

distinguished by lower callose accumulation in root tips.  Aluminum tolerant genotypes also 

exhibited significantly lower symplastic Al concentrations in root tips, which fits a model based 

on Al exclusion as the basis of Al resistance.  While Al susceptible genotypes exhibited 

increased OA accumulation in root tips, which could unction as an internal detoxification 

system, this accumulation did not convey Al tolerance.  This study illustrated the high degree of 

genetic variability in Al tolerance of Populus, which could be useful in developing future 

reforestation projects or in undertaking transgenic research to combine Al resistance traits with 

other desirable traits in Populus. 
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 Observations of limited uptake of Al into the symplast of Al resistant genotypes in the 

first study suggested that Al tolerant Populus genotypes possess an external Al chelation 

mechanism that promotes tolerance.  In other species, Al resistance is associated with the 

exudation of organic acids (OAs) that chelate and detoxify Al in the root zone.  For this reason, 

the second study in this thesis aimed to assess the role of root exudation in Al tolerance in 

Populus genotypes.  I hypothesized that Al tolerant genotypes would exhibit elevated levels of 

root exudation of OAs such as citrate, malate, or oxalate that would correlate with Al resistance.  

Further, I hypothesized that this increased exudation would result in higher levels of organically 

bound Al in solution—bound Al is not toxic to plants.  Results from this study confirmed the 

hypothesis that the Al tolerant genotypes DTAC-7 exuded more OAs over short- and long-term 

Al exposure, with citrate being the dominant OA in the exudation profile.  As with the first 

study, callose accumulation in the Al tolerant genotype was significantly lower than that in the 

Al sensitive genotype.  While OA exudation was stimulated by Al exposure, the opposite trend 

was observed for phenol exudation, suggesting no role for this potential Al-binding molecule in 

Al tolerance in Populus genotypes.  While this study suggested that the exudation of citrate plays 

a role in Al tolerance of Populus genotypes, OA exudation decreased as exposure time to Al 

increased, suggesting that exudation may be primarily a short-term Al tolerance mechanism.  

Together, this second study suggests that a long term study of exudation and Al chelation and 

tolerance should be undertaken to investigate possible long-term Al resistance strategies in 

Populus.  Additionally, the results highlight citrate as a possible Al tolerance mechanism that 

could be manipulated in transgenic studies to promote Al tolerance in Populus genotypes.  

 These studies show that Populus is a good candidate for future reforestation projects in 

areas characterized by high soil acidity.  Both studies illustrated distinct delineations in 

resistance and underlying physiology between Al tolerant/susceptible genotypes.  This in-depth 

understanding of Al stress physiology in Populus coupled with the high degree of genetic 

variation in tolerance allows for future production of Al tolerant Populus genotypes.  These 

genotypes can promote increased fiber production, carbon sequestration and plant productivity in 

areas affected by soil acidity. 

  

 

APPENDIX 
Table A. 1.	  Significance of treatment effects for growth and biochemical measurements of eight poplar genotypes 
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grown at 0, 50, 100, 200 and 500 µM Al. Significance is denoted as follows: *, P < 0.05; **, P < 0.01; ***, P < 0 
.001. 

	  

 

 

 

Measurement Genotype Al Genotype × Al 

 F P F P F P 

Shoot Biomass (g) 288.7 *** 295.8 *** 13.7 *** 

Root Biomass (g) 226.5 

 

 

*** 

 

 

236.0 

 

 

 

 

*** 

 

 

17.7 

 

 

 

 

*** 

 

 

Root:Shoot (g) 119.7 

 

*** 

 

12.3 

 

*** 

 

5.9 

 

*** 

 Shoot Al (µmol g-1 DW) 22.5 

 

*** 71.8 *** 

 

2.8 *** 

 Root Al (µmol g-1 DW) 

 

5.7 *** 

 

206.5 *** 

 

2.0 ** 

 Apoplastic Al (µmol g-1 DW) 79.4 

 

*** 

 

483.3 

 

*** 19.2 *** 

Symplastic Al (µmol g-1 DW) 51.6 *** 387.5 *** 10.2 *** 

Callose (µg CE g-1 FW) 12.4 *** 150.7 *** 2.3 *** 

Pectin (µg GAE g-1 FW) 96.9 *** 460.3 *** 20.0 *** 

Citrate (µmol g-1 FW) 88.4 *** 382.2 *** 23.0 *** 

Malate (µmol g-1 FW) 239.9 *** 1222.4 *** 84.5 *** 

Succinate (µmol g-1 FW) 192.2 *** 1099.8 *** 26.4 *** 

Formate (µmol g-1 FW) 86.4 *** 229.9 *** 15.7 *** 
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Table A.2. Significance of treatment effects for growth and biochemical measurements of three poplar hybrid 
crosses grown at 0, 50, 100, 200 and 500 µM Al. Significance is denoted as follows: *, P < 0.05; **, P < 0.01; ***, 
P < 0.001. 

Measurement Hybrid Al Hybrid × Al 

 F P F P F P 

Shoot Biomass (g) 0.7 ns 67.2 *** 4.3 ** 

Root Biomass (g) 5.6 

 

 

 

 

* 

 

 

 

62.1 

 

 

*** 

 

 

 

6.0 

 

 

 

*** 

 

 

 

Root:Shoot (g) 0.6 ns 2.3 ns 1.8 ns 

Shoot Al (µmol g-1 DW) 3.7 ns 44.8 *** 3.6 ** 

Root Al (µmol g-1 DW) 1.3 ns 139.7 *** 0.8 ns 

Apoplastic Al (µmol g-1 DW) 3.9 ns 37.6 *** 3.6 * 

Symplastic Al (µmol g-1 DW) 14.5 ** 30.6 *** 3.2 * 

Callose (µg CE g-1 FW) 9.8 * 80.9 *** 11.4 *** 

Pectin (µg GAE g-1 FW) 35.2 ** 132.4 *** 8.6 *** 

Citrate (µmol g-1 FW) 89.8 *** 225.3 *** 31.9 *** 

Malate (µmol g-1 FW) 5.9 * 15.7 *** 1.4 ns 

Succinate (µmol g-1 FW) 2.5 ns 24.5 *** 3.9 ** 

Formate (µmol g-1 FW) 19.8 ** 74.7 *** 13.9 *** 

 

 

 

 

 

 

Table A.3.  Coefficient of determination (R2) between poplar root tolerance index (TI) and root Al fractions across 
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all poplar genotypes. Significance is denoted as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001.  

Al Treatment  

(µM) 

Apoplastic Al 

(µmol g-1 DW) 

Symplastic Al 

(µmol g-1 DW) 

Total Al 

(µmol g-1 DW) 

0 - - - 

50 0.471 ** -0.558 *** -0.252 

100 0.293 -0.704 *** -0.251 

200 0.802 *** -0.926 *** -0.145 

500 0.754 *** -0.623 *** -0.474 ** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.4 Three way ANOVA on all measured parameters of two Populus genotypes exposed to three levels of Al 
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(0,50,200 µM) over two time points (1, 7 days). 

	  	   Al x Genotype x Time  
Response variable  F P 
Exudate Citrate (µmol g-1 DW) 11.826 <0.001 
Exudate Malate (µmol g-1 DW) 1.759 0.181 
Exudate Lactate (µmol g-1 DW) 3.708 0.031 
Exudate Formate (µmol g-1 DW) 6.572 0.003 
Exudate Acetate (µmol g-1 DW) 0.507 0.605 
Tissue Citrate (µmol g-1 DW) 1.391 0.257 
Tissue Malate (µmol g-1 DW) 4.402 0.017 
Tissue Succinate (µmol g-1 DW) 1.136 0.328 
Tissue Lactate (µmol g-1 DW) 2.373 0.103 
Exudate phenol (µmol g-1 DW) 0.634 0.534 
Tissue phenol (µmol g-1 DW) 0.045 0.957 
Exudate TOC (µmolC g-1 DW) 0.219 0.804 
Bound Al (µM) 2.009 0.1432 
Apoplastic Al (µmol g-1 DW) 31.794 <0.001 
Symplastic Al (µmol g-1 DW) 3.455 0.038 
Total Al (µmol g-1 DW) 3.334 0.042 
Callose (µg CE g-1 FW) 4.101 0.029 
Shoot biomass (g) 0.305 0.739 
Root biomass (g) 1.361 0.264 

 

 

 

 

 

 

 

 

Table A.5 Two way ANOVAs on all measured parameters of two Populus genotypes exposed to three levels of Al 
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(0,50,200 µM) over two time points (1, 7 days).  Degree of freedom are as follows Al2, genotype1, Al  x genotype4 

1d                                                          Al                       Genotype                    Al x Genotype
F P F P F P

Exudate Citrate (µmol g-1 DW) 46.078 <0.001 87.449 <0.001 23.406 <0.001
Exudate Malate (µmol g-1 DW) 31.946 <0.001 5.208 0.031 1.347 0.276
Exudate Lactate (µmol g-1 DW) 2.98 0.076 12.358 0.003 20.149 <0.001
Exudate Formate (µmol g-1 DW) 4.779 0.018 16.284 <0.001 10.269 <0.001
Exudate Acetate (µmol g-1 DW) 3.457 0.049 12.408 0.002 5.219 0.014
Exudate Oxalate (µmol g-1 DW) 25.27 0.004 9.674 <0.001 3.181 0.055
Tissue Citrate (µmol g-1 DW) 5.671 0.009 5.594 0.026 1.658 0.209
Tissue Malate (µmol g-1 DW) 4.62 0.033 19.098 <0.001 0.406 0.67
Tissue Succinate (µmol g-1 DW) 27.221 <0.001 0.389 0.538 2.993 0.0683
Tissue Lactate (µmol g-1 DW) 72.077 <0.001 44.708 <0.001 40.849 <0.001
Exudate phenol (µmol g-1 DW) 51.648 <0.001 4.881 0.036 2.267 0.123
Tissue phenol (µmol g-1 DW) 23.287 <0.001 45.709 <0.001 3.599 0.042
Exudate TOC (µmolC g-1 DW) 7.506 0.004 1.275 0.273 9.562 0.001
Bound Al (µM) 95.421 <0.001 58.592 <0.001 18.521 <0.001
Apoplastic Al (µmol g-1 DW) 42.071 <0.001 5.598 0.021 11.495 <0.001
Symplastic Al (µmol g-1 DW) 98.871 <0.001 12.562 0.002 17.072 <0.001
Total Al (µmol g-1 DW) 129.635 <0.001 0.872 0.359 1.501 0.2409
Callose (µg CE g-1 FW) 83.118 <0.001 34.619 <0.001 5.747 0.018
Shoot biomass (g) 10.978 <0.001 9.799 0.004 0.159 0.854
Root biomass (g) 4.823 <0.001 6.337 0.018 0.168 0.846

7d                      Al                       Genotype                    Al x Genotype
F P F P F P

Exudate Citrate (µmol g-1 DW) 67.925 <0.001 2.858 0.103 1.789 0.188
Exudate Malate (µmol g-1 DW) 15.016 <0.001 13.177 0.002 3.451 0.05
Exudate Lactate (µmol g-1 DW) 5.83 0.011 0.239 0.631 0.219 0.805
Exudate Formate (µmol g-1 DW) 2.376 0.112 4.606 0.041 3.556 0.043
Exudate Acetate (µmol g-1 DW) 5.486 0.011 0.412 0.528 5.766 0.009
Exudate Oxalate (µmol g-1 DW) 5.142 <0.001 0.227 0.155 1.613 0.216
Tissue Citrate (µmol g-1 DW) 7.681 <0.001 20.183 0.003 5.293 0.013
Tissue Malate (µmol g-1 DW) 37.114 <0.001 58.319 <0.001 14.869 <0.001
Tissue Succinate (µmol g-1 DW) 47.848 <0.001 6.213 0.022 10.791 <0.001
Tissue Lactate (µmol g-1 DW) 4.249 0.029 1.108 0.305 8.137 0.003
Exudate phenol (µmol g-1 DW) 31.566 <0.001 0.796 0.381 0.309 0.737
Tissue phenol (µmol g-1 DW) 0.601 0.556 22.958 <0.001 0.719 0.497
Exudate TOC (µmolC g-1 DW) 29.861 <0.001 12.399 0.002 0.478 0.626
Bound Al (µM) 249.048 <0.001 118.951 <0.001 40.157 <0.001
Apoplastic Al (µmol g-1 DW) 74.537 <0.001 1.078 0.308 13.671 <0.001
Symplastic Al (µmol g-1 DW) 145.341 <0.001 1.801 0.193 1.619 0.221
Total Al (µmol g-1 DW) 120.536 <0.001 2.171 0.153 26.094 <0.001
Callose (µg CE g-1 FW) 395.112 <0.001 169.473 <0.001 10.197 0.003
Shoot biomass (g) 1.677 0.205 9.91 0.004 0.079 0.924
Root biomass (g) 8.149 0.002 8.922 0.006 1.042 0.365

	  

Figure A.1. Relationships between root tissue organic acid concentrations and root tolerance index (TI). Values 
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presented are means ± S.E. (n = 4) for specific organic acids: (a) citrate; (b) malate; (c) succinate; and (d) formate.  
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