WestVirginiaUniversity THE RESEARCH REPOSITORY @ WVU

West Virginia Agricultural and Forestry Experiment
Davis College of Agriculture, Natural Resources
Station Bulletins
And Design

1-1-1968

The nature of tension wood in black cherry

C. B. Koch
T.F.Li
J.R. Hamilton

Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins

Digital Commons Citation

Koch, C. B.; Li, T. F.; and Hamilton, J. R., "The nature of tension wood in black cherry" (1968). West Virginia Agricultural and Forestry Experiment Station Bulletins. 561.
https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/507

AUTHORS

C. B. Koxh and J. R. Hamilton are Wood sciemists and T. F. Li wan formerly a Graduate Shistam in the Division of Forestry.

Mtest Yirginia UNiotersity
Agricitaural Experinient Station
Colfige of Mgricultitre AND Forestry
A. 11. VANLinimoghan, Director

The Nature of Tension Wood in Black Cherry

Introduction

C. B. KOCH, T. F. LI and J. R. HAMILTON

BLACK CHERRY (Prmmes serotima Ehrh.) is one of the most valuable species of the Appalathian hardwood forests. Even the common grades of cherry lumber command prices comparable to, or in excess of, those paid for the better grades of many other speries. The wood is widely used in furniture manufacture because of its attactive figure and color. It is easy to season and, once dried, it exhibits combderable dimensional stability. For this reasom, it is in considerable demand for printer's blocks, patterns, scientific instruments and other products.

As a result of the large demand for black chemy and pasi hatresting practices, much of the present volume of this species comsists of trees of poor stem form which have originated mainly from sprouts. Such wees frequently exhibit considerable lean an well as excessive arook and sweep. It is significant, howerer, that many products for which cherry is particulaty desirable do not require dear boards of large vire. Thus trees with poorly formed boles may have considerable value if properly utilied, provided that the qualits of the wood is satisfatcors.

Crooked and leaning trees may contain abmomal wool which, in hardwoods, is termed temsion wood. The occurrence of tomion wood is often sporadic and mpredictable. but it is characterimicalls lound on the upper sides of leming stems and brandes. It is gencralls associ ated with eccentricity of pith and the presence of fiber with tumsual charateristics. When present, it constitutes a defer becanse it is difficult to machine smoothly and exhibits excenive tongitulinat hrinkage.

This study was moleraken 10 atsess the vignifiance of temion wood and its effect on the utilization of poonty formed black dhem trees.

Literature Review

Classically, the tem tension wood has been applied to mond loxatal in the upper part of leaning stoms and bathe hes in handwond ners Contemporary usage of the term implies the preseluce of litue whits differ physically and chemically from normal fibers will buthe at of to specific location. These abmormal fibers are termed owatan at bers because of the existence of a greatly thickened ell

It is now generally aceped that tension wood is formed in connection with movements of orientation in woody plants (29). Associated with this phenomenon are significant change in the anatomical, physical, and chemical characteristios of the wood (1,5, 14, 20).

Macroscopic Features-Tension wood exhibits some chatacteristics Which are readily visible without magnification. It is usually more luswous than nomal wool and exhilsits a silvery sheen (2, 5), due, probably, to a higher proportion of cellulose and more perfect molecular alignment than octurs in nomal wood. An abondance of projecting libers, reportedly cansed by a tearing rather than a cutting ation during mathining, frequently produces a wooly appearance in machined lumber (12).

The pioh in leaning stems and branches is freguently displaced toward the lower side (1). An eccontric pith is not, however, miversally present and is in fat one of the least relable indicators of the presence of temion wood ($10,12,18$).

Anntomicel Featmes-There are sereral anatomical differences between temion wood and nomal wood. The most obvions aboomality in many species is the prenence of libers which have a markedly thickencel wall, which, at times, replace one layer of the nomal watl or at other time occurs in addition to the nomal layers. These umsual libers are termed gelatimous fibers (Co-fibers) and are typically concembated on the upper sides of leaning stems and brame hes.

The structure of individual libers in tension wood appears to be basically vimilar to that of nomal fibers (22). If the nomal rell wall latering is present in G-fibers, the microfibrilar arangement is apparenty unchanged. Optical studies have suggested (IS), and X-ray diffation stadie have onfirmed (20) that the molecular orientation in the C-tater is appoximaty parallel to the long axis of the cell.

The degree of lean and the fiequency of these mosual fibers have been found to be highly comelated $(3,18)$. On the other hand, numerows exceptions to that whith has been ateepted as nommal for tension wood may be found in the literature. G-fibers have been reported to ocour on all siden of leaning trees but with a higher percentage on the upper side (17) ; to var with height (3, 18) : and to be randomly diswibuted throughoul laning tree boles (19). In some speries, G-fibers are emtirely absent (3) or only present in portions of increments (12). Other anatomical anomalies such as a reduction in vessel frequency and size ($2,3,15$), increase in fiber frequency and size $(2,15)$ and decrease in parenchymatous cells (15) have been noted. Vessel walls,
isolated parenchyma cells and fibers which had not formed a G-layer have been observed to be distorted (3).

Growth stresses in tension wood are apparently of sufficient magnitude to cause minute compression failures. An increased frequency of such failures at right angles to the axial direction has been noted (2) .

Physical Properties-Tension wood has been reported to contain smaller, less numerous vessels, less ray area and more fibers than normal wood. These conditions make for more wall substance per unit volume and, as a consequence, greater specific gravity. Many studies have confirmed that the specific gravity of tension wood is greater than that of normal wood, in some species by as much as 30 per cent (1).

There is considerable evidence to indicate that tension wood shrinks and swells more than normal wood in the longitudinal direction (7). A highly correlated linear relationship between the amount of longitudinal shrinkage and the percentage of refractory fibrous area has been noted by several authors (13, 17, 18, 19). In addition, collapse and other seasoning defects are often associated with tension wood (6 , 22), thus suggesting the presence of anusuat drying stresses.

In general terms, the strength of tension wood is less than that of normal wood, particularly when adjusted for specific gravity. The presence of high percentages of G-fibers adversely affects maximum crushing strength and tensile strengtl (1,10). Cell watl failures appear to be of a graclual buckling nature in contrast to the typical compression failure. The toughness of tension wood, however, appears to be greater than that of normal wood (10,14).

One of the major problems encountered in the ntilization of tension wood is difficulty in machining. Turnings from tension wood come off in long unbroken ribbons, whereas, those from normal wood are in the form of short brittle chips (14). It is also reponted that the failure of fibers to cht cleanly causes binding during sawing operations (12). Akins and Pillow (1) reported that the presence of abundant amounts of G-fibers in veneer caused buckling and splits to occur which would cause rejection for use as faces because of fursy appearance.

Chemical Properties-Tension wood in angiosperms has at higher cellulose content and less lignin than nomal wood, a chatateristic which is usefut in its identification by means of differential histulegical stains (1, 9). Less xylan (9), higher ash, greater solubility in wath. higher alpha cellulose content and lower pentosan contem hate been noted in tension wood than in nommal wood (-1). Chemical (ompenition and X-ray diffraction examinations indicate an abnormally ligh 1.11 in of crystalline to amorphous cellulose in tension wood (2) $\underline{2}^{(0)}$.

Experimental Procedure
 FIELD PROCEDURE

The trees hom which the material for this study was obtaned were located on the West Virginia Lniversity Forest, Monongalia County, West Virginia. This area was cut over about 35 years ago and is presently stocked with essentially even-aged sands of black cherry, yehow-poplar, red oak and associated species, mostly of sprout origin. The black chery is generally of poor form and ocours in both sprout (lump)s and as single stems.

Four bolts, each 24 inches in length, $t w o$ from one tree and one from eath of two other thees were sedected so as to provide material from two branches with appoximately the same degree of lean, one leaming stem and one statight sem. After atting, the bolts were marked on their upper side (as it ocomred in the standing tree) and stored in a lreezer until used.

LABORATORY PROCEDURE

liath bolt wats sawed into dises of sime apporopriate for the tests (0) be performed and sanded smooth in onder that the ammal increments could be deaty delineated. Detailed labomatory examination was reshicted to the bolts from the thece leaning positions (bolts 213, 513 and IT), the boht from the staight stem being examined in a more cursory manner.

Specific Gravity

The discs used for specilic gravity detemminations were matred into lif equal amgle with the pith at a common vertex. Sawing along the lats of the angles produced 16 pieshaped specimens. Beginning at the periphery, each ol these wats divided into segments contatining five growth increments. 'The segments were immersed in water and an intermittent vactum applied motil comstant weight was attaned. Saturated weights were detomined alter which the sperimens were ovendived and ie-weighod. Sperilic gratities were computed by the method detailed by Smitlo (16), which results in values based on green volume.

Shrinkage

Thace separate sens of specimens from earh bolt were prepared for harinkage determinations. One set was used to detemmine longitudinal and wolmmetrie shrinkage, and the other two were wo dermine radial and tangential shrinkage resper lively. An attempt was made to obtain specimens with matehed increments from four diametrically opposite
radial positions, but specimen size and eccentric growth prevented doing this in all cases. In each set of specimens, one radial position corresponded to the upper side, one to the lower side, and one to each of the two netitral sides of the bolt. Longitudinal shinkage specimens measured one inch in the tangential direction, no less than one-half inch in the radial direction and four inches in the axial direction, and were sawn ab neaty as possible parallel to the grain. Radial shrinkage specimens measured one inch in the tangential direction, one inch in the axial direction and were as long in the radial direction as the eccentricity permitted. Tangential shrinkage specimens were centered about the four principal radii and were one inch wide in both the radial and axial directions. The tangential dimensions varied with proximity to the center but were as long as practicable.

The dimension of interest was measured to the nearest 0.0001 inch with a micrometer after the maximum volume of specimens had been obtained by immersion and also after the specimens were oven-dried. When oven-dry, the specimens were weighed, coated with melted paraffin, and the oven-dry volumes obtained by immersion. From the measurements obtained, the specific gravity (based on green-volume) and per cent shrinkage (based on green dimension) were computed for each specimen. Volumentric shrinkage was computed for only the longitudinal shrinkage specimens.

Anatomical Examination

Transverse sections 1.1 to 16 in thickness were prepared from the outcrmost increment and from eath successive five-increment interval along a strip which ran from the upper side, through the pith and through the lower side of each bolt. The sections were stained with safranin and fast green, a dye combination useful in studying tension wood because of the distinct color reaction with lignified and monlignified tissues.

Each microscopic section was magnified 800x by means of a projection microscope. At each of ten randomly selected locations on each section, lour vessels and eight libers were selected for measurement. I calibrated rule was used to measure tangential vessel and fiber diameter and tangential fiber wall thickness. had adition, the willth of rats atooss the diameter of the lield of view of the projection microsonpe was measured and expressed as a percentage of the linear dimension. It eath location, the number of vessels in the total field of view wim econderl and later converted to the number per square millimeter. In addition to these measurements, each sertion was carefully examined for the orcurrence of gelatinous fibers and color differences.

Results and Discussion

It was immediately apparent that eccentricity, with the pith displated toward the lower side, is not a constant feature in leaning black chery bees or branches. The growth pattern reported to be characteristic of tension wood in hardwoods was found in only one specinen that which came fom the slighty leaning stem. In the two specimens from branches with a growth angle approximately 45 degrees from the vertical, the widest increments were either on the lower or one of the neutan sides. The specimen from the straight stem exhibited little eccentricity. The literature suggests that one cause of increased radial growth on the tension side is the fact that tensile stresses are maximum in this arca. However, it may be shown mathematically that if the neutral plane adjusts in bending, it is not necessary that cocentricity occur on the upper side to maintain stem and branch form (11).

Distinct differences in reaction to the differential stains were noted. In the bolts from the branches and leaning stem, the upper side invariably indicated a high ecllulose-lignin ratio whereas the lower side reacted in the opposite way. The specimens from the straight stem exhibited no color difference between sides. These color reactions indicated that wood with one of the properties characteristic of tension wood - a change in the cellulose-lignin ratio - occurs on the upper sides of leaning stoms exen thongh typical ecrentricity is not present.

Comparisons between the microscopic sections from the slightly leaning stem and the severely displaced branches confirm other studies $(2,18)$ which suggest that the intensity of tension wool fommation is related to the degree of lean. A distinct deep green, indicating a high cellulose-lignin ratio, was noted in the branches and not in the leaning stem.

Differences in color reaction were also noted within increments in tension wool thus suggesting a within-increment alteration of the cellulone-lignin ratio. The outer portions of these increments were apparmenty lignified on the nommal degree, whereas the earliest formed parts contained less than nommal lignin and more cellulose. This phenomenon has been observed by Semfiedt and Wardrop (I5) who suggested wat it reflects a decline in atuxin production wward the end of the growing seaton. If atuxin level is, in lact, involved in these color changes, then this evidence lends aredence to the contention that tension wood formation is at least in parn anxin moderated.

In general there is a considerable degree of inconsistency in vessel frequency when compasisons are made between the upper and lower bides of each bolt, between bolts and within increments in bolts (Table

Means of Various Anatomical Characteristics of Black Cherry Wood from Leaning Stem and Branches

1). The inconsistency is reflected in the analysis of variance (Table 2). which indicates the effects of factors exammed to be non-significant. I detailed examination of the data reveals an anomalous situation whith 'affected the analysis. It may be noted (Table 1) that a comparatitets large number of ressels were scored in increments one and six on the

TABLE 2

Summary of the Analyses of Variance of Four Anatomical Charateristics of Leaning Black Cherry Trees

Source	1.1.	Mean Sgnares				
		Versel Frepuency	Versel Dianneler	$\begin{aligned} & \text { Ray } \\ & \text { Area } \end{aligned}$	Fibcr Diameter	Fiber Wall Thichness
Bolls (1)	\because	$8595.955{ }^{*}$	-25.53**	102.5こ3**	6.033**	$1.98{ }^{* *}$
Rawlial ponition (B)	1	767.186	6.5.99*	7.058	0.33	O.1]
bicles (\%) ${ }^{\text {(}}$ (1	37.600	112.36*	$101.506{ }^{*}$	3.63*	0.13
13×1	1	991.293	32.70	10.959	0.99	0.03

*Significant at the 0.05 level of probability.
**Signifirant at the 0.01 level of probability.
upper side of bolt 2 B . A reexamination of the specimen material indiated that these two increments were monsually marow. Although when contradictions may be noted when specific increments are examined, if the two abmomally matrow increments are not considered, the average sessel frequency of the three bolts was less on the upper than on the lower sides.

The afore mentioned namow increments influenced vessel size to some extent (lable 1), but radial pesition, side and bolt proved to have a significamt inlluence (Table ${ }^{2}$). Vessel diameters in wood from the apper sides of the two brandres averaged almost seven microns less than did thone from the lower sides. This reduction was consistent from the center ontward because it was found in eath increment examined. Statistical analysis showed that these differences were significant (Table 8). In the leaning stem, vessel sire was mot consistemly smaller on the upper side in the five increments examined. The average of the five incremems showed vesel sie to be in lact greater on the upper side than on the lower side (Table 1), but the difference was mot significant (Table 3).

Somewhat analogous results were obtained when the percentage of the cross seetional area occupieal by ray tissue was examined. The two bolts from the branches contained significantly less ray area on the "pper that on the tower side (Table ?). The difference amounted to at muth an fif per ent (Table 1). With the exception of one increment, all thone examined showed this relationship. Such was not obeeved to be the case in the bolt from the leaning stem in which the majority of incrememb contained less ray areat on the upper than lower side.

Significant differences in fiber diameter between the upper and bower sides were recorded in only one bolt (2B), which was from a bramb (Table 3). In this instance, reductions averaging it per cent were moted. The thickness of fiber walls differed significantly between

Duncan's New Multiple Range Test for Differences Between Means of Certain Anatomical Characteristics of Leaning Black Cherry Stems

1. Vessel Diameter (μ)

	Upper	Lower
(1) In boll 23	39.72	46.94*
(2) In bolt 5B	47.59	54.88
(3) In bolt 1 T	53.27	50.42

2. Ray Area (\%)

		Upper	Lower
(1)	In bolt 2 B	12.3	18.8
(2)	In bolt 5 B	18.0	24.2
(3)	ln boll 1 T	15.5	13.9

3. Fiber Diameter (μ)
(1) In boll 2 B
(2) In bolt 5B
(3) In bolt 1 T

Upper	Lower
10.69	12.49
12.97	12.84
13.19	12.94

4. Fiber Wall Thickness (μ)
(1) In bole 2B
(2) In bolt 513
(3) In bolt IT

Upper	1.0 wer
$\underline{9} .32$	2.81
3.80	3.05
2.90	2.76

* Any two means connected by the same line do not differ from one another at the 0.05 level of probability.
sides in one of the branch bolts (Table 3). The differences measured averaged less than one micron. Intensive microscopic examination failed to reveal the presence of a distinct G-layer in any of the fibers examined. Black cherry is apparently one of the species which does not form a greatly thickened wall layer in the libers of tension wood.

The analysis of variance of specific gravity (Table 1) indicates that one of the branch bolts wats significantly heavior than the bols from the other branch and the stem and that the variation from the pith outward wats also significant. However, no difference duc to locat-

TABLE 4
 Analysis of Variance of Specific Gravity

Source	d.f.	Weam spuates
Bolts (A)	$\underline{2}$	0.2572*
Growth rings (B)	\square	0.0)197*
Circumferential position (C)	15	0.00028
B X C	75	0.1010

[^0]dion with reqpect to the tension side was deterted. The differences which occurred were smali and no consistent pattern was evident.

The tension wood of most species has been reported to be onethird higher in specific gravity than that considered nomal for the species (7). The increased density is reputed to be associated with smaller ray area, lower vessel frequency, smaller vessel diameter, higher percentage of libers and the presence of the G-layer. While no G-layer was observed, it was anticipated that the significantly smaller vessel diameter and the lower ray area would result in a higher specific gravity in the tension wood. The effect of these factors was apparently over-ridden by the reduced lignification which was observed.

Mean longitudinal shrinkage values of wood from the tension side of the branches and the leaning stem were considerably higher than those from the opposite side and were generally higher than those from any of the other three sides (Table 5). This was also the case when the shrinkage values were adjusted for specific gravity (based on a linear relationship). Analysis of variance of adjusted values (Table 6) indicated that the effect of location in the bolt on longitudinal shrinkage was highly significant. A multiple range test indicated shrinkage of wood from the lower side to be significantly less than from the other three sides. It is possible that the differences in longitudinal shrinkage may be related to alignment of microfibrils. However, a more reasonable explanation, as suggested by Wahlgren (19), is that non-lignified secondary cell walls do not control longitudinal shrinkage. The remainder of the cell wall, which is more highly lignified and exhibits a greater

TABLE 5

Mean Longitudinal Shrinkage Values of Wood from Leaning Stem and Branches

Position	Bolt		
	213	513	IT
Ipper	0.25	0.46	0.34
Viutral	0.40	0.37	0.30
Lowas	0.16	0.07	0.04
\ontral	0.33	0.19	0.07

*V゙alues are expressed as jercentages of green dimension.
TABLE 6
Analysis of Variance of Adjusted Longitudinal Shrinkage Values

Sontre	d.I.	Mean Squares
Error	5	0.000000062
Side * (rror	8	
Side (adjusted)	3	$0.0000054 *$

[^1]nicrofibril angle, would then be essentially unrestrained longitudinally.
In all of the bolts examined, longitudinal shrinkage increased rom the pith outward, a trend which was essentially the reverse of that of specific gravity. Since growth stresses also increase in a similar manher, it is possible that the two (longitudinal shrinkage and growth tresses) are related.

In general, the amount of radial, tangential and whmetric shrinkge was slightly but not significantly greater in wood from the tension ides of the bolts. This may be attributable to collapse which was evident 1 many of the shrinkage specimens containing tension wood.

jummary and Conclusions

It is apparent that black chemy produces wood in leaning stems ind branches which has many of the characteristics of tension wood. The upper side of black cherry trees which are displaced from the ertical is made up of wood which has a higher than normal celluloseignin ratio, a reduction in number and size of ressels, reduced ray wea and small diameter fibers. The net effect of these changes on a mit basis is an increase in the supportive tissues and a decrease in the onductive tissues in the wood subjected to the greatent tensile stresses.

Eccentricity of pith did not appear to be closely related to the ocation of tension wood. Hence, its use as a gross indicator of tension sood in logs and lumber is questionable.

The specific gravity of tension wood in the stems studied was not greater than that of normal wood. Although high specific gravities are generally associated with tension wood in other speries, the predominant eature in black cherry appears to be a change in the cellulose-lignin catio.

Longitudinal shrinkage of tension wood was abommally high ama increased with age of the tree. Since growth stresses also increase with age, it is possible that the two are related. The fact that wood from the upper sides of the bolts investigated exhibited slighty greater radial. tangential and volumetric shrinkage than that from the opposite sides was attributed to a greater tendency for tension wood to collapse during drying.

Most changes which were obsenved to be abociated with lean were more pronounced in the two branches than in the leaning tem. These results suggest that logs from slightly leaning stems man be usel with little concern about the efferts of tension wood. On the wher hand the utilization of short bolts from severely dipplated brand hes incteases the possibility of encountering problems insociated with tension word.

Literature Cited

1. Thims, V'. ant M. 1. Pillow. 19.0. Occminence of G-fibers and hbeir elfect won

2. Barchoot, A. (.. 1963. Momomal wool in yellow-poplar. For. Prod. Jour. 8 (1): 16-22.
3. Berlyn, (. P' Bger. Fartots allerting the incidence of ration tissue in Populus deltoides Bantat. Iowa state Jour. Sci. 35: 367-19.1.
4. Chow, K. V. I! Iti. I compatative study ol the stucture and (hemical composition of temson wool and mormal word in beech. lor. 20: 62-77.
5. Clathe, S. II. 1937. The distribution, stratare atht properties of temsion wool in beech. For. 11: 85-91.
6. (lakke W. 1). I9.ti. fiffert of tenson wood on the seasoning and machining of castera cottomwood. I'mpnbtished Master's Ihesis. Iowa state Colfege, Ames.
7. Ifleischer, 11. O. 1956. I.ongitudinal shinkage of rativo. Tiop. Woods 105: 1.5.
 6s: slf-8tic.
8. Kozlowski, I. I. 1969. Iree gowth. I he Romalal Press, New Vork.
9. Lascm, L. F:. 1959. Femson wood in cottommoot. For. Prod. Jomr. 9 (3): 116-120.
10. Li, I. 1: I9tio. I he nature of tension wood in black chemy. Inpublished Master's Ihesis. When V'irginia I'niversity, Morgantown.
11. Nama, 1. 1. 1912. Chatateristis of temion woor in hard maple. Unpublished Mances Ihesis. Sate College of lorestly, Syatase, N. Y.
12. Pillow, N. I. 1950. Presome of tension wool in mahogany in refation to fongitudinal shamhage f S. for. I'rod. Labs. Rept. No. D)l763.
13. Ramelle. B. J. 1937. (ielatimons woot libers. 'Irop. Woods ion: 11-19.
1.\%. Sombicle, G. and S. B. Windrop. 1969. 'I he nature of reation wood. Jut. Jont. 13ot. 11. 107-116.
14. Smith. I). N. I!5. Maximmm moistme (ontent methot for determining specilic gravit of smafl wool samples. U.s. For. lool. lal). Rept. No. 2014.
15. Terrell, 13. /. 1952. Distribution of temsion wood in its pelation to longitudinal shrinkigg in aypen. I's. For. lrod. lab, Rept. No. RI917.
 for. Irod. Jollı. $7(6): 211-219$.

 Jour. xi. Res. 1.?: 1-...
 of tembon worl libers. Ams. Jomr. Por. 3: 177-18!.
16. Limmemman, II. II. I9til. I he formation of wood in Iotest bees. Vademir Iress, New York.

[^0]: *Significant at the 0.01 level of probability.

[^1]: *Significant at the 0.01 level of probability.

