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ABSTRACT 

Long-term manned space exploration to the moon, Mars, and other areas beyond 

Earth's protective magnetic field poses possible acute and late central nervous 

systems (CNS) risks. Of particular concern for astronauts is exposure to high atomic 

number, high energy particles known as HZE particles, a component of galactic 

cosmic radiation (GCR). Although NASA has radiation safety requirements, the 

possible effects of GCR and HZE particles on the central nervous systems of 

astronauts remains unknown. Understanding the risks and effects of galactic cosmic 

radiation and HZE particles on the central nervous system will allow for safer space 

exploration. 

Additionally, and perhaps more relevant, are the effects on the CNS of patients 

undergoing radiation therapy for cancer treatment or for medical procedures like 

CT scans. Radiation (using x-rays, gamma rays, and charged particles), along with 

chemotherapy, is widely used to treat primary and metastatic brain tumors. Despite 

advances in radiation therapy, significant negative impacts on the CNS still remain. 

In this study, our aim was to understand the effects of x-ray radiation on neurite 

morphology and cytoskeleton structure using human SH-SYSY cells, a 

neuroblastoma cell line commonly used for neurite outgrowth studies. In addition, 

we monitored cytotoxicity via a metabolic proliferation assay in neuronal cells lines, 

as well as a primary glial cell line and glial cell line derived from a glioma. 

iv 



Immunocytochemistry results suggests that neurite length of differentiated SH

SYSY cells decreases with increases in radiation dose and exposure time. Phase 

contrast microscopy results are contradictory; suggesting no significant differences 

between treated and control groups with regards to dose and time. Phase contrast 

microscopy does reveal neurite complexity decreases in differentiated SH-SYSY cells 

with select dosages and times of exposure. 

Cytotoxicity results are wildly disparate between cells lines. Data indicate radiation 

dose and time post-treatment affect metabolic activity. However, metabolic activity 

between cell lines and within a cell line can either increase or decrease in response 

to dose and time. 

v 



TABLE OF CONTENTS 

LIST OF TABLES 

LIST OF FIGURES 

1: INTRODUCTION 
1.1 Radiation 

1.1.1 What is Radiation? 
1.1.2 Sources of Radiation 
1.1.3 Types of Radiation 

1.1.3.1 Non-Ionizing 
1.1.3.2 Ionizing 

1.1.4 How is Radiation Measured? 
1.1.5 Why is Ionizing Radiation Harmful? 

1.2 NASA's Concern 
1.2.1 Solar Particle Events 
1.2.2 Galactic Cosmic Radiation 

1.3 Central Nervous System & Neuronal Development 
1.3.1 Cells of the Central Nervous System 
1.3.2 Cytoskeleton Components & Dynamics 

1.4 Biological Effects of Ionizing Radiation 
1.4.1 Molecular Effects 
1.4.2 Evidence from Cell & Tissue Models 
1.4.3 Evidence from Animal Behavior Studies 
1.4.4 Evidence from Human Data 
1.4.5 Combating Effects of Radiation 

1.5 Radiation Therapy 
1.6 Our Focus 

2: MATERIALS & METHODS 
2.1 Cell Culture 

2.1.1 SH-SY5Y Cell Line 
2.1.2 C6 Cell Line 
2.1.3 CL-mPG-15 Cell Line 

2.2 Preliminary Experiments 
2.3 Treatment 
2.4 Phase Contrast Microscopy 
2.5 Immunocytochemistry 

2.5.1 Cytoskeleton Staining of SH-SY5Y Cells 
2.5.2 GFAP Staining of Primary Glial Cell Line 

2.6 MTS Assay 

vi 

viii 

ix 

1 
1 
1 
2 
2 
3 
5 
8 
8 
8 

10 
10 
11 
13 
15 
16 
21 
24 
25 
26 
27 
28 

30-40 
30 
30 
31 
31 
32 
33 
34 
35 
35 
37 
38 



3:RESULTS 
3.1 Preliminary Experiments (density & dose testing) 
3.2 Effects of Radiation on Differentiated SH-SY5Y Morphology 
3.3 Effects of Radiation on SH-SY5Y Cytoskeleton Structure 
3.4 Cytotoxicity of Radiation 

3.4.1 MTS Assay of SH-SY5Y Cell Line 
3.4.2 MTS Assay of C6 Cell Line 
3.4.3 MTS Assay of CL-mPG-15 Cell Line 

3.5 Figures 

4: DISCUSSION 
4.1 General 

40-74 
40 
41 
43 
44 
44 
45 
45 
47 

75-88 

4.1.1 Preliminary Experiments (seeding density and dose testing) 
4.1.2 Effects of Radiation on Differentiated SH-SY5Y Morphology 
4.1.3 Effects of Radiation on SH-SY5Y Cytoskeleton Structure 
4.1.4 Cytotoxicity of Radiation 

75 
75 
76 
77 
80 
84 
84 
85 
85 
86 

4.2 Future Aims 
4.2.1 General 
4.2.2 Reducing Effects of Radiation 

4.2.2.lNutraceuticals 
4.2.2.2Erythropoietin (EPO) 

5: CONCLUSION 

6:REFERENCES 

vii 

87-88 

88-104 



LIST OF TABLES 

Table 1 Seeding densities for each cell line and assay performed 56 

viii 



LIST OF FIGURES 

Figure 1 Images used to determine appropriate seeding density of 52 
SH-SY5Y cell line 

Figure 2 Metabolic curve for SH-SY5Y cell line 53 

Figure 3 Metabolic curve for C6 cell line 54 

Figure 4 Metabolic curve for m-15 cell line 55 

Figure 5 Preliminary x-ray radiation dose testing of SH-SY5Y cell line 57 
using MTS assay 

Figure 6 Additional x-ray radiation dose testing of C6 cell line 58 

Figure 7 Additional x-ray radiation dose testing of m-15 cell line 59 

Figure 8 Representative images of glial fibrillary acidic protein 60 
(GFAP) staining of m-15 cell line 

Figure 9 Cell number decreases in differentiated SH-SY5Y cells 24 and 61 
48 hours post-treatment in response to increased x-ray 
radiation dose according to phase microscopy 

Figure 10 N eurite length does not change with increases in both dose 62 
and time post-treatment based on phase contrast microscopy 

Figure 11 Number of branch points decrease in differentiated SH-SY5Y 63 
cells in select dose and time groups according to phase 
microscopy 

Figure 12 Representative images of immunocytochemistry staining for 64 
SH-SY5Y cell line 

Figure 13 Neurite length of differentiated SH-SY5Y cells decreases in 65 
response to increased radiation dose and time post-
treatment based on immunocytochemistry 

Figure 14 Control cells 48 hours post-treatment tend to exhibit 66 
complicated cytoskeleton structure 

Figure 15 Treated SH-SYSY cells possess the same overall cytoskeleton 67 
structure seen in control cells, although they tend to be 
shortened and less complex 

Figure 16 Not all control cells exhibit complex networking 68 

ix 



LIST OF FIGURES, continued 

Figure 17 Treated SH-SYSY cells can display complex neurites 69 

Figure 18 Number of collapsed growth cones does not change with 70 
dose or time (post-treatment) between SH-SYSY control cells 
and x-ray treated cells 

Figure 19 X-ray radiation causes a decrease in metabolic activity in 71 
SH-SYSY cell line as determined by MTS assay 

Figure 20 X-ray radiation causes an increase in metabolic activity 48 72 
hours post-treatment in the C6 cell line as determined by the 
MTS assay 

Figure 21 X-ray radiation causes an increase in metabolic activity in the 73 
m-15 cell line as determined by the MTS assay 

x 



1: INTRODUCTION 

1.1 RADIATION 

1.1.1 WHAT IS RADIATION? 

Radiation is the emission or transmission of energy in the form of rays, 

electromagnetic (EM) waves, or high-speed subatomic particles. While humans and 

other animals can see or feel some forms of radiation, other forms can only be 

detected using specialized equipment. Electromagnetic radiation can act as both 

waves and streams of particles. Known as photons, these particles have no mass. 

The full range of photon energies and their corresponding wavelengths is known as 

the electromagnetic spectrum. Photons with higher energy exhibit shorter 

wavelengths while, conversely, those with lower energies have longer wavelengths. 

It is well known that as the energy of the radiation increases (and wavelength 

shortens) so does the probability of biological harm (Rask]., et al. 2007). 

1.1.2 SOURCES OF RADIATION 

We are exposed to electromagnetic radiation constantly. Man-made technologies 

are a large contributor to EM radiation exposure and includes, but is not limited to, 

the use of microwaves, cell phones, light bulbs, heaters, gamma-ray sterilizers 

(which act to sterilize food), and diagnostic medical tools (like x-rays or CT scans). 

There are also naturally occurring sources of EM and ionizing radiation which 

includes radioactive elements within the Earth's crust, particles trapped within the 

VanAllen Belts (Earth's magnetic field), and astrophysical matter like stars. 
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However, the sun is the largest source of radiation. Although the sun emits all 

wavelengths in the electromagnetic spectrum, most are visible, infrared and 

ultraviolet radiation (UV) in origin. However, the sun releases immense amounts of 

energy via solar flares and coronal mass ejections (CME), emitting x-rays, gamma 

rays, and solar particle events (SPE)-streams of protons and electrons. It is these 

solar particle events, along with galactic cosmic radiation, that are of concern to the 

National Aeronautics and Space Administration (NASA) and astronauts that travel 

beyond low-Earth orbit (Rask] . et al. 2007). 

1.1.3 TYPES OF RADIATION 

1.1.3.1 Non-Ionizing Radiation 

Radiation can be classified as either non-ionizing or ionizing. Non-ionizing radiation 

(NIR) is an electromagnetic radiation that does not have enough energy to cause 

ionization of atoms or molecules as it passes through matter. Instead, there is only 

enough energy to cause excitation of electrons. On the electromagnetic spectrum, 

non-ionizing radiation is fairly low-energy with longer wavelengths, low frequency, 

and low photon energy (the speed or energy at which rays travel). The NIR 

spectrum is divided into two regions, optical radiation and electromagnetic fields 

(EMFs). Optical radiation is simply emitted light and includes ultraviolet (UV), 

visible, and infrared radiation. The greatest risks from optical radiation are probably 

due to UV radiation emitted by the sun. Skin exposure can cause redness and 

burning, accelerated aging, and increased risk of skin cancer. Exposure of eyes to UV 

light can cause cornea and retina damage and increases the risk of cataracts. 
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Electromagnetic fields arise from electrically charged particles and include 

extremely low frequency (ELF), radio frequency, and microwaves. Sources of EMFs 

include microwaves, power lines, wireless networks, cell phones, and many others. 

Despite the fear that EMFs cause cancer, the National Research Council (NRC) found 

that "no conclusive and consistent evidence" exists that EMFs cause harm to 

humans. Additionally, the International Agency for Research on Cancer (IARC) found 

that ELF magnetic fields are possible human carcinogens due to limited or 

inadequate evidence for carcinogenicity and radio EMFs are possible human 

carcinogens based on limited evidence in human and animal studies (IARC Working 

,roup on the Eva luaLion of Ca rcinogenic Risks L) Humans. World II •a lth 

Organizati 11, & Int rnational Agency for Research on Cancer 2002. 20 13). Acute 

exposures to electromagnetic fields may cause heating of biological tissues, but are 

generally thought to be harmless (Park 2001). 

1.1.3.2 Ionizing Radiation 

Ionizing radiation (IR) is classified as either electromagnetic or particulate in 

nature. IR carries enough energy to cause removal or liberation of electrons from 

atoms as it traverses matter - thereby causing ionization. Ionizing radiation includes 

the high energy portion of the electromagnetic spectrum with shorter wavelengths 

and higher frequencies. Electromagnetic IR consists of photons, discrete bundles of 

electromagnetic (light) energy that have neither mass nor charge. Ionizing radiation 

includes x-rays, gamma rays, alpha particles, beta particles, and galactic cosmic 
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radiation (GCR). Although they are similar, x-rays and gamma-rays differ in source 

of origin, frequency, wavelength, and photon energy. Gamma-rays are higher in 

energy and originate from the nucleus, usually as a product of radioactive decay. X

rays arise outside the nucleus as electrons transition between orbitals. 

Particulate radiation consists of atomic or subatomic particles carrying kinetic 

energy. Included in ionizing particle radiation are alpha (a) particles, beta W) 

particles, and neutrons. Alpha and beta particles are directly ionizing because they 

carry a charge and can interact with atomic electrons through coulombic forces. 

Alpha particles are subatomic fragments consisting of two protons and two 

neutrons expelled from the nuclei of unstable atoms. They are typically produced in 

the process of alpha decay. Because they have two protons and two neutrons they 

are identical to a helium nucleus and often referred to as He2+. They are relatively 

heavy, high-energy, charged particles, and because of this travel fairly slowly ( about 

one-twentieth the speed of light). Alpha particles are not radioactive and gain free 

electrons once their energy is depleted thus becoming helium. Due to the fact that 

they lose energy quickly, alpha particles cannot penetrate most matter and 

therefore do not pose a health risk to humans. However, individuals may be at a 

greater risk of cancer if alpha emitters are ingested, absorbed into the bloodstream, 

or inhaled. Radon gas is the largest natural source of alpha particle radiation to the 

general populationhttp://www.epa.gov/radiation /understand/alpha.html. 
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Beta decay exists in two forms, ~- and ~+, which give rise to electrons or positrons, 

respectively. Beta decay is a type of radioactive decay responsible for the 

production of beta particles. Unlike alpha particles, beta particles are high in both 

energy and speed and have a mass of zero. Collectively, this gives them more 

penetrating ability and consequently causes more cell damage. Internal exposures 

to beta emitters causes increased risk of cancer. Although individuals can be 

exposed to natural beta decay, much of the exposure is man-made. Sources include 

medical imaging (magnetic resonance imaging, MRI), industrial instruments 

(thickness gauges), and use of radioactive materials to diagnose and treat medical 

conditions (such as the case with radioactive iodine). 

Neutrons are subatomic particles that, with protons, make up the nucleus of an 

atom. Neutrons have no charge and therefore cannot directly ionize an atom. 

Instead they are indirectly ionizing. A stable atom can become unstable once it 

absorbs a neutron which in turn can cause emission of ionizing radiation. For this 

reason, neutrons are considered the only type of radiation that causes radioactivity 

in other materials (Hall and Giaccia 2012). 

h ttps: //www.mirion.com/in trod ucti on-to-rad iation-safct;y /typcs-of- ion izing-.. 
radiation/ 

1.1.4 HOW IS RADIATION MEASURED? 

The absorbed dose of radiation is defined as the amount of energy deposited by 

radiation per unit mass of material. It can be expressed as units of rad (radiation 
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absorbed dose), Grays is the international unit (1 Gray= 1 Gy = 1 Joule of energy per 

kilogram of material= 100 rad), or mGy (milliGray) which describes how much 

radiation is absorbed by the body. Due to the fact that equal doses of differing 

ionizing radiation types can cause very different biological damage, an equivalent 

dose unit is used. Because of this, the equivalent dose describes both the amount of 

radiation absorbed as well as the amount of damage a particular radiation type 

causes. Equivalent dose is measured in Sieverts (Sv) or milliSieverts (mSv) (Rask. I. 

et al. 2007). 

It is estimated that astronauts who are at an international space station receive 

approximately 80 and 160 mSv of radiation during solar maximums and minimums, 

respectively. To put that into perspective, one mSv of space radiation is roughly the 

same dose as three chest x-rays, despite differences in types of radiation (NASA 

2002). Crew members aboard the space station wear dosimeters and also have 

biodosimetry evaluations which measures chromosomal damage in red blood cells 

due to radiation exposure. Additionally, radiation measurement devices and various 

experiments have flown or been placed by various agencies outside and within the 

International Space Station (ISS). These include but are not limited to: Passive 

Dosimetry (1999-present), Bonner Ball Neutron Detector (March-December 2001), 

Charged Particle Directional Spectrometers (CPDS)(2001-present), Dosimetric 

Mapping (DOSMAP)(March-August 2001), and Phantom Torso (March-August 

2001) (NASA. 2002). However, these are measurements and estimates at the ISS and 
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therefore not applicable to quality and quantity of radiation outside low-Earth orbit 

(LEO). 

According to the National Council of Radiation Protection and Measurements 

(NCRP. 2006). it is estimated that astronauts traveling outside Earth's protective 

magnetic field may receive radiation doses two times that of levels found in LEO. 

Earth's magnetic field is believed to be due to its liquid outer core. Comprised of 

metal, this liquid outer core flows as a result of convection as well as Earth's 

rotation. This flow of the liquid outer core generates electrical currents which gives 

rise to magnetic fields. 

Until recently, reliable dosimetry data for total dose, dose rate, and radiation quality 

encountered in space was relatively unknown. Past estimates relied on inferring 

about space radiation from data collected on Earth. Unmanned space crafts and 

mathematical models have made it possible to accurately estimate GCR dose-rates. 

These models include Nymmik's Model, CREME-96 Model, CHIME Model, and 

Badhwar and O'Neill Model (NCRP. 2006). A Radiation Assessment Detector (RAD) 

attached to the Mars Curiosity rover was carried by the Mars Science Laboratory 

(MSL-RAD) in order to gain estimates of primary and secondary particles 

(Chancellor et al. 2014: Zeitlin et al. 2013: Kim, M.-H. Y., et al. 2014). The Mars 

radiation environment experiment (MARIE) is still in use today and measures both 

the amount and types of radiation experienced in transit to Mars as well as on the 

planet itself (NASA 2002). Comparisons of data collected from the NASA Space 
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Cancer Risk Model (NSCR-2012) and MSL-RAD show a consistency in measurements 

of GCR dose rates. Therefore, we can reasonably assume accurate estimates of GCR 

doses encountered beyond LEO (Cucinotta et al. 2001: Cucinotta et al. 2011). 

Other studies have aimed at providing cell-hit frequencies experienced by 

astronauts outside the magnetosphere. Using two different shielding configurations, 

Curtis and Letaw (1989) provide evidence that astronauts on a three-year mission 

in a most heavily shielded spacecraft would have 33% of cell nuclei traversed by 

particles with a charge between 3 and 28. Approximately 6% of cell nuclei would 

experience a second traversal. This study also found that increasing shielding could 

decrease the dose equivalent by a factor of 3 via decreasing both the absorbed dose 

and biological effectiveness (Chancellor et al. 2014: Curtis, 1989). 

Individual risk factors can compound risk estimates. Potential CNS detriment to 

astronauts is not only a function of radiation quality and quantity, but also age, 

genetic predisposition, sex, previous radiation exposure, and prior head injuries. 

Synergistic effects between GCR exposure and effects of space travel on the CNS are 

also plausible since microgravity, sleep deprivation due to disruption in circadian 

rhythm, and isolation/confinement can affect the CNS (Cucinotta et al. 2014). 

1.1.5 WHY IS IONIZING RADIATION SO HARMFUL? 

Although non-ionizing radiation does cause biological harm, we are able to 

efficiently shield against it. Ionizing radiation, however, is hard to avoid due not only 

to its ability to penetrate matter but also by its ability to alter matter (ionization) as 
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it passes through. It has been described as an "atomic-scale cannonball" as it breaks 

through matter causing substantial damage in its wake (Rask. (. et al. 2007). 

Additional damage can be caused by secondary particles. Interaction of primary 

particles, like GCR, can interact with spacecraft material or biological tissue giving 

rise to secondary particles, an added concern of NASA (Chancellor et al. 2014: 

Cl1c[notta et al. 2014: Cucinotta and Durante ;w06: Curtis 1989: Held 2009: 

Sridharan et al. 2015). 

1.2 NASA's CONCERN 

Long-term manned space exploration to the moon, Mars, and other areas beyond 

Earth's protective magnetic field pose health concerns to astronauts due to the 

unique nature of radiation encountered in space. Of particular concern for 

astronauts are acute exposures to sporadic solar particle event (SPE) and chronic 

exposures to galactic cosmic radiation (GCR). Although the Van Allen Belts are 

comprised of protons and electrons that are trapped in Earth's magnetic field, they 

are likely small contributors to total space radiation exposure and therefore will not 

be discussed further (McKenna-Lawlor et al. 2012). 

1.2.1 SOLAR PARTICLE EVENTS 

Solar particle events (SPE) cause the release and/or acceleration of high energy 

protons and heavy ion particles into the interplanetary medium (Chancellor et al. 

2014: McKenna-Lawlor et al. 2012:). Consequently, sudden large increases in 

radiation would occur both the exterior and interior of space crafts. The Sun's 
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activity is based on an approximate 11-year solar cycle which is divided into periods 

of solar minimum (four inactive years) and solar maximum (seven active years). 

Increases in solar flares, sudden bursts of magnetic energy, or coronal mass 

ejections (CM Es), large explosions of magnetized plasma originating from the 

corona-the sun's outermost atmosphere, during solar maximums give rise to SPEs. 

Although SPEs are more likely to occur during solar maximums, they can occur at 

any time during the 11-year solar cycle thus making it impossible to predict the 

timing ofa large SPE. Although each SPE varies in its particle composition they are 

mainly composed of protons, about 4% helium, and Jess than 1 % of heavier ions 

(Wu et al. 2008). During an SPE, doses range from 0-100 mGy/h for those inside a 

space vehicle and from 0-500 mGy /h for astronauts performing extravehicular 

activity (EVA) (Chancellor et al. 2014). The majority of solar particle events are both 

low in intensity and have soft spectra (rapid decrease in particle fluence rate

number of particles crossing per unit time, with increase in energy) and 

consequently are not an exposure concern since the spacecraft itself provides 

shielding. 

What is of concern are large SPEs that, within hours or days, could cause acute 

radiation syndrome (ARS) (National Council of Radiation Protection and 

Measurements. 2006; Wu et al. 2008). ARS is clinically classified as hematopoietic 

syndrome, GI syndrome, and neurovascular syndrome, prodromal effects (early 

symptoms) including nausea, vomiting, anorexia, and fatigue, as well as skin 

injuries, depletion of blood cells and blood-forming organs, and immune system 
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dysfunction (Bevelacqua 2008: Bruno and Czysz l 009: lrnncellor et al. 2014: Wu ct 

al. 2008). Although it is known that both x-rays and gamma rays can cause ARS, the 

acute effects of exposure to SPE protons remains unknown. Extravehicular activity 

is a concern as shielding from the spacecraft is eliminated. Although shielding is one 

approach to abate the effects of SPE particles and galactic cosmic radiation, it is 

expensive and should not be overestimated (Wu et al. 2008). 

1.2.2 GALACTIC COSMIC RADIATION 

Galactic cosmic radiation, or galactic cosmic rays, come from outside the solar 

system, but mainly arise from within our Milky Way galaxy. GCR are atomic nuclei, 

their electrons removed as they travel through the galaxy at nearly the speed of light 

(Chancellor et al. 2014). GCR dose is highest at solar minimums due to the fact that 

particles are influenced by the Sun's magnetic field. During solar minimums, the 

magnetic field of the Sun is most weak and therefore less capable of deflecting 

particles (Rask, I. et al. 2007). Galactic cosmic radiation is mainly composed of 

energetic protons (hydrogen, -85%) and alpha particles (helium nuclei, -14%). Of 

greatest concern are the less abundant component of GCR, high atomic number, high 

energy particles known as HZE particles. Charges of HZE particles range from Z=3 to 

Z=26, or nickel and lithium, respectively. Iron is a transition metal with a charge of 

Z=26 and it, along with other ionized transition metals, are biologically harmful 

since they cannot be shielded against with any feasible amount of spacecraft 

material (Rask, J. et al. 2007). GCR particles have a large range of energies (-10 

MeV /n to -1012 MeV /n) and because of this shielding is problematic. Consequently, 

11 



astronauts would be exposed to constant, low dose-rate radiation (National Council 

on Radiation Protection and Measurements. NCRP. 2006). GCR is extremely 

biologically harmful due to its high ionizing power, immense penetrating ability, and 

large potential for extensive radiation induced damage (Chancellor et al. 2014: Held 

2009: Rask. I. et al. 2007). Additionally, shielding could cause adverse effects since 

particles are fragmented as they pass through spacecraft material giving rise to 

secondary particles which could cause greater biological harm (Chancellor et al. 

2014: Held 2009). 

1.3 CENTRAL NERVOUS SYSTEM & NEURONAL DEVELOPMENT 

1.3.1 CELLS OF THE CENTRAL NERVOUS SYSTEM 

The central nervous system (CNS) is mainly comprised of two types of cells, neurons 

and neuroglia. It is estimated that there are approximately 100 billion neurons in 

the human brain; which are able to process and transmit information via electrical 

and chemical signals. A neuron consists of three main parts- a cell body (or soma), 

axon, and dendrites. The cell body contains many organelles, including the nucleus. 

Extending from the soma are neurites, which collectively includes dendrites and 

axons. Dendrites branch from the soma and are the postsynaptic portion of the 

synapse, receiving chemical signals in the form of neurotransmitters from axons of 

other neurons. Dendrites serve to transmit the nerve impulse to the cell body. The 

axon is a long projection that extends from the soma at a site known as the axon 

hillock. Its purpose is to carry electrical impulses away from the cell body to other 
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neurons, muscles, or glands. Therefore, it is considered the presynaptic portion of 

the synapse. 

Nearly 85% of the brain is comprised of glial cells. Glia, which comes from the Latin 

for glue, have historically been regarded as supporting cells for neurons. Two 

classes of glial cells exist, microglia and macroglia (Kandel et al. 2000). 

Microglia are a type of immune cell found only in the brain, although they are 

derived from macrophages outside of the CNS. These phagocytic cells are activated 

upon injury, infection, or disease. Neurodegenerative diseases, such as Alzheimer's 

may also initiate microglial activation. Microglia are able to act as macrophages, 

detecting and engulfing damaged neurons, or portions of neurons, as well as viruses 

and bacteria (Kandel et al. 2000: Purves et al. 2001). 

Macroglia consist of oligodendrocytes, astrocytes, and Schwann cells; although 

Schwann cells form sheaths around axons of peripheral nerves. Oligodendrocytes 

make up the myelin sheath-a protective covering that serves to expedite action 

potentials that travel through the axon (Kandel et al. 2000: Purves et al. 2001). 

Astrocytes are star shaped and provide a variety of functions. Astrocytes not only 

provide support for neurons, but they also control the supply of nutrients and 

oxygen. Astrocytes have been found to release gliotransmitters and can modify 

signals that neurons both send and receive. Additionally, evidence suggests that 
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astrocytes may be involved in the growth and development of neurons and synapses 

along with the potential to signal immune cells to sites of damage. Collectively, this 

means astrocytes are capable of communicating with neurons and are much more 

important that once believed (Kandel et al. 2000: Purves et al. 2001: Raff et al. 1979: 

Sagara et al. 1993). 

Until recently, the importance of glial cells has been largely ignored. More recently, 

glia have been discovered to be involved in diseases like brain cancer and multiple 

sclerosis. They have also been implicated in psychiatric illnesses, neurodegenerative 

disorders, chronic pain, infectious diseases, and repair of the CNS after injury. 

Because of all this, and due to the important functions glial cells carry out, there is 

now an acceleration of glial research in order to better understand events that occur 

in vivo. 

1.3.2 CYTOSKELETON COMPONENTS AND DYNAMICS 

Pathfinding is the process in which neurons send out axons to their target cells or 

synaptic partners allowing the establishment of proper circuitry. A functional 

nervous system is one where neurons have successfully achieved pathfinding. Axon 

guidance is reliant on the growth cone, the ambulatory tip of growing axons, as well 

as extracellular cues (Geraldo and Gordon-Weeks 2009: Lowery and Van Vactor 

2009). Growth cones are an integral feature of neurite outgrowth and interactions of 

growth cone cytoskeleton components are dynamic. The two major cytoskeletal 

filaments in neurons consist of actin and microtubules. Actin monomers make up 
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actin filaments-a polarized polymer whose plus (barbed) end faces the leading edge 

of the growth cone (or edge of growing P-domain) and minus (pointed) end faces 

the T-zone. Polymerization of ATP-actin typically occurs at the plus end, with ADP

actin depolymerization at the minus end. Microtubules (MT) are also polarized and 

are comprised of a- and ~-tubulin dimer arrays. MT polymerization takes place at 

the plus end where GTP-tubulin dimers are added while MT depolymerization via 

GTP hydrolysis causes GDP-tubulin dimer dissociation at the minus end (Lowery 

and Van Vactor 2009: Vitriol and Zheng 2012). 

Growth cones consist of three distinct domains. At the end of the neurite entering 

the growth cone lies the central domain, or C-domain. The C-domain consists of 

bundles of stable microtubules, as well as vesicles and organelles like mitochondria. 

The peripheral domain, or P-domain, is most distal and contains F-actin bundles 

which make up filopodia and an F-actin mesh that makes up lamellipodia-like veils. 

Between the C and P domains is the transition (T) zone where F-actin arcs 

(actomyosin contraction units) are arranged perpendicular to F-actin bundles 

forming a semicircular region (Lowery and Van Vactor 2009). 

As the growth cone moves it constantly cycles through three observable stages 

termed, protrusion, engorgement, and consolidation (Dent and Gertler 2003: 

Goldberg and Burmeister 1986: Lowery and Van Vactor 2009). Protrusion starts 

when growth cone receptors bind an adhesive substrate. An intracellular cascade 

enables substrate and cytoskeleton to link. F-actin retrograde flow is halted while 
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polymerization at the plus end continues. Consequently, filopodia and lamellipodia 

extend. Exploratory microtubules invade the P-domain prior to protrusion and may 

act as guidance sensors. During engorgement however, the C-domain moves 

forward as stable microtubules continue to move into the P-domain where 

protrusion has occurred thus acting to steer the growth cone and fixing the 

direction of growth. Finally, the new portion of axon is formed when actin filaments 

in the wrist of the growth cone depolymerize causing consolidation of MTs (Lowery 

and Van Vactor 2009). 

1.4 BIOLOGICAL EFFECTS OF IONIZING RADIATION 

Although electromagnetic and subatomic particle radiations are both ionizing, they 

differ in the amount of energy they transfer per unit length to the materials they 

traverse. X-rays and gamma-rays are examples oflow linear energy transfer (low

LET) radiation. Low-LET radiation is considered sparsely ionizing since only a few 

dozen ionizations are produced when fast electrons traverse a cell. Conversely, 

subatomic particle electromagnetic radiation is considered high-LET radiation and 

is densely ionizing. This is because they transfer more energy per unit length as they 

pass through matter and are therefore more damaging than low-LET (Held 2009: 

National Research Council. 2006). While astronauts will mostly be exposed to high

LET, treatment for this study will be done using low-LET for three reasons. Firstly, 

preliminary data it needed to gain time on particle accelerators that would provide 

high-LET. Secondly, time and money is limited and treatment with high-LET is 

currently beyond our reach. Lastly, there is a much higher incidence of people 
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exposed to low-LET in comparison to GCR due to radiation therapy for cancer 

patients and overuse of diagnostic medical tools like CT scans. For this reason, 

biological effects of both types of linear energy transfer radiations will be discussed. 

Concerns for possible CNS damage arose after the discovery of GCR by Cornelius 

Tobias who predicted the light flash phenomenon as a single HZE nuclei traverses 

the retina. This would later be confirmed by Apollo astronauts (Cucinotta et al. 

2014). Both acute and late central nervous systems (CNS) risks from space radiation 

are concerns of NASA regarding space travel beyond LEO. Acute CNS risks include 

altered cognitive function, reduced motor function, and changes in behavior. Late 

CNS risks are dementia, premature aging, cancer, and neurodegenerative disorders 

such as Alzheimer's Disease (AD) (Cucinotta et al. 2009). 

Although NASA has radiation safety requirements, the possible effects of GCR and 

HZE particles on the central nervous systems of astronauts remains unknown 

(Cucinotta et al. 2009). The NASA Chief Health and Medical Officer have set 

permissive exposure limits (PELs) for both cancer and non-cancer risks to blood 

forming organs (BFOs ), skin, and eye lenses which have been in place since 1970. 

However, these PELs are for short term exposures or for career exposures of 

astronauts doing non-exploratory missions. Astronauts on previous NASA missions 

are not likely to exhibit observable CNS effects because their missions were short 

and they were afforded the protection of Earth's magnetic field; there are also few 

astronauts, creating a small population size. Such small sample sizes decrease 

confidence in results of radiation studies and make it difficult to estimate future 
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risk. For astronauts who will be exploring, preliminary exposure limits are limited 

and based on experimental animal studies. In order to improve our understanding 

of the biological effects of space radiation and set PELs for travel beyond LEO 

further studies need to verify CNS risks shown in recent investigations (Cucinotta et 

al. 2009). 

1.4.1 MOLECULAR EFFECTS 

Despite the fact that ionizing radiation causes ionization and therefore only 

interacts with atoms or molecules within the cell, it is these interactions that are the 

source of biological detriment. The disturbance of atoms and/ or molecules can 

negatively impact cells which may ultimately affect tissues, organs, and the entire 

body (Little et al. 2010). 

Radiation may affect cells via two mechanisms termed direct and indirect effects 

(U.S. Nuclear Regulatory Commission). Direct effects occur when an ionizing particle 

directly interacts with DNA Direct effects may also affect other macromolecules like 

RNA, proteins, and enzymes however, damage to DNA is the primary concern since 

it is not only the most crucial macromolecule but also the most radiosensitive 

(Samari et al. 2013). DNA lesions caused by direct and indirect effects include base 

alterations, DNA-DNA and DNA-protein crosslinks, and both single and double 

strand breaks (Morgan et al. 1996). It is thought that upon exposure to IR, damage 

to cells caused by direct effects is dealt with rapidly by either tagging 
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macromolecules for degradation or by repairing DNA through various repair 

mechanisms. 

Indirect effects begin with the interaction of ionizing particles and water molecules 

(since water makes up approximately 70% of human tissue) resulting in the ionized 

water molecule, H20+. Further reactions can produce hydrogen radicals (H• ), 

hydroxyl radicals (OH•), and hydrogen peroxide (H202). Ultimately, the interaction 

of ionizing radiation and water results in reactive oxygen species (ROS) like those 

listed above, which can rapidly self-amplify and persist through interactions with 

lipids, membranes, and oxygen (National Research Council 2006: Barcellos-Hoff et 

al. 2005). 

Increases in ROS upon exposure to radiation have been divided into three temporal 

categories, early which occurs within minutes, delayed occurring in hours, and 

chronic occurring in weeks or months. Initial spikes in ROS occur within 15-30 

minutes of radiation exposure and can be attributed to NADPH oxidase activity. It is 

this early ROS response that is responsible for bystander effects (Sridharan et al. 

2015). The bystander effect is considered a type of non-targeted effect (NTE) where 

responses to radiation can be seen in cells not subjected to radiation but were either 

adjacent or spatially separated by cells that were irradiated (Cucinotta and Chappell 

2010: Morgan and Sowa 2007). There are two mechanisms in which bystander 

effects occur. Extracellular factors, like ROS, exosomes, and soluble signaling factors 

secreted by affected cells can cause biological responses in non-irradiated cells. 
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Additionally, signaling molecules can be transmitted through intercellular gap 

junctions resulting in damage amplification (Morgan and Sowa 2007: Sridharan et 

al. 2015). 

Delayed responses, marked by a second surge of ROS, can be seen within 6-12 hours 

post exposure. It is likely this rise in ROS originates from mitochondria and may 

serve to promote cell death (Saenko et al. 2013: Sridharan et al. 2015: Yamamori et 

al. 2012). 

Chronic ROS production can last for weeks, months, even years and persists in both 

irradiated and non-irradiated progeny. Type of damage is dependent on the tissue 

affected. For example, persistent ROS in the brain cortex has been associated with 

cell death, continual DNA damage response activation, arrest of cell growth, 

senescence, cell layer thinning, tissue volume reduction and reduced cognitive 

ability (Suman et al. 2013: Sridharan et al. 2015). Neurogenesis is disrupted when 

mitochondria generated ROS persists (Liao et al. 2013: Sridharan et al. 2015). 

Numerous biological responses occur upon exposure to radiation. Included in these 

responses are: triggering of signal transduction pathways, gene transcription 

activation, DNA repair, oxidative stress, inflammation, and cell-cycle arrest. 

Collectively, these biological responses are probable factors that determine the fate 

of irradiated cells (Morgan et al. 1996). Possible fates of irradiated cells would 

include: repair of damage and restoration of normal function, cell death (via 
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apoptosis or necrosis), death of cell daughter( s) despite normal reproduction of the 

irradiated cell, apoptosis-induced cell proliferation, bystander effects and genomic 

instability-which can lead to neoplastic transformation (Morgan et al. 1996: 

National Research Council 2006: Stickel et al. 2014: Todd 2003). 

HZE particles produce intense ionization because they travel close to the speed of 

light and because they can be composed of heavy elements. Therefore, HZE particles 

that traverse cells can cause clusters of DNA damage ( also known as multiply 

damaged sites or microlesions) within localized regions. This damage could include 

single-strand DNA breaks, double-strand DNA breaks, damage to bases, and abasic 

sites (Held 2009). It is thought that there are increased biological effects on cells, i.e. 

cell death, mutagenesis, and neoplastic transformation, due to the inability of cells 

with complex damage to repair accurately. Studies such as one performed by Desai 

et al. (2005) suggest both increased and slower processing of DNA damage by 

monitoring DNA repair proteins and phosphorylated y-HZAX (Desai et al. 2005: 

Held 2009). Asaithamby et al. (2008) have also used y-H2AX to show that as LET 

increases so does the ability of the cell to repair (Asaithamby et al. 2008). 

Genomic instability is included as one the hallmarks of carcinogenesis and radiation 

exposure has long been linked to increases in cancer incidences (Hall 1994: Morgan 

et al. 1996). Cancer risk increases when genes involved in DNA response or tumor 

suppression are impaired (National Research Council 2006). Genomic instability 

occurs when errors in either cell division or in the ability to maintain proper gene 

expression cause accrual of alterations or mutations in the genome. These 
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alterations include: changes in karyotype, gene mutation, gene amplification, 

cellular transformation, heterogeneity due to clonal expansion, and delayed 

reproductive cell death. Although both low- and high-LET have been shown to exert 

negative biological effects, these negative effects increase as LET increases. This is 

likely due to the fact that high-LET is densely ionizing and causes much more DNA 

damage within a smaller area. These complex, densely damaged areas are more 

difficult to repair and thus likely contributors to genomic instability (Morgan et al. 

1996; Ward. 1988). 

Effects of radiation on cells alone is informative. However, cells within an organism 

are components of tissues and their regulation depends on their interactions with 

both other cells and their microenvironment. Just as ionizing radiation elicits a 

stress response in individual cells, it also does so at the tissue level. Response by 

damaged tissue occurs by cellular signals including cytokines, growth factors, and 

chemokines. These soluble signals act to transmit information between cells via 

their interaction with receptors. They are involved in regulation of cell proliferation 

and differentiation, motility, adhesion, and apoptosis. Consequences of IR induced 

changes in the microenvironment include the "activated" phenotype where 

proteases, growth factors, and persistent ROS production cause quick and continual 

remodeling of the extracellular matrix (EMC), chronic inflammation (demonstrated 

as the presence of activated phagocytes and invasion and margination of 

neutrophils), and production of cytokines like transforming growth factor-~ 

(Barcellos-Hoff et al. 2005). 
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1.4.2 EVIDENCE FROM CELL AND TISSUE MODELS 

Radiation has been shown to affect cells of the central nervous system, although 

cells within the brain have differing dose tolerances. Cells that are able to divide, 

such as neuroglia, respond differently to radiation than neurons which cannot 

Gobbel et al., 1998 have shown that x-irradiation causes apoptosis in non-cycling 

neurons despite apoptosis being thought of as generally, only occurring in· 

proliferating cells (Meikrantz and Schlegel 1995: Gobbel et al. 1998). Sun et al. 

(2013) have also shown that x-irradiation induces neuronal apoptosis via 

upregulation of CdkS and p25 (Sun et al. 2013). DNA damage is probably 

responsible for apoptosis seen in these neurons since the nucleus and DNA are more 

radiosensitive than other cell components. Although the CNS is considered a 

relatively "radio resistant" tissue in comparison to other tissues based on low-LET 

radiation studies, high doses of low-LET radiation are responsible for brain damage 

pathogenesis when oligodendrocytes and endothelial cells of the CNS vasculature 

are damaged (NCRP. 2006: Cucinotta et al. 2009). 

Also, Gobbel et al. (1998) showed that despite no differences in the number of DNA 

strand breaks between neurons and astrocytes, neurons were less efficient at 

repairing since rejoining of strand breaks occurred more slowly in comparison to 

astrocytes. Slow repair could be due, in part, to decreased transcription (Hanawalt 

et al. 1992: Gobbet et al. 1998). These studies are important since 

neurodegenerative disorders, like Alzheimer's Disease, may be linked to DNA 

damage (Chopp et al. 1996: Gobbel et al. 1998). 
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Understanding the mechanisms involved in radiation induced CNS risks have been 

made possible with the recent discovery that neurogenesis still occurs in the adult 

hippocampus. Results of recent studies suggest neuronal stem cells are 

radiosensitive and low-LET radiation affects their proliferation as well as 

differentiation (Cucinotta et al. 2009; Mizurnatsu et al. 2003: Monje et al. 2002: 

Tofilon and Fike 2000). 

Current evidence demonstrates that HZE nuclei cause neurodegeneration. These 

studies show a dose-dependent decrease in neuronal progenitor cell number in the 

hippocampus upon exposure to HZE radiation. Additionally, neuronal progenitor 

cell loss caused altered neurogenesis and resulted in initiation of the inflammatory 

response-which can also be seen in aged specimens. This suggests the possibility 

that HZE radiation may be used in future studies to evaluate aging and its processes 

(Casadesus et al. 2004: Casadesus t al. 2005: Cucinotta et al. 2009: NCRP. 2006) . 

Ionizing radiation has been shown to cause demyelination of nerve fibers in the 

cerebral and cerebellar cortex following treatment with IR (Estable-Puig et al. 

1964). Demyelination can lead to deficiencies in axonal conduction as well as 

atrophy and degeneration of axons (Love 2006: McDonald and Sears 1969: Song et 

al. 2005). These effects can be seen in patients with demyelinating neurological 

disorders, like multiple sclerosis (MS). In our study, we find degeneration of 

neurites in the absence of glial cells. 
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As previously mentioned, IR can cause oxidative stress and inflammation and both 

have been documented in nervous tissue. In comparison to other tissues, the brain is 

more susceptible to reactive oxygen species due to its high metabolic rate and 

increased demand for oxygen (Suman et al. 2013). Recently, the hippocampus has 

been discovered to contain multi potent neural precursor cells. While it is known 

that ROS production increases in neuronal cells after IR exposure, these cells have 

been shown to be hypersensitive to changes in oxidation state. Both x and proton 

irradiations cause dose dependent increases of ROS in neural precursor cells. In vivo 

data show localization of oxidative stress to cells of the hippocampus. Though 

unknown at present, oxidative stress could prevent neurogenesis of multi potential 

neural precursor cells (Cucinotta et al. 2009: Giedzinski et al. 2005). Rola et al. 

(2005) report reductions in numbers of neural precursor cells in the hippocampal 

dentate gyrus in a dose and LET dependent manner. 

N euroinflammation is characteristic of brain injury and involves the activation of 

microglia, astrocytes, and mediators of inflammation. Long term effects can be seen 

months later when myeloid cells (precursors of adult blood cells) are recruited to 

damaged regions (Cucinotta et al. 2009: Rola et al. 2005). Low-LET radiation has 

been shown to upregulate COX-2 production in microglia and may be the cause of 

neuroinflammation. COX-2 also causes production of prostaglandin E2 which 

promotes gliosis (Cucinotta et al. 2009: Hwang et al. 2006: Kyrkanides et al. 2002: 

Moore et al. 2005). 
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Chronic neuroinflammation is considered to be partly responsible for the 

diminished cognitive function seen in Alzheimer's patients (Meraz-Rios et al. 2013). 

Accumulation of amyloid beta (A~) in brain parenchyma, referred to as amyloid 

plaque, is a major histological indicator of AD and is even used as a diagnostic tool 

(Karran et al. 2011: Cherry et al. 2012). Cherry et al., 2012 recently showed that AD 

mouse models exposed to 56fe particle irradiation ( a component of GCR) showed 

increased A~ plaque accumulation into dense fibrils within the cortex and 

hippocampus. Additionally, the study found cognitive impairment post irradiation 

by observing contextual fear conditioning (used to evaluate hippocampal-dependent 

memory) and a novel object recognition paradigm (a function that relies on many 

areas of the brain). This strengthens the concern that cognitive impairment and 

increased risk for development of AD is a concern for astronauts who will be 

exposed to GCR. 

1.4.3 EVIDENCE FROM ANIMAL BEHAVIOR STUDIES 

Though evidence is insufficient at this time, current studies suggest that space 

radiation can cause behavioral and neurological effects. Behavioral changes 

associated with exposure to space radiation include: sensorimotor deficits and 

neurochemical changes (Joseph et al. 1992: Joseph et al. 1993: Joseph and Cutler 

1994), changes in conditioned taste aversion (CTA) (Hunt et al. 1989: Rabin et al. 

1989: Rabin et al. 1991: Rabin et al. 1994: Rabin et al. 2000), changes in operant 

conditioning (Rabin et al. 2003), and deficits in spatial learning and memory 

(Shukitt-Hale et al. 2000: Denisova et al. 2002). 
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Although evidence collected from animal models suggests behavioral and 

neurological effects can occur upon exposure to space radiation, behavior is an 

endpoint that is difficult to evaluate. Because of this, large variations in animal 

studies monitoring behavior in response to radiation have been reported and are 

likely due to the different species, strains, and method used to evaluate (NCRP. 

2006: Cucinotta et al. 2009). However, in order to understand behavioral changes, 

we need to understand what changes are occurring at the cellular level in the CNS. 

Immediate CNS effects are also a concern and include anorexia and nausea. Rabin et 

al. performed a study to evaluate how varying forms of radiation causes vomiting in 

ferrets. (Rabin et al. 1994). These prodromal effects serve to help estimate 

exposure dose since they are dose-dependent. Development of degenerative 

diseases may be due to increases in cytokines and chemokines that are correlated 

with these acute CNS effects (Cucinotta et al. 2009). 

1.4.4 EVIDENCE FROM HUMAN DATA 

Current evidence documenting the effects of ionizing radiation comes from patients 

receiving radiotherapy for cancer treatment. Effects of radiation therapy can 

provide insight into possible CNS risks to astronauts, despite being a form of 

terrestrial radiation and higher doses than will be experienced beyond LEO. 

Lower doses of radiotherapy have been shown to cause neurocognitive effects, with 

children being more sensitive (Schultheiss et al. 1995: BEIR-V, 1990). Children who 
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have undergone radiation treatment for brain tumors have experienced decreases 

in academic achievement and intelligence (as shown in IQ tests) as well as deficits in 

cognitive control (management of cognitive processes) (Butler and Haser, 2006). 

Additionally, fetuses exposed to radiation between 8-15 weeks post-conception 

during atomic bombing in Japan expressed mental retardation (BEIR-V, 1990). It 

should be noted that developing brains are far more sensitive than fully developed 

brains to damaging agents. 

Deficits in cognitive functioning, language acquisition, visual spatial ability, memory, 

executive functioning, and differences in social behavior ( chronic fatigue and 

depression) (Tofilon and Fike, 2000) have all been seen in patients whose tumors 

were treated with charged particle beams. Although chemotherapy is often used in 

conjunction with radiotherapy, none of these deficits were seen with chemotherapy 

alone and therefore can be attributed to either radiation alone or to a combination 

of chemotherapy and radiation (Cucinotta et al. 2009). 

Using astronauts involved in past NASA space missions is unlikely to reveal any CNS 

effects caused by radiation. This is because the population of astronauts is 

incredibly low. Also, previous missions were of short duration and astronauts did 

not travel beyond LEO and were therefore protected by Earth's magnetic field. Thus 

far, risk prediction of radiation exposure comes from data collected from survivors 

of atomic bomb events. However, this is terrestrial radiation and is not 
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representative of radiation from GCR and SPEs that would be encountered in space 

(Cucinotta et al. 2001). 

1.4.5 COMBATING EFFECTS OF RADIATION 

Before manned space missions into deep space can occur, it is imperative that we 

fully assess the risks associated with such missions. Understanding the risks and 

effects of galactic cosmic radiation and HZE particles on the central nervous system 

will allow for the development of countermeasures that would combat the adverse 

effects of space radiation. Such studies are already underway. Based on animal 

studies, use of antioxidants and anti-inflammatory agents are probable biological 

countermeasures (Rabin et al. 2005). Another likely countermeasure would include 

targeting and eliminating (via apoptosis) cells damaged by GCR (Cucinotta et al. 

2009) thus decreasing the chances of genomic instability. 

1.5 RADIATION THERAPY 

Approximately 20% of our radiation exposure is due to man-made radiation; nearly 

all of it (about 96%) is due to medical procedures (U.S. Nuclear Regulatory 

Committee). In 2006, about 435 million medical procedures involving ionizing 

radiation were performed in United States (NCRP, 2009). Currently, only 47 active 

astronauts are employed by NASA; and it is likely not all of them will have a mission 

to space. So perhaps more relevant are the effects on the CNS of patients undergoing 

radiation therapy for cancer treatment or for medical procedures like CT scans. 
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According to the Central Brain Tumor Registry of the United States (CBTRUS), 

nearly 700,000 Americans were living with either primary brain or CNS tumors in 

2010. CBTRUS estimates 77,670 new cases of CNS tumors for 2016, about 32% of 

those being malignant (CBTRUS, 2014). 

Radiation, along with chemotherapy, is widely used to treat primary and metastatic 

brain tumors. Despite advances in radiation therapy its usage is restricted to limit 

exposure to healthy tissue. Radiation therapy itself can cause neurological and CNS 

toxicity making it difficult to recognize radiation induced damage from the effects of 

the cancer alone. 

Complications of radiation are categorized into acute ( during or immediately 

following), early delayed (weeks to months), and late delayed (months to years) 

(Goldberg et al. 1982: Rinne et al. 2012). Acute encephalopathy occurs within hours 

or days of radiation therapy and typically in patients that undergo large daily dose 

fractions. Symptoms include headaches, nausea, lethargy, vomiting, seizures, and 

fever. Early delayed complications occur within two to three months of exposure 

and is thought to be due to demyelination. Symptoms are not dissimilar to acute 

complications and include headache, lethargy, nausea, irritability, and swelling of 

the optic disc(s). Unlike acute and early delayed complications, late delayed 

radiation effects are often irreversible and continue to progress. Included in the late 

delayed radiation induced CNS effects are radio necrosis and leukoencephalopathy. 

Radio necrosis develops when there is damage to white matter of the brain or the 
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spinal cord causing necrosis, vascular injury, and damage and death to both axons 

and oligodendrocytes. Leukoencephalopathy (loss of white matter) results in 

cognitive dysfunction such as short-term memory loss and impairments in 

judgement, attention, and executive functioning. Additionally, irradiation of the 

cranium for cancer treatment causes a 7-fold increase in developing secondary 

brain tumors. Secondary brain malignancies associated with CNS irradiation include 

meningiomas, gliomas, and sarcomas (Rinne et al. 2012). 

1.6 OUR FOCUS 

Neuronal function is dependent on proper structure and synaptogenesis. Any 

disruption in neurite architecture, like retraction of neurites, defects in cytoskeleton 

dynamics, and neuronal cell death could cause diminished neuronal function. 

Additionally, the critical function of glial cells in maintaining neuronal function and 

their implication in degenerative diseases force the need to study their response to 

radiation. If space radiation has potential to cause damage to neurites and glial cells

and therefore function of the CNS, resources need to be allotted to reducing harm to 

astronauts as they travel outside of Earth's protective magnetic field. 

This study uses the SH-SYSY, C6, and CL-mPG-15 cell lines to examine effects of 

radiation. SH-SYSY is a neuroblastoma cell line sub cloned from the SK-N-SH line. 

The SK-N-SH line was established in 1970 from the bone marrow biopsy of a four

year-old female (Biedler et al. 1973). Neuroblastomas are tumors that affect small 

children, usually under the age of 10, and are derived from immature nerve cells of 

31 



the sympathetic nervous system (SNS) (Edsjo et al. 2007). SH-SYSY cells have 

widely been used as an in vitro model for neurotoxicity experiments (Cheung et al. 

2009), neuronal differentiation (Edsjo et al. 2007) and outgrowth (Dwane et al. 

2013), as well as Parkinson's disease and Alzheimer's disease studies 

(Constantinescu et al. 2007; Dwane et al. 2013). 

C6 is a glioma cell line. It was derived from chemically inducing glial brain tumors in 

random-bred Wistar-Furth rats using N,N'-nitroso-methylurea (Arnberger et al. 

1998: Grobben et al. 2002). These tumors are morphologically similar to 

glioblastoma multiforme (GBM), an aggressive type of glioma that is resistant to 

traditional therapeutic methods, including radiation (Grobben et al. 2002). The CL

mPG-15 is a primary glial cell line established from the brains of mice aged 

postnatal days 1-5. Primary cells are more representative of those found in vivo and 

are not tumorigenic. 

Although space exploration is fascinating and important, more relevant is the likely 

damage to substantial numbers of patients exposed to radiation for cancer 

treatment. Radiation can rid or halt growth of cancer cells but care needs to be 

taken to study the long-term effects of radiation treatment as well as to mitigate its 

potential damage. 
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2: MATERIALS AND METHODS 

2.1 CELL CULTURE 

2.1.1 SH-SYSY Cell Line 

SH-SY5Y cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA,) and maintained in a 1:1 mixture of EMEM and F12K media 

supplemented with 10% fetal bovine serum (ATCC), 100 µg/mL streptomycin, and 

100 U /mL penicillin (Lonza, Walkersville, MD). Cells were cultured in T-25 plug seal 

tissue culture flasks (Corning, Corning, NY) and incubated at 37 °C and 5% CO, in a 

Forma™ Series II 3110 Water-Jacketed incubator (ThermoScientific, Marietta, OH). 

Subculturing was done by removing medium from the flasks then rinsing cells with 

Ca,,/Mgz· free Dulbecco's phosphate-buffered saline (DPBS) (Mediatech, Inc., 

Manassas, VA), and detaching using 0.25% trypsin/2.21 mM EDTA (Corning). 

Trypsin was quenched with the equal volume of medium. Cells were counted using a 

hemocytometer (Hausser Scientific, Horsham, PA) with 0.2% trypan blue (Lonza). 

Passaging occurred weekly and medium was refreshed every 4-7 days. 

For all experiments, SH-SY5Y cells were differentiated with 10 µMall-trans retinoic 

acid (Sigma, St. Louis, MS), allowed to differentiate for 5 days to ensure adequate 

neurite outgrowth, then treated with the desired dose of x-ray radiation unless 

otherwise noted. 
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2 .1.2 C6 Cell Line 

C6 cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA,) and maintained in F-12K medium supplemented with 2.5% Fetal 

Bovine Serum (FBS), 15% Horse Serum (ATCC), and 100 µg/mL streptomycin/100 

U /mL penicillin (Lonza). Cells were cultured in T-25 plug seal tissue culture flasks 

(Corning) and incubated at 37 °C and 5% CO, in a FormarM Series II 3110 Water

Jacketed incubator (ThermoScientific). Subculturing was done by removing medium 

from the flasks, rinsing cells with Ca,·/Mg,, free Dulbecco's phosphate-buffered 

saline (DPBS), and detached using 0.25% trypsin/2.21 mM EDTA (Corning). Trypsin 

was quenched with the equal volume of medium. Cells were counted using a 

hemocytometer (Hausser Scientific) with 0.2% trypan blue (Lonza). Passaging 

occurred every three days, medium did not need to be refreshed. 

For all experiments, C6 cells were allowed to rest and enter normal cell cycle for 72 

hours before being treated with the desired dose of x-ray radiation unless otherwise 

noted. 

2.1.3 CL-mPG-15 Cell Line 

CL-mPG-15 cell line was established from the brains of mice aged postnatal days 1-

5; brains were graciously donated by Dr. Leif Oxburgh of Maine Medical Center 

Research Institute (MMCRI). Upon sacrifice and dissection, brains were kept in 

HIBERNATE in order to preserve viable brain tissue. Brain tissue was then digested 

with 2.5% Trypsin EDTA (Corning) and plated into 12 well plates. Media was 

refreshed after 24 hours and again every 48 hours until confluent at which cells 
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were subcultured and transferred to culture flasks. Cells were maintained in 

Dulbecco's Modified Eagle's Medium (DMEM, Lonza) supplemented with 10% FBS, 

100 µg/mL streptomycin/100 U/mL penicillin (Lonza), and 1% Glutamax (Gibco, 

Life Technologies, Grand Island, New York). Cells were cultured in T-25 plug seal 

tissue culture flasks (Corning) and incubated at 37 °C and 5% C02 in a Forma™ Series 

II 3110 Water-Jacketed incubator (ThermoScientific). Subculturing was done by 

removing medium from the flasks, rinsing cells with Ca2·/Mg2• free Dulbecco's 

phosphate-buffered saline (DPBS), and detached using 0.25% trypsin/2.21 mM 

EDTA (Corning). Trypsin was quenched with the equal volume of medium. Cells 

were counted using a hemocytometer (Hausser Scientific) with 0.2% trypan blue 

(Lonza). Passaging occurred once a week and medium was refreshed every 4 days. 

For all experiments, CL-mPG-15 cells were allowed to rest and enter normal cell 

cycle for 72 hours before being treated with the desired dose of x-ray radiation 

unless otherwise noted. 

2.2 PRELIMINARY EXPERIMENTS 

Preliminary testing was done to determine appropriate seeding densities for each 

cell line and assay performed. For phase contrast microscopy and 

immunocytochemistry assays with the SY cell line, various densities were seeded, 

treated with retinoic acid, and allowed to grow for 5 days before a visual inspection 

of each density was done to ensure neither scarce nor crowded cell growth. Seeding 

densities and incubation times for MTS assay were done by creating a metabolic 
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curve for each cell line. Absorbance readings were taken for incubation hours at 1, 2, 

3, and 4 hours for each seeding density. 

Preliminary dose testing was done in order to establish which radiation doses 

would yield cytotoxic effects and be used in all subsequent experiments. SH-SYSY 

cells were the basis for all experiments and all subsequent cell lines tested used the 

same radiation doses as the SY cell line. 

2.3 TREATMENT 

Cells were treated using a Faxitron x-ray system. Cells are placed into the x-ray 

cabinet and treated accordingly, depending on dose desired. Radiation exposure is 

dependent on the distance from the tube ( shelf height) and energy settings (kVp ). 

Doses range from Oto 20 Gy for all cell lines, although preliminary doses up to 200 

Gy were performed. 

NOTE: Although this project is aimed to look at the effects of radiation that would 

typically be encountered in space, there are two arguments to why we are using x

ray radiation instead. Particle accelerators, like the one at CERN, have limited time 

allotted for independent labs like ours and you are only granted time if you have a 

substantial grant and are well known. The University of Southern Maine has a 

Faxitron x-ray cabinet capable of treating with x-rays and therefore it is more 

efficient and less costly than treating with particles. Additionally, there are only a 
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few astronauts that will be exposed to GCR; whereas there are far more people 

exposed to x-ray radiation from medical procedures or from radiation therapy. 

2.4 PHASE CONTRAST MICROSCOPY 

Phase contrast microscopy was used to analyze neurite length which indirectly 

monitors neurite retraction in SH-SYSY cells. Phase contrast is a technique used to 

examine unstained specimens where structures are similar in transparency. By 

exploiting differences in refractive indexes, structures can be viewed and identified. 

A doublet ( :j:) was scratched onto the bottom of four wells of a 24 well plate (VWR, 

Batavia, IL) using a diamond knife to ensure the observation of the same field of 

view and cells over time. SH-SYSY cells were seeded at 1,750 cells/well, six wells 

were seeded for each dose, and cells were allowed to differentiate for 5 days before 

being treated. A random quadrant of the doublet was chosen and recorded. Images 

of both the scratch and cells allows for analysis of the same area of the plate and 

presumably, the same cells over time. Images were taken immediately prior to 

treatment and again after 6, 24, and 48 hours post treatment using a TS100 phase

contrast microscope (Tokyo, Japan) at 200X magnification, a Diagnostic Instruments 

SPOT RT Color camera (Sterling Heights, MI), and SPOT Advanced 4.0.9 software. 

Before analysis, images were coded to ensure no bias by treatment dose or time 

post-treatment. Analysis was done using Image} software; where neurite length, cell 

number, and neurite complexity (number of branch points) were quantified. Data 

were imported to GraphPad Prism 7 to be analyzed and graphed. Data represent at 
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least three independent experiments analyzed with a two-way AN OVA with 

Dunnett's multiple comparisons post-test where p:50.05 denotes statistical 

significance. 

2.5 IMMUNOCYTOCHEMISTRY 

2.5.1 Cytoskeleton Staining of SH-SY5Y Cells 

Immunocytochemistry is a method used to detect proteins or other macromolecules 

by use of primary antibodies that bind them. Secondary antibodies conjugated with 

fluorophores allows for visualization of the target by using a fluorescence 

microscope. Immunocytochemistry was used to monitor the cytoskeleton 

components, actin and microtubules, to monitor changes in neurites and growth 

cones exposed to irradiation over time. Neurite retraction was examined as well as 

number of collapsed growth cones. Growth cones were considered collapsed if no 

actin was observed in the tip of the neurite or growth cone. 

Mouse anti-cx-tubulin was used as the primary antibody to bind microtubules; 

AlexaFluor SSS goat-anti-mouse was used as the secondary. Filamentous actin (F

actin) was stained using AlexaFluor Phalloidin 488, which is fluorescently labeled 

phalloidin. Phalloidin is a toxin isolated from Amanita phalloides, or death cap 

mushroom and prevents the depolymerization of F-actin. 

SH-SYSY cells were seeded into 4-well chamber slides (Nunc Lab-Tek, Rochester, 

NY) at 1,750 cells/well then allowed to rest for 5 days in order to grow sufficient 
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neurites. Since two time points were used, two identical slides were seeded to in 

order to observe cytoskeleton structure O and 24 hours post-irradiation. Cells were 

then treated with X-irradiation ( either 0, 5, or 10 Gy). Slides marked O hour were 

fixed immediately after treatment and stored in PBS while those marked 24 hour 

were put into the incubator and fixed the following day. This allows remaining 

immunocytochemistry steps to be done concurrent with both time points. 

After treatment and incubation, cells were fixed with PHEM buffer (60 mM PIPES, 

25 mM HEPES, 10 mM EGTA, and 2 mM MgCL), 4% paraformaldehyde, 0.5% 

gluteraldehyde, and 1% Triton-X 100. To fix, 250 uL of media was removed from 

each well and replaced with 250 uL of fix and allowed to incubate at room 

temperature for 7 minutes. 250 uL of medium/fix was again removed and replaced 

with fix and incubated at room temperature for 7 minutes. After this second 

incubation, all medium was removed and replaced with 500 uL of fix and incubated 

at room temperature for 7 minutes. Neurites are delicate and slow removal and 

addition of medium/fix allows a more gentle fix ensuring neurites are not damaged 

by disturbance from adding more liquid to the wells. However, once fixation is 

complete neurites are bound to the slide more firmly and able to withstand more 

turbulence from future staining steps. Cells were washed and permeabilized with 

PBS and 0.3% Triton-X 100 (PBS-TX) for 30 minutes then blocked with 10% goat 

serum in PBS-TX for 30 minutes at room temperature. Liquid was removed from 

each well and 350 uL of unconjugated mouse anti-a-tubulin (1:200) (Thermo Fisher 

Scientific, Waltham, MA) was added and left to incubate for 1 hour at room 
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temperature. Cells were washed with PBS-TX twice for 5 minutes. Next, 350 uL of 

Alexa 555 (1:500) (Thermo Fisher Scientific, Waltham, MA) in PBS-TX was added to 

each well and allowed to incubate for 1 hour at room temperature in a drawer to 

prevent bleaching of the fluorescent stain. Laboratory lights were also off or dim 

from this step forward. Cells were thrice washed with PBS for 5 minutes; PBS-TX 

cannot be used for future steps as it interferes with phalloidin. Next, 350 uL of Alexa 

488 Phalloidin (1:100) (Thermo Fisher Scientific, Waltham, MA) in PBS was 

administered to each well and allowed to incubate at room temperature for 2 hours. 

Cells were then washed with PBS twice for 5 minutes and the slide chamber gaskets 

and seals were removed. Before PBS could dry one drop of Prolong Gold antifade 

reagent with DAPI (Thermo Fisher Scientific, Waltham, MA) was added to each well 

and coverslips were applied. Slides were allowed to cure at room temperature 

underneath a dark box or in a lab drawer and subsequently stored at 4°C until 

analysis. 

For epifluorescent microscopy, an Olympus IX71 microscope equipped with an 

Olympus U-CMAD3 camera was used to photograph images. Nikon NIS-Elements 

software was used to acquire images. Analysis was done using ImageJ software; 

where neurite length and number of collapsed growth cones per 100 cells were 

quantified. Data were imported to GraphPad Prism 7 to be analyzed and graphed. 

Data represent at least three independent experiments analyzed with a two-way 

AN OVA with Dunnett's multiple comparisons post-test where p:50.05 denotes 

statistical significance. 
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2.5.2 GFAP Staining of Primary Glial Cell Line 

Glial fibrillary acidic protein (GFAP) staining was used to confirm the CL-mPG-15 

cell line was glial in origin. GFAP is an intermediate filament protein that is used to 

support and strengthen cells. GFAP comprises a portion of the cytoskeleton of 

astrocytes and immunostaining for GFAP has been used to identify and glial cells 

from other cell populations. 

CL-mPG-15 cells were fixed with PHEM buffer (60 mM PIPES, 25 mM HEPES, 10 mM 

EGTA, and 2 mM MgCl,), 4% paraformaldehyde, 0.5% glutaraldehyde, and 1 % 

Triton-X 100. Cells were washed and permeabilized with PBS and 0.3% Triton-X 

100 (PBS-TX) for 30 minutes then blocked with 10% goat serum in PBS-TX for 30 

minutes at room temperature. Cells were rinsed with PBS followed by a 60-minute 

room temperature incubation with Polyclonal Rabbit Anti-Glial Fibrillary Acidic 

Protein (1:500) (Dako, Carpinteria, CA). Cells were then washed with PBS twice for 

5 minutes aµd the slide was allowed to dry in a dark box. For epifluorescent 

microscopy, an Olympus IX71 microscope equipped with an Olympus U-CMAD3 

camera was used to photograph images. Nikon NIS-Elements software was used to 

acquire images. 

2.6 MTS ASSAY 

The MTS assay is a colorimetric method that and allows for analysis of cell number 

or cytotoxicity. MTS (3-( 4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

( 4-sulfophenyl)-2H-tetrazolium) is a tetrazolium salt that is bio reduced to a colored 
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formazan product by mitochondrial dehydrogenase enzymes within viable cells. 

Formazan absorbs best at 490 nm. Promega's (Madison, WI) CellTiter 96® AQueous 

One Solution Cell Proliferation Assay was used to monitor cellular metabolic activity 

and therefore viability in both irradiated and nonirradiated cells. 

For all cells lines, cells were plated into 96-well clear bottom tissue culture treated 

plates (BD Falcon, San Jose, CA). Before experiments began, metabolic curves using 

MTS were performed to determine appropriate seeding densities and incubation 

times for each cell line. Briefly, various densities were seeded into wells of a 96 well 

plate. Since incubation in MTS reagent varies with each cell line absorbance 

readings were taken at 1, 2, 3, and 4 hours for each cell line. 

SH-SY5Y cells were seeded at 50,000 cells/well and differentiated as noted above 

and allowed to rest for 120 hours. Both C6 and CL-mPG-15 cell lines were seeded 

5,000 cells/well and allowed to rest for 48 hours. Cells were then treated with 0, 1, 

5, 10, or 20 Gy of irradiation. Plates were read at 0, 24, and 48 hours post-treatment 

in order to monitor cell viability after treatment over time. Once treated, 20 uL of 

MTS solution was added to each well and allowed to incubate for either 3 (C6) or 4 

hours (SH-SYSY and CL-mPG-15 cell lines) in order for the product to form. It should 

be noted that all three time points were plated on the same plate, however, MTS was 

only added to the time point of interest. Additionally, since the MTS assay requires 

incubation, the O hour time point is actually 3 or 4 hours depending on cell line. 
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A BioTek Synergy HT plate reader (BioTek Instruments, Inc., Winooski, VT) was 

used to measure absorbance of formazan at 490 nm. Because plates needed to stay 

sterile, they were read with lids on. Due to multiple plates being read at the same 

time, the opening and closing of the incubator caused condensation on the lids of all 

plates. Because condensation can potentially alter absorbance readings, it was 

imperative to minimize its presence. Although the plate reader was prepared to be 

at 37 °C, the same temperature as the incubator, condensation persisted. Placing all 

plates into the tissue culture hood with lids off for 1 minute helped reduce or 

eliminate condensation. Data were imported to GraphPad Prism 7 to be analyzed 

and graphed. Data represent at least three independent experiments analyzed with 

a two-way AN OVA with Dunnett's multiple comparisons post-test where p:s;0.05 

denotes statistical significance. 

3:RESULTS 

3.1 Preliminary Experiments (seedin1: density and dose testing) 

Before experiments that aimed to answer our hypotheses were performed it was 

important to preliminary experiments to find appropriate seeding densities and 

radiation doses. Seeding density is essential as it ensures enough cells are present to 

analyze but not too dense to inhibit visualization of independent neurites (for phase 

contrast microscopy) or promote contact inhibition of cell division (MTS assay). 
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Phase contrast microscopy and immunocytochemistry experiments were used to 

analyze neurite morphology and cytoskeleton structure and therefore only SH-SYSY 

cells were examined. Visual inspection of preliminary seeding density experiments 

for the SH-SYSY cell line showed that seeding at 1,750 cells per well is appropriate 

for phase contrast microscopy and immunocytochemistry experiments (Figure 1). 

All other seeding densities are either too scarce or too dense and would not allow 

accurate results. 

Seeding densities for MTS assay were chosen by creating a metabolic curve for each 

cell line where absorbance was measured for each density over four incubation 

periods. Seeding densities examined for the SH-SYSY cell line were 10x103, 20x103, 

30x103, 40x103, 50x103, 60x103, 70x103, 80x103, 90x103, and 10x104 cells/well. 

Absorbance ranges from 0.01 to 0.40 for 1 hour incubation, 0.20 to 0.70 for 2-hour 

incubation, 0.29 to 0.97 for 3-hour incubation, and 0.31 to 1.26 for 4-hour 

incubation (Figure 2). Absorbance increases until plateauing around 70,000 

cells/well for all incubation periods. Based on these data, 50x103 cells/well was the 

chosen seeding density. Four-hour incubation resulted in the highest absorbance 

readings for all cell densities and was therefore used in MTS experiments. 

Seeding densities examined for the C6 cell line included lx103, 2x103, 3x103, 4x103, 

SxlO, and 6x103 cells/well. Absorbance ranges from 0.68 to .49 for 1 hour 

incubation, 1.20 to 1.07 for 2-hour incubation, 1.41 to 1.03 for 3-hour incubation, 

and 1.59 to 1.02 for 4-hour incubation (Figure 3). Based on these data, Sx103 
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cells/well was the chosen seeding density. A 3-hour incubation was chosen since 

there wasn't a significant difference between 3 and 4-hour incubation times. 

Seeding densities examined for the m-15 cell line included 2x103, 3x103, 4x103, and 

5x103 cells/well. Absorbance ranges from 0.014 to 0.082 for 1 hour incubation, 0.88 

to 0.19 for 2-hour incubation, 0.13 to 0.26 for 3-hour incubation, and 0.17 to 0.31 

for 4-hour incubation (Figure 4). Based on these data, 5x103 cells/well was the 

chosen seeding density. Because absorbance readings were so low a 4-hour 

incubation time was chosen. Seeding densities for all cell lines and assays can be 

seen in Table 1. 

Radiation dose testing was dependent on the SH-SY5Y cell line for all assays. For 

phase contrast microscopy and immunocytochemistry assays, doses were chosen so 

that apparent cell death was present but not absolute. Visual inspection lead to 

doses of 0, 0.05, 1, 5, and 10 Gy for phase contrast microscopy and 

immunocytochemistry experiments (data not shown). Radiation doses over 10 Gy 

resulted in substantial cell death, particularly 24 hours post-treatment, whereas 

minimal numbers of cells were left and sample size would not yield accurate results. 

Dose testing for MTS assay was performed, and based on metabolic activity of the 

SH-SY5Y cell line, doses of 0, 1, 5, 10, and 20 Gy were chosen (Figure 5). The highest 

dose, 20 Gy, was chosen because it caused considerably lower absorbance readings 

in comparison to control cells, 0.66 and 1.06 respectively. Doses between control 

and 20 Gy were objectively chosen so that dose increments made sense. These doses 
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were used for all cells lines; however, additional dose testing was done on both C6 

and CL-mPG-15 cell lines (Figures 6 and 7, respectively). C6 glial cells treated with 

500 Gy, a markedly huge dose of radiation, had absorbance readings higher than 

control cells 48 hours post-treatment (1.47 and 0.73, respectively) (Figure 6). 

Primary glial cells of the m-15 cell line had lower base absorbance readings. Yet, 

cells exposed to 200 Gy at 48 hours post-treatment still had absorbance readings 

not dissimilar to control cells, 0.32 and 0.39, respectively (Figure 7). 

Preliminary experiments were also needed to confirm that the primary glial cell line, 

CL-mPG-15, expressed glial fibrillary acidic protein (GFAP). Preliminary 

immunocytochemistry experiments show cells of the CL-mPG-15 cell line fluoresce 

when exposed to anti-GFAP antibodies and examined with a fluorescence 

microscope (Figure 8). 

3.2 Effects of Radiation on Differentiated SH-SY SY Morphology 

Phase contrast microscopy was used to observe the effects of radiation on SH-SY SY 

morphology. Neurite retraction was investigated by measuring neurite length while 

counting number of branch points, which enabled examination of neurite 

complexity. Additionally, cell number was analyzed in order to monitor cytotoxicity 

(in addition to MTS assay). 

Counting viable cells using phase contrast microscopy was supplementary as the 

MTS assay was used to examine the cytotoxicity of radiation in all cell lines. 
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However, considering images were already collected and the ease of analyzing using 

Image I, phase contrast microscopy enabled us to compare cytotoxicity findings of 

two different assays within the SH-SYSY cell line. Using a two-way ANOVA and 

Dunnett's multiple comparisons post hoc test, none of the doses immediately 

following treatment (0 hour) significantly differed in cell number to controls (Figure 

9). Cell number significantly decreased from 38.8 (control) to 35.6 six hours post

treatment between control cells and cells treated with 5 Gy (p<0.01). All radiation 

doses at both 24 and 48 hours post-treatment had significantly reduced cell 

numbers in comparison to controls. 

Effects of radiation on neurite retraction was assessed by averaging the longest 

neurite per soma in each dose and time group. Phase contrast microscopy suggests 

neurite length does not change with either dose or time (Figure 10). Using a two

way AN OVA and Dunnett's multiple comparisons post hoc test, there were no 

significant differences in neurite length between non-irradiated and irradiated cells 

at any time point. 

Determining radiation's effect on neurite complexity was based on counting the 

number of branch points per neurite. Number of branch points decreased in 

differentiated SH-SYSY cells in select dose and time groups (Figure 11). Cells treated 

with 1 Gy had decreased number of branch points in comparison to controls at 6 

and 24 hours post-treatment (p<0.05). A radiation dose of 5 Gy at 48 hours post

treatment also had significantly reduced branching when compared to control cells 
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(p<0.001). All other doses and time points were not significantly different than 

control cells. 

3.3 Effects of Radiation on SH-SYSY Cytoskeleton Structure 

Immunocytochemistry was used in order to monitor changes of SH-SYSY 

cytoskeleton structure in response to radiation. Neurite length and number of 

collapsed growth cones were examined. Prior to conducting experiments, 

immunocytochemistry staining was tested in order to confirm the protocol and 

ensure dyes were working (Figure 12). DAPI stained DNA/nuclei. Anti-tubulin 

coupled with an AlexaFluorSSS secondary stained microtubules. AlexaFluor 

Phalloidin 488 stained actin. Merged images depict all dyes stacked. 

Neurite length was also analyzed using immunocytochemistry. This enabled data 

comparisons between the two assays. Just as in phase contrast microscopy, effects 

of radiation on neurite retraction was assessed by averaging the longest neurite per 

soma in each dose and time group. Neurite length of differentiated SH-SYSY cells 

decreases with radiation dose and time based on immunocytochemistry (Figure 13). 

Neurites of non-irradiated cells averaged 59.1 and 62.8 µmat O and 24 hours, 

respectively. Treated cells had significantly shorter neurites at both time points. 

Neurites of cells exposed to 5 Gy averaged 48.3 and 47.0 µmat O and 24 hours, 

respectively while those exposed to 10 Gy averaged 42.9 and 38.8 µmat O and 24 

hours, respectively. 
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Visual analysis of cytoskeleton components is valuable and should not be 

underestimated. Immunocytochemistry allows for such visual data to be collected 

and presented alongside data displayed in graphs or tables. Control cells 48 hours 

post-treatment tend to exhibit complicated cytoskeleton structure (Figure 14). 

Microtubules along the neurite shaft are elongated and bundled while actin 

networking and branching is complex. Irradiated SH-SY5Y cells possess the same 

overall cytoskeleton organization seen in control cells, although they tend to be 

shortened and less complex (Figure 15). However, morphologies vary significantly 

in both treated and untreated populations and therefore it is possible to see less 

complex cells in control cultures (Figure 16) and long neurites in irradiated cultures 

(Figure 17). 

Immunocytochemistry allowed visualization of the growth cone and its structure 

which ultimately, enabled monitoring of growth cone collapse. The number of 

collapsed growth cones does not change with dose or time (post-treatment) 

between SH-SY5Y control cells and x-ray treated cells (Figure 18). Means for 0, 5, 

and 10 Gy treatments at O hour were 2.000, 2.463, and 3.307, respectively. Means 

for 0, 5, and 10 Gy treatments 24 hours post-irradiation were 2.227, 3.558, and 

4.296, respectively. Though not significant, data do show a trend where number of 

collapsed growth cones is higher as dose increases. Additionally, all 24-hour post

treatment time points were higher than 0-hour time-points for all treatments. 
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3.4 Cytotoxicity of Radiation 

Cytotoxicity of x-ray radiation was monitored using the MTS assay. Changes in 

absorbance at 490 nm are correlated with cell viability e.g. higher absorbance 

readings are associated with higher rates of metabolic activity while lower readings 

are associated with decreased metabolic activity. 

3.4.1 MTS Assay ofSH-SYSY Cell Line 

X-ray radiation causes a decrease in metabolic activity in SH-SY5Y cell line (Figure 

19). All treatments had approximately the same absorbance readings 4 hours post 

exposure at around 0.625. At 24 hours post treatment absorbance values decreased 

as dose increased; cells exposed to 1 Gy irradiation did not significantly differ from 

control cells at this time point. Exposures of 5, 10, and 20 Gy had absorbance 

readings of 0.530, 0.472, and 0.403, respectively, and significantly differed from 

control cells which had an absorbance reading of 0.622. Post-treatment time of 48 

hours showed a difference only between control cells and those treated with 10 and 

20 Gy (p<0.05, p<0.001, respectively). 

3 .4.2 MTS Assay of C6 Cell Line 

X-ray radiation causes an initial increase and subsequent decrease in metabolic 

activity in the C6 glial cell line as determined by the MTS assay (Figure 20). 

Absorbance readings at 24 hours were higher than those at 3 hours, however at 

each of these time points values for all treatments were similar. Absorbance 
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readings 48 hours post-treatment were highest with cells exposed to 20 Gy (0.164) 

and decreased with dose, control cells having the lowest absorbance (0.838). This 

trend, despite being counter-intuitive, was evident in all trials. Cells treated with 1 

Gy did not differ in absorbance from control cells 48 hours post exposure while 

those treated with 5, 10, and 20 Gy did (p<0.001, p<0.0001, and p<0.0001, 

respectively). 

3.4.3 MTS Assay of CL-mPG-15 Cell Line 

X-ray radiation causes a decrease in metabolic activity over time in the m-15 cell 

line as determined by the MTS assay (Figure 21). Absorbance values did not differ 

between treatments at 4-hour time point. Absorbance readings increased for all 

treatments from Oto 24 hours post exposure. All doses, 1, 5, 10, and 20 Gy 

significantly differed from control cells with p<0.01, p<0.0001, p<0.0001, p<0.0001, 

respectively. Absorbance readings increased for control and 1 Gy exposed cells from 

24 to 48 hours, while all other doses decreased. All treatment groups significantly 

differed from the control where p<0.0001. 
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Figure 1: Images used to determine appropriate seeding density of SH-SYSY cell line for phase contrast microscopy and 

immunocytochemistry assays. 
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Figure 2: Metabolic curve for SH-SYSY cell line. Preliminary MTS assay performed to 

determine appropriate seeding density and MTS incubation period for SH-SYSY cell 

line. Based on results a seeding density of 50,000 cells/well was chosen with a 4 

hour MTS incubation for subsequent MTS assays regarding the SH-SYSY cell line. 
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Figure 3: Metabolic curve for C6 cell line. Preliminary MTS assay performed to 

determine appropriate seeding density and MTS incubation period for C6 cell line. 

Based on results a seeding density of 5,000 cells/well was chosen with a 3 hour MTS 

incubation for subsequent MTS assays regarding the C6 cell line. 
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Figure 4: Metabolic curve for m-15 cell line. Preliminary MTS assay performed to 

determine appropriate seeding density and MTS incubation period for m-15 cell 

line. Based on results a seeding density of 5,000 cells/well was chosen with a 3 hour 

MTS incubation for subsequent MTS assays regarding the m-15 cell line. 
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Table 1. Seeding densities for each cell line and assay performed 

Assay Seeding Vesicle Cell Line Density 

Phase Contrast Microscopy 24 well plate SH-SY5Y 1,750 cells/well 

lmmunocytochemlstry 4 well slide SH-SY5Y 1,750 cells/well 

MTS 96 well plate SH-SY5Y 50,000 cells/well 

C6 5,000 cells/well 

m-15 5,000 cells/well 
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Figure 5: Preliminary x-ray radiation dose testing of SH-SYSY cell line using MTS 

assay. A maximum dose of 20 Gy was used since absorbance was low (0.658) after 

48 hours. Doses 0.5, 1, 2, 3, 4, and 5 Gy were similar in their absorbance at 48 hours 

and therefore 5 Gy was used. Based on data doses of 0, 1, 5, 10, and 20 Gy were 

chosen and used for MTS assay on all cell lines. 
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Figure 6: Additional x-ray radiation dose testing of C6 cell line. Since glial cells are 

thought to be more resistant to stress higher radiation doses were tested. All doses 

show the same trend where absorbance increases from 3 to 24 hours after 

treatment. Control cells not exposed to irradiation had an absorbance reading of 

0.728 48 hours post treatment while all other doses had higher readings for the 

same time point. 
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Figure 7: Additional x-ray radiation dose testing of m-15 cell line. All doses 

increased in absorbance from 4 to 24 hours post-treatment. Control and cells 

exposed to 1 Gy increased in absorbance from 24 to 48 hours while all other doses 

decreased in absorbance. 
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Figure 8: Representative images of glial fibrillary acidic protein (GFAP) staining of 

m-15 cell line. A portion of cells in the CL-mPG-15 cell line stained with Polyclonal 

Rabbit Anti-Glial Fibrillary Acidic Protein expressed GFAP. Left column is a 

representative image at lOX, right column 20X. 
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Figure 9: Cell number decreases in differentiated SH-SYSY cells 24 and 48 hours 

post-treatment in response to increased x-ray radiation dose according to phase 

microscopy. Bars represent mean (n=3) ± SEM where** p<0.01, *** p<0.001, and 

**** p < 0.0001 relative to control (0 Gy at each time post-treatment) using two-way 

ANOVA and Dunnett's multiple comparisons test post hoc. 
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Figure 10: Neurite length does not change with increases in both dose and time 

post-treatment based on phase contrast microscopy. Bars represent mean (n=3) ± 

SEM. Statistical test performed was two-way AN OVA and Dunnett's multiple 

comparisons test post hoc. 
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Figure 11: Number of branch points decrease in differentiated SH-SYSY cells in 

select dose and time groups according to phase microscopy. Number of branch 

points was used as a way to monitor neurite complexity. Bars represent mean (n=3) 

± SEM where* p<0.05 and*** p<0.001 relative to control (0 Gy at each time post-

treatment) using two-way ANOVA and Dunnett's multiple comparisons test post 

hoc. 
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Figure 12: Representative images of immunocytochemistry staining for SH-SY5Y cell 

line at 20X magnification. Each image is the same field of view and therefore same 

cells. Top left: DAPI staining of nuclei, top right: AlexaFluor 555 staining of 

microtubules, bottom left: AlexaFluor Phalloidin 488 staining of actin, bottom right: 

merged image of all stains. 
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Figure 13: Neurite length of differentiated SH-SYSY cells decreases in response to 

radiation dose and time post-treatment based on immunocytochemistry. Bars 

represent mean (n=3) ± SEM where* p<0.05, ** p<0.01, and**** p<0.0001 relative 

to control (0 Gy at each time post-treatment) using two-way ANOVA and Tukey's 

post hoc test. 
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Figure 14: Control cells 48 hours post-treatment tend to exhibit complicated 

cytoskeleton structure. Microtubules are elongated and bundled (a), nuclei are 

present (b), and actin network is complex (c). White arrows in the colored merge 

(d) indicate areas of more complicated actin networking between cells. Scale bar 

represents 25 micrometers. 
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Figure 15: Treated SH-SY5Y cells possess the same overall cytoskeleton structure 

seen in control cells, although they tend to be shortened and less complex. 

Microtubules are bundled but not as lengthy (a), nuclei (b), actin networking is 

diminished; compare with white arrows in Figure 17 (d), (c), merge color image (d). 

Scale bar represents 25 micrometers. 
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Figure 16: Not all control cells exhibit complex networking. Control cells can display 

shortened and/or loose microtubules (a) and diminished or absent actin structure 

(c). Nuclei are shown (b). Color merge Scale bar represents 25 micrometers. 
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Figure 17: Treated SH-SYSY cells can display complex neurites where microtubules 

are elongated (a) and actin structure is complex (c). Nuclei are shown (b). White 

arrows in color merge (d) show neurites with complicated networking seen in 

control cells. Scale bars represents 25 micrometers. 
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Figure 18: Number of collapsed growth cones does not change with dose or time 

(post-treatment) between SH-SYSY control cells and x-ray treated cells. Data points 

represent mean (n=3) ± SEM. Statistical test performed was two-way ANOVA and 

Dunnett's multiple comparisons test post hoc; no significant differences with dose 

or time were found. 
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Figure 19: X-ray radiation causes a decrease in metabolic activity in SH-SYSY cell 

line as determined by MTS assay. SH-SYSY cells were exposed to 0, 1, 5, 10, and 20 

Gy of x-ray radiation and metabolic activity analyzed after 0, 24, and 48 hours post-

treatment. Absorbance decreased for all doses from O to 24 hours. Absorbance 

slightly increased for cells treated with 1 Gy from 24 to 48 hours while all other 

doses decreased in absorbance. Reported is the mean (n=3) ± SEM where* p<0.05, 

*** p<0.001, and**** p<0.0001 relative to control (0 Gy at each time post-

treatment) using two-way AN OVA and Dunnett's multiple comparisons test post 

hoc. 
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Figure 20: X-ray radiation causes an increase in metabolic activity 48 hours post-

treatment in the C6 cell line as determined by the MTS assay. C6 cells were exposed 

to 0, 1, 5, 10, and 20 Gy of x-ray radiation and metabolic activity analyzed after 0, 24, 

and 48 hours post-treatment. All doses increased in absorbance from O to 24 hours 

but decreased from 24 to 48 hours. Reported is the mean (n=3) ± SEM where*** 

p<0.001 and**** p<0.0001 relative to control (0 Gy at each time post-treatment) 

using two-way AN OVA and Dunnett's multiple comparisons test post hoc. 
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Figure 21: X-ray radiation causes a decrease in metabolic activity in the m-15 cell 

line as determined by the MTS assay. m-15 cells were exposed to 0, 1, 5, 10, and 20 

Gy ofx-ray radiation and metabolic activity analyzed after 0, 24, and 48 hours post-

treatment. All doses increased in metabolic activity from O to 24 hours. Doses of O 

and 1 Gy showed increases in absorbance from 24 to 48 hours while all other doses 

decreased. Reported is the mean (n=3) ± SEM where** p<0.01 **** p<0.0001 

relative to control (0 Gy at each time post-treatment) using two-way AN OVA and 

Dunnett's multiple comparisons test post hoc. 
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4: DISCUSSION 

4.1 GENERAL DISCUSSION 

4.1.1 Preliminary Experiments (seeding density and dose testing) 

The purpose of this study was to determine the effects of x-ray radiation on neurite 

morphology and cytoskeleton structure using the well-studied SH-SYSY cell line. 

Additionally, we examined radiation's effects on both cancerous and primary glial 

cell lines since, until recently, these cells have been ignored. 

Preliminary dose testing was done in order to establish which radiation doses 

would yield cytotoxic effects and which could be used in all subsequent 

experiments. SH-SYSY cells were used in these dose testing experiments to model 

neurons. Neurons are more sensitive than glial cells to oxidative stress (Ben-Yoseph 

et al. 1994), which is one consequence of radiation exposure and glial cells play a 

role in protecting neurons against oxidative stress (Iwata-Ichikawa et al. 1999). 

Because of this, it is reasonable to infer that higher exposures to radiation would be 

more cytotoxic to neurons than to glial cells; and in order to observe the effects of 

radiation the neuronal cell line would have to be the basis for all experiments. 

Immunocytochemistry staining for GFAP (as shown in Figure 8) confirmed the CL

mPG-15 cell line was glial in origin. Glial fibrillary acidic protein is a component of 

astrocyte cytoskeletons and has proven useful in identifying astrocytes (Reske-
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Nielsen et al. 1987). In our study, there were two clear populations of cells after 

staining. One population fluoresced strongly while the other exhibited a weak signal. 

This weak signal could be low levels of GFAP staining or simply background 

fluorescence. While our CL-mPG-15 cell line contains astrocytes, we cannot be 

certain it does not contain other cells of the central nervous system. Further testing 

could be done in order to identify what other cell populations exist with known 

astrocytes in the CL-mPG-15 cell line. It is possible that different cell types would 

respond differently to radiation exposure. 

4.1.2 Effects of Radiation on Differentiated SH-SYSY Morphology 

Phase contrast microscopy shows cell number decreases in differentiated SH-SYSY 

cells over time with increased x-ray radiation dose. This is an expected result since 

radiation is known to be cytotoxic (National Research Council 2006: Stickel et al. 

2014). Changes in nervous system tissue has been seen in multiple studies where 

both low (0.25-1 Gy) and high (up to 10 Gy for x-ray and 60 Gy for alpha particles) 

doses of ionizing radiation are used (Betlazar et al. 2016). Neurite complexity has 

been measured in previous studies by counting number of branch points and the 

length of the neurite (Radio and Mundy 2008). Phase imaging also revealed that SH

SYSY neurite complexity decreased in cells exposed to 1 Gy radiation at 6 and 24 

hours' post-treatment and 5 Gy 48 hours post-treatment. All other doses and time 

points were not significantly different from control cells. Lastly, phase contrast 

microscopy indicates that neurite length does not change with either dose or time. 

Length, for this study, is defined as the longest neurite for each discernible soma 
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which is common practice in quantifying neurite outgrowth (Harrill et al. 2013: Das 

et al. 2004: Radio and Mundy 2008). In our study neurite length was used as a tool 

to reveal the occurrence of neurite retraction, where neurite length decreases in 

response to unfavorable conditions like exposure to toxicants. Proper function of 

the nervous system is reliant on maintaining connections with post-synaptic 

partners. If radiation causes retraction of neurites, then this would result in reduced 

circuit function as connections would be lost after retraction. Full CNS function is 

critical for astronauts as they are required to complete complex tasks and think 

critically and quickly. Lives of astronauts as well as costly missions could be at risk if 

neurite retraction and reduced function associated with it occur. While this will 

affect small numbers of astronauts that may travel beyond Earth's protective 

magnetic field, these consequences will also affect the growing number of 

individuals receiving medical testing that utilizes radiation for diagnostics as well as 

cancer patients receiving radiation therapy. 

Our hypotheses were that neurite complexity and length would decrease with time 

for all radiation doses. While immunocytochemistry results suggest neurite length 

decreases with radiation dose, phase imaging was contradictory in showing no 

change in neurite length. There are logical reasons for such unexpected results. 

Despite seeding 1,750 SH-SYSY cells per well, only a very small subset of cells were 

actually examined. In each well only one of 8 possible quadrants were imaged and 

analyzed. Additionally, one criteria for choosing a quadrant was based on how 

spaced SH-SYSY cells were. This selection allows for ease and accuracy when 
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tracing, since neurites can't be analyzed if cells are clustered and neurites overlap. 

Future data may differ if a larger sample of cells are analyzed. Inexperience could 

also explain our unanticipated results. Examining and tracing neurites is a 

complicated process. Enlarging an image and adjusting parameters such as contrast 

and brightness in ImageJ software may allow for visualization of extended neurites 

not initially visible. Focusing and enlarging one area of an image allows you to see 

neurites more accurately while adjusting brightness and contrast allows for 

detection of thinner neurites, which are hard to detect otherwise. Despite training, 

it's possible that a more experienced analyzer would yield different results. 

4.1.3 Effects of Radiation on SH-SYSY Cytoskeleton Structure 

A functional nervous system is dependent on precise pathfinding, the ability of a 

neuron to send its axon to the proper destination. This requires dynamic 

interactions between cytoskeletal components, actin and microtubules (Geraldo and 

Gordon-Weeks 2009: Lowery and Van Vactor 2009). The cytoskeleton of neurites 

plays an equally important role in maintaining axon structure and integrity in 

developed nervous tissues. In fact, compromised cytoskeleton structure has been 

linked to both neurodevelopment and neurodegenerative diseases (Kevenaar and 

Hoogenraad 2015: Kirkpatrick and Brady, 1999). Any disruption in actin and 

microtubule structure could be detrimental to the organism since neuronal function 

is dependent on proper structure and synaptogenesis. Thus, disruption to 

cytoskeletal structure is an important aspect of neurotoxicology. 

Immunocytochemistry was used to evaluate effects of x-ray radiation on 
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cytoskeleton organization in the SH-SY5Y cell line where neurite length and number 

of collapsed growth cones were analyzed. 

In opposition to phase contrast microscopy results, immunocytochemistry revealed 

neurite length of differentiated SH-SY5Y cells decreases with radiation dose and 

time. This difference in results is puzzling and likely from experience of the 

analyzer. Perhaps increased sensitivity of immunocytochemistry reveals finer 

details of cytoskeleton structures making visualization and tracing easier resulting 

in more accurate results. Again, neurite retraction could cause neurodegeneration 

and deficiency in nervous system function. 

One obvious discrepancy within our data brings forth the question, why do phase 

image microscopy and immunocytochemistry yield different neurite length results? 

How does phase imaging suggest neurite length does not change with either 

increases in x-ray radiation dose or time while immunocytochemistry suggests the 

opposite? The only difference between the two assays were the cell culture vessels 

in which they were seeded; number of cells seeded into each remained constant. For 

phase contrast microscopy, cells were seeded into 24 well plates (1, 750 cells/1.9 

cm2) while 4 well chamber slides (1,750 cells/1.7 cm2) were used for 

immunocytochemistry. Reflecting on these results led to correspondence with a 

representative from Faxitron, the company that manufactures the x-ray cabinet 

system. The thought was that the two assays resulted in different conclusions due to 

differences in: type of plastic between assay plates/slides, thickness of plastic, 
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volume of media and cell densities adhered to vessels. All of which could alter the 

amount of radiation delivered to cells. 

Discussion with the Faxitron representative confirmed that the x-ray beam can be 

greatly affected by the type of vessel in which cells are seeded; although it is not 

clear exactly to what degree each plastic type would alter x-ray quality or quantity. 

Many studies have been done to evaluate percentage depth dose (PDD), the dose of 

beam radiation that is absorbed through a medium at any given depth. PDD can be 

calculated and is analyzed by comparing decreases in beam intensity in comparison 

to its initial intensity. Increases in PDD decrease radiation dose absorbed by cells 

(Memon et al. 2015). Both the 24 well plates and 4 well slides have equal amounts of 

volume, 500 uL. However, the 24 well plates have a slightly larger surface area than 

the 4 well slides (1.9 cmz and 1.7 cm2, respectively). This would lead us to think that 

if neurite growth decreased it would more than likely be in the phase imaging 

results where surface area is larger and therefore the media column is less deep . 

The fact that it was seen via immunocytochemistry instead is puzzling. More studies 

should be done to investigate. Yet, intuitively it makes sense that a thicker or more 

dense plastic, as well as deeper volume of media would cause more dose attenuation 

and therefore less measurable effects in cells. Perhaps the vessel plays a more 

important role than originally thought. (Robert Hase, email correspondence sent to 

author, October 7, 2016; November 11, 2016; November 14, 2016, December 2, 

2016). 
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In addition to neurite length, number of collapsed growth cones was assessed. 

Statistical analysis reveals no difference in number of collapsed growth cones with 

either dose or time. However, there is a trend that collapsed growth cone number 

increases with radiation dose and time. Statistical insignificance can result from the 

timing of growth cone collapse and from large variability in the data due to 

ambiguous definitions of what constitutes a collapsed growth cone. If any actin was 

observed in the tip of the neurite or growth cone, it was not considered collapsed. 

Such strict guidelines presumably excluded growth cones that were collapsed or 

collapsing. Future analysis should set a more refined definition of a collapsed 

growth cone. Perhaps analytical software like Image} can provide a mask that allows 

the operator to separate collapsed from non-collapsed growth cones by use of 

fluorescence readings in a set area. If a growth cone has less area than that defined 

by the operator, it would be considered collapsed. The variability in size of growth 

cones in SH-SYSY cells also adds to the difficulty. Despite non-significant results 

these immunocytochemistry images can be reviewed and re-analyzed at a later time 

and may yield different results if we can define a more sophisticated assay. 

4.1.4 Cytotoxicity of Radiation 

MTS Assay is a tool to measure metabolic activity. Decreases in metabolic activity 

are presumed to be due to cell death thereby making the MTS Assay a tool to 

measure cytotoxicity. X-ray radiation is cytotoxic to SH-SYSY cells. This is not 

surprising as radiation is known to cause oxidative stress (Morgan et al. 1996) and 
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neurons are more sensitive to radiation than other cells of the nervous system (Ben

Yoseph et al. 1994). 

Clear differences in metabolic activity can be seen in the C6 cell line in comparison 

to SH-SYSY cells. In C6 cells after treatment with radiation, metabolic activity first 

increased from O to 24 hours for all doses then decreased in a dose dependent 

manner from 24 to 48 hours where higher doses showed little differences in 

metabolic activity and control cells showed the most significant decreases in 

metabolic activity. This was a surprising outcome. Since the C6 cell line is glial in 

origin, it is possible that control cells continued to divide from Oto 24 hours post

treatment and ceased or slowed division from 24 to 48 hours. This would explain 

diminished metabolic activity. Our initial thoughts on higher metabolic activity with 

higher doses at 48 hours post-treatment were that treated cells could be ramping up 

DNA repair mechanisms-which are metabolically demanding. However, upon visual 

inspection, it appeared that as dose increased so did the cell number. This would 

mean that x-ray radiation causes cell division of C6 cells and possibly other glial 

cells. 

Cancer treatment is involved and tailored for each patient depending on a variety of 

factors. Johns Hopkins Medicine states that radiation is used to treat gliomas after 

surgery, when surgery is not a viable option due to the location of the tumor, or to 

treat gliomas that have returned (Johns Hopkins Medicine). If our results are true, 

gliomas being treated with radiation could cause division of cancer cells and be 
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more detrimental to the patient. Despite this, caution must be used when 

extrapolating our results since the C6 cell line was established nearly 50 years ago; 

our cells may not act like earlier generations of the same cell line. 

In order to further investigate increases in metabolic activity in both glial cell lines 

in response to x-ray radiation, Hoechst staining was used in order to stain nuclei 

and count cells. However, Hoechst staining was too faint to analyze-likely due to age 

of the stain. Testing was supposed to resume; however, a yellow oil was seen inside 

the Faxitron x-ray cabinet. It was determined that transformer oil was leaking from 

the HV transformer and x-ray tube housing tub. Due to the high cost to repair the 

Faxitron cabinet, further testing with x-ray radiation was not conducted. 

Despite these setbacks, future testing on cell division of glial cells and gliomas upon 

exposure to radiation is something that needs to be examined. If in fact radiation 

causes cell proliferation in gliomas, unintended and detrimental side effects could 

result in patients treated for these types of cancer. This is not the only concern of 

radiation use in the medical setting. 

Advances in technology have allowed for more powerful diagnostic tools available 

to physicians and the like. These tools, however, expose patients to large doses of 

radiation. Computed tomography (CT) or computerized axial tomography (CAT) is a 

medical imaging procedure where x-ray radiation is used to create detailed 3-

dimensional images/scans of tissue, bone, blood vessels, organs, etc. (National 
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Cancer Institute). Since its invention in the early 1970's, the use of CT scans has 

increased dramatically. In 1980, 3 million CT scans were performed compared to 65 

million in 2002. 

Between the mid 1980's and 1990's there was a 500% increase in the use of CT 

scans; and in 2007 it was estimated that 13% of all diagnostic imaging procedures 

were from CT scans alone (Brenner and Hall 2007: Voress 2007). The rise in CT is 

attributed to its many benefits. The procedure is quick, noninvasive, and gives 

physicians better images in order to more accurately diagnose patients. CT scans are 

also more cost effective than other medical imaging techniques, like magnetic 

resonance, especially when patients have insurance. It is thought that physicians are 

using CT scans as a "defensive medicine" where superfluous scans are performed in 

an attempt to accurately diagnose patients and avoid malpractice lawsuits (Voress 

2007). Despite their many benefits, CT scans expose patients to far more radiation 

than most other medical imaging techniques. For comparison, one abdominal CT 

scan is the equivalent of receiving 500-1000 chest x-rays one after another (Lee et 

al. 2004: Robb 2004: Voress 2007). It is estimated that up to 2% of cancer within the 

US may be due to excessive use of CT scans (Brenner and Hall 2007: Samson 20081. 

Perhaps the most alarming concern about CT scans is the seeming inability of 

emergency room physicians and radiologists to accurately estimate their radiation 

doses. Lee et al. (2004) published a study where emergency room physicians and 

radiologists were surveyed in order to access their awareness of radiation dose and 
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potential risks attributed to CT scans. They found that 53% of radiologists and 91 % 

of emergency-room doctors did not believe that CT scans were associated with 

increased cancer risk; and 75% of both are not only unable to accurately estimate 

doses of radiation patients are being exposed to with this type of imaging but 

grossly underestimated CT scan radiation dose (Brenner and Hall 2007: Lee et al. 

2004}. 

Proper use of radiation within the medical setting is imperative. Physicians should 

be aware of radiation doses of CT and risks involved; benefits should outweigh the 

risks when ordering CT scans and care should be taken to not unnecessarily expose 

patients to them. Excessive use of CT scans can potentially cause damage to the 

nervous system and initiate carcinogenesis; we must use it with caution as to not 

cause more radiation exposure than necessary. 

4.2 FUTURE AIMS 

4.2.1 General 

Despite noteworthy outcomes from this study, more research needs to be done to 

answer additional questions that arose. Cells lines like the glial C6 and SH-SYSY 

neuronal cell lines are useful tools. However, because of their cancerous origins they 

are not ideal and may not reflect behavior or circumstances of primary cells or cells 

in vivo. Therefore, primary neurons should be used to determine their response to x

ray irradiation in order to compare against SH-SYSY cells. To further mimic the in 

vivo environment, co-culturing of neurons and glia is critical. Until recently, glial 
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cells have largely been ignored and their importance underestimated. In order to 

understand how neurons and glia behave to a toxin/toxicant it is imperative we 

figure out how these cells interact. The Currie Laboratory is currently investigating 

microfluidics and will likely produce a co-culturing device to perform these studies. 

Additionally, it would be beneficial to perform these experiments using particle 

radiation. We could then correlate space radiation to the deficits seen during and 

after exposure to GCR creating a more realistic environment of astronauts traveling 

beyond LEO. This is unlikely as our lab is small and doesn't have the funding or 

notoriety to gain time on particle accelerators. This doesn't mean this study was for 

naught. In fact, it is relevant on a larger scale as there are far more people exposed 

to man-made radiation (like x-rays) for medical testing and radiation therapy than 

there are astronauts exposed to GCR. Therefore, it is critical that we figure out the 

long-term effects of radiation therapy to better treat those affected and limit 

exposure if need be. 

4.2.2 Reducing Effects of Radiation 

4.2.2.1 Nutraceuticals 

Oxidative stress has been linked as a possible mechanism to the aging process as 

well as neurodegenerative diseases like Alzheimer's Disease (Kelsey et al. 2010: Lin 

and Beal 2006: Ma1·tin and Grotewi I 2006: Nunomura et al. 1999: Nunomura et al. 

2001). Mitochondria are the primary source of oxidative stress. Mitochondria 

generate cellular energy in the form of ATP through oxidative phosphorylation and 
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the electron transport chain (ETC). Despite their ability to create ATP efficiently, 

leakage of electrons is inevitable and their reaction with molecular oxygen creates 

reactive oxygen species and free radicals (Kelsey et al. 2010: Lee et al. 2004). 

Radiation not only causes production of reactive oxygen species but also 

exacerbates leakage by the electron transport chain within mitochondria (Azzam et 

al. 2012: Lee et al. 2004). Without intervention, oxidative stress causes damage to 

proteins, lipids, and DNA. It is the oxidative damage to cellular proteins and build-up 

of these dysfunctional proteins that lead to neurodegenerative disorders (Linseman 

2009). 

One promising strategy for mitigating oxidative stress is using natural dietary 

supplements termed, nutraceuticals. Nutraceuticals are antioxidants that reduce 

reactive oxygen species and free radicals thereby decreasing oxidative stress. 

(Calabrese et a l. 2008: Kelsey el al. 2010: M Carty 2006: Schaffe r t al. 2012). Many 

nutraceuticals act as neuroprotective agents and are potential therapeutic agents for 

neurodegenerative disorders. These antioxidants include: flavonoid polyphenols 

(like EGCG found in green tea and quercetin), non-flavonoid polyphenols (curcumin 

and resveratrol), phenolic acids and diterpenes (rosmarinic and carnosic acids), and 

organosulfur compounds (allicin and L-sulforaphane). A number of these 

antioxidants not only decrease free radicals but also modulate pro-survival or pro

apoptotic signaling pathways, bolstering their therapeutic potential (Kelsey et al. 

2010). 

86 



Nutraceuticals have been termed as "functional foods" or "medicinal foods." They 

are becoming increasingly popular in the United States as the benefits of these 

antioxidant foods becomes more widespread. Many fruits, vegetable, spices, herbs, 

teas and wines contain antioxidants and are considered nutraceuticals. Easy 

accessibility make these medicinal foods a good choice to incorporate into diets of 

astronauts as well as patients undergoing radiation therapy in an attempt to lessen 

negative impacts of radiation exposure. 

4.2.2.2 Erythropoietin [EPO) 

Erythropoietin (EPO) is another candidate for reducing the effects of radiation. 

Erythropoietin is a cytokine that stimulates erythropoiesis, or red blood production 

and increases oxygen supply to tissues. Like many other biomolecules, 

erythropoietin was long thought to have only one function. However, it likely serves 

other functions since EPO and erythropoietin receptors (EPOR) are present in 

neuronal tissues (Sakanaka et al. 1998) and since EPO is produced by both 

astrocytes and neurons (luul et al. 1998). In fact, neurodevelopment may be 

dependent on the EPO/EPOR system since expression of both changes significantly 

during development of the brain (Buemi et al. 2003). 

Due to its ability to increase oxygen supply, it is not surprising that EPO has been 

found to protect neurons against ischemic injury and is a promising therapeutic 

agent for stroke patients (Ehrenreich et al. 2002: Sakanaka et al. 1998: Zhang et al. 

2010). In addition, EPO is thought to be involved in many cellular processes related 
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to tissue protection and damage repair including: protect against oxidative stress, 

reduce neuroinflammation, preserving/restoring blood-brain barrier integrity, 

promotes neuronal differentiation (even in adults), stimulates regrowth of axons, 

formation of neurites, dendritic sprouting, and electrical activity, and regulates 

intracellular calcium as well as the synthesis and release of neurotransmitters~ 

and Siren 2009). Studies where erythropoietin alpha was systemically administered 

shows that EPO is anti-apoptotic and protects against hypoxia-induced glutamate 

toxicity, an excitotoxicity that causes nerve cell damage or death (Brines et al. 2000: 

Buemi ct, I. 2003: Lykissas et al. 2007: Morishita c1l. 1997); reduces immune 

response and inflammation (Agnello et al. 2002: Brines 2002: Lykissas et al. 2007); 

protects against brain injury, like concussions (Brines et al. 2000), and helps 

maintain the integrity of the blood-brain barrier by protecting against VEGF

induced permeability (Martinez-Estrada et al. 2003). 

As previously mentioned, radiation can cause neuronal apoptosis, demyelination of 

nerve fibers, oxidative stress and ultimately neuroinflammation and 

neurodegeneration. Studies are already underway to examine EPO's therapeutic 

use. One such study found that endogenous EPO prevented axonal degeneration and 

that nitric oxide is the signal that triggers production of EPO from glial cells upon 

axonal injury (Keswani et al. 2004). 

Despite its therapeutic potential, one of the biggest challenges hindering the use of 

EPO is its inability to cross the blood-brain barrier (BBB) at clinically relevant levels. 

88 



Only about 0.5-1 % of EPO administered systemically crosses the BBB (Brines and 

Cerami 2005: Zhang et al. 2010). In order to achieve therapeutic levels in nervous 

tissue, such large amounts of EPO would have to be administered that it could be 

harmful, causing polycythmia ( elevated red blood cell count) and secondary stroke 

(Brines et al. 2000: Ehrenr ich et al. 2002: Zhang t al. 2010 ). For this reason, more 

recent studies aim to enhance delivery of EPO across the blood-brain barrier. 

Elevated EPO levels in the brain were achieved by two groups that both created 

fusion proteins. Zhang et al. fused EPO with protein transduction domain derived 

from HIV TAT (Zhang et al. 2010). Boado et al. created an lgG molecular Trojan 

horse by fusing EPO to the carboxyl terminus of the IgG heavy chain (Boado et al. 

2010). 

Perhaps with more research, we can find a way to use EPO both pre- and post-space 

travel as well before and after radiation treatment to help reduce or prevent 

negative effects associated with radiation. 

5: CONCLUSION 

Undoubtedly, space exploration is fascinating and beneficial for mankind. In order 

for NASA to allow future space missions that would expose astronauts to dangerous 

radiation encountered beyond LEO we must understand the hazards and potential 

long-term effects. Although space travel is important, the number of astronauts that 

will be exposed to GCR pales in comparison to the population of those exposed to 
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radiation from medical diagnostics and cancer treatment. Care needs to be taken in 

order to understand the potential long-term effects of radiation on the nervous 

system in order to protect patients and mitigate possible health risks associated 

with such medical practices. 
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