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ABSTRACT

Centrically loaded columns do not exist in practice, and therefore, the
geeentricity of the load should be considered in any realistic column theory. The
gneral behavior of columns under eccentric load is influenced not only by the
uual parameters i.e., column geometry, material characteristics, and load, but
dso by the loading process. The ultimate load bearing capacity for these
columns is formulated in terms of limit state of stresses or limit state of stability
or limit state of deformation. Since eccentrically loaded columns do not present
the usual eigenvalue problem, the stability criterion for these columns is
redefined and the limit state of stability is expressed in terms of stresses. When
the behavior of the column is analyzed in terms of the loading process, it
becomes apparent that the basic theories of Euler, Engesser, Von Karman, and
Shanley are not contradictory but complimentary, and form particular solutions
of a universal differential equation, which possess geometrical and material
nonlinearity. Solution shows that columns with centric load represent only a
singular case in the entire column analysis. Solution also provides a general
picture of the behavior of columns under load and enables one to predict the
ultimate load parameters and the nature of the failure. Nomograms based on
predetermined deformation limit are presented to assist design.
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INTRODUCTION

Since Euler’s classic investigation, the behavior of columns has retained the
interest of many engineers. For a long time, however, the investigations were
rstricted to finding the buckling load for centrically loaded columns. Not much
ittention was paid to analyzing stress and strain patterns which may occur
before the onset of buckling in the case of eccentric load. Moreover, it is
wrprising that such prominent scientists as Euler, Engesser, Von Karman, and
Shanley did not obtain consistent results even for centrically loaded column.
Euler! (1744) assumed columns of perfectly elastic materials. Such columns
do not bend under axial compressive forces as long as the force is less than the
buckling load. For the buckling load and for the corresponding compressive
stress he found: 5 3
pcr=% EI and o-cr=% E (1)

Where Pc, and O, represent the critical load and the critical stress respec-
tively, L is the effective length of the column, | is the moment of inertia, E is the
modulus of elasticity, and r is the slenderness ratio.

Engesser2 (1889) also examined columns under axial compression, but
ssumed a nonlinear stress-strain diagram for the material of the columns. He
stated the Euler’s theory could be applied to nonlinear cases if the elastic
modulus E were replaced by the tangent modulus E’. Specifically:

2 _, 2
==z ; Pcr=%E L and O-Cf:lrr?E (2)

Considére® (1899) pointed out that when a column under an axial load is
stressed beyond the proportional limit, the column begins to bend. The
compressive stresses on the concave side increase in a nonlinear manner, but on
the convex side stress decreases are linear. Thus, the buckling load is given by:

2 _ -
Pc,=—7-r— El where E'<E<E (3)

Von Karman?® (1910) added the analytical evaluation of I—E, and supported
Considére’s theory by test results. He found the modulus E, i.e., the
double-modulus, to be:

(4)

Where Iy and I, denote the moment of inertia of those parts of the
cross-section where the stresses increase and decrease respectively.



Shanley®'® (1946) concluded that at certain load values, compressive stresses
increase on the convex side of the column, but at other load values compression
may decrease or tension may develop. Consequently, the entire stress pattern
depends on whether or not the load is constant or variable. Shanley also proved
that the tangent modulus formula gives the maximum load at which a centrically
loaded column remains straight. Loads between the Engesser and Karman loads
result in a permanent bending deformation of the column. This means that the
initially centric load becomes eccentric.

The purpose of this bulletin is to describe systematically the general behavior
of thin-walled columns, concentrating on strength and stability problems in the
case of eccentric load. Some important points that need to be mentioned in
advance are:

1. Columns at centric load are a special case of the general problem. In fact,
axially loaded columns do not exist, and even if one assumes such columns the
load becomes eccentric when it exceeds the Engesser value. This suggests the
need for a general theory of eccentrically loaded columns that includes centric
loading as a special case. The significance of this suggestion is reflected in many
bridge and building codes in Europe’*® that require consideration of a so-called
accidental eccentricity in any column design. For wooden structures, where the
inaccuracy in the construction is of much higher degree than in steel structures,
the eccentricity of the load plays an even more important role.

2. Under eccentric load, the load-bearing capacity of a column is much less that
that predicted by the Euler or Engesser theories. Moreover, both the critical load
and the stress distribution will depend instead on two parameters, i.e., the
magnitude of the load and its eccentricity. Many combinations of these may
cause either critical stress or buckling. The fact that critical stresses may occur
either earlier or later than buckling is of vital importance because the first case
involves a strength problem, and the second case a stability problem.

3. Compressive stress-strain diagrams for wood show a definite inelastic
tendency, where no proportional limit exists; for tension, however, and
particularly for small loads, these diagrams are essentially linear. These facts
suggest the need for an ultimate load theory based on an assumed elastoplastic
state of the column.

In order to describe the general behavior of thin-walled columns, an analytical
and a numerical method is presented. The latter, based on a step-by-step process,
also will provide information for practical design. Although the theory presented
here, because of its generality, can be applied to any symmetrical cross-section,
the numerical analysis will be restricted to box columns.
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ASSUMPTIONS AND DEFINITIONS

Itwill be assumed that:

1. The unloaded column is straight, and is supported by hinges (Fig. 1A). The
hinges prevent lateral displacements at the ends but allow rotation and axial
deformation.

2. The column has an arbitrary cross-section which is constant throughout the
length. The cross-section has two axes of geometric and elastic symmetry.

3. The loading consists of one single concentrated load acting in eccentric
position. The eccentricity is considered along one of the axes of symmetry (Fig.

18).
e
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FIGURE 1

4, The cross-sections of the column remain planes during deformation even if
the stresses are beyond the proportional limit.

5. The material of the column is elasto-plastic and characterized by a
stress-strain diagram shown in Fig. 2. Thus along the concave side of the column,
where a monotone stress increase occurs, the stress-strain relation is assumed to
be nonlinear and given by:

E‘ =€|(o-1|o-U1E) (5)

Along the convex side, however, the stress may increase or decrease. The
stress-strain relation for increasing stresses is nonlinear and described by:

€2=€2(0'2,0'u.E) (6)

9
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For decreasing stresses the relation is linear and characterized by:

€2=€3(0,,0,,0%,E) (7)

In these equations, €y, 0y and €3, O denote the strains and stresses in the
concave side and in the convex side of the column respectively. O is the
ultimate stress for compression; Oy is the permissible tearing stress for bending;
E denotes the modulus of elasticity for compression; and Og indicates that
particular value of 0" from which the stress decreasing phenomenon starts.
Thus the entire stress-strain diagram incorporates an envelope curve and a family
of straight lines (Fig. 2).

As the load or the eccentricity exceeds certain values, the column becomes
subjected to a critical condition. Three independent conditions are defined: the
limit state of stresses, the limit state of stability, and limit state of deformation.

1. Limit state of stresses occurs in the column if the compressive stress in the
middle section (x=o0 in Fig. 1.A) reaches the ultimate value 0" or if the tensile
stress in the same cross-section exceeds the allowable tensile stress for
bending T .

2. Limit state of stability occurs at the onset of buckling. This limit state can be
formulated in terms of stresses. Thus failure in stability occurs at a condition
when an infinitesimal increment of the load or eccentricity will result in a finite
value of stresses. This stability limit can be reached only if the column has not
previously failed owing to the limit state of stresses.

10



3, For slender columns and for large eccentricities, the deformation of the
column may reach a certain value that cannot be accepted for practical reasons.
Therefore, the maximum deformation of the column should be limited. The
corresponding limit will be called the limit state of deformation which, however,
does not indicate actual failure of the column. Unfortunately, this limit is not
specified in the present codes and specifications for wood structures. Therefore,
in this study, the limit state of deformation will be assumed arbitrarily to be
L/400th of the effective length.

In order to consider all the possible connecting pairs of the two parameters
(load and eccentricity), the term “/loading process” is defined. Loading process
refers to the order of loading, that may include 1) constant load with monotone
increasing eccentricity, 2) constant eccentricity with monotone increasing load,
and 3) simultaneously increasing load and eccentricity.

The limit state of stresses and limit state of stability will be analyzed with
regard to each of the loading processes.

THE GENERAL COLUMN THEORY

EQUILIBRIUM AND LIMIT STATES
The equilibrium in any arbitrary cross-section of the column can be formulated
based on the equality of the external and internal forces and moments (Fig. 3.),

ie.: o é— [0-1 . 0_2] A

Pe=-‘2-[0'|—0'2] y4

where: A is the area of the cross-section
Z is the section modulus
P is the external load
e is the eccentricity of the load

Solving the equations of equilibrium for the fiber stresses we obtain:

in the concave side, (o % + .PZL
(8)

in the convex side, fo ) =_§. - _Pz_e

Based on the notation of Fig. 1.B., | = Zb/2 but also | = Ai2, where | and i
denote the moment of inertia and the radius of gyration respectively. Both
quantities are considered with respect to the axis of symmetry that is normal to

1
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the plane of bending. From these relations, one can establish that Z = 2Ai2/b,
which after substituting in (8) and introducing the concept of average stress,

defined as:

[
o-qv = T (9)
leads finally to: O 1=0qy(1+es) (10
0-2 = qu(' -es)

where: s =b/2i2 (11)
is constant for a given column. If limit state of stresses is considered,
thenoy = 0y and O, = Oy , and (10) becomes:
Ou =0-0V(| + es)
} 2

O‘,=O‘°V(1 —es)

Consequently each corresponding P and e pair of parameters which satisfy (12)
will cause limit state of stresses in the column. Solving (12) for the eccentricity

one finds:

(13)
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These equations provide upper limits for the eccentricity related to limit state
o stresses. The eccentricity, however, consists of two parts. First, the initial
geeentricity € which is constant during one cycle of the loading process. The
econd part includes the deformation of the column y, which varies and reaches
the maximum at the middle section of the column. Thus,

e=e, +y
(14)
andif x = o, € = €o t Ymax
Therefore, at the middle section, which will be termed the critical section:
2[Gu L
Ymox = [o-ov 1:| s — €o
(15)
N P-Sh
Ymax © Oav |5 ~ %o

If the load P or the eccentricity e, increases monotonously, each pair of
parameters will result in a Ymax: Therefore, any of the three loading processes
will yield a sequence:

Ymax 1© Ymax 2+ Ymax3: ' *Ymaxn-'"

where  ¥Ymax n-1< Ymax n

where each element of the sequence is related to one pair of parameters.

If for consecutive steps of the loading process the corresponding Ymax
elements have finite values, that particular Yerasc (if any) that corresponds to the
limit stresses, will provide the limiting deformation of the column in a stable
equilibrium configuration. This condition of the column was defined earlier as
the limit state of stresses, and the corresponding P and e, values are termed
limiting parameters.

If for consecutive steps of the loading process, the Ymax elements increase at
an extremely high rate so that any infinitesimal increment of the load or of the
eccentricity results in a finite increment in Ymax* the column is in an unstable
equilibrium configuration. For such rapid increases of the deformation, the
corresponding fiber stress also increases rapidly. The failure of the stability
(buckling) is now identified with that particular condition of the column at
which for any infinitesimal increment in the load or in the eccentricity the
related change in the fiber stress will have a finite value. This condition was
defined earlier as the limit state of stability, which, however, does not represent
the usual eigenvalue problem. The loading step at which the stability fails will be
called the critical step, and the corresponding parameters are termed critical
parameters.
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THE GENERAL DIFFERENTIAL EQUATION

With certain combinations of the P and e, Parameters, the column will begin to
bend. Following (15), bending occurs if the parameters satisfy the relation:

Ou
“[ﬁf}

During bending, elongation occurs in the convex face of the column, while in the
concave face contraction takes place. These deformations are expressed in terms
of fiber strains. Consider an infinitesimal element, A x, of the column bounded
by two horizontal planes. Based on Fig. 4, the following relation can be
established:

(16)

0|—

Ax _ Ax(€ ~ €3)

R b.cosa
or 1_€6~¢€2
R  b.cosa

b
X
5 SV U 4R i
o _-
\ -7
A \ ///
\\ \\ 2
e
AX \ \ ///
N \ \<_______ -
v \ 4~
b3 -
\ - -
q \ /// Ax(€| 62) AXG(
i i
R R A
FIGURE 4
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. _A/b2-(Ax)2 (€ ~€;)2
since cosa = b

_ €, " €2

therefore 1
R \Jb2-(Ax)2(€ - €2)2

The normal strains €, and €2 are functions of the stresses and these in turn are
related to the load and eccentricity. Since the load is hidden in O7qy , it is
convenient to introduce a function \p in the form of:
€~ €
Y (oov,Y,€0) = -
b2 -(Ax)2(€ ~ €2)

The curvature, on the other hand, is in a known relation with the
deformation vy, so that:

(17)

n

from which:

v"-\I/(Uav.Y,eo)[l+Y'2]3/2=0 (18)

Equation (18) is the general differential equation for the entire column
problem; it includes all of the particular solutions:

a. If the deformations are small, a geometric linearization is possible by
introducing (dx)2 = 0 and (y")2=0
b. In case of centricload €, = 0

¢. The function 41 can be formulated for elastic, plastic, or elasto-plastic
material behavior.

d. The function 41 can also be formulated to obtain solutions for the limit
state of stresses or for the limit state of stability.

SOLUTION FOR LIMIT STATE OF STRESSES
If limiting stresses occur in the column it can be assumed that the deformations
are small. Then the governing differential equation (18) reduces to:

y"= "5 Y (Tav, ¥,€0)
(19)

where: Y (Tav, ¥,80) = €2~ €

15



In solving (19) one may consider z = % (:—1 ) 2 as a new variable.
and %2!=:—:':—;=2-—\l/(0'0v,y o)
After integration z = Lb/\‘/(o'ov, Y,€0)dy +C,

and :—1 =,\/%/ll/(0'av,y,eo)dy+C1

The variables can be separated to obtain:

/«/ /‘I’(Uav,yyeo)dy*Q

where C, and C, are integral constants. Based on Fig. 1.A. the following
boundary conditions are considered:

+ C»

a. ifx=o, ¥ = Ymax andy' =o

b. ifx=2-|:.y=o

Based on a, y' ‘,\/ /4/( Oav.Y,€0)dy+C, =0
or /\p(o-ov,y,eo)dy*'c = ‘1"( Oav» ¥:€0)dy
Ymax
Ymax
and from b, (20)

/ Oav: Y, €0) dy
Ymox

16



Itroducing now the slenderness ratio r = L/i and the constant s from (11), (20)
becomes: ¥

r=2ys (21)

,\/ Y (Oqy: s €6 ) dy

Ymax

Ih order to perform these integrations, the function Y (%y.y.e,) must be
stablished for different material characteristics.

Elastic Material
According to Euler’s theory, the stresses increase on both faces of the column in

alinear manner (Fig. 5), so that:

o (o
€ = _EL and €5 = Tz-
Substituting 0"y and O 2 from (10),
2P
Y (Tav:y:€0) = €,— €, = — EF sleg +y) (22)

AO
7
7
// O ,aNn0 O,
I
/

FIGURE 5

Plastic Material
The Engesser theory assumes a nonlinear stress-strain relation in both faces of

the columns. This can be very well approximated by a third order parabola (Fig.
6) given by the equation:

3
- < g
e=Z +a[Z]

where “‘a’”’ is constant for a given material. In general “‘a”’ depends on the

17
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modulus of elasticity. For many of the structural timbers, “‘a
equal to 104.
The strains are:

is approximately

and substituting 0"y and 05 from Eg. (10) one has:

3
Y(Tav: ¥, €0)= —i—zs(e°+ y)—ZO[-&] [3s(eo+y)+ s3(eo+y)3] (23)

/
¥
FIGURE 7
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Elasto-Plastic Material
Von Karman’s Assumption

If the stresses increase on the concave face and decrease on the convex face,
then the stress decrease in general obeys Hooke’s Law. The corresponding
stress-strain diagram is shown in Fig. 7. The position of the straight line, for
stress decrease, depends on the point A, which is a function of the load P.
Assuming a cubic parabola for stress increase:

o o3 Oav]3
e‘=?'+o[?‘:] and €2=g-_2'+0l:£:|

Substituting 0~y and 0", from Eg. (10):

3
Y (Gav, y: €0) = —%E— s(e°+y)+u[A—PE:| [3s(e°+ y) -
352(e+y)2 - s3(e+y)? (24)

Shanley’s Assumption

According to Shanley assumptions, the stresses in the concave side increase,
but in the convex side either stress increase or stress decrease may occur. This
relation is shown in Fig. 8. If the stresses in the convex side increase, the
behavior of the column is analogous to the Engesser theory, and the
function W is given by (23). If, however, stress decreases occur in the convex
face, the phenomenon is controlled by the Von Karman theory, and (24)

applies.

N
b
Ao g L
<< /,.’
b o
o_ov ’/1 1
,\r/
/ //
/
/ 7 o
/T N 2
)
//E €

Y
Y
FIGURE 8
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If the behavior of the material is specified, i.e., the approximate function
\‘/ is selected, then for any given slenderness ratio r the corresponding Yimax
deformation can be obtained from (21). On the other hand, if Yrmax is assumed
and satisfies the condition of limiting stresses, i.e.:

-| Gu
Ymax -[o—ov - ':, s ~ %

the integration of (21) provides a function for any selected slenderness ratio. It
should be noted that 0"y is a function of Oy, Yy, and €q ; and P is hidden
in Oqgy, and Yy vanishes after substituting the limits into the outer integral of
(21). Consequently, the function obtained will involve only two variables, P and
ey and can be written as:
= fleo)

Each combination of the parameters P and € that satisfies this function is a
solution of the problem, and will create limit state of stresses in the column as

shown in Fig. 9. A particular case of eo=0 provides a solution for centric
compression.

\p
r = CONST

FIGURE 9

SOLUTION FOR THE LIMIT STATE OF STABILITY

The limit state of stability was defined earlier as the condition of the column
when an infinitesimal increment of the load or eccentricity result in finite fiber
stresses.

20



Mathematically, if P = const, this state is equivalent to the condition
i do"/dey, — o as shown in Fig. 10; or in a more convenient way:

deo _
i =0 (25)

AO

r = CONST
P=CONST

\eo)

-

CRITICAL e,

FIGURE 10

Thus, the problem includes finding the function o = ¢ ( ey ) or the equiva-
lent function:
e = F(o) (26)

This function can be derived for any given slenderness ratio and material
characteristics by integrating (21).

For the limit state of stability, however, the parameters P and e, are not
related to the ultimate stress, because at the onset of buckling, the fiber stresses
are not equal to the limiting stresses. Here the parameters are functions of the
real fiber stresses 0"y and O 2 . Thus for the limit of integration one obtains:

* o-l 1
[ 1] 1. (27)
Ymax Oav €o
When this limit is substituted into (21), the variable y will not vanish; it can be

expressed, however, in terms of 0°y. Since P remains hidden in Oqy , the
relation obtained after integration will be in the form:

eO = 9(0'1, p)

21



The exact method of finding extremes for this function is extremely difficult,
and a parametric solution is more convenient. This means for each P = const
an e, = F(0) function is established, and (25) will yield a critical eccentri-
city for a constant P and constant r as shown in Fig. 10.

It must be pointed out, however, that deformation for slender columns and
near the onset of buckling are relatively large, and a linearized theory based on
(19) and (21) provides only a rough approximation. The exact solution is given
by the more general differential equation (18). If the material characteristics are
specified and the slenderness ratio is given, (18), in principle, can be solved; and
the e, = F(0y) can be developed and the critical eccentricity can be obtained
from (25).

In practice, however, wood columns are constructed to possess not very high
slenderness ratios. For slender columns, as it will be shown later, the loading
parameters are always controlled by deformation limitation. Since this limitation
permits small deformations, a quasi linear theory is applicable. In a quasi linear
theory, small deformations are considered, thus geometrical non linearity is not
involved; material non linearity, however, is included.

Separation of the Limits

The theory elaborated above enables one to determine the limit state of stresses
and the limit state of stability. It is also important, however, to predict which of
these states occurs earlier in the loading process for a given column.

From Fig. 9 and the related analysis, paired paramenters P and e, are
obtained. Each pair defines a limit state of stresses. In the application of the
theory, a pair of suitable parameters PL and esL is selected. From the particular
parametric solution corresponding to PL (Fig. 10), the critical eccentricity €oc
can be obtained according to the related analysis. If €oc>>CoL the limit state is
attained at a lower stress level than the critical stress, then PL and eyl are
acceptable. If, however, €oc<EoL the stability limit is obtained at a lower stress
level, and the load must be reduced. In this instance, based on the particular
parametric solution (Fig. 10) for which €oL = €ocr @ NEW load can be obtained.
Or, as an alternative, retaining the original load, a new eccentricity can be
selected.

SUMMARY OF THE THEORY

This analytical solution of the column problem frequently involves mathematical
difficulties, particularly when goemetric nonlinearity is involved. Even if the
linearized version of (18) is employed, (21) leads to elliptic integrals when the
stress-strain relation ceases to be elastic. Therefore, the theoretical analysis
cannot conveniently provide comprehensive solutions that a designer may
require. For this information a numerical method is more expedient. The aim
here has been to show the existence of a universal solution.
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The theory is perfectly general. It includes solutions for centric and eccentric
bad, for linear and nonlinear material behavior, for small and large deforma-
fons, and for strength and for stability problems. In the comprehensive
fifferential equation (18), each basic theory outlined in the introduction holds
nits original form. In case of zero eccentricity, the results obtained from (21)
e identical to those of Euler, Engesser, Von Karman, and Shanley. Conse-
wently, these apparently controversial theories are not actually in conflict since
tey form particular solutions of (18). It will be shown in the numerical analysis
that even if the load is eccentric, the column behaves similarly to that described
by the earlier theories. For eccentric load, however, the behavior of the column
follows the Engesser, Karman, or Shanley pattern depending entirely on the
bading process. Consequently, in the entire column problem, each of the basic
theories has its own domain of validity.

NUMERICAL ANALYSIS

The analytical solution of the quasi linear column problem presents mathema-
tical difficulties; moreover, the large number of individual solutions requires re-
writing it in a computerized numerical form.

FIGURE 11

DESCRIPTION OF THE METHOD
The numerical method is applied to analyze box columns (Fig. 11) and includes

the following objectives:

a to examine the occurrence and order of the limit state of stresses, stability
and deformation

b. to analyze the general behavior of these columns

¢. to develop practical design information for box columns
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In order to perform the numerical analysis on realistic data, an array of columns
was generated with the usual column height of 8.00 feet. The elements were
generated to possess slenderness ratios (r) in the range from r = 5 to r = 220,
with equal increments of 10 between r = 10 and r = 200.

The analysis was based on an elasto-plastic stress-strain diagram (Fig. 2) which
was characterized by the following equations:

o (o X 2
On the concave face of the column: €4 = ?1 ,:1 + (m) ] (28)

o g2 \?2
On the convex face for compression: €3 = Ta [l + ( ﬁ) } (29)

. o2 Os Os \2
On the convex face for tension: €r= E + E ( 12500 ) (30)

The material properties involved in these equations were based on average values
obtained from experiment, and their numerical values were considered as
follows:

Young's modulus for compression: E = 1,250,000 psi
Ultimate compressive stress: Oy = 5,000 psi
Allowable tensile stress: o, = 2,000 psi

The numerical analysis developed here included a step-by-step technique. The
individual steps were considered small enough in order to follow the quasi linear
nature of the problem. In order to avoid all the unnecessary repetition in
computation, a combined operation was developed that included all three
loading processes. The rough framework of the entire operation consisted of
three nested loops (Fig. 12A).

Detailed computation for each step of the inner loop includes the following
sequence of operations:

a. The shape of the deformed column axis is estimated first. Since the
deformation is symmetric about the origin of the coordinate system (Fig. 1),
only the half length of the column is analyzed. A good approximation was
achieved by dividing the half length into 100 equal intervals ( Ax = L/200),
and estimating the deformations y; at each of the corresponding absissas X;,
where i varies from 1 to 100.

b. Knowing the initial eccentricity e, and the load P, the total eccentricity
becomes e; = e, +y;, and the fiber stresses O"y; and O ; are obtained from (10).
The fiber strains €; along the concave face are computed from (28). Along the
convex face, however, the stresses O2; may increase or, at some point,
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= r increase from 5 to 220
— P increase from Ppn to failure load

— €0 increase from eomin to failure eccentricity

COMPUTE :

stresses, strains, deformations at
various cross-sections of the column,
and register the failure in stability

WRITE . Results

STOP

FIGURE 12A

decrease. Therefore, the fiber strains € »; are computed either from (29) or (30).
The turning point, if any, occurs when the increment of O2; produced by two
consecutive steps of the loop changes from positive to negative.

c. Once the fiber strains are obtained, the function \I/ and the second
derivatives y’i’ of the deformed column axis can be computed from (19). A
numerical integration technique, based on the finite differences approach, is
introduced to provide the solution for the differential equation (19); i.e., to
provide the array Y

d. At this point, the shape of the deformed column evidently will differ from
that estimated in paragraph a. Consequently, the entire procedure of paragraphs
b and c is repeated iteratively until the discrepancy between two consecutive
arrays becomes negligible. After determining the final shape of the column, cor-
responding stresses and strains can be computed at any cross-section.

The flow chart of the inner loop is shown in Fig. 12B.

During the execution of the inner loop (Fig. 12B), the column may attain a
state at which, for any further arbitrarily small increment of eccentricity, a finite
value of stress obtains. This condition was defined earlier as the limit state of
stability and characterized by (25). The computer registers this condition, and
terminates the execution of the inner loop. If the limit state of stresses occurs
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earlier than the limit state of stability, the former is registered and the execution
of the inner loop is terminated. The intermediate and outer loops are executed
in the same manner as the inner one.

DISCUSSION OF THE RESULTS

The operation, outlined in the previous section, resulted in a number of families
of function, i.e., curves given numerically. These curves describe the relations
between the corresponding stresses, strains, deformations, loads, and eccentri-
cities that pertain to a selected cross-section of the column. Cross-sections were
chosen at 1/2, 3/8, 1/4, and 1/8 of the length, and at the end of the column. The
families can be grouped conveniently into two sets.

The first set, representing the first loading process for each column, describes
relations between stresses and eccentricities for each value of the variable load
parameter P. This set includes n_ families of curves, where No indicates the
number of loads considered. Each family consists of five pairs of curves, one pair
for each cross-section. Each pair consists of one curve for 07y and one for 02 .
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Representation of the 1st Loading Process for a
Very Slender Column r=200, and for Constant Loads:
P=250 Ibs. and P=430 Ibs.

27



DEFORMATION
OF THE

! DEFORMATION
' OF THE

/:Z

MIDDLE SECTION

ol L3 ~ o o o o MIDDLE SECTION o o -3 S Q
3: 2 & " $ 3 3 (inch) & 3 8 < - (inch)
o o o©o = < & « o o©o - - «
o928 T4, %2 |
~a s
81 3 __ i LMITSTATEOF STABILITY _ _
! 2 - L2
H h
LIMITING STRESS
5000 | P = 2470 Ibs. 5000 - - - - LMINESTRESS ___ .
. r ! ———3L/8
1 1
' r= 120 '
1 | s 1 — /4
4000F —1 i - w2 4000F — +
'
55 ; ——3L/8 zi
S —L/a 4
3 3
I &
3000} &I g 3000F-- |- -
8 E—T 8! }
2! 2 ~
Ei 3 ] i
3 \o“ ° 1 —L/8 A
] %) ] w
2000 i g8 - o 2000 4 Y
' <
i & <0 K ! ol
| o 5€C i H
! 3 ¥ | b
| b 1210p---~ H
1000f 1t — _— § 1000 ol
8074--- [ S |
| 4
€er i
&
~
b
b |
1000 .. 1000 w
] H
Q g
& L8 x
x w
w >
g £
2000 e 8 2000 Ul
—v/a L/a
3000 — 3L/8 3000
—vr2
Lse
o, L ]
L2
b
- —

Representation of the 1st Loading Process for
a Medium Column r=120, and for Constant Loads:
P=2470 Ibs. and P=3950 Ibs.

The second set, representing the second loading process for each column,
describes the relations between stresses and loads in terms of the variable
eccentricity parameter ey The set includes Ne families of curves, where Ne
indicates the number of eccentricities considered. Each family again consists of
five pairs of curves, and each pair is related to a particular cross-section ot the
column.

In order to compare columns of various slenderness ratios, the term relative
eccentricity eR is introduced and is defined as the ratio of the initial eccentricity
ey to the dimension b of the cross-section of the columns; i.e.: ey = beR
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The First Loading Process

Figs. 13-16 represent typical families of the first set, corresponding to high,
medium and low values of the slenderness ratio, and under the first loading
process. It can be seen that stresses along the concave face always increase, but
that a definite stress decrease occurs along the convex face. At higher load levels,
the vertex of the corresponding family of curves appears at a higher stress
level( O7qy increases), and the curves of the family become steeper. Nevertheless,
the pattern of the family remains the same for all loads and for all slenderness
ratios (i.e., Oy increases and O 2 decreases), and the behavior of the column
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Representation of the 1st Loading Process for
a Short Column r=30, and for Constant Loads:
P=15000 Ibs. and P=30000 Ibs.

follows the stress-strain diagram shown in Fig. 7. The phenomenon associated
with the loading process starts at OO = Oy, as a point of bifurcation.
Consequently, the behavior of the column during the first loading process is
similar to the pattern imposed by Von Karman for centrically loaded columns.

It can also be seen that the first loading process will never lead to stability
failure (Figs. 13-16). For slenderness ratios between 80 and 120, and for high
loads. columns have a tendency to reach some theoretical limit state of stability
(Fig. 14, 15). These limits, however, pertain to a stress level which is higher than
the limit state of stresses. Consequently, stability failure is hypothetical, and
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during the first loading process the columns behave as beam columns (i.e., the
bending moment is the predominant action and the axial force is inferior).

It must be pointed out, however, that this behavior of wooden columns is due
to their low value of Young’s modulus. For steel columns, and for slenderness
ratios higher than 110, stability failure can always be achieved at relatively low
stress levels.

The Second Loading Process

Figs. 17-19 represent typical families under the second loading process. It can
be observed that the phenomenon produced by this loading process starts
at 0 = Ogy = 0 as a point of bifurcation. However, a significant difference in
the behavior of columns occurs if the eccentricity is less or greater than the kern
radius.

Figs. 17A, 18A, and 19A represent typical families of the second set
corresponding to high, medium, and low values of the slenderness ratio. The
eccentricity for each family is less than the corresponding kern radius. These
figures show that along the concave face of the columns definite stress increases
occur. Along the convex face, however, the fiber stresses first increase and then
decrease. Although the rate of change of the stresses is different in each
cross-section, and for each family, the general behavior of the entire set shows a
definite character, i.e., 02 first increases then decreases. It can be recognized
that the behavior of the columns under this condition obeys the stress-strain
diagram shown in Fig. 8. Consequently, the phenomenon is similar to that
predicted by Shanley for centrically loaded columns.

Figs. 17B, 18B, and 19B represent other families of the second set. The
eccentricities here are greater than the corresponding kern radii. It can be seen
that the fiber stresses increase monotonously along the concave face and
decrease monotonously along the convex faces. The stress-strain diagram that
reflects this behavior can be obtained from that of Fig. 8 by shifting point A to
the origin. The behavior of columns that obey this kind of stress-strain diagram
has not yet been discussed by others; thus an investigation in this area could
extend the Shanley Theory for eccentrically loaded columns.

It can also be seen that the second loading process frequently leads to
stability failure if the eccentricity is less than the kern radius. Columns under
this process behave as real columns, i.e., the magnitude of the load is the
predominant factor and the eccentricity is inferior. For these columns the limit
state of stability is achieved at a lower stress level than the limit state of stresses;
consequently, the limit state of stresses becomes a hypothetical value. If the
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eccentricity is greater than the kern radius, columns behave as beam-columns,
except those of very high slenderness ratios (Fig. 17B).

The Third Loading Process

The third loading process includes a simultaneous increase of the load and the
eccentricity, and is therefore a combination of the first and second loading
processes. Fiber stresses increase in both concave and convex faces as long as the
load is small and the eccentricity is less than the kern radius. If the eccentricity
is greater than the kern radius, with increasing load, stress decreases occur along
the convex face. The phenomenon obeys the stress-strain diagram of Fig. 8, and
begins at O = Oqy = 0 as a point of bifurcation. Consequently, the behavior
of the column under this loading process follows the Shanley pattern or the Von
Karman pattern, depending on whether the eccentricity is less or greater than
the kern radius. Since all the steps of the process are included in the first and
second ones, the third loading process is not of particular interest.

LIMITATION OF THE DEFORMATIONS

As a result of relatively low modulus of elasticity values, wood columns undergo
fairly large deformations. Figs. 13-16 and Figs. 17-19 show that deformations,
even for short columns and at stress levels equal to the limit state of stresses, are
so extensive that they cannot be tolerated in practice. Consequently, some
limitation of the deformation becomes inevitable. A limit state of deformation
has been suggested, and was considered in this study to be equal to 1/400 of the
reduced column length. This corresponds to 0.25 inch deformation measured at
the middle of the columns. It can be seen that effective stresses in the columns
always are below both the limit state of stresses and the limit state of stability
when the deformations do not exceed the above limitation. The situation is
similar for L/300 and L/250 deformation limitations. The stress level ratios of
the actual failure of the column (limit state of stresses or stability) to those levels
observed at a deformation limit of L/400 vary between 2 and 4, depending on
whether the slenderness ratio is low or high. Consequently, the load parameters
Pand €o that pertain to the stress level of L/400 deformation include, in advance,
aload factor of minimum 2.

Based on this concept, nomograms were constructed for the relations
between the magnitudes of the loads and their eccentricities, and these relations
were represented for each of the selected slenderness ratios (Figs. 20, 21). Each
point of a nomogram hyperbola defines a unique pair of load parameters with a
load factor of minimum 2. It follows that the nomograms can be used to design
eccentrically loaded columns, or to analyze the load bearing capacity of given
columns at various eccentricities.
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SUMMARY AND CONCLUSIONS

A general analysis has been elaborated to determine the load-bearing capacity,
the stress distribution, and the behavior of columns under eccentric loads, and a
numerical method developed to solve a quasi linear problem for thin-walled box
columns. The most important findings were:

1. Centrically loaded columns behave as described by the stress-strain diagram
for the material.

2. Since centrically loaded columns do not exist in practice, realistic analysis
should be based on the consideration of eccentric loads and, in case of wood, on
an elasto-plastic stress-strain diagram. The general (hypothetical) solution for
centrically loaded columns is obtained by analyzing columns with eccentric
loads as eccentricity approaches zero.

3. The failure of eccentrically loaded columns may occur either at the limit
state of stresses or at the onset of buckling. The latter was defined as a limit
state of the column at which, for any infinitesimal increment in the load or in
the eccentricity, the related change in the fiber stresses will have a finite value.
This definition makes it possible to solve stability problems for eccentrically
loaded columns in a similar manner as stress problems. With this definition,
however, the stability problem is not an eigenvalue problem.

4. The behavior of eccentrically loaded columns is described best in terms of the
loading process. Under the first loading process columns behave as beam-
columns and follow Von Karman'’s assumptions. The actual failure of a column
occurs at the limit state of stresses. Under the second loading process, and for
eccentricities less than the kern radius, columns behave as real columns and
follow the Shanley pattern. Failure is generally stability failure, and occurs at a
stress level lower than the limit state of stresses. If the eccentricity is greater
than the kern radius, the behavior of the column is again similar to that of a
beam-column but follows a new pattern not previously observed. Failure occurs
at the limit state of stresses. Consequently, whether the limit state of stability is
reached at a higher (hypothetical) or lower (real) stress level than the limit state
of stresses depends on the loading process. This can be observed by comparing
Figs. 13 and 17. These findings are of utmost importance in the analysis of
columns near the onset of buckling or in the post-buckling region; nevertheless,
the second order theory (equation 18) provides much more accurate information
in these regions.

5. In the pre-buckling region, however, the load parameters P and e, are limited
by the limit state of deformation. This was assumed in the present study to be
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1/400 of the reduced column length, and thus corresponds to small deforma-
tions of the columns. Based on this limitation, design nomograms were
developed to include a load factor of minimum 2.

Detailed treatment of the entire range of analytical and numerical solutions
to problems encountered with eccentrically loaded columns is beyond the scope
of this bulletin. The goal here has been to elaborate a minimal framework for the
new approach and to suggest appropriate analytical and numerical techniques.
Some special problems that will require attention are outlined below.

SUGGESTIONS FOR FURTHER RESEARCH

In this study it was tacitly assumed that relative displacements between the
elements of the column (webs and flanges) do not take place. This is not true for
nailed columns. For these, the joint slip should be expressed in terms of the
strains, and introduced in (17). The governing differential equation will be of
4th or 6th order, and can be solved by a suitable numerical technique for various
boundary conditions. If one accepts the L/400 deflection limitation (corre-
sponding to small deformation of the column), the linearized theory (19) can be
employed. The solution may be adopted as a subroutine in the general computer
program.

Neither the Building Codes nor the National Design Specification includes
specified allowable deformations for columns. Columns, on the other hand, do
undergo deformation if the eccentricity satisfies equation 16. Allowable column
deformation was, therefore, assumed in this study to be 1/400 of the reduced
column length. This value, even if acceptable, cannot be generalized. For
example, different deflection limitations should be postualted for free, semi-
detached, or wall columns. This problem should be discussed by an appropriate
committee.

The present study does not include the analysis for centrically loaded
columns. Since centrically loaded columns form singular cases of the entire
column problem, the reverse of the first loading process may lead to a solution
for centrically loaded columns. A slight modification of the numerical method,
and of the related computer program, should provide the desired result.
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