

West Virginia Agricultural and Forestry Experiment Station Bulletins Davis College of Agriculture, Natural Resources And Design

1-1-1915

Experiments with Fertilizers

Firman E. Bear

Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins

Digital Commons Citation

Bear, Firman E., "Experiments with Fertilizers" (1915). *West Virginia Agricultural and Forestry Experiment Station Bulletins*. 155. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/155

This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

* "I

-0 -0

EXPEND IN STATEONE Bulletin 155

West Virginia University Agricultural Experiment Station MORGANTOWN, W. VA.

DEPARTMENT OF SOILS

Experiments With Fertilizers

No Fertilizers

HAY 1915

Fertilizer

THE STATE OF WEST VIRGINIA

Educational Institutions

THE STATE BOARD OF CONTROL

JAMES S. LAKIN, President_____Charleston, W. Va. A. BLISS McCRUM,_____Charleston, W. Va. J. M. WILLIAMSON,_____Charleston, W. Va. The State Board of Control has the direction of the financial and business affairs of the state educational institutions.

THE STATE BOARD OF REGENTS

M.P.SHAWK	EY, State S	uperintendent of Schools,		
	Preside	ntCharleston,	W.	Va.
GEORGE S. I	LAIDLEY	Charleston,	w.	Va.
ARLEN G. S	SWIGER	Sistersville,	w.	Va.
EARL W. OG	GLEBAY	Wheeling,	w.	Va.
JOSEPH M.	MURPHY_	Parkersburg,	W.	Va.
The Stat	Doord of	Demonta has sharped of all matters of		no I TT

The State Board of Regents has charge of all matters of a purely scholastic nature concerning the state educational institutions.

The West Virginia University

FRANK B. TROTTER, LL.D_____Acting President

AGRICULTURAL EXPERIMENT STATION STAFF

TOTIN LEE COULTER MS Am Ph D	Director
DEDT I HITE MS	Vice-Director and Chemist
W E DIMORY DO Am	State Entomologist
W. E. RUMBEI, D.S. Agr	Diant Dathologist
N. J. GIDDINGS, M.S.	Plant Pathologist
HORACE ATWOOD, M.S. Agr	Poultryman
I. S. COOK, JR., B.S. Agr	Agronomist
W. H. ALDERMAN, B.S. Agr	Horticulturist
L. M. PEAIRS, M.S	Research Entomologist
*O. M. JOHNSON, B. S. Agr	Farm Management
E. W. SHEETS, M.S. Agr	Animal Husbandry
FIRMAN E. BEAR, M.Sc.	
C. A. LUEDER, D.V.M	Veterinary Science
†L. I. KNIGHT, Ph.D	Plant Physiologist
A. L. DACY, B.Sc	Associate Horticulturist
FRANK B. KUNST, A.B	Assistant Chemist
CHARLES E. WEAKLEY, Jr.	Assistant Chemist
J. H. BERGHUIS - KRAK, B.Sc.	Assistant Chemist
ROBERT SALTER, M.S. Agr	Assistant Soil Chemist
ANTHONY BERG, B.S.	Assistant Plant Pathologist
E. C. AUCHTER, B.S. Agr.	Assistant Horticulturist
L F SUTTON, B.S., B.S. Agr.	Assistant Horticulturist
R. R. JEFFRIES, R.S. Agr.	Assistant Horticulturist
H L CRANE B.S. Agr.	Assistant Horticulturist
W B KEMP BS Agr	Assistant Agronomist
HENRY DORSEY BS Agr	Assistant Agronomist
E L ANDREWS BS Agr Age	stant in Poultry Hushandry
*A I DADISMAN MS Agr	Farm Management
I I VOKE BS Agr Acc	istant in Animal Huchandry
A C RACSDALE BS Acr	istant in Animal Husbandry
A I SWIFT BS Agr	istant in Animal Husbandry
T D UTIVETT DC Am	istant in Animal Husbandry
*C U SCUEDEFILIS	Tobacca Empandry
A WILE DO ANT	te of robacco Experiments
U. M. KILE, D.S. Agr	Editor
W. J. WHITE	Bookkeeper

*In co-operation with U. S. Department of Agriculture. †In co-operation with the University of Chicago.

FERTILIZER FACTS.

Summarized from 15 years' experiments at the West Virginia Agricultural Experiment Station on the basis of crop values assumed in this bulletin.

1. Every ton of manure applied alone has produced an increase per ton, valued at \$3.12.

2. Every dollar's worth of acid phosphate applied alone has given an average of \$4.63 worth of increase.

3. Every dollar's worth of nitrate of soda applied alone has given an average of \$.34 worth of increase.

4. Every dollar's worth of sulphate of potash applied alone has given an average of \$.37 worth of increase.

5. Nitrate of soda and acid phosphate applied in combination have given 2¼ times as much increase per acre as acid phosphate alone, and \$2.19 worth of increase for every dollar invested.

6. Nitrate of soda, sulphate of potash and acid phosphate applied in combination have given three times as much increase per acre as acid phosphate alone and \$2.32 worth of increase for every dollar invested.

7. Every dollar invested in lime and applied in connection with complete fertilizer has given an increase valued at \$1.35. PLOT

DIAGRAM OF FERTILITY PLOTS PLOTS ONE-TENTH ACRE EACH

No Fertilizer

Nitrate of Soda, Acid Phosphate, Sulphate of Potash, Lime

Manure and Lime

No Fertilizer

Lime

Ash of Manure and Nitrate of Soda

No Fertilizer

Manure

Nitrate of Soda, Acid Phosphate and Sulphate of Potash

No Fertilizer

Acid Phosphate and Sulphate of Potash

Nitrate of Soda and Sulphate of Potash

No Fertilizer

Nitrate of Soda and Acid Phosphate

Sulphate of Potash

No Fertilizer

Acid Phosphate

Nitrate of Soda

No Fertilizer

Experiments With Fertilizers

By FIRMAN E. BEAR

The West Virginia Agricultural Experiment Station has conducted a series of fertilizer experiments since 1900 on the Experiment Station farm at Morgantown. Three bulletins, numbers 99, 112 and 131, have been published, giving the results of the fertilizer tests. The present publication is intended as a summary of the former bulletins together with additional data secured since the publication of Bulletin No. 131.

Plan of the Experiments.

The original plan of these experiments was devised by Horace Atwood. A part of the station farm lying along the Morgantown and Pt. Marion pike was laid off in tenth acre plots. Each plot was made two rods wide and eight rods long with a three foot space between plots. The plots were numbered serially from 18 to 36. In order to determine whether there was any in-equality in the soil every third plot was left unfertilized. Accordingly, plots 18, 21, 24, 27, 30, 33 and 36 are no-fertilizer, or check plots. Three of these check plots have been discarded as checks.

The tile drain passing near plot 18 became stopped up and the yields were abnormal.

Plot 24 had been used as a check until 1913 when by mistake this plot was given an application of manure intended for plot 25. Although the manure was raked off with a hand rake a few days later, the plot was ruined as a check plot. The yield of wheat on this plot in 1914 was 19.83 bushels per acre as compared to 5.92 bushels, the average of the other check plots. The yield of hay on plot 24 in 1915 was 2,660 pounds per acre as compared to 198 pounds, the average of the other checks.

It became necessary to discard plot 36 because this plot had a tendency to wash and did not give a fair check.

In the original report of the experiments the increase produced by the use of fertilizer was computed by taking the average of the two nearest check plots and subtracting this from the yield of the fertilized plot. Since three of the check plots were discarded it was found necessary to take the average of all the remaining checks and subtract this from the yield of the plots receiving fertilizer.

The yield of the remaining check plots indicate that the soil is naturally fairly uniform in productivity. The total produce of these check plots since 1900 is as follows:

		Pounds	Produce
Plot	21		38,500
Plot	27		41,940
Plot	30		39,250
Plot	33		36,615

The soil on which these fertilizer tests are being conducted is mapped by the U. S. Bureau of Soils as Dekalb silt loam. It has been formed by the disintegration of the grayish shales and fine grained sandstone overlying the Pittsburg vein of coal. The soil is naturally well drained, and easily tilled but has a tendency to dry out too rapidly. It is only moderately productive normally but can be made very productive if well treated. The original timber consisted mostly of oak and chestnut.

The Crops Grown.

No definite rotation was adopted but a variety of crops were grown in order to determine the effect of fertilizer treatment on a number of different crops.

Since 1900 there have been three crops of corn, two crops each of timothy, rye, clover, and wheat and one crop each of oats, cowpeas, potatoes, and timothy and clover mixed.

Fertilizer Treatment.

In order to magnify the effect and overcome the element of time to a certain extent, very liberal applications of fertilizer were made. The first application of fertilizer was made in the spring of 1900 as a top dressing on rye. Later applications have been made with a fertilizer drill, the fertilizer being applied immediately before planting the seed. In 1902 for the crop of clover, in 1907 for the crop of rye, and in 1908 and 1914 when the plots were seeded to timothy and clover no fertilizer was applied to any of the plots. The first year the carrier of phosphoric acid was Thomas slag, since then acid phosphate has been used.

6

The following shows the amount and kind of fertilizer applied annually to each plot, with the exceptions noted:

Plots 18, 21, 24, 27, 30, 33 and 36. No fertilizer.

Plot 19. 40 pounds sodium nitrate; 40 pounds acid phosphate; 15 pounds potassium sulphate (20 pounds in 1906); 100 pounds lime in 1900, 150 pounds lime in 1906 and 200 pounds lime in 1912.

Plot 20. Two tons stable manure; 100 pounds lime in 1900, 150 pounds lime in 1906, and 200 pounds lime in 1912.

Plot 22. 100 pounds lime in 1900 and in 1903, 150 pounds in 1906, and 200 pounds in 1912.

Plot 23. Ash from two tons of stable manure, together with an amount of nitrogen in the form of sodium nitrate equivalent to the nitrogen originally present in the stable manure. Applications made in 1900 and in 1901. Since then no further applications until 1912 when it received 40 pounds of a 4-16-4 fertilizer.

Plot 25. Two tons stable manure applied annually except in 1903.

Plot 26. 40 pounds sodium nitrate; 40 pounds acid phosphate; 15 pounds potassium sulphate (20 pounds in 1906.)

Plot 28. 40 pounds acid phosphate: 15 pounds potassium sulphate (20 pounds in 1906).

Plot 29. 40 pounds sodium nitrate; 15 pounds potassium sulphate (20 pounds in 1906).

Plot 31. 40 pounds acid phosphate; 40 pounds sodium nitrate.

Plot 32. 15 pounds potassium sulphate (20 pounds in 1906).

Plot 34. 40 pounds acid phosphate.

Plot 35. 40 pounds sodium nitrate.

1902, 1907, 1908, 1914 and 1915 no fertilizer applied on any of the plots.

1913 only 1/2 of original applications of fertilizer.

Total Amounts of Fertilizers Applied Per Acre From 1900 to 1915 Inclusive.

	Plot	Nitrate of Soda Pounds per Acre	Acid Phos- phate Pounds per Acre	Sulphate of Potash Pounds per Acre	Lime Pounds per Acre	Manure Tons per Acre
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	4200	4200	1625	4500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20				4500	210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21					
23 30 Ash of 40 tons of manure until 1912 24 190 25 190 26 4200 1625 27 28 4200 28 4200 1625 30 1625 30 1625 30 1625 30 1625 33 1625 34 4200 35 4200	22				5500	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	30 Ash	of 40 tons of	manure until	1912	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25					190
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	4200	4200	1625		
28 4200 1625 29 4200 1625 30	27					
29 4200 1625 30	28		4200	1625		
30 31 4200 4200 32 1625 33 34 4200 35 4200	29	4200		1625		
31 4200 32 1625 33 34 34 4200 35 4200	30					
32 1625 33 34 4200 35 4200	31	4200	4200			
33 34 4200 35 4200	32			1625		
34 4200 35 4200	33					
35 4200	34		4200			
	35	4200				

Plot 21 No Fertilizer 100 lbs. Hay

Plot 22 Lime 750 lbs. Hay

October, 1915] EXPERIMENTS WITH FERTILIZERS

Plot 31 Nitrate of Soda Acid Phosphate 2590 Ibs. Hay Plot 34 1030 lbs. Hay Acid Phosphate

2
\overline{O}
1
4
2
G
6
E
C
D
5
2
PH -
д
í.
5
0
0
A
Z
5
Z
0
H

ы

07 rE Straw	3030	4860	360	330	280	260	000	DESC	000	1020	0e0	950	00400	0.077	000	10.00	590	
19 R) Grain	1170	2140	140	†130	170	140	1990	1170	0.111	Dat	0.00	160	001	0.01	140	120	016	
1906 POTATOES Tubers	6120	13060	2600	1520	2500	2610	11300	7030	2850	6360	3520	2140	3830	2630	2400	3800	2250	
1904 CORN Ensilage	27700	34700	11200	9800	15300	12100	34800	29000	12500	16100	15000	10900	18900	11800	8700	14100	10200	
COW PEAS Hay	6950	6750	1250	1200	2750	1350	6100	6300	2200	4400	2300	2100	5150	1950	2450	3650	2500	
03 RN Stover	6800	9400	3800	3200	5800	3650	6500	2000	3450	6200	3300	3600	2000	3750	3600	5750	3300	
19 CO Grain	6200	7700	2000	1620	4410	1770	5230	5620	1980	5160	1500	1820	5400	200)	1930	4570	1330	
1902 CLOVER Hay	0029	8850	2050	1500	7900	2100	9550	7250	2850	5500	2000	2650	7900	2500	2200	5400	2600	
AT Straw	3760	4560	1160	1490	3320	1830	4580	3950	1780	3350	1820	1650	3350	1670	1990	2610	1770	-
190 WHE Grain	1 1665	1840	1140	1010	1880	1070	1920	1750	1120	1550	1080	1050	1550	1030	1110	1390	930	
0 E Straw	3524	2762	2064	1813	4845	2070	3587	4317	2583	2739	3560	2540	4153	2678	2600	2810	3716	
190 RY Grain	2076	1578	1186	1077	2095	1100	1913	2463	1297	1411	1980	1340	2267	1402	1330	1360	1914	
FERTILIZER	N, K20, P205, Lime	Manure, Lime	No Fertilizer	Lime	Ash of Manure, N	No Fertilizer	Manure	N, K ₂ 0, P ₂ 0 ₅	No Fertilizer	P205, K20	N, K20	No Fertilizer	N, P205	K20	No Fertilizer	$P_{2}0_{5}$	N	
Plot	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	

*Plots sown to timothy and clover but on account of unfavorable weather very poor crop in 1908. Plots were mowed and hay left on ground.

†Calculated yields.

(Continued)
ACRE
PER
DUCE
PRO
OF
SUNDO
Å

÷												
	FERTILIZEK	TIMOTHY & CLOVER Hay	1910 TIMOTHY Hay	1911 ТІМОТНҮ Нау	19 Grain	12 RN Stover	19. 0A Grain	l3 TS Straw	B WHI Grain	I4 EAT Straw	1915 CLOVER Hay	T0TAL PR0DUCE
1	N, K ₂ 0, P ₂ 0 ₅ , Lime	5600	9006	0609	4630	4190	875	2625	1720	4380	5800	120605
	Manure, Lime	6500	10400	6240	5010	4600	1250	0009	1080	5420	7400	249000 1 5-2 4
	No Fertilizer	755	1305	1130	1500	2900	220	680	350	710	100	38600
	Líme	535	1240	1100	2470	3080	250	650	580	1270	750	30615
	Ash of Manure, N	490	1120	890	3550	4620	530	1170	1490	3060	2100	69270
	No Fertilizer	535	1180	906	.1330	1400	280	420	*1190	*3010	*2660	43075
	Manure	7800	9006	6640	4800	4400	1040	3760	1380	3420	5650	139670
	N, K20, P_2O_5	4700	8700	0609	4890	4450	800	1800	1590	3460	3250	117910
	No Fertilizer	505	1275	850	1550	2900	250	400	370	780	230	42170
	P205, K20	1640	3475	2280	3170	4020	620	1130	1230	2520	1440	76995
	N, K20	2125	3880	2390	2050	2300	380	820	560	890	360	52215
	No Fertilizer	202	1375	930	0061	1990	290	710	370	780	230	39480
	N, P_2O_5	4500	7300	4320	4080	4200	062	1410	1500	2450	2590	95940
	K20	430	1285	850	2330	2400	330	570	380	820	260	41565
	No Fertilizer	305	1260	570	1900	1920	300	550	330	022	230	36845
	$P_{2}0_{5}$	845	3410	2290	2100	2050	750	1250	560	066	1030	63415
	N	720	2885	1740	1400	1380	330	470	340	760	160	41195

*Abnormal yields due to an accidental application of manure which was subsequently removed with a rake.

~
H-
[-]
N
-
1
F-i
5.1
R A
6.3
H
(T
-
-
0
T.
C
[7]
5
H
0
. 1
5
E
i i i
k .
R
7
F -1
Η
Ē
01
<
I
N
H-
()
-
Z

Plot	FERTILIZER	1900 RYI Grain *	Straw Ibs.	1901 WHE. Grain S bu.	AT Straw Ibs.	1902 CLOVER Hay Ibs.	1903 COR Grain S bu.	N Stover Ibs.	COW PEAS Hay Ibs.	1905 CORN Ensilage Ibs.	1906 POTATOES Tubers bu.	190' RYI Bu.	Straw Ibs.
19	N, K20, P205, Lime	14.73	1153	9.45	2078	4330	61.43	3180	\$080	16620	60.00	18.32	2718
20	Manure, Lime	5.84	391	12.37	2578	6480	82.86	5780	4850	23620	175.67	35.64	4548
22	Lime	-3.11	-558	-1.47	-192	-870	-4.00	-420	-670	-1280	-16.68	25	18
53	Ash of Manure, N	15.07	1474	13.04	1638	5530	35.86	2180	880	4220	33	.45	-32
25	Manure	11.82	1216	13.70	2898	7180	47.57	2880	4230	23720	146.33	31.00	4108
26	N, $K_{2}0$, $P_{2}0_{5}$	21.64	1946	10.87	2268	4880	53.14	3380	4430	17920	75.17	18.32	2218
28	P_20_5, K_20	2.86	368	7.53	1668	3130	46.57	2580	2530	5020	64.00	12.61	1538
29	N, K20	13.02	1189	30	138	-370	-5.71	-320	430	3020	16.67	07	-52
31	N, P_2O_5	18.14	1782	7.53	1668	5530	50.00	3380	3280	7820	21.83	15.82	1958
32	K20	2.70	307	-1.13	-12	130	1.43	130	80	720	1.83	07	48
34	$P20_5$	1.95	439	4.87	928	3030	38.14	2130	1780	8020	21.33	11.18	1618
35	N	11.84	1345	-2.80	88	022-	-8.14	-320	630	-880	-4.50	1.18	-22
Averag Check	e Yield of Plots	22.32	2371	18.30	1682	2370	27.14	3620	1870	11080	42.00	2.57	312

W. VA. AGR'L. EXPERIMENT STATION [Bulletin 155

1	\sim , '													
	1915 CLOVER Hay Ibs.	5602	7202	552	1902	5462	3062	1242	162	2392	62	832	-38	198
	AT Straw Ibs.	3620	4660	510	2250	2660	2709	1760	130	1690	0:)	230	0	760
	1914 WHE/ Grain S bu.	22.75	12.08	3.75	18.92	17.08	20.58	14.58	3.42	19.08	.42	3.42	25	5.92
	s S Straw Ibs.	2073	5448	98	618	3208	1248	578	268	358	18	869	-82	552
	0AT 0AT Grain bu.	18.97	30.69	56	8.19	24.13	16.63	11.00	3.50	16.31	1.94	15.05	1.94	8.38
	N Stover Ibs.	1968	2378	828	2398	2178	2228	1798	78	1978	178	-172	-842	2222
	COR COR Grain S bu.	42.77	48.20	11.91	27.34	45.20	46.49	21.91	5.91	34.91	9.91	6.63	-3.37	23.37
	1911 TIMOTHY Hay Ibs.	5214	5364	224	14	5764	5214	1404	1514	3444	-26	1414	884	875
	1910 TIMOTHY Hay Ibs.	7721	9121	-39	-159	7721	7421	2196	2601	5021	80	2131	1606	1279
	1909 TIMOTHY & CLOVER Hay Ibs.	5039	6239	-26	12-	7239	4139	1079	1564	3939	-131	284	159	561
	FERTILIZER	N, K20, P205, Lime	Manure, Llme	Lime	Ash of Manure, N	Manure	N, K20, P ₂ 0 ₅	$P_2\Omega_5, K_2\Omega$	N, K20	N, P205	K20	P_2O_5	N	te Yield of Plots
	olot	19	20	22	23	25	26	28	29	31	32	34	35	Verag

INCREASE IN YIELD DUE TO FERTILIZERS (Continued

Į

N
н.
(TT)
-
N
22
1
\mathbf{H}
H
1 1
N.
Hora and a
r-1
5
E.
0
U.
É.
TT
\Box
-
\square
_
1.2
(T)
2
PE -
rs.
Q
- C - C - C - C - C - C - C - C - C - C
4
4
R
R A
ER /
ER /
PER /
PER /
E PER A
E PER A
SE PER A
ASE PER A
ASE PER 4
EASE PER A
EASE PER A
REASE PER A
REASE PER 4
CREASE PER 4
VCREASE PER
NCREASE PER 4
INCREASE PER 4
INCREASE PER A
FINCREASE PER A
F INCREASE PER 4
DF INCREASE PER 4
OF INCREASE PER 4
OF INCREASE PER A
E OF INCREASE PER 4
IE OF INCREASE PER 4
UE OF INCREASE PER A
UE OF INCREASE PER A
LUE OF INCREASE PER 4
ALUE OF INCREASE PER A
ALUE OF INCREASE PER A
VALUE OF INCREASE PER A

1907 RYE	\$20.54	38.10	14	.27	33.52	19.29	13.31	18	16.77		12.44	8.	\$2.71
1906 POTATOES	\$42.00	122.97	-11.67	-,23	102.43	52.62	44.80	11.67	15.28	1.28	14.93	-3.15	\$29.40
1905 CORN	\$33.24	47.24	-2,56	8.44	47.44	35.84	10.04	7.84	15.64	1.44	6.04	-1.76	\$22.16
COW PEAS	\$35.56	34.16	-4.69	6.16	29.61	31.01	17.71	3.01	22.96	.56	12.46	4.41	\$13.09
1903 CORN	\$47.88	68.30	-3.65	28.76	38.12	42.99	36.72	-4.51	40.95	1.26	30.12	-8.09	\$26.69
1902 HAY	\$30.31	45.36	-6.09	38.71	50.26	34.16	21.91	-2.59	38.71	.91	21.21	-1.61	\$16.59
1901 WHEAT	\$14.18	18.95	-1.88	16.48	20.27	16.00	11.32	90°	11.32	-1.10	6.95	-2.44	\$21.60
1900 RYE	\$13.92	5.36	-3.73	14.99	11.91	21.10	3.06	12.74	18.07	2.79	2.56	12.24	\$22.68
FERTILIZER	N, K20, P205, Lime	Manure, Lime	Line	Ash of Manure, N	Manure	N, K_20 , P_20_5	P205, K20	N, K20	N, P_2O_5	K20	$P20_5$	N	e Yield and Value of of Check Plots
Plot	19	20	22	23	25	26	58	29	31	32	34	35	Average Yield o

70	
ω	
Ē	
- 7	
	
77	
- 5	
~~~	
$\circ$	
$\sim$	
R	
r-1	
H	
N	
12	
1.5	
H	
Η	
<b>F</b>	
2	
H	
1-1	
щ	
H	
0	
2	
H	
-	
$(\mathbf{T})$	
0	
н	
E	
N	
14	
$\mathbf{O}$	
4	
~	
R	
[-]	
щ	
Д,	
1	
[2]	
1	
U,	
H	
N	
-	
0	
7	
4	
H	
1-	
H	
0	
Ý	
[-]	
щ	
5	
~	
H	
1	
.~	
>	
r .	

1915 CLOVER	\$39 21	50.41	3.80	13.31	38.23	21.43	8.69	1.12	16.74	.43	5.82	27	\$1.39
1914 WHEAT	\$30.66	23.13	4.84	23.60	22.88	26.30	18.25	3.58	22.36	.55	3.83	24	\$7.52
1913 0ATS	\$13.72	27.43	.00	5.24	18.88	10.60	6.40	2.25	9.49	.92	8.53	.66	\$5.15
1912 CORN	\$32.71	37.28	9.89	23.77	34.83	35.79	18.74	4.04	27.64	6.89	3.88	-4.30	\$20.75
1911 ТІМОТНҮ	\$36.50	37.55	1.57	.10	40.35	36.50	9.83	10.60	24.11	18	9.90	6.05	\$6.13
1910 ТІМОТНҮ	\$54.05	63.85	.27	1.11	54.05	51.95	15.37	18.21	42.15	.04	14.92	11.24	\$8.95
1909 TIMOTHY & CLOVER	\$35.27	43.67	18	50	50.67	28.97	7.55	10.95	27.57	92	1.99	1.11	\$3.93
FERTILIZER	N, K ₂ 0, P ₂ 0 ₅ , Lime	Manure, Linc	Lime	Ash of Manure, N	Manure	N, $K_20$ , $P_20_5$	$P_2O_5, K_2O$	N, K20	N, P205	K20	$P_2O_5$	N	e Yleld and Value of of Check Plots
olot	19	20	22	23	25	26	28	29	31	32	34	35	Verag

1/5

INCREASE.
íl.
0
Ξ
Ř.
4
Ř
H
<b>E</b>
2
7I
N
7
SI
P
Ĥ
X
Ð
3
A
R
H
2
<ul> <li>Image: A mage: A</li></ul>

Plot	FERTILIZER	First Five Years	Second Five Years	Third Five Years	15 Year Average	Yearly Cost of Fertilizer	Value of In- crease Less Cost of Fertilizer
ľ							
19	N, K20, P205, Lime	\$28.37	\$37.02	\$30.56	\$31.98	\$14.10	\$17.88
20	Manure, Line	34.43	63.17	35.16	44.25	6.	\$
22	Lime	-4.01	-2.86	4.03	-,9 ^r	.92	-1.87
53	Ash of Manure, N	21.02	1.82	13.20	12.01	6	\$
25	Manure .	30.03	57.62	31 03	39 56	ċ	\$
26	N, K20, P205	29.05	37.73	26.12	30.97	13.35	17.62
28	$P_{2}O_{5}, K_{2}O$	18.14	18.21	12.38	16.24	4.95	11.29
29	N, K20	1.74	9.70	4.32	5.25	11.11	-5.86
31	$N, P_2O_5$	26.40	23.48	20.07	23.32	10.64	12.68
32	K20	88.	88	1.72	66.	2.71	-1.72
34	$\mathbf{P20}_5$	14.66	10.06	6.33	10.37	2.24	8.13
35	N	6.51	1.65	.38	2.85	8.40	.5.55
Axera Acre Plots	ge Yearly Value per of Produce of Check	\$20.13	\$13.43	\$8.19	\$13.92	- 11-	



31 Nitrate of Soda and Acid Phosphate

29 Nitrate of Soda and Sulphate of Potash

28 Acid Phosphate and Sulphate of Potash

26 Nitrate of Soda, Acid Phosphate and Sulphate of Potash

19 Nitrate of Soda, Acid Phosphate, Sulphate of Potash and Lime

25 *Manure

*No estimate put on the cost of manure

The calculations of the value of the increase were made by using the average farm values of the products in West Virginia since 1900 as obtained from the Year Book of the U. S. Department of Agriculture, which were as follows: corn, \$.65; wheat, \$.95; oats, \$.45; rye, \$.75; hay \$14.00; ensilage, \$4.00; stover, \$5.00; straw, \$5.00. The following values were placed on the fertilizers and do not take into consideration the cost of delivering from the railway station to the farm and making the application: acid phosphate, \$16.00; nitrate of soda, \$60.00; sulphate of potash, \$50.00; lime, \$5.00. The fertilizer applications per acre during the experiment have totaled 4,200 pounds of nitrate of soda, 4,200 pounds of acid phosphte, 1,625 pounds of sulphate of potash, 4,500‡ pounds of lime and 190* tons of manure.

t 5,500 pounds lime on plot 22.

* 210 tons manure on plot 20.

#### CONCLUSIONS.

A study of the results from the experimental use of fertilizers at the West Virginia Agricultural Experiment Station justifies the following conclusions:

1. Manure is a material of sufficient fertilizing value to entitle it to more consideration than many farmers give it. Even when applied in such liberal quantities as it has been in these experiments, every ton of manure has produced an increase valued at \$3.12.

2. The importance of acid phosphate as a crop producer is such that one need not hesitate to buy and apply it in liberal quantities.

3. If we subtract the value of the increase produced by nitrate of soda alone, from the value of the increase produced by acid phosphate and nitrate of soda in combination, it appears that for every dollar invested in acid phosphate \$9.14 worth of increase crop was produced. This indicates that if more legumes had been grown on the soil and the amount of nitrogen in the soil had been increased thereby we could expect a greater return from the use of acid phosphate on the plot receiving acid phosphate alone.

18

#### October, 1915] EXPERIMENTS WITH FERTILIZERS

4. The return per dollar invested in acid phosphate is decreasing as the years go by, where acid prosphate is used alone. This is probably because of the fact that nitrogen is becoming a seriously limiting factor. If legumes had appeared oftener in the rotation, this decrease would probably not have taken place.

5. Under the system of farming practiced in this experiment, complete fertilizers would be more desirable than acid phosphate alone. But this is not an ideal farming system for the economical maintenance of fertility. No attempt has been made to keep up the supply of organic matter, no manure has been applied to the fertilizer plots and only one leguminous crop has been grown every five years.

6. The results indicate that the complete fertilizer would have been less profitable if some catch crop had been plowed under and legumes had played a more prominent part in the rotation.

7. In determining which fertilizing material or mixture of fertilizing materials is the most profitable several things must be taken into consideration. In applying the complete fertilizer we may secure a larger yield but we also have more crop to handle, more fertilizer to haul to the farm and apply, more money invested in fertilizer and consequently a heavier risk to run, against which we must be insured. The complete fertilizer in these experiments gave three times as much increase as acid phosphate alone. But there was two and one half times as much fertilizer to handle, twice as much crop to take care of and six times as much money invested in fertilizer.