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Abstract

According to the World Health Organization, 235 million people around the world currently
su�er from asthma, which includes approximately 25 million in the United States. There is sub-
stantial epidemiological evidence indicating linkages between outdoor air pollution and asthma
symptoms, more speci�cally between concentrations of particulate matter and asthma. Using
county level data for 2001-2014, a spatial panel framework is imposed based upon prevailing
wind patterns to investigate the direct and indirect impacts of PM2.5 concentration levels on
asthma hospitalization in Pennsylvania. This model controls for population density, precipita-
tion, smoking rate, and population demographic variables. Results show that PM2.5 concen-
trations as measured at the county level have positive direct and indirect e�ects on asthma
hospitalization. A one-unit increase in PM2.5 in one Pennsylvania county will add, on average
$1.29M ($754,656 direct and $539,040 indirect) to total annual asthma hospitalization costs
with the state of Pennsylvania. This study highlights the need for realistic and accurate impact
analyses of ambient air pollution on asthma that re�ects the impacts on neighboring regions as
well. In order to capture the spillover e�ects of health- related impacts from PM2.5 pollution,
a wind direction algorithm to identify appropriate neighbors is important.

Keywords: PM2.5 concenterations, Asthma, Spatial econometrics, Wind pattern weight matrix,
Spillover e�ects
JEL Classi�cation: Q53, I18, Q40
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1 Introduction

Ambient air pollution adversely impacts air quality and human health (Nel (2005); Kampa and
Castanas (2008); Anderson et al. (2012)). The National Ambient Air Quality Standards (NAAQS)
set by the Environmental Protection Agency (EPA) include six principal pollutants (i.e., Carbone
Monoxide (CO), Lead (Pb), Nitrogen Dioxide (NO2), Ozone (O3), Particulate Matters (PM), and
Sulfur Dioxide (SO2)) as criteria air pollutants (Environmental Protection Agency (2016)). Over the
last few decades, air pollution concerns have changed from concentrations of SO2 and coarse particles
towards more tra�c-related air pollutants (TAP) (i.e., nitrogen oxides (NOx), small particles and
organic compounds) (Pénard-Morand et al. (2010)). The national average trend of SO2 air quality
shows an 87% decrease between 1980-2016 (Environmental Protection Agency (2018a)). With
decreasing trends in SO2, ozone, and nitrogen dioxide, particulates have gained more attention
(Brunekreef and Holgate (2002)).

The World Health Organization (WHO) named particulate matter (PM) as the pollutant that
a�ects people more than any other pollutant (World Health Organization (2016)). The severity and
magnitude of PM health impacts is a function of its size. The smaller the size of PM, the more
potential there is to cause severe damage to the human body (Environmental Protection Agency
(2018b)). The negative health impacts of PM are widely discussed in the literature (Pope III et al.
(2009); Raaschou-Nielsen et al. (2013); Wang et al. (2014); Zhu et al. (2017)). More speci�cally,
many researchers have investigated the e�ects of short-term and long-term exposure to PM and
resulting asthma symptoms (Silverman and Ito (2010); Samoli et al. (2011); Iskandar et al. (2012);
Zhang et al. (2015)).

The EPA has continuously updated its standards for criteria air pollutants since the passage of
the Clean Air Act of 1990. For instance, the standards for PM have changed three times and ozone
pollution standards have changed two times. One element of enforcement for these standards is
designation of attainment or nonattainment by an area. Attainment/ nonattainment classi�cation
by EPA is based on the level of air pollutants. In the case of a geographic area where pollutant
levels are below the NAAQS threshold, this area is categorized as an attainment area. Unlike
an attainment area, a nonattainment area deals with persistent air quality problems and violates
federal health-related standards for outdoor quality (Pennsylvania Department of Environmental
Protection (2016).

As a demonstration, Appendix I shows nonattainment designation for PM2 concentrations in
Pennsylvania are located primarily at or adjacent to metropolitan areas in the southeast and south-
western portions of the state during the time-period 2001 to 2014. Pollution dischargers within
nonattainment areas are required to comply with tighter environmental regulations than similar
dischargers in attainment areas. For instance, in nonattainment areas, existing pollution sources are
required to install "reasonably available control technology" (RACT) while new sources of pollution
are required to achieve the "lowest available emission rate" in addition to the RACT requirement
(Curtis (2018)).

The main objective in this research is to examine what factors, including PM2.5 concentrations,
explain asthma hospitalization in Pennsylvania. Applying a spatial regression model, this analysis
provides us with estimates of both within county and spillover e�ects among contiguous counties
from PM2.5 concentrations. The spillover analysis allows us to document the existence of biases
that would be found when using standard, non-spatial models in estimating the impacts of PM2.5

concentrations.
By imposing a prevailing wind pattern in deriving the weight matrix, positive and signi�cant

e�ects of PM2.5 concentrations are found to occur on asthma hospitalization both within county
and in neighboring counties. These results reveal that county PM2.5 concentrations are associated
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with higher asthma hospitalization in neighboring counties, and within the county itself. Thus,
important spillover e�ects exist from the PM2.5 concentrations on asthma hospitalization.

The main contribution of this research to the literature is investigating the spillover e�ects of
the sources of PM2.5 pollutions on asthma hospitalization. In addition, the study introduces a new
approach to evaluating neighboring regions when analyzing the health e�ects of air quality. After
examining the literature, no previous study has controlled for the spatial interaction between PM2.5

concentrations and asthma hospitalization, so that the regional aspects of PM2.5 concentrations have
not been investigated. PM2.5 and other air pollutant concentrations move through the atmosphere
and neglecting their transportation underestimates the real impact of air quality.

The rest of the manuscript proceeds as follows. Section 2 provides background information on
national and states' trends in asthma and its associated costs to society. Section 3 discusses ambient
air pollution and, speci�cally, PM2.5 concentrations and asthma. Section 4 explains the study area.
Section 5 provides details of the model developed for this research. Section 6 describes the data and
spatial data considerations. Section 7 provides the results and section 8 concludes with a discussion
and policy implications.

2 Asthma: symptoms, time trend, and cost

Asthma is a chronic respiratory and in�ammatory lung disease characterized by episodes or attacks
of impaired breathing. Even though scientists argue that there is not a speci�c, well-known cause
for asthma, a combination of environmental factors and genetics are considered as the disease
triggers (Center For Disease and Control (2013a)). Being exposed to multiple environmental factors
exacerbate asthma symptoms.(Akinbami et al. (2011); Akinbami et al. (2012)). list airway irritants
such as tobacco smoke and air pollution, allergens, respiratory infections, stress and exercise among
common asthma attach triggers that exacerbate symptoms. According to(Bostantzoglou et al.
(2015)), asthma symptoms may include coughing, shortness of breath, wheezing, chest tightness
and chest pain and be caused by in�ammation and narrowing of small airways. Whether the
disease severity is mild or persistent, a person's quality of life may be a�ected by asthma. People
with a mild disease may su�er severe attacks as well as those with a more severe and persistent
symptom.

2.1 National and state asthma trend

Since the early 1980s, asthma has shown an upward trend in all ages, genders, and racial groups
in the U.S. ((Asher et al. (2006)); National Center for Health Statistics, 2017). About 25 million
Americans currently su�er from asthma, about one in every 13 people. Asthma is leading chronic
disease and the third leading cause of hospitalization among individuals under 18 years of age
(Center For Disease and Control (2013b)). Figure 1 shows the number of current prevalence (current
prevalence is de�ned as those who answered "yes" to both "Have you ever been told by a doctor
or other health professional that you had asthma?" and "Do you still have asthma?") of asthma
in the U.S. between 2001 and 2015. Even though the overall trend of asthma's current prevalence
is increasing on both the national and the state levels over a period of 15 years, individual states
follow a di�erent pattern. The Behavioral Risk Factor Surveillance System (BRFSS) provides the
current asthma prevalence on the state level. Figure 2 shows the current asthma prevalence among
adults between 2001 and 2015 since data for current asthma prevalence among children is not
available for all the states. Wyoming, Vermont, and Kansas are among the states experiencing
a moderate increase in the number of adult current asthma prevalence between 2001 and 2015.
Florida, Alabama, Pennsylvania, and Utah are among the high increase states for adult asthma



4/24

Figure 1: National current asthma prevalence, 2001-2015

prevalence. Compared to the average percentage increase in the U.S. over this time period (43%),
Pennsylvania experienced a slightly higher increase rate at 47%.

2.2 The burdensome cost of asthma on society

Asthma can a�ect people of di�erent age and racial groups, but is more common among minorities.
Asthma represents a signi�cant burden on individuals and society in terms of reducing productivity
and increasing healthcare system demands (Crighton et al. (2012)). In estimating the total cost of
disease, three classi�cations of cost are considered. Costs related to management, complementary
investigation or treatment and other costs like domestic or professional preventive measures, assis-
tance in home care, and transportation to medical visits are categorized as direct costs. Indirect
costs include work-related losses whether it is related to temporary, early, or permanent disability
and early mortality. Finally, costs related to reductions in quality of life, increases in pain or su�er-
ing, limitation of physical activities and job changes are classi�ed as intangible costs (Nunes et al.
(2017)).

According to the EPA's asthma fact report, "asthma accounts for 14.2 million physician o�ce
visits, 439,000 discharges from hospital inpatient care, and 1.8 million emergency department visits
each year" (EPA, 2016, p. 1). In 2008, 14.2 million reported asthma as the reason for missed days
of work (Center For Disease and Control (2013a)). Reports show asthma accounts for 13.8 million
missed school days in 2013 (United State Environmental Protection Agency (2011)).

In a number of studies, researchers estimate the costs associated with asthma. Stanford et al.
(1999) assess the treatment cost of asthma in which the patient goes to the emergency department
(ED). They report that, on average, each American paid $234.48 for an ED visit in 1996-1997. In a
more recent assessment, Wang et al. (2014) report an estimate of $1,502 for asthma care charges in
the ED based on data for 2006-2008. Average asthma hospitalization cost is much higher than an ED
visit. Most of the cost of hospitalization belongs to inpatient nursing care and an average hospital
visit of 3.8 days costs $3,102.53. Barret et al. (2014) di�erentiate between asthma hospitalization
costs for adults versus children. While each hospital stays for a child in 2010 averaged a total of
$3,600, the total cost for an adult was $6,600 for each hospital stay.

What the previous studies have in common is a steady increase in asthma cost. The most recent
estimates for the annual economic cost of asthma in the U.S. shows an increase from $12 billion
in 1994 to $56 billion in 2011 (Niska et al. (2010); National Hospital Ambulatory Medical Care
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Figure 2: States' current asthma prevalence, 2001 and 2015
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Survey (2011a); National Hospital Ambulatory Medical Care Survey (2011b)). Direct costs account
for $50.1 billion, mostly for hospital stays. The rest of the costs include lost pay from sickness or
death and lost work output from missed school or work days ($3.8 billion) and premature death
($2.1 billion) (Barnett and Nurmagambetov (2011); Center For Disease and Control (2011)). The
cost involving asthma hospitalization in Pennsylvania follows the same increasing trend over years
(Pennsylvania Department of Health, 2012). Although there is no cure for asthma, it could be
controlled by limiting exposure to triggers. In the next section, the connection between ambient air
pollution and PM2.5 will be discussed.

3 Asthma and Ambient Air Pollution

Ambient air pollution impacts public health both on short and long-term bases. The most re-
cent estimate reports that outdoor air pollution is responsible for more than 3% of the annual
disability-adjusted life years lost in 2010 (Guarnieri and Balmes (2014)). Tra�c and fossil-fuel
power generation contribute the largest shares to urban air pollution (Perera (2017); Cohen and
Pope 3rd (1995)). With the increasing rate of urbanization in the U.S., more individuals face the
negative e�ects of exposure to pollution. In general, the association between exposure to ambient
air pollution and human health outcomes has been addressed in both older and more recent studies.
Speci�cally, the following health conditions have received attention: cardiovascular and respiratory
diseases (Schwartz and Morris (1995); Brook et al. (2004); Brook (2008)), lung cancer (Hamra et al.
(2015); Cohen and Pope 3rd (1995); Raaschou-Nielsen et al. (2013); Nafstad et al. (2003)), low
birth weight (Dugandzic et al. (2006); Pedersen et al. (2013); Yang and Chou (2015); Yang et al.
(2017)), and morbidity and mortality (Currie and Neidell (2005); Krewski et al. (2009); Woodru�
et al. (2007)).

The negative e�ects of PM2.5 on human health in general and particularly on asthma are at
the core of this study. Many researchers address the e�ects of short-term and long-term exposure
to PM2.5 (Tatum and Shapiro (2005); Eder et al. (2006); Künzli et al. (2009); Anderson et al.
(2012); Harris et al. (2018); Veremchuk et al. (2018)). For example, a one-year exposure to 10µ/m3

in PM2.5 has been estimated to increase mortality by 7.5% (Global Catholic Climate Movement,
2017). In another recent study, scientists show that an annual exposure increase of 10 µ/m3 for
PM2.5 leads to an average loss of life expectancy between 9 and 11 years (Andersen (2017)). One of
the issues with PM2.5 concentrations is that there is not an exact threshold for the concentration
level. Recent studies show that the harmful e�ects are observed even in areas with concentration
less than a third of the EPA current standard (Datz (2015)).

Inhalation of particulate matter has been estimated to be responsible for 500,000 excess deaths
each year worldwide (United Nation & World Health Organization (1994)). In a study done by the
Schneider et al. (2010), estimates for the health impacts of PM2.5 emitted from coal-�red power
plants and automobiles in the U.S. show over 13,000 deaths, 9,700 hospitalizations, and 20,000 heart
attacks in 2010 with a total monetized value of more than $100 billion. Beelen et al. (2014), Schwartz
et al. (2007), and Schneider et al. (2010) argue that long-term exposure to PM2.5 is associated with
higher mortality risk, even when concentrations are below the standard limit. In other words, they
believe there is no "safe threshold" for PM.

Glad et al. (2012), and United State Environmental Protection Agency (2011) show the impacts
of PM2.5 on asthma emergency department visits and early deaths, respectively. Mann et al. (2010),
Meng et al. (2010), Liu et al. (2008), Jacquemin et al. (2012), Malig et al. (2013), Samoli et al.
(2011), and Silverman and Ito (2010) describe the e�ects of PM2.5 on asthma symptoms. Riedl and
Diaz-Sanchez (2005), Namdeo et al. (2011), Ristovski et al. (2012), and World Health Organization
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(2016) discuss the e�ects of PM2.5 on respiratory and cardiovascular disease. Lipsett et al. (1997)
show the relationship between emergency room visits and exposure to PM10. Nel (2005) relates
the exacerbation of asthma and chronic bronchitis to exposure to PM10 and PM2.5. World Health
Organization (2016) also reveals an association between PM2.5 plus PM10 and lung cancer.

While numerous studies have analyzed the relationship between ambient air pollutants and
asthma, evidence of this association on a regional scale is still mixed. The discussion presented by
North Carolina Attorney General in 2006 arguing pollution from TVA's coal-�red power plants in
Tennessee causing damages the health of North Carolina's residents is an example of the regional
e�ects of ambient air pollution (Environmental Appeals Court (2008)). No previous research, how-
ever, has estimated the spatial spillover of PM2.5 pollution. Due to a misspeci�cation issue when
not accounting for spatial spillover, the results of any regression estimation may be biased. In
other words, when using a non-spatial regression analysis, we assume health outcomes at a county
basis, like asthma hospitalization, are independent of the pollution levels (PM2.5 concentrations for
example) in neighboring counties. This assumption ignores the e�ects of PM2.5 concentrations on
adjacent counties. By ignoring spatial spillover e�ects, the total e�ect of PM2.5 concentrations on
health outcomes may be underestimated.

4 Study Area

Asthma related indicators are not available for all the states on a county level. Because of this data
limitation, instead of a regional or national analysis, we focus on one state, Pennsylvania. Asthma
in Pennsylvania is a serious concern. In 2017, the current asthma prevalence rate in Pennsylvania for
adults was reported at 10.9%; that is far higher than the average rate among adults in the U.S. (7.6%)
(Henry J Kaiser Family Foundation (2017)). Philadelphia, Allegheny, Delaware, Montgomery, and
Berks are the counties with the highest number of asthma hospitalizations, while Sullivan, Forest,
Juniata, Cameron, and Fulton counties have the lowest number of asthma hospitalizations.

According to 2015 Pennsylvania asthma fact sheet in 2013, the average cost for inpatient hospi-
talization was $26,952 which is signi�cantly higher than the national average ($6,600) (Pennsylvania
Department of Health (2015)). While the cost involving asthma hospitalization in Pennsylvania is
much higher than the U.S. average, there are other states, such as California and Wisconsin where
the average cost per asthma hospitalization is also much higher than the U.S. average. For example,
the average cost per asthma hospitalization in California in 2010 was $33,749. The total health care
cost involving asthma and absenteeism for 2010 was estimated to be approximately $1.7 billion in
Pennsylvania. With an almost 50 percent increase projected by 2020, asthma costs are estimated
to be approximately $2.6 billion, which is an increased burden on the state economy at 0.34% of
the state GDP as of 2017.

5 Models

A spatial regression model is used to investigate the impacts of PM2.5 concentrations on asthma
hospitalization. Spatial regression models di�er from regression models by inclusion of a spatial
interrelationship between observations of geographic areas such as cities, counties, states, or even
countries (Elhorst (2014)). In a spatial model, each observation belongs to a location whereas
observations in a non-spatial regression are independent (LeSage and Pace (2009)). This locational
linkage is a fundamental point for the observation dependency assumption in spatial regression.

Among the three types of spatial interaction e�ects, this study focuses on exogenous interactions
among the independent variable (X). The spatial lag of X model (SLX) assumes that the depen-
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dent variable for each observational unit depends on an independent variable from other units of
observations.

Independentvariablexofunit j←→ Dependentvariableyofunit i (1)

A SLX model can be expressed as

Y = αιN +Xβ +WXθ + u (2)

where Y is asthma hospitalization,WX denotes the interaction among the independent variables. β
and θ represent a K × 1 vector of parameters to be estimated. W is the spatial weight matrix which
accounts for identi�cation of neighbors. There are four types of spatial weight matrices commonly
used in applied studies: (i) p-order binary contiguity matrices. Contiguity weight matrices assume
only those units of observations that share a common border are neighbors (p = 1 also called �rst-
order neighbors). When p = 2, neighbors and neighbors of neighbors are considered and so on; (ii)
inverse distance matrices are based on distance between observation i and j; (iii) q-nearest neighbor
matrices when q is a positive and an integer number de�ned based on the research question by the
researcher; and (iv) block diagonal matrices when a group of units have intercorrelation with each
other, but not with the rest of the observations (Elhorst (2014)).

As pointed out by Anselin and Rey (1991), the proper choice of a spatial weight matrix is an
important issue in empirical research. Generally, all mentioned forms of neighbors in spatial models
deal with symmetric weight matrices. However, sometimes the most accurate de�nition of neighbors
does not follow a symmetric form. Commuting �ows in the transportation literature and regional
labor market performance are two well-known examples of asymmetric spatial weight matrices.
More related to our study, Chen et al. (2018)) capture the e�ect of wind direction on the PM10

concentrations at the municipal level in China as an example of a dynamic and asymmetric spatial
weight matrix dependent on weather patterns.

Yang et al. (2017) and Yang and Chou (2015) explore the e�ects maternal exposure to downwind
sulfur dioxide levels on the occurrence of low birth weight (LBW). They used zip code level of
observations and control for wind direction by implementing a four-step procedure. Since these two
studies did not apply a spatial regression model, this research is motivated by Cheng et al. (2014)
and Chen et al. (2018) who introduce dynamic, asymmetric weight matrices into tra�c modeling
and PM10 concentrations, respectively. These authors argue that for some cases, such as network
data and PM10 concentrations, a general homogeneous spatial weight matrix is inadequate and we
need to apply a heterogeneous (and/or dynamic) spatial weight matrix.

Applying this same rationale, our study introduces an empirical model based on a weight matrix
built upon prevailing wind direction. Based on this prevailing wind pattern, unit i is considered a
neighbor for unit j if and only if it is located upwind of j. Since unit j is downwind of unit i, unit
j is not considered a neighbor for unit i. Following this logic, a weight matrix is constructed based
upon the annual average prevailing wind map for Pennsylvania counties (World Forecast Directory
(2019)).

Figure 3 shows the annual prevailing wind directions in the U.S. Based upon this map, the
prevailing wind direction in Pennsylvania is southwest to northeast. According to this prevail-
ing wind direction, for instance, Washington County is considered to be a neighbor of Allegany
and Westmoreland Counties, but Allegany County or Westmoreland County are not neighbors for
Washington County. Since a weight matrix needs to be exogenous to the estimation procedure, a
geographical weight matrix based upon prevailing wind direction �ts this requirement. The notion
of geographical proximity has been applied widely in previous literature (e.g., Ja�e (1989); Ja�e
et al. (1993); Attila (2000); Chagas et al. (2016)).
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Figure 3: Annual prevailing wind direction

In addition to ambient PM2.5 concentrations, empirical studies have shown several other factors
are associated with asthma incidents. Included among the independent variables are: smoking rate
(Chen et al. (1999); Thomson et al. (2004); Gilliland et al. (2006))), population density (Leinberger
(2010); Solé et al. (2007)), and Hispanic population (Center For Disease and Control (2013a)). Each
control variable is expected to be positively correlated with asthma incidence. Per capita income
level has been shown to be negatively correlated with asthma incidence (Kozyrskyj et al. (2010)),
while weather variables of precipitation and humidity have had mixed e�ects in the literature (Jerrett
et al. (2008); Ho et al. (2007)).

The empirical model is de�ned as:

AsthmaHospitalizationit = β0 + β1PM2.5Concenterationsit + β2Precipitationit

+β3SmokingRateit + β4PopulationDensityit + β5HispanicPopulationit

+θWPM2.5Concenterationsjt + νi + ωt+ εit

(3)

where AsthmaHospitalization stands for the asthma hospitalization number in county i and time
t, PM2.5 Concenterations represents PM2.5 concentrations in county i and timet, SmokingRate is
the smoking rate in county i and time t, PopulationDensity shows the population density in county
i and time t, Precipitation shows the precipitation in county i and time t, HispanicPopulation is the
percent of Hispanic population in county i and time t, while νi and ωt are county and year �xed
e�ects, respectively. With county �xed e�ects, there is not a need to control for the availability of
hospitals in each county as the number of hospitals in each county does not change very much over
time. The term WPM2.5 concenterations denotes the spatial components of PM2.5 concentrations.
θ represents the spillover e�ects of PM2.5 concentrations. This coe�cient explains the e�ects of
PM2.5 concentrations of neighboring county (j) on the asthma hospitalization in county (i).

Elhorst (2014) notes that "for the speci�cation of more complicated behavioral hypotheses,
including e�ects" (time �xed e�ect, space �xed e�ect, and two-way �xed e�ect) (p. 2). Spatial
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units have unique characteristics which are not always possible to control for all of them. Panel
estimation introduces a dummy variable for spatial units in the estimation to capture unobservable
predictors for units νi. Our model also controls for time �xed e�ects to capture unobservable
predictors over time (ωt).

6 Data

Data for constructing the empirical models come from di�erent sources. The number of hospital-
izations for asthma are derived from the National Environmental Public Health Tracking Program
(NEPHTP) for 2001-2014 and classi�ed using the International Classi�cation of Diseases, ninth
Revision (ICD-9). The data covers ICD-9-CM: 493.XX diagnosis codes. More asthma related indi-
cators such as asthma prevalence among adults, asthma prevalence among children, and emergency
department visits for asthma are reported, but only over a more limited number of years and states.
By de�nition, hospitalization data does not include asthma among individuals who do not receive
medical care or who have not been hospitalized, including those who die in emergency rooms, in
nursing homes, or at home without being admitted to a hospital, and those treated in outpatient
settings. NEPHTP provides asthma hospitalization information by counties for 28 selected states.
Data are based on the date of admission rather than the date of discharge. Data represents the
number of admissions rather than the number of individuals admitted to the hospital. In most
cases, admissions of residents to out-of-state hospitals are excluded. Data are based on the county
of individual residency.

For the independent variable of interest, we created a measurement of annual PM2.5 concen-
trations level based on data provided by CDC-NEPHTP. NEPHTP reports di�erent air quality
indicators, such as air toxics, mortality bene�t associated with reducing PM2.5 concentrations level,
and days above regulatory standard for Ozone and PM2.5. PM2.5 concentrations levels are based
on seasonal averages and daily measurement for monitor and modeled data. A Downscaler (DS)
model is applied to predict the measurements for county and day observations with missing values
in monitoring data. The data generation process in DS is based on statistical fusion of the Air Qual-
ity System (AQS) and Community Multiscale Air Quality (CMAQ) model-predicted concentration
values. AQS was used for observations with monitoring data.

Population data come from the Bureau of Economic Analysis (BEA), while population break-
downs by race are provided by the National Bureau of Economic Research (NBER). Precipitation
data are collected through PRISM climate group is supported by the USDA Risk Management
Agency, and the National Center for Biotechnology Information published cigarette smoking preva-
lence in U.S. counties. Finally, for the spatial weight matrix, a shape �le of Pennsylvania counties
consisting of the latitudinal and longitudinal coordinates of all the 67 counties is adapted from the
U.S. Census Bureau (Tiger) report.

Contiguity and neighborhoods in spatial analysis play vital roles (Tobler (1970)). To control
for spillover e�ects of PM2.5 concentrations, 67 contiguous counties were included in our analysis.
Wind map of the United States and World Forecast Directory, El Dorado Weather, Inc. are used to
make the weight matrix. Descriptive statistics for each variable are reported in Table 1 along with
the expected signs of PM2.5 concentrations and the control variables.

Our motivation to work with a spatial model in this analysis is based upon air pollution move-
ment tied to geographical distance. One should expect to see the residence of downwind locations
being a�ected by air pollution levels from upwind areas. Before we analyze the model in a spatial
regression framework, we used an intuitive way to identify asthma hospitalization clusters. Figure
4 shows the map of asthma hospitalization for 2014, the last year of the dataset. Some spatial
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Table 1: Descriptive Statistics

Variable Mean Standard Min Max Expected
Deviation sign of

coe�cient

Asthma Hospitalization (Number) 325.68 919.18 1 8,132
PM2.5 Concentrations (µ/m3) 12.23 2.42 7.8 23.3 +
Smoking Rate (%) 19.67 2.95 9.04 25.7 +
Precipitation (Inches) 46.03 8.54 24.73 83.86 +
Per Capita Income (Thousand dollars) 33,725 8,343 18,263 75,835 -
Population Density (Pop./mi2) 446.87 1,330.46 12.04 10,911.16 +
Hispanic Population (Thousand People) 9,472 24,034 19 213,487 +
Hispanic Population 19 and below (Thousand People) 3,811 9,467 8 78,000 +
Number of observations 938

clusters are obvious in 2014. Allegany county, Washington county and Westmorland county in the
Southwest of the state had the highest category of asthma hospitalization. In addition, another
cluster in the Southeast of the state followed the same pattern.

The next step after visualizing asthma hospitalization among counties is to detect spatial au-
tocorrelation. To test for asthma hospitalization autocorrelation, we applied the 1st-order spatial
autoregressive (FAR) estimates code written by James P. LeSage, available through the spatial
econometrics Toolbox for Matlab. FAR output includes the rho coe�cients that indicates the au-
tocorrelation between a dependent variable and a dependent variable in surrounding neighbors.

Table 2 shows the results for the 1st-order spatial autoregressive estimates for two points of time
and its z-probability. These tests reveal that there is a signi�cant spatial autocorrelation among
counties in Pennsylvania. This means that Pennsylvania asthma hospitalization numbers tend to
be clustered together.

7 Results

The objective of this study is to investigate both the in-county and out-of-county e�ects of PM2.5

concentrations on asthma hospitalization. To be able to respond to this question by estimating
a two-way �xed e�ect spatial panel model, we tested the null hypothesis that the spillover e�ects
of PM2.5 concentrations is statistically di�erent from zero. As discussed in the previous sections,
�nding an accurate algorithm to deal with the spillover between pollutants and asthma matters.
The weight matrix which de�nes the neighbors based on wind direction was determined to be the
most accurate algorithm to investigate spillover e�ects of the pollution. To do a placebo test and
check the reliability of the model, we tried applying a di�erent weight matrix by using the reverse
prevailing wind direction and the results shows statistically insigni�cant indirect e�ects.

The estimated results for the model are reported in Table 3. The PM2.5 concentrations variable
has a positive and signi�cant coe�cient, meaning that there is a positive, within county correlation
between PM2.5 concentration and asthma hospitalization. A one microgram per cubic meter increase
in PM2.5 concentrations is associated with approximately 27 more asthma hospitalizations within the
county where this increased concentration occurs. The indirect e�ects of the PM2.5 concentrations
are shown by the coe�cient of PM2.5 concentrations in neighboring counties' variable (Table 3). This
coe�cient is positive and statistically signi�cant, meaning that asthma hospitalizations increase with
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Table 2: 1st-order spatial autoregressive Rho for Pennsylvania asthma hospitalization

2001 2014

Rho 0.334 0.325
z-probability 0.027 0.032

increasing PM2.5 concentrations in upwind counties. A one microgram per cubic meter increase in
PM2.5 concentrations in county i is associated with approximately 20 more asthma hospitalizations
in downwind counties.

Other positive and statistically signi�cant in�uences on asthma hospitalization include the per-
centage of smokers in a county, the density of the county's population, and the number of Hispanics
in the population. A 1% increase in smoking rate is associated with approximately 11 more asthma
hospitalizations within a county, while the positive e�ects of higher population density and a greater
Hispanic population are much smaller than smoking.

In addition to PM2.5 concentrations, the percentage of smokers in a county is another variable
in our model that is alterable by public policy. While neither the health e�ects of smoking nor
PM2.5 concentrations are limited to asthma prevalence (heart disease, stroke, cardiovascular disease,
chronic obstructive pulmonary disease (COPD), and lung cancer increase with smoking), it is worth
considering the comparative public health bene�ts from policies focusing on smoking rate reduction
versus lowering of PM2.5 concentrations. We calculate the impacts of reducing both the smoking
rate and PM2.5 concentrations by 10 percent from their current mean value over all counties. The
results show that the e�ects of reducing PM2.5 concentrations on asthma hospitalization is more
than 2.5 times higher than the impacts of reducing smoking rate (58 vs. 22 less hospitalizations).
Since the constant term in a �xed e�ect panel estimate that includes both year and county �xed
e�ects is essentially not interpretable, we provide no explanation for the constant in this model.

Finally, to check the consistency of the results, other population breakdown variables based
on race, gender, and age are introduced into the model. The estimated results based upon these
new control variables are reported in Table 4. The three new variables introduced into the model
are: Hispanic population age 19 and below (Model 1), Hispanic female population (Model 2), and
Hispanic female population age 19 and below (Model 3). The relative magnitude and the sign
of the indirect e�ects of PM2.5 concentrations remains unchanged from Table 3. These results are
consistent with other studies, such as Lwebuga-Mukasa et al. (2004)) who found positive correlations
between asthma and demographics such as the Hispanic population, the female population, and
children 18 years old and under.

8 Conclusions and Policy Implications

The objective of this study is to understand the asthma related health impacts from PM2.5 con-
centrations. More speci�cally, the impact of PM2.5 concentrations on asthma hospitalization in
Pennsylvania is investigated. A balanced panel of 67 counties in Pennsylvania over fourteen years
(2001-2014) is applied to estimate the e�ects and capture the spillovers from PM2.5 concentrations
across counties. In this research, we identify an important aspect missing in the health impact
analysis literature of ambient air pollution - the presence of statistically signi�cant spatial auto-
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Figure 4: Asthma hospitalization in Pennsylvania counties 2014

Table 3: Asthma hospitalization estimation results for the SLX model

Variable SLX model

PM2.5 Concentrations 27.403***
(0.000)

Smoking Rate 11.262***
(0.006)

Precipitation -0.695
(0.419)

Per Capita Income 1.793
(0.207)

Population Density 0.601***
(0.000)

Hispanic Population 3.483***
(0.000)

PM2.5 Concentrations in neighboring counties 19.980***
(0.000)

Constant -806.779***
(0.000)

Year �xed e�ect Yes
County �xed e�ect Yes

Adjusted R-squared 0.94

Number of Observations 938

Note: Numbers in the parentheses represent P-values
*, **, and *** refer to 10% 5%, and 1% signi�cance levels, respectively.
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Table 4: Asthma hospitalization estimation results for the SLX model (robustness check)

Variable Model 1 Model 2 Model 3

PM2.5 Concentrations 27.080*** 27.582*** 27.155***
(0.000) (0.000) (0.000)

Smoking Rate 11.025*** 11.314*** 11.116***
(0.007) (0.005) (0.006)

Precipitation -0.685 -0.698 -0.686
(0.426) (0.417) (0.426)

Per Capita Income 1.807 1.953 1.856
(0.204) (0.170) (0.192)

Population Density 0.607*** 0.600*** 0.606***
(0.000) (0.000) (0.000)

Hispanic Population 19 and below 8.043*** - -
(0.000)

Hispanic Female Population - 7.049*** -
(0.000)

Hispanic Female Population 19 and below - - 16.836***
(0.000)

PM2.5 Concentrations in neighboring counties 19.963*** 19.865*** 19.955***
(0.000) (0.000) (0.000)

Constant -799.220*** -812.815*** -803.308***
(0.000) (0.000) (0.000)

Year �xed e�ect Yes Yes Yes
County �xed e�ect Yes Yes Yes

Adjusted R-squared 0.94 0.94 0.94

Number of observations 938 938 938

Numbers in the parentheses represent P- values
*, **, and *** refer to 10% 5%, and 1% signi�cance levels, respectively.
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correlation among the number of county level asthma hospitalizations. This presence implies that
the ordinary least square estimations (non-spatial models) may lead to a biased result and un-
derestimate the overall impact of PM2.5 concentrations on asthma hospitalization. Spatial models
incorporate the intercorrelation between county level PM2.5 concentrations and thereby capture the
spillover e�ects of these concentrations. In addition, applying spatial analysis without correctly
employing wind direction to identify each unit's neighbors also generates inaccurate estimations of
PM2.5 concentrations impacts. Putting into practice the proper upwind and downwind relationships
between counties within an ambient air pollution impact assessment is a key element to derive a
precise impact estimations.

Our results suggest that county level PM2.5 concentration is important explanatory factor in
asthma hospitalization. This �nding is similar to the ï¬�ndings of numerous studies, including Glad
et al. (2012), Mann et al. (2010), Meng et al. (2010), Liu et al. (2008), Jacquemin et al. (2012),
Malig et al. (2013), Samoli et al. (2011), and Silverman and Ito (2010). While there are several
GIS-based studies focused on the locational impacts of asthma (Yap et al. (2013); Crighton et al.
(2012); Hanchette et al. (2011)), the asthma hospitalization impacts from PM2.5 concentrations
occurring in upwind counties have not been discussed in the literature before.

This study shows one-unit increase in PM2.5 concentrations is associated with 47 more asthma
hospitalizations within both the county and in downwind counties. Considering the average charge
for inpatient hospitalization in Pennsylvania ($26,952), the total annual cost of one unit increase in
PM2.5 concentrations in one county in Pennsylvania involving asthma hospitalization is on average
$1.29M ($754,656 direct and $539,040 indirect). Thus, ambient air pollution represents a regional
issue rather than one related speci�cally to attainment or non-attainment of air quality standards
at the county level.

There is a wide range of asthma hospitalizations across Pennsylvania counties. For example,
in 2014 there were four counties with less than 10 reported asthma hospitalizations and, at the
same time, the upper bound of asthma hospitalization among Pennsylvania counties was more than
5,000. Thus, since our direct and indirect estimates re�ect average e�ects of PM2.5 concentrations
across all counties, they probably are more re�ective of urban/suburban counties rather than rural
counties with small population size.

This study's �ndings have policy implications for both federal and local governments. In De-
cember 2012, EPA reduced PM pollution standards by tightening the annual PM2.5 standard from
15 to 12 µ/m3. Even small changes at lowering the standard could have signi�cant impacts on
public health. Giannadaki et al. (2016) note that governments continue to adopt stricter limits for
annual mean PM2.5 level. As shown in this research, lower limits for PM2.5 concentrations lead to
substantial reductions in at least one negative human health outcome - asthma hospitalizations.

Although ambient air pollution has gained more attention for many years and there has been
implementation of many regulations and air quality standards to help control pollution levels, still
more work needs to be done. As one example, if the existing method to calculate the PM2.5-
attributable health e�ects is not capturing the spillover e�ects, this study recommends the inclusion
of the out of area health e�ects of PM2.5 concentrations in the consideration of setting or revising
primary PM standards. Because the regulation of pollutants is an economic burden for the power
generation sector and society in general (Curtis (2018)), the most accurate accounting of human
health e�ects is needed when considering pollution standard reductions - i.e. those which incorporate
spillovers e�ects. Since nonattainment designations along with their incumbent increased regulation
on pollution dischargers happen at city and county levels, the spillover bene�ts from these additional
regulations need to be considered as the human health impacts of air pollution knows no boundaries.

Several limitations in the research are recognized. First, to account for wind patterns, future
research should consider a more detailed algorithm that involves wind speed and wind rose when
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computing a weight matrix. Wind rose is a diagram that shows the relative frequency of wind direc-
tion in a particular place. In practice, wind direction and speed change over time, so to investigate
the e�ects of ambient air pollution, one needs to continually adjust the neighbors according to the
frequency of wind direction and speed. For this research, corresponding information about direction
and speed were not available for each county and each year. Thus, the empirical results found here
may change with more accurate data of wind patterns.

Second, asthma hospitalization is currently the only data available at the county level for Penn-
sylvania. Access to asthma prevalence and asthma emergency department visits data for conducting
new estimations using these asthma related incidents would provide researchers with a better es-
timation of PM2.5 impacts. Finally, expanding the study region by applying all U.S. counties will
provide a better understanding of the health impacts of the pollution. Unfortunately, data for all
the counties in the U.S. are not available in this point. Having access to these point data pollution
levels may enable the researchers to achieve results that are more accurate. Unfortunately, the
pollution data for points in county level in a time series is not readily available. One would expect
point source data on pollution show greater e�ects on asthma hospitalization.

Further research should consider improving on the above limitations by imposing a more accurate
wind pattern, expanding estimations to include emergency department visits and asthma prevalence,
and a county level analysis on the national level are recommended for future works. The current
outcome does contribute to the literature by examining the impact of ambient air pollution on
human health by speci�cally documenting and estimating the cost of asthma spillover e�ects across
Pennsylvania counties from PM2.5 concentrations.
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