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Design and Construction

of a Torsion Dynamometer

, ^ . ^. p. JOHN ZACHARIAH and ROSS PHILLIPS

Introduction

MEASLfRlNG devices are essential to the development of any me-
chanical art or science. While dynamometers have been used lor

more than a century most oi these instruments are cumbersome and
unsuited lor measuring the power recjuirements oi tractor-drawn tarm
ini]jlements which are jx)wered by the power-take-off ot the tractor. The
dynamometers which have been used for measuring the power require-
ments of farm machinery are large, mounted on trailers, and expensive.
The dynamometer described in this Bulletin is light in weight, cheaji,

sufficiently accurate, and does not change the normal hitch of farm
implements. It has been field tested with a number of machines.

Design Details and Construction

The torsion dynamometer is based on the principle that an elastic

member, when subjected to a bending load within its elastic limit, will

be dellected proportional to the load applied. Since stress developed at

any cross section along the length of the member and deflection between
any two points on the member have a constant relation, loads inii)()stil

on the member can be measured by measuring this dellecticju. This
physical principle was combined with other design details to obtain the

following features:

1. Adajitaljility for measmement of torque

a. transmitted ihiough the powei-take-olt of any make ol tractor

b. transmitted U) machines of both trailing and mounted tyjje

\\ithout excessively disiiqHing the normal hitch position

(. t(j measure 2 to 21 H.P. at rated power-take-otl s|Ked ol JIO

RPM
2. Sidli(ieiuly light in weight to facilitate easy handling.

yy. Sturtliness and compac iness.

I. .Sinij)li(ity in construction so that it can be easily opciaicci.

'). To give iaiily accurate lesuils while listing in^pleInlnl^ iindci-

normal field conditions.
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The dynanioinetei consists ol an input shalt and an output shatt on

the same axis connected by a helical spring. The input shatt (5 in Fig.

1) is connected to the tractor power-take-off or power source, and the

output shatt (6 in Fig. 1) is connected to the machine to be tested.

When power is transmitted to a driven machine through the dynamo-

meter, the spring connecting the two shafts deflects in bending. By means

ot suitable linkages, (the distortion ot the spring is proportional to the

torcjue applied) the dial gage reading is a linear function of the torque

transmitted. Another instrument, not integral to the dynamometer,

indicates the revolutions per minute of the shaft. From the torque andi

revolutions per minute of the shaft, horsepower can be calculated.

Internal splines were cut in the outer end of the input shaft (Fig. 2),

the splines conforming with American Society of Agricultural Engineers!

SCALE- INCHES

FIGURE 1. Sectional view of the torsion dynannometer developed at Wes

Virginia University.
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SCALE- INCHES

FIGURE 2. The torsion dynamometer mput shaft with arm.
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1 I I

SCALE - INCHES

I
FRONT View END VIEW

FIGURE 3. The torsion dynamometer output shaft with arm.

i
(ASAE) Standards for l3/^-inch power-take -ofi slialts. The other end of

the shaft was bored to fit a portion of the outjnit shaft so that the two

shafts would remain in ahgnnient. The other end of the output shaft

was made with an external l-s^^ ASAE spline.

The lieli(al spring (I'ig. 1) whicli formed the primary elinient ol

the dynamometer, was made of :i4-inch diameter V.I). Tool Steel. Ihc

spring consisted of 21/2 turns with a pildi of |i<< inches and a mean (oil

diameter of G indies. Nuts were used to (oiniec t [\\^ spring ends to the

two shafts through their shaft arnrs.

When there is no load the shaft aims icsi I (SO degrees apart. The
spring winds lighter when torcpie is applied. The spring ends are rigidh.

(omucted to the shafts through arms (II and 12 in l-'ig. I). Dillection

in the spiing under tiansmission of torque changes the relative position

ol the two shall arms. This lelative motion is liansmitted to ;i di;il gage.



FIGURE 4. Torsion spring of the dynamometer.

The defection indicator arm (8 in Fig. 1) and a sliding collar (9 in

Fig. 1) are connected by means of a 0.0 12-inch diameter music wirt

passing through a copper tid)e fixed to the output shaft. A lever trans

mits the movements of the sliding collar to the dial gage. The collar is

free to slide axially on the shaft, but a key prevents it from rotating on

the shaft.

Change in angle or clockwise rotation of the input shaft with respect

to the output shaft causes arm 8 to move away from the end of the coppei

tubing (Fig. 6). Under no-load condition, as shown in Figure 5, arm }

remains close to the copper tubing. The wire passing through it re

mains taut due to the extension spring connected to the lever arm 10

An increase in torque causes arm 8 to move away from the copper tubing

and a decrease in tortpie reduces the gap between the arm and coppe-

tubing. Thus, with the arm and wire, the angidar change between tin

spring ends is translated into a proportional axial movement of tin

sliding collar 9, Figure 1. The gage readings, when calibrated in knowi

torque values, indicate the torque transmitted through the system.

Torsional overloads are often imposed dining the operation of :

driven implement. This may be due to a sudden release of the clutch

clogging of the imjjlement, or variation in field conditions. Factoi

affecting the amount of overload are: the amount of kinetic energ

stored in the rotating parts of the tractor: the moment of inertia of th

rotating parts of the implement: the amount of resilience in the driv

between the rotating parts of the tractor and that of the driven impk
ment: and the amount of torque transmitted to the implement.

Protection of the spring and indicator from torsional overloads an

reverse loading is jirovided with overload and reverse load stops. Whe



FIGURE 5. Relative positions of the deflection indicator arm and end of the
copper tubing when no torque is applied. (There is little or no clearance be-
tween end of the copper tube and the deflection indicator arm.)

FIGURE 6. Relative positions of the deflection indicator arm and end of the
copper tubing when torque is applied. (Displacement has occurred between
•-he arm and copper tubing.)

I load bcyoiul ihc sale limit ol ihe spiiiig is ti aiismiilrd. ihc cxcfss is

iinslerred directly Iroin one shaft to the oiliei tlirougii the stops. Tlie

iiMde f)! the input shaft is slotted as shown in Figure 2. Tlu' slot is

nl( enough lo accommodate pail ol the ()Ui|)ni shall wiih clearance to

illow- the onlpul shall to lolatc If) denices with itspcci to the inpiil
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SECTION A-

A

SCALE -INCHES

FIGURE 7. Rear plate of the torsion dynamometer housing.

1 2

SCALE-INCHES

SECTION A-A FRONT VIEW

FIGURE 8. Front plate of the torsion dynamometer housing.

8



END VIEW SECTION A-A

SCALE-INCHES

FIGURE 9. Housing sector of the torsion dynamometer.

shaft. When the torque tends to deflect the spring more than If) degrees,

the slot in the input shaft makes contact with the arm of the output shaft.

This prevents the spring from deflecting beyond the set value and the

system acts as a rigid coupling. W^ith reverse loading, the other side

of the slot in the input contacts the output shaft arm and the dynamo-
meter will again work as a rigid coupling.

ASAE recommendations of operating requirements for power-take-

off drives include incorporation of a protective device. For an imple-

ment driven by a IS/g-inch power-take-off shaft, a smooth frictional type

slip clutch which does not exceed a break-away value of 1,000 Ib-in.

is suggested. Most farm implements have this or an equi\aknt safety

device. As a precautionary measure, the dynamomeier was designed

to withstand a much higher torsional overload.

Stress in the spring was calculated thus:

Maximum deflection of spring before the overload stop

woidd j^revent the spring from deflecting fiuther i= 15°

or 0.2618 radians.

Moment of the spring arms when the spring deflection

ML 0EI
is 0.2()18 radians is: W* =

. . M =
EI L

Where M ;= moment in inch poiuRls

L r= effective length of the spring ^ 43.5 inches

0.01553 for a V, inch loiiiidI := moment of inertia

section

E = mochihis ol elasliiily in he luling

(approx.) for steel

By suljstitution

0.2018 X 30 X lO" X 0.0155
M =

.30 X 10^

43.5

r= 2,800 Ib-in.

'Coiivt'litial syiiiljol was not



0\erload stops take any nionicnt exceeding 1J,80U Ib-in. applied to tiie

system. Tliese calculations were:

Bearing area of overload stop i= 0.187 in.-

Force the overload stop can carry when the maximum
allowable stress is 30,000 psi

= .187 X 30,000

= 5,610 lbs.

Moment the overload stop can carry when lever arm ol

stop is ecjual to .875 in.

— 5,610 X .875

= 4,900 Ib-in.

Total moment or torque the spring and overload stop

can carry

=r 2,800 + 4,900 = 7,700 Ib-in.

Section tour of ASAE recommendations (1) on operating require

ments for power-take-oft drives states:

Implements subject to high starting loads or plugging should be equipped
with an overload protective device in the power line which will protect

the drive against torsional overloads of sufficient magnitude to cause me-
chanical failure of either tractor or implement parts. In consideration of

the foregoing factors, it is desirable for implements to conform to the follow-

ing conditions:

a. The instantaneous operating loads should not exceed 7,500 Ib-in. for the
Is/g-inch diameter shaft.

The spring used in the dynamometer construction was made fron

a 49-inch length of 3/ -inch diameter V.D. Tool Steel Rod (SAE W2-1.0

Carbon-V). The alloy composition (23) of this steel is: Carbon, 1.00%|

iMangairese, 0.23%; Vanadium, 0.18%; Silicon, 0.25%.

When steel is raised above the 400° to 450° F. range for tempering

there is a decrease in yield strength (13). Also, alloy steels tempered

between 425° and 750° F. (18) has a low impact strength.

The rod was hot-wound to fomr a spring of approximately 2|

turns with a mean coil diameter of 6 inches and a pitch of li^ inch*

After hot-winding, the spring was hardened by heating to 1450°

and suddenly quenching in cold water. Tempering was done by

moving the quench and reheating to 600° F., holding at this temperatui

for one hour, and then cooling in air to atmospheric temperature. Thi

complied with recommendations of the Joseph T. Ryerson Compan
from whom the steel was purchased. A sample piece of the hardem
and tempered spring was tested on a Rockwell Hardness Tester an

gave the figures shown in Table 1. A spring of different properties ca

be obtained by tempering at a different temperature. Also, furth*

variations can be obtained by using a steel of different composition.

10



Table 1. Hardness and Tensile Strength Relations of the
Torsion Spring

Trial No. Hardness Reading
Rockwell "C" Scale

Tensile Strength (18)

(Ultimate) in psi
FOR Hardness Observed

1 52 262,000
2 54 278,000
3 54 278,000
4 50 245,000
5 53 269,000
6 52 262,000

The following calculations indicate that the working stress oi the

designed spring is 75,000 psi.

Maximum moment required to deflect the spring by 15 degrees

^ 2,800 Ib-in. (previous calculations)

Stress in the spring when 2,800 Ib-in. is applied is:

M X C X K
S =-

I

Where S := stress in pounds per square inch

C = distance of remotest fiber from neutral axis = 0.375 in.

1 =: moment of inertia in in.*

=- 0.01553 in.* for a y^-'inch circular section

D
K =: Stress concentration factor =:r 1.11 for a — ratio of 8

d
Where D = mean coil diameter of spring

d = diameter of spring wire

By sid^stitution

2,800 X ..375 X 1.11

^ = 1)1553

= 75,100 psi.

The tensile strength of the spring as observed by hardness testing

was found to be satisfactory. The original design was based on tlie vield

strength of the spring being 150,000 psi.

Static and Dynamic Load Testing

M \i K Load Testing

riie relationship between torcpic and dial j^aunc leadings was

'l)t;iinicl In static tests. Ihesc were (ondiuud l)\ (lamping; the in|)Ul

•lialt of the dynamometer in the chuck of a lathe. I he chuck was held

-.tationary by engaging both the back gear and clirec t chi\e. Torcjue \\as

ipjjli( cl by placing a series of known weights on a le\er fastened to the



oLiiput shait. For toicjue aj)|)liL<-l, the conesponcling dial gage readings

were made. Betore taking the dial gage reading, the sliding collar Avas

tapped lightly to eliminate static friction beween the collar and the out-

put shaft, and to insure that the collar was as near as possible to an

equilibrium position. The average of dial gage readings for the same

value of torcjue applied (Table 2) was plotted against torque to obtain

the calibration curve in Figure 10.

Table 2. Static Load Test Results (Dial Gage Reading for

Torque Applied)

Torque
Applied

Dial Gacik Reading in Thousandths OF an Inch

IN

FT-LBS. Test 1 Test 2 Test 3 Test 4 Test 5 Average

10 * * * * * *

19 * * * * * *

30.4 32 28 31 31 30 30

38.4 65 61 63 64 64 64

47.9 106 105 103 106 103 104

56.5 150 152 145 145 143 147

64.6 187 194 187 185 183 187

73.6 229 229 224 226 225 227

82.6 265 263 266 268 264 265

90.2 303 297 305 307 307 304

98.8 343 342 345 346 345 344

107.3 383 387 386 387 384 385

115.9 423 421 424 426 425 423

123.8 462 462 461 465 463 463

132.5 501 501 499 503 501 501

141.0 540 540 540 544 539 541

149.5 578 582 579 583 579 580

160.5 625 625 624 628 625 625

170.0 669 667 668 671 669 669

178.6 705 707 707 705 707 706

197.6 792 792 790 790 790 791

* Exceeded low range of dynamometer.

Dynamic Load Testing

A General Electric Cradled Dynamometer was used for dynamic

load tests. The torsion dynamometer mounted on a tractor was coe

nected with a shaft and universal joints to the electric dynamomett

The tractor transmitted power through the torsion dynamometer wii

the electric dynamometer serving as the load. By adjusting the thrott

of the tractor with the governor disconnected and by operating the co!

trols of the electric dynamometer, torques of different magnitudes we:

transmitted. Dial gage and electric dynamometer scale readings (Tabl

3) for different throttle openings were taken with the Rl'Af being hel

at 550.

Horsepower indicated by the electric dynamometer lor differcn

dynamometer scale readings were calculated from the fornuda:

12
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FIGURE 10. Static calibration curve of the torsion dynamometer.
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VVliere F = fonc in ])()iiiuls front (lyn.niionutc r scilc rc;i(lin!^

N = revolutions per miiuilc

1

cTr?^ = (onstjiil ol (he clci ii ir (Ivnanionictcr iisrd



Table 3. Results of Dynamic Load Testing 550 RPM
Electric

Dynamometer
Scale

Readings
Pounds

Dial Gage
Readings

Torque in

ft-lb from
Gage Reading
and Fig. 10

HP From
Torsion

Dynamometer

H.P. From
Electric

Dynamometer

Differenck
IN HP

22.5* 05* 25.5* 2.67* 3.54* *

32.5 120 50.0 5.23 5.11 + .12

41.4 180 63.3 6.62 6.52 + .10

42.5 190 65.5 6.85 6.68 + 17

52.5 250 78.5 8.21 8.24 + .03

56.5 270 83.0 8.68 8.88 —20
60.5 315 92.5 9.67 9.50 + .17

67.5 370 105.0 10.98 10.61 + .37

70.5 380 107.0 11.19 11.08 + .11

74.5 400 111.5 11.66 11.70 —.04
84.5 465 126.0 13.17 13.27 —.10
87.5 480 128.5 13.44 13.74 —.30
93.5 540 142.0 14.85 14.6t) + .16

94.5 540 142.0 14.85 14.85 + .00

102.5 600 155.0 16.21 16.11 + .10

108.5 635 163.0 17.05 17.05 + .00

112.5 670 168.3 17.60 17.67 + .07

115.5 690 175.0 18.30 18.15 + .16

117.5 700 177.0 18.51 18.46 + .05

122.5 730 183.5 19.20 19.25 —.05

*Below limits of dynamometer.

To determine the power transmitted through the torsion dyna-

mometer, torque values for dial gage readings were taken from the

calibration curve (Figure 10) . When the torque was known, power

transmitted was calculated from the formula:

2 Jt NT
hp =

33,000

W^iere T =: torque in ft. -lbs. from static calibration curve

N := revolutions per minute

Discussion of Test Results

Static load tests indicated that torque loads with a maximum errori

of ± 1 ft-lb. coiUd be determined. Variation in dial gage readings for

the same torque was probably due to friction between the sliding collan

and the shaft and in the bearings of the input and output shafts.

The tractor to which the dynamometer was mounted for dynamic

testing transmitted vibrations to the dynamometer. The vibrations of the

system under dynamic tests tended to reduce the effects of friction. Powei

variations of the tractor pulsated the dial gage indicator, making ij

slightly difficult to secure precise readings. The small difference betweei

the calculated horsepower (Column 6, Table 3) from the torsion an(

electric dynamometer indicates that the pidsations of the dial gage indi

cator were of no serious consequence.

14



300 450 600

DIAL GAGE READINGS
FIGURE 11. Dynamic calibration curve of the torsion dynamometer (horse-
power is calculated from static torque reading in Fig. 10).

No dampening device was used eiilur hctwecii the driver and

liivcn shalts or between tlie sliding (ollar and the dial gage. Ikauc, the

l\iiainoineter was very sensitive to tor(|ue dianges.

riie probable error in reading the two dynauionuteis determined

i.iiisii(ally was 0.1 J horsepower. The average dillereiue ol 0.01 horst-

'ower would result as a matter of rhanee at slightly above the 50 per

15



FIGURE 12. The PTO dynamometer mounted on a tractor and coupled to a

power-take-off drive.

cent level. This indicates that there was no significant difference in the

power determined from the two dynamometers. The probable error ol

reading the torsion dynamometer is less than 1/2 of 1 per cent of maxi-

mum power that could be transmitted.

The dynamometer sjjring was pre-loaded by tightening the spring

with nuts against the shaft arm. The pre-load eliminated any play be-

tween the spring ends and the shaft arms to which the spring was con

nected. The pre-load on the spring can be avoided by having collars on

the spring ends. The output and input shaft arms can then be tightened

against the collars to form a rigid unit. For simplicity in construction,

collars were not provided on the spring. Due to this pre-load, the spring

did not deflect until a torque of 2:!.5 ft-lb. was applied. The relation

ship between torcjuc and deflection, as obtained from Figure 10, shows

that for every foot-pound of torcpie applied, 4.56 thousandths of an inch

was indicated on the dial oaoc.

Horsepower can be calculated by substituting values of torque taken

from corresponding values of gage readings and speed of the shaft in the

formula:

N (C - 107)
hp r.. 1.90 X 10-^

:^^
—

This formula was obtained from the fundamental formida:

16



2 jt NT
^^^^ ~

33,000

Torque T as obtained from a gage reading is:

K + C
', T = toot-pounds

4.50

Where C is the dial gage reading in thousandtlis of an inch and K
is the constant to correct for the pre-load in the spring. Pre-load in the

spring was 23.5 Ib-ft. or equal to .107 of an in. on the dial gage.

By substituting values for ji and T, the equation becomes:

hp = 4.168 X 10-XN
The constant (4.168) in the above etpiation can be made a nudtiple

of 10 or any other desirable constant by making the appropriate changes

in the lever ann connecting the sliding collar and dial gage.

^Summary and Results

Olijectives were to design, build, and test a torsion dynamometer ^vith

ilic following features:

1. Suitable for testing torsional power requirements of mounted as

veil as drawn power-take-off driven machines.

2. Compact.

3. Light in weight (32 lb.).

4. Simplicity of design.

5. Reasonable accuracy.

The dynamometer is based on the principle that a torsional load

applied to a helical spring Mill cause deflection ])rojK)rtional to the

lorcjue. This deflection, when transmitted to an indicating ilial on a

-.lationary member, can l^e used to determine torcpie.

A design of the various component parts of the dynamometer was

Made. Construction was accomplished in the Agricultural Kngineering

laboratory. Component parts of standard design wvrv used when they

ould be readily adaj^ted. Suitable grades of steel and oilur materials

v( le obtained to make the lemaining component parts.

Testing of the toision d\namometer consisted of t\\o phases; static

')a(l testing and dynamic load testing. Static tests were pevloiined l)\

iL;idly (lamj^ing the input shaft and by applying weiglus on a le\ei

inn connected to the output shaft. Dial gage readings for dilferent

oKjues gave the relationship ol I.T)!") thousandths of an inch h)r one

lib. of torcjue.

Dynamic load tests ^vere performed by connecting the loision cKiia-

iiomelei" between the power-take-oif of a tractor and a ciadled elecliic

Kiiamometer. Hoisejiower calculated from the- torsion cl\ namonuiei

17



at clifFerent loads was compared to that taken from the electric dyna-

mometer. There was no significant difference in the power calcnlated

from readings on the two pieces of equipment. Actual differences indi-

cated a probable error of i/o of 1 per cent of the maximum capacity of

the torsion dynamometer.

Field Tests

Field use of the dynamometer was made during the harvest. A
mower, hay crusher, and rotary forage harvesters were checked for power

consmned under various conditions.* Results of duplicate power tests

indicated that the accuracy of the dynamometer was quite favorable.

The sensitivity of the indicator was too great to be practical with the

Huctuating loads encountered. This can readily be corrected by changing

the dimensions of the linkage. A recording mechanism in place of the

intlicator woidd also be an improvement. The recorder would show

maxinuun and minimum power used and furnish a means of more

accurately determining the average power.

*Perfornmnce of Forage Crushers by P. John Zachariah. K. C. Elliott, and R. A. Pliilllps,

West Virginia University Agricultural Experiment Station Bulletin (in print), Morgantown,
West Virginia.
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APPENDIX

Development of Power-Take-Off Shafts

and Torsion Dynamometers

Review of Literature

Development of Power-Take-Off Shafts

The versatility of a tractor in svipplying power to stationary as well

as to hitched equipment was increased by the incorporation ot power-

take-off shafts. This development began a few years after some progress

had been made in the use of tractors for draft purposes. The term

"power-take-off" refers to the mechanical means of transmitting power

in the form of rotary motion, without the use of a belt, from a tractor

engine to a machine unit which may be attacheti directly to the tractor

1 or coupled and pulled behind the tractor (32).

In the early stages of development, some manufacturers were cquip-

;

ping machines with individual power units. Combined harvester-threshers

I

were used with steam tractors in 1904 and 1905 (32). A steam engine was

i mounted on the harvester-thresher, just as internal combustion engines

;
are presently mounted, but this engine was operated by steam brought

i from the steam tractor boiler througli a hose. In a broad sense, this

constituted a power-take-off. In 1906, C»ougis, in France developed a

power-take-off to replace the bull wheel drive on a grain binder (8).

Benjamin of the International Harvester Company is credited with

developing the first jiower-take-off in this country.

A good percentage of manidactiners produced machines which were

operated through ground wheel drives. Ground wheel drives were very

popular, but their efficiency was 50 per cent or less. Eighty per cent or

!iigher efficiency could be obtained by applying power through a power-

ake-off (32). This improved drive was adapted to combines, balers,

leld forage chopj^ers, mowers, antl other machines of this general type.

Though the use of power-take-off was demonstrated as early as 187S

17) at a universal exposition held at Paris, ii was ai)out 1923 before

ractor maiudactinrrs offered ilic powi i -i;ike-()H as an accessory or as a

)uilt-in unit.

l^he need of iransmilting power e\en wluii tlu diixin iiKKhinc is

tationary, and the ]jossibility of eliminating biiill-in weights ol both

ractor and drawn madiine ciuoniaged nianulac turc is to maki' power

ake-off driven madiines iiisicjil ol the ^loiiiul wluci clii\e t\|)c. As tlu'

jower-take-off became a connnon feature ol all iiactcjrs. it was neiessaiy

or the manidactuiers of maciiinei y to standardize the jjower-take-ofl to
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facilitate intcrchangeability o£ both tractor and driven implement.

Tractor power-take-off specifications were first published in the August

15, 1929, issue of Farin Implement Netcs. Later, W. L. Zink (33) pre-

sented a paper at the Chicago meeting of the ASAE making recommen-

dations on:

1. Size and type of power-take-off shaft ends.

2. Method of retaining the front fitting to the spline shaft.

3. Power-take-off speed and rotation.

4. The power-take-off shaft location with respect to height.

5. Center line and position relative to point of hitch.

(). Various safety featmes.

In order that any power-take-off machine can be quickly connected

to any make of tractor without the necessity of special ecjiupment, the

ASAE has published recommendations for the standardization of power-

take-off drives (1). The torsion dynamometer developed at West Vir-

ginia University conforms to these power-take-off specifications.

Dynamometers Developed in the Past

Dynamometers, as their name implies, are instruments for measuring!

power. They can be divided into two main classes—traction dynamome-

ters and trosion dynamometers.

Traction dynamometers are intended to measure the power pro-

duced by a direct pull or thrust. An example would be power required^

of a tractor to pull a trailer or that required of a team of horses to puUi

an implement. These dynamometers consist of some kind of weighing

device (16) together with equipment to measure the rate of travel. The

weighing device may be a spring, a hydraulic cylinder and piston, on

some other method by which the force or pidl exerted is measiued. Al

speedometer or a stop watch in conjunction with a measured distance

coidd be used to determine rate.

Torsion dynamometers can be classified into two groups: the absorpn

tion type and the transmission type. In an absorption dynamometer, the

|30wer to 1)6 measured is converted into some form of energy, usually

heat, and dissipated. This type of dynamometer can be used to test onl)

eqiupment which develops power. Transmission dynamometers (16)!

are those that are designed to measure the power transmitted from or

rotating shaft to another, either directly or indirectly through a be!

gearing, or other suitable nrechanism.

In 1836, a form of transmission dynamometer was introduced inti

this country by Bachclder of Sanco, Maine (9). Hopkins was one of thffl

early users of transmission dynamometers (9). The dynamometer d^

signed by Hopkins was used for tests with Sicmen's Dynamo Electri^

Machines. The principle used was the weighing of residting stress fror
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a tlellected belt, and by this means ascertaining the cliiect stress in tiie

belt. From rate of travel and ioice transmitted through the belt, horse-

jjoAver coidd be calculated.

Another form of dynamometer was one in whidi tlie tlifference in

tensions of the tight and slack side of the belt was arranged to move a

system of levers. A dynamometer of this kind Avas designed by Tatham

(9) of Philadelphia for use in the Franklin Institute.

The Tatham Dynamometer (Figure I) consists of a lever arm and

weights to balance the toicjue transmitted from one shaft to another.

The torque on the transmission shaft of the Tatham Dynamometer was

ecjual to the difference in tension in the belt T, — T^, multijjlied l)y the

ladius of the jJidley, (r). Neglecting the friction on the two idler pidley:-

P and P,, their reactions at their bearings \\\\\ he 2'F, and 2T., respective-

ly. 1 aking moments about their fulcrum (f) , then:

\VR 4- 2T,a — 2T,a

WR
from which Tj — T^ = —~-

arid torcjue =: r {T ^ — T.,) =

the horsejKjAver transniitted
2a X 33,000

where N is the rexolutions per minute of the transmis-

sion pulley, and units of r, R and a, are in feet, and \V

in pounds.

Tin: Power-Take-Off Dynamometer Developed by McCall*

McCall (20) built a recording transmission dynamometer in IIHO

at Ohio State University. Its operating principle \vas similar to the

dynamometer built by Tatham. This dynamometer consists of a diiving

I
shaft B, and a driven shaft A, connected by means of sprockets antl a

roller chain. The chain passes over two idler sprockets C and D mounted

'on a balance arm frame which is pivoted at A. The bahnue ami also

contains a counter balance weight and a connecting link to the piston

as shown in Figure II. When power is transmitted Irom sliali A to

shaft B through the roller chain, the force on the connecting link ads

against the hydrostatic pistcMi and causes pressine to be built u|) ni ilie

hydrostatic unit. Fhe pressine is transmitted through an oil line to a

Ciulley recording iniit avIuic it is ncoided. l>y using calibialiou buiors.

horsepower transmitted is (akulated.

The design of this power-take-oil dvnamometei \\as such thai it

U(|tnrc(l a tiailer to Liansjjort the unit. Ihe (()ni|)l('tc' (l\ naiiiouu tii

'Sco l'"iKUiu II.
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FIGURE I. Belt dynamometer.

without operator weighed 1,000 pounds. As the unit was mounted in

trailer, it could not be used for testing driven machines which Aver

mounted on tractors. The normal hitch position of a trailing implemer

to a tractor would be disrupted during tests with this unit.
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FIGURE II. Working parts of the power-take-off dynamometer developed by
McCall. (In the actual machine a %-\n. pitch double width roller chain was used.)

Cradle Dynamometer

A widely used form ot tiansinission dynamomctei is the cradle type.

In ii, the power unit is usually an electric motor or an internal combus-

tion engine. The motor or engine is mounted in a cradle, and the system

balanced on its centroidal axis. To give free rocking action when power

is transmitted, the power unit is usually supported on ball bearings. The
engine or electric motor is mounted so that the axis of the driving shaft

3f the power unit and the axis of the cradle bearings coincide.

When power is transmitted to the machine which is to be tested, the

LTadle tends to rotate on the centroidal axis, i)ui it is prevented from

•otating by means of a lever arm. Some form of lorce-measuring device

is used at the end of the level arm. Iioni the forte necessary to hold the

.ystem in balance, the length ol lever arm and the speed ol the power

jnit, the horsepower required to ojjerate the diiven madiine tan be

ietermined.

F x 2jt LN
Horsepower =

3,^000

Where F = Force in jjoniuis ri(|nini[ to balaiui' the system

L =: Ixnglh ol lc\(i arm in ieet

N ^= RcNohilions per iiniunc

2.H



In 1922-23 McCucn (21) developed a recording cradle-type dyna-

mometer in which a Midwest engine was used as the prime mover. The
engine was mounted on a frame with trunnion ends to give free swing-

ing action on the l)all bearings. To measure torcjue, a lever arm was

connected to the engine housing with the other end of the lever arm
connected to a hydrostatic coupling which transmitted oil pressure to

a recording mechanism.

Cradle-type dynamometers can be used for measuring power pro-

duced by engines and motors as well as for determining power required

to operate driven machines. The wide range of power that can be

measured with this dynamometer, and the ease with which it can be

calibrated, constitute its advantages. However, its excessive weight, size,

and the need for a suitable belt or coupling limits its use to the testing

of stationary machines. This would not be a feasible unit for testing

power-take-off machines under field conditions.

Shaft-Type Torsion Dynamometer

When a torsional load is applied to a shaft, an angular twist or

deflection proportional to the moment is produced. By measuring thisi

twist in a calibrated rotating shaft and the speed at which the shaft'

rotates, power transmitted through the shaft can be determined. Devices

used for measuring the twist or deflection can be mechanical, optical,

or electrical (6). Hiren (16) is credited with making the first dynamo-

meter of this kind. When the modulus of elasticity of the shaft material

is known, and the angle of twist and speed of shaft measured, poweri

transmitted can be mathematically determined as follows:

2jtN(H)*GT 2jtNM
hp :

12 X 33,000 L 12 X 33,000

J = polar moment of inertia of the shaft section in inches^

L := length of shaft in inches

^= angle of twist of shaft in radians in length L of the shaft

N = revolutions per minute of the shaft

G = modulus of elasticity of the shaft material

M ^ moinent in inch-pounds

The Central Laboratopy Company (7), in the first quarter of this

century, used electrical means to measure torque in shafts. The dynamc

meter they designed consisted of two shafts connected by a helical spring

(Figure III) . Discs fitted to each shaft, and insulated from the shafij

except for a narrow radial portion, served as commutators. The tw(

brushes when contacting the radial portion of the discs simultaneous!)^

*Conveutional symbol was not available.
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Orhvr

i FIGURE III. Torsion dynamometer with electrical device to measure angle of
twist. (When no torque was transmitted, brushes A and B were adjusted to
hear clicks in the telephone receiver. Upon transmission of power, angular
lag of the transmission shaft with respect to the driven shaft was measured
by adjusting brush B along the calibrated scale, till a click was heard. The
scale reading indicated the torque transmitted.)

(onijjieted the electrical circuit, causing a click in the tclej^hone receiver.

Biiish A was fixed, and brush B coidd be nio\'ed along a dial.

Before torque \\as transmitted, the brush B ^\as adjusted so that a

click was heard, and the dial set at zero. As torque was transmitted

through the system, due to deflection of the spring, the disc untler

brush B would have an angular lag with respect to the disc under l)iush

A. To measure the torque, brush B was adjusted initil a click was heaitl.

indicating that the contact pieces were passing at the same time beloAv

the brushes. The angular adjustment ol brush B. as shown on the

calii)rated dial, indicated the torcpie delivered.

USDA RicoRDiNc; lV)Rc.niF.>rF.TF.R

In H)r).S, Reed (21) and Berry of the United States i)e])aitmeni ol

Agriculture (USDA) developed a recording torquenieter. I In design

was such that torcjue or rotation force was transformed iiuo a lone

parallel to the driver and driven shafts, where it was resisted by licpiid

filled bellows. Pressine of the liquid in ihc bellows was proportional to

the force acting or toixjue, and the power liaiismincd coiiUI l)e caKulatcd

from the RPM and jMessme readings.
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FIGURE IV. Diagrammatic sketch of USDA torquemeter showing relatior.shij

of working parts.

This torquemeter consists of two shafts, an input shaft A, and ar

output shaft B (Figure IV). A plate E, having three rollers F, is rigidh

connected to shaft B. The input shaft has a rigidly fixed spider plate

^vhich tinns a transmission plate D having three inclined blocks. The

tiansmission plate oj^erates against the thrust-bearing of the nonrotatin^

plate H. The spider plate rotates the transmission plate J by contact

The three inclined blocks G on the transmission plate are in contac

with rollers F on plate E. When torque is transmitted through the in

dined blocks and rollers, and axial force equal to the torque is set up

This force, acting on plate D, is transmitted through a thrust-bearing t(

the nonrotating plate H. Movement of the nonrotating plate is resistec

by three hydraidic bellows, each having a capacity of '573 pounds. Thes(

bellows arc connected by tidjing to a pressine indicator or recorder

Torque can be obtained from the pressine readings, and when the spee(

of the shaft is known, po^\•er being transmitted can be determined. Th(

tor(juemeter is relatively simple and can ])e used to test mounted Pr(
driven machines. Its weight is 150 jjounds.

Strain-Gage Technique of Measuring Torque

Use of strain-gages for measuring torque transmitted through a shaf

is relatively new. Within the last few years, strain-gage technicjue o

measuring torque has become jDopidar. These torque measurements hav(

been used for power calculations.

The strain gage is a fine piece of resistance wire mounted in an in

sulating medium and bonded to the part to be tested. Gages are so con

nected that changes in the resistance of the gage wire, due to change
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TO INSTRUMENT XA^

-INPUT VOLTAGE-^
(AC OR DC)

INPUT VOLTAGE
(AC OR DC)

SR-4 STRAIN
GAGES
MOUNTED AT 45

FIGURE V. Strain-gage connections in a SR-4 torque pick-up.

Ill (liiiiciisioii ol ihc wiic (auscd l)\ llic sli;iiii incliucd, ( ;m \)v it;icl or

ic(()i{lc(l through ,suil;il)lc cc|uipiiuiit. As sir;iin is ;i slraighl-linc

liiiK lion ol stress (wilhiii ihc chislic liiiiil) icsistaiuc ol the strain gagi'

an he mathematically converted into stiess.

Dilterent tyj)cs ol gage (onnedions aic used lor measuring strain.

lialdwin-I.iina-Hamilton ( ioi |)oratioii mantilaf I uris toi{]uemeteis (a|)-



able of measuring from 10 inch-ounces to 750,000 foot-pounds (27). Their

SR-4 Torquemeter consists of a torque pick-up and an oscillograph or

oscilloscope. The pick-up provides an electrical signal which is pro

portional to the torque. The instrument may be used to translate the

signal into indicated or recorded units of torque. The pick-up is made

of an elastic member, usually in the form of a short length of shaft, to

which a group of special SR-4 strain gages are bonded and connected

to form a Wheatstone bridge circuit (Figure V). On transmission of

torque through the shaft, a change in strain causes a corresponding]

change in the resistance of the gages. The wire gages bonded to the

shaft arc in such a position and are so connected into a bridge circuit asi

to cancel any possible bending or thrust strains. Slip rings on the shaft

and a nonrotating brush assembly permit the strain gage bridge to be

energized and its unbalance measured by any suitable indicating on

recording instrument.

When the gages and instruments used are in good condition, they

will give accurate results. Heth (12) has mentioned that it is difficult

to get satisfactory results when gages are used outdoors under unfavor

able weather conditions, such as extreme humidity and very low temper

atures. During the last five to six years, to eliminate the effects oi

moisture, temperature and humidity variance, considerable improve

ments have been made in the design and application of gages.

Gage mechanisms and associated indicating and recording instru

ments are very delicate for use under field conditions. If accurate results

are to be obtained, the equipment must be handled by engineer:

especially trained in its use. Above all, it is not a low-cost unit. A

torque pick-up vmit alone, having a capacity of 2,000 in-lb., costs $1,17

(28) and a direct reading indicator costs $900. An installation with c

recording device and suitable accessories would cost approximately

.flO.OOO. In view of the high cost and delicate mechanisms involved

strain gages are not extensively used for power measurement of powen

take-off driven machines.
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