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Abstract

This paper develops asymptotically distribution-free inference for testing inequality
indices with dependent samples. It considers the interpolated Gini coe$cient and the
generalized entropy class, which includes several commonly used inequality indices. We
"rst establish inference tests for changes in inequality indices with completely dependent
samples (i.e., matched pairs) and then generalize the inference procedures to cases with
partially dependent samples. The e!ects of sample dependency on standard errors of
inequality changes are examined through simulation studies as well as through applica-
tions to the CPS and PSID data. ( 2001 Published by Elsevier Science S.A.

JEL classixcation: C40; D63

Keywords: Generalized entropy indices; Gini coe$cient; Theil indices; Asymptotic distri-
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1. Introduction

When comparing inequality among di!erent income distributions, re-
searchers often employ summary measures of inequality such as the Gini
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coe$cient, coe$cient of variation and the generalized entropy class of
indices. Since sample data are frequently used to estimate inequality indices
of populations, it is desirable to apply statistical inference procedures to test the
robustness of the comparisons. Gastwirth (1974), Gail and Gastwirth (1978),
Gastwirth and Gail (1985), Cowell (1989) and Thistle (1990), among others, have
provided the large sample properties for several commonly used inequality
indices. They show that estimates of inequality indices are asymptotically
normal and, hence, conventional inference procedures can be applied straight-
forwardly. In income distribution studies, it is becoming standard practice to
calculate standard errors for estimates of inequality indices and conduct infer-
ence tests.

Conventional inference procedures usually require that samples be indepen-
dently drawn. Many frequently used income data, however, are dependent in
that they have an overlap between consecutive years, thus containing informa-
tion about a cross-section of individuals at two or more points in time. Exam-
ples of dependent samples include the current population survey (CPS), the
survey of income and program participation (SIPP) and the panel study of
income dynamics (PSID). The CPS sample rotates every 2 years, with each
household surveyed in two consecutive years. Each year, about one-half of the
households are dropped from the sample and are replaced by a new panel of
households. The SIPP sample consists of a continuous series of national panels
and the duration of each panel ranges from 2.5 years to 4 years. The PSID is
a longitudinal study of U.S. individuals and families. Starting with a national
sample of about 5000 households in 1968, the PSID has re-interviewed indi-
viduals from those households every year. Thus, both CPS and SIPP are
partially dependent data while PSID can be regarded as completely dependent
data (matched pairs).

Although the problem of sample dependency has been acknowledged in the
literature, it has not been properly addressed and no method of correction has
been proposed. Researchers have either used samples as if they were indepen-
dently drawn, chosen a longer time span (e.g., the CPS samples are independent
if they are more than 2 years apart), or used the non-matched portions of the
samples. For example, Bishop et al. (1991a, b) tested annual changes in U.S.
income distribution using the CPS data with conventional inference procedures.
In testing German income inequality using the German socio-economic panel
(GSOEP) data, Schluter (1996) used conventional inference procedures but
acknowledged the problem of sample dependency and the inadequacy of the
procedures. Bishop et al. (1994), Beach et al. (1997) and Dardanoni and Forcina
(1997) tested inequality using the CPS data 2 or more years apart so that the
samples are independent. None of these approaches directly addressed the issue
of sample dependency or provided a method of correction.

This paper develops a method of correction and extends conventional infer-
ence procedures to situations where samples are dependent. We consider the
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(interpolated) Gini coe$cient and the generalized entropy class of inequality
indices, which we de"ne in Section 2, but the methods generalize to some other
inequality indices as well. In Section 3, we establish the asymptotic distributions
of the estimates of changes in inequality indices when the samples are completely
dependent (matched pairs). The procedures are asymptotically distribution-free
in that the derived standard errors can be consistently estimated without any
prior knowledge about the underlying distribution. We then modify the proced-
ures for cases of inequality comparisons involving partially dependent samples.
The covariance between two sample estimates of an inequality index is simply
a fraction of the covariance between the matched subsamples. We also outline
a simple two-step procedure of computation. Section 4 demonstrates the e!ects
of sample dependency on standard errors of inequality estimates through
simulation studies using two parametric bivariate income distributions. In this
section, we also apply the correction method to both the CPS data (partially
dependent) and the PSID data (completely dependent). We summarize and
conclude the paper in Section 5.

2. Changes in inequality indices and their estimates

Consider a joint distribution between two variables x3(0,R) and y3(0,R)
with a continuous cumulative distribution functions F(x, y). The marginal distri-
butions of x and y are denoted as H(x) and K(y). For convenience, we further
assume that functions H and K are strictly monotone and the "rst two moments
of x and y exist and are "nite. Thus, for a given population share p (0)p)1),
there exist unique and "nite income quantiles m(p) and 1(p) such that H(m(p))"p
and K(1 (p))"p.

For a given population share p, the Lorenz curve ordinates of H(x) and K(y)
are usually de"ned as (Gastwirth, 1971)

U(p),
1

k
x
P

m(p)

0

xdH(x) and W(p),
1

k
y
P

1(p)

0

ydK(y), (1)

where k
x

and k
y

are the mean incomes of x and y, respectively.
The Gini coe$cient is one of the most popular measures of income inequality.

It is twice the area between the Lorenz curve of the distribution and the diagonal
line. Mathematically, the Gini coe$cient of x is de"ned as

G
x
"

1

2k
x
P

=

0
P

=

0

Dx
1
!x

2
DdH(x

1
) dH(x

2
). (2)

In empirical applications, once the Lorenz curve is constructed, people often
interpolate the Gini value from the Lorenz curve instead of calculating the exact
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1 In this paper we only derive the asymptotic distribution for the interpolated Gini estimate. The
asymptotic distribution for the estimate of the exact Gini coe$cient with completely dependent
samples can be derived, using results from U-statistics theory (Hoe!ding, 1948), in a manner similar
to Bishop et al. (1997, 1998). The asymptotic distribution of the exact Gini coe$cient with partially
dependent samples, however, is much more complicated and is left for future research.

2We "rst estimate the area below the Lorenz curve as the sum of one triangle and M trapezoids,
then the Gini coe$cient is obtained by subtracting twice the area from 1. A graphical illustration of
this method can be found in Anand (1983, p. 312).

3The spacing of these abscissas may a!ect the value of the interpolated Gini index. Ideally, given
M, one spaces these abscissas so that the di!erence between the exact Gini index and the
interpolated Gini index is minimized. The optimal spacing rule of these abscissas in the interpolation
of Gini, however, depends on the underlying income distribution. Gastwirth (1972) showed that the
commonly used practice of even-spacing, i.e., p

l`1
!p

l
"1/(M#1), is optimal only for a uniform

distribution. Aghevli and Mehran (1981) further investigated this issue and provided a general
necessary condition for optimal spacing. For many parametric distributions, however, Aghevli and
Mehran's condition does not yield closed-form solutions and an iterative procedure must be used. In
a simulation study (not reported here), we perform this iteration for several plausible parametric
income distributions as well as for the U.S. income data. We con"rm Gastwirth's conclusion and
suggest that, in general, relatively more abscissas should be placed at both the lower and upper ends
of the Lorenz curve. Detailed results are available from the authors upon request. We thank a referee
for alerting us to this issue and providing related references.

4See Cowell (1980) and Shorrocks (1980) for detailed discussions on this class of inequality
indices. It is useful to note that a member of the generalized entropy class, ¹c

x
with c"2, like the

Gini coe$cient, also has an interesting geometric interpretation: it is twice the area between the
second-degree normalized stochastic curve of x and that of perfectly equal distribution (see Formby
et al. (1999) for a detailed description).

Gini coe$cient. Compared with the exact Gini coe$cient, interpolated Ginis
are easy to estimate. This advantage becomes more evident when we compute
standard errors of the Gini estimates.1

Suppose the Lorenz curve is characterized by a set of ordinates corresponding
to the abscissas Mp

l
D l"1, 2,2,M#1N with p

M`1
"1. Assuming 0(p

1
(

p
2
(2(p

M
(1, we have two sets of Lorenz ordinates MU

l
D l"1, 2

,2, M#1N and MW
l
D l"1, 2,2,M#1N with U

M`1
"W

M`1
"1. The Gini

coe$cient can be interpolated as

GI
x
"

M
+
l/1

(p
l
!U

l
)(p

l`1
!p

l~1
) (3)

and the change in the interpolated Gini coe$cient is

*GI"GI
x
!GI

y
"

M
+
l/1

(W
l
!U

l
)(p

l`1
!p

l~1
). (4)

*GI converges to the change in the exact Gini as M increases.2,3
The generalized entropy class contains several familiar decomposable

inequality indices, including two Theil's indices (c"0 and 1) and the
(one-half ) squared coe$cient of variation (c"2).4 The inequality indices of
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5The exact Gini coe$cient can be consistently estimated using formulae such as those provided
by Hoe!ding (1948), Kendall and Stuart (1977) or Sen (1973). Hoe!ding de"ned the Gini estimate as
(1/2n(n!1)x6 )+

iEj
Dx

i
!x

j
D while both Kendall and Stuart and Sen de"ned it as (1/2n2x6 )

+
iEj

Dx
i
!x

j
D. If M"n!1 and all abscissas are evenly spaced, i.e., p

l`1
!p

l
"1/n, the interpolated

Gini equals the exact Gini as de"ned by Hoe!ding (see Anand, 1983, p. 313).

x are

¹c
x
"G

1
c(c~1)

M:=
0
[ xkx

]cdH(x)!1N if cO0, 1,

:=
0

[lnk
x
!ln x] dH(x) if c"0,

1kx
:=
0
x[ln x!lnk

x
] dH(x) if c"1,

(5)

and the inequality indices of y, ¹c
y
, can be similarly de"ned. The change in the

generalized entropy indices is

*¹c"¹c
x
!¹c

y
. (6)

Assume two simple random samples of sizes m and n; (x
1
,x

2
,2,x

m
) and

(y
1
, y

2
,2, y

n
), are drawn from populations H(x) and K(y), respectively. To allow

for dependency between these two samples, we further assume that parts of these
samples are drawn together from the joint c.d.f. F(x, y). If the samples are drawn
together from F(x, y) entirely, then they are completely dependent (matched
pairs) and m"n; otherwise samples are partially dependent.

For a given population proportion p, the corresponding Lorenz ordinates of
x and y can be consistently estimated as (Goldie, 1977)

UK (p)"
1

mx6
rx (p)
+
i/1

x
(i)

and WK (p)"
1

ny6
ry (p)
+
i/1

y
(i)

, (7)

where x6 and y6 are sample means of x and y, x
(i)

and y
(i)

are the ith order statistics
of Mx

i
N and My

i
N, r

x
(p)"[mp] and r

y
(p)"[np]. If the empirical Lorenz curves of

x and y are characterized by ordinates corresponding to the M abscissas
Mp

l
D l"1, 2,2,MN, then the interpolated Gini coe$cients can be consistently

estimated as5

GK I
x
"

M
+
l/1

(p
l
!UK

l
)(p

l`1
!p

l~1
) (8)

and the estimated change in the interpolated Gini coe$cient is

*GK I"GK I
x
!GK I

y
"

M
+
l/1

(WK
l
!UK

l
)(p

l`1
!p

l~1
), (9)

where UK
l
"UK (p

l
) and WK

l
"WK (p

l
).
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6Zheng (1996, 1999) also proposed inference procedures for testing rank dominance, Lorenz and
generalized Lorenz dominances with dependent samples.

Similarly, we can consistently estimate the change in generalized entropy
indices as

*¹K c"*¹K c
x
!*¹K c

y

"G
1

c(c~1)
M 1
nx6

c +n
i/1

(x
i
)c! 1

ny6
c +n

i/1
(y

i
)cN if cO0, 1,

lnx6 !ln y6 !M1
n

+n
i/1

lnx
i
!1

n
+n

i/1
ln y

i
N if c"0,

1
nx6

+n
i/1

x
i
lnx

i
!1

ny6
+n

i/1
y
i
ln y

i
!Mlnx6 !ln y6 N if c"1.

(10)

3. Statistical inference with dependent samples

In this section, we derive large sample properties of *GK I and *¹K c, then provide
a method of correction for sample dependency. For ease of presentation, we "rst
consider the case of completely dependent samples. We then generalize the
results to samples that are partially dependent.

3.1. Completely dependent samples

Assume a random (matched-pair) sample of size n, (x
1
,y

1
), (x

2
, y

2
),

2, (x
n
, y

n
), is drawn independently from the population F(x, y). Since *GK I is

a function of vectors (UK
1
, UK

2
,2, UK

M
)@ and (WK

1
, WK

2
,2, WK

M
)@, as shown in (9),

the large sample properties of *GK I can be derived from the joint distribution of
(UK

1
, UK

2
,2, UK

M
, WK

1
, WK

2
,2,WK

M
)@. Further, UK

l
is a function of (1/n)+rl

i/1
x
(i)

and
x6 , and WK

l
is a function of (1/n)+rl

i/1
y
(i)

and y6 , where r
l
"[np

l
]. Denoting

/
l
"P

pl

0

H~1(t) dt and u
l
"P

pl

0

K~1(t) dt, (11)

then /K
l
"(1/n)+rl

i/1
x
(i)

and u(
l
"(1/n)+rl

i/1
y
(i)

are consistent estimators of
/
l
and u

l
, respectively.

The following lemma establishes the asymptotic distribution of

bK "(/K
1
, /K

2
,2, /K

M
, /K

M`1
, u(

1
, u(

2
,2, u(

M
, u(

M`1
)@ (12)

with /K
M`1

"x6 and u(
M`1

"y6 . A detailed proof of the lemma is provided in
Zheng (1996);6 it is also given in a more general result of Davidson and Duclos
(1997).
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Lemma 1. If F(x, y), H(x) and K(y) are continuous, H(x) and K(y) are
strictly monotone, and all elements involved also exist and are xnite, then
the 2(M#1)-random vector of bK is asymptotically normal in that n1@2(bK !b)
has a 2(M#1)-variate normal distribution with mean zero and covariance
matrix

N"C
u

ls
q
ls

q
ls

t
ls
D, (13)

where

u
ls
"P

ml

0

(x!m
l
)(x!m

s
) dH(x)!P

ml

0

(x!m
l
) dH(x)

]P
ms

0

(x!m
s
) dH(x) for l)s, (14)

t
ls
"P

1
l

0

(y!1
l
)(y!1

s
) dK(y)!P

1
l

0

(y!1
l
) dK(y)

P
1
s

0

(y!1
s
) dK(y) for l)s (15)

and

q
ls
"P

ml

0
P

1
s

0

(x!m
l
)(y!1

s
) dF(x, y)!P

ml

0

(x!m
l
) dH(x)

]P
1
s

0

(y!1
s
) dK(y). (16)

Here m
l

and 1
l

are, respectively, the income quantiles of H(x) and K(y)
corresponding to population proportion p

l
, i.e., m

l
"m(p

l
) and f

l
"f(p

l
),

l, s"1, 2,2,M#1.
To obtain the asymptotic distribution of *GK I, we use the well-known delta-

method (e.g., Rao, 1965, p. 321) on limiting distributions of di!erentiable
functions of random variables. Recalling that *GK I"+M

l/1
(WK

l
!UK

l
)

(p
l`1

!p
l~1

)"+M
l/1

(/K
l
//K

M`1
!u(

l
/u(

M`1
)(p

l`1
!p

l~1
), we have the follow-

ing result:

Theorem 1. Under the conditions of Lemma 1, the change in the interpolated Gini
coezcient, *GK I, is asymptotically normal in that n1@2(*GK I!*GI) has a limiting
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normal distribution with mean zero and variance n2"+M
s/1+M

l/1
n
ls
(p

s`1
!p

s~1
)(p

l`1
!p

l~1
) with

n
ls
"

1

k2
x
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l
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l
W

s
p2
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N

!

1

k
x
k
y

M2q
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l
q
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s
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!W
l
q
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!W
s
q
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# (U
l
W

s
#U

s
W

l
)d

xy
N. (17)

By replacing all n
ls

in n2 with each of the three parts of the right-hand side of
(17), we obtain the asymptotic variances of n1@2GK I

x
and n1@2GK I

y
and (twice) the

asymptotic covariance between n1@2GK I
x

and n1@2GK I
y
, respectively.

Compared with the variance of the exact Gini (as given in Hoe!ding (1948),
Gastwirth and Gail (1985) and Cowell (1989)), the variance of the interpolated
Gini is much easier to estimate. While the estimation of the variance of the exact
Gini involves computation of double and triple summations, each item of n2 can
be easily estimated. For example, q

ls
can be directly estimated as follows:

q(
ls
"

1

n

n
+
i/1

(x
i
!x

(rl )
)(y

i
!y

(rs )
)IM(x

i
, y

i
))(x

(rl )
, y
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)N

!

1

n

rl
+
i/1

(x
(i)
!x

(rl )
)
1

n

rs
+
i/1

(y
(i)
!y

(rs )
), (18)

where x
(rl )

and y
(rs )

are sample quantiles of Mx
i
N and My

i
N corresponding to p

l
and

p
s
, I(a)b) is an indicator variable which equals 1 if a)b and zero otherwise,

and (x
i
, y

i
))(x

(rl )
, y

(rs )
) stands for the condition that x

i
)x

(rl )
and y

i
)y

(rs )
hold simultaneously. Similarly, other elements of n2 can be consistently esti-
mated and, hence, by Slutsky's theorem (e.g., Ser#ing, 1980, p. 19, Theorem
1.5.4), n2 can be consistently estimated.

Denoting Nc
x
"(1/n)+n

i/1
(x

i
)c, Nc

y
"(1/n)+n

i/1
(y

i
)c (hence N1

x
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y
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x
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lnx

i
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ln y

i
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lnx

i
, and

Q
y
"(1/n)+n

i/1
y
i
ln y

i
, the estimators of the changes in the generalized entropy

indices given in (10) can be expressed as functions of Nc
x
, Nc

y
, P

x
, P

y
, Q

x
and Q

y
.

Nc
x
, Nc

y
, P

x
, P

y
, Q

x
and Q

y
are consistent estimators of kc

x
":=

0
xc dH(x),

kc
y
":=

0
yc dK(y), c

x
":=

0
lnxdH(x), c

y
":=

0
ln y dK(y), j

x
":=

0
x lnx dH(x), and

j
y
":=

0
y ln y dK(y), respectively.

Since (x
1
,x

2
,2,x

n
) are independently and identically distributed, so are their

monotonic transformations and hence Nc
x
, P

x
and Q

x
have limiting nor-

mal distributions as nPR. Similarly, Nc
y
, P

y
and Q

y
are also asymptotically

normally distributed. The CrameH r}Wold theorem further ensures that
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Nc
x
, Nc

y
, P

x
, P

y
, Q

x
and Q

y
have a joint limiting normal distribution. The follow-

ing results on the large sample properties of *¹K c can be easily veri"ed:

Theorem 2. Under the assumptions of Lemma 1, *¹K c has a limiting normal
distribution in that n1@2(*¹K c!*¹c) is asymptotically normally distributed with
mean zero and variance

t2"t2
x
#t2

y
!2ec

xy
, (19)

where t2
x

and t2
y

are asymptotic variances of n1@2(¹K c
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x
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y
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y
),

respectively, as given in Cowell (1989). The asymptotic covariance term ec
xy
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x
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y
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x
, k

y
)#g(j

x
, j

y
) if c"1,

(20)

where g( ) , ) ) denote the asymptotic covariances and can be directly derived. For
example, the asymptotic covariance between n1@2(Nc

x
!kc

x
) and n1@2(Nc

y
!kc

y
) is

g(kc
x
, kc

y
)"P

=

0
P

=

0

xcycdF(x, y)!kc
x
kc
y
. (21)

All elements of ec
xy

can be consistently estimated and hence ec
xy

and t2 can also
be consistently estimated.

3.2. Partially dependent samples

Assume two samples of sizes m and n, Mx
i
N and My

j
N, are drawn from two

adjacent years' income distributions with means k
x

and k
y

and variances p2
x

and p2
y
. Further assume that the "rst q (q)minMm, nN) observations of the two

samples are matched, i.e., (x
1
,2,x

q
) and (y

1
,2, y

q
) are paired, and

(x
q`1

,2, x
m
) is independent of My

j
N and (y

q`1
,2, y

n
) is independent of Mx

i
N.

Generally speaking, (x
q`1

,2, x
m
) is not independent of (x

1
,2, x

q
) and

(y
q`1

,2, y
n
) is not independent of (y

1
,2, y

q
). Thus, <ar(¹K 0

x
) may not equal

t2
x
/m and <ar(¹K 0

y
) may not equal t2

y
/n, where t2

x
and t2

y
are given in (19). In the

absence of precise information on the nature of this dependency, however,
it may not be unreasonable to assume that<ar(¹K 0

x
)"t2

x
/m and<ar(¹K 0

y
)"t2

y
/n.

If (x
1
,2,x

q
) is randomly selected from population x and (x

q`1
,2,x

m
) is
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randomly selected from the same population less (x
1
,2, x

q
) then the depend-

ency between them may be negligible if q is very small compared to the
population size. This assumption amounts to saying that the partial dependency
between Mx

i
N and My

j
N does not a!ect the calculation of the variances of ¹K 0

x
and

¹K 0
y
. Since <ar(¹K 0

x
!¹K 0

y
)"<ar(¹K 0

x
)#<ar(¹K 0

y
)!2Cov(¹K 0

x
, ¹K 0

y
), we only need to

consider the covariance term Cov(¹K 0
x
, ¹K 0

y
).

Denoting a(
x
"(1/m)+q
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lnx

i
, o(

x
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lnx

i
, a(

y
"(1/n)+q
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j
,

and o(
y
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j/q`1
ln y

j
, we can write Cov(¹K 0

x
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y
) as
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(22)

Since o(
x

is independent of My
j
N (hence a(

y
and o(

y
) and o(

y
is independent of Mx

i
N

(hence a(
x

and o(
x
) by assumption, we have Cov(a(

x
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y
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x
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y
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)"0 and thus
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Noting that a(
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] and a(
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], we further have
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Cov((1/q)+q
i/1

ln x
i
, (1/q)+q

j/1
ln y

j
) can be directly calculated using the

methods developed in Section 3.1. Thus, Cov(¹K 0
x
, ¹K 0

y
) can be computed using the

following two-step procedure: xrst calculate the covariance of the sample statistics
of the matched sub-samples as if they were complete samples, i.e.,
Cov((1/q)+q

i/1
lnx

i
, (1/q)+q

j/1
ln y

j
); then multiply the covariance by the percent-

ages of the matched portions of the two samples q/m and q/n), i.e.,
q/m]q/n]Cov((1/q)+q

i/1
lnx

i
, (1/q)+q

j/1
ln y

j
). The generalization to other

members of the generalized entropy class is straightforward.
The computation of the covariance term of the interpolated Gini index,

Cov(GK I
x
, GK I

y
), is also straightforward. As in computing Cov(¹K 0

x
, ¹K 0

y
), we have to

assume that the sample dependency does not a!ect the estimation of u
ls

and t
ls
.

Under the same assumptions about the data structures of Mx
i
N and My

j
N as

described above, the estimate of q
ls

of (16) is
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7Negatively correlated bivariate random samples are much more di$cult to generate than
positively correlated samples. Fortunately, the postulation of positive correlation between income
variables is supported in our empirical studies, even for PSID samples with a long time span.

where r8
l
"[qp

l
] and r8

s
"[qp

s
], and x8

(i)
and y8

(i)
are the ith order statistics of

Mx
1
,2, x

q
N and My

1
,2, y

q
N, respectively. Substitute this result into (17), the

covariance term is the covariance between the matched samples multiplied by
proportions q/m and q/n.

4. Sample dependency: Evidences from simulations and the U.S. data

The previous section proposed a method to take sample dependency into
account in computing the standard errors of estimated inequality di!erences,
but how serious is the problem of sample dependency in empirical applications
remains unanswered. In this section, we answer this question using both simula-
tion studies and the U.S. income and earnings data. Monte Carlo simulations
are used to show the e!ect of sample dependency on standard errors of
inequality changes while the U.S. data are used to demonstrate the e!ect
of sample dependency on statistical inference.

4.1. Monte Carlo simulations

Since sample dependency may vary by the degree of correlation and the scope
of overlapping between samples, it is necessary to evaluate the e!ect of sample
dependency with di!erent degrees of correlation and di!erent scopes of overlap-
ping. Given that income variables are likely to be positively correlated between
consecutive years, we consider in this study "ve di!erent degrees of correlation
(0.1, 0.3, 0.5, 0.7 and 0.9) and "ve di!erent scopes of overlapping (0.1, 0.3, 0.5, 0.7
and 0.9).7 The parametric income distributions we use in this study are the
Singh}Maddala distribution and the lognormal distribution. The c.d.f. of
the univariate Singh } Maddala (1976) distribution is

H(x)"1!1/[1#(x/b)a]q with a*0, b'0 and q'1/a. (26)

We consider the Singh}Maddala distribution and the lognormal distribution
because both distributions have been described as good approximations to
actual income distributions (e.g., see McDonald, 1984), on the Singh}Maddala
distribution and Aitchison and Brown, 1969, on the lognormal distribution).
The parameters used in the Singh}Maddala distribution are those estimated by
McDonald (1984) for the 1980 U.S. income distribution, i.e., a"1.6971 and
q"8.3679. We set b"1 since it is a scale variable. The lognormal distribution
considered has mean 10,000 and standard deviation 5000.
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The bivariate c.d.f. of these distributions could be quite complicated to
describe, but dependent bivariate random samples can be easily generated. For
ease of generating samples, we assume that random variables, x and y, have
identical marginal distributions. This allows us to focus on the e!ect of varying
correlation and varying scope of overlapping on the standard errors of *GK I and
*¹K c; the e!ect on statistical inference is demonstrated below using the U.S. data.
The Singh}Maddala bivariate random samples are obtained by "rst generating
bivariate uniform random numbers and then converting them using Johnson's
transformation system (Johnson, 1987); the bivariate uniform random samples
are generated using the method proposed by Lawrance and Lewis (1983). The
bivariate lognormal random samples are obtained by "rst generating bivariate
standard normal random numbers using the Box}Muller method (see, e.g.,
Lewis and Orav, 1989) and then converting bivariate standard normal random
numbers into lognormal random numbers. Both the Lawrance}Lewis method
and the Box}Muller method provide an easy way to control the degree of
correlation between samples. The scope of overlapping is controlled by "rst
drawing the required proportion of the samples from the joint distribution and
then drawing the remaining samples from each marginal distribution indepen-
dently. From each bivariate distribution (with each degree of correlation and
each scope of overlapping), we extract 100 samples of size 5000 and compute
separately the standard errors of *GK I and *¹K c } with and without correcting for
sample dependency. The impact of sample dependency is of course re#ected in
the di!erences between these two sets of standard errors.

Table 1 reports the (average) simulation results of the 100 runs for the
Singh}Maddala and the lognormal distributions, respectively. For each distri-
bution, we conduct simulations for "ve inequality indices (the interpolated Gini
and four generalized entropy measures corresponding to c"0, 0.5, 1 and 2).
The number at the intersection of each correlation level and each overlapping
level indicates the average percentage increase in the standard error of *GK I or
*¹K c if sample dependency is ignored. That is, each number is the average of the
percentage di!erences, [(uncorrected standard error!corrected standard
error)/corrected standard error]]100, from the 100 runs. For example, the
number 88.1 (at the intersection of 0.9 coe$cient of correlation and 0.9 overlap-
ping for the interpolated Gini in Table 1a) means that, on average, the standard
error would go up by 88.1% if sample dependency is not taken into account.

An inspection of the tables suggests that sample dependency has substantial
e!ects on standard errors if samples are strongly correlated and/or have a signif-
icant overlap. Since the test statistic of a di!erence such as *GK I is inversely
related to the standard error of the di!erence, it follows that the correction for
sample dependency may change the p-value of the di!erence. In the above
example, failure to correct for sample dependency would lower the absolute
value of the test statistic by 47%! Hence, technically speaking, the correction for
sample dependency will undoubtedly a!ect statistical inference in the sense that
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Table 1
Simulation studies: increases in standard errors if sample dependency is not corrected

Inequality measures Correlation The proportion of overlapping

0.1 0.3 0.5 0.7 0.9

(a) Singh}Maddala distribution!

0.1 0.0 0.1 0.4 0.9 1.3
Interpolated Gini 0.3 0.1 0.7 2.4 4.9 8.3

0.5 0.2 1.7 5.3 11.4 20.9
0.7 0.3 2.8 8.7 20.4 42.6
0.9 0.4 4.2 13.3 33.3 88.1

0.1 0.1 0.7 1.7 3.3 5.2
Generalized entropy
(c"0)

0.3 0.1 1.5 4.2 9.1 16.8
0.5 0.2 2.6 6.8 15.9 32.6
0.7 0.3 3.6 10.2 24.8 58.0
0.9 0.5 4.6 14.4 35.6 105.5

0.1 0.0 0.2 0.9 1.8 3.5
Generalized entropy
(c"0.5)

0.3 0.2 1.2 3.4 7.2 13.4
0.5 0.3 2.1 6.7 13.8 27.0
0.7 0.4 3.1 10.2 22.5 48.8
0.9 0.5 4.2 13.5 33.5 91.5

0.1 0.0 0.1 0.6 1.1 2.0
Generalized entropy
(c"1)

0.3 0.1 0.9 2.5 5.2 9.5
0.5 0.2 1.8 5.3 11.1 21.2
0.7 0.4 2.9 9.0 19.9 41.8
0.9 0.5 4.2 13.1 32.2 85.7

0.1 0.0 0.0 0.2 0.4 0.7
Generalized entropy
(c"2)

0.3 0.1 0.5 1.3 2.8 4.9
0.5 0.1 1.2 3.4 7.2 13.0
0.7 0.3 2.3 7.0 15.2 30.2
0.9 0.4 3.9 12.3 29.6 74.8

(b) Lognormal distribution"

0.1 0.0 0.1 0.2 0.3 0.5
Interpolated Gini 0.3 0.1 0.7 1.7 3.2 5.2

0.5 0.2 1.6 4.2 8.4 15.0
0.7 0.3 2.9 8.3 17.9 35.4
0.9 0.4 4.4 13.2 30.9 75.9

0.1 0.0 0.2 0.4 0.6 1.1
Generalized entropy
(c"0)

0.3 0.1 0.8 2.3 4.2 7.2
0.5 0.2 1.8 5.3 10.4 19.1
0.7 0.3 3.0 9.1 19.1 39.2
0.9 0.4 4.3 13.5 31.2 79.1

B. Zheng, B.J. Cushing / Journal of Econometrics 101 (2001) 315}335 327



Table 1 (continued)

Inequality measures Correlation The proportion of overlapping

0.1 0.3 0.5 0.7 0.9

0.1 0.1 0.1 0.0 0.3 0.8
Generalized entropy
(c"0.5)

0.3 0.1 0.7 1.6 3.4 6.1
0.5 0.2 1.6 4.4 9.1 16.7
0.7 0.3 2.8 8.0 17.4 35.1
0.9 0.4 4.2 12.6 29.7 73.4

0.1 0.0 0.1 0.1 0.3 0.7
Generalized entropy
(c"1)

0.3 0.1 0.6 1.5 3.0 5.3
0.5 0.1 1.6 4.1 8.1 14.7
0.7 0.3 2.7 7.7 16.0 31.4
0.9 0.4 4.2 12.6 28.7 68.7

0.1 0.0 0.1 0.1 0.2 0.4
Generalized entropy
(c"2)

0.3 0.0 0.5 1.1 2.3 4.2
0.5 0.1 1.2 3.1 6.1 10.9
0.7 0.2 2.4 6.5 12.8 24.2
0.9 0.3 4.1 11.8 25.7 60.0

!The two dependent income distributions are the Singh}Maddala distributions
SM(1.6971, 8.3679). The pseudo-random numbers are generated using the routine provided in
Microsoft FORTRAN90. The sample size of each simulation is 5000 and each simulation is repeated
100 times. All increases are represented in percentage and are calculated as the average of the
di!erences, [(uncorrected standard error!corrected standard error)/corrected standard
error]]100, from the 100 runs.
"The two dependent income distributions are lognormal distributions with mean 10 000 and

standard deviation 5000. The pseudo-random numbers are generated using the routine provided in
Microsoft FORTRAN90. The sample size of each simulation is 5000 and each simulation is repeated
100 times. All increases are represented in percentage and are calculated as the average of the
di!erences, [(uncorrected standard error!corrected standard error)/corrected standard
error]]100, from the 100 runs.

the p-value will be changed. Of course, if only a few signi"cance levels such as
0.01, 0.05 and 0.10 are used, as we usually do in empirical studies, it is possible
that the correction for sample dependency may not change the signi"cance level
of a given di!erence.

4.2. Applications to the CPS and PSID data

In this section, we test changes in U.S. family income and personal earnings
inequality using the current population survey (CPS) data and the panel study
of income dynamics (PSID) data, respectively. The CPS data is an example of
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partially dependent samples and the PSID data is an example of completely
dependent samples. The CPS sample rotates every 2 years and, by design,
about half of the households are overlapping (see the CPS website at
http://www.bls.census.gov/cps). Considering, however, that some people may
move out of their dwellings every year and that some may not respond to the
survey, the actual overlap is closer to 40%. The PSID is longitudinal and all
individuals are re-interviewed every year and thus the proportion of overlapping
in theory is 100%.

Table 2 reports results on annual U.S. family income inequality and its
changes from 1990 to 1997. We include in our sample all primary families and
subfamilies but exclude all people living in group quarters; we also drop all
entries with zero or negative family incomes in order to use the generalized
entropy class of inequality. The top half of the table provides estimates of
inequality indices (interpolated Gini index and four generalized entropy
measures) and the associated standard errors (inside parentheses). The bottom
half documents the inequality comparisons of consecutive years. In each cell
there are four numbers: the change in the inequality index; the standard error of
the inequality change without correcting for sample dependency (inside paren-
theses); the standard error with correction for sample dependency (inside
brackets); the percentage increase in the standard error if sample dependency is
not corrected (inside braces). Consider, for example, the comparison of the Gini
coe$cient between 1990 and 1991. The "rst number (0.0032) is the di!erence
between 1991's Gini index and 1990's Gini index, the second number (0.0020) is
the standard error of the Gini di!erence without correcting for sample depend-
ency, the third number [0.0018] is the standard error of the Gini di!erence with
correction for sample dependency, the fourth number M11.2%N re#ects the
percentage increase in the standard error (from 0.0018 to 0.0020) if sample
dependency is not corrected.

The table indicates that failure to correct for sample dependency may increase
the standard error by between 3.3% and 17.1%. A di!erence of this size may
a!ect the signi"cance levels of comparisons even if only three signi"cance levels
(i.e., 0.01, 0.05 and 0.10) are used. The e!ect of correcting sample dependency on
statistical inference is indicated by the two superscribed symbols in the top line
of each cell: if two symbols are di!erent then the correction changes the
signi"cance level. All test statistics are compared with conventional critical
values (e.g., 1.96 for the 5% level). The table indicates that not all corrections for
sample dependency change the signi"cance levels but in several cases the
correction does make a di!erence. For example, the di!erence 0.0032 between
the 1990 Gini index and the 1991 Gini index is not signi"cant at the 10% level
with an uncorrected standard error but becomes signi"cant with a corrected
standard error. Interestingly, the magnitude of correction does not have to be
large to make a di!erence and a large magnitude of correction does not
necessarily change the signi"cance level. For example, the small 3.3% di!erence
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Table 2
U.S. family income inequality: 1990}1997 (CPS data)!

Int. Gini GE (c"0) GE (c"0.5) GE (c"1) GE (c"2)

1990 0.3771 0.3261 0.2597 0.2455 0.2739
(0.0014) (0.0036) (0.0018) (0.0018) (0.0036)

1991 0.3803 0.3397 0.2657 0.2505 0.2816
(0.0014 (0.0039) (0.0019) (0.0019) (0.0039)

1992 0.3818 0.3401 0.2676 0.2519 0.2813
(0.0014) (0.0038) (0.0019) (0.0019) (0.0038)

1993 0.3884 0.3587 0.2765 0.2604 0.2937
(0.0015) (0.0042) (0.0020) (0.0020) (0.0042)

1994 0.3871 0.3627 0.2747 0.2578 0.2867
(0.0015) (0.0044) (0.0019) (0.0019) (0.0044)

1995 0.4104 0.3858 0.3164 0.3185 0.4494
(0.0020) (0.0049) (0.0032) (0.0039) (0.0049)

1996 0.4146 0.4015 0.3250 0.3282 0.4700
(0.0021) (0.0052) (0.0033) (0.0039) (0.0052)

1997 0.4189 0.4159 0.3317 0.3349 0.4809
(0.0021) (0.0054) (0.0033) (0.0039) (0.0054)

1990/91 0.0032",# 0.0136$,% 0.0060$,$ 0.0051#,$ 0.0077","
(0.0020) (0.0053) (0.0026) (0.0026) (0.0053)
[0.0018] [0.0051] [0.0024] [0.0024] [0.0050]

M11.2%N M3.4%N M10.5%N M10.5%N M4.9%N

1991/92 0.0015"," 0.0004"," 0.0020"," 0.0014"," !0.0003","
(0.0020) (0.0054) (0.0027) (0.0027) (0.0054)
[0.0018] [0.0052] [0.0024] [0.0024] [0.0049]

M12.2%N M3.7%N M12.0%N M13.3%N M9.5%N

1992/93 0.0066%,% 0.0186%,% 0.0089%,% 0.0085%,% 0.0124$,$
(0.0021) (0.0057) (0.0027) (0.0028) (0.0057)
[0.0018] [0.0055] [0.0025] [0.0025] [0.0054]

M11.2%N M3.3%N M10.4%N M10.3%N M5.2%N

1995/96 0.0042"," 0.0157$,$ 0.0086#,$ 0.0097#,# 0.0206%,%
(0.0029) (0.0071) (0.0046) (0.0055) (0.0071)
[0.0027] [0.0069] [0.0042] [0.0051] [0.0061]
M9.0%N M3.5%N M8.4%N M8.0%N M17.1%N

1996/97 0.0043"," 0.0144#,$ 0.0068"," 0.0068"," 0.0109","
(0.0029) (0.0075) (0.0046) (0.0056) (0.0075)
[0.0027] [0.0073] [0.0043] [0.0052] [0.0067]
M9.2%N M3.3%N M8.3%N M7.8%N M12.5%N

!The top half of the table shows the inequality index and the associated standard error (in
parentheses). The bottom half shows the di!erence between 2 years' inequality indices; the number in
( ) is the uncorrected standard error of this di!erence (in parentheses); the corrected standard error
(in brackets); the percentage di!erence of the correction in the standard error [(uncorrec-
ted!corrected)/corrected]]100 (in braces). The "rst symbol on the shoulder of each di!erence
indicates signi"cance with the uncorrected standard error while the second symbol indicates
signi"cance with the corrected standard error.
"Indicates insigni"cance at the 10% level.
#Indicates signi"cance at the 10% level.
$Indicates signi"cance at the 5% level.
%Indicates signi"cance at the 1% level.
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Table 3
U.S. personal earnings inequality: 1985}1990 (PSID data)!

Int. Gini GE (c"0) GE (c"0.5) GE (c"1) GE (c"2)

1985/86 !0.0106",# !0.0293$,# !0.0202",# !0.0177%,$ !0.0139%,%
(0.0063) (0.0123) (0.0121) (0.0181) (0.0945)
[0.0038] [0.0066] [0.0057] [0.0083] [0.0456]

M87.1%N M86.2%N M111.6%N M117.1%N M107.2%N

1986/87 !0.0121",# !0.0440#,# !0.0218%,# !0.0072%,% 0.0963%,%
(0.0069) (0.0134) (0.0143) (0.0236) (0.1622)
[0.0036] [0.0069] [0.0070] [0.0126] [0.1146]

M92.4%N M95.1%N M105%N M87.6%N M41.6%N

1987/88 !0.0103%,# !0.0433#,# !0.0223%,# !0.0133%,$ 0.0026%,%
(0.0074) (0.0143) (0.0161) (0.0278) (0.2028)
[0.0032] [0.0060] [0.0047] [0.0062] [0.0385]

M130.8%N M137.9%N M243.4%N M346.5%N M426.7%N

1988/89 !0.0117",# !0.0399#,# !0.0258",# !0.0255%,# !0.1128%,%
(0.0071) (0.0139) (0.0152) (0.0252) (0.1679)
[0.0033] [0.0063] [0.0055] [0.0088] [0.0749]

M114.2%N M122.2%] M174.3%N M184.9%N M124.3%N

1989/90 !0.0070%," !0.0273$,# !0.0173%,$ !0.0173%,% !0.0807%,%
(0.0066) (0.0127) (0.0129) (0.0195) (0.1003)
[0.0037] [0.0072] [0.0071] [0.0119] [0.0760]

M80.0%N M77.2%N M80.4%N M64.7%N M31.8%N

1985/87 !0.0179$,# !0.0579#,# !0.0324$,# !0.0170%,% 0.0930%,%
(0.0071) (0.0138) (0.0146) (0.0235) (0.1530)
[0.0044] [0.0087] [0.0091] [0.0157] [0.1249]

M60.7%N M58.3%N M60.7%N M49.4%N M22.6%N

1985/88 !0.0210#,# !0.0707#,# !0.0386$,# !0.0191%,% !0.1109%,%
(0.0074) (0.0142) (0.0153) (0.0247) (0.1543)
[0.0047] [0.0093] [0.0095] [0.0159] [0.1163]

M56.7%N M51.5%N M61.1%N M55.7%N M32.6N

1985/89 !0.0222#,# !0.0724#,# !0.0410#,# !0.0249%," 0.0317%,%
(0.0072) (0.0138) (0.0141) (0.0214) (0.1067)
[0.0047] [0.0096] [0.0089] [0.0136] [0.0782]

M63.7%N M44.8%N M59.0%N M57.2%N M36.4%N

1985/90 !0.0239#,# !0.0762#,# !0.0462#,# !0.0343",$ !0.0417%,%
(0.0072) (0.0136) (0.0134) (0.0192) (0.0813)
[0.0051] [0.0102] [0.0097] [0.0145] [0.0706]

M39.8%N M33.1%N M37.8%N M32.1%N M15.2%N

!Each cell shows the di!erence between 2 years' inequality indices; the uncorrected standard error
of this di!erence (in parentheses); the corrected standard error (in brackets); the percentage di!erence
of the correction in the standard error [(uncorrected!corrected)/corrected] ]100 (in braces). The
"rst symbol on the shoulder of each di!erence indicates signi"cance with the uncorrected standard
error while the second symbol indicates signi"cance with the corrected standard error. The top half
of the table provides comparison of adjacent years between 1985 and 1990 while the bottom half
compares 1985 with 1987}1990.
"Indicates signi"cance at the 10% level.
#Indicates signi"cance at the 1% level.
$Indicates signi"cance at the 5% level.
%Indicates insigni"cance at the 10% level.
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of correction for the generalized entropy index with c"0 for the comparison
between 1996 and 1997 changes the signi"cance level; the large 12.5% for the
generalized entropy index with c"2 for the same comparison does not change
the signi"cance level. This happens because the "rst change in inequality
(0.0144) is close to be signi"cant at the 5% level and only a small reduction in the
standard error is su$cient to make it signi"cant, but the second change in
inequality (0.0109) is far from being signi"cant at the 10% level and even a large
reduction in the standard error is not enough to make it signi"cant. It follows
that the correction for sample dependency is particularly important and neces-
sary if the p-value with uncorrected standard error is already in the neighbor-
hood of being signi"cant.

Table 3 compares U.S. personal earnings inequality from 1985 to 1990. The
top half of the table reports "ve comparisons of consecutive years while the
bottom half compares 1985 with other years (1987}1990). All numbers carry the
same meanings as those in Table 2 (bottom half ). In this illustration, we are
interested in changes in earnings inequality of those who were employed, thus
we limit our samples to those individuals who worked full time and have
positive earnings in both years of each comparison. The e!ect of the correction
on standard errors varies widely, ranging from 15.2% (the generalized entropy
index with c"2 for the 1985/1990 comparison) to 426.7% (the generalized
entropy index with c"2 for the 1987/1988 comparison). These corrections
a!ect the signi"cance level in 15 of the 25 cases in the top half of the table.

5. Summary and conclusion

Researchers often encounter sample dependency when testing inequality
changes across time. Commonly used income samples such as the CPS and
PSID are dependent in that they have an overlap in consecutive years. Since
conventional inference procedures assume independence among samples,
a method of correction for sample dependency is needed.

This paper provided appropriate inference procedures to test the (interpo-
lated) Gini coe$cient and the generalized entropy class with dependent samples.
We "rst showed that the estimated changes in inequality indices with completely
dependent samples have asymptotic normal distributions and that standard
errors can be straightforwardly estimated. We then modi"ed the procedure to
adjust the standard errors for inequality comparisons with partially dependent
samples. The asymptotic covariance of the partially dependent samples can be
easily calculated using a two-step procedure.

The e!ects of sample dependency on standard errors were documented
through a series of simulation studies. We considered two reasonable parametric
bivariate distributions and allowed both the degree of correlation and the scope
of overlapping to vary. The studies showed that sample dependency may have
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substantial impacts on standard errors. We also empirically investigated this
issue by testing changes in U.S. family income inequality from 1990 to 1997
(using the CPS data) and personal earnings inequality from 1985 to 1990 (using
the PSID data). Our empirical results further demonstrated the importance of
adjusting standard errors for sample dependency.

While we focused on testing cross-time inequality changes, the method of
correction for sample dependency is also applicable to testing marginal changes
in inequality. Marginal changes in income inequality refer to the increase or
decrease in income inequality of the same population after the population has
experienced a change in income. An example of marginal changes is the e!ect of
income transfer programs on income distribution. In the United States, a sizable
portion of GNP is spent annually on various welfare programs such as food
stamps and temporary assistance to needy families (formerly aid to families with
dependent children). This has a!ected the income distribution. While re-
searchers have generally agreed that welfare programs reduce both income
inequality and poverty (see Danziger et al., 1981), they have not arrived at
a consensus regarding the magnitude of the reduction. With the social welfare
system under scrutiny and in the midst of reforms, accurately measuring the
impact of welfare reforms on income inequality is important. Other interesting
examples of marginal changes in income inequality include the e!ect of taxation
on income inequality and the e!ect of wives' participation in the labor force on
family income inequality. The two samples of before- and after-event needed to
address these issues are completely dependent and the method proposed in this
paper should be used to correct for sample dependency. As we have demon-
strated here, failure to use such a method may lead to erroneous conclusions.
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