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Abstract

DEVELOPMENT OF A MECHANICAL VAPOR-COMPRESSION DISTILLER
INCORPORATING CONCENTRATED SOLAR POWER

Garrett Tyler Rinker

The demand for a reliable energy supply has promoted the development of the Marcellus
Shale gas industry in the past few years. However, the produced water from hydraulic fracturing
(also known as fracking) poses a hazard to human and environmental health because of its
dissolved solid, hydrocarbon, and heavy metal content. This research proposes to develop a
portable solar power assisted water distiller which can process produced water on-site for natural
gas wells.

The distillation technology developed is a small scale mechanical vapor-compression
(MVC) distillation unit. The thermal energy for the evaporation of the water is provided by the
solar energy, while the recirculation pumps and compressor are driven by electrical motors. The
research works completed include the in-house and on-site demonstration of the 1% generation
design, and the design of the 2" generation solar aided MVC distillation unit. The main design
features of this research include an insulation system, a heat capacity analysis of heat
exchangers, a compressor which requires less power input, and options for making the entire
system operate on solar power alone. The potential of the insulation system in reducing the heat
loss of the system and the demand for thermal energy was examined. The regeneration system
developed was able to recover approximately 91% of the thermal energy released during the
condensation and cooling process of the distilled water vapor, which dramatically decreased the
consumption of thermal energy and the size of parabolic dish reflectors (PDRs) needed. Also, the
insulation system will reduce the rate of heat loss to the ambient air by approximately 86%
compared to an un-insulated system. A theoretical model was developed to examine the
performance of the 2" generation design and has been presented. The on-site demonstration of
the 1% generation system confirmed that the proposed system was able to process the high-salt
produced water and extract clean water with the potential to recycle the salts for commercial use.
The numerical simulation results show the 2" generation system with redesigned components
and insulation was able to process produced water at a rate of 20 gallon/hour with a power
consumption of approximately 4.6 kW, which includes 3.2 kW from solar energy for heating
purposes and 1.4 kW from electricity to run the compressor and the recirculation pump.
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Chapter 1: Introduction

This research seeks to produce clean water by proposing a distiller design which can be
incorporated in water purification units manufactured by Epiphany Solar Water Systems.
Epiphany is a company which specializes in utilizing concentrated solar energy to assist the
process of water purification in a system referred to as the E3H. The basic process of the E3H is
shown in Figure 1 [1]. Sunlight is concentrated at a focal point by PDRs. A heat transfer receiver
is located at the focal point, and these receivers convert solar energy into thermal energy. Heat
transfer fluid is pumped through these receivers, which raises the temperature of the fluid to
approximately 200°C. The heat transfer fluid gathers in an insulated hot fluid storage tank. This
storage tank acts as a thermal “battery” which can keep the unit operational while the sun is
discontinuous and at night. The hot heat transfer fluid is sent through a distillation unit and is
used to vaporize contaminated water. The vaporized water is condensed and collected in a clean
water tank.

This technology has recently attracted interest from oil and gas companies as a means to
treat produced water from hydraulic fracturing (also known as fracking). Hydraulic fracturing is
a process in which several million gallons of fluid are injected into a horizontal well at extreme
pressures in order to fracture shale and release natural gas. The injected fluid usually consists of
more than 90% water, almost 9% sand, and less than 0.5% chemical additives. The chemical
additives function as friction reducers, scale inhibitors, iron controls, and biocides [2]. Most
wells have 10-40% of the injected fluid return to the surface when natural gas is released from
the shale [2, 3, 4], but this percentage may vary greatly from well to well. The fluid which

returns to the surface is referred to as produced water. Produced water poses a hazard to human



and environmental health because of its dissolved solid, hydrocarbon, heavy metal content, and
high salt concentration [2]. Some toxic chemical elements found in produced water include
barium, strontium, and radium. The US Environmental Protection Agency (EPA) and the
Pennsylvania Department of Environmental Protection (DEP) recognize that disposal of
produced water to publicly owned wastewater plants is not a sustainable water management

strategy [2].

\\ (1]
} \:...:::\' | : N\ ol et CONTAMINATED WATER
' 1 ----':_____'"i‘:—_—,h
1 |
N ‘
a _:g _7__;._5;;'-\;%&

THERMAL STORAGE

Figure 1: Epiphany's Water Purification Unit [1]

Deep-well injection is not a sustainable option either and has several negative aspects. As
mentioned by Tofflemire and Brezner [5], there is always a chance that fresh water can be
contaminated if these wells fail, long-term geological effects of deep-well injection are not well
known, and it will be difficult to correct these negative effects if they become evident. Hauling
the produced water to treatment facilities may not be the best economical option for companies,
especially if these facilities are a great distance away from the natural gas well.

This research proposes to develop a solar power assisted distiller capable of processing
the produced water from hydraulic fracturing. The distillation unit previously installed in the

E3H was not designed to handle water containing high salt concentrations, which is in the range



of 10-15% of the mass of produced water from hydraulic fracturing. Therefore, a new distillation
unit must be designed in order to provide an acceptable solution for the treatment of the
produced water.

A 1% generation design was developed by Epiphany before this research was conducted.
The 1% generation design had many characteristics of a typical mechanical vapor-compression
(MVC) distiller, but several modifications were needed so the distiller could handle the high salt
concentrations of the produced water. The goal for the 1% generation design was to produce fresh
water at a rate of 20 gal/hr, and have an energy consumption of less than 0.5 kWh/gal. This
energy consumption included the energy provided by concentrated solar power, and electricity
consumed by the compressor and recirculation pump. The physical model of the 1% generation
design was able to meet the design criteria, but it was not able to maintain that level of
performance for extended periods of time. This research seeks to improve upon the 1% generation
design in terms of performance, reliability, durability, and cost. A theoretical model has been
presented, but a physical model will need to be constructed in order to validate it. The 2"
generation design provides system arrangements for preventing pump cavitation, describes the
optimum amount of insulation to be utilized, requires less power consumption for the same flow
rate of purified water as the 1% generation design, and the manufacturing cost of the entire unit

will be lower.



Chapter 2: Literature Review and
Technical Problems

2.1 Desalination Processes

The two main categories of desalination processes are membrane and thermal processes.
A membrane process involves passing water through a barrier (a membrane) in order to remove
certain substances. Thermal processes produce pure water by bringing a saltwater solution to its
saturation temperature, further heated to form water vapor, which can be condensed and

collected as clean, salt-free liquid water.

2.1.1 Reverse Osmosis

There are numerous membrane processes, including nanofiltration, electrodialysis, and
forward osmosis (FO), and reverse osmosis (RO). Among these, RO is the popular membrane
process, which accounts for 44% of worldwide purified water production [6]. The RO process is
illustrated in Figure 2 [7]. A pressure is applied to the input water which is greater than its
osmotic pressure, and the water is forced to flow through a semipermeable membrane. The
osmotic pressure of seawater is approximately 30 bar, and a pressure of 40-70 bar is usually
applied [8]. The pressure applied is related to the salt concentration of the input water. RO is
effective at removing salts from solutions which have salt concentrations up to 45,000 mg/L. The
recovery rate of RO is the volume of clean water obtained divided by the volume of feedwater

processed. The recovery rate for RO processes ranges from 30 to 85% [6, 9].



Pressure

Water Flow Semi-Permeable \Water Flow
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Figure 2: Concept of Reverse Osmosis [7]

2.1.2 Thermal Distillation

During thermal distillation, the input feedwater is heated to its saturation temperature and
vaporized, which separates pure water from the brine. The water vapor is then condensed and
collected from the system. The three most popular thermal distillation processes in terms of
worldwide desalination are multistage flash (MSF), multiple effect distillation (MED), and

MVC.

Single Effect Distillation

One of the simplest forms of distillation is a unit which consists of only one effect
(evaporation column), as shown in Figure 3 [10]. Input feedwater is injected into the evaporator
where it is heated to its saturation temperature. The heat source in Figure 3 [10] is a steam loop
connected to a boiler. The water vapor generated in the evaporator is sent to a cooling tank,
where a cool water loop causes the vapor to condense. The condensed water is collected in a
storage tank. It is important to note that the latent heat of condensation is not recovered during

this process as it is transferred to a separate cooling water loop.
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Figure 3: Schematic of a Single Effect Distiller [10]

Single effect distillation is generally utilized where compact size of a unit is required, and
where heating steam is abundant and cheap [10]. However, these distillers produce less fresh
water compared to MED, and a greater amount of heating steam is needed per unit volume of

fresh water production compared to MED and MVC [11].

Multistage Flash Distillation

The boiling temperature of water decreases as pressure decreases. Vaporization of water
due to decreased pressure is termed “flashing”. A schematic of a typical MSF distillation unit is
shown in Figure 4 [12]. In MSF distillation, the pressure of the second stage is less than that of
the first stage. The pressure of the third stage is lower than that of the second stage. This pattern
continues until the last stage of the unit. Pipes containing input feedwater are passed through

each effect to preheat the feedwater. The feedwater passes through a heat exchanger and recovers



energy from steam produced in a boiler. VVaporization occurs when the feedwater is released into

the effects.
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Figure 4: MSF Schematic [12]

Multiple Effect Distillation

MED is similar to MSF in that it utilizes a series of low-pressure effects. However, in
MED, input water is sprayed onto pipes containing water vaporized in the effects. This helps to
condense the vapor in the pipes and causes the sprayed water to vaporize [13]. Figure 5 [12] is a
schematic of a typical MED unit. Steam from a boiler is used as the initial heat source to
vaporize the input water. This steam is usually supplied at 790 to 1130 kPa [11]. After the first
effect, vapor produced in the previous effect is used to heat and vaporize input water in the next
effect. Water which does not vaporize (and contains salts) in each effect in sent to a concentrate
waste location. The concentrate waste can be recirculated back through the distiller in order to

create more product water.



The efficiency of MED is increased when more effects are added to the system. This
reduces the amount of input steam required. MED units typically contain anywhere from three to
sixteen effects [7, 11]. However, as the number of effects increases, the initial cost of the system
increases. MED has a range of recovery of about 20 to 35% when seawater is used as the input
water. The operating cost of a MED unit is usually less than that of a MSF unit because of
reduced energy consumption due to vapor from previous effects heating input water in later

effects [7]. This concept is similar to regeneration in steam engines for power plants.
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Figure 5: MED Schematic [12]

Mechanical Vapor Compression

MVC is a process in which steam generated in the evaporator is compressed to raise its
temperature. Figure 6 [12] shows a schematic diagram of a basic MVC distiller. Initial heating
from another source is needed to start the evaporation process. Input feedwater passes through a
series of heat exchangers before reaching an evaporator. The input water then comes into contact

with pipes containing pressurized, superheated steam and vaporizes. Water which does not



vaporize can be recirculated through the system or sent to a concentrate waste collection
container. The compressed vapor condenses as it gives energy to the input feedwater in a heat
exchanger. MVC distillers usually have a range of recovery between 40 to 50% for seawater
desalination [7]. As reported by Ettouney et al. [14], the MVC process is considered to be the
most attractive single-stage distillation method as it is compact, suitable for remote and low
population areas, and recovers a significant amount of energy through the condensation of fresh
water vapor within the system . MVC distillers with one effect are as beneficial as a MED unit

with 15-20 effects [10].
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dearated water inside of
to be demineralized tubes

Figure 6: MVVC Schematic [12]

Solar Distillation

Solar distillation is a process in which solar energy is collected and utilized to produce
purified water from a reservoir of saline water. Figure 7 [15] shows a schematic of a typical solar
still. The basin liner is usually painted black in order to absorb as much solar radiation as
possible. When the water from the reservoir evaporates, it will gather on the sloped glass cover.
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The evaporated water will condense on the glass and trickle down into a trough, where it is
collected as distillate. This technique has several advantages over other distillation methods, such
as the still is easy to construct, it has no moving parts, and only renewable forms of energy are
required for its operation. However, with a distillate production rate of approximately 0.88 kg m
2 day?, this technique will not produce enough water to meet the design goal of this document.
Active solar stills add components to passive solar stills (Figure 7 [15] is an example of a passive
solar still) which serve to increase the distillate production rate. Some examples of these
components are parabolic concentrators, heat pipes, and heat exchangers. Even with these

modifications, active solar stills will only produce about 3 to 4.5 kg m? day™* [15].
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Figure 7: Solar Still System Schematic Diagram [15]

2.2 Additional Distiller Components

A variety of components have been developed to improve upon the performance of
desalination units. One of these components is demisters, devices which remove entrained water
droplets from vapor. Demisting pads are knitted meshes which can remove droplets as small as
1um from vapor. These pads are available in a wide range of materials, thicknesses, and

densities [16]. Another approach which can be utilized to remove water from vapor is placing a
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baffle in the flow. A baffle forces the vapor to rapidly change directions, and water droplets are
thrown against a solid wall by centrifugal force. The droplets then run into a lower liquid section
of the vessel [17].

The majority of process steam is superheated. Superheated vapor is not as efficient at
transferring heat as saturated vapor. The most common method for desuperheating steam is to
introduce finely atomized cooling water into the flow, which brings the temperature of the steam
closer to that of the saturation temperature. This process is shown in Figure 8 [18]. Another
approach is to use a venturi desuperheater, but these units tend to be more expensive and produce

greater pressure drops than mechanical atomizing units [19].

Cooling water

35

Injector

A, Desuperheated

Superhealed
|_> L/ steam

sleam

Figure 8: Typical Desuperheater [18]

Other components include trays, nozzles, and vacuum pumps. Trays may be placed inside
the evaporator to add more surface area for evaporation. Nozzles may increase the rate of
evaporation by finely atomizing water droplets. Vacuum pumps may be installed on the
evaporator to remove non-condensable gases from the generated steam. These pumps also create
a vacuum within the evaporator, which lowers the saturation temperature of water, and increases

the rate of evaporation.
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2.3 Measurement of Desalination Energy Consumption

Certain relationships have been established in order to compare desalination technologies
to each other. Semiat [20] described several of these relationships, including energy consumption
per amount of water produced, “gained output ratio” (GOR), and the Carnot efficiency. Energy
consumption per amount of water produced usually has units of kwWh/m3. GOR is described as
being “number of times the heat of evaporation is reused” and is defined as the ratio of the mass
of water produced to the mass of steam utilized in the process [20]. The Carnot efficiency, as
with all other engineering systems, is the ratio of the minimum theoretical work required to the
actual work invested. A more detailed explanation of the Carnot efficiency applied to
desalination systems is presented in a later section in this document. Values for energy
consumption vary greatly depending on the technology utilized. MSF plants typically produce
clean water at an energy consumption of 55-80 kWh/m?® or a GOR of 8-12, whereas MED plants

have a typical energy consumption of 40-60 kwh/m? or a GOR of 10-16 [20].

2.4 Selection of Distillation Method

The design of the distiller for this research will incorporate many MVC technology and
process aspects. It has been recognized as an excellent solution for small-scale applications, and
is considered to be the most efficient thermal distillation process. Some design modifications to
the typical MVC schematic will be needed in order to handle the relatively high salt
concentrations of produced water from hydraulic fracturing. Membrane processes were not

considered because the high salt concentration will diminish the performance of the membranes.
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2.5 MVC Case Studies

Veza [21] presented an investigation of the Las Palmas Port Authority Desalination Plant
in the Canary Islands (an autonomous community of Spain off the coast of northwest Africa)
which had two VC units. Each unit was able to produce purified water at a rate of 500m®/day. A

schematic diagram of these VC units is shown in Figure 9 [21].
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Figure 9: Schematic of the MVC Units Analyzed by Veza [21]

The compressors had an efficiency of approximately 58.9%, and the plant had an energy
consumption of 10.4-11.2 kWh/m?. The product water had a conductivity which was consistently
below 20 puS/cm. The tubes of the evaporator-condenser units were 5.13 m long with a total
surface area of 2598 m?, and the vessels were 4 m in diameter. The operating temperature of the
evaporator-condenser units was 59°C. This low temperature was utilized to reduce scaling in the
components and heat loss from the system to the ambient air. The compressors produced a

vacuum in the evaporator, and the vapor passed through a demister mesh before reaching the
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compressor. The compressors were radial centrifuge types with aluminum rotors and titanium
blades. Vacuum pumps removed non-condensable gases from the systems.

Aly and EI-Figi [22] presented an investigation of a small-scale VC unit in the heat
transfer laboratory of the Atomic Energy Authority of Egypt. The unit had a capacity of 5
m®/day, and the evaporator was designed to operate at 70°C. The condenser containing the
produced steam was located within the evaporator, and the inside of the evaporator was a
horizontal spray film design. The experimental and theoretical results showed the production rate
increased with an increase in the operating temperature from 70°C to 98°C. The authors claimed
that VC distillation was generally used for small to medium-scale purposes. The operating
temperature was chosen in order to minimize both scale and the requirement for thermal
isolation. Feed water was preheated in two plate-type heat exchangers. Electrical immersion
heaters were utilized to generate the initial and make-up steam. The usage of the heaters
depended on the temperature of the feed water and the compressor load. A centrifugal-type
compressor was turned on after a sufficient amount of steam has been generated. The compressor
created a vacuum within the evaporator as it drew vapor through mesh separators. The
conductivity of the product water was usually below 15 ps/cm. A vacuum pump was utilized to
create a vacuum in the evaporator before the compressor was turned on and it removed non-
condensable gases. The evaporator had a glass observation window for viewing the interior of
the evaporator shell, as well as liquid level glasses, drains, a vent, and safety valves.

Bahar et al. [23] presented an analysis of a VVC distiller which had a rated capacity of 1
m?/day. The distiller had two stages, i.e. two vertical evaporator-condenser units. VC systems
with multiple effects have been shown to increase the performance ratio (the authors define this

as the mass of distillate produce in kilograms divided by 2326 kJ of heat input), decrease the
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power consumption, and better utilize heating sources. An experiment was conducted to observe
the effects of increasing the brine recirculation rate and the compressor speed. The salt
concentration of the brine had different values ranging from 20,000 ppm to 33,000 ppm. The
temperature of the brine in the first and second effect was 103°C and 101°C, respectively. The
temperature of the heating steam for the first and second effect ranged from 103°C-110°C and
101°C-102°C, respectively. The compressor was a rotary-lobe type, had a capacity of 42 m%/hr,
and a maximum compression ratio of 2.2. The power input for the compressor ranged from 0.59
kW to 1.75 kW. It was found that increasing the concentration of the input water had a negative
effect on the production rate at each recirculation rate tested. However, increasing the
recirculation rate increased the production rate since more latent heat was absorbed. The flow
rate of product water increased linearly with increasing compressor speed. Figure 10 [23] shows

of schematic of this distiller.
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Figure 10: Schematic of the MVVC Unit Analyzed by Bahar et al. [23]
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2.6 Temperature-Entropy Diagram

Figure 11 [24] is a T-S diagram of a typical VC process. The feed water enters the system
at point A. It is then heated to its boiling point B at pressure P1, usually in a heat exchanger with
the condensate as the hot fluid. The feed water is then vaporized by a constant temperature and
pressure process within the evaporator to point C. A compressor then compresses the vapor to a
greater pressure P, at point D, so the water is now a superheated vapor. The compressed vapor is
condensed along the line D-E-F, and it transfers its latent heat of vaporization to the cross-
hatched area. The thermodynamic advantage of the VC process is the ratio of the area bounded
by BCDEF (the compressor work region) to the cross-hatched area. The condensate is subcooled
in another heat exchanger with the feed water acting as the coolant. From this diagram, one can
find that the lower the value of AT, the higher the thermodynamic advantage will be due to lower
energy consumption from the compressor. However, the required surface area within the

evaporator to carry out the process is increased, raising the capital cost [24].
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Figure 11: Temperature-Entropy Diagram of a General VC Process [24]
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2.7 Scaling

The deposition of solids from water to pipes is referred to as scaling. Water containing
relatively high total dissolved solids (TDS) levels usually has more severe and varied scale
problems compared to fresh water [25]. Due to the scope of this research, scaling must be taken
into serious consideration. As described by Cowan and Weintritt [25], scaling leads to many
problems, such as reduced area for flow through a pipe, reduction of heat transfer through the
wall of the pipe, and corrosion attacks. Scaling can lead to greater costs due to inefficiencies,
downtime and maintenance, and increased safety hazards.

Three factors must be present at the same time in order for scale deposition to occur:
supersaturation, nucleation, and an adequate amount of contact time [25, 26]. Figure 12 [25]
shows a flowchart of the scale deposition process. It shows some of the important controlling
parameters for each stage of scale deposition. Supersaturation occurs when a solution contains
more solvent than the equilibrium concentration. Cowan and Weintritt [25] describe
supersaturation as being the primary cause of scaling, and list the following ways to
supersaturate a solution: temperature fluctuation, pH alteration, addition of solid seeding
material, commingling of two incompatible waters and pressure reduction (common in gas/oil
production), agitation, evaporation or concentration, etc. Gooch [27] defines nucleation as “the
formation of short range ordered polymer aggregates in a melt or solution, which acts as growth
centers for crystallization.” Nucleation occurs faster at higher levels of supersaturation.

Prevention of scaling requires at least one of these three factors to be removed. Since
contact time is not a factor which can be changed in this project, either supersaturation or
nucleation must be considered [26]. Since evaporation is recognized as one of the causes of

supersaturation, the water through the recirculation loop should be kept as a condensed liquid
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until it reaches the evaporator. Though there are a variety of other factors affecting
supersaturation as previously described, having a set location where the water will evaporate is
one method for reducing the degree of supersaturation throughout the system. The highest
amount of scaling will most likely be located in the evaporator. Cleaning the evaporator of scale
will be less difficult than removing scale from the pipes and heat exchangers comprising the

recirculation loop.
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2.8 Solubility

Solubility is defined as the maximum amount of solute which can be dissolved in a
solvent. Table 1 [28] shows the solubility of salt (NaCl) in water as a function of temperature
[28]. The table shows the solubility increases with temperature, which means this is an

endothermic process.

Table 1: Mass of Salt in a Saturated Solution with 100 grams of Water [28]
Temperature (°C) 0O | 10 | 20 | 30 | 40 | 60 | 80 | 90 | 100

Mass of Salt (grams) | 35.7 | 35.8 | 35.936.1|36.4|37.1| 38 [38.5|39.2

2.9 Total Dissolved Solids and Salinity

Total dissolved solids (TDS) is the concentration of salts in water measured in part per
million (ppm). Another popular value describing salt concentrations is salinity, which is usually
given as grams of salt per kilogram of seawater. Seawater has a salinity of approximately 35 g/kg
(or TDS = 35,000 ppm) [29].

During operation, the salt concentration within the recirculation loop will continually
increase, or scale will form in the evaporator. This is due to the fact that salt will not leave the

system until it is removed during downtime.

2.10 Pump Cavitation

Cavitation is a phenomenon caused by the formation of vapor bubbles in localized low
pressure regions below the saturation pressure of the fluid at a given temperature. When these

vapor bubbles are later exposed to a pressure increase, they collapse and cause negative effects
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on pump performance [30]. An important parameter in preventing cavitation is known as the net
positive suction head (NPSH). NPSH is the total energy (from pressure and velocity) above the
vapor pressure of the liquid at the pump inlet [30]. The net positive suction head available
(NPSHA) and the net positive suction head required (NPSHR) are variables utilized by pump
manufacturers to designate how a pump should be placed and/or operated in order to prevent
cavitation. Measures should be taken to ensure that the NPSHA is always greater than or equal to
the NPSHR. The NPSHR can be reduced by making a variety of design modifications. For
example, pump manufactures may offer devices known as inducers and other impellers for
certain pumps, both of which are intended to lower the NPSHR. Larger pumps operated at lower
speeds can lower the NPSHR [31].

The NPSHA can be calculated by using the equation shown below [31]. It is important to
note that each term must be expressed in feet of head. Each variable in the equation is described
in Table 2. A visual aid depicting how these variables affect cavitation is shown in Figure 13
[31].

For the design of the distiller, increasing the vertical distance between the liquid level and
the pump may be the simplest solution for preventing cavitation. The pump was already placed
below the liquid level in the 1% generation design, but this distance may not have been adequate
as far as the NPSHA value is concerned. Also, it may be necessary to install a vacuum breaker
on the evaporator to ensure that there is never a negative gauge pressure within the evaporator if
cavitation continues to be a problem.

NPSHA = hym +hy +hg —he—h Equation 1

vp
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Table 2: NPSHA Energy Terms

Variable Pressure Description
Natm Atmospheric This value is always positive
pressure
hp Gauge pressure | The value is negative for a vacuum, zero for an open
tank, and positive for a positive pressure
Nel Static liquid level | The value is negative if the pump is above the liquid
height level, and positive it is below the liquid level
hs Friction losses This value is always negative
hvp Vapor pressure of This value is always negative

the pumped fluid

R

Static
suction=h_|

head h, = Friction losses in suction ||

i

Figure 13: Energy in a Pumping System [31]
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2.11 Non-Condensable Gases in the Product Steam

The condensation heat transfer coefficient is significantly reduced if non-condensable
gases such as air are present along with steam [32]. This will increase the surface area needed in
the condenser. An estimate of the percent reduction of the heat transfer coefficient is shown in
Figure 14 [33]. The variable oo is the heat transfer coefficient of pure steam, and ogs is the heat
transfer coefficient of gassy steam. As shown in Figure 14 [33], an air weight percentage of only
1% in the steam-air mixture can reduce the heat transfer coefficient by more than half the value
of pure steam. It is therefore critical that the evaporator be completely sealed in order to prevent

air from being drawn in by the compressor.
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Figure 14: Effect of Air on Condensation Heat Transfer [33]
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Chapter 3: In-House Testing and Field
Results of the 1st Generation Design

This chapter introduces the 1% generation design of a MVC distillation unit which can
separate pure water from the chemicals found in produced water from hydraulic fracturing. This
concept has validated as both in-house and field testing yielded positive results. However, this
design will need to be improved in certain areas in order to provide satisfactory results

continuously.

3.1 In-House Testing

A schematic of Epiphany’s 1% generation MVC distiller is shown in Figure 15. The solar
collectors were only present in field tests, and were simulated by electric heaters during in-house
testing. In-house testing was conducted at the Epiphany headquarters in Lawrenceville,
Pennsylvania. Figure 16 is a picture of the testing arrangements, including instrumentation
monitored by LabVIEW™. Two tests were performed, both utilizing different types of water as
the input fluid. The first test involved river water, and the second test involved brine with a salt
concentration of 100,000 ppm. The water for the second test was prepared by dissolving rock salt
into fresh water.

The heat input from the solar panels was simulated by modifying an air tank to act as a
Therminol®66 reservoir. Electrical immersion heaters were used to provide heat, and the

Therminol®66 was pumped from the tank to the distiller in a continuous loop by a small gear

pump.
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Figure 16: In-House Testing Arrangements

Table 3 shows the results of the in-house testing. The brine test was split into two
different tests due to maintenance. The distillate flow rate ranged from 20-40 gal/hr, and the

water purity was always less than 225 ppm TDS.
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Figure 17 through Figure 25 are selected graphs of many of the important aspects of the
distiller performance during the test involving river water. All graphs involving temperatures and
pressures were directly measured by thermocouples and pressure transducers, respectively.
Graphs involving flow rates and heat transfer were calculated based on the measured temperature

differences across heat exchangers.

Table 3: In-House Testing Results

River Water Test |Brine Test 1 |Brine Test 2
Date 6-Aug 8-Jun 21-Jun
Operating Hours 10:00 3:45 12:00
Volume of Water Fed (gal) 275 175 310
Volume of Distillate Produced (gal) 200 100 300
TDS of Distillate (mg/L) 20 225 200
Mass of Crystallizer Byproduct Disposed (Ib) - 50 300
Electrical Energy Input Compressor (kWh) 62.00 26.00 74.00
Electrical Energy Input Heaters {kWh) 70.00 30.00 E0.00
Electrical Energy Controls [(kWh) 7.50 3.00 9.00
Total Energy Input (kWh) 139.50 59.00 163.00
Efficiency (kWh/gal) 0.51 0.34 0.53
Generator % of total 443, 44% 45%

Figure 17 shows the volumetric flow rate of the recirculation loop, which, according to
Figure 15, starts in the crystallizer, goes through Heat Exchangers 1 and 2, and ends back in the
crystallizer again. The curve of the graph is erratic, which cannot occur in future modifications
of the system if predictable results are desired.

Figure 18 shows the temperature at three different locations along the recirculation loop.
The graph shows that the majority of the heat transfer to the recirculation loop occurs within
Heat Exchanger 1, which explains the large temperature difference between “Recirc Post Pump”
and “Recirc Pre-Auxiliary Heat.” The recirculation loop then receives more heat from the

Therminol®66 loop within Heat Exchanger 2, and enters the evaporator at a temperature shown
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by “Recirc to Crystallizer.” The recirculation loop receives more heat from Heat Exchanger 1

than Heat Exchanger 2 because it absorbs the latent heat of condensation from the output water

path at this point.
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Figure 17: Recirculation Loop Volumetric Flow Rate
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Figure 18: Recirculation Loop Temperatures

Figure 19 shows the pressure at the outlet of the steam compressor. The pressure is fairly

consistent in the graph, but it was known that air was present in the flow, which has been shown
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to significantly reduce the convection coefficient of steam. Future modifications to the distiller
must therefore be made to ensure that no air can enter the distiller.

Figure 20 shows the rate of heat transfer calculated by utilizing the known temperatures
of the recirculation loop and its calculated volumetric flow. The curve of Figure 20 varies in the

same manner as Figure 17 for this reason.
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Figure 20: Heat Transfer from the Steam Path to the Recirculation Loop
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Figure 21 shows the inlet and outlet temperatures of the input water. Figure 22 was
constructed by using this temperature data along with a known mass flow rate and specific heat

of the input water to calculate the rate of heat transferred to the path in Heat Exchanger C.
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Figure 21: Input Water Temperatures at the Inlet and Outlet of Heat Exchanger 3
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Figure 22: Heat Transfer from the Output Water Path to the Input Water Path

Figure 23 shows the temperature of the Therminol®66 at the inlet and outlet of Heat
Exchanger 2. Figure 24 was constructed by using this temperature data, the value of a measured
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mass flow rate of the fluid, and known specific heat based on temperature to calculate the rate of

heat transfer. A 5.5 kW electric heater was utilized to provide heat to the Therminol®66

reservoir, so the calculated rate of heat transfer to the recirculation loop is in close agreement

with the expected rate under the assumption that there is negligible heat loss to the environment.
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Figure 24: Heat Transfer from the Therminol®66 to the Recirculation Loop
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Figure 25 shows the temperatures of the output water at the inlet and outlet of Heat
Exchanger 1. The inlet temperature of Heat Exchanger 1 is the temperature of the steam at the
outlet of the compressor. However, it should be noted that this fluid is not entirely steam, as
some air was entrained in the flow as well due to leaks in the evaporator. The large temperature
drop shows that Heat Exchanger 1 brings the water from the superheated steam phase to a
saturated vapor. It was known that Heat Exchanger 1 was not always able to completely
condense the steam, so other alternatives will need to be taken into consideration. These
alternatives may be a de-superheater or a heat exchanger with more surface area.

The in-house testing confirmed that the 1% generation distiller can be steadily operated to

separate fresh water from an aqueous NaCl solution and meet the design requirements.
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Figure 25: Output Water Temperatures at the Inlet and Outlet of Heat Exchanger 1

3.2 Field Demonstration

After the in-house testing was completed, field testing of the distillation unit was

conducted at Consol’s GH-10 well pad, located in Greene County, Pennsylvania. The left side of
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Figure 26 shows the E3H unit at the GH-10, and the right side shows the inside of the container,
which houses the distiller. An auxiliary propane heater was added to the distiller to simulate
sunlight on cloudy days.

Samples of produced and distillate water, as well as precipitated salt during crystallizer
cleanouts, were sampled on regular intervals. These samples were submitted to Consol’s R&D
laboratory for analysis. Figure 27 is a picture of some samples gathered from the GH-10 well pad
distillation unit. The produced water contained about 180,000 ppm TDS of impurities, whereas
the distillate had a purity of about 50 ppm TDS. The precipitated solids had a salt concentration
of about 93%. Table 4 is an analysis of the water samples gathered from the GH-10 well pad. All

parameters and substances tested for were found to be within an acceptable range.

Figure 26: Epiphany's E3H Unit and MKII Distiller at the GH-10 Well Pad

From the in-house and field testing results, it can be concluded that the 1% generation can
distill produced water for the production of fresh water. It can also be a potential solution to the
environmental concerns raised by produced water from hydraulic fracturing. The distiller was

able to produce clean water at a performance level of less than 0.5 kWh/gal, so it met the design
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goal. However, further modifications must be made in order to ensure that the distiller can

reliably perform at this level consistently, or if a better performance level is desired.

Figure 27: Water and Salt Samples from the GH-10 Well Pad

Table 4: GH-10 Water Sample Analysis

- Pre Post Percent
10/3/2013 Description Treatment | Treatment | Reduction

s.u pH 4.02 8.57 N/A
mg CacoyL | AKEINY: 0 42 N/A
mg/L TSS 740 <6 99.19
TDS 147100 78 99.95
Al 2.33 0.22 90.56
Ca 15330 1.43 99.99
Fe 74.2 0.1 99.87
Mg 1548 0.13 99.99
Mn 13.4 0.1 99.25
) K 299 0.1 99.97
CO”(‘;T‘;’S}E’)“O” Na 38370 283 99.99
pH 2.03 0.2 90.15
Si 3.08 0.65 78.90

Total
Sulfur as <25 1.3 94.80

SO,
Cl 91000 9 99.99
g/l Ba 1750 0.11 99.99
Sr 2386 0.17 99.99
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Chapter 4: 2nd Generation Design

The 2" generation design improves upon several aspects of the 1% generation design. For
example, cavitation was often observed after the water in the evaporator/crystallizer had reached
its saturation temperature. Calculations have been performed to recognize the NPSHA and
NPSHR for the 2" generation distiller setup, which will help prevent cavitation. The 2"
generation design will also require less power input and components than the 1% generation

design, which also lowers the cost.

4.1 Design Criteria of the Distiller

The performance of the distiller was evaluated by finding the energy consumed per
volume of fresh water produced (kWh/gal). The significant contributions to the total energy input
are the recirculation pump, the compressor, and the solar panels. The goal of this research is to
design a distiller which can produce clean water at a rate of 20 gal/hr and have a performance of
less than 0.5 kWh/gal. The total energy input must be limited to 10 KW in order to meet these

goals. Table 5 gives the design parameters for the 2" generation MVC design.

Table 5: 2"d Generation Design Criteria
Distilled Water Flow Rate (gal/hr) 20

Total Heat and Work Input (kW) <10
Performance (kWh/gal) <0.5
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4.2 Removal of Salt from the System

Crystallization is the process of removing solid solutes (in the form of crystals) from a
solution. If the salt is allowed to gather in the crystallizer, the salt particles may bind together,
which is referred to as caking. Salt which has caked will not flow freely, and will require an
external force to break the block of salt into a more manageable form [34].

Several approaches could be taken in order to remove the salt from the system, including
pumping the saturated saltwater solution to a solar pond, manually removing the salt after an
appreciable quantity of salt has gathered in the crystallizer, or installing an auger in the
evaporator/crystallizer. During the in-house and field testing, the salt was manually removed
from the evaporator/crystallizer once the system was stopped. This research recommends an
auger system, which might be a better solution for the 2" generation design, especially since it is
desired that the system be completely automated. The auger can be placed at the bottom of the
evaporator/crystallizer. Once the distillation unit has stopped running, a valve at the bottom of
the evaporator/crystallizer will be opened, and the auger will force the majority of the salt out of

the system.

4.3 Minimum Work Input to Obtain Fresh Water

Equation 2 through Equation 5 are from Cengel and Boles [35]. For Equation 2, the mass
fraction of salt (mfs) is determined simply by dividing the TDS value (in ppm) of the solution by
one million. The mass fraction of water (mfw) is determined by subtracting the mass fraction of
salt from 1. Once these mass fraction values are obtained, the molar mass of the solution (Mm)
can be calculated. For these calculations the value of Ms will be that of NaCl, which is 58.44

kg/kmol. The molar mass of water (Mw) is approximately 18 kg/kmol.
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My = —r= — Equation 2

mfs , mfy
Ms Mw

The molar fraction of water and salt can be found by using Equation 3 and Equation 4,

respectively.
yw = mfy, M, /M, Equation 3

Vs = 1— yw Equation 4

The following relationship for calculating the minimum work input required to separate 1

kg of fresh water from brackish water, which has been provided by Cengel and Boles [35]:

Whinin = RwToln(1/yw) Equation 5

Rw is 0.4615 kJ/(kg K), To is the temperature of the reservoir of brackish water in Kelvin, and
Wminin has units of kJ/kg fresh water. This equation shows that as the TDS value increases, the
minimum input required to separate 1 kg of fresh water from brackish water increases.

Table 6 shows sample calculations utilizing Equation 2 through Equation 5. When
calculating the minimum work input, a To value of 300 K was assumed. The maximum TDS
value given in Table 6 is 70,000 ppm, which is twice the concentration expected in the input feed

water. The table shows that the minimum work requirement increases as TDS levels increase.
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Table 6: Composition and Minimum Work Requirements Based on TDS Values
M, Whin, in
TDS (ppm) mfs mfw (kg/kmol) Ys Yw (kJ/kg fresh
water)
0 0 1 18 0 1 0
25000 0.025 0.975 18.3 0.008 0.992 1.09
50000 0.05 0.95 18.6 0.016 0.984 2.23
75000 0.075 0.925 19.0 0.024 0.976 3.42
100000 0.1 0.9 19.3 0.033 0.967 4.66
125000 0.125 0.875 19.7 0.042 0.958 5.96
150000 0.15 0.85 20.1 0.052 0.948 7.33

4.4 Thermodynamic Properties of the Fluids Involved in this Research

Pure Water

Pure water will be present in the compressed steam path, and it will be condensed from a

gas to a liquid. The properties of pure water as a saturated vapor and superheated steam must be

considered. The properties of pure water have been well documented in the literature. The

tabulated data presented by Cengel and Boles [35] will be utilized to approximate the

thermodynamic property values at various temperatures and pressures.

Therminol®66

Therminol®66 will be utilized as the heat transfer fluid which is pumped through the

PDRs and distillation unit. Equations for this fluid’s thermodynamic properties as functions of

temperature are given in Table 7 [36].
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Table 7: Therminol®66 Thermodynamic Property Equations [36]

Property Units Equation
Density kg/m3 —0.614254 * T(°C) — 0.000321 = T?(°C) + 1020.62
Heat Capacity K] 0.003313 * T(°C) + 0.0000008970785 * T%(°C)
kg = K + 1.496005
Thermal W —0.00003 = T(°C) — 0.00000015 * T2(°C) + 0.118294
Conductivity m * K
Kinematic mm? /s 286375 __ 5 2809
Viscosity e(T( R )
—9094.51
Vapor Pressure kPa e(m+17.6371)

Aqueous NaCl Solutions

Equations and tables for the thermodynamic properties of aqueous NaCl solutions are

given in Appendix A of this document. This information, found in the literature, was derived

primarily by empirical methods.

4.5 Steam Compressor

A compressor is necessary for the operation of a VVC distiller, and minimizing its power

consumption greatly impacts the performance of the distiller. The simple block diagram shown

in Figure 28 will be utilized to derive an equation for the required power input of the compressor.

In Figure 28, the inlet and outlet of the compressor is designated by 1 and 2, respectively.
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1
Compressor :&

Figure 28: Block Diagram of a Compressor

The equation for calculating the power consumption of a steadily operating compressor with one

inlet and one outlet can be derived from the 1% Law of Thermodynamics:
Qin + Wi, + mi(h + ke + pe); = Qout + Woue + m(h + ke + pe), Equation 6

Power is not produced by the system, so W, is eliminated. The mass flow rate at the inlet
equals that of the outlet due to conservation of mass. Neglecting heat transfer, kinetic energy,
and potential energy, the above equation can be reduced to:

Win,rev = m(hz - hl) Equation 7

If the efficiency of the compressor is to be included, then the equation becomes:

V.Vin,actual = [m(hz - hl)]/nrev Equation 8

Table 8 shows other equations which have been utilized by authors analyzing VC
distillers. These equations will not be utilized in the design of this distiller because they consider

water vapor to be an ideal gas, which is only a valid assumption for certain conditions [35].
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Table 8: Compressor Work Equations from VC Case Studies

Work Equation Reference
T 21
T h_-1 P1Vy b,
_ nRT, (PC)(“‘”/ n . [37]
Wcomp B ncomp(n - 1) Pe

The actual phase of water at the exit is usually superheated. This raises the power input
compared to the theoretical situation where the fluid is a saturated vapor at the outlet. For
example, Table 9 shows two processes where saturated vapor at 100°C with a mass flow rate of
0.0211 kg/s (a volumetric flow rate of 20 gal/hr) at the inlet is compressed to a pressure of 150
kPa by a compressor which has a compressor efficiency of 80%. For the specific scenarios given,
the power consumption is approximately 5.59 times greater for producing a superheated vapor at
the outlet compared to a saturated vapor. In order to transfer all of the latent heat of evaporation

to the recirculation loop, the steam must have a saturation temperature greater than the elevated

boiling temperature of the saltwater.

Table 9: The Effect of Compressor Outlet Conditions on Power Consumption

Outlet Conditions [35] Power Calculation

Saturated \apor (h, —hy) 00211 % (2693.1 11:_] —~2675.6 11:_])
P = 150 kPa S B U 08g B/ = 0.46 kW

Teat = 111.35°C Nlcomp '

h = 2693.1 ki/kg

Superheated Vapor . 0.0211%8 (2772 9l _ 2675 6H>

P = 150 kPa _ M =hy) R 58/ _ 257 kw
T =150°C fleomp |

h = 2772.9 k/kg
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4.6 2nd Generation MVC Distiller Design

Figure 29 is the schematic of the 2" generation MVC distiller proposed in this research.
The distiller in many ways functions as a typical MVC distiller, but several important
modifications to the conventional design have been made. Salt will be expected to precipitate out
of the saltwater solution in the evaporator/crystallizer as time progresses during operation. The
water in the evaporator/crystallizer and recirculation loop will eventually become saturated with
salt. Due to scaling concerns, all heat exchangers are located outside the evaporator/crystallizer.
The higher pressure of the recirculation loop will prevent the liquid from evaporating until it

reaches the evaporator/crystallizer, which will be maintained at about atmospheric pressure.

The compressor will be turned on once the liquid in the evaporator/crystallizer reaches
the designed boiling temperature. It will be assumed that the water at the inlet of the compressor
is a saturated vapor, and the water at the outlet is superheated. The superheated steam will be
cooled by injecting low-temperature purified water into the flow so it becomes a saturated vapor
at the inlet of Heat Exchanger B. The compressor serves to raise the pressure, and therefore the
saturation temperature, of the vapor in this path so heat transfer is possible between the vapor
and the saltwater solution of the recirculation loop. The temperature of the recirculation loop will
be less than that of the output water path, so the saturated vapor will transfer its latent heat of
condensation to the recirculation loop, and leave Heat Exchanger B as a saturated liquid. This
saturated liquid will be cooled in Heat Exchanger A when it transfers heat to the flow of input

water.

40



Recirculation Loop

Evaporator

Recirculation
Pump

Crystallizer

Saturated Vapor

Compressor

Heat : :/E }

Exchanger C

Solar
Panels or
Auxiliary

Heater

HTF Tank

|
HTF
Pump

Input Path

Input/

Valve

Bypass Path

Heat

Exchanger B

Heat

Exchanger A

Bypass E%]l— /\/

Qutput
IBC

Desuperheating

Water Pump

Input Water
Pump

Figure 29: Schematic Diagram of the Proposed VC Distiller

The input water pump must always be on as long as the compressor is drawing water

vapor out of the evaporator/crystallizer. If the water level in the evaporator/crystallizer is above a

certain point, it will be sent back to the Input Water Intermediate Bulk Container (IBC). If the

water level is lower than this point, the input water will be injected into the recirculation loop

before Heat Exchanger B.
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4.7 Design Calculations

Boiling Point Elevation

Using Equation A2, the mass fraction of salt at the saturation limit (Xsat) value for a
solution at 100°C is 0.280. Using Equation A1, a mass fraction of 0.280 equals a molality of 6.65
mol salt/kg water. Using Equation A9, the boiling temperature of this solution is 106.9°C.
Therefore, the compressor must generate enough pressure at its outlet to ensure the saturation

temperature of the steam is greater than 106.9°C.

Heat Transfer in Heat Exchanger B

The specific enthalpy of saturated water vapor at 106.9°C is 2686.3 kJ/kg by using linear
interpolation of the tabulated data from Cengel and Boles [35]. Using Equation A5, the specific
enthalpy of an aqueous NaCl solution at this temperature and a mass fraction of 0.280 is 328.72
kJ/kg. Using Equation A6, the latent heat of vaporization of this solution is 2357.6 kJ/kg. Using
Equation A7, the recirculation loop must receive 49.5 kW of heat in order to have an output
water vapor mass flow rate of 0.021 kg/s.

The saturation pressure of water at 110°C is 143.38 kPa [35]. The specific enthalpy of a
saturated vapor and saturated liquid at 110°C is 2691.1 kJ/kg and 461.42 kJ/kg, respectively. The
latent heat of vaporization of water at 110°C is 2229.7 kJ/kg. The heat transfer out of the output
water through Heat Exchanger B is 46.8 kW. The temperature of the recirculation loop cannot be
greater than that of the output water at any point in Heat Exchanger B. Assuming the temperature
of the recirculation loop is 109°C at the outlet of Heat Exchanger B, the mass flow rate of the

recirculation loop must be 6.97 kg/s.
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Heat Transfer in Heat Exchanger C

The required heat input from the Therminol®66 in Heat Exchanger C is 2.7 kW. The
temperature of the recirculation loop at the inlet of Heat Exchanger C is 109°C, and it will be
assumed that the specific heat of an aqueous NaCl solution at this temperature is approximately
the same as that at 106.9°C since there is only a difference of 2.1°C between these two
temperatures. The temperature of the recirculation loop at the outlet of Heat Exchanger C will be
109.12°C. A gear pump may be the best option for the pump of the Therminol®66 loop because
of their ability to handle high temperatures. Gear pumps usually have relatively low flow rates,
and the design volumetric flow rate for the Therminol®66 loop will be 3 gal/min (1.89x10™
mq/s). It will be assumed that the maximum temperature of this loop is 190°C. In actuality, the
maximum temperature of the loop will vary with solar radiation throughout the day. The
temperature variation throughout the day will be discussed in more detail later in this chapter. It
will also be assumed that the average temperature of the loop through the heat exchanger is
186°C. Using the equations found in Table 7, the density and specific heat of Therminol®66 at
186°C is 895.3 kg/mand 2.143 kJ/(kg K), respectively. Solving for the temperature of the loop

at the outlet of Heat Exchanger C:

Qout = Ihcp (Tin — Tout)

Qout = T. — Qout

Tout = Tin — : :
out 1 rth n pVCp
T 190°C 27 kW 182.6°C
out = - 3 = .
8953 X8 189 x 10+ x 2.143 X
m S kg K

The above result shows 186°C is a reasonable assumption for the average temperature of the

loop through the heat exchanger. The mass flow rate of the Therminol®66 is 0.17 kg/s based on
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the above calculations. The mass flow rate will actually need to vary with the maximum
temperature in the loop. However, the calculated temperatures and mass flow rate above were

utilized to simplify the heat exchanger design calculations.

Heat Transfer in Heat Exchanger A

It was assumed that the output water enters Heat Exchanger A as a saturated liquid at
110°C and leaves as a subcooled liquid at 60°C. The specific enthalpy of pure liquid water at
110°C and 60°C is 461.42 kJ/kg and 251.18 kJ/kg, respectively [35]. Calculating the heat
transfer out of the output water path through Heat Exchanger A:

. , kg K] K
Qout = M(hiy — hoye) = 0.021?<461.42k—g - 251.18k—g) = 442 kW

It was assumed that the input water has a NaCl concentration of 0.1 kg salt/kg water (a mass
fraction equal to 0.091) and it has a temperature of 35°C at the inlet of Heat Exchanger A. It was
assumed that the flow rate of the input water path is 2 gal/min (1.26x10* m%/s) and the average
temperature of the path through Heat Exchanger A is 40°C. Using Equation A4, the density of
the input water at this average temperature is 1056.2 kg/m3. Using Equation A5 and Equation
A8, the specific heat of the input water is 3.77 kJ/(kg K). Solving for the temperature of the input

water at the outlet of Heat Exchanger A:

Qin = Ihcp(Tout — Tin)

Qin —

T.p= T + =0 — T, 4 <
out 1n r-rlcp 1n pVCp
T... = 35°C + 442k = 43.8°C
out — k . m3 - '

105625 x 1.26 X 10~ 2= x 3.77
m S
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The above result shows 40°C is a reasonable assumption for the average temperature of the path

through the heat exchanger.

Summary of Temperatures and Mass Flow Rates

Figure 30 shows the schematic of the 2" generation distiller with numbered locations.

These locations are listed in Table 10 along with each of their temperatures and mass flow rates.

Table 10: Conditions of Each Location of the Distiller

Location Temperature Pressure (kPa) Phase Mass Flow Rate
(°C) (kg/s)
Input Water Path
1 35 239 Compressed Liquid 0.133
2 43.8 239 Compressed Liquid 0.133
Recirculation Loop

3 106.9 207 Compressed Liquid 6.97

4 109 207 Compressed Liquid 6.97

5 109.1 207 Compressed Liquid 6.97

Output Water Path

6 106.9 101.3 Saturated Vapor 0.021

7 120 143.4 Superheated Vapor 0.021

8 110 143.4 Saturated Vapor 0.021

9 110 143.4 Saturated Liquid 0.021

10 60 143.4 Compressed Liquid 0.021

Desuperheating Water Path
11 60 377 | Compressed Liquid 3.03x10%
Therminol®66 Loop
12 190 207 Compressed Liquid 0.17
13 182.6 207 Compressed Liquid 0.17
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Figure 30: 2" Generation Schematic with Location Markers

4.8 Heat Exchanger Design

The inlet and outlet temperatures, the overall heat transfer coefficient, and the total
surface area of the heat exchanger are important parameters in the design of heat exchangers
[38]. For this design, the unknown parameter to be calculated is the total surface area. Due to
space limitations in the shipping container which houses the distiller, each heat exchanger must

be kept at a reasonable size. The log mean temperature difference (LMTD) method will be
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implemented in the design of the Heat Exchanger A and Heat Exchanger C. Due to the
complexity of designing a heat exchanger involving a phase change, an appropriately sized heat

exchanger will be selected from McMaster-Carr®.

Concentric, Counterflow Tube Heat Exchangers

One of the simplest types of heat exchangers is one involving two concentric tubes. The
two arrangements of this type of heat exchanger are parallel-flow and counterflow. A
counterflow heat exchanger requires less surface area compared to a parallel-flow arrangement
for a prescribed set of inlet and outlet temperatures [38]. Therefore, only the counterflow
arrangement will be considered for this research.

Figure 31 is a schematic of a typical concentric tube heat exchanger. These heat
exchangers consist of two tubes, with one tube passing through the center of the larger tube. One
fluid flows through the central tube, and the other fluid passes between the space between the
outer wall of the central tube and the inner wall of the larger tube. This space is called the
annulus. It will be assumed that the outer wall of the larger tube is well insulated, so heat can
only pass through the wall of the central tube. It will also be assumed that the thickness of the
wall of the central tube provides negligible resistance to the heat transfer between the fluids. The
tube diameters will be selected based on commercially available pipe sizes. The inner diameters
of 1” and 1.5” Schedule 40 pipes are approximately 0.027 m and 0.04 m, respectively. For both
Heat Exchanger A and Heat Exchanger C, the values of Di and D, will be set as 0.027 m and

0.04 m, respectively.

47



L
. NN NN NSNS EEEEEEEE.
- —
|y
DD D; |-—-——-——— - — — — —
a‘|‘x
- —
S

T e SR T G P
Figure 31: Schematic of a Concentric, Counterflow Heat Exchanger

LMTD Method

Bergman et al. [38] provide Equation 9 through Equation 20 for the analysis of a
concentric, counterflow tube heat exchanger. Equation 9 is the general equation for relating the

LMTD to heat exchanger size.

Q = UATy,A Equation 9

In the above equation, Q is the rate of heat transfer, U is the overall heat transfer coefficient, A is
the surface area, and ATim is the mean temperature difference. The mean temperature difference

is defined in Equation 10.
ATy, = (AT, — AT,)/In(AT,/AT,) Equation 10
For a counterflow heat exchanger, AT1 and AT, are calculated by utilizing Equation 11 and

Equation 12, respectively. In these equations, the subscripts h, ¢, i, and o are hot, cool, inlet, and

outlet, respectively.

ATy = Thi— Teo Equation 11
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ATy = Tho — T Equation 12

The overall heat transfer coefficient from Equation 9 can be found by utilizing Equation 13. For

this equation, it is assumed that the resistances due to fouling and wall thickness are negligible.
U=1/[(1/h) + (1/hy)] Equation 13

The convection coefficient for flow through the inner channel (h;) and the annulus (ho) can be
found by utilizing Equation 14. The diameter (D) in Equation 14 is D; for the inner channel.
However, the hydraulic diameter must be utilized for the annulus, which can be found by

utilizing Equation 15.

h =k-Nu/D Equation 14

Dy, =D, — D Equation 15

Equation 16 can be utilized to find the Nusselt number for a flow which is fully turbulent passing
through a circular tube and is receiving heat through a constant temperature wall. According to
Young et al. [39], laminar flow occurs in a round pipe if the Reynolds number is less than
approximately 2,100, and turbulent flow occurs when the Reynolds number is greater than
approximately 4,000. However, this equation cannot be used for flow in a circular annulus. Table
11 provides values for the Nusselt number for fully developed laminar flow in a circular annulus
based on the ratio of tube diameters. Linear interpolation will be used to find the values for

Nusselt number for a certain ratio of diameters which is between those listed in the table.

Nup = 0.023Rep*®Pro+ Equation 16
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Table 11: Nusselt Number for Fully Developed Laminar Flow in a Circular Tube Annulus

[38]

Di/Do Nu

0 N/A
0.05 17.46
0.1 11.56
0.25 7.37
0.5 5.74
~1.00 4.86

The Prandtl number of a fluid is defined by Equation 17. The Prandtl number does not depend on

heat exchanger arrangement, and is an intensive property of the fluid.
Pr = c u/k Equation 17

The Reynolds number of the flow through the central channel and the annulus are calculated by
utilizing Equation 18 and Equation 19, respectively. Once all other parameters have been solved
for, the required length of the counterflow, concentric tube heat exchanger can be calculated by

utilizing Equation 20.

Rep = 4m/(mD;p) Equation 18
Rep = 4m/[n(D, — D;)u] Equation 19
L = Q/(UnD;AT}y,) Equation 20

Heat Exchanger A

This heat exchanger is located between the input feed water path and the output distilled
water path. The output water entering this heat exchanger is a saturated liquid, and it is desired

that the temperature of this water be as low as possible at the outlet to supply more heat to the
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input water path. The output water will flow through the annulus of the heat exchanger, and the
input water will flow through the central tube.

Table 12 shows all the design parameters for Heat Exchanger A. Equation 9 through
Equation 20 as well as Table 11 were utilized to calculate all the values in Table 12 based on
inlet and outlet temperatures, flow rates, and fluid properties. The Reynolds number of the output
water through the heat exchanger is 1,203, so the flow is laminar and the values in Table 11 are
valid. The Reynolds number of the input water through the central tube is 7,711, so the flow is

turbulent and Equation 16 is valid. The required length of the heat exchanger is 5.34 m for this

arrangement.
Table 12: Heat Exchanger A Design Parameters
Parameter Value Parameter Value
Thi (°C) 110 Ren 1203
Tho (°C) 60 Rec 7711
Tei (°C) 35 kn (W/m*K) 0.673
Teo (°C) 43.8 ke (W/m*K) 0.617
ATy (°C) 66.2 Cph (J/kg*K) 4202
AT2 (°C) 25 Cpc (I/kg*K) 3813
ATim (°C) 42.3 Prh 2.07
Q (W) 4420 Pre 5.03
my, (Kg/s) 0.021 di/do 0.675
m, (kg/s) 0.133 Nuh 5.43
do (m) 0.04 Nuc 56.5
di (m) 0.027 hn (W/(m?*K)) 281
tn (N*s/m?) 0.0003316 he (W/(m?*K)) 1291
te (N*s/m?) 0.0008134 U (W/(m?*K)) 231
ph (kg/m?) 969 L (m) 5.34
pc (kg/m?) 1056.2
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Heat Exchanger B

This heat exchanger is located between the recirculation loop and the output water path.
The purpose of this heat exchanger is to completely condense the output water, which is a
saturated vapor at the inlet of the heat exchanger. Table 13 shows the mass flow rates of both
fluids through the heat exchanger, all inlet and outlet temperatures, and the rate of heat transfer
between the fluids. Table 14 shows the specifications of a heat exchanger selected from
McMaster-Carr® which will be utilized as Heat Exchanger B. This heat exchanger is referred to
as a “space-saving heat exchanger” or a “brazed-plate exchanger”, and it consists of stacked,
corrugated plates. This heat exchanger has a maximum pressure and temperature of 435 psi and
450°F, respectively. The rated heat transfer capacity and flow rate for the heat exchanger are
more than what it will experience for this application.

Table 13: Heat Exchanger B Design Parameters

Parameter Recirculation Loop Output Water Path
Mass Flow Rate (kg/s) 6.97 0.021

Inlet Temperature (°C) 106.9 110

Outlet Temperature (°C) 109 110

Heat Transfer (kW) 46.8 -46.8

Table 14: Specifications of the Heat Exchanger from McMaster-Carr®

Heat Surface | Flow | Pipe Height Width | Depth | Item Cost ($)
Transfer Area Cap. | Size (in) (in.) (in) Number

Capacity | (ft?) (gpm) | (NPT)

(Btu/hr)

380,000 82.8 126 2 24 5/16” | 7Y% 11% 8546T17 | 1,837.45

Heat Exchanger C

This heat exchanger is located between the recirculation loop and the Therminol®66
loop. The purpose of this heat exchanger is to transfer additional heat to the recirculation loop
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needed to generate the appropriate amount of steam in the evaporator. The temperature of both
fluids at their outlets depends upon the desired heat transfer rate to the recirculation loop. Table
15 shows all the design parameters for Heat Exchanger C. Equation 9 through Equation 20 as
well as Table 11 were applied to calculate all the values in Table 15 based on inlet and outlet
temperatures, flow rates, and fluid properties. The Reynolds number of the Therminol®66
through the heat exchanger is 3,311, so the flow is in the transitional stage. The values in Table
11 will still be utilized even though the table is for laminar flow. This will cause some error in
the calculation of the Nusselt number, and the calculated value for the required length of the heat
exchanger will be greater than what is actually needed. The Reynolds number of the input water
through the central tube is 604,200, so the flow is turbulent and Equation 16 is valid. The

required length of the heat exchanger is 9.27 m for this arrangement.

4.9 Heat Loss through the Walls of the Heat Exchangers

For the preliminary design of the 2" generation system, it was assumed that all the
components were adiabatic. Accordingly, there is a need to estimate the heat loss from the
system to ambient air. A method presented by Bergman et al. [38] will be utilized to get a more
accurate estimate of the heat loss to the environment. This method involves modeling the system
in question as a thermal circuit. Figure 32 is a schematic showing how the concentric-tube heat
exchangers will be analyzed by this method. It will be assumed that the temperature of the outer
wall of the heat exchanger (Ti) in Figure 32 is the average temperature of the fluid flowing
through the annulus. The thermal resistance of the outer wall of the heat exchanger will be
neglected. The heat loss will be calculated as a function of the thickness of insulation utilized.

The thickness of the insulation is the difference between the outer radius of the insulation (r) and
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the outer radius of the heat exchanger (ri). The temperature of the ambient air (T.) will be set to

28°C. Bergman, et al., [38] suggested a value of 10 W/m?-K for a typical value of free convection

in air (h).
Table 15: Heat Exchanger C Design Parameters
Parameter Value Parameter Value
Th,i (Celsius) 190 Ren 3311
Th,o (Celsius) 182.2 Rec 604200
Te,i (Celsius) 109 kn (W/m*K) 0.107
Teo (Celsius) 109.1 ke (W/m*K) 0.654
AT (Celsius) 80.9 Cp,h (J/kg*K) 2143
AT> (Celsius) 73.2 Cp,c (J/kg*K) 3195
ATim (Celsius) 77.0 Prh 194
Q (W) 2700 Pre 2.66
my, (Kg/s) 0.169 di/do 0.675
m, (kg/s) 6.97 Nun 5.43
do (M) 0.04 Nuc 1434
di (m) 0.027 hn (W/(m?*K)) 44.7
tn (N*s/m?) 0.000970 he (W/(m?*K)) 34719
te (N*s/m?) 0.000544 U (W/(m?*K)) 44.6
pn (kg/md) 895 L (m) 9.27
pc (kg/m?) 1161

The two sources of thermal resistance considered in Figure 32 are conduction through the
insulation and convection of the ambient air. The thermal resistance of conduction and
convection for the radial system depicted in Figure 32 can be calculated by Equation 21 and
Equation 22, respectively. The variable L is the total length of the heat exchanger. The total

resistance of the thermal circuit is the sum of the individual resistances, as shown in Equation 23.
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Once the total thermal resistance is known, Equation 24 will be used to calculate the rate of heat

transfer to the environment.

Insulation
r
TD
Oter Wall of
Heat Exchanger
In(r'r;) 1

20k i tion Inrh,
Q . A * Ay .
Ti Tu::n Tm

Figure 32: Thermal Circuit for the Concentric-Tube Heat Exchangers (Heat Exchangers A

and C)
Rt,cond = ln(r/ri)/(ZLT[kinsulation) Equation 21
R¢conv = 1/(2mrLhy,) Equation 22
Rtot = Ricond T Reconv Equation 23
Q = (T — Tww)/Reot Equation 24

Figure 33 is a graph of the rate of heat loss to the ambient air versus the thickness of
insulation applied to Heat Exchanger A. Bergman et al. [38] provide tabulated data for the

insulation materials selected, which includes the thermal conductivity at various temperatures.

55



The values for the thermal conductivity for all materials shown in the graph were selected for

365 K. The rate of heat transfer within Heat Exchanger A is 4.42 kW.

Figure 34 is a graph of the rate of heat loss to the ambient air versus the thickness of

insulation applied to Heat Exchanger C. The same materials for insulation are considered as in

Figure 33. The rate of heat transfer within Heat Exchanger C is 2.7 kW.
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Figure 33: Heat Loss vs Thickness of the Insulation for Heat Exchanger A
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Figure 34: Heat Loss vs Thickness of the Insulation for Heat Exchanger C

Bergman et al. [38] also present how to analyze heat loss through a plane wall via the

thermal circuit method. Figure 35 is a schematic showing how the space-saving heat exchanger

utilized for Heat Exchanger B can be analyzed by this method. It will be assumed that the

56



temperature of the outer wall of the heat exchanger (Ti) is the same temperature of the
condensing water vapor (110°C). This assumption will result in the maximum possible heat loss
from the heat exchanger since this is the greatest temperature of either fluid. As with the heat
loss calculations for Heat Exchangers A and C, the thermal resistance of the wall of the heat
exchanger will be neglected, and the heat loss will be calculated as a function of the thickness of
the insulation.

The thermal resistance of conduction and convection for the plane wall system depicted
in Figure 35 can be calculated by Equation 25 and Equation 26, respectively. Equation 23 and

Equation 24 apply to the plane wall system as well as a radial system.

Rt cond = X/ (KinsulationA) Equation 25
Rt,conv = 1/(hooA) Equation 26
Insulation
|
Heat +T
Exchanger ! i
X
—
X 1
. 1‘:1'1151_11a1:i|::|ﬂ‘ﬂ'* hmA
Q I\ o—Apf .
1. il L4l

Figure 35: Thermal Circuit for the Space-Saving Heat Exchangers
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Figure 36 is a graph of the rate of heat loss to the ambient air versus the thickness of
insulation applied to Heat Exchanger B. The rate of heat transfer within Heat Exchanger B is

46.8 KW.
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Figure 36: Heat Loss vs Thickness of Insulation for Heat Exchanger B

A space-saving heat exchanger was utilized as Heat Exchanger A in the 1% generation
design. The specifications of this heat exchanger are listed in Table 16. If it is desired that this
heat exchanger be utilized in the 2"! generation design, then the heat loss to the environment
must be considered. Figure 37 is a graph of the rate of heat loss to the ambient air versus the
thickness of insulation applied to Heat Exchanger A if the space-saving heat exchanger is
utilized instead of the designed concentric-tube heat exchanger. It was assumed that the outer
surface of the heat exchanger was 110°C, which is the greatest temperature in the system. By
comparing Figure 33 and Figure 37, for the same thickness of insulation, the space-saving heat

exchanger has less heat loss to the environment than the concentric-tube heat exchanger.
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Table 16: Specifications of the Heat Exchanger from McMaster-Carr® Utilized as Heat
Exchanger A in the 1%t Generation Design

Heat Transfer | Surface | Flow | Pipe Height Width | Depth Item Cost
Capacity (Btu/hr) | Area Cap. | Size (in.) (in.) (in.) | Number $)
(f) | (gpm) | (NPT)
50,000 15.6 18 1 20 11/16” | 43/8” | 4Y,” | 8546T14 | 566.50
250 T T
200} :
@ 150~ — —Mineral Fiber Blanket, Greater Density | |
3 """"" Mineral Fiber Blanket, Lower Density
5 100 A — Semirigid Felt i
© -
T
501+
0 | |

0.62 0.63 0.04 0.05
Thickness of the Insulation (m)

Figure 37: Heat Loss vs Thickness of the Insulation for Heat Exchanger A if a Space-
Saving Heat Exchanger is utilized

The heat exchanger described by Table 14 was utilized as Heat Exchanger C in the 1%
generation design. Figure 38 is a graph of the heat loss from Heat Exchanger C if this heat
exchanger is used in the 2" generation design. It was assumed that the outer wall of the heat
exchanger was at 190°C, which is the greatest temperature of either fluid in the system. By
comparing Figure 34 and Figure 38, it can be observed that the heat loss is much less by utilizing

the space-saving heat exchanger instead of the concentric tube heat exchanger.
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Figure 38: Heat Loss vs Thickness of the Insulation for Heat Exchanger C if a Space-
Saving Heat Exchanger is utilized

4.10 Heat Loss through the Walls of the Evaporator/Crystallizer

The evaporator/crystallizer is a potential location for a significant amount of heat loss to
the ambient air due to its high temperature and large surface area. The heat loss from the
evaporator/crystallizer and a recommended amount of insulation will be calculated the same way
as was done for the concentric-tube heat exchangers. It will be assumed that the outer surface of
the evaporator/crystallizer has a temperature of 106.9°C, which is the boiling point of water
saturated with salt. The 55 gallon stainless steel drums to be utilized in the construction of the
evaporator/crystallizer each have a height and outer diameter of approximately 88.9 cm and 59.4
cm, respectively. Two drums will be modified in order to make one cylindrical container with a

height of 177.8 cm, and the outer diameter will remain as 59.4 cm.
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Figure 39: Heat Loss vs Thickness of the Insulation for the Curved Wall of the
Evaporator/Crystallizer
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Figure 40: Heat Loss vs Thickness of the Insulation for the Flat Sides of the
Evaporator/Crystallizer

4.11 Insulation Selection

It will be assumed that mineral fiber blankets (density of 96-192 kg/m?®, and a
thermal conductivity of 0.038 W/m K at room temperature) will be utilized to insulate all the heat
exchangers and the evaporator. Table 17 shows how the heat loss from all of these components
varies with insulation thickness. Epiphany has conducted experiments with a brand of PDRs, and
each PDR has been measured to provide 40.7 kwWh of heat over 14 hours of daylight, which is an

average heat supply of 2.91 kW. The design calculations showed that the PDRs must provide 2.7
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kW of heat to the Therminol®66 loop in order to maintain the distiller’s performance, which
allows a single PDR to provide all the necessary heat plus an extra 210 W for inevitable heat
loss.

Figure 41 is a graph of the total heat loss through the components considered in the heat
loss analysis, which include the evaporator and the three heat exchangers. Table 17 shows the
exact value of heat loss to the ambient air for certain insulation thicknesses. Based on the
information given in Table 17, an insulation thickness of 8 cm will ensure proper operation of
the distiller with only one PDR by keeping the heat loss to the appropriate amount. However,
there are more locations where heat loss will occur than what was considered during this
analysis, and an insulation thickness of 8 cm is impractical. The best option may be to apply 3
cm of insulation (a reasonable thickness of one layer of insulation) and have a small immersion
heater in the Therminol®66 reservoir to make up for the heat loss to the ambient air. Another

possibility is to utilize a larger PDR which would be able to collect more solar energy.
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Figure 41: Total Heat Loss through the Heat Exchangers and Evaporator
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Table 17: Mineral Fiber Blanket Insulation Thickness Effect on Total Heat Loss

Insulation Heat Loss Heat Loss Heat Loss Heat Loss Total Heat
Thickness from Heat from Heat from Heat from the Loss (W)
(cm) Exchanger A | Exchanger B | Exchanger C | Evaporator
(W) (W) (W) (W)

0 208 580 1145 1746 3679

1 66 183 361 559 1169

2 39 108 214 336 697

3 28 77 152 242 499

4 21 60 118 190 389

5 18 49 97 157 321

6 15 41 82 134 272

7 13 36 71 117 237

8 11 32 62 105 210

9 10 28 56 94 188

10 9 25 50 86 170

Figure 42 is a graph of the ratio of heat loss with insulation to heat loss without
insulation. From the figure, one can observe that the heat loss due to insulation thickness starts to
level off with thickness, as the ratio for 4 cm, 6 cm, and 8 cm is approximately 11%, 7%, and

6%, respectively.
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Figure 42: Ratio of Heat Loss vs Thickness of Insulation
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The rate of change of heat loss with insulation thickness can be calculated by finding the
derivative of Equation 24. Equation 27 and Equation 28 are the results of taking the derivative of
Equation 24 with respect to thickness for a plane wall and a radial system, respectively. Figure
43 is the total change in heat loss for all the heat exchangers and the evaporator. It can be seen
from the figure that adding more insulation after a thickness of 4 cm has been applied does not

reduce the heat loss substantially.

Plane Wall

dqQ To — T}

dt ~ KA[x/(kA) + 1/(hA)]? Equation 27

Radial System

dQ _ L(T» — T)[1/(2mk(x + 1)) — 1/2mh(x + 1)?)]
dt [ln(x/ri +1)/(2mk) + 1/(21‘[h(X + ri))]2

0 R —p— :

Equation 28

Rate of Change of Heat Loss (W/m)
8 i

1
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Figure 43: Rate of Change of Heat Loss vs. Thickness of Insulation
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Table 18: Rate of Change of Heat Loss for Certain Insulation Thicknesses

Insulation Thickness (cm) dQ/dx (W/m)

-795501

-719274

-27947

-14134

-8510

-5680

-4059

-3045

-2369

©O© [0 |N ool |[W (N |- O

-1895

[N
o

-1551

4.12 NPSHA Calculations

Approximate values of the NPSHA values for the recirculation pump and the
Therminol®66 pump will be calculated in this section. Reliable operation of the 2" generation
distiller will require these pumps to never experience cavitation. Though cavitation was
experienced more frequently in the recirculation pump of the 1% generation design, the relatively
high temperature of the Therminol®66 loop may cause pumps for this loop in the 2" generation
design to cavitate, so this pump arrangement should be looked into.

All the energy terms described in Equation 1 must be calculated individually and in terms
of feet of head. Equation 29 [31] can be utilized to convert pressure (in psi) to feet of head. In
Equation 29, SG is the specific gravity of the fluid being pumped, which is obtained by dividing
the density of the fluid by 1000 kg/m?, the density of water at 4°C [39]. The pressure terms in

Equation 1 include ham, hp, and hyp. The atmospheric pressure is assumed to be 14.7 psi for all
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calculations, and the value of ham depends upon which fluid is being pumped. For the
recirculation pump, it is has been assumed that the evaporator is maintained at O psig, so the hp
term is canceled out for its NPSHA calculation. However, the gauge pressure for the heat
transfer fluid holding tank has been varied to observe its effect on the NPSHA for the
Therminol®66 pump. The vapor pressure of the aqueous NaCl solution in the recirculation loop
will be calculated by utilizing Equation A3 in the Appendix. An equation for calculating the

vapor pressure of Therminol®66 is listed in Table 7.

Head in Feet = 2.31P(psi)/SG Equation 29

The value of he will be a variable for both pumps. This will be done by varying the
length of the vertical pipe leading down to the pump. This length will also affect the value of ht.
The friction head loss can be divided into two categories, which are minor and major losses.
Minor losses are losses incurred through pipe fittings such as valves and elbows. Equation 30
[39] can be utilized to calculate the minor loss through a fitting. In Equation 30, K. is the loss
coefficient of the fitting, V is the average fluid velocity, and g is the gravitational constant.
Young et al. [39] provide values for the loss coefficient for a variety of fittings and entrance flow

conditions.

hp, minor = KL V?/(2g) Equation 30

Major losses are losses incurred through a length of pipe. Equation 31 [39] can be utilized
to calculate the major loss through a section of pipe. In Equation 31, f is the friction factor, | is
the length of the pipe, and D is the pipe diameter. The friction factor is dependent upon the
Reynolds number of the flow, the pipe material, and the pipe size. Equation 32 [39] can be

utilized to calculate the friction factor if the flow is laminar, and the Moody chart can be utilized
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for this purpose if the flow is turbulent. The Moody chart can be found in most fluid mechanics
textbooks. The Moody chart utilizes the Reynolds number of the flow and the relative roughness
of the pipe to estimate the friction factor. Equation 33 can be utilized to calculate the relative

roughness by dividing the equivalent roughness (€) of the material by the diameter of the pipe.

hL,major = f(l/D) [Vz/(zg)] Equation 31
f=64/Re Equation 32
Relative Roughness = €/D Equation 33

Recirculation Pump

Figure 44 shows a schematic of some assumptions made about the recirculation pump
arrangement, as well as some properties of the fluid being pumped. It has been assumed that
there will be a sharp edged entrance region, a ball valve, and a 90° elbow in the suction line.
Young et al. [39] provide values for the loss coefficient for each of these components. The loss
coefficient for a sharp edged entrance region, a fully open ball valve, and a threaded 90° elbow
are 0.5, 0.05, and 1.5, respectively. It has also been assumed that the suction line draws fluid
from the evaporator/crystallizer 1 ft below the water level. The suction line will extend 1 ft
horizontally from the evaporator. The suction line should not be placed at the bottom of the

evaporator/crystallizer because salt will accumulate at this location.
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Figure 44: NPSHA Energy Terms for the Recirculation Pump

It has been assumed that the suction line is comprised of 2” NPT stainless steel pipe.
Table 19 shows some characteristics of this pipe and flow conditions within the suction line of
the recirculation pump. The table shows the flow is turbulent, so the Moody chart was utilized to
obtain an approximate friction factor. Figure 45 shows how the NPSHA for the recirculation
pump changes by varying L (the distance from the end of the vertical pipe to the centerline of the
pump has been neglected). The figure shows that the recirculation pump must have a relatively
low NPSHR value in order to function properly without cavitating. From experience with the 1%
generation design, an appropriate length of the vertical pipe is approximately 3 ft, so the pump

should have an NPSHR value of less than 3 ft.
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Table 19: Recirculation Pump Suction Line Conditions

D (ft) 0.172
Equivalent Roughness (ft) 5x107
Relative Roughness 3x10*
Reynolds Number of the Flow | 3.11x10°
Velocity of the Flow (ft/s) 9.12
f 0.017

0 | | | |

0 1 2 3 4 5
Length of Vertical Pipe (ft)

Figure 45: NPSHA vs Length of Vertical Pipe for the Recirculation Pump

Therminol®66 Pump

Figure 46 shows a schematic of some assumptions made about the Therminol®66 pump
arrangement. Many of the same assumptions made for the recirculation pump arrangement were
also made for the Therminol®66 pump. However, it was assumed that the suction line for this

pump was made of 2” NPT steel instead of stainless steel.
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Figure 46: NPSHA Energy Terms for the Therminol®66 Pump

Table 20 shows some characteristics the pipe comprising the suction line of the
Therminol®66 pump, as well as flow conditions within the line. The table shows the flow is
turbulent, so the Moody chart was utilized to obtain an approximate friction factor. Figure 47
shows how the NPSHA for the Therminol®66 pump changes by varying L (again, the distance
from the end of the vertical pipe to the centerline of the pump has been neglected) and the gauge
pressure within the holding tank. The figure shows that the Therminol®66 pump has
significantly more NPSHA than the recirculation pump, especially if the reservoir is pressurized.
This difference in NPSHA is primarily due to the difference in vapor pressures between the

fluids.
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Table 20: Recirculation Pump Suction Line Conditions

D (ft) 0.172
Equivalent Roughness (ft) 1.5x10%
Relative Roughness 8.7x10%
Reynolds Number of the Flow 4404
Velocity of the Flow (ft/s) 0.29
f 0.041
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Figure 47: NPSHA vs Length of Vertical Pipe for the Therminol®66 Pump

4.13 Thermodynamic Model of the 2rd Generation Distiller

Figure 48 shows the thermodynamic model for each of the four modes of operation of the
2" generation distiller. Figure 48A is the beginning of the distillation process in which an
aqueous NaCl solution is pumped into the distiller. Heat and work interactions are assumed to be
negligible for this process. Figure 48B is the bypass mode where aqueous NaCl is utilized to cool
the output water in Heat Exchanger A, but it does not remain in the distiller and is sent back to
the input IBC. Figure 48C is the filling mode for when the height of the fluid in the evaporator

has dropped below a certain level and more aqueous NaCl is sent into the distiller. The distiller
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will alternate between the bypass and filling modes until it is time to remove salt from the

system.

A) Initial Filling

M aqueous NaCl — |

2nd Generation Distiller

B) Bypass Mode
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Figure 48: 2" Generation Thermodynamic Models

Each of the processes shown in Figure 48 is unsteady flow situation. Therefore, there is a change
in total energy in the system with respect to time for each mode. The calculations below show

the magnitude and direction of the energy flow for each mode.
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Initial Filling

dEgystem/dt = (hh)aqueous Nacizsec = 0.133 kg/s * 132.1k]/kg = 17.6 kW

Bypass Mode
dEsystem/clt = [m(h35°c - h43.8°C)]aqueous Nacl T Qin + V.Vin - (mh)HZO,6O°C - Qout

dEgystem/dt = [0.133 kg/s (132.1k]/kg — 165.3k]/kg)] + 3.2 kW + 1.38 kW — 0.021 kg/s

* 251.2K] /kg — 0.499 kW = —5.61 kW

Filling Mode

dEsystem/dt = (rhh)aqueous NacCl,35°C + Qin + VVin - (mh)H20,6O°C - Qout
= 0.133kg/s * 132.1k]/kg + 3.2 KW + 1.38 kW — 0.021kg/s * 251.2 k] /kg

— 0.499 kW = 16.4 kW

The calculation for the bypass mode shows energy is leaving the system (the value is
negative) at a rate of 5.61 kW. This value is negative because aqueous NaCl is leaving the
system at a greater temperature than it entered at while having the same mass flow rate, fresh
water is leaving the system, and there is heat loss to the ambient air. The other two modes have
positive values because aqueous NaCl is being pumped to the system and the system gains more

mass.

4.14 Expected System Performance

Table 21 shows the expected performance of the 2" generation design. The compressor

power was calculated by assuming the steam would be superheated at a temperature and pressure
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of 120°C and 143.4 kPa, respectively. It was also assumed that the compressor and its motor had
an overall efficiency of 75%. The necessary heat input to the Therminol®66 loop is 3.2 kW if
heat loss through 3 cm of mineral fiber insulation (499 W) is added to the 2.7 kW calculated
during the assumption of an adiabatic system. The table shows that the design meets the goals for
flow rate and performance. Compared to the 1% generation design, the 2" generation design

consumes 64% less power.

Table 21: 2" Generation Design Performance

1% Generation 2" Generation % Reduction
Design Design
Distillate Flow 20 20 0
Rate (gal/hr)
Recirculation Pump 0.7 0.7 0
Power Input (kW)
Compressor Power 4.3 0.68 84.2
Input (KW)
Heat Transfer Fluid 5 3.2 36
Heat Input (kW)
Total Power Input 10 4.58 54.2
(kW)
Performance 0.5 0.229 54.2
(kwWh/gal)

4.15 Preliminary Examination of a Grid-Free Power System

This section explores some solar technologies which could allow the distiller to be grid-
independent. PDRs could provide the thermal energy requirements of the Therminol®66 loop,
while photovoltaic (PV) cells could provide electricity to run the compressor and pumps. As is

discussed in Section 4.16, it is theoretically possible for PDRs to collect enough solar energy
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during the day to ensure the Therminol®66 loop can provide 3.2 kW of heat to the distiller for 24
hours. However, it may be impractical to store the volume of Therminol®66 needed to properly
store all the energy collected from the PDRSs for this to occur. Therefore, a generator may be the
best option for meeting the distillation power requirements during the night if 24 hour operation

is desired.

4.15.1 Parabolic Dish Reflector

A PDR is a sun-tracking device which collects solar energy at a focal point. A PDR
schematic is shown in Figure 49. As described by Kalogirou [40], PDRs are considered to be the
most efficient type of solar collector system, and their concentration ratios range from 600 to
2000. The concentration ratio is defined as the area of the aperture divided by the area of the

receiver [40].

Sun rays

O I'wo-axes
tracking

mechanism

Parabola

Figure 49: PDR Schematic [40]

PDRs can achieve temperatures greater than 1500°C at their receivers [40]. This

technology therefore has great potential for high efficiency when it comes to being coupled to a
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heat engine. The efficiency of a Carnot heat engine (the most efficient theoretical heat engine)

can be calculated with the following equation [35]:

Ncarnot = 1 — (To./Tw) Equation 34

where T and Tw are the thermodynamic temperatures of the low-temperature reservoir and high-
temperature reservoir, respectively. Assuming ambient air at 25°C is utilized as the low-
temperature reservoir, and the receiver is utilized as a high-temperature reservoir, a PDR and
heat engine system could have a Carnot efficiency of approximately 83.2%. However, factors
such as heat loss and friction will result in an actual efficiency which is significantly lower than

this value.

4.15.2 Photovoltaic Technology

PV cells are used to convert solar energy to electricity. PV technology can be categorized
into three generations. The first generation consists of single-junction silicon wafers. The second
generation will be thin-film silicon devices which will use less material than the devices of the
first generation, but will have the same efficiencies. The third generation (this technology will be
available in the near future) will consist of nanostructured solar cells which will improve upon
the efficiency of the second generation technology [41].

Figure 50, presented by Razykov et al. [41], is a cost-efficiency analysis of the three
generations of PV technologies. Based on Figure 50, a reasonable manufacturing cost and
conversion efficiency for first generation technologies is €320/m? (approximately $437/m?) and
15%, respectively. Also, a reasonable manufacturing cost and conversion efficiency for second

generation technologies is €80/m? (approximately $109/m?) and 10%, respectively. According to
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Frohlich [42], the average solar radiation at Earth over the whole year is 1365 W/m?. Using this
average radiation value and the estimated conversion efficiencies, first generation and second

generation technology produce approximately 205 W/m? and 137 W/m?, respectively.
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Figure 50: Manufacturing Cost and Conversion Efficiency Analysis of Photovoltaic
Technologies [41]

4.16 Preliminary Exploration of the Control of the Therminol®66
Storage Tank Temperature

The National Renewable Energy Laboratory (NREL) has compiled a vast amount of data
on solar radiation based on local standard time (LST), date, and location in a National Solar
Radiation Database [43]. . Figure 51 shows the average solar radiation for five days in March,
June, September, and December, time periods which include the start of Spring, Summer, Fall,
and Winter, respectively. Average solar radiation values of less than 10 W/m? for an hour were
not included in the graph. Figure 51 was developed by utilizing data from Pittsburgh, PA, in
2010. This data was obtained through a Meteorological-Statistical (METSTAT) model in which
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it was assumed there was no cloud cover (a clear sky model). This model calculated the amount
of solar radiation on a surface normal to the sun. This data provided a theoretical basis for the

maximum amount of energy which can be collected by the sun-tracking PDRs
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Figure 51: Solar Radiation vs. LST for Pittsburgh, PA, in 2010

Empirical 4" order polynomial equations were developed in Microsoft Excel for the
months of December and June. These two months are representative of the most extreme cases
where December shows solar radiation over the shortest amount of time, and June over the

greatest amount of time. Figure 52 is a graph of the polynomial equations for these two months.

It was assumed that the Therminol®66 would be stored in a standard 55-gallon (0.208
mq) drum, and the temperature of the fluid would never be greater than 300°C. At 300°C, the
density of Therminol®66 is 807.5 kg/m?, so the total mass contained in the drum should not be
more than approximately 168 kg. It was assumed that the average temperature of the
Therminol®66 contained in the drum would have an average temperature of 245°C throughout

the hours of distiller operation. A heat loss of 0.25 kW from the drum was calculated using the
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same process as that used to find the heat loss out of the evaporator/crystallizer if 3” (7.62 cm) of
mineral fiber blanket insulation is applied to the drum. Therefore, the total heat transferred from

the Therminol®66 loop is 3.45 kW, which includes 3.2 kW of heat transfer to the distiller.

—— December
N June

0 4 8 12 16 20 24
LST

Figure 52: Solar Radiation vs LST for December and June

Integration of the two curves in Figure 52 shows that the total amount of solar radiation
during one day for the months of December and June are 5.691 kWh/m? and 8.828 kWh/m?,
respectively. If it is assumed that the reflective material of the PDRs is 90% efficient at reflecting
light, then 5.122 kWh/m? and 7.945 kWh/m? of solar energy can be collected during December
and June, respectively. If 24-hour operation of the 2" generation distiller during the month of
December is desired, then the total required area of the PDR is 16.17 m?, so the radius of the dish
must be 2.27 m. This is based on a required continuous heat supply of 3.45 kW from the
Therminol®66 loop. Fulfilling the heating requirements of the distiller with only one PDR may

be impractical based on its size. Another option is to have two PDRs, each with a radius of 1.60

m.
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Figure 53 was developed by multiplying the solar radiation curve for December in Figure
52 by 16.17 m? and including an efficiency of 90%. 16.17 m? is the minimum area required to
ensure a continuous heat supply of 3.45 kW (this heat requirement has been included on the
graph for reference) can be provided by the PDRs over 24 hours. The PDRs can provide the
necessary heating requirements for the distiller from approximately 8:30 am to 5 pm, which is
represented by the intersection locations of the two data series in the figure. The area under the
PDR heat curve is 81.2 kWh (299,088 kJ), which is the gross heat transfer from the PDRs.

Equation 35 is the empirically derived relationship for the PDR heat curve in Figure 53.
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Figure 53: Solar Power vs. Local Standard Time

Q = —0.01171t* + 0.58944t3 — 11.37593t? + 99.81612t — 323.7897  Equation 35

The First Law of Thermodynamics can be utilized to calculate the temperature in the
Therminol®66 storage tank. If work, kinetic energy, and potential energy contributions are

neglected, the First Law of Thermodynamics simplifies to the following expression:
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du
dt

In the above expression, heat transfer to the system and out of the system are positive and
negative, respectively. Heat transfer to the Therminol®66 loop is given by Equation 35, and the
total heat transfer out of the loop is 3.45 kW. After substituting these values into the equation,

the above expression can be integrated with respect to time to find dU:

U
prin [-0.01171t* + 0.58944t3 — 11.37593t% + 99.81612t — 323.7897] — [3.45]

dU = —0.002342t> + 0.14736t* — 3.79198t3 + 49.90806t% — 327.2397t  Equation 36

For an incompressible substance, it can be assumed that ¢, = cv = c. Therefore, the

following relationship is valid for the Therminol®66:

du

C:ﬁ

Utilizing the equation for the heat capacity of Therminol®66 found in Table 7 and integrating
with respect to temperature, the following equation was obtained for the specific internal energy

(kJ/kg):

u = 1.496T + 1.657 * 1073T2 + 2.990 = 10~"T3 Equation 37

Figure 54 was developed by utilizing Equation 36 from approximately 8:30 to 5:00 LST,
the time period when dU is positive. The specific internal energy of Therminol®66 at 190°C

and 300°C is 346.1 kJ/kg and 606 kJ/kg, respectively. Therefore, the total internal energy of 168
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kg of Therminol®66 at 190°C and 300°C is 58,144.8 kJ and 101,808 kJ, respectively. Figure 54
shows that the total internal energy will increase beyond 101,808 kJ during the daylight hours,
meaning the PDRs must stop tracking the sun in order for the temperature of the Therminol®66

to stay below 300°C.
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Figure 54: dU vs. LST for the Therminol 66 Storage Tank

The PDRs can provide a maximum of 186,627 kJ of additional energy during the daylight
hours, represented by the area bound by the PDR heat curve and the heat transfer requirement
line in Figure 53. In order for the storage tank to reach a maximum temperature of 300°C from a
starting temperature of 190°C and receive all the energy from the PDRs, there must be 718 kg of
Therminol®66 in the storage tank. This is an impractical solution because this would require five
55-gallon drums to store the fluid at 300°C. A practical approach would be to ensure a 55-gallon
drum of Therminol®66 has a temperature of 300°C at 17:00 LST, the time at which the total
internal energy in the storage tank will begin to decrease. One such approach would be to start

tracking the sun with the PDRs at sunrise, stop tracking at approximately 11:00 LST, start
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tracking again from approximately 14:30 LST until sunset. The variation of the total internal
energy of 168 kg of Therminol®66 during the day for this method is shown in Figure 55. The
resulting temperature variation in the storage tank is shown in Figure 56, which was obtained by
utilizing Equation 37 along with the total internal energy values shown in Figure 55. Figure 56
shows that the temperature of the fluid will always be between 190°C and 300°C, and the
distiller will be able to operate without additional heat input to the Therminol®66 loop until

approximately 20:45 LST, which is about 3 hours and 15 minutes after sunset.

Figure 57 shows how the mass flow rate of the Therminol®66 loop must be varied in
order for it to provide a constant heat input of 3.2 kW to the distiller. The graphs shows that a
controller will be needed to adjust the flow rate as the temperature in the storage tank varies. The
minimum and maximum mass flow rate of the loop are approximately 0.011 kg/s and 0.19 kg/s,

respectively.
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Figure 55: Total Internal Energy of the Therminol®66 vs. Time
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Figure 57: Mass Flow Rate of the Therminol®66 vs. Time
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Chapter 5: Conclusions and
Recommendations

5.1 Conclusions

The objective of this research was to develop a solar-power assisted mechanical vapor-
compression distiller capable of processing produced water from the shale gas industry to
environment friendly water with salt recovery. The system was required to process produced
water at a rate of 20 gal/hr with an energy consumption of less than 0.5kWh/gallon. The research
works completed include the in-house and onsite demonstration of the 1% generation vapor
compression system, and the design of the 2" generation system. The in-house examination and
the onsite demonstration of the 1% generation system confirmed the capability of the 1%
generation system in distilling the produced water. The potential issues of the 1% generation
system were identified. The 2"! generation distiller included a system designed to recover the
energy released during the condensation of superheated water vapor and its cooling, the selection
of heat exchangers, calculation of power input for the compressor, and the examination of the
potential of system insulation in reducing the consumption of solar energy. A thermodynamic
model was developed to examine the performance of the designed system and the potential of the
compressor, waste heat recovery system, and insulation in reducing energy consumption. Based

on the results obtained in this research, the following conclusions can be drawn:

e The in-house and on-site demonstration confirmed that the proposed solar-power assisted
mechanical vapor-compression distiller was able to process the produced water at a rate of 20
gallon/hour. The analysis verified that the distilled water met the requirement of water quality for
direct disposal to rivers and lakes.
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e The 2nd generation design was able to meet the design goal of separating fresh water from
produced water at a rate of 20 gal/hr with the consumption of approximately 4.6 kW, which
includes 3.2 kW from solar energy for heating purposes and 1.4 kW from electricity to run the
compressor and the recirculation pump. The estimated energy consumption was 0.23 kWh/gal,

which was 64% lower than design goal.

e The selection of the proper compressor has the potential to reduce energy consumption

from 4.3 to 0.68 kW.

e The regeneration system of the MVC distiller was able to recover approximately 91% of
the thermal energy released during the condensation and cooling process of the distilled water
vapor, which dramatically decreased the consumption of thermal energy and the size of the

PDRs.

e The insulation system was able to reduce heat loss to the ambient air by approximately

86% compared to an un-insulated system.

e |t is possible to develop a grid-electricity free water distiller system with the thermal
energy provided by the PDRs, and the electricity needed for compressor and pump provided by a
photovoltaic system. All energy requirements could be met by utilizing a generator if 24 hour

operation of the distiller is desired.
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8.2 Recommendations

The work presented in this thesis was the preliminary design of the 2" generation solar-
power assisted mechanical vapor-compression distiller. There are many things that need to be
done before fabrication and commercialization of the system can take place. The following are
recommendations for future works:

e |t is necessary to select a compressor which can handle the required flow rate of steam.
The new compressor must be able to move the increased flow rate of generated steam and
produce an outlet pressure which is greater than the saturation temperature of the brine within the
recirculation loop.

e The operation of the pumps and compressor of the system consumes electricity, which is
not convenient for its application in rural areas. The author recommends examining the
possibility of developing a grid-electricity free system. The electricity can be provided by PV
technology or a small spark ignition internal combustion engine operated on shale gas produced
onsite. Table 22 shows the area required and cost of PV technology completely or partially
providing the required power input to the distiller. If the power input is not completely handled
by PV technology (in which case the power required from the PV panels is 1.88 kW), then a
PDR can be utilized to provide the remaining 2.7 kW of heat. The table shows 1st or 2nd
generation PV technology could be utilized in a practical manner in order to make the entire
system operate entirely on sunlight if desired.

e There is a need to develop a control system capable of maintaining the distillation of
produced water at a rate of 20 gallon/hour while managing the Therminol®66 loop. Control of

the Therminol®66 loop includes managing its temperature and mass flow rate.
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e The most uncertainty in this research is the selection of Heat Exchanger B, which serves

to condense the output water from a saturated vapor to a saturated liquid. The physical model of

the 1st generation design was not always able to completely condense the output water, and if

this continues to be a problem then a heat exchanger with more surface area for heat transfer

must be selected.

Table 22: Power Supply from Photovoltaic Technology

Power Requirement PV Technology Area (m?) Cost ($)
4.58 kW 1% Generation 22.3 9,374
4.58 kW 2" Generation 334 3,640
1.88 kW 1% Generation 9.23 4,034
1.88 KW 2" Generation 13.8 1,504
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Appendix A

Thermodynamic Properties of Aqueous NaCl Solutions

The thermodynamic properties of aqueous NaCl solutions differ from those of pure
water. Many sources in the literature present certain properties of these solutions as a result of
experimentation and/or theoretical calculation. Several properties of great importance are
discussed below.

Sparrow [44] provides empirical equations for the solubility, vapor pressure, density,
enthalpy, and entropy as functions of temperature and mass fraction of NaCl of the solution. All
these equations will be utilized in this document except for that of entropy. The mass fraction is
related to the molality of the solution by utilizing Equation Al [44]:

X = mMp,c1/ (1000 + mMp,c) Equation Al

In Equation A1, X is the mass fraction of salt, m is the molality (mol NaCl/kg H-0), and
Mnaci is the molar mass of NaCl (58.44 g/mol). The solubility of salt in water can be calculated

by utilizing Equation A2 [44]:
Xsar = 0.2628 + 62.75 X 107°T + 1.084 x 107°T? Equation A2

The vapor pressure (MPa) of the solution is calculated by utilizing Equation A3 [44]:

Pyap = A+ BT + CT? + DT + ET* Equation A3

Where

A =(0.9083 — 0.569X + 0.1945X? — 3.736X> + 2.82X*) x 1073

Al



B = (—0.0669 + 0.0582X — 0.1668X? + 0.6761X3 — 2.82X*) x 1073
C = (7.541 — 5.143X + 6.482X?* — 52.62X> + 115.7X*) x 10~¢

D = (—0.0922 + 0.0649X — 0.1313X? + 0.8024X3 — 1.986X*) x 107°
E = (1.237 — 0.753X + 0.1448X? — 6.964X3 + 14.61X*) x 107°

Figure 58 is a graph which shows how the temperature and the NaCl mass fraction affect
the vapor pressure of the solution. As with pure water, the vapor pressure of a NaCl solution

increases with temperature. However, the vapor pressure decreases slightly with NaCl mass

fraction for a given temperature.
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Figure 58: Aqueous NaCl Vapor Pressure vs. Mass Fraction [44]

The density (kg/m?®) of the solution is calculated by utilizing Equation A4 [44]:

p=A+ BT+ CT? + DT? + ET* Equation A4
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where

A = (1.001 + 0.7666X — 0.0149X? + 0.2663X3 + 0.8845X*) x 103
B = —0.0214 — 3.496X + 10.02X? — 6.56X3 — 31.37X*
C = (—5.263 + 39.87X — 176.2X* + 363.5X3 — 7.784X*) x 1073
D = (15.42 — 167X + 980.7X% — 2573X3 + 876.6X*) x 107°
E = (—0.0276 + 0.2978X — 2.017X? + 6.345X3 — 3.914X*) x 107°

Figure 59 shows how the density changes with temperature and NaCl mass fraction.
Similar to most substances (including pure water), the density of an aqueous NaCl solution

decreases with temperature. However, the density increases with NaCl mass fraction for a given

temperature.
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Figure 59: Aqueous NaCl Density vs. Mass Fraction [44]
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The specific enthalpy (kJ/kg) of the solution is calculated by utilizing Equation A5 [44]:

h=A+ BT+ CT?+DT3 + ET* Equation A5

where

A = (0.0005 + 0.0378X — 0.3682X% — 0.6529X3> + 2.89X*) x 103

B = 4.145 — 4.973X + 4.482X% + 18.31X3 — 46.41X*

C = 0.0007 — 0.0059X + 0.0854X% — 0.4951X> + 0.8255X*

D = (—0.0048 + 0.0639X — 0.714X? + 3.273X3 — 4.85X*) x 1073

E = (0.0202 — 0.2432X + 2.054X? — 8.211X3 + 11.43X*) x 10°¢

Figure 60 shows how the enthalpy of a solution changes with temperature and NaCl mass
fraction based on Equation A5. The enthalpy of the solution increases with temperature.
However, the enthalpy decreases with NaCl mass fraction, and the trend is more pronounced at
higher temperatures.

The latent heat of vaporization is described by Equation A6:

hgg = hg — h Equation A6

where hyg is the latent heat of vaporization, hg is the enthalpy of the fluid in the vapor phase, and
ht is the enthalpy in the liquid phase. The tabulated data from Cengel and Boles [35] and
Equation A5 will be utilized to find hg and hr at a certain temperature, respectively. The latent

heat of vaporization for the aqueous NaCl solution can be calculated once these values are
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known. Equation A7 can then be applied to calculate the amount of heat transfer required to

obtain a specific mass flow rate of distilled water from the evaporator/crystallizer:
Q= rhhg, Equation A7
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Figure 60: Aqueous NaCl Enthalpy vs. Mass Fraction [44]

The specific heat can be approximated from Equation A5 by utilizing Equation A8:

cp = (0h/0T)p = (h; —hy)/(T, — Ty) Equation A8
The above relation is more accurate when the step between data points is small. Equation A5 will
be solved for the temperature in question, and then solved at a temperature 0.5°C greater than

that temperature. After the specific enthalpies of these two points are calculated, Equation A8

will then be applied to find the specific heat.
Aleksandrov et al. [45] presented equations for calculating the thermal conductivity of

aqueous NaCl solutions derived from experimental results. The temperature range of the
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equations is 20 to 325°C, the pressure range is from 0.1 to 100 MPa, and the molality range is
from 0 to 5 mol NaCl/kg H20. Table 23 shows thermal conductivity of aqueous NaCl solutions
at 0.1 and 10 MPa. Linear interpolation or extrapolation techniques will be utilized to calculate
the thermal conductivity at a specific temperature and molality. Since the greatest design
pressure for the distiller in this document is approximately 0.2 MPa, there will be negligible error

in utilizing only the tabulated data for 0.1 MPa when calculating the thermal conductivity.

Table 23: Thermal Conductivity (mW/(m K)) of Aqueous NaCl Solutions [45]

Molality, mol/kg H,O
$,°C
1 | 2 | 3 | + | 5
p=0.1 MPa
20 590 586 582 575 570
50 636 630 623 617 611
75 661 654 647 642 636
100 675 668 661 657 653
p=10MPa
20 595 591 586 579 573
50 641 634 627 621 615
75 666 658 651 646 640
100 680 673 666 662 657
150 685 678 672 668 664
200 661 655 649 645 640
250 614 606 600 594 588
300 540 531 524 516 507
325 489 479 471 461 452

Aleksandrov et al. [46] present equations for dynamic viscosity in the same manner as in
[45]. The temperature range of the equations is 0 to 325°C, the pressure range is from 0 to 40
MPa, and the molality range is from 0 to 6 mol NaCl/kg H>O. Table 24 shows the dynamic
viscosity of agueous NaCl solutions at 0.1 and 10 MPa. Similar to the calculation of thermal

conductivity mentioned in the previous paragraph, linear interpolation or extrapolation
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techniques will be utilized to calculate the dynamic viscosity at a specific temperature and
molality. It will also be assumed using the tabulated data for 0.1 MPa will provide negligible

error for the calculations in this document.

Table 24: Dynamic Viscosity (uPa s) of Aqueous Solutions of Sodium Chloride [46]

5 mol/(kg of water)

. 1 | 2 | 3 | 4 | 5 | 6

P=0.1 MPa
0 1884 2052 2288 2583 2923 3298
25 974 1074 1199 1349 1528 1737
50 610 679 759 853 964 1097
75 426 478 535 601 678 768
100 321 361 405 455 512 577

P=10MPa
0 1860 2036 2272 2562 2901 3281
25 973 1078 1203 1354 1533 1744
50 613 684 765 859 971 1104
75 430 482 540 606 683 774
100 324 365 409 459 516 581
150 212 241 271 303 339 378
200 158 181 204 228 253 279
250 127 145 164 184 203 222
300 103 119 135 150 165 179
325 92 105 117 129 142 160

Equation A9 is one method for calculating the BPE [47]:

T=T,+ iE,my Equation A9

In the above equation, T is the boiling point of solution, Ty, is the boiling point of the solvent, i is
the van’t Hoff factor, Ey is the ebullioscopic constant, and my, is the molality of the solution. The
van’t Hoff factor for salt solutions is greater than 1, whereas for solutions of typical
nonelectrolytes it is less than 1. NaCl has a van’t Hoff factor of 2 [47]. The value of the

ebullioscopic constant for water is 0.515 K*kg/mol.
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