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The Nature of Tension Wood in Blacl( Cherry

C. B. KOCH, T. F. LI and J. R. HAMILTON

Introduction

BLACK CHERRY {Fnniiis scrotnui Ehrh.) is one of the most \alu-

able species of the Appalachian haichvood forests. Even the (onniion

grades of cherry lumber command prices comparable to, or in excess of,

iliose paid for the better grades of many other species. The wood is

Avidely used in furniture manufacture l^ecause of its attiacti\e ligure

and color. It is easy to season and, once dried, it exhibits considerable

dimensional stability. For this reason, it is in considerable demand

for printer's blocks, patterns, scientific instruments and oihei products.

As a result of the large demand for black cherry and past harvesting

practices, much of the present volume of this species consists of trees

of poor stem form which have originated maiidy from sprouts. Such

trees frequently exhibit considerable lean as well as excessive crook

and sweep. It is significant, however, that many i)roducls for which

cherry is particularly desirable do not require clear boards of large si/c.

Thus trees with poorly formed boles may have consideiable value if

properly utilized, provided that the quality of the wood is satisfac torv.

Crooked and leaning trees may contain abnormal wood which, in

haidwoods, is termed tension wood. The occurrence of tension wood

is often sporadic and unpredictable, but it is characteristically found

on the upper sides of leaning stems and branches. It is generally associ-

ated with eccentricity of pith and the presence of fibers with unusual

chaiacteristics. ^Vhen present, it constitutes a defect because it is dif-

ficult to machine smoothly and exhibits excessive longitudinal shrinkage.

Ihis study was undertaken to assess the significance of tension

wood and its effect on the uiili/aiion of poorlv formed black cMierry

trees.

Literature Review

Classically, the term tension wood has been applied to wood located

in the upper part of leaning stems and branches in hardwood trees.

Contemi)orary usage of the term imi)lies the presence of fibers which

differ physically and chemically from normal fibers with little regard

to specific location. These abnormal fibers are termed gelatinous fi-

bers because of the existence of a greatly thickened cell Avail.



ll is ii()\v ncnciiilh ;i( c cplcd that tension wood is loimcd in (on-

nt'(lion with ino\einents ol oiicnlalion in vvocxly ])lan(s (2,1). Assori-

atfd with this j)lienonicnon aic signilicant (hangcs in the anatomical,

])h\si(ai, ami (hcmical c iiarac lei islics ol the ^v()()ll (1, 5, 11, 20).

M(i( yn.s(()j>ic Fra I id i\s—Tension wood exhil)ils some chai a( teristics

which are leadily \isible ^vilhont magnilic at ion. It is usually more lus-

tious than noimal \\'oc)d and exhibits a silvery sheen (2, 5) , due, pro-

l)ahl\, to a hi<;liei jjioportion of cellulose and more perfect molecular

ah'^inneiii than occuis in normal wood. An abundance of projecting

libels, reportedly caused by a tearing rather than a cutting action dur-

ing machining, frecpiently produces a wooly appearance in machined

lumber (12).

The pith in leaning stems and branches is frecjuently displaced

toward tiic lower side (4) . An eccentric pith is not, howe\ei. uni\er-

salK present and is in lact one ol the least leliable indicatois of the

presence of tension ;vood (10. 12, IS).

A)i(il()itn((i! !• cat 11 yes—There are several anatomical differences be-

i\ve( n leiision wood and normal ^voocl. 'I he most oi)vious abnormality

in man\ species is the presence ol libers which ha\c' a markedly thick-

ened wall, which, at times, replaces one layer ol the normal wall or at

other times occiiis in addition to the normal la\eis. I'hese unusual

fibers arc termed gclaliiious libers (fi-fibeis) and are typically con-

centialed on the upper sides of leaning stems and branches.

I he structure ol iiidixidua! libcis in tension wood apj)ears to be

basic all\ similar to that ol noiinal libers (22). If the normal cell w^all

laxeiing is present in (.libers, the mic rofibrilar arrangement is ap-

])arenil\ inuhanged. Optical studies have suggested (IS), and X-ray

dilliiction studies ha\e confirmed (20) that the molecular orientation

ill llic (. Ia\ei is a j)])i oximately parallel to the long axis of the cell.

The degree ol lean and the Irecjuencx of these unusual fibers have

been loiind to be highly correlated (."), IS). On the other hand, numer-

ous exceptions lo I hat which has been accej)tecl as normal for tension

wood max \>v louiid in ilie liieialuie. (i-fibers have been rcpc:)rtecl to

ocelli on all sides ol leaning tiees but with a higher percentage on the

uj>pei side (17): to \ar\ with height (?>. IS); and to be randomly clis-

tribnied throughout leaning tree boles (19) . In some species, G-fibers

are entirely absent ('^») or only present in portions of increments (12) .

Other anatomical anomalies such as a reduction in \essel frecjuency

and si/e (2, 3, 15), increase in fiber frecpiency and si/e (2, \5) and de-

creases in jiarenchyma.tous cells (15) ha\e been noted. Vessel walls,



isolated parenchyma cells and fibers which had not formed a G-layer

have been observed to be distorted (3) .

Growth stresses in tension wood are apparently of sufficient magni-

tude to cause minute compression failures. An increased frequency of

such failures at right angles to the axial direction has been noted (2) .

Physical Properties—Tension wood has been reported to contain

smaller, less numerous vessels, less ray area and more fibers than

normal wood. These conditions make for more wall substance per unit

volume and, as a consequence, greater specific gravity. Many studies

have confirmed that the specific gravity of tension wood is greater than

that of normal wood, in some species by as much as 30 per cent (1) .

There is considerable evidence to indicate that tension wood

shrinks and swells more than normal wood in the longitudinal direction

(7) . A highly correlated linear relationship between the amount of lon-

gitudinal shrinkage and the percentage of refractory fibrous area has

been noted by several authors (13, 17, 18, 19). In addition, collapse

and other seasoning defects are often associated with tension wood (6,

22) , thus suggesting the presence of unusual drying stresses.

In general terms, the strength of tension wood is less than that

of normal wood, particularly when adjusted for specific gravity. The

presence of high percentages of G-fibers adversely affects maximum

crushing strength and tensile strength (1, 10). Cell wall failures appear

to be of a gradual buckling nature in contrast to the typical compression

failure. The toughness of tension wood, however, appears to be gi-eater

than that of normal wood (10, 14) .

One of the major problems encountered in the utilization of ten-

sion wood is difficulty in machining. Turnings from tension wood come

off in long unbroken ribbons, whereas, those from normal wood are

in the form of short brittle chips (14). It is also reported that the

failure of fibers to cut cleanly causes binding during sawing operations

(12). Akins and Pillow (1) reported that the presence of abundant

amounts of G-fibers in veneer caused buckling and splits to occur which

would cause rejection for use as faces because of fii//y appearance.

Chemical Properties-Tension wood in angiosperms has a higher

cellulose content and less lignin than normal wood, a characteristic

which is useful in its identification by means of differential histological

stains (1, 9). Less xylan (9), higher ash, greater solubility in water,

higher alpha cellulose content and lower pentosan content Iiave been

noted in tension wood than in normal wood (4) . Chemical compositic/u

and X-ray diffraction examinations indicate an abnormally high ratio

of crystalline to amorphous cellulose in tension wood (20) .



Experimental Procedure

FIELD PROCEDURE
The irccs lioiii whicli the material for this study was obtained

Avere located on the A\'est Virginia University Forest, Monongalia (]oim-

i\, \\'est X'irgiiii.i. This area was cut ()\er about '55 years ago and is

presently stocked Avith essentially even-aged stands of black cherry,

yellow-poplar, red oak and associated species, mostly of sprout origin.

Ihe black cherry is generally of poor lorni and occurs in both sprout

clumjjs and as single stems.

Four bolts, each 24 inches in length, two fioni one tree and one

from each of tAvo other trees weic selected so as to provide material

from two branches Avith approximately the same degree of lean, one

leaning stem and one straight stem. ,\ftcr cutting, the bolts were marked

on theii' ujjjjer side (as it occuiied in the standing tree) and stored in

a freezer until used.

LABORATORY PROCEDURE
Fac h bolt was sawed into discs of sixes aj)j)r()priatc' for the tests

to be performed and sanded smooth in order that the annual increments

could be cleaily delineated. f)etailecl laboratoiy examination was re-

stricted to the bolts fiom the three leaning positions (bolts 2B, 5B

and IT) , the bolt honi the stiaight stem being examined in a more

cursory manner.

Specific Gravity

Fhe discs used lor specific gra\it) delerminaticjns were maiked

into 16 equal angles with the ])ith as a connnon vertex. Sawing along

the rays of the angles ]>roduced Ki pie-shaj)ed specimens. Jk'ginning at

the peripheiT, each of these Avas di\i(lc(! iiUo segments containing five

grcjwth increments. Fhe segments were iimnersed in water and an in-

termittent vacuum a])plied until conslam weight was attained. Satu-

rated weights weie dciciinined aliei \\lii(h the specimens weie oven-

dried and re-weighed. Sjx'c ilic gia\ iiies were comjnued i)y the method I

detailed by Smith (16) , which results in values based on green volume. |

Shrinkage

I luce separate sets ol specimens fiom each bolt weie prepared for

shrinkage deternn'nations. One set was used to deteiniiiie longitudinal

and volumetric shrinkage, and the other two were to determine radial

and tangential shrinkage respectively. An attempt was made to obtain

specimens with matched incremeiHs from lour diameii ically opjjosite

6 r



radial positions, but specimen size and eccentric growth prevented doing

this in all cases. In each set of specimens, one radial position corresponded

to the upper side, one to the lower side, and one to each of the two neu-

tral sides of the bolt. Longitudinal shinkage specimens measured one inch

in the tangential direction, no less than one-half inch in the radial

direction and four inches in the axial direction, and were sawn as nearly

as possible parallel to the grain. Radial shrinkage specimens measured

one inch in the tangential direction, one inch in the axial direction

and were as long in the radial direction as the eccentricity permitted.

Tangential shrinkage specimens were centered about the four princij)al

radii and were one inch wide in both the radial and axial dii-ectif)ns. The
tangential dimensions varied with proximity to the center but were as

long as practicable.

The dimension f)f interest was measured to the nearest 0.0001 inch

with a micrometer after the maximum volume of specimens had been

obtained by immersion and also after the specimens were o\en-dried.

When oven-dry, the specimens were weighed, coated with melted paraf-

fin, and the oven-dry volumes obtained by immersion. From the measure-

ments obtained, the specific gravity (based on green-volume) and per

cent shrinkage (based on green dimension) were computed for each

specimen. Volumentric shrinkage was computed for only tlie longi-

tudinal shrinkage specimens.

Anat'omical Examination

Transverse sections 14 to 16 u in thickness were prepared from the

outermost increment and from each successi\e fi\e-increment interval

along a strip which ran from the uj)per side, tlnough the jiiih and

through the lower side of each bolt. The sections were stained with

safranin and fast green, a dye coml^ination useful in studying tension

wood because of the distinct color reaction \\'ith lignified and non-

lignified tissues.

Each microscopic section was magnified SOOx by means of a pro-

jedion microscope. At each of ten randomly selected locations on each

section, four vessels and eight fibers were selected for measurement. A
(alil)rated rule was used to measure tangential vessel and fiber diameter

and tangential fiber wall thickness. In addition, the width of rays across

I he diameter of the field of view of the projection microscope was meas-

ured and expressed as a percentage of the linear dimension. At each

location, the number of vessels in the total field of \ iew was recorded

;ind later converted to the number per square millimeter. In addition

lo these measurements, each section was carefully examined for the oc-

currence of gelatinous fibers and color differences.



Results and Discussion

It Avas immediately apparent iii;ii c((ciuri( iiy, \viih tlic pith dis-

placed toward the lower side, is not a constant icaturc in leaning black

cherry trees or branches. The growth jiattern rc]3orted to be character-

istic of tension wood in hardwoods was found in onl\ one specimen —

that which came from the slightly leaning stem. In the two specimens

from branches with a growth angle ap))ioximaiely 4.5 degices from the

vertical, the widest increments were either on the lower or one of the

neutral sides. The specimen from the straight stem exhibited little

eccentricity. The literature suggests that one cause of increased radial

giowth on the tension side is the fact that tensile stresses are maximum
in this area. However, it may be shown mathematically that if the

neutral plane adjusts in bending, it is not necessary that eccentricity

occur on the u])i)er side to maintain stem and branch form (II) .

Distinct differences in reaction to the differential stains were noted.

In the bolts from the branches and leaning stem, the upper side in-

variably indicated a high cellulose-lignin ratio whereas the lower side

reacted in the cjpposite way. The speciinens from the straight stem

exhibited no color difference l^etween sides. These color reactions indi-

cated that wood with one of the properties characteristic of tension

wood — a change in the cellulose-lignin ratio — occurs on the upper

sides of leaning stems even though typical eccentricity is not present.

Comparisons between the microscopic sections from the slightly

leaning stem and the severely displaced branches confirm other studies

(2, 18) which suggest that the intensity of tension wood formation is

related to the degree of lean. A distinct deep green, indicating a high

cellulose-lignin ratio, was noted in the l)ranchcs and not in the leaning

stem.

Differences in color reaction were also noted within increments

in tension wood thus suggesting a witiiin-increment alteration of the

cellulose-lignin ratio. The outer portions of these increments were ap-

parently lignified to the normal degree, whereas the earliest formed

parts contained less than normal lignin and more cellulose. This phe-

nomenon has been observed by Scurfield atid W'ardrop (15) who sug-

gested that it reflects a decline in auxin j^roduction toward the end

of the glowing season. If auxin level is, in fact, involved in these color

changes, then this evidence lends credence to the contention that ten-

sion wood formation is at least in part auxin moderated.

In general there is a considerable degree of inconsistency in vessel

frequency when comparisons are made between the upper and lower

sides of each bolt, between bolts and within increments in bolts (Table

a



TABLE 1

Means of Various Anatomical Characteristics of Black Cherry Wood
from Leaning Stem and Branches

Bolt C:.rl.r.

Increment from Periphery

Side —
1 6 11 16 21

Vessel Frequency • (number/mm')

2B

5B

Upper

Lower

Upper
Lower

216.0

103.7

66.3

47.6

209.2

51.0

86.7

107.1

85.0

85.0

120.7

129.3

100.3

144.6

68.0

71.4

163.3

192.2

45.9

39.1

154.8

(116.4)

115.3

(140.6)

77.5

78.9

IT Upper
Lower

100.3

124.1

91.8

171.8

90.1

148.0

76.5

98.6

158.2

132.7

103.4

135.0

Vessel Diameter
(fj.)

2B Upper
Lower

36.30

53.98

37.91

48.53

44.60

46.99

41.89

44.31

37.99

40.94

39.74

46.95

5B Upper
Lower

47.46

55.73

47.29

58.78

48.40

56.20

50.15

55.12

44.64

48.69

47.59

54.90

IT Upper
Lower

65.14

57.08

56.82

51.00

47.89

49.10

51.80

50.64

44.59

44.97

53.25

50.56

Ray Percentage (linear measurement)

2B Upper
Lower

11.2

18.8

15.2

24.4

11.9

19.5

12.2

15.2

11.3

16.3

12.4

18.8

5B Upper
Lower

24.3

28.3

13.3

20.6

18.1

17.0

16.4

24.5

18.0

30.6

18.0

24 2

IT Upper
Lower

12.9

10.6

13.7

15.4

Fiber Dii

18.9

10.8

imctcr (n)

13.7

15.4

18.6

17.2

15.6

13.9

2B Upper
Lower

9.34

13.05

10.13

13.58

11.67

12.53

11.43

11.64

10.84

1 1 .64

10.68

12.49

5B Upper
Lower

12.13

13.67

11.77

12.83

12.74

13.05

12.56

12.10

12.18

12.54

12.28

12.84

IT Upper
Lower

13.58

13.37

13.91

12.96

12.85

12.77

13.63

12.68

12.02

12.94

13.20

12.94

Fiber Wall ' Ihickness (fi)

2B Upper
Lower

1 .54

3.04

1.84

3.11

2.38

2.97

3.26

2.73

2.53

2.52

2.31

2.87

5B Upper
Lower

4.09

3.16

3.54

2.94

3.32

2.93

3.90

3.09

4.19

3.14

3.81

3.05

IT Upper
Lower

2.79

2.61

3.05

2.43

3.32

2.54

2.67

3.06

2.90

3.19

2.95

2.79

1) . The inconsistency is reflected in the analysis of variance (Table 2) ,

which indicates the effects of factors examined to be non-significant. \

detailed examination of the data reveals an anomalous situation which

'affected the analysis. It may be noted (Table 1) that a comparati\c'l\

large number of vessels were scored in increments one and six on the

9



TABLE 2

Summary of the Analyses of Variance of Four Anatomical
Charateristics of Leaning Black Cherry Trees

Mean Squares

Source d.l. Vessel Vessel Ray Fiber FiberWall
Frequency Diameter Area Diameter Thickness

liolls (A) L'

Radial position (H) 1

Sides (C) 1

BXC 4

8-.9.-).9.-).-)* 225.53** 102.523** 6.03** 1.98

7(i7,l.S(i 65.99* 7.058 0.33 0.11

3 /.()()() 11 2..36* 101.526'^ 3.63* 0.13

994.2:53 32.70 10.259 0.99 0.03

Significant at the 0.05 level of probability.
•Significant at the 0.01 level of probability.

iijjjKi side ol l)()lt 21). A reexainiiiiition oi the spec iincii inatciial in-

dicated that iIksc two iiuieiiients were unusually narrow. Although

other (oiitiadic lions may be noted when s])ecific increments are exam-

ined, ii the two abnormally narrow intrements are not considered, the

average vessel Irccjuency of the three bolts was less on the upper than

on the lower sides.

The afore mentioned narro\v increments inlluenced vessel size to

some extent (Fable 1) , but radial ])osition, side and bolt proved to

have a significant inlluenre (Table 2) . Vessel diameters in wood from

the upper sides of the two branches axeraged almost seven microns less

than did those from the lower sides. 1 his reduction was consistent from,

the center outward because it was found in each increment examined.

Statistical analysis showed that these differences were significant (Table

3). In the leaning stem, \essel si/e was not consistenth smaller on the

up]ier side in the five increments examined. The average of the five

increments showed vessel si/e to be in fact greater on the upper side

than on the lower side (Table 1) , bin ilie difference was not significant

rrable 3) .

Somewhat analogous results were obtained when the percentage'

of the cross sectional area occupied by ray tissue was examined. The
two bcjlts from the branches contained significantly less ray area oni

the uj)])er than on the lower side (Table ,S) . The difference amounted

to as much as (i.G per cent (Table 1) . With the excej)tion of one incre-

ment, all those examined showed this relationship. Such was not ob-

served to be the case in the bolt from the leaning stem in which the

majority of increments contained less ray area on the upper than lower

side.

Significant differences in fiber diameter l)ei\veen the ui)per and!

lower sides were recorded in only one bolt (2B) , which was from a

branch (Table 3). In this instance, reductions averaging 14 per cent

were noted. The thickness of fiber walls diffeied significantly between^

10



TABLE 3

Duncan's New Multiple Range Test for Differences Between Means
of Certain Anatomical Characteristics of Leaning Black Cherry Stems

1

.

Vessel Diameter (^)

Upper Lower

(1) In bolt 2B 39.72 46.94*

(2) In bolt 5B 47.59 54.88

(3) In bolt IT 53.27 50.42

2. Ray Area (%)
Upper Lower

(1) In bolt 2B 12.3 18.8

(2) In bolt 5B 18.0 24.2

(3) In bolt IT 15.5 13.9

3. Fiber Diameter (/jl)

Upper Lower

(1) In bolt 2B 10.69 12.49

(2) In bolt 5B 12.27 12.84

(3) In bolt IT 13.19 12.94

4. Fiber Wall Thickness (jj.)

Upper Lower

(1) In bolt 2B 2.32 2.81

(2) In bolt 5B 3^80 3.05

(3) In bolt IT 2.90 2.76

*Any two means connected by the same line do not differ from one another at the
'III") level of probability.

sides in one of the branch bohs (Table 3) . The difterences measured

averaged less than one micron. Intensive microscopic examination failed

lo reveal the presence of a distinct G-layer in any of the fibers examined,

Black (heriy is apparently one of the sjjecies which does not form a

greatly thickened wall layer in the fibers of tension wood.

The analysis of Aariance of specific gravity (T'able 1) indicates

that one of the branch bolts was significantly heavier than the bolts

irom the other branch and tlic stem and that the variation from the

j)ith omward was also significant. However, no difference due to loca-

TABLE 4

Analysis of Variance of Specific Gravity

Source d.f. Mean ,S(|ii.ii(

iiolts (A) 2 0.2572»

(-rowth rings (B) 5 0.0497*

Ciicumferential position (C) 15 0.0028

B X C 75 0.0010

•Significant at the 0.01 level of probability.

11



lion with respect to the tension side was detected. The diffeiences which

occmred were small and no consistent pattern was evident.

Tlie tension wood ot most species has been iej)ortcd to be one-

tiiird higher in specific gravity than that considered normal lor the species

(7) . The increased deirsity is reputed to be associated with smaller ray

area, lower vessel irecjuency, smaller vessel diameter, higher percentage of

fibers and the presence of the Ci-layer. While no G-layer was observed,

it was anticipated that the significantly smaller vessel diameter and the

lower ray area Avoidd residt in a highei" specific; gravity in the tension

wood. The effect of these factors was apjjarently over-riclden by the re-

duced lignification which was observed.

Mean longitudinal shrinkage values of wood from the tension side)

of the branches and the leaning stem were considerably higher than

those from the opposite side and were generally higher than those fromi

any of the other three sides (Table 5) . This was also the case wheni

the shrinkage values were adjusted for specific gravity (based on ai

linear relationship) . Analysis of variance of adjusted values (Table 6)

indicated that the effect of location in the bolt on longitudinal shrink

age was highly significant. A multiple range test indicated shrinkage of

wood from the lower side to be significantly less than from the other

three sides. It is possible that the differences in longitudinal shrinkage

may be related to alignment of micrc^fibrils. However, a more reasonable

explanation, as suggested by Wahlgren (19) , is that non-1 ignified secon-

dary cell walls do not control longitudinal shrinkage. The remainder!

ol the cell wall, which is more highly lignified and exhibits a greaten

Mean -ong tudinal Sh

TABLE 5

rinkage Values of Wood from Leaning
and Branches

1
Stem

Position
Bolt

2B 5B IT

Upper 0.25 0.46 0.34

0.37 ()..'iO

0.07 0.04

0.19 0.07
1

Neutral 0.40

Lower 0.16

Neutral 0.33

•Values are expressed as percentages of green dimension.

TABLE 6

Analysis of Variance of Adjusted Longitudinal Shrinkage Values

Source d.f. Mean Squares

Error 5 0.00000062 I

Side &: error 8

Side (adjusted) 3 0.0000054* 1

•Significant at the 0.01 level of probability.
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nidofibril angle, would then be essentially unrestrained longitudinally.

In all of the bolts examined, longitudinal shrinkage increased

rom the pith outward, a trend which was essentially the reverse of that

)l specific gravity. Since growth stresses also increase in a similar man-
ici , it is possible that the two (longitudinal shrinkage and growth
.11 esses) are related.

In general, the amount of radial, tangential and volumetric shrink-

ige was slightly but not significantly greater in wood from the tension

ides of the bolts. This may be attributable to collajjse which was evident

n many of the shrinkage specimens containing tension ^vood.

Summary and Conclusions

It is apparent that black cherry jjroduces Avootl in leaning stems

tnd branches which has many of the characteristics of tension wood.

The upper side of black cherry trees which are displaced from the

.criical is made up of wood which has a higher than normal cellulose-

ignin ratio, a reduction in number and size of vessels, reduced ray

uea and small diameter fibers. The net effect of these changes on a

111 it basis is an increase in the supportive tissues and a decrease in the

onductive tissues in the wood subjected to the greatest tensile stresses.

Eccentricity of pith did not appear to be closely related to the

ixation of tension wood. Hence, its use as a gross indicator of tension

Aood in logs and lumber is questionable.

The specific gravity of tension wood in the stems studied was not

neater than that of normal wood. Although high specific gravities are

generally associated with tension wood in other species, the predominant

(It Lire in black cherry ap|)cais to be a change in tin ( ellulose-lignin

,it i( ).

Longitudinal shrinkage of tension wood was al)ii()i iiially high and

iiK leased with age of the tree. Since growth stresses also increase with

ige, it is possible that the two are related. The fact thai wood from the

u|)per sides of the bolts investigated exhibited sligliii\ greater ratlial.

laiigenlial and xolumetric shrinkage llian that lioiii tlie ()|)p()site sides

was alliibutcd to a greatei teiidency loi tension wood to collapse during

It \ iiig.

Most changes which were obseived to be associated with lean were

more pionounced in the two branches than in the leaning stem. These

results suggest that logs from slightly leaning stems inav be used with

little concern about the effects of tension wood. On ihe other hand,

the utilization of short bolts from severely displaced branches increases

the possibility of encountering proi)lems associated ^\ith tension wood.
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