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ABSTRACT

Wood has adequate strength both in bending and shear. These, however, are
accompanied by relatively low elastic properties, so that the design of timber beams is
frequently controlled by deflection limitation. In some other cases, either bending or
shear might be the critical action. Unfortunately, it cannot be predicted which one of
these will govern the design, and therefore, a threefold procedure has to be carried
out. In order to simplify and speed the procedure, design tables and charts were
constructed based on the conventional design formulae.



LIST OF SYMBOLS

constant defined in Table B
width of the cross section
depth of the cross section
Young’s modulus parallel to grain
moment of inertia

bending moment

effective span

statical moment
concentrated force
sectional modulus

vertical shear force

general symbol for load
distributed load
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Additional symbols are defined in the text, as and when they occur.
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INTRODUCTION

The design of flexural members is based on either of two stipulations: either the actual
stress components must be less than the permissible stresses, or the stress components
obtained by some factorized load should not exceed the ultimate stresses. As long as
the stress components are linear functions of the load, the two methods, in principle,
provide the same result. Since the modulus of elasticity for wood is comparatively low,
the above design procedures do not always satisfy the functional requirements
demanded by the structural member. At times the deflection of the beam exceeds a
practical limit (360th, 240th, 180th of the span), beyond which the deformed shape
jeopardizes the function of the adjoining structural components, e.g., a door or
window cannot open or close or the interior of the ceiling may crack, etc. These
undesirable consequences could occur even if the beam were structurally safe. In order
to conquer these inconveniences, the design must include additionally a deformational
analysis. Unfortunately, of the three critical actions, shear, bending, and deformation,
thus far we have not been able to precisely predict the critical one. Therefore, each of
them must be examined separately. This threefold process is, however, fairly time
consuming and, except for the solution of one specific problem, it does not provide a
definite prediction for the critical effect in other cases. A satisfactory solution to this
problem will simplify the design to a great extent, will provide more versatile results,
and may elucidate the entire behavior and resistance of flexural members in the light of
simultaneous shear, bending and deflection.

BACKGROUND TO COMPUTATIONS

In most applications, flexural wood members are designed as simply supported
beams. The following formulae apply to rectangular cross-sections.

) v VQ
for shear: fe = T < fs (1.a)
for bending fy = —“é'— < fp (1.b)
for deflection: A = A W.I_l=a < % (1.c)

where A is a constant, its value being determined by the type of loading; W denotes the
loading which could be concentrated or distributed. The exponent a depends also on
the loading system and it will be equal to 3 for concentrated and to 4 for distributed
loads. The symbol g denotes the deflection limitation, which may be 360, 240, 180;
and ', ¥, A" are the maximum effective shear stress, bending stress, and vertical
displacement respectively, and f_ and f_ denote the allowable shear and bending stress.



Formulae 1.a, 1.b, and 1.c can now be rewritten into functional forms so that the
ratios W/b play the role of independent variables while the ratios d/L are the functions.
Thus we have:

for shear: 4 . w (2.a)
L Ci
— d ‘ w
for bending: —_ = ALS (2.b)
or bending T C > 5
for deflection: 4 . C : v (2.c)
L 3V b

The material properties f_, f, and E are incorporated in the constants C,, C, and C,
respectively. The representation of functions 2.a, 2.b, and 2.c in an orthogonal system
" of coordinates leads to a set of curves which consists of a straight line for shear, a
second order parabola for bending, and a third order parabola for deflection as shown
in Fig. 1. Thus the functional relationships represented by the set of curves prescribe
three ratios of d/L for each value of the W/b ratio. On closer inspection one can
identify three distinctly different divisions in the family of curves represented in Fig. 1.

d/L
|
L/

7//%/ 2 /
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s |
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CP‘\I :
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<% =|A - | wlfe
FIGURE 1

In the first division the set is enveloped by the deflexion line; in the second one by
the bending line and in the third division by the shear line. Recognizing that by
decreasing the ratio d/L the stiffness of the beam also will decrease, it follows that
the points located above the enveloping curves represent a region of overdesign or safe
region, while those below represent a critical region. It is evident now that the results
of safe and most rational design are represented by those points which coincide with



the enveloping curve. Thus the design will be controlled by deflection, bending, or
shear if the ratio W/b falls into the first, second, or third division respectively. Since
the load W and the span L are generally prefixed quantities for the structural design, an
arbitrarily chosen width of b of the cross-section will automatically determine whether
design is controlled by shear, bending or deflection. Balanced design with respect to
either deflection and bending or bending and shear is obtained at the intersection of
the respective portions of the enveloping curves.

The envelope line in Fig. 1 can now be used as a tool to determine the suitable depth
d for any practically chosen width b of a cross-section to be designed. The method
required, however, the numerical values of the constants C,, C, and C, for various
types of loads.

DETERMINATION OF THE CONSTANTSC,,C, AND C,

Three types of distributed and three types of concentrated loads will be examined.
The allowable deflection will be considered as the 360th of the span. If the larger
deflections are permitted, such as 240th or 180th of the span, then the constant C,
obtained from the L/360 limitation must be multiplied by modifying factors derived
later.

Distributed Loads

Consider first a uniformly distributed load w lbs. per foot run (Fig. 2). For
maximum vertical shear, bending moment and deflection we have:

3
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Substituting these into egs. 1.a, 1.b, and 1.c we obtain for:

a. shear: fg = % < fs
: d _ 075 w _ w
from which L - Tfs b C, b (3.a)
where Cy = L .f7 S}
S
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FIGURE 2
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b. bending: fr, = z f
b ®de s 876" hd? i
f hich A NS T £ I w 3.b
rom whic == = B C»o s (3.b)
, /9
where C = e
2 fp
4
c. deflection: LR L | Rt
384 pd3Eg/12 360
. d3 _ 3 1800 w
from which 3 = |2 384EF b

3 3

finally % |2 /4_~6_§E% =3Cy /% (3.c)
3

|2 /4.6?75

Using similar procedures, C , C, and C, constants can be derived for symmetric and
non-symmetric triangular loads. Zl'hese are included in Table B.

where C 3

Concentrated Loads

In order to express the ratio d/L as various functions of quantities fs, f ,E,Pandb,
it is necessary to introduce a fictitious, uniformly distributed load w, so that:

2P
Wo = T



In addition, factors A1 , A2 and A3 have to be defined in such a way that:

Vo= AV, = A, E
wol
M = A M, = Ap—3=
5 wqlL?
A = A3bo = Aszzgz 7

where V, M and A denote the maximum shear force, bending moment and deflection
due to the corresponding type of point loads, while V_, M_ and A are the same
actions obtained when the beam is subjected to the fictitious, unformly distributed
load w_. Thus all the actions caused by the real concentrated forces are the same as
those caused by a factorized fictitious, uniformly distributed load. The factors A1' A,
and A, should be determined now for various types of point loads. In order to find
these, the ratios of shear forces, bending moments and deflections obtained from the
real load to those of the fictitious load are determined. The results of these
comparative calculations for three types of concentrated loads are presented in Table
A. Consider first a single point load at mid-span of the beam (Fig. 3). The fictitious
load and the maximum actions are:

_ P
Wo = T

. Yo
V.= =

_ WoL
M = =3
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384 EI =~ 48EIl

FIGURE 3



Factors
Point Loads for Shear for Bending for Deflection
Al A2 A3

1 1.00 2.00 1.6000

1 l 1.00 4/3 1.3626

N 1.00 4/3 1.2666

TABLE A
Constants

Loading for Shear for Bending for Deflection Reference
C, Numbers
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o
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i ‘ "000 12 ° [4.6875
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TABLE B
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Substituting these into egs. 1.a, 1.b, and 1.c the following functions are obtained
for:

3W°L

. Shear: =
a. shear fs 253 fs
from which % = O%:S % = Ci% (4.a)
0.75
where C| = fe
. 12wol2/ 4 18woL2
b. bending: fo = —2L_-_ - - ZT0-
- bd2/6 bd 2 fb
. d _ 18 Wo _ Wo
from which T = E T = C 2 -b— (4b)
18
h C = —
where 2 o
_ 144 wo L4 123 wolL? L
c. deflection: A =2 —m— — = —_— < ——
48bd3/E12 48bd3E 360
. d3 3 7.5 Wo
from which —_ =z |2° = —
L3 E b
3 3
. d 7.5 Wo w
finall —_— = _—— = — 4.
inally - 12,/ = 3 Csz E (4.c)
3
where C3 = 12 \ / %

Using a similar procedure, C_, C_ and C3 constants can be derived for two and three
point loads acting at the third and at the quarter points of the beam. These also are
included in Table B.

Having determined the constants C and C,, the numerical values of functions
2.a, 2.b, and 2.c can now be computed2 These constants however, include some
materlal characteristics, such as allowable unit stress for shear and bending, and the



Young’s modulus parallel to grain. These properties have different values for each
species and grades of structural wood. The various design specification for stress-grade
lumber indicates at least 15 values for shear, 33 values for bending and 23 values for
Young’'s modulus. Considering all these, 71 different values of properties and the like
number of curves would be necessary to cover the design completely for one loading
case. Thus the six loading cases discussed require at least 426 curves. Ten ordinates for
one curve provide, in general, sufficient accuracy in the graphical representation of
such relations; consequently, the entire work requires the computation of 426
constants and the minimum of 4260 ordinates. This work was carried out on the IBM
360 digital computer of West Virginia University.

THE SUGGESTED METHOD OF DESIGN

The computer program provides 15 straight lines for shear, 33 second order parabola
for bending and 23 third order parabola for deflection, altogether 71 curves for each of
the six loading cases. The task before us now is to combine these curves into various
related groups or, in other words, to form sets of curves similar to that of Fig. 1.
According to the above data, the necessary number of sets to cover one loading case
completely is at minimum 210. Thus, the representation of the six types of loads
requires 1260 independent graphs. Such an interpretation of the results is evidently not
suitable, and therefore the idea of Fig. 1 must be disregarded and another method must
be developed.

Let us consider, therefore, three separate orthogonal systems of coordinates so that
the ratios w/b or Wo/b are measured along the horizontal axes and the corresponding
d/L ratios occupy the positive vertical axes. We restrict ourselves to one particular
loading case and plot all the curves for bending in the first quadrant of the first system,
all the curves for deflection in the second quadrant of the second system, and all the
straight lines for shear in the first quadrant of the third system. Then we have the
arrangement shown in Fig. 4.

d d d
L Lap e
© €q,
009‘\‘ Pes
o
S
c,\)“\ﬁ
Ko
W/b W/b W,B
33 CURVES FOR BENDING 23 CURVES FOR DEFLEXION I5 CURVES FOR SHEAR
FIGURE 4



To design a flexural member for a given load, span, and a specified grade of lumber,
one should select a suitable value of b, find the ratio w/b or wo/b on the horizontal
axis of each of the three coordinate systems, and read the d/L ratios corresponding to
the appropriate shear (f ), bending (f,), and deflection (E) curves. The greatest of these
ratios provides the critical action that will govern the design. From this ratio the
required depth d of the beam can be calculated; i.e.: d (in) = ratio x L (ft).

The three families of curves in Fig. 4 can be condensed to a complex homogram or
can be converted to a tabulated form, so that one loading case will be represented
entirely by one nomogram or by one table. Each of the nomograms and each of the
tables is provided with a reference number (from 1 to 6) which corresponds to one
particular type of load. The reference number and the related loads also are shown in
Table B.

MODIFYING FACTORS

For a long time it has been recognized that the bending strength of a wood member
is significantly influenced by various factors, among which the duration of the load and
the depth of the beam are the most important. Therefore, the various codes and design
specifications for stress-grade lumber and laminated beams introduce modifying factors
in order to adjust the allowable stresses in the beam when the duration of the load is
different from the normal (10 years) or when the depth of the beam is greater than 12
inches. The presented design process which is based on the suggested nomograms or
tables, however, results directly in the effective depth of the beam, and therefore the
modifying factors given by the codes should be converted to provide modifications
applied directly to the depth of the beam.

Modification Due to Duration of the Load

Since tests have shown that wood has the property of carrying substantially greater
loads for shorter periods than for long duration, the allowable working stresses
specified for normal duration should be multiplied by a factor k, ,, when the duration
is different from the normal. The value of k_ , is specified by the code for various

durations.
For normal duration, when k , = 1, equation 2.b stands as:

d . [ w et 0
T"CZ_G-andCZ' f—b-

In the last equation a is a constant and depends on the type of load as shown in Table
B. If the duration of the load is different from the normal, then instead of C'2 one may
write C’, and consequently:

T SR TANEENS i EDS TSNS T
C2 kiz2 fo kig V fp VEkiz Cz

Then obviously the required d ration will be:

L
d . [w o [ K
T ° Cayp Ki2 Ca\/ B (5)



It follows now that if the duration is different from the normal, the result obtained
from the nomograms or tables should be multiplied by 1/ 4/ k, ,- The values of k,,
and 1/+/ k,, for the usual durations are given in Table C.

Duration Application K, , Wk, ,
Permanent (50 years) Self Weight 0.90 1.0540
Normal (10 years) Life load 1.00 1.0000
Two week Snow load 1.15 0.9325
7 day Long term wind 1.25 0.8944
1 day Medium term wind 1.33 0.8671
1 hour Short term wind 1.50 0.8165
1 second Impact 2.00 0.7011

TABLE C

Modification Due to Increasing Depth

The allowable stresses for bending and for sawed lumber include an adjustment for
depths up to 12 in. As the sizes of the glued-laminated beams continued to increase to
depths exceeding almost 80 in., it becomes particularly important to define precisely
the size-strength phenomenon. A recent study on the subject based on a statistical-
strength theory by B. Bohannan suggests to multiply the allowable stress by a depth
factor k (equation 6) if the depth of the laminated beam exceeds 12 in.

9
- 12
k = 1/_d (6)

Unfortunately this formula is true only for a span:depth ratio equal to 21 and for a
loading case which consists of two equal concentrated loads applied on the third points
of the beam. Consequently, the formula (equation 7) suggested by British Standard
Code of Practice CP112 for deep beams, is much more suitable for considering the
depth effect. According to which:

d2 + 143

k =
16 0:81 d2 + 83

(7)

If dis less than 12 in., then Kis = 1 and equation 2.6 stands as:

d _ [w el g
—L--Cz —5—andC2- E

where a is a factor which depends on the type of the load as shown in Table B. If d is
greater than 12 in., then an adjustment on the allowable stress should be carried out.
Then one may write C'2 instead of Cz, and obviously:

' i a {
C = a = — —_— = —
% V kisfb V kie V fp V k1eC2

10




and the required depth:span ratio will be:

d | w
L \ [k 6 b
It follows now that if d is greater than 12 in., then the depth obtained from the

nomograms or from the tables should be multiplied bys/ 1/k, ;- The values of k.
anda/ 17k16 for realistic depths are given in Table D.

Depth K, o Wk, .
12.0 / 1.0020 0.9995
12.5 0.9924 1.0038
13.0 0.9833 1.0084
13.5 0.9748 1.0128
14.0 0.9669 1.0170
14.5 0.9594 1.0210
15.0 0.9523 1.0247
15.5 0.9457 1.0283
16.0 0.9395 1.0317
16.5 0.9337 1.0349
17.0 0.9282 1.0380
17.5 0.9230 1.0409
18.0 0.9181 1.0436
18.5 0.9135 1.0462
19.0 0.9092 1.0487
19.5 0.9051 1.0511
20.0 0.9013 1.0533

TABLE D

Modification Due to Deflection Limitation

During the derivation of the equations of the present design nomograms and tables,
a deflection limitation of 2 = L/360 was assumed. Sometimes, however, the design may
satisfy weaker limitations, i.e. L/240 or even L/180. If this is the case, then the depth
obtained from the limitation L/360 must be adjusted to correspond to these weaker
limitations. The adjustment should be carried out by multiplying the depth obtained
from the L/360 limitation by a factor. The values of this factor will be determined
next for L/240 and L/180 deflection limitations.

If the deflection limitation is L/360, then equation 2.3 stands as

d 3 _ 33
T ° Cs /%— and C3z = 12‘/?

1



In the second equation a is a constant that depends on the type of loading as shown in
Table B. But a also includes the deflection limitation L/360 so that

a = 360 aq;
and so
3
360
Cz = 12 /__E_Si

If the deflection limitation is considered as L/240 or L/180, then one may write C',
and C”3, respectively, instead of C3, and therefore:

3 ' 3
Y 360 a
Ca = 12\/ 2 §4o 12 /2. 2 = 0.8735 C3

60 3
3 3
" o_ 360 a; . 180 _ L.g i
ch =12 = es - 12 /5 F = 0.7937 C3

and the required depth:span ratio for:

L/240 limitation is

o|=

3

0.8735 C3‘/ (9)
3

0.7937 C3‘/ b (10)

Since the product ca\a/ff,f is obtained from the nomograms or tables for a limitation of
L/360, the effective depth of the beam for the other two limitations can be obtained
directly from equations 9 and 10.

g
L
9.

|=

L/180 limitation is

NUMERICAL EXAMPLES

In order to show the versatility of the nomograms or tables, the following
numerical examples are presented.

Example 1

Design the cross-section of a simply supported beam, if the following information is
available: f_ = 2100 psi., f = 140 psi., E = 1,700,000 psi., L = 17.5 ft., w = 80 Ib/ft.
uniformly distributed load.

Select, for example, b= 1.5in.;

then w = 80 =53.25
b 1.5

12



From nomogram 3 or Table 3 one obtains the following ratios:

For shear: 0.285
For bending: 0.477
For deflection: 0.635

The critical effect is the deflection, and the critical ratio is 0.635. Then the required
depth:

d=0.635x 17.5=11.10in., say 11.25 in.

Example 2

A glue-laminated beam of 20 ft. span is loaded by a uniformly distributed load w =
450 Ib./ft. Design the beam if the thickness and width of one layer are 0.5 in. and 5 in.
respectively and the available material has the following properties: f_ = 1300 psi., f_ =
95 psi., E = 1,700,000. Then w = 450 = 90. From nomogram 3 or Table 3 we obtaln
the following ratios: b 5

For shear: 0.707
For bending: 0.789
For deflection: 0.754

The critical effect is the bending and therefore:
d=0.789 x 20 = 15.78 in.

Since d is greater than 12 in., modification of the depth is necessary. From Table D we
can interpolate the corresponding factor, 1.0334. Then the modified depth becomes:

d=1.0334 x 15.78 = 16.3070 say 16.50
and the number of layers: 16.5 _ 33

5

Example 3

A simply supported beam, having a span of 25 ft., is loaded by two equal,
concentrated loads (P = 375 Ib.) acting at the third points of the beam. Design the beam
to carry this load safely if the self weight of the beam is neglected and the available
lumber has the following properties: f = 1900 psi., f_ = 125 psi., E = 1,520,000 psi.

The fictitious load is _2_X2_§Z§ = 30 Ib./ft. Assuming 1.5 in. for the width of the

beam, we have: w_ = 30 = 20. Then from nomogram 5 or Table 5 one obtains the

. . b 15
following ratios:
For shear: 0.120
For bending: 0.355
For bending: 0.526

The critical effect is the deflection, and the required depth will be:
d=0.526 x 256 =13.15in. say 13.5in.

Example 4

A simply supported beam is loaded by three equal, concentrated loads (P = 400 Ib.)
acting at the quarter points of the beam. The span of the beam is equal to 20 ft and the
cross-section is given by b = 1.5 in. and d = 9.25 in. Find the effective stresses and

13



determine whether the cross-section is adequate for deflection when E = 1,700,000 psi.
If not, redesign the cross-section and state the effective stresses. Neglect the self weight

of the beam.
The fictitious load is 3 x 400 = 60 Ib./ft.
20
Then w, 60
— = — =40
b 1.6

L 20

By using nomogram 4 or Table 4, the above ratios determine one f_ and one f_ curve
which will provide the effective stresses in the beam and these are: f_ = 2250 pSI and
f_is less than 70 psi.

Checking the deflection, one finds that the required Young's modulus is much
greater than 1,910,000 psi. which is the highest available figure according to the codes.
Consequently, the beam is not adequate for deflection. Considering the given Young’s
modulus (E = 1,700,000 psi.), the necessary ratio for deflection becomes 0.623 and the
required depth:

And d = .9.25 = 0.462

d=0.623 x 20=12.46 in., say 13.25 in.

Then the effective stresses obtained by the corresponding f_ and f_ curves are: f =
1240 psi. and f_ = less than 70 psi.

Example 5

A simply supported beam is loaded by a non-symmetric triangular load having a
maximum intensity of 200 Ib./ft. The cross-section of the beam is given as b = 2.5 in.
andd=9. 25 in. Find the maximum span for which the beam can be applied safely if f_

= 1900 psi., f. = 140 psi., and E = 1,700,000 psi.
The load-width ratio is w _ 220 -88
b 25
Using Nomogram 1 or Table 1, one can find the following ratios:
For shear: 0.314
For bending: 0.461
For deflection: 0.587
The critical effect is the deflection, and therefore the maximum safe span:
L=322_ - 15751t
0.587

Example 6

A beam, simply supported over a span of 25 ft., is loaded by a uniformly distributed
load of 60 Ib./ft. and by a concentrated load of 400 Ib. applied at the middle of the
span. Design the cross-section of the beam if the allowable unit stresses for shear and
for bending are 125 psi., and 2100 psi. respectively, and the Young’s modulus is
1,500,000 psi.

The design is carried out in two steps. First, consider the concentrated load, for
which the fictitious load is:

w_ =400=16 Ib. /ft.
25

14



Assume now 1.75 in. for the initial width of the beam. Then:

w 16
—2 =_— =915
b 1.5
and using Nomogram 6 or Table 6 we obtain the following ratios:
For shear: 0.055
For bending: 0.259
For deflection: 0.435

Then obviously: d = 0.435 x 25 - 10.86 in., say 11.50 in.

In the second step of the design we consider 11.50 in. for the depth; then the
corresponding d/L ratio is 0.46. We find now a suitable width to carry the uniformly
distributed load. Therefore, Nomogram 3 or Table 3 will be used which provides the
following three values for the w/b ratios:

For shear: 76.66
For bending: 49.38
For deflection: 18.40

The critical effect is the deflection, consequently:
b=60_=3.36in.

18.40

Finally, the total width is equal to 1.75 + 3.36 = 5.01, say 5.50 in. and the depth is
11.5in.

15
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LEGEND. fs =allowable unit stress for shear

fo =allowable unit stress for bending
E =Youngs modulus Il to grain

21

f “bl 10 |20 130|140 |50 |60 | 70|80 |90 |I00

155 [0-032 [0-065 |0-037 |0-123 |O-161 | 0-194 | 0-226 | 058 | 0290 | 0-323

140 Jo-036 [0-071 [0-107 [0-143 [0-173 | 0-214 |0-250 | 0286 | 0321 | O-357

o 125 [0-040 [0-080 [0-120 [0°160 |0-200 | 0240 |0-280 | 0320 | O-360 | C400

< 120 [0-042 [0-083 [0-125 [0°167 [0-208 | 0-250 [0-292 | 0333 | 0375 | 0417

w 110 Jo-045 |0-091 [0-136 |0-182 |0-227 | 0-273 [0O-318 | 0364 | 0-409 | 0455

T 100 [0-050 [0-100 [0-150 |0-200 |0-250 | 0-300 |0-350 | 0400 | 0450 | 0-500

n 90 0056 [0:111 [0°167 [0-222 |0+278 | 0-333 [0-389 | 0444 | 0555 | 0556

80 [0-062 [0-125 [O-187 [0-250 | 0312 [ O-375 [0-437 | 0500 | 0562 | 0625

70 [0-:071 [0-143 [0-214 [0-286 |0-357 | 0429 |O500 | 0571 | 0643 | O-TI 4

f£~/b| 10 |20|30}140 |50 | 60| 70|80 |90 |IOO

2750 lo.129 [0-183 |0-224 |0259 |0-289 | 0-317 [0-342 | 0-366 | 0-388 | 0409

2400 |p-139 |0°196 |0240 |0277 |0-310 | 0-339 [0-367 | 0392 | 0MI6 | 0°438

2300 Jo-142 |0200 [c245 |0283 |0-317 | 0347 [0374 | 0400 | 0-425 | 0-448

2200 [0-145 |0205 [0-251 [0289 [0-324 | 0-355 [0-383 | 0409 | 0434 | 0-458

2100 o148 0209 |0257 |[0296 [0-331 | 0363 [0-392 | 0419 | 0-444 | 0-4€8

2000 [0-152 [0214 [0-263 [0303 [0-339 | 0-372 | 0-402 | 0429 | 0465 | 0-480

1900 [0-156 |0220 |0270 |O=11 |0-348 | 0-381 |0-412 | 0-440 | 0-467 | 0492

1800 [0-1€0 |0226 |0Z277 |O320 |0-358 | 0-392 |0-423 | 0-453 | 0480 | 0506

1700 |0-165 |0-222 |0-285 |0329 | 0-368 | 0-403 | 0-436 | 0-466 | 0494 | 0-52]

© 1600 |O-170 |0240 |0-294 |0339 |0-379 | 0-416 | 0449 | 0-480 | 0509 | 0537

E 1500 |0-175 |0-248 |0-304 | 0351 |0-392 | 0-429 | 0-464 | 0-496 | 0526 | 0554

a 1400 |0-181 |0257 |0314 [0363 |0406 | 0-444 | 0-480 | 0513 | 0544 | 0574

pd 1300 |0-188 |0266 |0-326 |0377 |0-42] | 0-461 | 0-498 | 0-533 | 0565 | 0595 |

w 1200 |0-196 |0277 |0-339 | 0392 | 0428 | 0480|0518 | 0554 | 0588 | 0620

m 1100 o208 [0-289 [0-255 [ 0409 |0-458 | 0501 {0542 [ 0-579 | O-614 | O-€4T7

J000 [0-215 |0-304 |0-372 | 0429 | 0-480 | 0526 | 0568 | 0607 | 0644 | O-€T9

900 |0-226 |0320 |0-292 | 0453 | 0506 | 0554|0599 | 0-640 | 0679 | O-718 |

800 |0-240 |0329 |0416 | 0480 | 0537 | 0588 | 0635 | 06793 | 0-720 | 0759

700 [0-257 |0-363 |0-444 |0513 0574 | 0-628 | 0-679 | 0726 |O-770 | OBIT |

E “/bl 10 |20 [ 30|40 |50 | 60| 70 | 80 | 90 |100

191 x 10°]0-274 [0-345 |0-395 |0435 |0-468 | 0-497 |0524 | 0548 |0-569 |0Q:590

= |18l x 10°]0-279 0-351 |0-402 |0442 |0-477 |0-506 [0-533 |0-557 |0-580 |0-600

O [LL70X 10°]o-285 |0359 |0-410 [0452 [0-487 | 0-517 [0-544 | 0569 [0-592 | 0613

— [160x 10¢]0-290 [0-366 [0419 [0461 [0-497 | 0-528 [0-528 [ 0581 [0604 | 0626

F [[1.50x 10°]0-297 0374 0428 0471 |0-507 | 0-539 |0568 | 0593 |0617 |0°639

O [71.40x 10°]0-304 [0-383 [0-438 [0-482 [0-519 | 0-552 [0'581 | 0607 |0632 | 0-654

L 1.30x |0°]0-311 |0-392 [0-449 [0494 |0532 [0-566[0-595 | 0622 [0647 | 0-67I

— 20X 10°10-320 0403 |046! |0507 | 0546 | 0580|0611 | 0-639 |0-665 | 0689

t 10X 10°]0-330 |0-416 |0-474 |0523 |0-564 | 0-598 |0-630 | 0660 |[0-686 [0-717

O [095x10%]0o-346 [0-435 [0498 [0548 [0-591 [0-628 |0-661 |0-691 [07I19 [0-744

0.85x 10°]0-359 |0-452 [0517 [0569 [0-613 [0-652 |0-686 |O-7I7 |0-746 [0-773
TABLE 1
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