

West Virginia Agricultural and Forestry Experiment Station Bulletins

Davis College of Agriculture, Natural Resources And Design

1-1-1916

The Residual Effects of Fertilizers

Firman E. Bear

Robert M. Salter

Follow this and additional works at: https://researchrepository.wvu.edu/ wv_agricultural_and_forestry_experiment_station_bulletins

Digital Commons Citation

Bear, Firman E. and Salter, Robert M., "The Residual Effects of Fertilizers" (1916). *West Virginia Agricultural and Forestry Experiment Station Bulletins*. 160. https://researchrepository.wvu.edu/wv_agricultural_and_forestry_experiment_station_bulletins/160

This Bulletin is brought to you for free and open access by the Davis College of Agriculture, Natural Resources And Design at The Research Repository @ WVU. It has been accepted for inclusion in West Virginia Agricultural and Forestry Experiment Station Bulletins by an authorized administrator of The Research Repository @ WVU. For more information, please contact ian.harmon@mail.wvu.edu.

4

a a ang la a a

Bulletin 160 __ 1 _ 2

August, 1916

LIBRAM

West Virginia University Agricultural Experiment Station MORGANTOWN WEST YA. UNIV.

DEPARTMENT OF SOILS

THE RESIDUAL EFFECTS OF FERTILIZERS

BY Firman E. Bear and Robert M. Salter

Bulletins and Reports of this Station will be mailed free to any citizen of West Virginia upon written application. Address Director of the West Virginia Agricultural Experiment Station, Morgantown, W. Va.

THE STATE OF WEST VIRGINIA

Educational Institutions

THE STATE BOARD OF CONTROL

JAMES S. LAKIN, Presiden	Charleston, W. Va.
A. BLISS McCRUM	
	Charleston, W. Va.
	rol has the direction of the financial and

business affairs of the state educational institutions.

THE STATE BOARD OF REGENTS

M. P. SHAWKEY, President	Charleston, W. Va.
State Superintendent of School	ols
GEORGE S. LAIDLEY	Charleston, W. Va.
ARLEN G. SWIGER	Sistersville, W. Va.
EARL W. OGLEBAY	Wheeling, W. Va.
JOSEPH M. MURPHY.	Parkersburg, W. Va.

The State Board of Regents has charge of all matters of a purely scholastic nature concerning the state educational institutions.

The West Virginia University

FRANK BUTLER TROTTER, LL.D......President

AGRICULTURAL EXPERIMENT STATION STAFF

JOHN LEE COULTER, A.M., PH.D BERT H. HITE, M.S.	Director
BERT H HITE M.S.	Vice-Director and Chemist
W. E. RUMSEY, B.S. Agr.	State Entomologist
N. J. GIDDINGS, M.S.	Plant Pathologist
HODAGE ATWOOD MS Age	Poultryman
HORACE ATWOOD, M.S. Agr I. S. COOK, Jr., B.S. Agr	Consulting Agronomist
I. S. COUR, JR., D.S. Agi	Unticulturist
W. H. ALDERMAN, B.S. Agr.	Descench Enternalagist
L. M. PEAIRS, M.S. E. W. SHEETS, B.S. Agr., M.S.	Animal Industry
E. W. SHEETS, B.S. Agr., M.S.	Coll Investigations
FIRMAN E. BEAR. M.Sc.	
C. A. LUEDER, D.V.M.	veterinary Science
†L. I. KNIGHT, PH.D.	Plant Physiologist
A. L. DACY, B.Sc.	Associate Horticulturist
FRANK B. KUNST, A.B.	Assistant Chemist
CHARLES E. WEAKLEY, JR.	Assistant Chemist
J. H. BERGHIUS-KRAK, B.Sc.	Assistant Chemist
GEORGE W. BURKE, B.S.	Assistant Chemist
ROBERT M. SALTER, M.Sc.	Assistant Soil Chemist
ANTHONY BERG, B.S.	Assistant Plant Pathologist
T A AHAHTED DS Agr	Assistant Horficiulturist
L F. SUTTON, B.S., B.S. Agr	Assistant Horticulturist
H. L. CRANE, B.S. Agr.	Assistant Horticulturist
 b. G. AUCHTER, D.S. Agr. b. F. SUTTON, B.S., B.S. Agr. H. L. CRANE, B.S. Agr. W. B. KEMP, B.S. Agr. 	Assistant Agronomist
HENDY DORSKY BS AGT W.S. AGT	Assistant Agronomisi
E. L. ANDREWS, B.S. Agr *A, J. DADISMAN, M.S. Agr J. J. YOKE, B.S. Agr	Farm Management
J J YOKE, B.S. Agr.	Assistant in Animal Industry
R. H. TUCKWILLER, B.S. Agr.	Assistant in Animal Industry
R. H. TUCKWILLER, B.S. Agr A. C. RAGSDALE, B.S. Agr A. J. SWIFT, M.S. Agr	Assistant in Animal Industry
A. J. SWIFT, M.S. Agr.	Assistant in Animal Industry
*C H SCHERFFIUS	In Charge of Tobacco Experiments
	Eorester
C E STOCKDALE BS AST.	
W. J. WHITE	Bookkeeper
W. J. WITTIJ	

†In co-operation with the University of Chicago. *In co-operation with the United States Department of Agriculture.

CONCLUSIONS.

These conclusions are summarized from analyses of fertilizer plots at the West Virginia Agricultural Experiment Station which have been under experiment for the last fifteen years.

1. Nitrogen fixation from the air averaging 20 pounds per acre per year has taken place on the plot receiving acid phosphate. On the plot on which acid phosphate and sulphate of potash have been applied, the fixation of nitrogen amounted to 78 pounds per acre per year.

2. The phosphorus applied to the soil in excess of the needs of the crops was not lost in the drainage water but was fixed in the surface $6\frac{2}{3}$ inches of soil.

3. Organic matter has been maintained and increased by the use of fertilizers without plowing under green manuring crops or crop residues other than the stubble left behind after the crops were harvested.

4. The use of quicklime in excess of the needs of the soil has caused a loss of nitrogen, phosphorus, and organic matter from the surface soil considerably larger than the increased yields produced would justify.

5. The use of manure or fertilizers (with the exception of sulphate of potash) has had a tendency to decrease the acidity of the soil.

	48	0	0	0	0	0	0	0	。	0	46	
18	0	0	0	0	°.5	°6	0	0	0	0	0	
	30	0	<u> </u>	•		•	_	•		0	37	
10	48	00	0	00	0	0 00	0	0	0	0	°24	
19	29	0	0	0	0	, C 0	0	0	0	0	38	
i	32	-		0		0	_	0	_	0	42	í
20	0	0	0	0	0 03	°9	0	0	0	0	0	
20	31°	0	•	0	0	0	0	õ	•	0	39	
1	30	0	。	0	0	0	0	0	0	0	031	1
21	0	0	0	0	03	ို့ခ	0	0	0	0	0	
	28	0		0	0	0		0		0	35	
~	310	0 0	0	0 0	•	0	0	0	0	00	°18	l
55	ŝ	0	0.	0	03	29	0	0	0	0	000	
	25	0	_	0		<u> </u>	_	<u> </u>	-	~	33	1
23	6	õ	00	0	°2	°9	0	õ	0	õ	0	
22	35	0	0	0	0	0-	•	0	0	0	°30	
	20	0	0	0	~	0	_	0	~	0	17	1
24	c	00	0	00	02	%	0	0	0	с о	0	
22 23 24 25	22	0	0	0	0	0	0	0	0	c	20	I
	33	0	0	0	S	0	0	00	0	0 0	°25	
25	09	0	0	c	03	6	0	0	0	0	0	
	27	-				~	-	~	-	~	37	1
26	0	ő	0 0	0	03	č,	00	ō	0	0	0	
20	<u>3</u> 8	0	0	0	0	0	•	0	0	0	20	
	50	0	0	0	•	0	0	0	0	0	25	1
27	0	ŝ	õ	00	01	°e	10	00	0	0	0	
	310	0	-	0	Ŭ	0	_	0	-	0	21	1
	130	0	0	000	0	,°,	c	000	0	00	°19	
28	c oc	с с	0	o c	0	o' c	0	c c	0	00	°ı9	
		0	-	0		c		0		0	13	1
	121		с	0	ç.	<u>ہ</u> ،	20	00	0	°	ô	ł
29	210	ċ	0	0	02							
29	21 ₀ c 28	000	000	0	c	0	¢	0	<u> </u>	ě	21	
29	210 0 000	0 0 0	00 0	0 0 0	000	0 0 0	с 0	0	•	0 0	32]
29 30	NO O ON NO O O	000 000	00 000	000000	00 000	0000	000	0 0 0 0	000	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
29 30	210 0 08	0000 0000	00 000	000000	000	00000	000	0 0 0 0	000	0 0 0 0 0	02 30 0 0A	
29 30	210 0 08 22 0 0 07 380	0000000000	00 000 00	00 0000 00	000 000	00000000	000000	00000000	000 000	00 0000 00	NO O ON NO	
29 30 31	20 0 08 20 0 07 30 0 00	0000 0000 0000	00 000 000	00000000000	000 000 000		000 000	0 000 0000	000 000	0000 0000 0000	on No o on No o on	
29 30 31	2000 80 200 00 30 00 50 50 50 50 50 50 50 50 50 50 50 50		00 000 000	00 000 0 0000 0	000 000		0000 000	0 0000 0000 0	000 000	0 0 0 0 0 0 0 0 0 0	on No o on No o on n	
29 30 31 32	2 0 0 B 20 0 07 B 0 0 00 50 0	000 0000 0000 000	00 000 000 00	00 0000 0000 000	000 000 00		000 000 000	0 0000 0000 000	000 000 00		on no on no on no o	
29 30 31 32	2 00 00 20 00 00 00 00 00 00 00 00 00 00		00 000 000 000	00 000 0000 0000	000 000 000		000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 000 000		NO O ON NO O ON NO O ON	
26 27 28 29 30 31 32	20 0 08 20 0 07 380 0 00 150 0 00 140		00 000 000 000 0	00 0000 0000 000 000	000 000 000 0		0 000 000 000 0	0 0000 0000 0000 000	0 000 000 000 0		on no on no on no on no	
29 30 31 32 33			00 000 000 000 000	00 0000 0000 0000 000			000 000 000 000	0 000 0000 0000 0000	000 000 000 000		No o on No o on No o on No o on	
29 30 31 32 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00 000 000 000 000				000 000 000 000	0 0000 0000 0000 0000	000 000 000 000		no o on No o on No o on no o on	
29 30 31 32 33			00 000 000 000 000 000	00 0000 0000 0000 0000 00				00 0000 0000 0000 0000 00	000 000 000 000 000		on no on no on no on no on no on no o	
29 30 31 32 33 34			000 000 000 000 000 000			o voo lo voo lo voo lo voo lo voo lo voo lo vo		0000 0000 0000 0000 0000	000 000 000 000 000		on Mo o on No o on No o on No o on No o on	
29 30 31 32 33 34			00 000 000 000 000 000			<u>ہ اہ میں مارہ مرہ ہ اہ مرہ مارہ مرہ مارہ مرہ مارہ م</u>		0 0000 0000 0000 0000 0000 0	000 000 000 000 000		on Mo o on No	
29 30 31 32 33 34 35	2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 000 000 000 000 000 000			200000000000000000000000000000000000000					on no o	
29 30 31 32 33 34 35	2 0 00 2 20 0 00 350 0 00 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 000 000 000 000 000			o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000 0000 0000 0000 0000 0000			no o on	
29 30 31 32 33 34 35						› o o o o o o o o o o o o o o o o o o o					on no o on o	
29 30 31 32 33 34 35 36						۰ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥ ٥						

No Fertilizer.

Nitrate of Soda, Acid Phosphate, Sulphate of Potash, Lime.

Manure and Lime.

No Fertilizer.

Lime.

Ash of Manure and Nitrate of Soda.

No Fertilizer.

Manure.

Nitrate of Soda, Acid Phosphate, and Sulphate of Potash.

No Fertilizer.

Acid Phosphate and Sulphate of Potash.

Nitrate of Soda and Sulphate of Potash.

No Fertilizer.

Nitrate of Soda and Acid Phos-. phate.

Sulphate of Potash.

No Fertilizer.

Acid Phosphate.

Nitrate of Soda.

No Fertilizer.

The Residual Effects of Fertilizers⁺

By FIRMAN E. BEAR and ROBERT M. SALTER.

INTRODUCTION.

In a previous publication* of the West Virginia Agricultural Experiment Station may be found a summary of the results obtained by the experimental use of fertilizers on the Experiment Station farm. It is the purpose of this bulletin to present for consideration the effects on the soil of these fertilizer treatments and of the crops produced as a result of the use of the fertilizers, in so far as we have been able to measure these effects by laboratory methods.

HISTORY OF THE EXPERIMENTS.

During the summer of 1900 a series of 19 tenth-acre plots was set aside at the Experiment Station farm for work with fertilizers. Each plot was made two rods wide and eight rods long. A three-foot space was left between plots. These plots were numbered serially from 18 to 36. Every third plot was left unfertilized. Accordingly, plots 18, 21, 24, 27, 30, 33, and 36 are check plots. Three of these check plots, 18, 24, and 36, are no longer satisfactory checks. The tile drain passing near plot 18 became stopped up and the yields on one end of the plot were somewhat abnormal. Plot 24 accidentally received an application of manure intended for plot 25. The manure was raked off with a hand rake a few days later but the leachings from the manure materially increased the productive power of the soil. Plot 36 was discarded because of its tendency to wash. Plots 18 and 36 have been cropped each year and have never received any fertilizer. Their present productivity corresponds rather closely to that of plots 21 and 33 so that the present condition of these plots is practically the same as though they had been checks, although complete records of their yields are not available.

[†]Credit is due M. F. Morgan and E. B. Wells for assistance in securing samples and in doing part of the analytical work.

^{*}Bear, Firman E., Experiments with Fertilizers, West Virginia Agricultural Experiment Station, Bulletin 155, 1915.

THE SOIL.

The United States Bureau of Soils has mapped the soil on the Experiment Station farm as Dekalb silt loam. It is a residual soil formed by the disintegration of grayish shales and sandstones overlying the Pittsburgh vein of coal. The depth of the underlying rock varies from 18 to 56 inches. The diagram on page 4 shows the depths of the rock at five points in each plot. The variation in the depths of the rock may have had some influence on the productivity of the plots under various treatments although we have no evidence to this effect.

The soil is of a grayish yellow color with a yellowish subsoil. The original timber was largely oak and chestnut. At the time the experiments were begun the productivity of the soil was very low. The vegetation consisted principally of red top, yarrow, poverty grass, and sorrel together with some broomsedge.

THE CROPS GROWN.

No definite rotation of crops has been followed. Rye was grown in 1900 and 1907; wheat in 1901 and 1914; clover in 1902, 1909, and 1915; corn in 1903, 1905, and 1912; cowpeas in 1904; potatoes in 1906; timothy in 1909, 1910, and 1911; oats in 1913. A complete record of the crop yields calculated to the acre basis will be found on pages 7 and 8.

				TAB	LE I	TABLE 1.—Pounds of Produce per Acre.	Produ	ce per	Acre.				
		19	00	61	10	1902	T	903	1904	1905	1906)6T	*2(
Plot	Fertilizer	Grain	RyE Jrain Straw	WH Grain	WHEAT Irain Straw	CLOVER Hay	Grain	CORN Arain Stover	COWPEAS Hay	CORN Ensilage	POTATOES Tubers	Grain	RYE ain Straw
61	N. K. P. CaO.	2076	3524	11665	$^{+3760}$	6700	6200	6800	6950	27700	6120	1170	3030
20	M. CaO	1578	2762	1840	4560	8850	0022	9400	6750	34700	13060	2140	4860
21	(heck	1186	2064	1140	1160	2050	2000	3800	1250	11200	2600	140	360
27	('a.O	1077	1813	1010	1490	. 1500	1620	3200	1200	9800	1520	†130	†330 .
23	M(ash), N	2095	4845	1880	3320	1900		5800	2750	15300	2500	170	280
24	Check	1100	2070	1070	1830	2100		3650	1350	12100	2610	140	380
55	M	1913	3587	1920	4580	9550		6500	6100	34800	11300	1880	4420
26	N. K. P	2463	4317	1750		7250		7000	6300	29000	7030	1170	2530
27	Check	1297		1120		2850		3450	2200	12500	2850	160	290
80	Р. К	1411		1550		5500	5160	6200	4400	16100	6360	850	1850
29	N. K	1980		1080		2000		3300	2300	15000	3520	140	260
30	Check	1340		1050	1650	2650		3600	2100	10900	2140	160	250
51	N. P	2267		1550		7900	5400	2000	5150	18900	3830	1030	2270
32	K	1402		1030	1670	2500	2000	3750	1950	11800	2630	140	360
60 60	Check	1330	2600	1110	1990	2200	1930	3600	2450	8700	2400	120	280
34	Р	1360	2810	1390	2610	5400	4570	5750	3650	14100	3800	027	1930
35	N	1914	3716	930	1770	2600	1330	3300	2500	10200	2250	210	290
were	*Piots were sown were mowed and hay v	to timo was left	sown to timothy and clover hay was left on the ground	clover bui ound.	t on acco	unt of unfi	avorable	weather	sown to timothy and clover but on account of unfavorable weather conditions hay was left on the ground.	gave very	gave very poor crop in 1908.	in 1908.	Plots

N, K, and P are symbols for nitrogen, potassium, and phosphorus respectively. CaO is the symbol for burned lime. M indicates manure.

August, 1916] RESIDUAL EFFECTS OF FERTILIZERS

	Total	Produce	120605	152400	38600	36615	69270	43075	139670	117910	42170	76995	52215	39480	95940	41565	36845	63415	41195
	1915 CLOVER																		
	1914 WIEAT	Straw	4380	5420	710	1270	3060	*3010	3420	3460	780	2520	890	780	2450	820	022	066	760
	19 WE	Grain	1720	1080	350	580	1490	*1190	1380	1590	370	1230	560	370	1500	380	330	560	340
	1913 OATS	Straw	2625	0009	680	650	1170	420	3760	1800	400	1130	820	710	1410	570	550	1250	470
	19 0A	Grain	875	1250	220	250	530	280	1040	800	250	620	380	290	190	330	300	750	330
	67 N	Stover	4190	4600	2900	3080	4620	1400	4400	4450	2900	4020	2300	1990	4200	2400	1920	2050	1380
	1912 Corv	Grain	4630	5010	1500	2470	3550	1330	4800	4890	1550	3170	2050	1900	4080	2330	1900	2100	1400
	1911 Ттмотну	Hay	6090	6240	1130	1100	890	006	6640	6090	850	2280	2390	93.0	4320	850	570	2290	1740
	1910 TIMOTHY	Hay	0006	10400	1305	1240	1120	1180	9006	8700	1275	3475	3880	1375	7300	1285	1260	3410	2885
000	L909 LIMOTHY-	Hay	5600	6800	755	535	490	535	7800	4700	505	1640	2125	705	4500	430	305	845	720
	5	Fertilizer) N, K, P, CaO	M, CaO	Check	CaO	M(ash), N	Check	M	N, K, P	Check	P. K	N, K	Check	N. P	K	Check	Ρ	Ν
		Plot	19	20	21	22	23	24	25	26			29						35

*Abnormal yields due to an accidental application of manure which was subsequently removed with a hand rake.

.

TABLE I (continued) .--- Pounds of Produce per Acre.

2

FERTILIZER TREATMENTS.

Much heavier applications of fertilizers have been made during the fifteen years that have elapsed since the beginning of the experiment than would be used in actual practice. This was done in order to magnify the effect and to shorten the period of time necessary to produce a measurable effect on the soil. The following amounts of fertilizers have been applied annually to the plots with the exceptions noted:

Plots 18, 21, 24, 27, 30, 33, and 36. No fertilizer.

Plot 19. 40 pounds sodium nitrate; 40 pounds acid phosphate; 15 pounds potassium sulphate (20 pounds in 1906); 100 pounds lime in 1900; 150 pounds lime in 1906; and 200 pounds lime in 1912.

Plot 20. Two tons stable manure; 100 pounds lime in 1900; 150 pounds lime in 1906; and 200 pounds lime in 1912.

Plot 22. 100 pounds lime in 1900 and in 1903; 150 pounds in 1906; and 200 pounds in 1912.

Plot 23. Ash from two tons of stable manure, together with an amount of nitrogen in the form of sodium nitrate equivalent to the nitrogen originally present in the stable manure. Applications made in 1900 and in 1901. Since then no further applications have been made until 1912 when it received 40 pounds of a 4-16-4 fertilizer.

Plot 25. Two tons stable manure applied annually except in 1903.

Plot 26. 40 pounds sodium nitrate; 40 pounds acid phosphate; 15 pounds potassium sulphate (20 pounds in 1906).

Plot 28. 40 pounds acid phosphate; 15 pounds potassium sulphate (20 pounds in 1906).

Plot 29. 40 pounds sodium nitrate; 15 pounds potassium sulphate (20 pounds in 1906).

Plot 31. 40 pounds acid phosphate; 40 pounds sodium nitrate.

Plot 32. 15 pounds potassium sulphate (20 pounds in 1906).

Plot 34. 40 pounds acid phosphate.

Plot 35. 40 pounds sodium nitrate.

!

In 1902, 1907, 1908, 1914, and 1915 no fertilizer was applied on any of the plots. In 1913 only one-half of the original application of fertilizer was given.

TABLE II.—Total Amounts of Fertilizers Applied per Acre from 1900 to 1915 Inclusive.

Plot	Nitrate of Soda, Pounds per Acre	Acid Phos- phate, Pounds per Acre	Sulphate of Potash, Pounds per Acre	Lime,Pounds per Acre	Manure, Tons per Acre
19	4200	4200	1625	4500	
20				4500	21 0
21					
22				5500	
23	300 As	h of 40 tons of	manure until 19	912	
24					
25					190
26	4200	4200	1625		
27					
28		4200	1625		
29	4200		1625		
30					
31	4200	4200			
32			1625		
33					
34		4200			
35	4200				

THE EFFECTS OF THE FERTILIZERS ON THE CROPS.

The record of the crop yields shows some very interesting effects. The total produce per acre has varied from 36,615 pounds on the plot receiving burned lime to 152,400 pounds on the plot receiving manure and lime. We are particularly interested in the yields in calculating the elements of plant food which have been removed from the soil by the crops grown. Unfortunately no analyses have been made of the crops from the various plots. We are compelled, therefore, to base our calculations on average analyses of these crops. We have chosen the analyses as given by Hopkins* with a few exceptions in which analyses given by Henry and Morrison[†] were more nearly comparable.

^{*}Soil Fertility and Permanent Agriculture. †Feeds and Feeding.

TABLE III.—Pounds of nitrogen, phosphorus, and potassium removed by crops from fertility plots since 1900, calculated on the acre basis.

Plot	Treatment	Ν	Р	K
19	N, P, K, CaO	1146	177	964
20	M, CaO	1382	213	1 21 3
21	Check	313	55	279
22	CaO	312	57	235
23	M(ash), N	687	109	538
24	Check	378	60	306
25	M	1278	195	1098
26	N, P, K	1082	171	916
27	Check	351	59	304
28	P, K	705	115	587
29	N, K	417	73	385
30	Check	341	57	290
31	N, P	945	148	799
32	К	349	60	296
33	Check	321	55	271
34	Р	591	95	490
35	N	356	61	312

TABLE IV.—Pounds of nitrogen, phosphorus, and potassium, calculated from check plots, which would have been removed per acre in crops if no fertilizer had been applied.

Plot	N	Р	K
19	313	55	279
20	313	55	279
21	313	55	279
22	319	56	283
23	326	56	287
24	332	57	292
25	, 338	58	296
26	345	58	300
27	351	59	304
28	347	58	299
29	343	57	295
30	341	57	290
31	334	56	284
32	328	55	277
33	321	55	271
34	321	55	271
35	321	55	271

Table V gives the amounts of nitrogen, phosphorus, and potassium removed from the soil of each plot by the increased crops according to these analyses, and also the number of pounds of these elements supplied in the fertilizers used. The columns headed "Gain or Loss" represent the relative conditions of the various plots as they would be if there had been no losses in the drainage water or no gains from the air.

Potassium.
and
Phosphorus,
Nitrogen,
Loss in
n or
Gair
VCalculated
TABLE \

Gain	or Loss	-10	¢.	+ 48	¢.	¢•	+ 59	+387	+585	-515	+656	-219	- 41
Potassium Added in	Fertilizer	675	۰.		۰.	¢.	675	675	675		675		-
*Removed in Increased	Crops	685	934	48	251	802	616	288	90	515	19	219	41
Gain	or Loss	+171	۰.	 	ć	6.	+180	+236	-16	+201	- 1	+253	9
H-H	Fertilizer				ċ					293		293	
PE *Removed in Increased	Crops	122	158	1	53	137	113	57	16	92	Ð	40	9
Gain	or Loss	-161	ė	2 +	6	¢.	- 65		+598	+ 61	-21	-270	+637
NITROGEN	Fertilizer	672	6.]	ċ	6.	672		672	672		-	672
*Removed	Crops	833	1069	2	361	940	737	358	74	611	21	270	35
	Treatment	N, P, K, CaO	M, CaO	Ca.O	M(ash), N	M	N, P, K	Р, К	N, K	N, P	K	Р	Ν
	Plot	19	20	22	23	25	26	28	29	31	32	34	35

*Calculated from Tables III and IV.

W. VA. AGR'L EXPERIMENT STATION [Bulletin 160]

ANALYTICAL DATA.

During the spring of 1915 the plots were sampled by the use of a soil auger. Thirty-eight borings each to a depth of $6\frac{2}{3}$ inches were taken for a composite sample of soil on each plot. These borings were distributed over the plots as shown in the diagram on page 4. The samples were air dried and put through a 2-mm. sieve to remove stones and undecomposed pieces of organic matter. After thorough mixing a sufficient amount of this composite sample was chosen for analytical purposes and pulverized to pass a sieve with 100 meshes to the inch. Samples of the subsoil from $6\frac{2}{3}$ to 20 inches were also taken and prepared for analysis.

It was thought desirable to determine the probable error in sampling a plot. Accordingly six composite samples of 38 borings each were chosen from plot 26 and prepared for analysis. A record of the total carbon, nitrogen, and phosphorus as found in these six samples is given below:

TABLE VI.—Percentages of carbon, nitrogen, and phosphorus in a soil as determined by duplicate analyses of six composite samples from the same plot.

Samp	le	Total Analysis A	Carbon Analysis B	Total N Analysis A	itrogen Analysis B	Total Ph Analysis A	osphorus Analysis B
1		1.53	1.51	.130	.129	.045	.045
2		1.55	1.56	.138	.138	.047	.046
3		1.51	1.49	.134	.133	.046	.046
4		1.52	1.54	.133	.133	.045	.045
5		1.64	1.64	.148	.147	.048	.049
6		1.52	1.52	.135	.135	.045	.046

It will be seen from the table that there is a very close agreement among five of the six samples. No explanation is available for the differences to be noticed in sample 5. However, these differences necessitate a more careful study of the results to follow in order to be sure that the conclusions drawn are correct.

1
Plots
D
>
<u></u>
=
Ľ
9
8
0
÷
Soil from Fertility
0
S
e
e Samples of Surface
÷
'n
S
-
0
S
<u>e</u>
2
E
Samples
~
te
-S
ő
6
Ľ,
8
~
of Composite
ő
S
-
Analyse
A
Ĩ
1
N
TABLE VII
ш
1
B
4
-

Lbs. CaCO.	Requirement A* B†	0000 0000	0	0 3600	0 2800	9000 5600		0 3600	2800 6000		3000 3600	2800 3200		•	3800 5200		3600 5200	3400 5200			3200 5200	3600 5600		3600 5200	3400 5600			
	C	1.19	1.23	1.22	1.62	1.06	0.97	0.97	1.03	1.04	1.04	1.84	1.53	1.10	1.09	1.31	1.29	1.35	1.31	1.32	1.39	1.46	1.37	1.37	1.41	1.44	1.22	1.22
2		0.054	0.066	0.066	0.066	0.054	0.051	0.051	0.058	0.058	0.058	0.066	0.064	0.057	0.057	0.073	0.073	0.067	0.059	0.060	0.065	0.059	0,063	0.063	0.060	0.049	0.055	0.055
4		0.097	0.106	0.107	0.135	0.092	0.088	0.088	0.097	0.102	0.102	0.162	0.133	0.098	0.098	0.114	0.114	0.115	0.113	$0.114 \\ 0.120$	0.120	0.116	0.115	0.115	0.115	0.113	0.104	0.104
ц	ዲ	0.030	0.037	0.037	0.052	0.030	0.026	0.026	0.033 0.033	0.035	0.035	190.0	0.045	0.030	0.031	0.043	0.043	0.032	0.035	0.035 0.044	0.044	0.036	0.037	0.037	0.044	0.031	0.032	0.032
DRY SOIL	ΣΩ		.062	.063	.062	.062	.048	.044	.055	.058	.062	.075	010.	.064	.062	020.	.071	.063	.066	.058	.062	.066	.069	020.	.066	010.	100-	
OF AIR	К	1.25	1.26	1.21	1.24	1.21	1.21 1.26	1.28	1.29 1.28	1.41	1.40	1.29 1.29	1.27	1.21	1.23	1.28	1.28	1.28	1.30	1.35 1.35	1.35	1.34	1.37	1.34	1.36	1.33	лор	
PERCENT	Mg		0.19	0.19	0.20	0.22	0.21	0.22	0.22	0.26	0.28	0.25	0.19	0.20	0.20	0.20	0.20	0.19	0.19	0.17 0.19	0.20	0.21	0.20	0.20	0.23	0.19	0.40	
H	Ca		0.21	0.21	0.23	0.11	$0.12 \\ 0.24$	0.26	0.14	0.14	0.13	$0.14 \\ 0.15$	0.11	0.13	0.12	0.13	0.13	0.11	0.13	0.13 0.15	0.14	0.11	0.12	0.12	0.13	0.13	eT.0	
	Mn		0.22	0.22	$0.21 \\ 0.22$	0.24	0.23 0.18	0.19	0.18	0.19	0.18	0.28	0.27	0.19	0.20	0.26	0.25	0.28	0.22	0.25 0.19	0.21	0.28	0.25	0.25	0.22	0.18	0.44	
	AI		4.22	4.15	4.01	4.30	4.39 4.29	4.37	4.45	4.77	4.77	4.72	4.43	4.47 4.44	4.49	4.45	4.51	4.50	4.78	4.77	4.78	4.84	5.24	5.27	5.16	5.11	0.14	
	Τi		0.79	0.74	0.72	0.76	$0.68 \\ 0.77$	0.73	$0.74 \\ 0.72$	0.71	0.70	0.70	0.69	0.70	0.70	0.70	0.70	0.71	0.67	0.68	0.68	0.72	0.72	0.72	0.73	0.73	71.0	
	Fe		_		1.90	1.94	$1.94 \\ 2.06$	2.04	2.18	2.60	2.59	2.33	1.82	1.77	1.76	1.80	1.79	1.89	2.00	2.00	2.04	2.14	2.23	2.16	2.28	2.21	01.2	~~~~~
	Treatment	Check	N. P. K. CaO	0-10	M, CaU	Check	CaO		M(ash), N	Check	N.C.	IVI	N, P, K	Check		P, K	N. W	······	Check	N. P.	11		Check	ρ	·····	N	Check	
	Plot No.	18	19	00	0	21	22	00	23	24	n C	07	26	27	i	28	66	1	30	31	00	40	33	VC	н	35	36	

*Surface soll to 6% inches. †Subsoll, 6% to 20 inches.

INTERPRETATION OF ANALYSES.

Analyses of Check Plots.

The analyses of the check plots indicate that the fertility increases as we proceed from plot 21 to plot 33, and then decreases from 33 to 36. Plot 18 shows a slightly higher content of nitrogen and carbon than plot 21. It must be remembered that plot 24 is no longer a check, having accidentally received an application of manure. Any calculations as to the effect of fertilizers applied on the present composition of the soil must take into consideration this gradual increase in the plant food content of these soils from one end of the series to the other. By dividing the differences in the analyses of the check plots by the number of plots between the checks we are able to calculate what the plant food content of each of the plots would have been at the present time if it had received no fertilizer. Table VIII shows the results of this calculation on the basis of pounds of elements per 2,000,000 pounds of surface soil and 4,000,000 pounds of subsoil.

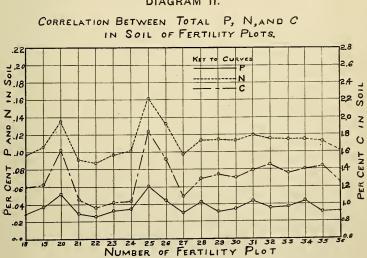
TABLE	VIIIPresent	Analyses of	Plots as	S Calculated	from Check
Plots H	lad no Fertiliz	zer or Manur	e Been A	oplied. (Pou	nds per Acre
of 2,00	0,000 Pounds of	of Surface So	il or 4,00	0,000 Pounds	of Subsoil.)

Plot	Nitr	ogen	Phosphorus	Carbon	$CaCO_3$ Re	quirement
No.	A*	B†			A* Lb≈.	B† Lbs.
18	1960	2180	600	23,900	2800	6800
19	1917	2174	597	23,000	2800	3600
20	1873	2166	593	22,100	2800	2800
21	1830	2160	590	21,200	2800	5600
22	1852	2180	593	21,317	2967	3600
23	1873	2200	597	21,433	3133	6000
24	1895	2220	600	21,550	3300	3600
25	1917	2240	603	21,667	3467	3200
26	1938	2260	607	21,783	3633	4400
27	1960	2280	610	21,900	3800	5200
28	2063	2314	640	23,367	3800	5200
29	2166	2346	670	24,833	3800	5200
30	2270	2380	700	26,300	3800	5600
31	2280	2426	713	26,667	3733	5200
32	2290	2474	727	27,033	3667	5600
33	2300	2520	740	27,400	3600	5200
34	2227	2420	707	26,400	3600	5600
35	2153	2320	673	25,400	3600	5600
36	2080	2220	640	24,400		

*Surface soil to 6% inches. †Subsoil, 6% to 20 inches.

The Nitrogen Balance.

Every plot which has received an application of acid phosphate shows a higher content of nitrogen than it should, according to the calculations as given in Table IX. In every case the amount of nitrogen present is in excess of what it should be if there had been no application of nitrogen other than that in nitrate of soda. The data seem to indicate that nitrogen has been secured from the air through the growth of legumes or otherwise. Even on the check plots the nitrogen content is apparently as high as it was fifteen years ago when the experiment was begun. Analyses made at that time of a composite sample chosen from eight different points over the plots showed a nitrogen content of 1900 pounds per 2,000,000 pounds of surface soil. The average nitrogen content of the check plots in 1915 was 2042 pounds per 2,000,000.


It will be noticed that the plot receiving only nitrate of soda has suffered a loss of 890 pounds of nitrogen although the amount of nitrogen added was only 672 pounds. By comparing this plot with the one receiving sulphate of potash and nitrate of soda it will be observed that the loss is considerably reduced, being only 138 pounds. Plots 31, receiving nitrate of soda and acid phosphate, shows a gain of 213 pounds. One is led to infer from this that acid phosphate and sulphate of potash have in some way either prevented this loss or have been responsible in some way for an accumulation of nitrogen sufficient to offset this loss. Plot 26, receiving an application of acid phosphate and sulphate of potash, shows an increase amounting to 1173 pounds per acre.

The evidence seems to be sufficient to justify the statement that there has been a nitrogen fixation in the soil on the plots receiving acid phosphate and sulphate of potash varying from 20 pounds per acre per year, on the plot receiving acid phosphate alone, to 78 pounds per acre per year on the plot receiving acid phosphate and sulphate of potash. Table IX shows the amount of nitrogen fixed on the various plots since 1900, figured on the basis of an acre of soil to a depth of 20 inches and weighing 6,000,000 pounds. Of course it may be possible that the crops contained more nitrogen than the analyses given in Table III would indicate, but even so, we have not taken into consideration the loss of nitrogen in the drainage water which in the case of plots receiving nitrate of soda must have been considerable. The analyses of the drainage water from Broadbalk field at Rothamsted* indicate

*Hall, The Soil, p. 201.

that this must have been true. The soil on the Experiment Station farm overlies sandstone and is very well drained. Plots receiving nitrogen but no phosphorus show a serious loss of nitrogen. Only three legumes have been grown on the plots during the experiment and these crops were removed from the plots, so that most of the nitrogen fixation must have been brough about by some other agency. Azotobacter chroococcum and Clostridium pasteurianum are both present in the soil of the fertility plots.

Either acid phosphate or sulphate of potash has been of value in aiding nitrogen fixation but a combination of both has been considerably more effective than either applied alone.

DIAGRAM II.

Acre.)
per
Nitrogen
of
(Pounds
Balance.
Nitrogen
IXThe
TABLE IX

	Nitrogen Balance	+840	225	+1099	+1173		+213	69 —	+295		
Calculated	Gain or Loss‡		2 +	- 65		+598	+ 61	- 21	270	+637	
Total Gain	or Loss 0 to 20 in.	+679	232	+1034	+815	+460	+274	- 90	+ 25	+253	
NCHES	Gain * or Loss	+466	140	+312	+598	+326	+154	-110	- 48		
. FROM 6 % TO 20 INCHES Nitrogen	Calculated from Checks*	2174	2180	2260	2314	2346	2426	2474 -	2420	2320	
. FROM	Nitrogen Present†	2640	2040	2572	2912	2672	2580	2364	2372	1960	
ICHES	Gain * or Loss	+213	92	+722	+217	+134	+120	+ 20	+ 73	+107	
FROM 0 TO 6% INCHES Nitrosen	0.2	1917	1852	1938	2063	2166	2280	2290	2227	2153	
FROM	Nitrogen Present† 1	2130	1760	2660	2280	2300	2400	2310	2300	2260	
	Treatment	N, P, K, Ca0	CaO	N, P, K	P, K	N, K	N, P	К.	Р	N	†Table VII. *Table VIII. ‡Table V.
	Plot No.	19	22	26	28	29	31	32	34	35	*

The Phosphorus Balance.

Every plot which has received applications of manure or acid phosphate shows a high content of phosphorus. Apparently all or most of the phosphorus applied in the form of fertilizer which was not used by the crops is still present in the surface soil, having never diffused to any considerable extent into the subsoil. This is shown in Table X in which the actual gain in phosphorus as measured by the check plots is compared with the calculated gains as given in Table V. It will be seen that there is a rather close agreement between the two, sufficiently so to justify the statement that the phosphorus applied to the soil in excess of the needs of the crop has been fixed within the first 6²/₃ inches of soil.

TABLE X .- The Phosphorus Balance. (Pounds per 2,000,000 Pounds of Surface Soil.)

		1	Phosphorus	ŕ		
			Calculated		Calculated	
Plot	Treatment	Phosphorus	from	Gain	Gain or	Phosphorus
No.		Present	Checks	or Loss	$Loss^*$	Balance
19	N, P, K, CaC) 740	590	+150	+171	- 21
22	CaO	- 520	593	73	- 1	- 72
26	N, P, K	. 900	607	+293	+180	+113
28	P, K	. 860	640	+220	+236	-16
29	N, K	. 640	670	<u> </u>	- 16	- 14
31	N, P	. 880	713	+167	+201	- 34
32	К	. 720	727	- 7	— 5	- 2
34	Р	. 880	707	+173	+253	- 80
35	N	. 620	673	- 53	— б	- 47

†See Table VIII. *See Table V.

The Carbon Balance.

The amounts of organic matter present in the soil on the plots vary considerably with different fertilizer treatments. There is a very close correlation in most cases between the amounts of carbon, phosphorus, and nitrogen in the various plots as shown in Diagram II. The relation between total carbon and the organic matter in the soil is not definitely known. The factor 1.724* is used frequently to estimate the organic matter from the total carbon. In all plots receiving fertilizing materials the content of organic matter is greater than in the check plots. It must be remembered that no green manuring crop or manure was applied to any of the fertilizer plots. Any increase in organic matter, must have come from the roots and stubble of the crops produced. We have already shown that the content of nitrogen in the check plots is as much as or more than it was at the beginning of the experiment. We assume from the correlation between nitrogen and carbon

^{*}Wiley, Principles and Practice of Agricultural Analysis, Vol. I.

as shown in Diagram II referred to before that the content of organic matter has remained practically constant in the check plots, and largely because the soil was so low in fertility originally that the organic matter remaining behind represented only that which was very resistant to decay. The evidence indicates that organic matter can be maintained and increased by the use of fertilizers without plowing down green crops or anything other than the stubble left behind after the crop is harvested. It will be observed that there is a considerable increase in the amount of organic matter in the soil of the plot receiving the complete fertilizer.

TAB	LE XI.—Carbon	and Org	ganic Matter	Balance.	(Pounds per
	2,000	,000 Pour	nds of Surface	soil.)	
			Carbon	Carbon	Organic
\mathbf{Plot}	Treatment	Carbon	Calculated	Gain or	Matter*
No.		Present	from Checks†	\mathbf{Loss}	Gain or Loss
19	N, P, K, CaO	24500	23000	+ 1500	+ 2586
20	M, CaO	32500	22100	+10400	+17930
22	CaO	19400	21317	- 917	-1581
25	М	36800	21667	+15133	+26089
26	N, P, K	30400	21783	+ 8617	+14856
28	P, K	26000	23367	+ 2633	+ 4539
29	N, K	27000	24833	+ 2167	+ 3736
31	N, P	28000	26667	+ 1333	+ 2298
32	Κ	29200	27033	+ 2167	+ 3736
34	Р	28200	26400	+ 1800	+ 3103
35	N	28800	25400	+ 3400	+ 5875

†Table VIII.

*Carbon x 1.724.

THE BAD EFFECTS OF BURNED LIME.

On the plots to which lime has been applied there are certain outstanding effects which can be observed by a study of the analyses. Referring to Table I, it will be noticed that the use of lime alone has been responsible for a loss in yield as an average of the last fifteen years. When used in connection with manure or fertilizer it has produced an increase in yield. As to what this increase amounted to when applied with manure cannot be ascertained since the plot receiving manure and lime had a total of 210 tons of manure as compared to 190 tons on the plot receiving no lime. On the fertilizer plot the use of lime has produced an increase amounting to a total of 2695 pounds of produce in fifteen years, little more than sufficient to pay for the lime. However, the application of lime has caused a decrease in nitrogen, phosphorus, and carbon in the soil out of all proportion to the increased crops produced. Table XII shows this loss. In every case the application of lime has proved detrimental to the surface soil.

	ORGANIC MATTER			12270			6608			3235	
	Difference	8617	1500	7117	15133	11300	3833	0	-1917	1917	
	CARBON Check*	21783	23000		21667	21200		21200	21317		
Soil.)	Present	30400	24500		36800	32500		21200	19400		
Surface	Рноврновиs Present Check* Difference	293	150	143	617	460	157	0	-73	73	
o spuno	PHOSPHORUS Check* Diff	001	590		603	590		590	593		
00,000 P.	Present	006	740		1220	1050		590	520		
(Pounds per 2,000,000 Pounds of Surface Soil.)	VITROGEN Chcck* Difference	728	213	515	1323	870	453	0	-92	92	
(Pour	NITROGEN Check*	1938	1917		1917	1830		1830	1852		
	Present	2660	2130		3240	2700		1830	1760		
	Treatment	N, P, K	N, P, K, Ca0	Loss		M, CaO	Loss	Check	Ca0	Loss	
	Plot No.	26	19		25	20		21	1 22		

TABLE XII.-Loss of Nitrogen, Phosphorus, and Carbon from Limed Plots.

*See Table VIII.

One reason for this may be the fact that an excess of lime was applied as compared to the needs of the soil although in no case did the application exceed 5500 pounds per acre in 15 years, which would not be considered excessively heavy. The lime requirement of the check plots at present amounts to practically 3000 pounds of $CaCO_3$ per 2,000,000 pounds of surface soil, which is equivalent to 1680 pounds of CaO. It will be seen, therefore, that lime was applied in considerably larger amounts than the surface soil required. However, the subsoils on the plots receiving lime still show a lime requirement averaging over 3200 pounds of $CaCO_3$ to a depth of twenty inches.

THE EFFECT OF MANURE AND FERTILIZERS ON THE LIME REQUIREMENT OF THE SOIL.

The use of manure and fertilizers has had a tendency to decrease the acidity of the soil as shown in Table XIII. Sulphate of potash is the only one of the three commercial fertilizers used which did not have this tendency.

The statement is frequently made that the use of acid phosphate will make a soil acid. This work verifies the statements published by certain other experiment stations^{*†} and indicates that the belief that the soil will become acid from the use of acid phosphate is without foundation. The analyses of the plots together with the data showing their present crop producing power indicate that it is possible to grow very large crops on acid soils without the use of lime and at the same time to be able to bring about a gradual decrease in the lime requirement of these soils.

*Connor, S. D., Jour. Ind. & Eng. Chem., Vol. VIII, No. 1, p. 35. †Brooks, Wm. P., Bulletin 162, Massachusetts Agricultural Experiment Station

c	CaCO ₃ Requirement Balance to	20 Inches	5160		5534	- 66	-1634	866	— 267	532	- 665	+ 66	200	- 200
		or Loss			- 967	+ 267	1067	433	67	- 132	— 132	+ 133	0	0
cre.)	FROM 62% TO 20 INCHES CaCO ₃ Requirement	Calculated from Checks	3200	3000	2767	2733	2667	. 2633	2667	2732	2732	2667	2600	2600
(Pounds of CaCO ₃ Required per Acre.)	FROM	CaCO ₃ Requirement	1800	1400	1800	3000	1600	2200	2600	2600	2600	2800	2600	2600
of CaCO _s R		Gain or Loss	3720		4567	333	- 667	433	200	400	533	- 67	-200	-200
(Pounds	FROM 0 TO 62% INCHES CaCO3 Requirement	Calculated from Checks	2800	2800	2967	3133	3467	3633	3800	3800	3733	3667	3600	3600
	From	CaCO ₃ Requirement	- 920		-1600	2800	2800	3200	3600	3400	3200	3600	3400	3400
		Treatment	N. P. K. CaO	M, CaO	CaO	M(ash), N	M	N. P. K.	P. K	N, K	N. P	K	P	N
		Plot No.			22 (34	35

TABLE XIII.-The Lime Requirement of the Soil of the Fertilizer Plots.

August, 1916] RESIDUAL EFFECTS OF FERTILIZERS

THE APPLICATION OF THESE INTERPRETATIONS.

The analyses of these plots and the interpretations put on them, if they are correct, indicate several things of farreaching importance to the agriculture of West Virginia:

1. The nitrogen of the soil can be maintained and increased without purchasing it in the form of commercial fertilizers, even if all the crops are removed from the farm. In fact it does not seem at all necessary, in view of the results obtained on the Experiment Station farm as to crop yields and also as to the present nitrogen content of the soil on the plots receiving phosphorus and potassium, to buy nitrogen in the form of fertilizers for permanent soil building.

2. The value of phosphorus and potassium over phosphorus alone as a fertilizer may, at least partly if not largely, be explained by an indirect function of potassium: viz., its value as an aid to nitrogen fixation. It seems possible from these analyses that it may be advisable to include potassium in the fertilizer used on soils in a low state of fertility instead of using acid phosphate alone as is now being largely practiced in West Virginia. This does not mean that the use of acid phosphate alone is objectionable but that a combination of potash salts and acid phosphate may be more effective not alone in its present crop-producing power but also in its residual effect on the soil. However, this potash supply may be manure instead of fertilizer.

3. Soil acidity is not necessarily a condition of the soil which must be overcome by the use of lime in order to produce satisfactory crops. The soil on the Experiment Station farm has a higher lime requirement than the average West Virginia soil. Yet, excellent crops have been produced at a profit on the Experiment Station farm without the use of either lime or limestone. The plots receiving acid phosphate, acid phosphate and sulphate of potash, complete fertilizer, and manure are in much better condition today than they were when the experiment was begun in 1900. These plots not only show a lower acidity than the check plots but they have a much higher content of both organic matter and nitrogen than they had originally.

This would indicate that farmers living some distance from a railroad station or from a source of lime or limestone are not compelled to buy and apply lime in order to produce large crops economically. This does not mean, however, that limestone, where it can be secured at a reasonable cost, can not be applied to advantage on acid soils.

4. These analyses indicate that organic matter can be maintained and increased in the soil without plowing down anything but the stubble left behind after the crops have been harvested, if a rotation of crops is followed and use is made of either fertilizer or manure. Organic matter can be increased in the soil by growing large crops in rotation, even though the crops are removed from the farm. It has always seemed doubtful in the minds of writers whether the spasmodic attempts to increase the organic matter in the soil by plowing down some crop such as soybeans, which could have been used for some other purpose, is advisable. Such a procedure not only means the loss of the use of the land for that season but also a considerable cost for labor and seed. The soybeans could have been fed as hay and the manure returned to the field, or they could have been sold and a part of their value invested in fertilizer. Either the fertilizer or the manure, by reason of the fact that it produced a large crop, would have increased the organic matter in the soil by the roots and stubble of this crop.

This is not meant to discourage the plowing down of cover crops but is meant to imply that it does not seem advisable to lose the use of the soil during the main growing season for this purpose.

5. The evidence indicates that the acidity of the soil can be reduced by increasing the organic matter in the soil. The plots receiving manure show a reduced acidity. The plots which have received any combination of fertilizers which increased the vields materially show a higher content of organic matter and a lower acidity than neighboring check plots. general it may be said that the acidity of the plots has been reduced wherever the content of organic matter has been increased. Limestone boulders which by accident were buried in an acid soil, when excavated a few years later, were covered with a heavy coating of very black organic matter such as to make them have the appearance of coal. It seems possible that the reverse of this may be true: viz., that if the soil is well stocked with organic matter, the lime in solution in the soil may be precipitated by this organic matter. On the subsequent decay of this organic matter the lime may be released as the carbonate. We consider this statement merely as a working hypothesis.

6. The best means of maintaining the fertility of the soil is to make it produce large crops. If for any reason the yield begins to gradually decrease, the result will be that the nitrogen and organic matter will begin to decrease and the acidity of the soil will increase. When once the soil has reached the state of unproductivity in which many West Virginia soils are found today heroic efforts may be required to bring them back to a normal state of productivity. We feel quite sure, however, that these worn out soils can be made to produce large crops by making use of nothing but acid phosphate in connection with good farming. We believe it can be done more rapidly and perhaps more economically by the use of potash and lime. Again it can be hastened by the use of nitrogenous fertilizers, but we are inclined to believe that this is doubtful economy. .

